Sample records for active regions observed

  1. Cooling Active Region Loops Observed With SXT and TRACE


    Winebarger, Amy R.; Warren, Harry P.


    An Impulsive Heating Multiple Strand (IHMS) Model is able to reproduce the observational characteristics of EUV (~ 1 MK) active region loops. This model implies that some of the loops must reach temperatures where X-ray filters are sensitive (> 2.5 MK) before they cool to EUV temperatures. Hence, some bright EUV loops must be preceded by bright X-ray loops. Previous analysis of X-ray and EUV active region observations, however, have concluded that EUV loops are not preceded by X-ray loops. In...

  2. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions (United States)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank


    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  3. The THMIS-MTR observation of a active region filament (United States)

    Zong, W. G.; Tang, Y. H.; Fang, C.

    We present some THMIS-MTR observations of a active region filament on September 4, 2002. The full stokes parameters of the filament were obtained in Hα, CaII 8542 and FeI 6302. By use of the data with high spatial resolution(0.44" per pixel), we probed the fine structure of the filament and gave out the parameters at the barbs' endpoints, including intensity, velocity and longitudinal magnetic field. Comparing the quiescent filament which we have discussed before, we find that: 1)The velocities of the barbs' endpoints are much bigger in the active region filament, the values are more than one thousand meters per second. 2)The barbs' endpoints terminate at the low logitudinal magnetic field in the active region filament, too.

  4. Physics of the Solar Active Regions from Radio Observations (United States)

    Gelfreikh, G. B.


    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  5. Multi-wavelength Observations of Solar Active Region NOAA 7154 (United States)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.


    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  6. Joint NuSTAR and IRIS observation of a microflaring active region (United States)

    Hannah, I. G.; Kleint, L.; Krucker, S.; Glesener, L.; Grefenstette, B.


    We present observations of a weakly microflaring active region observed in X-rays with NuSTAR, UV with IRIS and EUV with SDO/AIA. NuSTAR was pointed at this unnamed active region near the East limb between 23:27UT and 23:37UT 26-July-2016, finding mostly quiescent emission except for a small microflare about 23:35UT. The NuSTAR spectrum for the pre-microflare time (23:27UT to 23:34UT) is well fitted by a single thermal component of about 3MK and combined with SDO/AIA we can determine the differential emission measure (DEM), finding it, as expected, drops very sharply to higher temperatures. During the subsequent microflare, the increase in NuSTAR counts matches a little brightening loop observed with IRIS SJI 1400Å and SDO/AIA. Fortuitously the IRIS slit crosses this microflaring loop and we find an increased emission in Si IV 1394Å, Si IV 1403Å and O IV 1402Å but only average line widths and velocities. The NuSTAR microflare spectrum shows heating to higher temperatures and also allows us to investigate the energetics of this event.


    International Nuclear Information System (INIS)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.


    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields


    Energy Technology Data Exchange (ETDEWEB)

    Toriumi, Shin; Katsukawa, Yukio [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheung, Mark C. M., E-mail: [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Building/252, Palo Alto, CA 94304 (United States)


    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.

  9. Active region structures in the transition region and corona

    International Nuclear Information System (INIS)

    Webb, D.F.


    Observational aspects of the transition region and coronal structures of the solar active region are reviewed with an emphasis on imaging of the plasma loops which act as tracers of the magnetic flux loops. The study of the basic structure of an active region is discussed in terms of the morphological and thermal classifications of active region loops, including umbral structures, and observational knowledge of the thermal structure of loops is considered in relation to scaling laws, emission measures and the structures of individual loops. The temporal evolution of active region loop structures is reviewed with emphasis on ephemeral regions and the emergence of active regions. Planned future spaceborne observations of active region loop structures in the EUV and soft X-ray regions are also indicated

  10. Propagating wave in active region-loops, located over the solar disk observed by the Interface Region Imaging Spectrograph (United States)

    Zhang, B.; Hou, Y. J.; Zhang, J.


    Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://

  11. Microwave, EUV, and X-ray observations of active region loops and filaments

    International Nuclear Information System (INIS)

    Schmahl, E.


    Until the advent of X-ray and EUV observations of coronal structures, radio observers were forced to rely on eclipse and coronagraph observations in white light and forbidden coronal lines for additional diagnostics of the high temperature microwave sources. While these data provided enough material for theoretical insight into the physics of active regions, there was no way to make direct, simultaneous comparison of coronal structures on the disk as seen at microwave and optical wavelengths. This is now possible, and therefore the author summarizes the EUV and X-ray observations indicating at each point the relevance to microwaves. (Auth.)

  12. The SMM UV observations of Active Region 5395 (United States)

    Drake, Stephen A.; Gurman, Joseph B.


    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft was used extensively to study the spatial morphology and time variability of solar active regions in the far UV (at approx. wavelength of 1370 A) since July 1985. The normal spatial resolution of UVSP observations in this 2nd-order mode is 10 sec., and the highest temporal resolution is 64 milliseconds. To make a full-field, 4 min. by 4 min. image this wavelength using 5 sec. raster steps takes about 3 minutes. UVSP can also make observations of the Sun at approx. wavelength of 2790 with 3 sec. spatial resolution when operated in its 1st-order mode; a full-field image at this wavelength (a so-called SNEW image) takes about 8 minutes. UVSP made thousands of observations (mostly in 2nd-order) of AR 5395 during its transit across the visible solar hemisphere (from 7 to 19 March, inclusive). During this period, UVSP's duty cycle for observing AR 5395 was roughly 40 percent, with the remaining 60 percent of the time being fairly evenly divided between aeronomy studies of the Earth's atmosphere and dead time due to Earth occultation of the Sun. UVSP observed many of the flares tagged to AR 5395, including 26 GOES M-level flares and 3 X-level flares, one of which produced so much UV emission that the safety software of UVSP turned off the detector to avoid damage due to saturation. Images and light curves of some of the more spectacular of the AR 5395 events are presented.

  13. Observations of the Growth of an Active Region Filament (United States)

    Yang, Bo


    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. Hαobservations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  14. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region (United States)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.


    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  15. Simulating flaring events in complex active regions driven by observed magnetograms (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M. K.


    Context. We interpret solar flares as events originating in active regions that have reached the self organized critical state, by using a refined cellular automaton model with initial conditions derived from observations. Aims: We investigate whether the system, with its imposed physical elements, reaches a self organized critical state and whether well-known statistical properties of flares, such as scaling laws observed in the distribution functions of characteristic parameters, are reproduced after this state has been reached. Methods: To investigate whether the distribution functions of total energy, peak energy and event duration follow the expected scaling laws, we first applied a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular automaton evolution rules. Subsequent loading and relaxation steps lead the system to self organized criticality, after which the statistical properties of the simulated events are examined. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately imposed on all elements of the model. Results: Our results show that self organized criticality is indeed reached when applying specific loading and relaxation rules. Power-law indices obtained from the distribution functions of the modeled flaring events are in good agreement with observations. Single power laws (peak and total flare energy) are obtained, as are power laws with exponential cutoff and double power laws (flare duration). The results are also compared with observational X-ray data from the GOES satellite for our active-region sample. Conclusions: We conclude that well-known statistical properties of flares are reproduced after the system has

  16. Forward modeling transient brightenings and microflares around an active region observed with Hi-C

    Energy Technology Data Exchange (ETDEWEB)

    Kobelski, Adam R. [Now at National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); McKenzie, David E., E-mail: [Department of Physics, P.O. Box 173840, Montana State University, Bozeman, MT 59717-3840 (United States)


    Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C) sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.

  17. Active regions, ch. 7

    International Nuclear Information System (INIS)

    Martres, M.J.; Bruzek, A.


    The solar Active Region is an extremely complex phenomenon comprising a large variety of features (active,region phenomena) in the photosphere, chromosphere and corona. The occurrence of the various active phenomena depends on the phase and state of evolution of the AR; their appearance depends on the radiation used for the observation. The various phenomena are described and illustrated with photographs. Several paragraphs are dedicated to magnetic classification of AR, Mt. Wilson Spot Classification, solar activity indices, and solar activity data publications

  18. Geometry of Hα active region loops observed on the solar disk

    International Nuclear Information System (INIS)

    Chuan-le, C.; Loughhead, R.E.


    Plasma loops are the dominant structures in the higher levels of the Sun's atmosphere above active regions. A geometrical technique has been used to reconstruct the true shapes of two large dark loops of the type ordinarily found in active regions in the absence of flares

  19. Magneto-static Modeling from Sunrise/IMaX: Application to an Active Region Observed with Sunrise II

    Energy Technology Data Exchange (ETDEWEB)

    Wiegelmann, T.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Neukirch, T. [School of Mathematics and Statistics, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Nickeler, D. H. [Astronomical Institute, AV CR, Fricova 298, 25165 Ondrejov (Czech Republic); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)


    Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region. We use solar vector magnetic field measurements gathered by the IMaX polarimeter during the flight of the Sunrise balloon-borne solar observatory in 2013 June as boundary conditions for a magneto-static model of the higher solar atmosphere above an active region. The IMaX data are embedded in active region vector magnetograms observed with SDO /HMI. This work continues our magneto-static extrapolation approach, which was applied earlier to a quiet-Sun region observed with Sunrise I. In an active region the signal-to-noise-ratio in the measured Stokes parameters is considerably higher than in the quiet-Sun and consequently the IMaX measurements of the horizontal photospheric magnetic field allow us to specify the free parameters of the model in a special class of linear magneto-static equilibria. The high spatial resolution of IMaX (110–130 km, pixel size 40 km) enables us to model the non-force-free layer between the photosphere and the mid-chromosphere vertically by about 50 grid points. In our approach we can incorporate some aspects of the mixed beta layer of photosphere and chromosphere, e.g., taking a finite Lorentz force into account, which was not possible with lower-resolution photospheric measurements in the past. The linear model does not, however, permit us to model intrinsic nonlinear structures like strongly localized electric currents.

  20. Observations of photospheric magnetic fields and shear flows in flaring active regions

    International Nuclear Information System (INIS)

    Tarbell, T.; Ferguson, S.; Frank, Z.; Title, A.; Topka, K.


    Horizontal flows in the photosphere and subsurface convection zone move the footpoints of coronal magnetic field lines. Magnetic energy to power flares can be stored in the corona if the flows drive the fields far from the potential configuration. Videodisk movies were shown with 0.5 to 1 arcsecond resolution of the following simultaneous observations: green continuum, longitudinal magnetogram, Fe I 5576 A line center (mid-photosphere), H alpha wings, and H alpha line center. The movies show a 90 x 90 arcsecond field of view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Magnetic bipoles are emerging over a large area, and the polarities are systematically flowing apart. The horizontal flows were mapped in detail from the continuum movies, and these may be used to predict the future evolution of the region. The horizontal flows are not discernable in H alpha. The H alpha movies strongly suggest reconnection processes in the fibrils joining opposite polarities. When viewed in combination with the magnetic movies, the cause for this evolution is apparent: opposite polarity fields collide and partially cancel, and the fibrils reconnect above the surface. This type of reconnection, driven by subphotospheric flows, complicates the chromospheric and coronal fields, causing visible braiding and twisting of the fibrils. Some of the transient emission events in the fibrils and adjacent plage may also be related

  1. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions (United States)

    Willson, Robert F.


    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  2. Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: Evidence for nanoflare heating

    International Nuclear Information System (INIS)

    Brosius, Jeffrey W.; Daw, Adrian N.; Rabin, D. M.


    We present spatially resolved EUV spectroscopic measurements of pervasive, faint Fe XIX 592.2 Å line emission in an active region observed during the 2013 April 23 flight of the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectral resolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 Å (formed at temperature T ≈ 8.9 MK) and Fe XII at 592.6 Å (T ≈ 1.6 MK). The Fe XIX line emission, observed over an area in excess of 4920 arcsec 2 (2.58 × 10 9 km 2 , more than 60% of the active region), provides strong evidence for the nanoflare heating model of the solar corona. No GOES events occurred in the region less than 2 hr before the rocket flight, but a microflare was observed north and east of the region with RHESSI and EUNIS during the flight. The absence of significant upward velocities anywhere in the region, particularly the microflare, indicates that the pervasive Fe XIX emission is not propelled outward from the microflare site, but is most likely attributed to localized heating (not necessarily due to reconnection) consistent with the nanoflare heating model of the solar corona. Assuming ionization equilibrium we estimate Fe XIX/Fe XII emission measure ratios of ∼0.076 just outside the AR core and ∼0.59 in the core.

  3. Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: Evidence for nanoflare heating

    Energy Technology Data Exchange (ETDEWEB)

    Brosius, Jeffrey W. [Catholic University of America at NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States); Daw, Adrian N. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States); Rabin, D. M., E-mail: [NASA Goddard Space Flight Center, Heliophysics Science Division, Code 670, Greenbelt, MD 20771 (United States)


    We present spatially resolved EUV spectroscopic measurements of pervasive, faint Fe XIX 592.2 Å line emission in an active region observed during the 2013 April 23 flight of the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectral resolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 Å (formed at temperature T ≈ 8.9 MK) and Fe XII at 592.6 Å (T ≈ 1.6 MK). The Fe XIX line emission, observed over an area in excess of 4920 arcsec{sup 2} (2.58 × 10{sup 9} km{sup 2}, more than 60% of the active region), provides strong evidence for the nanoflare heating model of the solar corona. No GOES events occurred in the region less than 2 hr before the rocket flight, but a microflare was observed north and east of the region with RHESSI and EUNIS during the flight. The absence of significant upward velocities anywhere in the region, particularly the microflare, indicates that the pervasive Fe XIX emission is not propelled outward from the microflare site, but is most likely attributed to localized heating (not necessarily due to reconnection) consistent with the nanoflare heating model of the solar corona. Assuming ionization equilibrium we estimate Fe XIX/Fe XII emission measure ratios of ∼0.076 just outside the AR core and ∼0.59 in the core.

  4. Open magnetic fields in active regions (United States)

    Svestka, Z.; Solodyna, C. V.; Howard, R.; Levine, R. H.


    Soft X-ray images and magnetograms of several active regions and coronal holes are examined which support the interpretation that some of the dark X-ray gaps seen between interconnecting loops and inner cores of active regions are foot points of open field lines inside the active regions. Characteristics of the investigated dark gaps are summarized. All the active regions with dark X-ray gaps at the proper place and with the correct polarity predicted by global potential extrapolation of photospheric magnetic fields are shown to be old active regions, indicating that field opening is accomplished only in a late phase of active-region development. It is noted that some of the observed dark gaps probably have nothing in common with open fields, but are either due to the decreased temperature in low-lying portions of interconnecting loops or are the roots of higher and less dense or cooler loops.


    International Nuclear Information System (INIS)

    Zhao Junwei; Kosovichev, Alexander G.; Sekii, Takashi


    We analyze a solar active region observed by the Hinode Ca II H line using the time-distance helioseismology technique, and infer wave-speed perturbation structures and flow fields beneath the active region with a high spatial resolution. The general subsurface wave-speed structure is similar to the previous results obtained from Solar and Heliospheric Observatory/Michelson Doppler Imager observations. The general subsurface flow structure is also similar, and the downward flows beneath the sunspot and the mass circulations around the sunspot are clearly resolved. Below the sunspot, some organized divergent flow cells are observed, and these structures may indicate the existence of mesoscale convective motions. Near the light bridge inside the sunspot, hotter plasma is found beneath, and flows divergent from this area are observed. The Hinode data also allow us to investigate potential uncertainties caused by the use of phase-speed filter for short travel distances. Comparing the measurements with and without the phase-speed filtering, we find out that inside the sunspot, mean acoustic travel times are in basic agreement, but the values are underestimated by a factor of 20%-40% inside the sunspot umbra for measurements with the filtering. The initial acoustic tomography results from Hinode show a great potential of using high-resolution observations for probing the internal structure and dynamics of sunspots.

  6. The Magnetic Free Energy in Active Regions (United States)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.


    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  7. The quiescent chromospheres and transition regions of active dwarf stars: what are we learning from recent observations and models

    International Nuclear Information System (INIS)

    Linsky, J.L.


    The rapid progress in understanding active dwarf stars, which has been stimulated by recent IUE, Einstein and ground-based observations, is reviewed. Active phenomena in late-type dwarf stars are seen as somehow a direct consequence of strong magnetic fields. The nonflare phenomena in the chromosphere and transition regions of these stars are discussed, while some suggestions are given about the way in which magnetic fields control these phenomena. Especially, the review deals with a description and comparison of those activities which are similar in active and quiescent dwarf stars and summarizes the various roles which magnetic fields likely play in modifying the chromospheres and transition regions of active stars. Successively, the following subjects are discussed: the basic structure of the stars, the enhanced heating and solar-like flux tubes, the consequences of plasma flows, heating rates in different layers, heating mechanism of chromosphere and transition region, semi-empirical models. The author finishes with some suggestions for future work. (G.J.P.)

  8. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    Energy Technology Data Exchange (ETDEWEB)

    Kobelski, Adam R.; McKenzie, David E. [Department of Physics, P.O. Box 173840, Montana State University, Bozeman, MT 59717-3840 (United States); Donachie, Martin, E-mail: [University of Glasgow, Glasgow, G128QQ, Scotland (United Kingdom)


    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  9. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    International Nuclear Information System (INIS)

    Kobelski, Adam R.; McKenzie, David E.; Donachie, Martin


    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  10. Open magnetic fields in active regions

    International Nuclear Information System (INIS)

    Svestka, Z.; Solodyna, C.V.; Levine, R.H.


    Soft X-ray observations confirm that some of the dark gaps seen between interconnecting loops and inner cores of active regions may be loci of open fields, as it has been predicted by global potential extrapolation of photospheric magnetic fields. It seems that the field lines may open only in a later state of the active region development. (Auth.)


    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Xiang, Y. Y.; Kong, D. F.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Pan, G. M. [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)


    To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspot with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.

  12. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure (United States)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.


    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  13. Simultaneous Solar Maximum Mission and Very Large Array (VLA) observations of solar active regions. Semiannual Progress Report, 1 February 1985-30 January 1986

    International Nuclear Information System (INIS)

    Lang, K.R.


    Simultaneous observations of solar active regions with the Solar Maximum Mission (SMM) Satellite and the Very Large Array (VLA) have been obtained and analyzed. Combined results enhance the scientific return for beyond that expeted from using either SMM or VLA alone. A total of two weeks of simultaneous SMM/VLA data were obtained. The multiple wavelength VLA observations were used to determine the temperature and magnetic structure at different heights within coronal loops. These data are compared with simultaneous SMM observations. Several papers on the subject are in progress. They include VLA observations of compact, transient sources in the transition region; simultaneous SMM/VLA observations of the coronal loops in one active region and the evolution of another one; and sampling of the coronal plasma using thermal cyclotron lines (magnetic field - VLA) and soft X ray spectral lines (electron density and electron temperaure-SMM)

  14. Coordinated Regional Benefit Studies of Coastal Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Luger, Michael; Wieand, Ken; Pulsipher, Allan; Pendleton, Linwood; Wellman, Katherine; Pelsoci, Tom


    .... The authors will first produce regional "inventories" of ocean observation user sectors, including information about the physical and economic scale of their activities, how products from improved...

  15. Steady flows in the chromosphere and transition-zone above active regions as observed by OSO-8 (United States)

    Lites, B. W.


    Two years of data from the University of Colorado ultraviolet spectrometer aboard OSO-8 were searched for steady line-of-sight flows in the chromosphere and transition-zone above active regions. The most conspicuous pattern that emerges from this data set is that many sunspots show persistent blueshifts of transition-zone lines indicating velocities of about 20 km/s with respect to the surrounding plage areas. The data show much smaller shifts in ultraviolet emission lines arising from the chromosphere: the shifts are frequently to the blue, but sometimes redshifts do occur. Plage areas often show a redshift of the transition-zone lines relative to the surrounding quiet areas, and a strong gradient of the vertical component of the velocity is evident in many plages. One area of persistent blueshift was observed in the transition-zone above an active region filament. The energy requirement of these steady flows over sunspots is discussed.

  16. Cool transition region loops observed by the Interface Region Imaging Spectrograph (United States)

    Huang, Z.; Xia, L.; Li, B.; Madjarska, M. S.


    An important class of loops in the solar atmosphere, cool transition region loops, have received little attention mainly due to instrumental limitations. We analyze a cluster of these loops in the on-disk active region NOAA 11934 recorded in a Si IV 1402.8 Å spectral raster and 1400Å slit-jaw (SJ) images taken by the Interface Region Imaging Spectrograph. We divide these loops into three groups and study their dynamics, evolution and interaction.The first group comprises geometrically relatively stable loops, which are finely scaled with 382~626 km cross-sections. Siphon flows in these loops are suggested by the Doppler velocities gradually changing from -10 km/s (blue-shifts) in one end to 20 km/s (red-shifts) in the other. Nonthermal velocities from 15 to 25 km/s were determined. The obtained physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of 1015 Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two active footpoints rooted in mixed-magnetic-polarity regions. Magnetic reconnection in both footpoints is suggested by explosive-event line profiles with enhanced wings up to 200 km/s and magnetic cancellation with a rate of ~1015 Mx/s. In the third group, an interaction between two cool loop systems is observed. Mixed-magnetic polarities are seen in their conjunction area where explosive-event line profiles and magnetic cancellation with a rate of 3×1015 Mx/s are found. This is a clear indication that magnetic reconnection occurs between these two loop systems. Our observations suggest that the cool transition region loops are heated impulsively most likely by sequences of magnetic reconnection events.

  17. The 17 GHz active region number

    Energy Technology Data Exchange (ETDEWEB)

    Selhorst, C. L.; Pacini, A. A. [IP and D-Universidade do Vale do Paraíba-UNIVAP, São José dos Campos (Brazil); Costa, J. E. R. [CEA, Instituto Nacional de Pesquisas Espaciais, São José dos Campos (Brazil); Giménez de Castro, C. G.; Valio, A. [CRAAM, Universidade Presbiteriana Mackenzie, São Paulo (Brazil); Shibasaki, K., E-mail: [Nobeyama Solar Radio Observatory/NAOJ, Minamisaku, Nagano 384-1305 (Japan)


    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  18. CLASP/SJ Observations of Rapid Time Variations in the Ly α Emission in a Solar Active Region

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Shin-nosuke [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252–5210 (Japan); Kubo, Masahito; Katsukawa, Yukio; Kano, Ryouhei; Narukage, Noriyuki; Ishikawa, Ryohko; Bando, Takamasa [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Trujillo Bueno, Javier [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Auchère, Frédéric, E-mail: [Institut d’Astrophysique Spatiale, CNRS/Univ. Paris-Sud 11, Bätiment 121, F-91405 Orsay (France)


    The Chromospheric Ly α SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on 2015 September 3 to investigate the solar chromosphere and transition region. The slit-jaw (SJ) optical system captured Ly α images with a high time cadence of 0.6 s. From the CLASP/SJ observations, many variations in the solar chromosphere and transition region emission with a timescale of <1 minute were discovered. In this paper, we focus on the active region within the SJ field of view and investigate the relationship between short (<30 s) temporal variations in the Ly α emission and the coronal structures observed by Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). We compare the Ly α temporal variations at the coronal loop footpoints observed in the AIA 211 Å (≈2 MK) and AIA 171 Å (≈0.6 MK) channels with those in the regions with bright Ly α features without a clear association with the coronal loop footpoints. We find more short (<30 s) temporal variations in the Ly α intensity in the footpoint regions. Those variations did not depend on the temperature of the coronal loops. Therefore, the temporal variations in the Ly α intensity at this timescale range could be related to the heating of the coronal structures up to temperatures around the sensitivity peak of 171 Å. No signature was found to support the scenario that these Ly α intensity variations were related to the nanoflares. Waves or jets from the lower layers (lower chromosphere or photosphere) are possible causes for this phenomenon.

  19. The Photospheric Flow near the Flare Locations of Active Regions

    Indian Academy of Sciences (India)


    in the active regions along with few locations of upflows. The localised upflows are observed in the light bridges and emerging flux regions with different speeds (Beckers & Schroter 1969). The flow patterns of flare locations in the active regions are observed by using the tower vector magnetograph (TVM) of Marshall.

  20. Observations of vector magnetic fields in flaring active regions (United States)

    Chen, Jimin; Wang, Haimin; Zirin, Harold; Ai, Guoxiang


    We present vector magnetograph data of 6 active regions, all of which produced major flares. Of the 20 M-class (or above) flares, 7 satisfy the flare conditions prescribed by Hagyard (high shear and strong transverse fields). Strong photospheric shear, however, is not necessarily a condition for a flare. We find an increase in the shear for two flares, a 6-deg shear increase along the neutral line after a X-2 flare and a 13-deg increase after a M-1.9 flare. For other flares, we did not detect substantial shear changes.

  1. Observations of white-light flares in NOAA active region 11515: high occurrence rate and relationship with magnetic transients (United States)

    Song, Y. L.; Tian, H.; Zhang, M.; Ding, M. D.


    Aims: There are two goals in this study. One is to investigate how frequently white-light flares (WLFs) occur in a flare-productive active region (NOAA active region 11515). The other is to investigate the relationship between WLFs and magnetic transients (MTs). Methods: We used the high-cadence (45 s) full-disk continuum filtergrams and line-of-sight magnetograms taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to identify WLFs and MTs, respectively. Images taken by the Atmospheric Imaging Assembly (AIA) on board SDO were also used to show the flare morphology in the upper atmosphere. Results: We found at least 20 WLFs out of a total of 70 flares above C class (28.6%) in NOAA active region 11515 during its passage across the solar disk (E45°-W45°). Each of these WLFs occurred in a small region, with a short duration of about 5 min. The enhancement of the white-light continuum intensity is usually small, with an average enhancement of 8.1%. The 20 WLFs we observed were found along an unusual configuration of the magnetic field that was characterized by a narrow ribbon of negative field. Furthermore, the WLFs were found to be accompanied by MTs, with radical changes in magnetic field strength (or even a sign reversal) observed during the flare. In contrast, there is no obvious signature of MTs in the 50 flares without white-light enhancements. Conclusions: Our results suggest that WLFs occur much more frequently than previously thought, with most WLFs being fairly weak enhancements. This may explain why WLFs are reported rarely. Our observations also suggest that MTs and WLFs are closely related and appear cospatial and cotemporal, when considering HMI data. A greater enhancement of WL emission is often accompanied by a greater change in the line-of-sight component of the unsigned magnetic field. Considering the close relationship between MTs and WLFs, many previously reported flares with MTs may be WLFs. The movie

  2. Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Zhao, Xiaowei; Zhu, Bei; Yang, Zhongwei, E-mail: [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)


    We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO , STEREO , SOHO , VEX , and Wind . A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind , which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.

  3. Regional National Cooperative Observer (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA publication dedicated to issues, news and recognition of observers in the National Weather Service Cooperative Observer program. Issues published regionally...


    International Nuclear Information System (INIS)

    Chintzoglou, Georgios; Zhang Jie


    A solar active region (AR) is a three-dimensional (3D) magnetic structure formed in the convection zone, whose property is fundamentally important for determining the coronal structure and solar activity when emerged. However, our knowledge of the detailed 3D structure prior to its emergence is rather poor, largely limited by the low cadence and sensitivity of previous instruments. Here, using the 45 s high-cadence observations from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we are able for the first time to reconstruct a 3D data cube and infer the detailed subsurface magnetic structure of NOAA AR 11158, and to characterize its magnetic connectivity and topology. This task is accomplished with the aid of the image-stacking method and advanced 3D visualization. We find that the AR consists of two major bipoles or four major polarities. Each polarity in 3D shows interesting tree-like structure, i.e., while the root of the polarity appears as a single tree-trunk-like tube, the top of the polarity has multiple branches consisting of smaller and thinner flux tubes which connect to the branches of the opposite polarity that is similarly fragmented. The roots of the four polarities align well along a straight line, while the top branches are slightly non-coplanar. Our observations suggest that an active region, even appearing highly complicated on the surface, may originate from a simple straight flux tube that undergoes both horizontal and vertical bifurcation processes during its rise through the convection zone.


    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Sykora, Juan; Pontieu, Bart De; Hansteen, Viggo H. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Gudiksen, Boris, E-mail: [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)


    The properties of nonstatistical equilibrium ionization of silicon and oxygen ions are analyzed in this work. We focus on five solar targets (quiet Sun; coronal hole; plage; quiescent active region, AR; and flaring AR) as observed with the Interface Region Imaging Spectrograph (IRIS). IRIS is best suited for this work owing to the high cadence (up to 0.5 s), high spatial resolution (up to 0.″32), and high signal-to-noise ratios for O iv λ1401 and Si iv λ1402. We find that the observed intensity ratio between lines of three times ionized silicon and oxygen ions depends on their total intensity and that this correlation varies depending on the region observed (quiet Sun, coronal holes, plage, or active regions) and on the specific observational objects present (spicules, dynamic loops, jets, microflares, or umbra). In order to interpret the observations, we compare them with synthetic profiles taken from 2D self-consistent radiative MHD simulations of the solar atmosphere, where the statistical equilibrium or nonequilibrium treatment of silicon and oxygen is applied. These synthetic observations show vaguely similar correlations to those in the observations, i.e., between the intensity ratios and their intensities, but only in the nonequilibrium case do we find that (some of) the observations can be reproduced. We conclude that these lines are formed out of statistical equilibrium. We use our time-dependent nonequilibrium ionization simulations to describe the physical mechanisms behind these observed properties.

  6. A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations (United States)

    Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.


    We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.

  7. The quiescent chromospheres and transition regions of active dwarf stars - What are we learning from recent observations and models? (United States)

    Linsky, J. L.


    Progress in understanding active dwarf stars based on recent IUE, Einstein, and ground-based observations is reviewed. The extent of magnetic field control over nonflare phenomena in active dwarf stars is considered, and the spatial homogeneity and time variability of active dwarf atmospheres is discussed. The possibility that solar like flux tubes can explain enhanced heating in active dwarf stars in examined, and the roles of systematic flows in active dwarf star atmospheres are considered. The relation between heating rates in different layers of active dwarf stars is summarized, and the mechanism of chromosphere and transition region heating in these stars are discussed. The results of one-component and two-component models of active dwarf stars are addressed.

  8. Magnetic Characteristics of Active Region Heating Observed with TRACE, SOHO/EIT, and Yohkoh/SXT (United States)

    Porter, J. G.; Falconer, D. A.; Moore, R. L.; Rose, M. Franklin (Technical Monitor)


    Over the past several years, we have reported results from studies that have compared the magnetic structure and heating of the transition region and corona (both in active regions and in the quiet Sun) by combining X-ray and EUV images from Yohkoh and Solar and Heliospheric Observatory (SOHO) with photospheric magnetograms from ground-based observatories. Our findings have led us to the hypothesis that most heating throughout the corona is driven from near and below the base of the corona by eruptive microflares occurring in compact low-lying "core magnetic fields (i.e., fields rooted along and closely enveloping polarity inversion lines in the photospheric magnetic flux). We now extend these studies, comparing sequences of UV images from Transition Region and Coronal Explorer (TRACE) with longitudinal magnetograms from Kitt Peak and vector magnetograms from MUSIC. These comparisons confirm the previous results regarding the importance of core-field activity to active region heating. Activity in fields associated with satellite polarity inclusions and/or magnetically sheared configurations is especially prominent. This work is funded by NASA's Office of Space Science through the Sun-Earth Connection Guest Investigator Program and the Solar Physics Supporting Research and Technology Program.

  9. CNS activation and regional connectivity during pantomime observation: no engagement of the mirror neuron system for deaf signers. (United States)

    Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen


    Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action.


    International Nuclear Information System (INIS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.


    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  11. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride (United States)

    Jo, Janggun; Yang, Xinmai


    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  12. Observation and Modeling of Chromospheric Evaporation in a Coronal Loop Related to Active Region Transient Brightening (United States)

    Gupta, G. R.; Sarkar, Aveek; Tripathi, Durgesh


    Using the observations recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and the Interface Region Imaging Spectrograph (IRIS) and the Extreme-ultraviolet Imaging Spectrometer and X-Ray Telescope both on board Hinode, we present evidence of chromospheric evaporation in a coronal loop after the occurrence of two active region transient brightenings (ARTBs) at the two footpoints. The chromospheric evaporation started nearly simultaneously in all of the three hot channels of AIA 131, 94, and 335 Å and was observed to be temperature dependent, being fastest in the highest temperature channel. The whole loop became fully brightened following the ARTBs after ≈25 s in 131 Å, ≈40 s in 94 Å, and ≈6.5 minutes in 335 Å. The differential emission measurements at the two footpoints (i.e., of two ARTBs) and at the loop top suggest that the plasma attained a maximum temperature of ∼10 MK at all these locations. The spectroscopic observations from IRIS revealed the presence of redshifted emission of ∼20 km s‑1 in cooler lines like C II and Si IV during the ARTBs that was cotemporal with the evaporation flow at the footpoint of the loop. During the ARTBs, the line width of C II and Si IV increased nearly by a factor of two during the peak emission. Moreover, enhancement in the line width preceded that in the Doppler shift, which again preceded enhancement in the intensity. The observed results were qualitatively reproduced by 1D hydrodynamic simulations, where energy was deposited at both of the footpoints of a monolithic coronal loop that mimicked the ARTBs identified in the observations.

  13. Analysis of peculiar penumbral flows observed in the active region NOAA 10930 during a major solar flare

    International Nuclear Information System (INIS)

    Kumar, Brajesh; Venkatakrishnan, P; Tiwari, Sanjiv Kumar; Mathur, Savita; Garcia, R A


    It is believed that the high energetic particles and tremendous amount of energy released during the flares can induce velocity oscillations in the Sun. Using the Dopplergrams obtained by Global Oscillation Network Group (GONG) telescope, we analyze the velocity flows in the active region NOAA 10930 during a major flare (of class X3.4) that occurred on 13 December 2006. We observe peculiar evolution of velocity flows in some localized portions of the penumbra of this active region during the flare. Application of Wavelet transform to these velocity flows reveals that there is major enhancement of velocity oscillations in the high-frequency regime (5-8 mHz), while there is feeble enhancement in the p mode oscillations (2-5 mHz) in the aforementioned location. It has been recently shown that flares can induce high-frequency global oscillations in the Sun. Therefore, it appears that during the flare process there might be a common origin for the excitation of local and global high-frequency oscillations in the Sun.

  14. Image patch analysis of sunspots and active regions

    Directory of Open Access Journals (Sweden)

    Moon Kevin R.


    Full Text Available Context. Separating active regions that are quiet from potentially eruptive ones is a key issue in Space Weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature prevents systematic studies of an active region’s evolution for example. Aims. We introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. Methods. We use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches. Two factorizations can be compared via the definition of appropriate metrics on the resulting factors. The distances obtained from these metrics are then used to cluster the active regions. Results. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the R-value. Conclusions. Matrix factorization of image patches is a promising new way of characterizing active regions. We provide some recommendations for which metrics, matrix factorization techniques, and regions of interest to use to study active regions.

  15. Activation of different cerebral functional regions following ...

    African Journals Online (AJOL)

    Background: To explore the brain function regions characteristics of the acupoint combination, this study observed activity changes in the brain regions of healthy volunteers after acupuncture at both Taixi (KI3) and Taichong (LR3) (KI3 + LR3) and KI3 alone using resting-state functional magnetic resonance imaging(fMRI).

  16. Brain regions involved in observing and trying to interpret dog behaviour. (United States)

    Desmet, Charlotte; van der Wiel, Alko; Brass, Marcel


    Humans and dogs have interacted for millennia. As a result, humans (and especially dog owners) sometimes try to interpret dog behaviour. While there is extensive research on the brain regions that are involved in mentalizing about other peoples' behaviour, surprisingly little is known of whether we use these same brain regions to mentalize about animal behaviour. In this fMRI study we investigate whether brain regions involved in mentalizing about human behaviour are also engaged when observing dog behaviour. Here we show that these brain regions are more engaged when observing dog behaviour that is difficult to interpret compared to dog behaviour that is easy to interpret. Interestingly, these results were not only obtained when participants were instructed to infer reasons for the behaviour but also when they passively viewed the behaviour, indicating that these brain regions are activated by spontaneous mentalizing processes.

  17. Simultaneous SMM flat crystal spectrometer and Very Large Array observations of solar active regions (United States)

    Lang, Kenneth R.; Willson, Robert F.; Smith, Kermit L.; Strong, Keith T.


    High-resolution images of the quiescent emission from two solar active regions at 20 cm (VLA) and soft X-ray (SMM FCS) wavelengths are compared. There are regions where the X-ray coronal loops have been completely imaged at 20 cm wavelength. In other regions, the X-ray radiation was detected without detectable 20 cm radiation, and vice versa. The X-ray data were used to infer average electron temperatures of about 3-million K and average electron densities of about 2.5 x 10 to the 9th/cu cm for the X-ray emitting plasma in the two active regions. The thermal bremsstrahlung of the X-ray emitting plasma is optically thin at 20 cm wavelength. The 20 cm brightness temperatures were always less than T(e), which is consistent with optically thin bremsstrahlung. The low T(B) can be explained if a higher, cooler plasma covers the hotter X-ray emitting plasma. Thermal gyroresonance radiation must account for the intense 20 cm radiation near and above sunspots where no X-ray radiation is detected.

  18. Diagnostics of Coronal Heating in Solar Active Regions (United States)

    Fludra, Andrzej; Hornsey, Christopher; Nakariakov, Valery


    We aim to develop a diagnostic method for the coronal heating mechanism in active region loops. Observational constraints on coronal heating models have been sought using measurements in the X-ray and EUV wavelengths. Statistical analysis, using EUV emission from many active regions, was done by Fludra and Ireland (2008) who studied power-law relationships between active region integrated magnetic flux and emission line intensities. A subsequent study by Fludra and Warren (2010) for the first time compared fully resolved images in an EUV spectral line of OV 63.0 nm with the photospheric magnetic field, leading to the identification of a dominant, ubiquitous variable component of the transition region EUV emission and a discovery of a steady basal heating, and deriving the dependence of the basal heating rate on the photospheric magnetic flux density. In this study, we compare models of single coronal loops with EUV observations. We assess to what degree observations of individual coronal loops made in the EUV range are capable of providing constraints on the heating mechanism. We model the coronal magnetic field in an active region using an NLFF extrapolation code applied to a photospheric vector magnetogram from SDO/HMI and select several loops that match an SDO/AIA 171 image of the same active region. We then model the plasma in these loops using a 1D hydrostatic code capable of applying an arbitrary heating rate as a function of magnetic field strength along the loop. From the plasma parameters derived from this model, we calculate the EUV emission along the loop in AIA 171 and 335 bands, and in pure spectral lines of Fe IX 17.1 nm and Fe XVI 33.5 nm. We use different spatial distributions of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints, and investigate their effect on the modelled EUV intensities. We find a diagnostics based on the dependence of the total loop intensity on the shape of the heating function

  19. The Maximum Free Magnetic Energy Allowed in a Solar Active Region (United States)

    Moore, Ronald L.; Falconer, David A.


    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  20. Using observations of slipping velocities to test the hypothesis that reconnection heats the active region corona (United States)

    Yang, Kai; Longcope, Dana; Guo, Yang; Ding, Mingde


    Numerous proposed coronal heating mechanisms have invoked magnetic reconnection in some role. Testing such a mechanism requires a method of measuring magnetic reconnection coupled with a prediction of the heat delivered by reconnection at the observed rate. In the absence of coronal reconnection, field line footpoints move at the same velocity as the plasma they find themselves in. The rate of coronal reconnection is therefore related to any discrepancy observed between footpoint motion and that of the local plasma — so-called slipping motion. We propose a novel method to measure this velocity discrepancy by combining a sequence of non-linear force-free field extrapolations with maps of photospheric velocity. We obtain both from a sequence of vector magnetograms of an active region (AR). We then propose a method of computing the coronal heating produced under the assumption the observed slipping velocity was due entirely to coronal reconnection. This heating rate is used to predict density and temperature at points along an equilibrium loop. This, in turn, is used to synthesize emission in EUV and SXR bands. We perform this analysis using a sequence of HMI vector magnetograms of a particular AR and compare synthesized images to observations of the same AR made by SDO. We also compare differential emission measure inferred from those observations to that of the modeled corona.

  1. Increased premotor cortex activation in high functioning autism during action observation. (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A


    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Exoplanet Transits of Stellar Active Regions (United States)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano


    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  3. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region (United States)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; hide


    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of region and investigated the short (regions. As the result, we found the regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.

  4. Climate Outreach Using Regional Coastal Ocean Observing System Portals (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.


    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  5. A Survey of Nanoflare Properties in Active Regions Observed with the Solar Dynamics Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Viall, Nicholeen M.; Klimchuk, James A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD 20771 (United States)


    In this paper, we examine 15 different active regions (ARs) observed with the Solar Dynamics Observatory and analyze their nanoflare properties. We have recently developed a technique that systematically identifies and measures plasma temperature dynamics by computing time lags between light curves. The time lag method tests whether the plasma is maintained at a steady temperature, or if it is dynamic, undergoing heating and cooling cycles. An important aspect of our technique is that it analyzes both observationally distinct coronal loops as well as the much more prevalent diffuse emission between them. We find that the widespread cooling reported previously for NOAA AR 11082 is a generic property of all ARs. The results are consistent with impulsive nanoflare heating followed by slower cooling. Only occasionally, however, is there full cooling from above 7 MK to well below 1 MK. More often, the plasma cools to approximately 1–2 MK before being reheated by another nanoflare. These same 15 ARs were first studied by Warren et al. We find that the degree of cooling is not well correlated with the reported slopes of the emission measure distribution. We also conclude that the Fe xviii emitting plasma that they measured is mostly in a state of cooling. These results support the idea that nanoflares have a distribution of energies and frequencies, with the average delay between successive events on an individual flux tube being comparable to the plasma cooling timescale.

  6. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io (United States)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.


    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  7. Birth and development of active region and chromospheric network

    Energy Technology Data Exchange (ETDEWEB)

    Kartashova, L G


    Formation and development of 15 active regions of a simple bipolar configuration with small-sized spots and without noticeable penumbras have been studied by the data of observations with a coronograph CA n the centre and wings of the Hsub(a) line. Resolution on the photographs is 2''. The following conclusions have been drawn: first bright details of the active region formed are generated through brightening of bright points of the chromosphere grid; intensification and stretching of dark points of the chromosphere grid results in the formation of fibrous structure in the vicinity of active region; spots appear either between the flocculi points, or near them closer to the centre of the corresponding cell of the chromosphere grid, among dark points of the chromosphere grid no spots are usually formed; in the process of growing of a simple bipolar group the leader and tail spots draw apart together with the chromosphere grid cells, in which they are formed; at the stage of fast growth in the neighbourhood of most large of the groups under studies a formation of arcs or of almost closed contours of the chromosphere grid is observed in the wings of the line. This rearrangement of the chromosphere grid is apparently closely connected with the formation of a fibrous structure around the active region.

  8. NANOOS, the Northwest Association of Networked Ocean Observing Systems: a regional Integrated Ocean Observing System (IOOS) for the Pacific Northwest US (United States)

    Newton, J.; Martin, D.; Kosro, M.


    NANOOS is the Northwest Association of Networked Ocean Observing Systems, the Pacific Northwest Regional Association of the United States Integrated Ocean Observing System (US IOOS). User driven since its inception in 2003, this regional observing system is responding to a variety of scientific and societal needs across its coastal ocean, estuaries, and shorelines. Regional priorities have been solicited and re-affirmed through active engagement with users and stakeholders. NANOOS membership is composed of an even mix of academic, governmental, industry, and non-profit organizations, who appoint representatives to the NANOOS Governing Council who confirm the priority applications of the observing system. NANOOS regional priorities are: Maritime Operations, Regional Fisheries, Ecosystem Assessment, Coastal Hazards, and Climate. NANOOS' regional coastal ocean observing system is implemented by seven partners (three universities, three state agencies, and one industry). Together, these partners conduct the observations, modeling, data management and communication, analysis products, education and outreach activities of NANOOS. Observations, designed to span coastal ocean, shorelines, and estuaries, include physical, chemical, biological and geological measurements. To date, modeling has been more limited in scope, but has provided the system with increased coverage for some parameters. The data management and communication system for NANOOS, led by the NANOOS Visualization System (NVS) is the cornerstone of the user interaction with NANOOS. NVS gives users access to observational data, both real time and archived, as well as modeling output. Given the diversity of user needs, measurements, and the complexity of the coastal environment, the challenge for the system is large. NANOOS' successes take advantage of technological advances, including real-time data transmission, profiling buoys, gliders, HF radars, and modeling. The most profound challenges NANOOS faces stem

  9. On the relation of Hsub(α) plage brightness variations in solar active regions

    International Nuclear Information System (INIS)

    Ogir', M.B.


    The variations of hydrogen plage brightnesses in seven spot groups belonging to five active regions are discussed. The observations were made on the Crimean observatory coronograph in 1974 and 1977. The correlation in brightness variations of plages situated in the regions of growing magnetic field was obtained. This was observed in the plages on one spot group as well as in the different groups removing on about 27x10 4 km. In developed groups correlations are mainly seen within a spot group and they are expressed better during flares. The correlations of brightnesses are changing during the active region evolution. Three days observations showed good brightness correlations of all plages in the growing magnetic field region and their decrease that can be explained by the field weakening during natural active region evolution or by the strong flare influence. The existence of the simultaneous variations of brightness in the regions with the growing magnetic field speaks in favour of the simultaneous carring-out of magnetic field or its disturbances into the chromosphere [ru

  10. Simultaneous Solar Maximum Mission (SMM) and very large array observations of solar active regions (United States)

    Lang, K. R.


    The research deals mainly with Very Large Array and Solar Maximum Mission observations of the ubiquitous coronal loops that dominate the structure of the low corona. As illustrated, the observations of thermal cyclotron lines at microwave wavelengths provide a powerful new method of accurately specifying the coronal magnetic field strength. Processes are delineated that trigger solar eruptions from coronal loops, including preburst heating and the magnetic interaction of coronal loops. Evidence for coherent burst mechanisms is provided for both the Sun and nearby stars, while other observations suggest the presence of currents that may amplify the coronal magnetic field to unexpectedly high levels. The existence is reported of a new class of compact, variable moving sources in regions of apparently weak photospheric field.

  11. Local Helioseismology of Emerging Active Regions: A Case Study (United States)

    Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis


    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation

  12. Modulation of brain activity during action observation: influence of perspective, transitivity and meaningfulness.

    Directory of Open Access Journals (Sweden)

    Sébastien Hétu

    Full Text Available The coupling process between observed and performed actions is thought to be performed by a fronto-parietal perception-action system including regions of the inferior frontal gyrus and the inferior parietal lobule. When investigating the influence of the movements' characteristics on this process, most research on action observation has focused on only one particular variable even though the type of movements we observe can vary on several levels. By manipulating the visual perspective, transitivity and meaningfulness of observed movements in a functional magnetic resonance imaging study we aimed at investigating how the type of movements and the visual perspective can modulate brain activity during action observation in healthy individuals. Importantly, we used an active observation task where participants had to subsequently execute or imagine the observed movements. Our results show that the fronto-parietal regions of the perception action system were mostly recruited during the observation of meaningless actions while visual perspective had little influence on the activity within the perception-action system. Simultaneous investigation of several sources of modulation during active action observation is probably an approach that could lead to a greater ecological comprehension of this important sensorimotor process.


    Energy Technology Data Exchange (ETDEWEB)

    Mandage, Revati S. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, TX 77005-1827 (United States); McAteer, R. T. James, E-mail: [Department of Astronomy, New Mexico State University, MSC 4500, Las Cruces, NM 88001 (United States)


    A magnetic power spectral analysis is performed on 53 solar active regions, observed from 2011 August to 2012 July. Magnetic field data obtained from the Helioseismic and Magnetic Imager, inverted as Active Region Patches, are used to study the evolution of the magnetic power index as each region rotates across the solar disk. Active regions are classified based on the numbers and sizes of solar flares they produce in order to study the relationship between flare productivity and the magnetic power index. The choice of window size and inertial range plays a key role in determining the correct magnetic power index. The overall distribution of magnetic power indices has a range of 1.0–2.5. Flare-quiet regions peak at a value of 1.6. However, flare-productive regions peak at a value of 2.2. Overall, the histogram of the distribution of power indices of flare-productive active regions is well separated from flare-quiet active regions. Only 12% of flare-quiet regions exhibit an index greater than 2, whereas 90% of flare-productive regions exhibit an index greater than 2. Flare-quiet regions exhibit a high temporal variance (i.e., the index fluctuates between high and low values), whereas flare-productive regions maintain an index greater than 2 for several days. This shows the importance of including the temporal evolution of active regions in flare prediction studies, and highlights the potential of a 2–3 day prediction window for space weather applications.

  14. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182 (United States)

    Peterova, N. G.; Topchilo, N. A.


    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  15. Sunspot proper motions in active region NOAA 2372 and its flare activity during SMY period of 1980 April 4-13

    International Nuclear Information System (INIS)

    Ambastha, A.; Bhatnagar, A.


    Solar Active Region NOAA 2372 was observed extensively by the Solar Maximum Mission (SMM) satellite and several ground-based observatories during 1980 April 4-13 in the Solar Maximum Year. After its birth around April 4, it underwent a rapid growth and produced a reported 84 flares in the course of its disc passage. In this paper, photospheric and chromospheric observations of this active region have been studied together with Marshall Space Flight Center magnetograms and X-ray data from HXIS aboard the SMM satellite. In particular, the relationship of the flare-productivity with sunspot proper motions and emergence of new regions of magnetic flux in the active region from its birth to its disappearance at the W-limb has been discussed. (author). 7 figures, 2 tables, 29 refs

  16. Non-Maxwellian Analysis of the Transition-region Line Profiles Observed by the Interface Region Imaging Spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav; Dzifčáková, Elena [Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Polito, Vanessa; Testa, Paola [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); Zanna, Giulio Del, E-mail: [Department of Applied Mathematics and Theoretical Physics, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)


    We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS) . In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels where the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.

  17. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity. (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K


    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. Early evolution of an X-ray emitting solar active region

    International Nuclear Information System (INIS)

    Wolfson, C.J.; Acton, L.W.; Leibacher, J.W.; Roethig, D.T.


    The birth and early evolution of a solar active region has been investigated using X-ray observations from the Lockheed Mapping X-Ray Heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of Hα plage. At that time, a plasma temperature of 4 x 10 6 K in a region having a density of the order of 10 10 cm -3 is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by plasma with a temperature of the order 3 x 10 6 K. If it is assumed that the X-rays result from heating due to dissipation of current systems or magnetic field reconnection, it can be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration. (Auth.)

  19. Towards a regional coastal ocean observing system: An initial design for the Southeast Coastal Ocean Observing Regional Association (United States)

    Seim, H. E.; Fletcher, M.; Mooers, C. N. K.; Nelson, J. R.; Weisberg, R. H.


    A conceptual design for a southeast United States regional coastal ocean observing system (RCOOS) is built upon a partnership between institutions of the region and among elements of the academic, government and private sectors. This design envisions support of a broad range of applications (e.g., marine operations, natural hazards, and ecosystem-based management) through the routine operation of predictive models that utilize the system observations to ensure their validity. A distributed information management system enables information flow, and a centralized information hub serves to aggregate information regionally and distribute it as needed. A variety of observing assets are needed to satisfy model requirements. An initial distribution of assets is proposed that recognizes the physical structure and forcing in the southeast U.S. coastal ocean. In-situ data collection includes moorings, profilers and gliders to provide 3D, time-dependent sampling, HF radar and surface drifters for synoptic sampling of surface currents, and satellite remote sensing of surface ocean properties. Nested model systems are required to properly represent ocean conditions from the outer edge of the EEZ to the watersheds. An effective RCOOS will depend upon a vital "National Backbone" (federally supported) system of in situ and satellite observations, model products, and data management. This dependence highlights the needs for a clear definition of the National Backbone components and a Concept of Operations (CONOPS) that defines the roles, functions and interactions of regional and federal components of the integrated system. A preliminary CONOPS is offered for the Southeast (SE) RCOOS. Thorough system testing is advocated using a combination of application-specific and process-oriented experiments. Estimates of costs and personnel required as initial components of the SE RCOOS are included. Initial thoughts on the Research and Development program required to support the RCOOS are

  20. Seasonal variation of wave activities near the mesopause region observed at King Sejong Station (62.22°S, 58.78°W), Antarctica (United States)

    Lee, Changsup; Kim, Yong Ha; Kim, Jeong-Han; Jee, Geonhwa; Won, Young-In; Wu, Dong L.


    We analyzed the neutral wind data at altitudes of 80-100 km obtained from a VHF meteor radar at King Sejong Station (KSS, 62.22°S, 58.78°W), a key location to study wave activities above the stratospheric vortex near the Antarctic Peninsula. The seasonal behavior of the semidiurnal tides is generally consistent with the prediction of Global Scale Wave Model (GSWM02) except in the altitude region above ~96 km. Gravity wave (GW) activities inferred from the neutral wind variances show a seasonal variation very similar to the semidiurnal tide amplitudes, suggesting a strong interaction between gravity waves and the tide. Despite the consistent seasonal variations of the GW wind variances observed at the adjacent Rothera station, the magnitudes of the wind variance obtained at KSS are much larger than those at Rothera, especially during May-September. The enhanced GW activity at KSS is also observed by Aura Microwave Limb Sounder (MLS) from space in its temperature variance. The observed large wind variances at KSS imply that the Antarctic vortex in the stratosphere may act as an effective filter and source for the GWs in the upper atmosphere.


    International Nuclear Information System (INIS)

    Wang, Y.-M.


    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowing a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity

  2. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.


    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  3. Dynamic Precursors of Flares in Active Region NOAA 10486 (United States)

    Korsós, M. B.; Gyenge, N.; Baranyi, T.; Ludmány, A.


    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted hori- zontal gradient W G M , is the generalized form of the horizontal gradient of the magnetic field, G M ; the other is the sum of the horizontal gradient of the magnetic field, G S , for all sunspot pairs). W G M is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, S l- f , considers the overall morphology. Further, G S and S l- f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.

  4. Recurrent Forbush decreases and relationship between active regions and M-regions

    International Nuclear Information System (INIS)

    Shah, G.N.; Kaul, C.L.; Razdan, H.; Bemalkhedkar, M.M.


    Recurrent Forbush decreases and recurrent geomagnetic disturbances have been attributed to the solar M-regions, which are sources of high velocity solar plasma streams. A study of recurrent Forbush decreases for the period 1966-75 has been made to examine any possible relationship of M-regions with solar active regions. It is shown that at the onset of the recurrent Forbush decrease at earth, there is a high probability of encountering a class of active regions at central meridian of the sun which give rise to flares of importance >= 28/3N. These active regions are found to be long-lasting and to have large areas as well as high Hsub(α)-intensities. Other active regions, producing flares of only lower importance, are distributed randomly on the sun with respect to the onset of a recurrent Forbush decrease. Using the quasiradial hypervelocity approximation, the base of the leading edge of the high velocity stream, at the onset of a recurrent Forbush decrease at earth, is traced to the solar longitude about 40 deg West of the central meridian. From these results, it is deduced that M-regions are located preferentially to the West of long-lasting, magnetically complex active regions. Earlier studies of the identification of the M-regions on the sun have been re-examined and shown to conform to this positional relationship. A possible mechanism of the development of an M-region to the West of the long-lasting magnetically complex active region is also discussed. (author)

  5. Ionospheric scintillation observations over Kenyan region - Preliminary results (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou


    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  6. The effects of activation procedures on regional cerebral blood flow in humans

    International Nuclear Information System (INIS)

    Rozenfeld, D.; Wolfson, L.I.


    Regional cerebral blood flow (r-CBF) can be measured using 133XE and collimated detectors. The radionuclide can be administered either by inhalation or intracarotid injection. Comparison of blood flow determinations at rest and during performance of an activity identifies those brain regions that become active during the performance of the activity. Relatively specific patterns of r-CBF are observed during hand movements, sensory stimulation, eye movements, speech, listening, and reading. Regional CBF changes during reasoning and memorization are less specific and less well characterized. It is clear that brain lesions affect r-CBF responses to various activities, but this effect has not been well correlated with functional deficits or recovery of function. Regional CBF measurement gives information about brain activity and the functional response to experimental manipulation. This approach may well add to our understanding of normal, as well as pathologic, brain functioning

  7. Abnormal Brain Responses to Action Observation in Complex Regional Pain Syndrome. (United States)

    Hotta, Jaakko; Saari, Jukka; Koskinen, Miika; Hlushchuk, Yevhen; Forss, Nina; Hari, Riitta


    Patients with complex regional pain syndrome (CRPS) display various abnormalities in central motor function, and their pain is intensified when they perform or just observe motor actions. In this study, we examined the abnormalities of brain responses to action observation in CRPS. We analyzed 3-T functional magnetic resonance images from 13 upper limb CRPS patients (all female, ages 31-58 years) and 13 healthy, age- and sex-matched control subjects. The functional magnetic resonance imaging data were acquired while the subjects viewed brief videos of hand actions shown in the first-person perspective. A pattern-classification analysis was applied to characterize brain areas where the activation pattern differed between CRPS patients and healthy subjects. Brain areas with statistically significant group differences (q frontal gyrus, secondary somatosensory cortex, inferior parietal lobule, orbitofrontal cortex, and thalamus. Our findings indicate that CRPS impairs action observation by affecting brain areas related to pain processing and motor control. This article shows that in CRPS, the observation of others' motor actions induces abnormal neural activity in brain areas essential for sensorimotor functions and pain. These results build the cerebral basis for action-observation impairments in CRPS. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task. (United States)

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki


    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Results of the IRIS UV Burst Survey, Part I: Active Regions Tracked Limb to Limb (United States)

    Madsen, C. A.; DeLuca, E.


    We present results from the first phase of an effort to thoroughly characterize UV bursts within the Interface Region Imaging Spectrograph (IRIS) data catalogue. The observational signatures of these phenomena include dramatically intensified and broadened NUV/FUV emission line profiles with absorption features from cool metallic ions. These properties suggest that UV bursts originate from plasma at transition region temperatures (≥ 80,000 K) which is deeply embedded in the cool lower chromosphere ( 5,000 K). Rigorously characterizing the energetic and dynamical properties of UV bursts is crucial since they have considerable potential to heat active region chromospheres and could provide critical constraints for models of magnetic reconnection in these regions. The survey first focuses on IRIS observations of active regions tracked from limb to limb. All observations consist of large field-of-view raster scans of 320 or 400 steps each, which allow for widespread detection of many burst profiles at the expense of having limited short-term time evolution information. We detect bursts efficiently by applying a semi-automated single-Gaussian fitting technique to Si IV 1393.8 Å emission profiles that isolates the distinct burst population in a 4-D parameter space. The robust sample of NUV/FUV burst spectra allows for precise constraints of properties critical for modeling reconnection in the chromosphere, including outflow kinetic energy, density estimates from intensity ratios of Si IV 1402.8 Å and O IV 1401.2 Å emission lines, and coincident measures of emission in other wavelengths. We also track burst properties throughout the lifetimes of their host active regions, noting changes in detection rate and preferential location as the active regions evolve. Finally, the tracked active region observations provide a unique opportunity to investigate line-of-sight effects on observed UV burst spectral properties, particularly the strength of Ni II 1393.3 Å absorption


    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.-H. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Innes, D. E. [Max-Planck-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)


    It is well-known that extreme ultraviolet (EUV) emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions, dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from the Interface Region Imaging Spectrograph, consisting of UV spectra and slit-jaw images (SJI), give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. Collimated outflows with bright roots were present in SJI 1400 Å (transition region) and 2796 Å (upper chromosphere) that were mostly not seen in Atmospheric Imaging Assembly (AIA) 304 Å (transition region) and AIA 171 Å (lower corona) images. The Si iv spectra show a strong blue wing enhancement, but no red wing, in the line profiles of the ejecta for all recurrent jets, indicating outward flows without twists. We see two types of Mg ii line profiles produced by the jets spires: reversed and non-reversed. Mg ii lines remain optically thick, but turn optically thin in the highly Doppler shifted wings. The energy flux contained in each recurrent jet is estimated using a velocity differential emission measure technique that measures the emitting power of the plasma as a function of the line-of-sight velocity. We found that all the recurrent jets release similar energy (10{sup 8} erg cm{sup −2} s{sup −1}) toward the corona and the downward component is less than 3%.

  11. Radio observations of the peripheral region of the Coma cluster near Coma A

    International Nuclear Information System (INIS)

    Giovannini, G.


    VLA and WSRT observations are reported for the extended radio source 1253+275 on the periphery of the Coma cluster and for two active Coma radio galaxies within 20 arcmin of 1253+275. The data are presented in contour maps and characterized in detail. Source 1253+275 is shown to be a relic radio galaxy with physical conditions similar to those seen in the external regions (30-50 kpc from the cores) of the two active sources (NGC 4789 and NGC 4827). It is suggested that these regions survived for long periods (400 Myr) after the last acceleration of the radiating electrons because transverse expansion was inhibited by the local intergalactic medium, which has a density comparable to that in other rich clusters of galaxies. 7 references

  12. Line formation in the solar chromosphere. II - An optically thick region of the chromosphere-corona transition region observed with OSO 8 (United States)

    Lites, B. W.; Hansen, E. R.; Shine, R. A.


    The University of Colorado ultraviolet spectrometer aboard the Orbiting Solar Observatory 8(OSO 8) has measured self-reversed profiles of the resonance line of C IV lamda 1548.2 at the limb passage of an active region. The degree of the self-reversal together with the absolute intensity of the line profile determine the electron density in the active region at 10 to the 10th/cu cm at temperatures where the C IV line is formed. The nonthermal component of the broadening velocity is no more than 14km/s, and the physical thickness of an equivalent plane-parallel slab in hydrostatic equilibrium that would give rise to the observed line profiles is about 430 km.

  13. Physical activities of students in special primary schools in the central Bohemian region


    Beznosova, Irina


    1 Abstract Title of the thesis: Physical activities of students in special primary schools in the central Bohemian region Aim of the study: The aim of the thesis is a comprehensive survey of physical activities provided by special primary schools in the Central Bohemian region. Method: We used a method of an empirical research. We studied a representative sample of special primary schools located in the Central Bohemia region in order to ascertain characteristics of the objects of observation...

  14. MAG4 versus alternative techniques for forecasting active region flare productivity (United States)

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor


    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  15. Enhancing Earth Observation Capacity in the Himalayan Region (United States)

    Shrestha, B. R.


    Earth observations bear special significance in the Himalayan Region owing to the fact that routine data collections are often hampered by highly inaccessible terrain and harsh climatic conditions. The ongoing rapid environmental changes have further emphasized its relevance and use for informed decision-making. The International Center for Integrated Mountain Development (ICIMOD), with a regional mandate is promoting the use of earth observations in line with the GEOSS societal benefit areas. ICIMOD has a proven track record to utilize earth observations notably in the areas of understanding glaciers and snow dynamics, disaster risk preparedness and emergency response, carbon estimation for community forestry user groups, land cover change assessment, agriculture monitoring and food security analysis among others. This paper presents the challenges and lessons learned as a part of capacity building of ICIMOD to utilize earth observations with the primary objectives to empower its member countries and foster regional cooperation. As a part of capacity building, ICIMOD continues to make its efforts to augment as a regional resource center on earth observation and geospatial applications for sustainable mountain development. Capacity building possesses multitude of challenges in the region: the complex geo-political reality with differentiated capacities of member states, poorer institutional and technical infrastructure; addressing the needs for multiple user and target groups; integration with different thematic disciplines; and high resources intensity and sustainability. A capacity building framework was developed based on detailed needs assessment with a regional approach and strategy to enhance capability of ICIMOD and its network of national partners. A specialized one-week training course and curriculum have been designed for different thematic areas to impart knowledge and skills that include development practitioners, professionals, researchers and

  16. Magnetic structure of an activated filament in a flaring active region (United States)

    Sasso, C.; Lagg, A.; Solanki, S. K.


    Aims: While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We report observational results on the magnetic field structure of an activated filament in a flaring active region. In particular, we studied its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displayed signs of rotation. Methods: We inverted the Stokes profiles of the chromospheric He i 10 830 Å triplet and the photospheric Si i 10 827 Å line observed in this filament by the Vacuum Tower Telescope on Tenerife. Using these inversion results, we present and interpret the first maps of the velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Results: Up to five different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of the filament, while the downflows are concentrated along its periphery. Moreover, the upflowing gas is associated with an opposite-polarity magnetic configuration with respect to the photosphere, while the downflowing gas is associated with a same-polarity configuration. Conclusions: The activated filament has a very complex structure. Nonetheless, it is compatible with a flux rope, albeit a distorted one, in the normal configuration. The observations are best explained by a rising flux rope in which part of the filament material is still stably stored (upflowing material, rising with the field), while the rest is no longer stably stored and flows down along the field lines. The movie is available in electronic form at


    International Nuclear Information System (INIS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.


    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible

  18. IUE observations of an active region of HD206860

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, C; Catalano, S; Marilli, E [Catania Univ. (Italy). Ist. di Astronomia


    The results of UV observations, with the IUE, of the Mg II H and k lines of HD206860, a GOV star, are reported. The aim of the observations was to search for short-term variability of the chromospheric emission connected with the rotation of the star.

  19. Photospheric Velocity Structures during the Emergence of Small Active Regions on the Sun

    International Nuclear Information System (INIS)

    Khlystova, Anna; Toriumi, Shin


    We study the plasma flows in the solar photosphere during the emergence of two small active regions, NOAA 9021 and 10768. Using Solar and Heliospheric Observatory /Michelson Doppler Imager data, we find that the strong plasma upflows appear at the initial stage of active region formation, with maximum upflow velocities of −1650 and −1320 m s −1 . The structures with enhanced upflows have size ∼8 Mm in diameter, and they exist for 1–2 hr. The parameters of the enhanced upflows are consistent with those of the large active region NOAA 10488, which may suggest the possibility that the elementary emerging magnetic loops that appear at the earliest phase of active region formation have similar properties, irrespective of scales of active regions. Comparison between the observations and a numerical simulation of magnetic flux emergence shows a striking consistency. We find that the driving force of the plasma upflow is at first the gas pressure gradient and later the magnetic pressure gradient.

  20. Photospheric Velocity Structures during the Emergence of Small Active Regions on the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Khlystova, Anna [Institute of Solar-Terrestrial Physics SB RAS, Lermontov St., 126a, 664033 Irkutsk (Russian Federation); Toriumi, Shin, E-mail:, E-mail: [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)


    We study the plasma flows in the solar photosphere during the emergence of two small active regions, NOAA 9021 and 10768. Using Solar and Heliospheric Observatory /Michelson Doppler Imager data, we find that the strong plasma upflows appear at the initial stage of active region formation, with maximum upflow velocities of −1650 and −1320 m s{sup −1}. The structures with enhanced upflows have size ∼8 Mm in diameter, and they exist for 1–2 hr. The parameters of the enhanced upflows are consistent with those of the large active region NOAA 10488, which may suggest the possibility that the elementary emerging magnetic loops that appear at the earliest phase of active region formation have similar properties, irrespective of scales of active regions. Comparison between the observations and a numerical simulation of magnetic flux emergence shows a striking consistency. We find that the driving force of the plasma upflow is at first the gas pressure gradient and later the magnetic pressure gradient.

  1. Regional deposition of inhaled fog droplets: preliminary observations

    International Nuclear Information System (INIS)

    Bowes, S.M. III; Laube, B.L.; Links, J.M.; Frank, R.


    The regional deposition of a monodisperse 10-micron mass median aerodynamic diameter fog was studied in four healthy adult male nonsmokers. The fog was radiolabeled with technetium-99m sulfur colloid to enable detection by an Anger camera of deposited activity in the following regions of the respiratory tract: oropharynx, larynx, trachea, and intrapulmonary airways. Intrapulmonary deposition was further analyzed by computer with inner, intermediate, and outer zones, and within apical, intermediate and basal zones of the right lung. The radiolabeled aerosol was inhaled by mouth through a face-mask with the nasal airway occluded. Respiratory frequency, tidal volume, and jaw position were controlled and were commensurate with the oral component of oronasal breathing during moderate exercise. Deposition in the larynx, trachea, and intrapulmonary airways was a function of the scrubbing efficiency of the oropharynx, which differed substantially among subjects, and ranged from 72 to 99%. The density of the aerosol deposit in the larynx probably exceeded that of any of the subdivisions of the tracheobronchial tree and lung. Within the lung, deposition favored the inner zone (assumed to contain the larger airways) over the outer zone (assumed to be dominated by smaller airways and alveoli). Intrapulmonary aerosol distribution in an elderly subject with borderline evidence of airway obstruction differed from that observed in younger subjects. The possible consequences of altered lung elastic recoil, as may occur with aging, for regional dosimetry is discussed

  2. Evaluating Observation Influence on Regional Water Budgets in Reanalyses (United States)

    Bosilovich, Michael G.; Chern, Jiun-Dar; Mocko, David; Robertson, Franklin R.; daSilva, Arlindo M.


    The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model, or perhaps inconsistencies in the observing system and its assimilation. In the MERRA reanalysis, an area of long term moisture flux divergence over land has been identified over the Central United States. Here, we evaluate the water vapor budget in this region, taking advantage of two unique features of the MERRA diagnostic output; 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output data set of the assimilated observations and their innovations (e.g. forecast departures). In the Central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRAs Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 06Z and 18Z analysis cycles. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSUA (mainly window channels) and AIRS. This effort also shows the complexities of the observing system, and the reactions of the regional water budgets in reanalyses to the assimilated observations.

  3. Regional radiological observations of the environment

    International Nuclear Information System (INIS)


    After having recalled the objective of regional radiological observations (establishment of an updated referential of radioactivity levels in some parts of the environment which are typical of the concerned territory), and indicated the three main steps of these observations (definition of a methodology which may differ from one territory to the other, sampling and analysis, assessment of the radiological status of the studied territory), this report presents a methodology which can be applied to big rivers and predominantly agricultural territories. The radiological observations of different areas are reported (Val de Loire, Rhone valley, areas of persistence like mountains, or mining areas). Maps indicate the sampling location and the analysed products (food, soil, plants) and report of the ground or aquatic environment analysis, or available data and sampling strategy are given. The New Caledonia radiological observation is also reported

  4. Recurrent forbush decreases and the relationship between active regions and M regions

    International Nuclear Information System (INIS)

    Shah, G.N.; Kaul, C.L.; Razdan, H.; Bemalkhedkar, M.M.


    Recurrent Forbush decreases and recurrent geomagnetic disturbances have been attributed to the solar M regions, which are sources of high-velocity solar plasma streams. A study of recurrent Forbush decreases for the period 1966--1975 has been made to examine any possible relationship of M regions with solar active regions. It is shown that at the onset of the recurrent Forbush decrease at the earth there is a high probability of encountering a class of active regions at the central meridian of the sun which give rise to flares of importance > or =2B/3N. These active regions are found to be long lasting and to have large areas as well as high Hα intensities. Other active regions, producing flares of lower importance, are distributed randomly on the sun with respect to the onset of a recurrent Forbush decrease. By using the quasi-radial hypervelocity approximation the base of the leading edge of the high-velocity stream at the onset of a recurrent Forbush decrease at the earth is traced to the solar longitude about 40 0 west of the central meridan. From these results it is deduced that M regions are located preferentially to the west of long-lasting magnetically complex active regions. Earlier studies of the identification of the M regions on the sun have been reexamined and shown to conform to this positional relationship. A possible mechanism of the development of an M region to the west of the long-lasting magnetically complex active region is also discussed

  5. Lightning hazard region over the maritime continent observed from satellite and climate change threat (United States)

    Ilhamsyah, Y.; Koesmaryono, Y.; Hidayat, R.; Murjaya, J.; Nurjaya, I. W.; Rizwan


    Climate change would lead to such hydrometeorological disaster as: flash-flood, landslide, hailstone, lightning, and twister become more likely to happen in the future. In terms of lightning event, one research question arise of where lightning would be mostly to strike over the Maritime Continent (MC)?. The objective of the research is to investigate region with high-density of lightning activity over MC by mapping climatological features of lightning flashes derived from onboard NASA-TRMM Satellite, i.e. Optical Transient Detector/Lightning Imaging Sensor (OTD/LIS). Based on data retrieved since 1995-2013, it is seasonally observed that during transition season March to May, region with high vulnerability of lightning flashes cover the entire Sumatra Island, the Malacca Strait, and Peninsular Malaysia as well as Java Island. High-frequent of lightning activity over the Malacca Strait is unique since it is the only sea-region in the world where lightning flashes are denser. As previously mentioned that strong lightning activity over the strait is driven by mesoscale convective system of Sumatra Squalls due to convergences of land breeze between Sumatra and Peninsular Malaysia. Lightning activity over the strait is continuously observed throughout season despite the intensity reduced. Java Island, most populated island, receive high-density of lightning flashes during rainy season (December to February) but small part in the northwestern of Java Island, e.g., Bogor and surrounding areas, the density of lightning flashes are high throughout season. Northern and southern parts of Kalimantan and Central part of Sulawesi are also prone to lightning activity particularly during transition season March to May and September to November. In the eastern part of MC, Papua receive denser lightning flashes during September to November. It is found that lightning activity are mostly concentrated over land instead of ocean which is in accordance with diurnal convective

  6. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions (United States)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin


    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  7. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity (United States)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.


    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG


    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail:, E-mail:, E-mail: [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)


    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  9. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons (United States)

    Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam


    We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.

  10. Magnetic and Velocity Field Variations in the Active Regions NOAA ...

    Indian Academy of Sciences (India)

    Abstract. We study the magnetic and velocity field evolution in the two magnetically complex active regions NOAA 10486 and NOAA 10488 observed during October–November 2003. We have used the available data to examine net flux and Doppler velocity time profiles to identify changes associated with evolutionary and ...

  11. Observation of low frequency electromagnetic activity at 1000 km altitude

    Directory of Open Access Journals (Sweden)

    N. Ivchenko

    Full Text Available We present a statistical study of low frequency fluctuations of electric and magnetic fields, commonly interpreted as Alfvénic activity. The data base consists of six months of electric and magnetic field measurements by the Astrid-2 microsatellite. The occurrence of the events is studied with respect to the location and general activity. Large regions of broadband Alfvénic activity are persistently observed in the cusp/cleft and, during the periods of high geo-magnetic activity, also in the pre-midnight sector of the auroral oval.

    Key words. Ionosphere (auroral ionosphere – Space plasma physics (waves and instabilities – Magnetospheric physics (magnetosphere-ionosphere interactions

  12. Evolution of active region loop plasma

    International Nuclear Information System (INIS)

    Krall, K.R.; Antiochos, S.K.


    We investigate numerically the adjustment of coronal active-region loops to changes in their heating rate. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux if dissipated by a static chromosphere, and (2) the method by which rhe chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates

  13. Particle acceleration in solar active regions being in the state of self-organized criticality. (United States)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  14. On the area expansion of magnetic flux tubes in solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Dzifčáková, Elena [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Cirtain, Jonathan W., E-mail:, E-mail: [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)


    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  15. Observations of Anomalous Microwave Emission from HII Regions

    Directory of Open Access Journals (Sweden)

    Clive Dickinson


    free-free emission from UCHII regions may be also be significant in some cases. The AME emissivity, defined as the ratio of the AME brightness to the 100 μm brightness, is comparable to the value observed in high-latitude diffuse cirrus in some regions, but is significantly lower in others. However, this value is dependent on the dust temperature. More data, both at high frequencies (>~5 GHz and high resolution (~1′ or better is required to disentangle the emission processes in such complex regions.

  16. Two centuries of observed atmospheric variability and change over the North Sea region (United States)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard; Woollings, Tim


    In the upcoming North Sea Region Climate Change Assessment (NOSCCA), we present a synthesis of current knowledge about past, present and possible future climate change in the North Sea region. A climate change assessment from published scientific work has been conducted as a kind of regional IPCC report, and a book has been produced that will be published by Springer in 2016. In the framework of the NOSCCA project, we examine past and present studies of variability and changes in atmospheric variables within the North Sea region over the instrumental period, roughly the past 200 years, based on observations and reanalyses. The variables addressed in this presentation are large-scale circulation, pressure and wind, surface air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine duration). While air temperature over land, not unexpectedly, has increased everywhere in the North Sea region, with strongest trends in spring and in the north of the region, a precipitation increase has been observed in the north and a decrease in the south of the region. This pattern goes along with a north-eastward shift of storm tracks and is in agreement with climate model projections under enhanced greenhouse gas concentrations. For other variables, it is not obvious which part of the observed changes may be due to anthropogenic activities and which is internally forced. It remains also unclear to what extent atmospheric circulation over the North Sea region is influenced by distant factors, in particular Arctic sea-ice decline in recent decades. There are indications of an increase in the number of deep cyclones (but not in the total number of cyclones), while storminess since the late 19th century shows no robust trends. The persistence of circulation types appears to have increased over the last century, and consequently, there is an indication for 'more extreme' extreme events. However, changes in extreme weather events are difficult to assess

  17. Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans (United States)

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K.


    Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. The sensitive regime of the conventional AIE identified in this observational study is likely associated with the transitional regime from the aerosol-limited regime to the updraft-limited regime identified for aerosol-cloud interaction in cloud model simulations.

  18. SIOS: A regional cooperation of international research infrastructures as a building block for an Arctic observing system (United States)

    Holmen, K. J.; Lønne, O. J.


    The Svalbard Integrated Earth Observing System (SIOS) is a regional response to the Earth System Science (ESS) challenges posed by the Amsterdam Declaration on Global Change. SIOS is intended to develop and implement methods for how observational networks in the Arctic are to be designed in order to address such issues in a regional scale. SIOS builds on the extensive observation capacity and research installations already in place by many international institutions and will provide upgraded and relevant Observing Systems and Research Facilities of world class in and around Svalbard. It is a distributed research infrastructure set up to provide a regional observational system for long term measurements under a joint framework. As one of the large scale research infrastructure initiatives on the ESFRI roadmap (European Strategy Forum on Research Infrastructures), SIOS is now being implemented. The new research infrastructure organization, the SIOS Knowledge Center (SIOS-KC), is instrumental in developing methods and solutions for setting up its regional contribution to a systematically constructed Arctic observational network useful for global change studies. We will discuss cross-disciplinary research experiences some case studies and lessons learned so far. SIOS aims to provide an effective, easily accessible data management system which makes use of existing data handling systems in the thematic fields covered by SIOS. SIOS will, implement a data policy which matches the ambitions that are set for the new European research infrastructures, but at the same time be flexible enough to consider `historical' legacies. Given the substantial international presence in the Svalbard archipelago and the pan-Arctic nature of the issue, there is an opportunity to build SIOS further into a wider regional network and pan-Arctic context, ideally under the umbrella of the Sustaining Arctic Observing Networks (SAON) initiative. It is necessary to anchor SIOS strongly in a European

  19. Cusp/cleft region as observed by the Viking UV imager

    International Nuclear Information System (INIS)

    Garbe, G.P.; Murphree, J.S.; Cogger, L.L.; Woch, J.


    The authors report data taken by the Viking satellite at mid-altitudes (11,000-13,000 km) during northern hemispheric crossings of the cusp/cleft region. Particle signatures were used to divide the region into different categories. Data was looked at from the ultraviolet imager and particle diagnostics, when available. The authors discuss in detail two cases of crossing the cusp/cleft region, in order to look at the dynamics of a specific event, as opposed to other data analyses which have used large data sets to acquire good statistics, but which can thereby obscure dynamics of the actual events. Particle data were taken by the electron spectrometer ESP 1 and the ion spectrometer PISP 1/2. They looked at the spectral range 0.01 to 40 keV. The UV imager recorded 1 sec exposures of the auroral distribution once per minute. The data shows instantaneous observations of emissions, and does so for a narrow path swept by the satellite. Data indicate that the entire region is not a homogeneous region, but rather a very dynamic object. Conclusions include that the emissions observed are located at the footprint of the cleft region. The cusp region is located poleward of the region with continuous emission. The emission is observed to remain at a constant magnetic latitude during the period with IMF data, though B z swung 8nT during a 30 minute period

  20. TRMM/LIS and PR Observations and Thunderstorm Activity (United States)

    Ohita, S.; Morimoto, T.; Kawasaki, Z. I.; Ushio, T.


    Thunderstorms observed by TRMM/PR and LIS have been investigating, and Lightning Research Group of Osaka University (LRG-OU) has unveiled several interesting features. Correlation between lightning activities and the snow depth of convective clouds may follow the power-five law. The power five law means that the flash density is a function of the snow-depth to power five. The definition of snow depth is the height of detectable cloud tops by TRMM/PR from the climatological freezing level, and it may be equivalent to the length of the portion where the solid phase precipitation particles exist. This is given by examining more than one million convective clouds, and we conclude that the power five law should be universal from the aspect of the statistic. Three thunderstorm active areas are well known as "Three World Chimneys", and those are the Central Africa, Amazon of the South America, and South East Asia. Thunderstorm activities in these areas are expected to contribute to the distribution of thermal energy around the equator to middle latitude regions. Moreover thunderstorm activity in the tropical region is believed to be related with the average temperature of our planet earth. That is why long term monitoring of lightning activity is required. After launching TRMM we have accumulated seven-year LIS observations, and statistics for three world chimneys are obtained. We have recognized the additional lightning active area, and that is around the Maracaibo lake in Venezuera. We conclude that this is because of geographical features of the Maracaibo lake and the continuous easterly trade wind. Lightning Activity during El Niño period is another interesting subject. LRGOU studies thunderstorm occurrences over west Indonesia and south China, and investigates the influence of El Nino on lightning . We compare the statistics between El Nino and non El Nino periods. We learn that the lightning activity during El Niño period is higher than non El Nino period instead

  1. Western Pond Turtle Observations - Region 1 [ds313 (United States)

    California Natural Resource Agency — This dataset was developed in an effort to compile Western Pond Turtle (Clemmys marmorata) observations in CDFG Region 1. Steve Burton (CDFG Staff Environmental...

  2. Multifrequency observations of the Blazar PKS 0537-441 in a moderately active state

    International Nuclear Information System (INIS)

    Tanzi, E.G.; Chiappetti, L.; Barr, P.; Bouchet, P.; Cristiani, S.; EXOSAT Observatory, Darmstadt, West Germany; European Southern Observatory, La Silla, Chile)


    PKS 0537-441 was observed during an active state in February 1985 at infrared, optical, UV, and X-ray frequencies. Comparison with earlier measurements indicates that the source brightened by a factor of approximately 2 in all bands. This suggests that the same spatial region may be responsible for the emission in the whole spectral range observed. 19 references

  3. Multifrequency observations of the Blazar PKS 0537-441 in a moderately active state

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, E.G.; Chiappetti, L.; Barr, P.; Bouchet, P.; Cristiani, S.


    PKS 0537-441 was observed during an active state in February 1985 at infrared, optical, UV, and X-ray frequencies. Comparison with earlier measurements indicates that the source brightened by a factor of approximately 2 in all bands. This suggests that the same spatial region may be responsible for the emission in the whole spectral range observed. 19 references.

  4. Magnetographic observations of magnetic fields in quiet and active regions of the Sun

    International Nuclear Information System (INIS)

    Tsap, T.T.


    The results of measurement of the solar longitudinal magnetic field carried out on the double magnetograph of the Crimea astrophysical observatory in the FeI 5250 A and 5233 A lines are presented. The registration of magnetic field is performed with the high resolution of 1x1''. It is found that in the most cases the measured magnetic field intensity outside active areas does not exceed 20-25 Hauss. In rare cases magnetic fields with the intensity greater than 500 Hauss are observed. The magnetic field intensity in the flocculas is greater in average than in nondisturbed areas

  5. Automated Temperature and Emission Measure Analysis of Coronal Loops and Active Regions Observed with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA) (United States)

    Aschwanden, Markus J.; Boerner, Paul; Schrijver, Carolus J.; Malanushenko, Anna


    We developed numerical codes designed for automated analysis of SDO/AIA image datasets in the six coronal filters, including: i) coalignment test between different wavelengths with measurements of the altitude of the EUV-absorbing chromosphere, ii) self-calibration by empirical correction of instrumental response functions, iii) automated generation of differential emission measure [DEM] distributions with peak-temperature maps [ T p( x, y)] and emission measure maps [ EM p( x, y)] of the full Sun or active region areas, iv) composite DEM distributions [d EM( T)/d T] of active regions or subareas, v) automated detection of coronal loops, and vi) automated background subtraction and thermal analysis of coronal loops, which yields statistics of loop temperatures [ T e], temperature widths [ σ T], emission measures [ EM], electron densities [ n e], and loop widths [ w]. The combination of these numerical codes allows for automated and objective processing of numerous coronal loops. As an example, we present the results of an application to the active region NOAA 11158, observed on 15 February 2011, shortly before it produced the largest (X2.2) flare during the current solar cycle. We detect 570 loop segments at temperatures in the entire range of log( T e)=5.7 - 7.0 K and corroborate previous TRACE and AIA results on their near-isothermality and the validity of the Rosner-Tucker-Vaiana (RTV) law at soft X-ray temperatures ( T≳2 MK) and its failure at lower EUV temperatures.

  6. The Limit of Free Magnetic Energy in Active Regions (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse


    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  7. Phosalone-Induced Changes in Regional Cholinesterase Activities ...

    African Journals Online (AJOL)

    ... in Regional Cholinesterase Activities in Rat Brain during Behavioral Tolerance. ... lead to the gradual disappearance of the initial signs of toxicity over time, termed ... regions, striatum recorded a greater decrease in cholinesterase activity.

  8. Effect of time-varying tropospheric models on near-regional and regional infrasound propagation as constrained by observational data (United States)

    McKenna, Mihan H.; Stump, Brian W.; Hayward, Chris


    The Chulwon Seismo-Acoustic Array (CHNAR) is a regional seismo-acoustic array with co-located seismometers and infrasound microphones on the Korean peninsula. Data from forty-two days over the course of a year between October 1999 and August 2000 were analyzed; 2052 infrasound-only arrivals and 23 seismo-acoustic arrivals were observed over the six week study period. A majority of the signals occur during local working hours, hour 0 to hour 9 UT and appear to be the result of cultural activity located within a 250 km radius. Atmospheric modeling is presented for four sample days during the study period, one in each of November, February, April, and August. Local meteorological data sampled at six hour intervals is needed to accurately model the observed arrivals and this data produced highly temporally variable thermal ducts that propagated infrasound signals within 250 km, matching the temporal variation in the observed arrivals. These ducts change dramatically on the order of hours, and meteorological data from the appropriate sampled time frame was necessary to interpret the observed arrivals.

  9. Observational tests for H II region models - A 'champagne party'

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, D; Tenorio-Tagle, G


    Observations of several neighboring H II regions associated with a molecular cloud were performed in order to test the champagne model of H II region-molecular cloud interaction leading to the supersonic expansion of molecular cloud gas. Nine different positions in the Gum 61 nebula were observed using an image dissector scanner attached to a 3.6-m telescope, and it is found that the area corresponds to a low excitation, high density nebula, with electron densities ranging between 1400 and 2800/cu cm and larger along the boundary of the ionized gas. An observed increase in pressure and density located in an interior region of the nebula is interpreted in terms of an area between two rarefaction waves generated together with a strong isothermal shock, responsible for the champagne-like streaming, by a pressure discontinuity between the ionized molecular cloud in which star formation takes place and the intercloud gas. It is noted that a velocity field determination would provide the key in understanding the evolution of such a region.


    International Nuclear Information System (INIS)

    Viall, Nicholeen M.; Klimchuk, James A.


    A well-known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times than hotter channels. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions (ARs). Is this cooling pattern a common property of AR coronal plasma, or does it only occur in unique circumstances, locations, and times? The new Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data provide a wonderful opportunity to answer this question systematically for an entire AR. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hr of images of AR 11082 observed on 2010 June 19. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the AR including the diffuse emission between loops for the entire 24 hr duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hr time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than ∼0.8 MK. This suggests that the bulk of the emitting coronal plasma in this AR is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  11. Estimation of Regional Carbon Balance from Atmospheric Observations (United States)

    Denning, S.; Uliasz, M.; Skidmore, J.


    Variations in the concentration of CO2 and other trace gases in time and space contain information about sources and sinks at regional scales. Several methods have been developed to quantitatively extract this information from atmospheric measurements. Mass-balance techniques depend on the ability to repeatedly sample the same mass of air, which involves careful attention to airmass trajectories. Inverse and adjoint techniques rely on decomposition of the source field into quasi-independent "basis functions" that are propagated through transport models and then used to synthesize optimal linear combinations that best match observations. A recently proposed method for regional flux estimation from continuous measurements at tall towers relies on time-mean vertical gradients, and requires careful trajectory analysis to map the estimates onto regional ecosystems. Each of these techniques is likely to be applied to measurements made during the North American Carbon Program. We have also explored the use of Bayesian synthesis inversion at regional scales, using a Lagrangian particle dispersion model driven by mesoscale transport fields. Influence functions were calculated for each hypothetical observation in a realistic diurnally-varying flow. These influence functions were then treated as basis functions for the purpose of separate inversions for daytime photosynthesis and 24-hour mean ecosystem respiration. Our results highlight the importance of estimating CO2 fluxes through the lateral boundaries of the model. Respiration fluxes were well constrained by one or two hypothetical towers, regardless of inflow fluxes. Time-varying assimilation fluxes were less well constrained, and much more dependent on knowledge of inflow fluxes. The small net difference between respiration and photosynthesis was the most difficult to determine, being extremely sensitive to knowledge of inflow fluxes. Finally, we explored the feasibility of directly incorporating mid-day concentration

  12. Radiative and magnetic properties of solar active regions. II. Spatially resolved analysis of O V 62.97 nm transition region emission (United States)

    Fludra, A.; Warren, H.


    Context. Global relationships between the photospheric magnetic flux and the extreme ultraviolet emission integrated over active region area have been studied in a previous paper by Fludra & Ireland (2008, A&A, 483, 609). Spatially integrated EUV line intensities are tightly correlated with the total unsigned magnetic flux, and yet these global power laws have been shown to be insufficient for accurately determining the coronal heating mechanism owing to the mathematical ill-conditioning of the inverse problem. Aims: Our aim is to establish a relationship between the EUV line intensities and the photospheric magnetic flux density on small spatial scales in active regions and investigate whether it provides a way of identifying the process that heats the coronal loops. Methods: We compare spatially resolved EUV transition region emission and the photospheric magnetic flux density. This analysis is based on the O V 62.97 nm line recorded by the SOHO Coronal Diagnostic Spectrometer (CDS) and SOHO MDI magnetograms for six solar active regions. The magnetic flux density ϕ is converted to a simulated O V intensity using a model relationship I(ϕ, L) = Cϕδ Lλ, where the loop length L is obtained from potential magnetic field extrapolations. This simulated spatial distribution of O V intensities is convolved with the CDS instrument's point spread function and compared pixel by pixel with the observed O V line intensity. Parameters δ and λ are derived to give the best fit for the observed and simulated intensities. Results: Spatially-resolved analysis of the transition region emission reveals the complex nature of the heating processes in active regions. In some active regions, particularly large, local intensity enhancements up to a factor of five are present. When areas with O V intensities above 3000 erg cm-2 s-1 sr-1 are ignored, a power law has been fitted to the relationship between the local O V line intensity and the photospheric magnetic flux density in each

  13. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244 (United States)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.


    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.


    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia, E-mail:, E-mail: [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209 Shandong (China)


    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s{sup −1}, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s{sup −1} found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  15. Natural Translating Locomotion Modulates Cortical Activity at Action Observation

    Directory of Open Access Journals (Sweden)

    Thierry Pozzo


    Full Text Available The present study verified if the translational component of locomotion modulated cortical activity recorded at action observation. Previous studies focusing on visual processing of biological motion mainly presented point light walker that were fixed on a spot, thus removing the net translation toward a goal that yet remains a critical feature of locomotor behavior. We hypothesized that if biological motion recognition relies on the transformation of seeing in doing and its expected sensory consequences, a significant effect of translation compared to centered displays on sensorimotor cortical activity is expected. To this aim, we explored whether EEG activity in the theta (4–8 Hz, alpha (8–12 Hz, beta 1 (14–20 Hz and beta 2 (20–32 Hz frequency bands exhibited selectivity as participants viewed four types of stimuli: a centered walker, a centered scrambled, a translating walker and a translating scrambled. We found higher theta synchronizations for observed stimulus with familiar shape. Higher power decreases in the beta 1 and beta 2 bands, indicating a stronger motor resonance was elicited by translating compared to centered stimuli. Finally, beta bands modulation in Superior Parietal areas showed that the translational component of locomotion induced greater motor resonance than human shape. Using a Multinomial Logistic Regression classifier we found that Dorsal-Parietal and Inferior-Frontal regions of interest (ROIs, constituting the core of action-observation system, were the only areas capable to discriminate all the four conditions, as reflected by beta activities. Our findings suggest that the embodiment elicited by an observed scenario is strongly mediated by horizontal body displacement.

  16. Changes in X-ray brightness of a solar active region

    Energy Technology Data Exchange (ETDEWEB)

    Glencross, W M; Brabban, D H [University Coll., London (UK). Mullard Space Science Lab.


    The soft X-ray flux in the waveband 0.3 to 0.9 nm has been monitored during most of the solar disk passage of McMath region 12094. These data show how the emission changed during quiet periods as well as during flaring. Throughout the first four days of observations the mean flux showed a gradual decay even though the magnetic region was still growing. At the end of this phase the region remained extremely inactive for almost half a day and then brightened by more than an order of magnitude within an hour. This enhancement lasted nearly one day and marked the onset of the break-up of the region. It is shown how this sequence of events might reflect the changes in subphotospheric convection pattern which Meyer et al (Mon. Not. R. Astr. Soc.; 169:35 (1974)) consider to develop in magnetic regions. It is also pointed out that the large flares in region 11976 during early 1972 August had a number of characteristics in common with the active phase discussed for region 12094.

  17. Distribution of irregularities in the northern polar region determined from Hilat observations

    International Nuclear Information System (INIS)

    Macdougall, J.W.


    Three years' observations of the Hilat satellite from stations Sondre, Churchill, and Tromso have been used to study the distributions of scintillations over the northern polar region. Two regions showed enhancement. Region (1) was an enhancement of phase scintillations when the line of sight to the satellite lay along an L shell and the observing station was under the auroral oval. Region (2) is revealed most clearly by amplitude scintillations and maximizes in an annular region several degrees poleward of the auroral oval. Region (1) is most likely associated with large-scale 'blobs' of ionization in the auroral zone; region (2) appears to be due to km-scale irregularities generated in the polar cap. 17 refs

  18. Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models (United States)

    Badr, Hamada S.; Dezfuli, Amin K.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.


    Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios.


    Energy Technology Data Exchange (ETDEWEB)

    Scott, J. T.; Martens, P. C. H.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)


    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for days and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.

  20. The Changing Surface of Saturn's Titan: Cassini Observations Suggest Active Cryovolcanism (United States)

    Nelson, R. M.


    R. M. Nelson(1), L. Kamp(1), R. M. C. Lopes(1), D. L. Matson(1), S. D. Wall(1), R. L. Kirk(2), K. L Mitchell(1), G. Mitri(1), B. W. Hapke(3), M. D. Boryta(4), F. E. Leader(1) , W. D. Smythe(1), K. H. Baines(1), R. Jauman(5), C. Sotin(1), R. N. Clark(6), D. P. Cruikshank(7) , P. Drossart(9), B. J. Buratti(1) , J.Lunine(8), M. Combes(9), G. Bellucci(10), J.-P. Bibring(11), F. Capaccioni(10), P. Cerroni(10), A. Coradini(10), V. Formisano(10), G Filacchione(10), R. Y. Langevin(11), T. B. McCord(12), V. Mennella(13), P. D. Nicholson(14) , B. Sicardy(8) 1-JPL, 4800 Oak Grove Drive, Pasadena CA 91109, 2-USGS, Flagstaff, 3-U Pittsburgh, 4-Mt. Sac Col, 5- DLR, Berlin, 6-USGS Denver, 7-NASA AMES, 8-U Paris-Meudon, 9-Obs de Paris, 10-ISFI-CNR Rome, 11-U Paris -Sud. Orsay, 12-Bear Flt Cntr Winthrop WA, 13-Obs Capodimonte Naples, 14-Cornell U. Several Instruments on the Cassini Saturn Orbiter have been observing the surface of Saturn's moon Titan since mid 2004. The Visual and Infrared Mapping Spectrometer (VIMS) reports that regions near 26oS, 78oW (region 1) and 7oS, 138oW (region 2) exhibit photometric changes consistent with on-going surface activity. These regions are photometrically variable with time(1). Cassini Synthetic Aperture Rader (SAR) has investigated these regions and reports that both of these regions exhibit morphologies consistent with cryovolcanism (2). VIMS observed region 1 eight times and reported that on two occasions the region brightened two-fold and then decreased again on timescales of several weeks. Region 2 was observed on four occasions (Tb-Dec13/2004 ,T8-Oct27/2005, T10-Jan15/2006, T12-Mar18/2006) and exhibited a pronounced change in I/F betweenT8 and T10. Our photometric analysis finds that both regions do not exhibit photometric properties consistent with atmospheric phenomena such as tropospheric clouds. These changes must be at or very near the surface. Radar images of these regions reveal morphology that is consistent with cryovolcanoes. We


    International Nuclear Information System (INIS)

    Karachik, Nina V.; Pevtsov, Alexei A.; Abramenko, Valentyna I.


    We investigate the formation of isolated non-polar coronal holes (CHs) on the remnants of decaying active regions (ARs) at the minimum/early ascending phase of sunspot activity. We follow the evolution of four bipolar ARs and measure several parameters of their magnetic fields including total flux, imbalance, and compactness. As regions decay, their leading and following polarities exhibit different dissipation rates: loose polarity tends to dissipate faster than compact polarity. As a consequence, we see a gradual increase in flux imbalance inside a dissipating bipolar region, and later a formation of a CH in place of more compact magnetic flux. Out of four cases studied in detail, two CHs had formed at the following polarity of the decaying bipolar AR, and two CHs had developed in place of the leading polarity field. All four CHs contain a significant fraction of magnetic field of their corresponding AR. Using potential field extrapolation, we show that the magnetic field lines of these CHs were closed on the polar CH at the North, which at the time of the events was in imbalance with the polar CH at the South. This topology suggests that the observed phenomenon may play an important role in transformation of toroidal magnetic field to poloidal field, which is a key step in transitioning from an old solar cycle to a new one. The timing of this observed transition may indicate the end of solar cycle 23 and the beginning of cycle 24.

  2. Observational Evidence of Magnetic Reconnection for Brightenings and Transition Region Arcades in IRIS Observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jie; Li, Hui; Feng, Li [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Schmieder, Brigitte; Pariat, Etienne [LESIA, Observatoire de Paris, Section de Meudon, F-92195, Meudon Principal Cedex (France); Zhu, Xiaoshuai [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Grubecka, Michalina, E-mail: [Astronomical Institute, University of Wrocław, Kopernika 11, 51-622, Wrocław (Poland)


    By using a new method of forced-field extrapolation, we study the emerging flux region AR11850 observed by the Interface Region Imaging Spectrograph and Solar Dynamical Observatory . Our results suggest that the bright points (BPs) in this emerging region exhibit responses in lines formed from the upper photosphere to the transition region, which have relatively similar morphologies. They have an oscillation of several minutes according to the Atmospheric Imaging Assembly data at 1600 and 1700 Å. The ratio between the BP intensities measured in 1600 and 1700 Å filtergrams reveals that these BPs are heated differently. Our analysis of the Helioseismic and Magnetic Imager vector magnetic field and the corresponding topology in AR11850 indicates that the BPs are located at the polarity inversion line and most of them are related to magnetic reconnection or cancelation. The heating of the BPs might be different due to different magnetic topology. We find that the heating due to the magnetic cancelation would be stronger than the case of bald patch reconnection. The plasma density rather than the magnetic field strength could play a dominant role in this process. Based on physical conditions in the lower atmosphere, our forced-field extrapolation shows consistent results between the bright arcades visible in slit-jaw image 1400 Å and the extrapolated field lines that pass through the bald patches. It provides reliable observational evidence for testing the mechanism of magnetic reconnection for the BPs and arcades in the emerging flux region, as proposed in simulation studies.

  3. Armenia as a Regional Centre for Astronomy for Development activities (United States)

    Mickaelian, A.


    The Byurakan Astrophysical Observatory (BAO, Armenia, are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  4. Incongruence Between Observers' and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli. (United States)

    Wingenbach, Tanja S H; Brosnan, Mark; Pfaltz, Monique C; Plichta, Michael M; Ashwin, Chris


    According to embodied cognition accounts, viewing others' facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others' facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others' faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions' order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.

  5. Estimating the Economic Benefits of Regional Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Wellman, Katharine F; Pelsoci, Thomas; Wieand, Kenneth; Pendleton, Linwood; Kaiser, Mark J; Pulsipher, Allan G; Luger, Michael


    We develop a methodology to estimate the potential economic benefits from new investments in regional coastal ocean observing systems in US waters, and apply this methodology to generate preliminary...


    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Reale, F.; Petralia, A. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Testa, P., E-mail: [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)


    Evidence of small amounts of very hot plasma has been found in active regions and might be an indication of impulsive heating released at spatial scales smaller than the cross-section of a single loop. We investigate the heating and substructure of coronal loops in the core of one such active region by analyzing the light curves in the smallest resolution elements of solar observations in two EUV channels (94 and 335 Å) from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We model the evolution of a bundle of strands heated by a storm of nanoflares by means of a hydrodynamic 0D loop model (EBTEL). The light curves obtained from a random combination of those of single strands are compared to the observed light curves either in a single pixel or in a row of pixels, simultaneously in the two channels, and using two independent methods: an artificial intelligent system (Probabilistic Neural Network) and a simple cross-correlation technique. We explore the space of the parameters to constrain the distribution of the heat pulses, their duration, their spatial size, and, as a feedback on the data, their signatures on the light curves. From both methods the best agreement is obtained for a relatively large population of events (1000) with a short duration (less than 1 minute) and a relatively shallow distribution (power law with index 1.5) in a limited energy range (1.5 decades). The feedback on the data indicates that bumps in the light curves, especially in the 94 Å channel, are signatures of a heating excess that occurred a few minutes before.


    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, B. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Yoshimura, Keiji [Department of Physics, Montana State University Bozeman, MT 59717 (United States); Dasso, Sergio, E-mail:, E-mail:, E-mail: [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), 1428 Buenos Aires (Argentina)


    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  8. The Santos Basin Ocean Observing System: From R&D to Operational Regional Forecasts (United States)

    Da Rocha Fragoso, M.; Moore, A. M.; dos Santos, F. A.; Marques Da Cruz, L.; Carvalho, G. V.; Soares, F.


    Santos Basin is located on the Southwestern Brazilian Ocean Basin and comprises the main offshore oil reserves of Brazil. The exploration and production activities on its ocean are growing in accelerated pace, which means that oil spill contingency and search & rescue operations are likely to be more frequent. Therefore, ocean current reliable nowcasts and forecasts has become even more important for this region. The Santos Basin Ocean Observing System was designed as an R&D project and its main objective was to establish and maintain a systematic oceanographic data collection for this region in order to study its ocean dynamics and improve regional ocean forecast through data assimilation. In the first three years of the project surface drifters, profiling floats and gliders were deployed to measure and monitor mainly the Brazil Current Western Boundary System, a highly unstable baroclinic current system, that present several meanders and mesoscale eddies activities. Throughout the development of the project, the team involved was able to learn how to operate the equipment, treat the collected data and use it to assimilate on the Regional Ocean Modeling System (ROMS). After performing a one-year 4DVAR assimilation cycle (Fragoso et al., 2015) in which the forecasting skill was assessed, the system was considered mature enough to start producing ocean circulation forecasts for Santos Basin. It is the first time in Brazil that a regional ocean model using a 4DVAR data assimilation scheme was used to produce high resolution operational ocean current forecasts. This paper describes all the components of this forecasting system, its main results and discoveries with special focus on the Brazil Current System Transport and mesocale eddies dynamics and statistics.

  9. Entrepreneurial activity and regional development: an introduction to this special issue

    Directory of Open Access Journals (Sweden)

    Maribel Guerrero


    Full Text Available The main objective of this special issue is to analyze the relationship between entrepreneurial intention and entrepreneurial activity and its impact on regional development. The last convulsive decade, with expansionary and recessionary economic cycles, offers a good opportunity to study how economic cycles affect the propensity of becoming an entrepreneur and, in turn, to observe how entrepreneurial activity contributes to change (improvement in the economy.Previous studies have analyzed the complicated endogenous relationship between entrepreneurship and economic growth, but these studies have examined the countries’ performance under a static view. This special issue focuses on analyzing complex entrepreneurial behavior from a sub-national perspective (examining several regions in the Spanish autonomous communities and a dynamic view (using data from several years, which adds rigor and valuable knowledge to this research field.

  10. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations (United States)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.


    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our


    Energy Technology Data Exchange (ETDEWEB)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda, E-mail: [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)


    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the H α filtergrams, cool material is seen to be injected into the filament spine with a speed of 5–10 km s{sup -1}. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7–9 km s{sup -1} in the H α red-wing filtergrams and 9–25 km s{sup -1} in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  12. Comparison of photospheric electric current and ultraviolet and x-ray emission in a solar active region

    International Nuclear Information System (INIS)

    Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.; Bonnet, R.M.; NASA, Marshall Space Flight Center, Huntsville, AL; ESA, Paris, France)


    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references

  13. Regional cerebral blood flow in psychiatry: The resting and activated brains of schizophrenic patients

    International Nuclear Information System (INIS)

    Gur, R.E.


    The investigation of regional brain functioning in schizophrenia has been based on behavioral techniques. Although results are sometimes inconsistent, the behavioral observations suggest left hemispheric dysfunction and left hemispheric overreaction. Recent developments in neuroimaging technology make possible major refinements in assessing regional brain function. Both anatomical and physiological information now be used to study regional brain development in psychiatric disorders. This chapter describes the application of one method - the xenon-133 technique for measuring regional cerebral blood flow (rCBF) - in studying the resting and activated brains of schizoprenic patients

  14. The discrete and localized nature of the variable emission from active regions (United States)

    Arndt, Martina Belz; Habbal, Shadia Rifai; Karovska, Margarita


    Using data from the Extreme Ultraviolet (EUV) Spectroheliometer on Skylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints, (delta n)/N, that exhibits variable emission, varies by +/- 15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 10(exp 5) K. (5) The ratio of the intensity of the variable to the average background emission, (delta I)/(bar-I), also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.

  15. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler


    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  16. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell


    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  17. Upstream particles observed in the earth's foreshock region

    International Nuclear Information System (INIS)

    Eastman, T.E.; Anderson, R.R.; Frank, L.A.; Parks, G.K.


    On the basis of primarily an extensive study of fully three-dimensional plasma data, we describe the interrelationships of the upstream particles and plasma waves observed in the earth's foreshock region. The University of Iowa LEPEDEAs detect ions and electrons from 1 eV to 45 keV over all except approx.2% of the unit sphere. Comparisons are made with high time resolution particle data obtained by the University of California (Berkeley) instruments and plasma wave data collected by the University of Iowa plasma wave instruments on the two ISEE spacecraft. The presence of ion beams or dispersed ion distributions is found to be a sufficient condition for the presence of electrostatic and electromagnetic wave emissions. Detailed correlations of ions with plasma waves down to a tenth of an ion gyroperiod indicate that ion acoustic emission is enhanced when increased anisotropies and gyrophase organization are observed. Time aliasing effects limit the interpretation of velocity distributions taken within the foreshock region. High time resolution correlations between the different instruments, however, demonstrate that time variations of a single isotropic or anisotropic distribution cannot produce the dispersed ion distributions. Detailed analysis of high time resolution data reveals that the upstream particles undergo significant spatial and temporal variations including gyrophase organization. Gyrophase organization comprises groups of ion clusters each one of which includes ions with similar pitch angles that gyrate together about a common guiding center. On the basis of our high time resolution analysis of three-dimensional plasma data combined with magnetic field and plasma wave data, we conclude that (1) ions observed in the foreshock region display gyrophase organization produced by ion clusters with a spatial scale <1 R/sub g/, and (2) dispersed ion distributions are produced primarily by direct sources at or near the bow shock

  18. GRB follow-up observations in the East-Asian region

    International Nuclear Information System (INIS)

    Tamagawa, T.; Urata, Y.; Tokyo Institute of Technology, Tokyo; Huang, K. Y.; Ip, W.H.; Qiu, Y.; Hu, J.Y.; Zhou, Xn.; Onda, K.; Tokyo Univ. of Sciences, Tokyo; Makishima, K.; Tokyo Univ., Tokyo


    In 2004, we established a Japan-Taiwan-China collaboration for GBR study in the East-Asian region. This serves as a valuable addiction to the world-wide optical and infrared follow-up network, because the East-Asia region would otherwise be blank. We have been carrying out imaging and spectroscopy follow-up observations at Lulin (Taiwan), Kiso (Japan), WIDGET (Japan) and Xinglong (China). From Xinglong and Kiso, we can locate candidates and obtain early time spectra for afterglows. While WIDGET provides early time observations before the bursts, the high-time resolution for multi-band light curves can be obtained at Lulin. With the data from these sites, we can obtain detailed information about the light curve and redshift of GRBs, which are important to understand the mechanism of the afterglows. Up to March 2005, ten follow-up observations have been provided by this East-Asia cooperation. Two optical afterglows were detected, GRB 040924 and GRB 041006. The results of the two detected afterglows are reported in this paper

  19. GRB follow-up observations in the East-Asian region

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T. [RIKEN, Saitama (Japan); Urata, Y. [RIKEN, Saitama (Japan); Tokyo Institute of Technology, Tokyo (Japan). Department of Physics; Huang, K. Y.; Ip, W.H. [National Centre University, Tokyo (Japan). Institute of Astronomy; Qiu, Y.; Hu, J.Y.; Zhou, Xn. [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatoires; Onda, K. [RIKEN, Saitama (Japan); Tokyo Univ. of Sciences, Tokyo (Japan). Department of Physics; Makishima, K. [RIKEN, Saitama (Japan); Tokyo Univ., Tokyo (Japan). Department of Physics


    In 2004, we established a Japan-Taiwan-China collaboration for GBR study in the East-Asian region. This serves as a valuable addiction to the world-wide optical and infrared follow-up network, because the East-Asia region would otherwise be blank. We have been carrying out imaging and spectroscopy follow-up observations at Lulin (Taiwan), Kiso (Japan), WIDGET (Japan) and Xinglong (China). From Xinglong and Kiso, we can locate candidates and obtain early time spectra for afterglows. While WIDGET provides early time observations before the bursts, the high-time resolution for multi-band light curves can be obtained at Lulin. With the data from these sites, we can obtain detailed information about the light curve and redshift of GRBs, which are important to understand the mechanism of the afterglows. Up to March 2005, ten follow-up observations have been provided by this East-Asia cooperation. Two optical afterglows were detected, GRB 040924 and GRB 041006. The results of the two detected afterglows are reported in this paper.

  20. Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J. [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Nigro, G. [Universita della Calabria, Dipartimento di Fisica and Centro Nazionale Interuniversitario Struttura della Materia, Unita di Cosenza, I-87030 Arcavacata di Rende (Italy)


    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.

  1. Implications of Seismically Active Fault Structures in Ankay and Alaotra Regions of Northern and Central Madagascar (United States)

    Malloy, S.; Stamps, D. S.


    The purpose of the study is to gain a better understanding of the seismically active fault structures in central and northern Madagascar. We study the Ankay and Lake Alaotra regions of Madagascar, which are segmented by multiple faults that strike N-S. In general, normal seismic events occur on faults bounding the Alaotra-Ankay rift basin where Quaternary alluvium is present. Due to this pattern and moderate amounts of low magnitude seismic activity along these faults, it is hypothesized the region currently undergoes E-W extension. In this work we test how variations in fault strength and net slip changes influence expected crustal movement in the region. Using the Coulomb stress failure point as a test of strength we are able to model the Alaotra-Ankay region using MATLAB Coulomb 3.3.01. This program allows us to define realistic Poisson's ratio and Young's modulus of mapped rock compositions in the region, i.e. paragneiss and orthogneiss, create 3D fault geometries, and calculate static stress changes with coinciding surface displacements. We impose slip along multiple faults and calculate seismic moment that we balance by the 3 observed earthquake magnitudes available in the USGS CMT database. Our calculations of surface displacements indicate 1-3 millimeters could be observed across the Alaotra-Ankay rift. These values are within the observable range of precision GNSS observations, therefore our results will guide future research into the area and direct potential GNSS station installation.

  2. Aperture synthesis observations of recombination lines from compact HII regions

    International Nuclear Information System (INIS)

    Gorkom, J.H. van.


    This thesis describes a continuation of early attempts to attain a high spectral dynamic range in general and to study recombination lines from compact HII regions in particular. These observations are made with the WSRT, until recently, the only instrument with sufficient angular resolution and sensitivity to provide at 6 cm detailed line maps of compact HII regions. An investigation into the spectral stability of the WSRT is described. Chromatic errors were found and their effects on maps are shown. These errors were found in the 80 channel filter spectrometer which was still in use at that time. The advent of the digital line backend (DLB) improved the dynamic range by an order of magnitude. An experiment is described which was partially aimed at testing the spectral stability of the DLB. It concerns a search for HI emission from the high velocity system of NGC 1275. Recombination line observations of the compact components in five giant HII regions are presented. The author discusses the radiative transfer problem in recombination lines and shows that non-LTE effects and pressure broadening can be of importance in compact HII regions. Observations obtained with the DLB are also presented. Because of the much better instrumental quality and improved insight into calibration procedures, mapping the H110α emission of DR21 and both the H110α and H166α emission of W3 was succeeded. (Auth.)

  3. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations (United States)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.


    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  4. High-Resolution Observations of a Filament showing Activated Barb (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita


    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  5. Study of Seismic Activity Using Geophysical and Radio Physical Equipment for Observation (United States)

    Kvavadze, N.; Tsereteli, N. S.


    One of the most dangerous and destructive natural hazards are earthquakes, which is confirmed by recent earthquakes such as Nepal 2015, Japan and Turkey 2011. Because of this, study of seismic activity is important. Studying any process, it is necessary to use different methods of observation, which allows us to increase accuracy of obtained data. Seismic activity is a complex problem and its study needs different types of observation methods. Two main problems of seismic activity study are: reliable instrumental observations and earthquake short-term predictions. In case of seismic risks it is necessary to have reliable accelerometer data. One of the most promising field in earthquake short-term prediction is very low frequency (VLF) electromagnetic wave propagation in ionosphere observation. To study Seismic activity of Caucasus region, was created observation complex using Accelerometer, Velocimeter and VLF electromagnetic waves received from communication stations (located in different area of the world) reflected from low ionosphere. System is created and operates at Tbilisi State University Ionosphere Observatory, near Tbilisi in Tabakhmela 42.41'70 N, 44.80'92 E, Georgia. Data obtained is sent to a local server located at M. Nodia Institute of Geophysics, TSU, for storage and processing. Diagram for complex is presented. Also data analysis methods were created and preliminary processing was done. In this paper we present some of the results: Earthquake data from ionosphere observations as well as local earthquakes recorded with accelerometer and velocimeter. Complex is first in 6 that will be placed around Georgia this year. We plan on widening network every year.

  6. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region (United States)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.


    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  7. Approach to analysis of inter-regional similarity of investment activity support measures in legislation of regions (on the example of Krasnoyarsk region

    Directory of Open Access Journals (Sweden)

    Valentina F. Lapo


    Full Text Available The most part of stimulation methods in Russia are concentrated in legal documents of the regions of the Russian Federation. They directed on intensification of investment activity in regions. How similar are these investment stimulation conceptions? There is no mention in the literature of the methodical questions of quantitative analysis and inter-regional comparisons. In addition, there are no results of statistical research of inter-regional correlations of stimulation methods and analysis of dynamics of this process. There are no special measuring instruments. The presented work is aimed at completion of these blanks. The approach for the spatial correlation analysis of legislative norms is offered in research. Classification of investments’ stimulation methods is developed. The way of preparing and coding data for research is offered. The approach and system of coefficients for the analysis of inter-regional interrelations of legislative systems of investments’ stimulation is offered. A proximity coefficient of regional legislation, a factor of structure similarity and a dynamic coincidence index are proposed. The space-time base of investment stimulation methods on Russian Federation regions for 12 years is collected and statistically processed for research. There are only 758 documents. A source of texts is a site of the Ministry of Justice of the Russian Federation.Research of documents has allowed revealing a number of laws in formation of regional investment stimulation systems. The regions that are the most similar in terms of structure of stimulation methods are identified. We have found the group of regions for which it is observed the increase in similarity of the legislation and the group with the reduction of similarity. Therefore, it is obvious that the general trend to reduction of similarity in the legislation takes place between Krasnoyarsk territory and the other regions of the Russian Federation. Calculations have

  8. Radio observations of H II regions and some related theoretical work

    International Nuclear Information System (INIS)

    Mezger, P.G.; Wink, J.E.


    In this paper the whole complex of radio and IR sources associated with an O-star is referred to as H II region. Radio continuum observations are widely used for the interpretation of IR-observations. Thus, this review is limited to recent high frequency single dish observations and aperture synthesis observations. Recent developments in the field of radio recombination line observations and their application to the interpretation of IR-observations are discussed. (G.T.H.)

  9. Observed and simulated precipitation responses in wet and dry regions 1850–2100

    International Nuclear Information System (INIS)

    Liu Chunlei; Allan, Richard P


    Global warming is expected to enhance fluxes of fresh water between the surface and atmosphere, causing wet regions to become wetter and dry regions drier, with serious implications for water resource management. Defining the wet and dry regions as the upper 30% and lower 70% of the precipitation totals across the tropics (30° S–30° N) each month we combine observations and climate model simulations to understand changes in the wet and dry regions over the period 1850–2100. Observed decreases in precipitation over dry tropical land (1950–2010) are also simulated by coupled atmosphere–ocean climate models (−0.3%/decade) with trends projected to continue into the 21st century. Discrepancies between observations and simulations over wet land regions since 1950 exist, relating to decadal fluctuations in El Niño southern oscillation, the timing of which is not represented by the coupled simulations. When atmosphere-only simulations are instead driven by observed sea surface temperature they are able to adequately represent this variability over land. Global distributions of precipitation trends are dominated by spatial changes in atmospheric circulation. However, the tendency for already wet regions to become wetter (precipitation increases with warming by 3% K −1 over wet tropical oceans) and the driest regions drier (precipitation decreases of −2% K −1 over dry tropical land regions) emerges over the 21st century in response to the substantial surface warming. (letter)

  10. Results of Spectral Corona Observations in Solar Activity Cycles 17-24 (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.


    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  11. Radar observations of artificial E-region field-aligned irregularities

    Directory of Open Access Journals (Sweden)

    E. Nossa


    Full Text Available Artificial E region field aligned plasma density irregularities (FAIs were generated using HAARP in four different experimental modes and observed with a coherent scatter radar imager located 450 km to the southwest where it could detect field-aligned backscatter. The experiments were conducted in July of 2008, during the Polar Aeronomy and Radio Science Summer School (PARS, during quiet conditions in the daytime when the E layer was dense and absorption was modest. The echoes observed during zenith and magnetic zenith heating experiments were deflected from their nominally anticipated horizontal positions toward the midpoint position. The occurrence of hysteresis when heating with amplitude modulated pulses implied the development of the resonance instability, although the threshold for the onset of instability appeared to be higher than what has been predicted theoretically. Heating experiments involving pump frequencies slightly above and below the second electron gyroharmonic frequency produced no significant differences in the observed echoes. Finally, heating with a pump frequency slightly above the E region critical frequency appears to have produced FAIs at two distinct altitudes where the upper-hybrid resonance condition could be satisfied.


    Directory of Open Access Journals (Sweden)

    R. R. Lukyanova


    Full Text Available The paper deals with the issues of human resource development regarding an innovation activity. Concepts of labor and human resources have been surveyed. An integral index for assessment of human resources for regional innovation activity has been developed and assessment of the Russian regions has been made on the basis of it. Development tendencies of modern human resources for innovation activity in Russia have been revealed.

  13. Study of midlatitude ionospheric irregularities and E- and F-region coupling based on rocket and radar observations from Japan (United States)

    Yamamoto, M.


    We have been studying ionspheric irregularities in mid-latitude region by using radars, sounding rockets, etc. The mid-latitude ionosphere was considered much stable than those in the equatorial or polar region in the past, but our studies for years have revealed that there are much active variabilities. We found variety of wave-like structures that are specific in the mid-latitudes. One of the phenomena is quasi-periodic echoes (QP echoes) first observed by the MU radar that reflects horizontal plasma-density structures associated to sporadic-E layers. Another phenomenon is medium-scale traveling ionospheric disturbance (MSTID) in the F-region. In the generation mechanism we think that Ionospheric E- and F-region coupling process is important. In this presentation, we will discuss nature of mid-latitude ionosphere based on our observations; the MU radar, sounding rocket campaigns of SEEK-1/2, and recent MSTID rocket experiment from JAXA Uchinoura Space Center in July 2013.

  14. Solar active region display system (United States)

    Golightly, M.; Raben, V.; Weyland, M.


    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  15. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations (United States)

    Shi, Y.; Matsunaga, T.


    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  16. Observations and modelling of inflation in the Lazufre volcanic region, South America (United States)

    Pearse, J.; Lundgren, P.


    The Central Volcanic Zone (CVZ) is an active volcanic arc in the central Andes, extending through Peru, southwestern Bolivia, Chile, and northwestern Argentina [De Silva, 1989; De Silva and Francis, 1991]. The CVZ includes a number of collapsed calderas, remnants of catastrophic eruptions, which are now thought to be inactive. However, recent Interferometric Synthetic Aperture Radar (InSAR) observations [Pritchard and Simons, 2004] show surface deformation occurring at some of these large ancient volcanic regions, indicating that magma chambers are slowly inflating beneath the surface. The mechanisms responsible for the initiation and growth of large midcrustal magma chambers remains poorly understood, and InSAR provides an opportunity for us to observe volcanic systems in remote regions that are otherwise difficult to monitor and observe. The Lastarria-Cordon del Azufre ("Lazufre" [Pritchard and Simons, 2002]) volcanic area is one such complex showing recent deformation, with average surface uplift rates of approximately 2.5 cm/year [Froger et al., 2007; Ruch et al, 2008]. We have processed InSAR data from ERS-1/2 and Envisat in the Lazufre volcanic area, including both ascending and descending satellite tracks. Time series analysis of the data shows steady uplift beginning in about 2000, continuing into 2010. We use boundary-element elastic models to invert for the depth and shape of the magmatic source responsible for the surface deformation. Given data from both ascending and descending tracks, we are able to resolve the ambiguity between the source depth and size, and constrain the geometry of the inflating magma source. Finite element modelling allows us to understand the effect of viscoelasticity on the development of the magma chamber.

  17. Sensitivity of the action observation network to physical and observational learning. (United States)

    Cross, Emily S; Kraemer, David J M; Hamilton, Antonia F de C; Kelley, William M; Grafton, Scott T


    Human motor skills can be acquired by observation without the benefit of immediate physical practice. The current study tested if physical rehearsal and observational learning share common neural substrates within an action observation network (AON) including premotor and inferior parietal regions, that is, areas activated both for execution and observation of similar actions. Participants trained for 5 days on dance sequences set to music videos. Each day they physically rehearsed one set of dance sequences ("danced"), and passively watched a different set of sequences ("watched"). Functional magnetic resonance imaging was obtained prior to and immediately following the 5 days of training. After training, a subset of the AON showed a degree of common activity for observational and physical learning. Activity in these premotor and parietal regions was sustained during observation of sequences that were danced or watched, but declined for unfamiliar sequences relative to the pretraining scan session. These imaging data demonstrate the emergence of action resonance processes in the human brain based on observational learning without physical practice and identify commonalities in the neural substrates for physical and observational learning.

  18. On gas sweeping from central regions of galaxies with active nuclei

    International Nuclear Information System (INIS)

    Silich, S.A.; Fomin, P.I.


    A mechanism of gas sweeping by shock waves from central regions of plane galaxies with active nuclei which is connected with the angular moment transfer from a stellar-cloud component to a gas one is considered. It is shown that shock waves are capable to form the observable density profile with the maximum at a distance of some kpc from galaxy centre for the time of the order of 10 9 years

  19. Cluster observations and theoretical identification of broadband waves in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Backrud-Ivgren


    Full Text Available Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves, while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.


    International Nuclear Information System (INIS)

    Jing Ju; Yuan Yuan; Xu Yan; Wang Haimin; Reardon, Kevin; Wiegelmann, Thomas


    In this paper, we present a method to automatically segment chromospheric fibrils from Hα observations and further identify their orientation. We assume that chromospheric fibrils are aligned with the magnetic field. By comparing the orientation of the fibrils with the azimuth of the embedding chromospheric magnetic field extrapolated from a potential field model, the shear angle, a measure of nonpotentiality, along the fibrils is readily deduced. Following this approach, we make a quantitative assessment of the nonpotentiality of fibrils in two NOAA active regions (ARs): (1) the relatively simple AR 11092, observed with very high resolution by Interferometric Bidimensional Spectrometer, and (2) a β-γ-δ AR 9661, observed with median resolution by Big Bear Solar Observatory before and after an X1.6 flare.

  1. Magnetic Structure of Sites of Braiding in Hi-C Active Region (United States)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.


    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.

  2. Twist of Magnetic Fields in Solar Active Regions Hongqi Zhang ...

    Indian Academy of Sciences (India)


    in active regions also shows the butterfly pattern through the solar cycle. And, less than 30% of the active regions do not follow the general trend (Zhang & Bao 1998). The longitudinal distribution of current helicity parameter h|| of active regions in both the hemispheres in the last decade was presented by Zhang & Bao ...

  3. A Gigantic Jet Observed Over an Mesoscale Convective System in Midlatitude Region (United States)

    Yang, Jing; Sato, Mitsuteru; Liu, Ningyu; Lu, Gaopeng; Wang, Yu; Wang, Zhichao


    Gigantic jets (GJs) are mostly observed over summer tropical or tropical-like thunderstorms. This study reports observation of a GJ over a mesoscale convective system (MCS) in the midlatitude region in eastern China. The GJ is observed over a relatively weak radar reflectivity region ahead of the leading line, and the maximum radar echo top along the GJ azimuth was lower than the tropopause in the same region, significantly different from past studies that indicate summer GJs are usually associated with convective surges or overshooting tops. Also different from most of previous observations showing GJ-producing summer thunderstorms only produced GJ type of transient luminous events during their life cycles, two sprites were also captured in a time window of 15 min containing the GJ, indicating that the MCS provides favorable conditions not only for the GJ but also for the sprites. The balloon-borne soundings of the MCS show that there were large wind shears in the middle and upper levels of the thundercloud, which may have played important roles for the GJ production.

  4. Active region fine structure observed at 0.08 arcsec resolution

    Czech Academy of Sciences Publication Activity Database

    Schlichenmaier, R.; von der Lühe, O.; Hoch, S.; Soltau, D.; Berkefeld, T.; Schmidt, D.; Schmidt, W.; Denker, C.; Balthasar, H.; Hofmann, A.; Strassmeier, K.G.; Staude, J.; Feller, A.; Lagg, A.; Solanki, S.K.; Collados Vera, M.; Sigwarth, M.; Volkmer, R.; Waldmann, T.A.; Kneer, F.; Nicklas, H.; Sobotka, Michal


    Roč. 596, December (2016), A7/1-A7/8 ISSN 0004-6361 EU Projects: European Commission(XE) 312495 - SOLARNET Institutional support: RVO:67985815 Keywords : Sun * activity * sunspots Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014


    Directory of Open Access Journals (Sweden)

    E. V. Sibirskaia


    Full Text Available Summary. In current market conditions, the economy and Russia's accession to international trade scholars and experts from various fields of knowledge paying special attention to a huge set of regional problems. The growing role of regional research determines the level of establishing effective mechanisms for the implementation of the economic interests of actors as well as economic development and improving the quality of human life is the priority objectives of federal, regional and local authorities. Today, the Russian economic science faces a global goal - to develop ways and means of transformation of the Russian economy and bring it to a path of sustainable, innovative development, providing new quality of life. Achieving this goal must surely be a central task of the Russian economics and politics, as in the near future and the long term In article authors opened the maintenance of determinants of innovative development of the territory, mediated by strengthening of regionalization of management by innovative activity: condition of resource and innovative potential; the developed forms and nature of interaction between public authorities of regional level, local community and business; applied forms of integration of subjects of managing for realization of their innovative potential due to expansion of opportunities of participation in the perspective directions of scientific and technical, economic and social development; system of the incentives developing favorable conditions for introduction and development of innovative technologies, and also increases in the enterprise activity, formed by the external institutional environment; regional economic policy as instrument of increase of efficiency of innovative activity.


    Energy Technology Data Exchange (ETDEWEB)

    Falconer, David A; Moore, Ronald L; Adams, Mitzi [Space Science Office, VP62, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gary, G. Allen [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)], E-mail:


    We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R {sub Sun}. The two quantities are {sup L}WL{sub SG}, a gauge of the total free energy in an active region's magnetic field, and {sup L}{phi}, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line 'main sequence' in (log {sup L}WL{sub SG}, log {sup L}{phi}) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space.


    International Nuclear Information System (INIS)

    Falconer, David A.; Moore, Ronald L.; Adams, Mitzi; Gary, G. Allen


    We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R Sun . The two quantities are L WL SG , a gauge of the total free energy in an active region's magnetic field, and L Φ, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line 'main sequence' in (log L WL SG , log L Φ) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space.

  8. Intensity attenuation for active crustal regions (United States)

    Allen, Trevor I.; Wald, David J.; Worden, C. Bruce


    We develop globally applicable macroseismic intensity prediction equations (IPEs) for earthquakes of moment magnitude M W 5.0-7.9 and intensities of degree II and greater for distances less than 300 km for active crustal regions. The IPEs are developed for two distance metrics: closest distance to rupture ( R rup) and hypocentral distance ( R hyp). The key objective for developing the model based on hypocentral distance—in addition to more rigorous and standard measure R rup—is to provide an IPE which can be used in near real-time earthquake response systems for earthquakes anywhere in the world, where information regarding the rupture dimensions of a fault may not be known in the immediate aftermath of the event. We observe that our models, particularly the model for the R rup distance metric, generally have low median residuals with magnitude and distance. In particular, we address whether the direct use of IPEs leads to a reduction in overall uncertainties when compared with methods which use a combination of ground-motion prediction equations and ground motion to intensity conversion equations. Finally, using topographic gradient as a proxy and median model predictions, we derive intensity-based site amplification factors. These factors lead to a small reduction of residuals at shallow gradients at strong shaking levels. However, the overall effect on total median residuals is relatively small. This is in part due to the observation that the median site condition for intensity observations used to develop these IPEs is approximately near the National Earthquake Hazard Reduction Program CD site-class boundary.

  9. Observational uncertainty and regional climate model evaluation: A pan-European perspective (United States)

    Kotlarski, Sven; Szabó, Péter; Herrera, Sixto; Räty, Olle; Keuler, Klaus; Soares, Pedro M.; Cardoso, Rita M.; Bosshard, Thomas; Pagé, Christian; Boberg, Fredrik; Gutiérrez, José M.; Jaczewski, Adam; Kreienkamp, Frank; Liniger, Mark. A.; Lussana, Cristian; Szepszo, Gabriella


    Local and regional climate change assessments based on downscaling methods crucially depend on the existence of accurate and reliable observational reference data. In dynamical downscaling via regional climate models (RCMs) observational data can influence model development itself and, later on, model evaluation, parameter calibration and added value assessment. In empirical-statistical downscaling, observations serve as predictand data and directly influence model calibration with corresponding effects on downscaled climate change projections. Focusing on the evaluation of RCMs, we here analyze the influence of uncertainties in observational reference data on evaluation results in a well-defined performance assessment framework and on a European scale. For this purpose we employ three different gridded observational reference grids, namely (1) the well-established EOBS dataset (2) the recently developed EURO4M-MESAN regional re-analysis, and (3) several national high-resolution and quality-controlled gridded datasets that recently became available. In terms of climate models five reanalysis-driven experiments carried out by five different RCMs within the EURO-CORDEX framework are used. Two variables (temperature and precipitation) and a range of evaluation metrics that reflect different aspects of RCM performance are considered. We furthermore include an illustrative model ranking exercise and relate observational spread to RCM spread. The results obtained indicate a varying influence of observational uncertainty on model evaluation depending on the variable, the season, the region and the specific performance metric considered. Over most parts of the continent, the influence of the choice of the reference dataset for temperature is rather small for seasonal mean values and inter-annual variability. Here, model uncertainty (as measured by the spread between the five RCM simulations considered) is typically much larger than reference data uncertainty. For

  10. Long term regional migration patterns of physicians over the course of their active practice careers. (United States)

    Vanasse, Alain; Ricketts, Thomas C; Courteau, Josiane; Orzanco, Maria Gabriela; Randolph, R; Asghari, Shabnam


    The geographic distribution of physicians in the United States of America has been often described as unbalanced or maldistributed. There is much in the literature on the regional distribution of physicians but far less is written about their pattern of movement. This study aimed to examine the geographic transition of physicians at two points in time (1981 and 2003), in and out the four US census regions (Northeast, Midwest, South, and West). We identified 83 383 non-federal clinically active primary care physicians (CAPCP) who were clinically active both in 1981 and in 2003 as registered in the American Medical Association Physician Masterfiles. The main variable was the migration status observed between 1981 and 2003, and they were categorized into three groups: (1) non-migrants (same county of practice); (2) internal migrants (different counties of practice, same region); or (3) external migrants (different regions of practice). Covariables were gender and age for the CAPCP, and the percentage of non-whites in the population, the mean per capita income of the population, the ratio of primary care physicians and the ratio of hospital beds per 1000 inhabitants, as well as the rural/urban status for the county of practice in 1981 (large metropolitan area, small metropolitan area, or non-adjacent). Overall, 13.2 % of CAPCP moved from one region to another between 1981 and 2003. Women and young CAPCPs were more prone to migrate during their career. Proportionally, a greater outflow of the 1981 workforce is observed for the Northeast and Midwest regions with 16% and 18%, respectively, compared with 10% for both the West and South regions. When taking into account the total flow (in and out) for each region, the West and the South 'benefited' from CAPCPs' migration, with respectively a 1.10 and 1.07 increase in 2003 when compared with 1981; while the Midwest and the Northeast regions ended with a 0.90 and 0.92 decrease in 2003. Both logistic regression and regression

  11. Interaction of Two Active Region Filaments Observed by NVST and SDO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liheng; Yan, Xiaoli; Xue, Zhike; Xiang, Yongyuan [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, Ting, E-mail: [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)


    Using high spatial and temporal resolution H α data from the New Vacuum Solar Telescope (NVST) and simultaneous observations from the Solar Dynamics Observatory , we present the rare event of the interaction between two filaments (F1 and F2) in AR 11967 on 2014 January 31. The adjacent two filaments were almost perpendicular to each other. Their interaction was driven by the movement of F1 and started when the two filaments collided with each other. During the interaction, the threads of F1 continuously slipped from the northeast to the southwest, and were accompanied by the brightenings at the junction of two filaments and the northeast footpoint of F2. Part of F1 and the main body of F2 became invisible in H α wavelength due to the heating and the motion of F2. At the same time, bright material initiated from the junction of two filaments were observed to move along F1. The magnetic connectivities of F1 were found to be changed after their interaction. These observations suggest that magnetic reconnection was involved in the interaction of two filaments and resulted in the eruption of one filament.

  12. Active Pesticide Production Points, Region 9, 2013, US EPA Region 9 (United States)

    U.S. Environmental Protection Agency — This data layer represents Active Pesticide Producing Establishments in USEPA Region 9 (AZ, CA, HI and NV) that reported production for the year 2013. Pesticide...

  13. Waveform through the subducted plate under the Tokyo region in Japan observed by a ultra-dense seismic network (MeSO-net) and seismic activity around mega-thrust earthquakes area (United States)

    Sakai, S.; Kasahara, K.; Nanjo, K.; Nakagawa, S.; Tsuruoka, H.; Morita, Y.; Kato, A.; Iidaka, T.; Hirata, N.; Tanada, T.; Obara, K.; Sekine, S.; Kurashimo, E.


    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates the next great earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. We had started the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan area (2007-2012). Under this project, the construction of the Metropolitan Seismic Observation network (MeSO-net) that consists of about 400 observation sites was started [Kasahara et al., 2008; Nakagawa et al., 2008]. Now, we had 178 observation sites. The correlation of the wave is high because the observation point is deployed at about 2 km intervals, and the identification of the later phase is recognized easily thought artificial noise is very large. We also discuss the relation between a deformation of PSP and intra-plate M7+ earthquakes: the PSP is subducting beneath the Honshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We are going to present a high resolution tomographic image to show low velocity zone which suggests a possible internal failure of the plate; a source region of the M7+ intra-plate earthquake. Our study will contribute a new assessment of the seismic hazard at the Metropolitan area in Japan. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  14. RCA activities in the Asian and Pacific Region

    International Nuclear Information System (INIS)

    Kobayashi, M.


    So-called ''RCA'' activities - practical work undertaken within the framework of a Regional Co-operative Agreement for Research, Development and Training related to Nuclear Science and Technology for the Asian and Pacific region - are widely regarded as an example of successful co-operative effort in the application of nuclear techniques at a regional level. Activities undertaken to promote the transfer of nuclear technology within the framework of the RCA cover a large spectrum of nuclear applications in agriculture and food production, medicine, study of the environment, industry, and physics. Fourteen projects are operational this year (1984)

  15. Observations of concentrated generator regions in the nightside magnetosphere by Cluster/FAST conjunctions

    Directory of Open Access Journals (Sweden)

    M. Hamrin


    Full Text Available Here and in the companion paper, Marghitu et al. (2006, we investigate plausible auroral generator regions in the nightside auroral magnetosphere. In this article we use magnetically conjugate data from the Cluster and the FAST satellites during a 3.5-h long event from 19-20 September 2001. Cluster is in the Southern Hemisphere close to apogee, where it probes the plasma sheet and lobe at an altitude of about 18 RE. FAST is below the acceleration region at approximately 0.6 RE. Searching for clear signatures of negative power densities, E·J<0, in the Cluster data we can identify three concentrated generator regions (CGRs during our event. From the magnetically conjugate FAST data we see that the observed generator regions in the Cluster data correlate with auroral precipitation. The downward Poynting flux observed by Cluster, as well as the scale size of the CGRs, are consistent with the electron energy flux and the size of the inverted-V regions observed by FAST. To our knowledge, these are the first in-situ observations of the crossing of an auroral generator region. The main contribution to E·J<0 comes from the GSE EyJy. The electric field Ey is weakly negative during most of our entire event and we conclude that the CGRs occur when the duskward current Jy grows large and positive. We find that our observations are consistent with a local southward expansion of the plasma sheet and/or rather complicated, 3-D wavy structures propagating over the Cluster satellites. We find that the plasma is working against the magnetic field, and that kinetic energy is being converted into electromagnetic energy. Some of the energy is transported away as Poynting flux.

  16. Infrared speckle observations of Io - an eruption in the Loki region

    International Nuclear Information System (INIS)

    Howell, R.R.; Mcginn, M.T.


    Speckle observations of Jupiter's satellite Io at a wavelength of 5 micrometers during July 1984 resolved the disk and showed emission from a hot spot in the Loki region. The hot spot contributed a flux approximately equal to 60 percent of that from the disk.Images reconstructed by means of the Knox-Thompson algorithm showed the spot moving across the disk as the satellite rotated. It was located at 301 deg + or - 6 deg west longitude, 10 deg + or - 6 deg north latitude, and had a radiance of (2.96 + or - 0.54) x 10 to the 22nd ergs/sec cm sr/A where A is the area of the spot. For an assumed temperature of 400 K, the area of the source would be 11,400 square kilometers. An active lava lake similar to that seen by Voyager may be the source of the infrared emission. 10 references

  17. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    Directory of Open Access Journals (Sweden)

    Md. Nuruzzaman Haque


    Full Text Available Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1 has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p<0.001. Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP, containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons’ active ageing level in Thailand.

  18. First E- and D-region incoherent scatter spectra observed over Jicamarca

    Directory of Open Access Journals (Sweden)

    J. L. Chau


    Full Text Available We present here the first Jicamarca observations of incoherent scatter radar (ISR spectra detected from E- and D-region altitudes. In the past such observations have not been possible at Jicamarca due a combined effect of strong equatorial electrojet (EEJ clutter and hardware limitations in the receiving system. The observations presented here were made during weak EEJ conditions (i.e., almost zero zonal electric field using an improved digital receiving system with a wide dynamic range and a high data throughput. The observed ISR spectra from E- and D-region altitudes are, as expected, narrow and get even narrower with decreasing altitude due to increasing ion-neutral collision frequencies. Therefore, it was possible to obtain accurate spectral measurements using a pulse-to-pulse data analysis. At lower altitudes in the D-region where signal correlation times are relatively long we used coherent integration to improve the signal-to-noise ratio of the collected data samples. The spectral estimates were fitted using a standard incoherent scatter (IS spectral model between 87 and 120 km, and a Lorentzian function below 110 km. Our preliminary estimates of temperature and ion-neutral collisions frequencies above 87 km are in good agreement with the MSISE-90 model. Below 87 km, the measured spectral widths are larger than expected, causing an overestimation of the temperatures, most likely due to spectral distortions caused by atmospheric turbulence.

  19. Millimeter observations of radio-loud active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Bertoldi, F

    In order to study the nature of the far-infrared emission observed in radio-loud active galaxies, we have obtained 1.2 mill observations with the IRAM 30 m telescope for a sample of eight radio-loud active galaxies. In all objects we find that the 1.2 mm emission is dominated by non-thermal

  20. Very high latitude F-region irregularities observed by HF-radar backscatter

    International Nuclear Information System (INIS)

    Baker, K.B.; Greenwald, R.A.; Tsunoda, R.T.


    In February and March, 1982, a coherent scatter HF radar was operated from Cleary, Alaska to observe 7- to 15-m wavelength F-region plasma irregularities near the poleward edge of the auroral zone and in the polar cap. The radar operated for five days from February 25 to March 1 and produced approximately 700,000 Doppler spectra during that time. Of those nearly 700,000 spectra, approximately 10% showed backscattered power 3 dB or more above the noise level. A ray tracing technique using electron densities determined by the Chatanika incoherent scatter radar was used to predict locations where the HF waves were approximately normal to the magnetic field. If those locations were also to contain small scale electron density structure, then one would expect them to backscatter the HF waves. Several comparisons were made between predicted and observed locations of radiowave backscatter and excellent agreement was obtained. In addition, comparisons of the Doppler velocities observed by the coherent scatter HF radar and those observed by the Chatanika radar showed good agreement, suggesting that the plasma irregularities observed by the HF radar drift with the ambient plasma. In addition, average vector velocities calculated for the entire 5-day period show a flow pattern consistent with polar cap convection models. This again indicates that the irregularities drift with the plasma, as is predicted by a number of theories of F-region plasma irregularities. In the summer of 1983, the research program begun with those measurements will be continued with a steerable phased-array HF radar located at Goose Bay, Labrador, that will view the same ionospheric region as does the Sondre Stromfjord incoherent scatter radar

  1. Observations of NO2 and O3 during thunderstorm activity using visible spectroscopy (United States)

    Jadhav, D. B.; Londhe, A. L.; Bose, S.


    Simultaneous observations for the total column densities of NO2 , O3 and H2O were carried on using the portable Spectrometer (438-450 nm and 400-450 nm) and the visible Spectrometer (544.4-628 nm) during premonsoon thunderstorms and embedded hail storm activity at Pune (18°32’N & 73°51’E), India. These observations confirm the fact that there is an increase in O3 and NO2 column densities during thunderstorms. The increase in O3 was observed following onset of thunderstorm, while the increase in NO2 was observed only after the thunder flashes occur. This implies that the production mechanisms for O3 and NO2 in thunderstorm are different. The observed column density of NO2 value (1 to 3 × 1017molecules · cm-2) during thunderstorm activity is 10 to 30 times higher than the value (1 × 1016molecules · cm-2) of a normal day total column density. The spectrometric observations and observations of thunder flashes by electric field meter showed that 6.4 × 1025molecules / flash of NO2 are produced. The increased total column density of ozone during thunderstorm period is 1.2 times higher than normal (clear) day ozone concentration. The multiple scattering in the clouds is estimated from H2O and O2 absorption bands in the visible spectral region. Considering this effect the calculated amount of ozone added in the global atmosphere due to thunderstorm activity is 0.26 to 0.52 DU, and the annual production of ozone due to thunderstorm activity is of the order of 4.02 × 1037 molecules / year. The annual NO2 production may be of the order of 2.02 × 1035molecules / year.

  2. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    Energy Technology Data Exchange (ETDEWEB)

    Ry, Rexha Verdhora, E-mail: [Master Program of Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia)


    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  3. Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models (United States)

    Salih, Abubakr A. M.; Elagib, Nadir Ahmed; Tjernström, Michael; Zhang, Qiong


    The African Sahel region is known to be highly vulnerable to climate variability and change. We analyze rainfall in the Sahelian Sudan in terms of distribution of rain-days and amounts, and examine whether regional climate models can capture these rainfall features. Three regional models namely, Regional Model (REMO), Rossby Center Atmospheric Model (RCA) and Regional Climate Model (RegCM4), are evaluated against gridded observations (Climate Research Unit, Tropical Rainfall Measuring Mission, and ERA-interim reanalysis) and rain-gauge data from six arid and semi-arid weather stations across Sahelian Sudan over the period 1989 to 2008. Most of the observed rain-days are characterized by weak (0.1-1.0 mm/day) to moderate (> 1.0-10.0 mm/day) rainfall, with average frequencies of 18.5% and 48.0% of the total annual rain-days, respectively. Although very strong rainfall events (> 30.0 mm/day) occur rarely, they account for a large fraction of the total annual rainfall (28-42% across the stations). The performance of the models varies both spatially and temporally. RegCM4 most closely reproduces the observed annual rainfall cycle, especially for the more arid locations, but all of the three models fail to capture the strong rainfall events and hence underestimate its contribution to the total annual number of rain-days and rainfall amount. However, excessive moderate rainfall compensates this underestimation in the models in an annual average sense. The present study uncovers some of the models' limitations in skillfully reproducing the observed climate over dry regions, will aid model users in recognizing the uncertainties in the model output and will help climate and hydrological modeling communities in improving models.

  4. GMRT and VLA Observations at 49 cm and 20 cm of the HII Region ...

    Indian Academy of Sciences (India)


    Mar 8, 2007 ... as arising in the diffuse HII region and find that the best fitting model has an electron density ... these observations was to image and determine the physical properties of the diffuse. HII region from which ... At the time of our observations, noise switching to measure the system temperature was not available.

  5. Effect of active-region “volume” on the radiative properties of laser heterostructures with radiation output through the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nekorkin, S. M.; Zvonkov, B. N.; Baidus, N. V.; Dikareva, N. V., E-mail:; Vikhrova, O. V. [Nizhny Novgorod State University, Physicotechnical Research Institute (Russian Federation); Afonenko, A. A.; Ushakov, D. V. [Belarussian State University (Belarus)


    The radiative properties of InGaAs/GaAs/InGaP laser structures with radiation output through the substrate depending on the number of quantum wells in the active region and laser diodes on their basis are investigated. It is established that the presence of six–eight quantum wells in the active region is optimum from the viewpoint of observable values of the threshold current and the output optical power of lasers.

  6. Observations of concentrated generator regions in the nightside magnetosphere by Cluster/FAST conjunctions

    Directory of Open Access Journals (Sweden)

    M. Hamrin


    Full Text Available Here and in the companion paper, Marghitu et al. (2006, we investigate plausible auroral generator regions in the nightside auroral magnetosphere. In this article we use magnetically conjugate data from the Cluster and the FAST satellites during a 3.5-h long event from 19-20 September 2001. Cluster is in the Southern Hemisphere close to apogee, where it probes the plasma sheet and lobe at an altitude of about 18 RE. FAST is below the acceleration region at approximately 0.6 RE. Searching for clear signatures of negative power densities, E·J<0, in the Cluster data we can identify three concentrated generator regions (CGRs during our event. From the magnetically conjugate FAST data we see that the observed generator regions in the Cluster data correlate with auroral precipitation. The downward Poynting flux observed by Cluster, as well as the scale size of the CGRs, are consistent with the electron energy flux and the size of the inverted-V regions observed by FAST. To our knowledge, these are the first in-situ observations of the crossing of an auroral generator region. The main contribution to E·J<0 comes from the GSE EyJy. The electric field Ey is weakly negative during most of our entire event and we conclude that the CGRs occur when the duskward current Jy grows large and positive. We find that our observations are consistent with a local southward expansion of the plasma sheet and/or rather complicated, 3-D wavy structures propagating over the Cluster satellites. We find that the plasma is working against the magnetic field, and that kinetic energy is being converted into electromagnetic energy. Some of the energy is transported away as Poynting flux.

  7. First observation of top quark production in the forward region. (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Lohn, S; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Matthieu, K; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Ninci, D; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L


    Top quark production in the forward region in proton-proton collisions is observed for the first time. The W+b final state with W→μν is reconstructed using muons with a transverse momentum, p_{T}, larger than 25 GeV in the pseudorapidity range 2.020  GeV. The results are based on data corresponding to integrated luminosities of 1.0 and 2.0  fb^{-1} collected at center-of-mass energies of 7 and 8 TeV by LHCb. The inclusive top quark production cross sections in the fiducial region are σ(top)[7  TeV]=239±53(stat)±33(syst)±24(theory)  fb,σ(top)[8  TeV]=289±43(stat)±40(syst)±29(theory)  fb.These results, along with the observed differential yields and charge asymmetries, are in agreement with next-to-leading order standard model predictions.

  8. Sports participation, physical activity, and health in the European regions. (United States)

    Lera-López, Fernando; Marco, Rocio


    In a context of stagnation of the level of health-enhancing physical activity in Europe, this study examines the geographical stratification of sports participation and physical activity (PA) at the regional level in 28 European countries. While previous research has focused on the national approach, this study considers the regional level across 208 European regions. Individual survey data from the Eurobarometer 80.2 is combined with a regional-level approach to the 208 regions to quantify sports participation and PA at the regional level. The results show important differences and a geographical stratification of sports participation and PA among the European regions, albeit following different patterns. In particular, a north-south gap is identified in terms of PA rates and an east-west gap is detected in terms of sports participation levels. Applying the cluster technique, a taxonomy of four different European regions is developed considering both types of indicators. Finally, the existence of sports spatial spillovers among regions is verified, obtaining a positive autocorrelation among neighbouring regions for being involved in PA and sporting activities. The results may have significant implications in terms of policy measures to improve health through PA and sports participation at the regional level in Europe.

  9. Forest fires in Himalayan region during 2016 - Aerosol load and smoke plume heights detection by multi sensor observations (United States)

    Kumar, S.; Dumka, U. C.


    The forest fires are common events over the Central Himalayan region during the pre-monsoon season (March - June) of every year. Forest fire plays a crucial role in governing the vegetation structure, ecosystem, climate change as well as in atmospheric chemistry. In regional and global scales, the combustion of forest and grassland vegetation releases large volumes of smoke, aerosols, and other chemically active species that significantly influence Earth's radiative budget and atmospheric chemistry, impacting air quality and risks to human health. During the year 2016, massive forest fires have been recorded over the Central Himalayan region of Uttarakhand which continues for several weeks. To study this event we used the multi-satellite observations of aerosols and pollutants during pre-fire, fire and post-fire period over the central Himalayan region. The data used in this study are active fire count and aerosol optical depth (AOD) from MODerate-resolution Imaging Spectroradiometer (MODIS), aerosol index and gases pollutants from Ozone Monitoring Instrument (OMI), along with vertical profiles of aerosols and smoke plume height information from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The result shows that the mean fire counts were maximum in April. The daily average AOD value shows an increasing trend during the fire events. The mean value of AOD before the massive fire (25 April), during the fire (30 April) and post fire (5 May) periods are 0.3, 1.2 and 0.6 respectively. We find an increasing trend of total columnar NO2 over the Uttarakhand region during the massive fire event. Space-born Lidar (CALIPSO) retrievals show the extent of smoke plume heights beyond the planetary boundary layer up to 6 km during the peak burning day (April 30). The HYSPLIT air mass forward trajectory shows the long-range transportation of smoke plumes. The results of the present study provide valuable information for addressing smoke plume and

  10. Development of Lightning Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather (United States)

    Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.


    Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.

  11. Observed and model N(h) profiles for the Bulgarian region

    International Nuclear Information System (INIS)

    Pasheva, Ts.; Samardziev, D.


    In this paper, combined bottom- and topside ionospheric N(h)-profiles are presented for the Bulgarian region. The profiles were constructed using ground (ionospheric observatories Sofia and Michurin) and satellite (Interkosmos-19) observations. The observatories make quarter-hourly observations in order to connect bottom and upper parts of the N(h) profile, satellite orbits passing rather near to the observatory (zenith distance less than 100 km) are selected. Thus the time difference between ground station and satellite measurement was never more than 7.5 min

  12. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing. (United States)

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M


    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  13. Viking observations at the source region of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Bahnsen, A.; Jespersen, M.; Ungstrup, E.; Pedersen, B.M.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Blomberg, L.; Holmgren, G.; Zanetti, L.J.


    The orbit of the Swedish satellite Viking was optimized for in situ observations of auroral particle acceleration and related phenomena. In a large number of the orbits, auroral kilometric radiation (AKR) was observed, and in approximately 35 orbits the satellite passed through AKR source regions as evidenced by very strong signals at the local electron cyclotron frequency f ce . These sources were found at the poleward edge of the auroral oval at altitudes, from 5,000 to 8,000 km, predominantly in the evening sector. The strong AKR signal has a sharp low-frequency cutoff at or very close to f ce in the source. In addition to AKR, strong broadband electrostatic noise is measured during the source crossings. Energetic (1-15 keV) electrons are always present at and around the AKR sources. Upward directed ion beams of several keV are closely correlated with the source as are strong and variable electric fields, indicating that a region of upward pointing electric field below the observation point is a necessary condition for AKR generation. The plasma density is measured by three independent experiments and it is generally found that the density is low across the whole auroral oval. For some source crossings the three methods agree and show a density depletion (but not always confined to the source region itself), but in many cases the three measurements do not yield consistent results. The magnetic projection of the satellite passes through auroral forms during the source crossings, and the strongest AKR events seem to be connected with kinks in an arc or more complicated structures

  14. Cortical Activation during Action Observation, Action Execution, and Interpersonal Synchrony in Adults: A functional Near-Infrared Spectroscopy (fNIRS Study

    Directory of Open Access Journals (Sweden)

    Anjana N. Bhat


    Full Text Available Introduction: Humans engage in Interpersonal Synchrony (IPS as they synchronize their own actions with that of a social partner over time. When humans engage in imitation/IPS behaviors, multiple regions in the frontal, temporal, and parietal cortices are activated including the putative Mirror Neuron Systems (Iacoboni, 2005; Buxbaum et al., 2014. In the present study, we compared fNIRS-based cortical activation patterns across three conditions of action observation (“Watch” partner, action execution (“Do” on your own, and IPS (move “Together”.Methods: Fifteen typically developing adults completed a reach and cleanup task with the right arm while cortical activation was examined using a 24-channel, Hitachi fNIRS system. Each adult completed 8 trials across three conditions (Watch, Do, and Together. For each fNIRS channel, we obtained oxy hemoglobin (HbO2 and deoxy hemoglobin (HHb profiles. Spatial registration methods were applied to localize the cortical regions underneath each channel and to define six regions of interest (ROIs, right and left supero-anterior (SA or pre/post-central gyri, infero-posterior (IP or angular/supramarginal gyri, and infero-anterior (IA or superior/middle temporal gyri regions.Results: In terms of task-related differences, the majority of the ROIs were more active during Do and Together compared to Watch. Only the right/ipsilateral fronto-parietal and inferior parietal cortices had greater activation during Together compared to Do.Conclusions: The similarities in cortical activation between action execution and IPS suggest that neural control of IPS is more similar to its execution than observational aspects. To be clear, the more complex the actions performed, the more difficult the IPS behaviors. Secondly, IPS behaviors required slightly more right-sided activation (vs. execution/observation suggesting that IPS is a higher-order process involving more bilateral activation compared to its sub

  15. First OH Airglow Observation of Mesospheric Gravity Waves Over European Russia Region (United States)

    Li, Qinzeng; Yusupov, Kamil; Akchurin, Adel; Yuan, Wei; Liu, Xiao; Xu, Jiyao


    For the first time, we perform a study of mesospheric gravity waves (GWs) for four different seasons of 1 year in the latitudinal band from 45°N to 75°N using an OH all-sky airglow imager over Kazan (55.8°N, 49.2°E), Russia, during the period of August 2015 to July 2016. Our observational study fills a huge airglow imaging observation gap in Europe and Russia region. In total, 125 GW events and 28 ripple events were determined by OH airglow images in 98 clear nights. The observed GWs showed a strong preference of propagation toward northeast in all seasons, which was significantly different from airglow imager observations at other latitudes that the propagation directions were seasonal dependent. The middle atmosphere wind field is used to explain the lack of low phase speed GWs since these GWs were falling into the blocking region due to the filtering effects. Deep tropospheric convections derived from the European Centre for Medium-Range Weather Forecasts reanalysis data are determined near Caucasus Mountains region, which suggests that the convections are the dominant source of the GWs in spring, summer, and autumn seasons. This finding extends our knowledge that convection might also be an important source of GWs in the higher latitudes. In winter the generation mechanism of the GWs are considered to be jet stream systems. In addition, the occurrence frequency of ripple is much lower than other stations. This study provides some constraints on the range of GW parameters in GW parameterization in general circulation models in Europe and Russia region.

  16. Integrating multiscale polar active contours and region growing for microcalcifications segmentation in mammography

    International Nuclear Information System (INIS)

    Arikidis, N S; Karahaliou, A; Skiadopoulos, S; Panagiotakis, G; Costaridou, L; Likaki, E


    Morphology of individual microcalcifications is an important clinical factor in microcalcification clusters diagnosis. Accurate segmentation remains a difficult task due to microcalcifications small size, low contrast, fuzzy nature and low distinguishability from surrounding tissue. A novel application of active rays (polar transformed active contours) on B-spline wavelet representation is employed, to provide initial estimates of microcalcification boundary. Then, a region growing method is used with pixel aggregation constrained by the microcalcification boundary estimates, to obtain the final microcalcification boundary. The method was tested on dataset of 49 microcalcification clusters (30 benign, 19 malignant), originating from the DDSM database. An observer study was conducted to evaluate segmentation accuracy of the proposed method, on a 5-point rating scale (from 5:excellent to 1:very poor). The average accuracy rating was 3.98±0.81 when multiscale active rays were combined to region growing and 2.93±0.92 when combined to linear polynomial fitting, while the difference in rating of segmentation accuracy was statistically significant (p < 0.05).


    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M., E-mail: [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, 8010 Graz (Austria)


    The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north–south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10{sup 25} J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

  18. An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure (United States)

    Kuckein, C.; Martínez Pillet, V.; Centeno, R.


    Aims: A thorough multiwavelength, multiheight study of the vector magnetic field in a compact active region filament (NOAA 10781) on 2005 July 3 and 5 is presented. We suggest an evolutionary scenario for this filament. Methods: Two different inversion codes were used to analyze the full Stokes vectors acquired with the Tenerife Infrared Polarimeter (TIP-II) in a spectral range that comprises the chromospheric He i 10 830 Å multiplet and the photospheric Si i 10 827 Å line. In addition, we used SOHO/MDI magnetograms, as well as BBSO and TRACE images, to study the evolution of the filament and its active region (AR). High-resolution images of the Dutch Open Telescope were also used. Results: An active region filament (formed before our observing run) was detected in the chromospheric helium absorption images on July 3. The chromospheric vector magnetic field in this portion of the filament was strongly sheared (parallel to the filament axis), whereas the photospheric field lines underneath had an inverse polarity configuration. From July 3 to July 5, an opening and closing of the polarities on either side of the polarity inversion line (PIL) was recorded, resembling the recently discovered process of the sliding door effect seen by Hinode. This is confirmed with both TIP-II and SOHO/MDI data. During this time, a newly created region that contained pores and orphan penumbrae at the PIL was observed. On July 5, a normal polarity configuration was inferred from the chromospheric spectra, while strongly sheared field lines aligned with the PIL were found in the photosphere. In this same data set, the spine of the filament is also observed in a different portion of the field of view and is clearly mapped by the silicon line core. Conclusions: The inferred vector magnetic fields of the filament suggest a flux rope topology. Furthermore, the observations indicate that the filament is divided in two parts, one which lies in the chromosphere and another one that stays

  19. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail:, E-mail:, E-mail:, E-mail:


    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.


    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Guo, Q. L., E-mail: [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)


    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.


    Energy Technology Data Exchange (ETDEWEB)

    Mandrini, C. H.; Cristiani, G. D.; Nuevo, F. A.; Vásquez, A. M. [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires, 1428 (Argentina); Baker, D.; Driel-Gesztelyi, L. van [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Démoulin, P.; Pick, M. [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); Vargas Domínguez, S. [Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá (Colombia)


    Persistent plasma upflows were observed with Hinode’s EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern, which is present in the AR for several days. We propose a scenario in which upflows are observed, provided that a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and lasts as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs; in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support for the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but is also responsible for the continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nançay Radio Heliograph.

  2. Thoughts on the development of active regional public health systems. (United States)

    Reis, Ademar Arthur Chioro Dos; Sóter, Ana Paula Menezes; Furtado, Lumena Almeida Castro; Pereira, Silvana Souza da Silva


    Decentralization and regionalization are strategic themes for reforms in the health system. This paper analyzes the complex process of health regionalization being developed in Brazil. This paper identifies that the normative framework from the Brazilian National Health System, SUS has made advances with respect to its institutionalization and overcoming the initial centrality involved in municipalization. This has strengthened the development of regionalization and the intergovernmental agreement on health but the evidence points to the need to promote a revision. Based on document analysis, literature review and the views given by the authors involved in management in SUS as well as generating radically different views, the challenges for the construction of a regionalization that is active, is debated. We also discuss: its relations with planning and the dimensioning of service networks, the production of active care networks and shared management spaces, the inter-federative agreements and regional regulations, the capacity to coordinate regional systems and financing and the impact of the political dimension and electoral cycles. Regionalization (and SUS itself) is an open book, therefore ways and possibilities on how to maintain an active form of regionalization can be recommended.

  3. Anthropogenic Changes in Mid-latitude Storm and Blocking Activities from Observations and Climate Models (United States)

    Li, D.


    Fingerprints of anthropogenic climate change can be most readily detected in the high latitudes of Northern Hemisphere, where temperature has been rising faster than the rest of the globe and sea ice cover has shrunk dramatically over recent decades. Reducing the meridional temperature gradient, this amplified warming over the high latitudes influences weather in the middle latitudes by modulating the jet stream, storms, and atmospheric blocking activities. Whether observational records have revealed significant changes in mid-latitude storms and blocking activities, however, has remained a subject of much debate. Buried deep in strong year-to-year variations, the long-term dynamic responses of the atmosphere are more difficult to identify, compared with its thermodynamic responses. Variabilities of decadal and longer timescales further obscure any trends diagnosed from satellite observations, which are often shorter than 40 years. Here, new metrics reflecting storm and blocking activities are developed using surface air temperature and pressure records, and their variations and long-term trends are examined. This approach gives an inkling of the changes in storm and blocking activities since the Industrial Revolution in regions with abundant long-term observational records, e.g. Europe and North America. The relationship between Atlantic Multi-decadal Oscillation and variations in storm and blocking activities across the Atlantic is also scrutinized. The connection between observed centennial trends and anthropogenic forcings is investigated using a hierarchy of numerical tools, from highly idealized to fully coupled atmosphere-ocean models. Pre-industrial control simulations and a set of large ensemble simulations forced by increased CO2 are analyzed to evaluate the range of natural variabilities, which paves the way to singling out significant anthropogenic changes from observational records, as well as predicting future changes in mid-latitude storm and

  4. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)


    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  5. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness. (United States)

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui


    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger


    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States)


    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  7. Formation and Eruption Process of a Filament in Active Region NOAA 12241

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jincheng; Yan, Xiaoli; Qu, ZhongQuan; Xue, Zhike; Yang, Liheng [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)


    In order to better understand active-region filaments, we present an intensive study on the formation and eruption of a filament in active region NOAA 12241 during the period from 2014 December 18 to 19. Using observations from the Helioseismic and Magnetic Imager (HMI) vector magnetograms, we investigate the helicity injection rate, Lorentz force, and vertical electric current in the entire region associated with the filament. The helicity injection rate before eruption is found to be larger than that after eruption, while the vertical electric current undergoes an increase at first and then a gradual decrease, similar to what the magnetic flux undergoes. Meanwhile, we find that the right part of the filament is formed by magnetic reconnection between two bundles of magnetic field lines while the left part originated from shearing motion. The interaction of the two parts causes the eruption of this filament. The mean horizontal magnetic fields in the vicinity of the magnetic polarity inversion line (PIL) enhance rapidly during the eruption. Another striking phenomenon, where the vertical electric currents close to the magnetic PIL suddenly expand toward two sides during the eruption, is found. We propose that this fascinating feature is associated with the release of energy during the eruption.

  8. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona (United States)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.


    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  9. On Day-to-Day Variability of Global Lightning Activity as Quantified from Background Schumann Resonance Observations (United States)

    Mushtak, V. C.; Williams, E. R.


    Among the palette of methods (satellite, VLF, ELF) for monitoring global lightning activity, observations of the background Schumann resonances (SR) provide a unique prospect for estimating the integrated activity of global lightning activity in absolute units (coul2 km2/sec). This prospect is ensured by the SR waves' low attenuation, with wavelengths commensurate with the dimensions of dominant regional lightning "chimneys", and by the accumulating methodology for background SR techniques. Another benefit is the reduction of SR measurements into a compact set of resonance characteristics (modal frequencies, intensities, and quality factors). Suggested and tested in numerical simulations by T.R. Madden in the 1960s, the idea to invert the SR characteristics for the global lightning source has been farther developed, statistically substantiated, and practically realized here on the basis of the computing power and the quantity of experimental material way beyond what the SR pioneers had at their disposal. The critical issue of the quality of the input SR parameters is addressed by implementing a statistically substantiated sanitizing procedure to dispose of the fragments of the observed time series containing unrepresentative elements - local interference of various origin and strong ELF transients originating outside the major "chimneys" represented in the source model. As a result of preliminary research, a universal empirical sanitizing criterion has been established. Due to the fact that the actual observations have been collected from a set of individually organized ELF stations with various equipment sets and calibration techniques, the relative parameters in both input (the intensities) and output (the "chimney" activities) are being used as far as possible in the inversion process to avoid instabilities caused by calibration inconsistencies. The absolute regional activities - and so the sought for global activity in absolute units - is determined in the

  10. Neutral and Ionized Hydrides in Star-forming Regions. Observations with Herschel/HIFI

    DEFF Research Database (Denmark)

    O. Benz, Arnold; Bruderer, Simon; F. van Dishoeck, Ewine


    of OH, CH, NH, SH and their ions OH+, CH+, NH+, SH+, H2O+, and H3O+ were observed in star-forming regions by the HIFI spectrometer onboard the Herschel Space Observatory. Molecular column densities are derived from observed ground-state lines, models, or rotational diagrams. We report here on two...

  11. CO J=2-1 observations toward southern HII regions

    International Nuclear Information System (INIS)

    Martin, R.N.; Ruf, K.; Wilson, T.L.; Zimmermann, P.; Emerson, D.T.


    A spectral line receiver system developed at the Max-Planck-Institut fuer Radioastronomie in Bonn was installed on the ESO 3.6-m and 1-m telescopes in July 1981. The cooled mixer front end gave DSB receiver temperatures of 260-600 K at 230 GHz. The spectrometer was a 256 x 1 MHz filterbank. The authors have observed the CO 2-1 transition towards 42 positions corresponding to the brightest southern HII regions. (Auth.)

  12. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project (United States)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.


    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  13. Determinants of Foreign Technological Activity in German Regions

    DEFF Research Database (Denmark)

    Dettmann, Eva; Lacasa, Iciar Dominguez; Günther, Jutta

    This paper analyses the determinants of spatial distribution of foreign technological activity across 96 German regions (1996-2009). We identify foreign inventive activity by applying the ‘cross-border-ownership concept’ to transnational patent applications. The descriptive analysis shows...

  14. Linear time series modeling of GPS-derived TEC observations over the Indo-Thailand region (United States)

    Suraj, Puram Sai; Kumar Dabbakuti, J. R. K.; Chowdhary, V. Rajesh; Tripathi, Nitin K.; Ratnam, D. Venkata


    This paper proposes a linear time series model to represent the climatology of the ionosphere and to investigate the characteristics of hourly averaged total electron content (TEC). The GPS-TEC observation data at the Bengaluru international global navigation satellite system (GNSS) service (IGS) station (geographic 13.02°N , 77.57°E ; geomagnetic latitude 4.4°N ) have been utilized for processing the TEC data during an extended period (2009-2016) in the 24{th} solar cycle. Solar flux F10.7p index, geomagnetic Ap index, and periodic oscillation factors have been considered to construct a linear TEC model. It is evident from the results that solar activity effect on TEC is high. It reaches the maximum value (˜ 40 TECU) during the high solar activity (HSA) year (2014) and minimum value (˜ 15 TECU) during the low solar activity (LSA) year (2009). The larger magnitudes of semiannual variations are observed during the HSA periods. The geomagnetic effect on TEC is relatively low, with the highest being ˜ 4 TECU (March 2015). The magnitude of periodic variations can be seen more significantly during HSA periods (2013-2015) and less during LSA periods (2009-2011). The correlation coefficient of 0.89 between the observations and model-based estimations has been found. The RMSE between the observed TEC and model TEC values is 4.0 TECU (linear model) and 4.21 TECU (IRI2016 Model). Further, the linear TEC model has been validated at different latitudes over the northern low-latitude region. The solar component (F10.7p index) value decreases with an increase in latitude. The magnitudes of the periodic component become less significant with the increase in latitude. The influence of geomagnetic component becomes less significant at Lucknow GNSS station (26.76°N, 80.88°E) when compared to other GNSS stations. The hourly averaged TEC values have been considered and ionospheric features are well recovered with linear TEC model.


    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat


    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges, sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.

  16. E-region decameter-scale plasma waves observed by the dual TIGER HF radars

    Directory of Open Access Journals (Sweden)

    B. A. Carter


    Full Text Available The dual Tasman International Geospace Environment Radar (TIGER HF radars regularly observe E-region echoes at sub-auroral magnetic latitudes 58°–60° S including during geomagnetic storms. We present a statistical analysis of E-region backscatter observed in a period of ~2 years (late 2004–2006 by the TIGER Bruny Island and Unwin HF radars, with particular emphasis on storm-time backscatter. It is found that the HF echoes normally form a 300-km-wide band at ranges 225–540 km. In the evening sector during geomagnetic storms, however, the HF echoes form a curved band joining to the F-region band at ~700 km. The curved band lies close to the locations where the geometric aspect angle is zero, implying little to no refraction during geomagnetic storms, which is an opposite result to what has been reported in the past. The echo occurrence, Doppler velocity, and spectral width of the HF echoes are examined in order to determine whether new HF echo types are observed at sub-auroral latitudes, particularly during geomagnetic storms. The datasets of both TIGER radars are found to be dominated by low-velocity echoes. A separate population of storm-time echoes is also identified within the datasets of both radars with most of these echoes showing similar characteristics to the low-velocity echo population. The storm-time backscatter observed by the Bruny Island radar, on the other hand, includes near-range echoes (r<405 km that exhibit some characteristics of what has been previously termed the High Aspect angle Irregularity Region (HAIR echoes. We show that these echoes appear to be a storm-time phenomenon and further investigate this population by comparing their Doppler velocity with the simultaneously measured F- and E-region irregularity velocities. It is suggested that the HAIR-like echoes are observed only by HF radars with relatively poor geometric aspect angles when electron density is low and when the electric field is particularly

  17. Regional and national radiation protection activities in Egypt

    International Nuclear Information System (INIS)

    Gomaa, M.A.M.


    Radiation protection activities in Egypt go back to 1957 where the Egyptian Atomic Energy Commission (EAEC) Law was issued. Radiation protection and civil defense department was one of EAEC eighth departments. Ionizing radiation law was issued in 1960 and its executive regulation in 1962. The main aim of the present work is to through some light on the current radiation protection activities in Egypt. This includes not only the role of governmental organizations but also to the non governmental organizations. Currently a new Nuclear Safety law is understudy. Regional activities such as holding the second all African IRPA regional radiation protection congress which was held in April 2007 and national training and workshops are held regularly through EAEA, AAEA and MERRCAC. (author)

  18. Spectrophotometric observations of very low ionization HII regions in the LMC

    International Nuclear Information System (INIS)

    Pena, M.; Ruiz, M.T.; Rubio, M.


    Optical spectrophotometric observations of 17 very low ionization HII regions of the LMC are reported. Physical conditions and chemical composition of these objects are derived from the emission line intensities. The average chemical abundances obtained are: log O/H=8.49+-0.08, log N/H=6.91+-0.07 and log S/H=6.89+-0.10. We do not find evidence of any composition gradient in the LMC. The HII regions in the vicinity of the detected molecular cloud complexes show higher nebular reddening. (Author)

  19. The Solomon Sea eddy activity from a 1/36° regional model (United States)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques


    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is

  20. Associations between initial change in physical activity level and subsequent change in regional body fat distributions. (United States)

    Ezekwe, Kelechi A; Adegboye, Amanda R A; Gamborg, Michael; Heitmann, Berit L


    Few studies have examined which lifestyle factors relate to the development of fat distribution. Therefore, the identification of the determinants of changes in fat deposition is highly relevant. The association between the change in physical activity (PA) and the subsequent changes in regional body fat distributions was examined. In total, 1,236 men and 1,201 women were included at baseline and participated in the Danish MONICA (MONItoring Trends and Determinants in CArdiovascular Disease) study. A questionnaire was used to assess PA at 5 and 11 years after baseline examination, while waist circumference (WC) and hip circumference (HC) were measured at both follow-ups. Among men, WC increased in the constant active group to a lesser extent than in the non-constant active group (3.4 vs. 4.1 cm; p = 0.03) concerning leisure time physical activities (LTPA). A similar pattern was observed for both WC and HC in relation to occupational physical activities (OPA) (p = 0.02). Among women, the results went in the same direction for LTPA, whereas the associations with OPA were in the opposite direction (p = 0.001). LTPA and OPA were associated with reduced subsequent 6-year changes in regional fat distribution for men. For women, no associations were observed in relation to WC; however, OPA seemed to increase HC among women. © 2013 S. Karger GmbH, Freiburg.

  1. Empathy and feedback processing in active and observational learning. (United States)

    Rak, Natalia; Bellebaum, Christian; Thoma, Patrizia


    The feedback-related negativity (FRN) and the P300 have been related to the processing of one's own and other individuals' feedback during both active and observational learning. The aim of the present study was to elucidate the role of trait-empathic responding with regard to the modulation of the neural correlates of observational learning in particular. Thirty-four healthy participants completed an active and an observational learning task. On both tasks, the participants' aim was to maximize their monetary gain by choosing from two stimuli the one that showed the higher probability of reward. Participants gained insight into the stimulus-reward contingencies according to monetary feedback presented after they had made an active choice or by observing the choices of a virtual partner. Participants showed a general improvement in learning performance on both learning tasks. P200, FRN, and P300 amplitudes were larger during active, as compared with observational, learning. Furthermore, nonreward elicited a significantly more negative FRN than did reward in the active learning task, while only a trend was observed for observational learning. Distinct subcomponents of trait cognitive empathy were related to poorer performance and smaller P300 amplitudes for observational learning only. Taken together, both the learning performance and event-related potentials during observational learning are affected by different aspects of trait cognitive empathy, and certain types of observational learning may actually be disrupted by a higher tendency to understand and adopt other people's perspectives.

  2. 3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions

    Directory of Open Access Journals (Sweden)

    Carolina Casadio


    Full Text Available We present total and linearly polarized 3 mm Global mm-VLBI Array (GMVA; mm-VLBI: Very Long Baseline Interferometry observations at millimetre wavelengths images of a sample of blazars and radio galaxies from the VLBA-BU-BLAZAR 7 mm monitoring program designed to probe the innermost regions of active galactic nuclei (AGN jets and locate the sites of gamma-ray emission observed by the Fermi-LAT. The lower opacity at 3 mm and improved angular resolution—on the order of 50 microarcseconds—allow us to distinguish features in the jet not visible in the 7 mm VLBA data. We also compare two different methods used for the calibration of instrumental polarisation and we analyze the resulting images for some of the sources in the sample.

  3. Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun (United States)

    Fursyak, Yu. A.; Abramenko, V. I.


    Part of the "free" magnetic energy associated with electrical current systems in the active region (AR) is released during solar flares. This proposition is widely accepted and it has stimulated interest in detecting electrical currents in active regions. The vertical component of an electric current in the photosphere can be found by observing the transverse magnetic field. At present, however, there are no direct methods for calculating transverse electric currents based on these observations. These calculations require information on the field vector measured simultaneously at several levels in the photosphere, which has not yet been done with solar instrumentation. In this paper we examine an approach to calculating the structure of the square of the density of a transverse electrical current based on a magnetogram of the vertical component of the magnetic field in the AR. Data obtained with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) for the AR of NOAA AR 11283 are used. It is shown that (1) the observed variations in the magnetic field of a sunspot and the proposed estimate of the density of an annular horizontal current around the spot are consistent with Faraday's law and (2) the resulting estimates of the magnitude of the square of the density of the horizontal current {j}_{\\perp}^2 = (0.002- 0.004) A2/m4 are consistent with previously obtained values of the density of a vertical current in the photosphere. Thus, the proposed estimate is physically significant and this method can be used to estimate the density and structure of transverse electrical currents in the photosphere.

  4. Global variation in the long-term seasonal changes observed in ionospheric F region data

    Directory of Open Access Journals (Sweden)

    C. J. Scott


    Full Text Available Long-term variability has previously been observed in the relative magnitude of annual and semi-annual variations in the critical frequency (related to the peak electron concentration of the ionospheric F2 layer (foF2. In this paper we investigate the global patterns in such variability by calculating the time varying power ratio of semi-annual to annual components seen in ionospheric foF2 data sequences from 77 ionospheric monitoring stations around the world. The temporal variation in power ratios observed at each station was then correlated with the same parameter calculated from similar epochs for the Slough/Chilton data set (for which there exists the longest continuous sequence of ionospheric data. This technique reveals strong regional variation in the data, which bears a striking similarity to the regional variation observed in long-term changes to the height of the ionospheric F2 layer. We argue that since both the height and peak density of the ionospheric F2 region are influenced by changes to thermospheric circulation and composition, the observed long-term and regional variability can be explained by such changes. In the absence of long-term measurements of thermospheric composition, detailed modelling work is required to investigate these processes.

  5. Impact of Aerosols on Shortwave and Photosynthetically Active Radiation Balance over Sub-tropical Region in South Asia: Observational and Modeling Approach (United States)

    Subba, T.; Pathak, B.


    The North-East Indian Region (NER) (22-30ºN, 89-98ºE) in south Asia sandwiched between two global biodiversity hotspots namely, Himalaya and Indo-Burma, assumes significance owing to its unique topography with mountains in the north, east and south and densely populated Indo Gangetic plains (IGP) towards the west resulting in complex aerosol system. Multi-year (2010-2014) concurrent measurements of aerosol properties and the shortwave radiation budget are examined over four geographically distinct stations of NER operational under Indian Space Research organization's ARFINET (Aerosol Radiative Forcing over India NETwork). An attempt has been made to lessen the ambiguity of forcing estimation by validating the radiative transfer modelled ARF with the CNR4 net radiometer measured values (r2 0.98). The Normalized Difference Vegetation Index and its dependence on the extinction of the photosynthetically active radiation (PAR) due to aerosol are assessed. The spring time enhancement of aerosols in the column has shown significant surface cooling (ARF = -48 ± 5 Wm-2) over the region, while the very high Black Carbon (BC) mass concentrations near the surface (SSA > 0.8) leads to significant atmospheric warming (ARF = +41 ± 7 Wm-2) in the shortwave range. Radiative forcing estimates reveal that the atmospheric forcing by BC could be as high as +30Wm-2 over the western part, which are significantly higher than the eastern part with a consequent heating rate of 1.5 K day-1 revealing an east-west asymmetry over NER. The impact of BC aerosols on the photosynthetic rate varies among different locations ranging from -5±2 Wm-2 to -25±3 Wm-2. Almost 70% of the total atmospheric shortwave radiative absorption is attributed to just 10% contribution of Black Carbon (BC) to total mass concentration and causes a reduction of more than 30% of PAR reaching the surface over Brahmaputra valley due to direct radiative effect. Comparison of previous and the present study shows highest

  6. Why is observable radio recombination line emission from galactic HII regions always close to LTE

    International Nuclear Information System (INIS)

    Shaver, P.A.


    There is no evidence for significant deviations from LTE in single-dish observations of radio recombination line emission from galactic HII regions. This is in agreement with the known properties of HII regions, particularly their density variations and limited range of excitation parameters; the optimum configuration for strong observable non-LTE effects, low electron density and high emission measure, simply does not exist in galactic HII regions, and the observed lines are emitted under near-LTE conditions. Models of the Orion Nebulae and NGC 6604 are presented which fit all available data and show only weak stimulated emission. It is concluded that reliable electron temperatures can indeed be obtained from straightforward analysis of appropriate radio recombination lines. (orig.)

  7. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer (United States)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.


    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  8. A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014 (United States)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.


    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non­-jet major flare eruptions (X and M class) that made no CME. A multitude of jets occurred from the southeast edge of the active region, and in contrast to the major-­flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from SDO/AIA EUV channels and from Hinode/XRT, and CME observations are from the SOHO/LASCO C2 coronograph. Each jet-­driven CME was relatively slow-­moving (approx. 200 - 300 km/s) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer­-puff" variety, whereby a pre-existing streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-­temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-­producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-­base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.

  9. Continuous High Frequency Activity: A peculiar SEEG pattern related to specific brain regions (United States)

    Melani, Federico; Zelmann, Rina; Mari, Francesco; Gotman, Jean


    Objective While visually marking the high frequency oscillations in the stereo-EEG of epileptic patients, we observed a continuous/semicontinuous activity in the ripple band (80–250 Hz), which we defined continuous High Frequency Activity (HFA). We aim to analyze in all brain regions the occurrence and significance of this particular pattern. Methods Twenty patients implanted in mesial temporal and neocortical areas were studied. One minute of slow-wave sleep was reviewed. The background was classified as continuous/semicontinuous, irregular, or sporadic based on the duration of the fast oscillations. Each channel was classified as inside/outside the seizure onset zone (SOZ) or a lesion. Results The continuous/semicontinuous HFA occurred in 54 of the 790 channels analyzed, with a clearly higher prevalence in hippocampus and occipital lobe. No correlation was found with the SOZ or lesions. In the occipital lobe the continuous/semicontinuous HFA was present independently of whether eyes were open or closed. Conclusions We describe what appears to be a new physiological High Frequency Activity, independent of epileptogenicity, present almost exclusively in the hippocampus and occipital cortex but independent of the alpha rhythm. Significance The continuous HFA may be an intrinsic characteristic of specific brain regions, reflecting a particular type of physiological neuronal activity. PMID:23768436

  10. Asia Section. Regional Activities Division. Paper. (United States)

    International Federation of Library Associations, The Hague (Netherlands).

    Two papers on library and information activities in developing nations, particularly in India and other Asian countries, were presented at the 1983 International Federation of Library Associations (IFLA) conference. In "IFLA in Asia: A Review of the Work of the Regional Section for Asia," Edward Lim Huck Tee (Malaysia) describes the low…

  11. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja


    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity...... in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self...


    International Nuclear Information System (INIS)

    Tarr, Lucas; Longcope, Dana


    The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of ∼8.25 × 10 30 erg over 3 days.

  13. Regional health inequalities: changes observed in Brazil from 2000-2016. (United States)

    Albuquerque, Mariana Vercesi de; Viana, Ana Luiza d'Ávila; Lima, Luciana Dias de; Ferreira, Maria Paula; Fusaro, Edgard Rodrigues; Iozzi, Fabíola Lana


    Advances in reducing poverty and inequalities in the 2000s had a paradoxical effect in Brazil. This article examines how socioeconomic transformations, and the complexity of health services, are expressed in the regions established for planning purposes and the inter-governmental management of the Brazilian Unified Health System. An effort was made to identify and explain differences in the compositions of the 438 existing health regions and their spatial distribution by comparing situations observed in 2016 with those in 2000. Factor analysis and grouping techniques were used to construct a typology in the two years of the series, which was based on a diverse set of secondary data sources. It was found that there was an evolution in terms of income levels and service provision within the health regions, with a significant improvement in the socioeconomic conditions of the population. These results suggest that there was a positive impact from the combination of strategies related to social, economic and regional policies for the promotion of development, which generated more widespread well-being within the affected areas. However, limitations remain regarding the policies implemented for the universalization of the health system.

  14. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    Directory of Open Access Journals (Sweden)

    Michael Villiger

    Full Text Available The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective of a foot kicking a ball. They were instructed to observe-only the action (O, observe and simultaneously imagine performing the action (O-MI, or imitate the action (O-IMIT. We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i combining observation with motor imagery (O-MI enhances activation compared to observation-only (O in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks.

  15. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    International Nuclear Information System (INIS)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.


    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop

  16. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun (United States)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.


    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  17. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun (United States)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.


    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  18. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.


    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission...

  19. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia

    Directory of Open Access Journals (Sweden)

    G. Li


    Full Text Available The dependence of plasma bubble occurrence in the eveningside ionosphere, with magnetic activity during the period years 2001–2004, is studied here based on the TEC observations gathered by ground-based GPS receivers which are located in the equatorial and low-latitude regions in East Asia. The observed plasma bubbles consist of the plasma-bubble events in the equatorial (stations GUAM, PIMO and KAYT, and low-latitude regions (stations WUHN, DAEJ and SHAO. It is shown that most equatorial plasma-bubble events commence at 20:00 LT, and may last for >60 min. The magnetic activity appears to suppress the generation of equatorial plasma bubbles with a time delay of more than 3 h (4–9 h. While in the low-latitude regions, most plasma-bubble events commence at about 23:00 LT and last for <45 min. The best correlation between Kp and low-latitude plasma-bubble occurrence is found with an 8–9 h delay, a weak correlation exists for time delays of 6–7 h. This probably indicates that over 3 h delayed disturbance dynamo electric fields obviously inhibit the development of plasma bubbles in the pre-midnight sector.

  20. IUE observations of the chromospheric activity-age relation in young solar-type stars

    International Nuclear Information System (INIS)

    Simon, T.; Boesgaard, A.M.


    Except for the synoptic observations of the chromospheric Ca II H-K lines by Wilson (1978), in which he sought evidence for magnetic activity cycles, there is still scant data on stellar activity, especially at UV and X-ray wavelengths where 10 5 K TRs and 10 6 - 10 7 K coronae are expected to radiate. This paper presents new UV data, obtained with the IUE spacecraft, for a dozen solar-type stars in the field. The stars are of spectral type F6 V - G1 V; on the basis of their high Li content, they range in age from 0.1 to 2.8 Gyr. The purpose is to study the evolution of TR and chromospheric emission with stellar age, and also the surface distribution of magnetically active regions as revealed by rotational modulation of UV emission line fluxes. (Auth.)

  1. Extreme Trust Region Policy Optimization for Active Object Recognition. (United States)

    Liu, Huaping; Wu, Yupei; Sun, Fuchun; Huaping Liu; Yupei Wu; Fuchun Sun; Sun, Fuchun; Liu, Huaping; Wu, Yupei


    In this brief, we develop a deep reinforcement learning method to actively recognize objects by choosing a sequence of actions for an active camera that helps to discriminate between the objects. The method is realized using trust region policy optimization, in which the policy is realized by an extreme learning machine and, therefore, leads to efficient optimization algorithm. The experimental results on the publicly available data set show the advantages of the developed extreme trust region optimization method.


    International Nuclear Information System (INIS)

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; García, R. A.


    A major flare (of class X3.4) occurred on 2006 December 13 in the active region NOAA 10930. This flare event has remained interesting to solar researchers for studies related to particle acceleration during the flare process and the reconfiguration of magnetic fields as well as fine-scale features in the active region. The energy released during flares is also known to induce acoustic oscillations in the Sun. Here, we analyze the line-of-sight velocity patterns in this active region during the X3.4 flare using the Dopplergrams obtained by the Global Oscillation Network Group (GONG) instrument. We have also analyzed the disk-integrated velocity observations of the Sun obtained by the Global Oscillation at Low Frequency (GOLF) instrument on board the Solar and Heliospheric Observatory spacecraft as well as full-disk collapsed velocity signals from GONG observations during this flare to study any possible connection between the flare-related changes seen in the local and global velocity oscillations in the Sun. We apply wavelet transform to the time series of the localized velocity oscillations as well as the global velocity oscillations in the Sun spanning the flare event. The line-of-sight velocity shows significant enhancement in some localized regions of the penumbra of this active region during the flare. The affected region is seen to be away from the locations of the flare ribbons and the hard X-ray footpoints. The sudden enhancement of this velocity seems to be caused by the Lorentz force driven by the 'magnetic jerk' in the localized penumbral region. Application of wavelet analysis to these flare-induced localized seismic signals shows significant enhancement in the high-frequency domain (5 <ν < 8 mHz) and a feeble enhancement in the p-mode oscillations (2 <ν < 5 mHz) during the flare. On the other hand, the wavelet analysis of GOLF velocity data and the full-disk collapsed GONG velocity data spanning the flare event indicates significant post

  3. Towards transdisciplinarity in Arctic sustainability knowledge co-production: Socially-Oriented Observations as a participatory integrated activity (United States)

    Vlasova, Tatiana; Volkov, Sergey


    The paper is an attempt to tie together main biogeophysical and social science projects under the auspice of interdisciplinary sustainability science development. Special attention is put to the necessity of the transdisciplinary knowledge co-production based on activities and problem-solutions approaches. It puts attention to the role of monitoring activities in sustainability interdisciplinary science and transdisciplinary knowledge evolution in the Arctic. Socially focused monitoring named Socially-Oriented Observations creating a transdisciplinary space is viewed as one of sources of learning and transformations towards sustainability making possible to shape rapid changes happening in the Arctic based on sustainability knowledge co-production. Continuous Socially-Oriented Observations integrating scientific, education and monitoring methods enables to define adaptation and transformation pathways in the Arctic - the most rapidly changing region of our planet. Socially-Oriented Observations are based on the existing and developing interdisciplinary scientific approaches emerged within natural science and social science projects, sustainable development and resilience concepts putting principle attention to building sustainable and resilient socio-ecological systems. It is argued that the Arctic sustainability science is a valuable component of the whole and broader system of the Arctic Sustainability knowledge co-produced with the help of transdisciplinary approaches integrating science, local/traditional knowledge, entrepreneurship, education, decision-making. Socially-Oriented Observations are designed to be a transdisciplinary interactive continuous participatory process empowering deliberate choices of people that can shape the changes and enable transformation towards sustainability. Approaches of Socially-Oriented Observations and methods of implementation that have been developed since the IPY 2007/2008 and being practiced in different regions of the

  4. Computerized classification of suspicious regions in chest radiographs using subregion Hotelling observers

    International Nuclear Information System (INIS)

    Baydush, Alan H.; Catarious, David M. Jr.; Lo, Joseph Y.; Abbey, Craig K.; Floyd, Carey E. Jr.


    We propose to investigate the use of subregion Hotelling observers (SRHOs) in conjunction with perceptrons for the computerized classification of suspicious regions in chest radiographs for being nodules requiring follow up. Previously, 239 regions of interest (ROIs), each containing a suspicious lesion with proven classification, were collected. We chose to investigate the use of SRHOs as part of a multilayer classifier to determine the presence of a nodule. Each SRHO incorporates information about signal, background, and noise correlation for classification. For this study, 225 separate Hotelling observers were set up in a grid across each ROI. Each separate observer discriminates an 8 by 8 pixel area. A round robin sampling scheme was used to generate the 225 features, where each feature is the output of the individual observers. These features were then rank ordered by the magnitude of the weights of a perceptron. Once rank ordered, subsets of increasing number of features were selected to be used in another perceptron. This perceptron was trained to minimize mean squared error and the output was a continuous variable representing the likelihood of the region being a nodule. Performance was evaluated by receiver operating characteristic (ROC) analysis and reported as the area under the curve (A Z ). The classifier was optimized by adding additional features until the A Z declined. The optimized subset of observers then were combined using a third perceptron. A subset of 80 features was selected which gave an A Z of 0.972. Additionally, at 98.6% sensitivity, the classifier had a specificity of 71.3% and increased the positive predictive value from 60.7% to 84.1%. Preliminary results suggest that using SRHOs in combination with perceptrons can provide a successful classification scheme for pulmonary nodules. This approach could be incorporated into a larger computer aided detection system for decreasing false positives

  5. Degradation effects of the active region in UV-C light-emitting diodes (United States)

    Glaab, Johannes; Haefke, Joscha; Ruschel, Jan; Brendel, Moritz; Rass, Jens; Kolbe, Tim; Knauer, Arne; Weyers, Markus; Einfeldt, Sven; Guttmann, Martin; Kuhn, Christian; Enslin, Johannes; Wernicke, Tim; Kneissl, Michael


    An extensive analysis of the degradation characteristics of AlGaN-based ultraviolet light-emitting diodes emitting around 265 nm is presented. The optical power of LEDs stressed at a constant dc current of 100 mA (current density = 67 A/cm2 and heatsink temperature = 20 °C) decreased to about 58% of its initial value after 250 h of operation. The origin of this degradation effect has been studied using capacitance-voltage and photocurrent spectroscopy measurements conducted before and after aging. The overall device capacitance decreased, which indicates a reduction of the net charges within the space-charge region of the pn-junction during operation. In parallel, the photocurrent at excitation energies between 3.8 eV and 4.5 eV and the photocurrent induced by band-to-band absorption in the quantum barriers at 5.25 eV increased during operation. The latter effect can be explained by a reduction of the donor concentration in the active region of the device. This effect could be attributed to the compensation of donors by the activation or diffusion of acceptors, such as magnesium dopants or group-III vacancies, in the pn-junction space-charge region. The results are consistent with the observed reduction in optical power since deep level acceptors can also act as non-radiative recombination centers.

  6. Acute stress evokes sexually dimorphic, stressor-specific patterns of neural activation across multiple limbic brain regions in adult rats. (United States)

    Sood, Ankit; Chaudhari, Karina; Vaidya, Vidita A


    Stress enhances the risk for psychiatric disorders such as anxiety and depression. Stress responses vary across sex and may underlie the heightened vulnerability to psychopathology in females. Here, we examined the influence of acute immobilization stress (AIS) and a two-day short-term forced swim stress (FS) on neural activation in multiple cortical and subcortical brain regions, implicated as targets of stress and in the regulation of neuroendocrine stress responses, in male and female rats using Fos as a neural activity marker. AIS evoked a sex-dependent pattern of neural activation within the cingulate and infralimbic subdivisions of the medial prefrontal cortex (mPFC), lateral septum (LS), habenula, and hippocampal subfields. The degree of neural activation in the mPFC, LS, and habenula was higher in males. Female rats exhibited reduced Fos positive cell numbers in the dentate gyrus hippocampal subfield, an effect not observed in males. We addressed whether the sexually dimorphic neural activation pattern noted following AIS was also observed with the short-term stress of FS. In the paraventricular nucleus of the hypothalamus and the amygdala, FS similar to AIS resulted in robust increases in neural activation in both sexes. The pattern of neural activation evoked by FS was distinct across sexes, with a heightened neural activation noted in the prelimbic mPFC subdivision and hippocampal subfields in females and differed from the pattern noted with AIS. This indicates that the sex differences in neural activation patterns observed within stress-responsive brain regions are dependent on the nature of stressor experience.

  7. A study of solar preflare activity using two-dimensional radio and SMM-XRP observations (United States)

    Kundu, M. R.; Gopalswamy, N.; Saba, J. L. R.; Schmelz, J. T. S.; Strong, K. T.


    A study of type III activity at meter-decameter wavelengths in the preflare phase of the February 3, 1986 flare is presented, using data obtained with the Clark Lake Multifrequency Radioheliograph. This activity is compared with similar type III burst activity during the impulsive phase, and it is found that there is a displacement of burst sources between the onset and end times of the activity. A comparison of this displacement at three frequencies suggests that the type III emitting electrons gain access progressively to diverging and different field lines relative to the initial field lines. The energetics of the type III emitting electrons are inferred from observations and compared with those of the associated hard X-ray emitting electrons. The soft X-ray data from SMM-XRP show enhanced emission measure, density, and temperature in the region associated with the preflare type III activity.

  8. Regional cerebral blood flow of the patients with schizophrenia. A study using 99mTc-ECD SPECT at rest and activation

    International Nuclear Information System (INIS)

    Hu Ping; Wu Kening; Zeng Shiquan; Lin Zengtao; Yu Jinlong


    Regional cerebral blood flow (rCBF) changes of the patients with schizophrenia were observed. 99m Tc-ECD SPECT was performed on 22 patients with schizophrenia and 10 healthy volunteers at rest and activation with a cognitive task: a modified Wisconsin Card Sorting Test. At rest state, only 4 patients have abnormal rCBF pattern: left hemisphere over-perfusion relative to the right. A significant relative activation deficit in the left inferior prefrontal region was revealed in the patients during activation. The patients with schizophrenia may have frontal lobe dysfunction

  9. A magnetic bald-patch flare in solar active region 11117 (United States)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang


    With SDO observations and a data-constrained magnetohydrodynamics (MHD) model, we identify a confined multi-ribbon flare that occurred on 2010 October 25 in solar active region 11117 as a magnetic bald patch (BP) flare with strong evidence. From the photospheric magnetic field observed by SDO/HMI, we find there are indeed magnetic BPs on the polarity inversion lines (PILs) which match parts of the flare ribbons. From the 3D coronal magnetic field derived from an MHD relaxation model constrained by the vector magnetograms, we find strikingly good agreement of the BP separatrix surface (BPSS) footpoints with the flare ribbons, and the BPSS itself with the hot flaring loop system. Moreover, the triggering of the BP flare can be attributed to a small flux emergence under the lobe of the BPSS, and the relevant change of coronal magnetic field through the flare is reproduced well by the pre-flare and post-flare MHD solutions, which match the corresponding pre- and post-flare AIA observations, respectively. Our work contributes to the study of non-typical flares that constitute the majority of solar flares but which cannot be explained by the standard flare model.

  10. [The physical activity level of people working at a regional health office in Lima, Peru]. (United States)

    Sanabria-Rojas, Hernán; Tarqui-Mamani, Carolina; Portugal-Benavides, Walter; Pereyra-Zaldívar, Héctor; Mamani-Castillo, Lorenzo


    Determining the prevalence of physical activity for health workers from a regional health office in Lima; their nutritional status and history of non-communicable diseases is also described. The study was cross-sectional and observations were made between August and November 2012. The study population involved 172 health workers working at a regional health office in Lima (DIRESA) according to the inclusion criteria and their acceptance of the offer to participate. Workers were excluded who had some kind of physical limitation regarding physical exercise. Their physical activity level was determined by using the International Physical Activity Questionnaire (IPAQ) which measures physical activity domains: work, home, transport and leisure. SPSS-19 was used for processed the data and nutritional status was evaluated using the body mass index (BMI), according to WHO classification. 88.0 % of DIRESA workers had a low level of physical activity and 64.0 % were overweight. Among the most common non-communicable diseases, it was found that 4.7 % had diabetes, 15.6 % hypertension, 32.6 % dyslipidaemia and 15.0 % smoked. DIRESA workers had a high prevalence of physical inactivity and excess weight, so it is advisable to implement healthy policies helping to improve their health.

  11. Aspect sensitive E- and F-region SPEAR-enhanced incoherent backscatter observed by the EISCAT Svalbard radar

    Directory of Open Access Journals (Sweden)

    R. S. Dhillon


    Full Text Available Previous studies of the aspect sensitivity of heater-enhanced incoherent radar backscatter in the high-latitude ionosphere have demonstrated the directional dependence of incoherent scatter signatures corresponding to artificially excited electrostatic waves, together with consistent field-aligned signatures that may be related to the presence of artificial field-aligned irregularities. These earlier high-latitude results have provided motivation for repeating the investigation in the different geophysical conditions that obtain in the polar cap ionosphere. The Space Plasma Exploration by Active Radar (SPEAR facility is located within the polar cap and has provided observations of RF-enhanced ion and plasma line spectra recorded by the EISCAT Svalbard UHF incoherent scatter radar system (ESR, which is collocated with SPEAR. In this paper, we present observations of aspect sensitive E- and F-region SPEAR-induced ion and plasma line enhancements that indicate excitation of both the purely growing mode and the parametric decay instability, together with sporadic E-layer results that may indicate the presence of cavitons. We note consistent enhancements from field-aligned, vertical and also from 5° south of field-aligned. We attribute the prevalence of vertical scatter to the importance of the Spitze region, and of that from field-aligned to possible wave/irregularity coupling.

  12. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity (United States)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  13. Active listening in medical consultations: development of the Active Listening Observation Scale (ALOS-global).


    Fassaert, T.; Dulmen, S. van; Schellevis, F.; Bensing, J.


    OBJECTIVE: Active listening is a prerequisite for a successful healthcare encounter, bearing potential therapeutic value especially in clinical situations that require no specific medical intervention. Although generally acknowledged as such, active listening has not been studied in depth. This paper describes the development of the Active Listening Observation Scale (ALOS-global), an observation instrument measuring active listening and its validation in a sample of general practice consulta...

  14. Observation of the activity of selected Oort Cloud comets with perihelia at large distances from the Sun (United States)

    Kulyk, Iryna; Rousselot, Philippe; Korsun, Pavlo


    Many comets exhibit considerable level of activity at large distances from the Sun, where sublimation of crystalline water ice cannot account for observable comae. Different patterns of physical activity already observed at large heliocentric distances may be related to the primordial differences in the composition of comet nuclei. Therefore, monitoring of physical activity in the wide range of heliocentric distances can potentially contribute to understanding of internal structure of comet-like bodies. We have observed ten long periodic comets with orbital perihelia lying beyond the "water ice sublimation zone" to quantify the level of physical activity in the wide range of heliocentric distances. Pre-perihelion observations were made when targets moved between 16.7 and 6.5 au from the Sun; post perihelion activity was monitored between 5.2 and 10.6 au. The bulk of the data were gathered with the 2-m Robotic Liverpool Telescope (Observatorio del Roque de Los Muchachos, La Palma, Spain). Some targets were observed with the 2-m RC Telescope located at Peak Terskol Observatory and the 6-m Telescope of the Special Astrophysical Observatory (Northern Caucasus, Russia). Since most of recently obtained spectra of distant active objects are continuum dominated, we use B, V, R images to estimate dust production rates, an upper limit on nucleus radii, and color indices of near nucleus region. The comets C/2005 L3 (McNaught) and C/2006 S3 (Boattini), which exhibit the considerable level of activity, have been repeatedly observed. This enables us to infer the heliocentric dependence of dust production rates, perihelion brightness asymmetries, and color variations over the comae caused possibly by small changes in dust particle properties.


    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Reep, Jeffrey W. [National Research Council Postdoctoral Fellow, Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Crump, Nicholas A. [Naval Center for Space Technology, Naval Research Laboratory, Washington, DC 20375 (United States); Simões, Paulo J. A. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)


    We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph ( IRIS ) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager provide constraints on the energetic electrons precipitating into the flare footpoints, while observations of the X-Ray Telescope , Atmospheric Imaging Assembly, and Extreme Ultraviolet Imaging Spectrometer (EIS) allow us to measure the temperatures and emission measures from the resulting flare loops. We find clear evidence for heating over an extended period on the spatial scale of a single IRIS pixel. During the impulsive phase of this event, the intensities in each pixel for the Si iv 1402.770 Å, C ii 1334.535 Å, Mg ii 2796.354 Å, and O i 1355.598 Å emission lines are characterized by numerous small-scale bursts typically lasting 60 s or less. Redshifts are observed in Si iv, C ii, and Mg ii during the impulsive phase. Mg ii shows redshifts during the bursts and stationary emission at other times. The Si iv and C ii profiles, in contrast, are observed to be redshifted at all times during the impulsive phase. These persistent redshifts are a challenge for one-dimensional hydrodynamic models, which predict only short-duration downflows in response to impulsive heating. We conjecture that energy is being released on many small-scale filaments with a power-law distribution of heating rates.

  16. Kinematic model of some types of motion of matter in active regions

    International Nuclear Information System (INIS)

    Platov, Yu.V.


    The kinematics of matter motion in variable magnetic fields of active regions on the Sun in the MHD approximation of a strong field and cold plasma is investigated. It is shown that the variation of sunspot magnetic moments lead to the development of different active phenomena in the solar atmosphere. The development of such phenomena at first can occur at the phase of active region growth, when new sunspots together with developed sunspots emerge in an active region or relative motions take place in a sunspot group

  17. The autoradiographic observation of neutron activated plant samples

    International Nuclear Information System (INIS)

    Koyama, Motoko; Tanizaki, Yoshiyuki


    Imaging Plate (IP) is a radiography apparatus of applying photostimulable luminescence. IP has some advantages in comparison with X-ray film, for example, high sensitivity, wide latitude and high fidelity for radiations. The high sensitivity of IP makes it possible to observe the distribution of short-lived nuclides. We obtained autoradiographs of Azuki bean cuttings. In the basal region of Azuki bean cuttings, the intensity of autoradiographs of indole acetic acid (IAA)-treated samples were higher than that of water- and Gibbereline(GA)-treated ones. The high intensity parts of IAA-treated cuttings were extended upwards. The high intensive imaging of basal region treated in IAA indicated that high elemental concentrations were in existence for adventitious root formations. The measurement results by γ-ray spectrometry showed that the Ca content in the Azuki bean cuttings basal region increased in IAA treatment. It seems that the cell division for adventitious root formation needs Ca. In Azuki bean epicotyls, Ca content showed an increase to basal region, though Mg content increased to upper region. (author)

  18. Activization of the state policy on euro-regional cooperation in the sphere of the interstate regional governance

    Directory of Open Access Journals (Sweden)

    V. I. Pak


    Research objective is the justification of the need of activization of the state policy on Euro-regional cooperation in the sphere of the interstate regional governance. During the research it is recognized that the realization of the state policy on the basis of the considered principles, tools, functions, factors and methods has to execute a main objective of the interstate regional control which is exercised in the sphere of Euro-regional cooperation and to promote adjustment of close mutually beneficial relations of Ukraine and neighboring states, to increase competitiveness of the Ukrainian territories and the most effective use of capacity of the Ukrainian regions in the course of activity of Euro-regions. Finally, such state policy has to be focused on the maintenance of the sufficient standard of living of the population, on ensuring integrity and unity of the social and economic space of the country, on formation of the conditions of sustainable and industrial and innovative development of regions, which will provide its harmonious integration into the European environment.

  19. Regional Scaling of Airborne Eddy Covariance Flux Observation (United States)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.


    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  20. Simultaneous observations of ESF irregularities over Indian region using radar and GPS

    Directory of Open Access Journals (Sweden)

    S. Sripathi


    Full Text Available In this paper, we present simultaneous observations of temporal and spatial variability of total electron content (TEC and GPS amplitude scintillations on L1 frequency (1.575 GHz during the time of equatorial spread F (ESF while the MST radar (53 MHz located at Gadanki (13.5° N, 79.2° E, Dip latitude 6.3° N, a low latitude station, made simultaneous observations. In particular, the latitudinal and longitudinal extent of TEC and L-band scintillations was studied in the Indian region for different types of ESF structures observed using the MST radar during the low solar activity period of 2004 and 2005. Simultaneous radar and GPS observations during severe ESF events in the pre-midnight hour reveal that significant GPS L band scintillations, depletions in TEC, and the double derivative of the TEC index (DROTI, which is a measure of fluctuations in TEC, obtained at low latitudes coincide with the appearance of radar echoes at Gadanki. As expected, when the irregularities reach higher altitudes as seen in the radar map during pre-midnight periods, strong scintillations on an L-band signal are observed at higher latitudes. Conversely, when radar echoes are confined to only lower altitudes, weak scintillations are found and their latitudinal extent is small. During magnetically quiet periods, we have recorded plume type radar echoes during a post-midnight period that is devoid of L-band scintillations. Using spectral slopes and cross-correlation index of the VHF scintillation observations, we suggest that these irregularities could be "dead" or "fossil" bubbles which are just drifting in from west. This scenario is consistent with the observations where suppression of pre-reversal enhancement (PRE in the eastward electric field is indicated by ionosonde observations of the height of equatorial F layer and also occurrence of low spectral width in the radar observations relative to pre-midnight period. However, absence of L-band scintillations during

  1. Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron. II. Observations of 3C 273 at minimum activity (United States)

    Bruni, G.; Gómez, J. L.; Casadio, C.; Lobanov, A.; Kovalev, Y. Y.; Sokolovsky, K. V.; Lisakov, M. M.; Bach, U.; Marscher, A.; Jorstad, S.; Anderson, J. M.; Krichbaum, T. P.; Savolainen, T.; Vega-García, L.; Fuentes, A.; Zensus, J. A.; Alberdi, A.; Lee, S.-S.; Lu, R.-S.; Pérez-Torres, M.; Ros, E.


    Context. RadioAstron is a 10 m orbiting radio telescope mounted on the Spektr-R satellite, launched in 2011, performing Space Very Long Baseline Interferometry (SVLBI) observations supported by a global ground array of radio telescopes. With an apogee of 350 000 km, it is offering for the first time the possibility to perform μas-resolution imaging in the cm-band. Aims: The RadioAstron active galactic nuclei (AGN) polarization Key Science Project (KSP) aims at exploiting the unprecedented angular resolution provided by RadioAstron to study jet launching/collimation and magnetic-field configuration in AGN jets. The targets of our KSP are some of the most powerful blazars in the sky. Methods: We present observations at 22 GHz of 3C 273, performed in 2014, designed to reach a maximum baseline of approximately nine Earth diameters. Reaching an angular resolution of 0.3 mas, we study a particularly low-activity state of the source, and estimate the nuclear region brightness temperature, comparing with the extreme one detected one year before during the RadioAstron early science period. We also make use of the VLBA-BU-BLAZAR survey data, at 43 GHz, to study the kinematics of the jet in a 1.5-yr time window. Results: We find that the nuclear brightness temperature is two orders of magnitude lower than the exceptionally high value detected in 2013 with RadioAstron at the same frequency (1.4 × 1013 K, source-frame), and even one order of magnitude lower than the equipartition value. The kinematics analysis at 43 GHz shows that a new component was ejected 2 months after the 2013 epoch, visible also in our 22 GHz map presented here. Consequently this was located upstream of the core during the brightness temperature peak. Fermi-LAT observations for the period 2010-2014 do not show any γ-ray flare in conjunction with the passage of the new component by the core at 43 GHz. Conclusions: These observations confirm that the previously detected extreme brightness temperature in

  2. Spectroscopic observations of Nova Cygni 1975: The coronal line region revisited

    International Nuclear Information System (INIS)

    Ferland, G.J.; Lambert, D.L.; Woodman, J.H.


    A synopsis of the McDonald Observatory spectrophotometric observations of Nova Cyg 1975 (V1500 Cyg) is presented. We present these data in a form in which they can be readily accessed in the future, and also study the continous spectrum during the early nebular phase. We show that (1) the remnant probably maintained a luminosity at or above the Eddington limit for at least a year after outburst, (2) free-free emission from the coronal line region made a significant contribution to the optical continuum, and (3) the coronal line region was probably a significant source of ionizing radiation. The energetics of this nova appear to be dominated by the lift-off energy from the white dwarf and radiation from the coronal line region. Thus the light curve of Nova Cyg may tell more about the cooling of the coronal line region than about the decline of the central object. In appendices we discuss the argon abundance of Nova Cyg (less than 8 times solar) and describe how to obtain copies of the McDonald nova data

  3. Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph (United States)

    Yang, Zihao; Tian, Hui; Peter, Hardi; Su, Yang; Samanta, Tanmoy; Zhang, Jingwen; Chen, Yajie


    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hr. Doppler velocities are derived through a single Gaussian fit to the Mg II k 2796 Å and Si IV 1393 Å line profiles. We find coherent and stable redshifts and blueshifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 104 K–105 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.

  4. Space observations for global and regional studies of the biosphere (United States)

    Cihlar, J.; Li, Z.; Chen, J.; Sellers, P.; Hall, F.


    The capability to make space-based measurements of Earth at high spatial and temporal resolutions, which would not otherwise be economically or practically feasible, became available just in time to contribute to scientific understanding of the interactive processes governing the total Earth system. Such understanding has now become essential in order to take practical steps which would counteract or mitigate the pervasive impact of the growing human population on the future habitability of the Earth. The paper reviews the rationale for using space observations for studies of climate and terrestrial ecosystems at global and regional scales, as well as the requirements for such observations for studies of climate and ecosystem dynamics. The present status of these developments is reported along with initiatives under way to advance the use of satellite observations for Earth system studies. The most important contribution of space observations is the provision of physical or biophysical parameters for models representing various components of the Earth system. Examples of such parameters are given for climatic and ecosystem studies.

  5. Waste production and regional growth of marine activities an econometric model. (United States)

    Bramati, Maria Caterina


    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. NGVLA Observations of Dense Gas Filaments in Star-Forming Regions (United States)

    Di Francesco, James; Chen, Mike; Keown, Jared; GAS Team, KEYSTONE Team


    Recent observations of continuum emission from nearby star-forming regions with Herschel and JCMT have revealed that filaments are ubiquitous structures within molecular clouds. Such filaments appear to be intimately connected to star formation, with those having column densities of AV > 8 hosting the majority of prestellar cores and young protostars in clouds. Indeed, this “threshold” can be explained simply as the result of supercritical cylinder fragmentation. How specifically star-forming filaments form in molecular clouds, however, remains unclear, though gravity and turbulence are likely involved. Observations of their kinematics are needed to understand how mass flows both onto and through these filaments. We show here results from two recent surveys, the Green Bank Ammonia Survey (GAS) and the K-band Examinations of Young Stellar Object Natal Environments (KEYSTONE) that have used the Green Bank Telescope’s K-band Focal Plane Array instrument to map NH3 (1,1) emission from dense gas in nearby star-forming regions. Data from both surveys show that NH3 emission traces extremely well the high column density gas across these star-forming regions. In particular, the GAS results for NGC 1333 show NH3-based velocity gradients either predominantly parallel or perpendicular to the filament spines. Though the GAS and KEYSTONE data are vital for probing filaments, higher resolutions than possible with the GBT alone are needed to examine the kinematic patterns on the 0.1-pc scales of star-forming cores within filaments. We describe how the Next Generation Very Large Array (NGVLA) will uniquely provide the key wide-field data of high sensitivity needed to explore how ambient gas in molecular clouds forms filaments that evolve toward star formation.

  7. A classification of spectral populations observed in HF radar backscatter from the E region auroral electrojets

    Directory of Open Access Journals (Sweden)

    S. E. Milan


    Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.Key words. Ionosphere (ionospheric irregularities

  8. Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiqing; Li, Yuxin; Yin, Bo; Tang, Weijun; Yu, Xiangrong; Geng, Daoying [Huashan Hospital, Department of Radiology, Fudan University, Shanghai (China); Chen, Yan [Fudan University, Department of Neurology, Huashan Hospital, Shanghai (China); Huang, Weiyuan [People' s Hospital of Hainan Province, Department of Radiology, Haikou, Hainan Province (China); Zhang, Biyun [Nanjing University of Traditional Chinese Medicine, Department of radiotherapy, Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)


    To investigate functional cerebral abnormalities in patients with amyotrophic lateral sclerosis (ALS) using functional magnetic resonance imaging (fMRI) during action observation. Thirty patients with ALS and 30 matched healthy controls underwent fMRI with an experimental paradigm while observing a video of repetitive flexion-extension of the fingers at three frequency levels or three complexity levels, alternated with periods of a static hand. A parametric analysis was applied to determine the effects of each of the two factors. Action observation activated similar neural networks as the research on execution of action in the ALS patients and healthy subjects in several brain regions related to the mirror-neuron system (MNS). In the ALS patients, in particular, the dorsal lateral premotor cortex (dPMC), inferior parietal gyrus (IPG), and SMA, were more activated compared with the activation in the controls. Increased activation within the primary motor cortex (M1), dPMC, inferior frontal gyrus (IFG), and superior parietal gyrus (SPG) mainly correlated with hand movement frequency/complexity in the videos in the patients compared with controls. The findings indicated an ongoing compensatory process occurring within the higher order motor-processing system of ALS patients, likely to overcome the loss of function. (orig.)

  9. Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study

    International Nuclear Information System (INIS)

    Li, Haiqing; Li, Yuxin; Yin, Bo; Tang, Weijun; Yu, Xiangrong; Geng, Daoying; Chen, Yan; Huang, Weiyuan; Zhang, Biyun


    To investigate functional cerebral abnormalities in patients with amyotrophic lateral sclerosis (ALS) using functional magnetic resonance imaging (fMRI) during action observation. Thirty patients with ALS and 30 matched healthy controls underwent fMRI with an experimental paradigm while observing a video of repetitive flexion-extension of the fingers at three frequency levels or three complexity levels, alternated with periods of a static hand. A parametric analysis was applied to determine the effects of each of the two factors. Action observation activated similar neural networks as the research on execution of action in the ALS patients and healthy subjects in several brain regions related to the mirror-neuron system (MNS). In the ALS patients, in particular, the dorsal lateral premotor cortex (dPMC), inferior parietal gyrus (IPG), and SMA, were more activated compared with the activation in the controls. Increased activation within the primary motor cortex (M1), dPMC, inferior frontal gyrus (IFG), and superior parietal gyrus (SPG) mainly correlated with hand movement frequency/complexity in the videos in the patients compared with controls. The findings indicated an ongoing compensatory process occurring within the higher order motor-processing system of ALS patients, likely to overcome the loss of function. (orig.)

  10. Radon variations in active volcanoes and in regions with high seismicity: internal and external factors

    International Nuclear Information System (INIS)

    Segovia, N.; Cruz-Reyna, S. De la; Mena, M.


    The results of 4 years of observations of radon concentrations in soils of active volcanoes of Costa Rica and a highly seismic region in Mexico are discussed. A distinction is made between the influences of external (mostly meteorological) and internal (magmatic or tectonic) factors on the variation in radon levels. The geological meaning of the radon data can be thus enhanced if the external factors are excluded. (author)

  11. Solar activity effects in the ionospheric D region

    Directory of Open Access Journals (Sweden)

    A. D. Danilov


    Full Text Available Variations in the D-region electron concentration within the solar activity cycle are considered. It is demonstrated that conclusions of various authors, who have analyzed various sets of experimental data on [e], differ significantly. The most reliable seem to be the conclusions based on analysis of the [e] measurements carried out by the Faraday rotation method and on the theoretical concepts on the D-region photochemistry. Possible QBO effects in the relation of [e] to solar activity are considered and an assumption is made that such effects may be the reason for the aforementioned disagreement in conclusions on the [e] relation to solar indices.Key words. Atmospheric composition and structure · Ion chemistry of the atmosphere · Middle atmosphere

  12. Waste production and regional growth of marine activities an econometric model

    International Nuclear Information System (INIS)

    Bramati, Maria Caterina


    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. - Highlights: • We use an econometric model as a tool for assessing the effects of regional policies on the development of economic activities related to the use of the sea and on the impact on the marine environment. • Through scenario simulation we provide strategic guidelines for policy makers and economic planners • The model features feedback effects of economic and demographic expansion on the pollution of coastal areas.

  13. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam


    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  14. Atmospheric aerosol layers over Bangkok Metropolitan Region from CALIPSO observations (United States)

    Bridhikitti, Arika


    Previous studies suggested that aerosol optical depth (AOD) from the Earth Observing System satellite retrievals could be used for inference of ground-level air quality in various locations. This application may be appropriate if pollution in elevated atmospheric layers is insignificant. This study investigated the significance of elevated air pollution layers over the Bangkok Metropolitan Region (BMR) from all available aerosol layer scenes taken from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for years 2007 to 2011. The results show that biomass burning smoke layers alone were the most frequently observed. The smoke layers accounted for high AOD variations and increased AOD levels. In the dry seasons, the smoke layers alone with high AOD levels were likely brought to the BMR via northeasterly to easterly prevailing winds and found at altitudes above the typical BMR mixing heights of approximately 0.7 to 1.5 km. The smoke should be attributed to biomass burning emissions outside the BMR.

  15. Radio observations of the CMa OB1 H II regions

    International Nuclear Information System (INIS)

    Gaylard, M.J.; Kemball, A.J.


    A sensitive 10 0 x 15 0 13-cm map made of the CMa OB1 H II regions' radio emission shows a strong similarity to Hα emission photographs. Sharpless 296 is shown to consist of a prominent central and western arc completed by a weaker southern loop, and with a faint northern bar. The emission is thermal, superimposed over a predominantly non-thermal background. The H142α recombination line has been detected at eight positions in S296, and in S292 and S297. The average electron temperature in S296 is 6900 +- 1300 K. The UV fluxes from the CMa OB1 stars account for the observed emission measures of the H II regions. The H142α 1sr velocities indicate that the ionized material is in contact with the molecular clouds. (author)

  16. Activity of the hypoxia-activated pro-drug TH-302 in hypoxic and perivascular regions of solid tumors and its potential to enhance therapeutic effects of chemotherapy. (United States)

    Saggar, Jasdeep K; Tannock, Ian F


    Many chemotherapy drugs have poor therapeutic activity in regions distant from tumor blood vessels because of poor tissue penetration and low cytotoxic activity against slowly-proliferating cells. The hypoxia-activated pro-drug TH-302 may have selective toxicity for hypoxic and neighboring cells in tumors. Here we characterize the spatial distribution and ability of TH-302 to selectively target hypoxic regions and complement the effect of doxorubicin and docetaxel by modifying biomarker distribution. Athymic nude mice bearing human breast MCF-7 or prostate PC-3 tumors were treated with doxorubicin or docetaxel respectively and TH-302 alone or in combination. Biomarkers of drug effect including γH2aX (a marker of DNA damage), cleaved caspase-3 or -6 (markers of apoptosis) and reduction in Ki-67 (a marker of cell proliferation) were quantified in tumor sections in relation to functional blood vessels (recognized by DiOC7) and hypoxia (recognized by EF5) using immunohistochemistry. γH2aX expression at 10 min and cleaved caspase-3 or -6 at 24 hr after doxorubicin or docetaxel decreased with increasing distance from tumor blood vessels, with minimal expression in hypoxic regions; maximum reduction in Ki67 levels was observed in regions closest to vasculature at 24 hr. TH-302 induced maximal cell damage in hypoxic and neighboring regions, but was also active in tumor regions closer to blood vessels. TH-302 given 4 hr before doxorubicin or docetaxel increased DNA damage and apoptosis throughout the tumor compared to chemotherapy alone. When given with doxorubicin or docetaxel, TH-302 complements and enhances anticancer effects in both perivascular and hypoxic regions but also increases toxicity. © 2013 UICC.

  17. Relation of flare activity to the approach and separation of sunspots in an active region and to its magnetic properties

    International Nuclear Information System (INIS)

    Markova, E.


    The relation between the flare activity of active regions within the scope of a large complex and the magnetic gradients of these active regions and their daily variations is investigated in the interval of the exceptionally high flare activity occurring in June 1970. New indices, characterizing the active region, were defined, e.g., the instantaneous sunspot-area density and the instantaneous sunspot-number density. These indices were determined on the basis of measurements of the surface containing all sunspots of the complex of active regions enclosed by an envelope. An attempt was made to substitute the surface in the relation for the individual indices by distance. The daily variations of these indices were again compared with the flare activity and some mutual relations were derived. (author)

  18. Physical activity and associated socio-demographic factors in adolescents from the eastern region of Poland (United States)

    Wasilewska, Małgorzata; Bergier, Józef

    The introduction and maintenance of healthy habits in the field of physical activity at the early stage of life is particularly important for public health. With increasing of public awareness in physical activity, researchers are increasingly questioning its determinants in different age groups. In this paper we focus on variables such as age, sex and place of residence. To determine what selected socio-demographic factors influence the level of physical activity of school youth from the eastern region of Poland in different domains of daily life. A random sample of 916 Polish school youth from Secondary Schools from Eastern Region of Poland aged 16-18 was interviewed in spring 2016 by diagnostic survey method with the use of the official Polish long version of the International Physical Activity Questionnaire (IPAQ). Analysing the relationship between gender and the level of physical activity statistically significant differences were found in all domains in favour of boys. The level of total physical activity in girls was 5345.5 MET-min./week, whereas in boys – 6556.6 MET-min./week. In the area of total physical activity, the highest values were observed in pupils from small towns and villages, with lower values in the youth living in large and medium-sized cities. When the relationship of age with the level of physical activity in particular domains was examined, only the activity in the work/ school domain (p = 0.0129) spoke in favour of the youngest pupils (2578.7 MET-min./week) when compared to the oldest ones (2226.4 MET-min./week). The level of physical activity in young people from the Eastern region of Poland is decreasing with age, both in girls and boys. It is therefore important, especially for the group emerging adulthood, to offer a wide variety of updated, involving, age and gender-oriented school physical activity classes that could be easily practised outside the school environment to improve the level of physical activity in leisure domain

  19. The Location of ICT activities in EU regions. Implications for regional policies

    Directory of Open Access Journals (Sweden)

    Salvador Barrios


    Full Text Available The location of ICT producing industries does matter for global competitivenessand long-run growth potential. For instance, the differing contribution ofICT to economic growth between the US and the EU is often mentioned as one of themain cause explaining the diverging growth performance of these two areas since themid-1990s. In turn, since the mid-1990s, countries with especially dynamic economicgrowth have tended to be highly specialized in ICT-producing and ICT-using industries,see van Ark and Inkaar (2005. More generally, ICT producing sectors, tendto promote technological change and innovative capability which are seen to be at thecore of economic growth and competitiveness. When considering the EU economy,ICT industries appear to be concentrated in a limited number of regions, see Koski etal. (2002 for empirical evidence. Afirst objective of the present paper is to documentthe location of ICT producing industries in European regions in order to map existingEU clusters as well as to analyze recent changes in these industries using recent dataon employment and firm location, especially in relation to the EU enlargement thathas taken place in May 2004. The location of the ICT-producing sectors is not the endof the story however. A crucial aspect concerns the nature of activities that are beingundertaken in different regions. Importantly, ICT industries do have different characteristicsin terms of human capital, skill requirement, and knowledge content. In particular,because of the positive association between human capital, knowledge andlong-run growth, it is important to analyze to what extent EU regional ICT clustersdiffer in according to these characteristics. The second question addressed in the paperconcerns the nature of ICT activities undertaken in EU regions. Finally, the paperprovides econometric estimates of the location of firms in ICT industries across EUregions. The paper considers more specifically the case of multinationals

  20. Organizational-economic maintenance of innovation activity in the region: comparative assessment

    Directory of Open Access Journals (Sweden)

    Nadezhda Igorevna Antipina


    Full Text Available The article proposes the approach to evaluate the organizational-economic maintenance of innovation activity in the regions in quantitative and qualitative indicators, as well as the method to calculate the assessment of regulatory support of this activity. It justifies the author’s approach of comparative efficiency evaluation of innovation legislation and regions’ innovation development level. The article gives the qualitative estimation of regulatory support of innovation development in the regions that are innovation leaders. It singles out key directions to develop regulatory support of innovation activity, which encourage RF subjects’ innovation activity

  1. A classification of spectral populations observed in HF radar backscatter from the E region auroral electrojets

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.

    Key words. Ionosphere (ionospheric irregularities

  2. VizieR Online Data Catalog: Radio observations of Galactic WISE HII regions (Anderson+, 2015) (United States)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, D. S.; Wenger, T. V.; Cunningham, V.


    We draw our targets from the MIR objects in the WISE catalog of Anderson+, 2014, J/ApJS/212/1. We also include in our sample Sharpless H II regions (Sharpless 1959, VII/20). See section 2 for further details. Our observations were made with the GBT 100m telescope from 2012 July through 2014 August. There are seven radio recombination lines (RRLs) that can be cleanly observed simultaneously with the GBT in the X-band: H87α to H93α. We average these seven RRLs (each at two orthogonal polarizations) to create a single average RRL spectrum. We followed the same GBT observational procedure as in the original HRDS (Green Bank Telescope H II Region Discovery Survey (GBT HRDS; Bania et al. 2010ApJ...718L.106B). (3 data files).

  3. Active listening in medical consultations: development of the Active Listening Observation Scale (ALOS-global). (United States)

    Fassaert, Thijs; van Dulmen, Sandra; Schellevis, François; Bensing, Jozien


    Active listening is a prerequisite for a successful healthcare encounter, bearing potential therapeutic value especially in clinical situations that require no specific medical intervention. Although generally acknowledged as such, active listening has not been studied in depth. This paper describes the development of the Active Listening Observation Scale (ALOS-global), an observation instrument measuring active listening and its validation in a sample of general practice consultations for minor ailments. Five hundred and twenty-four videotaped general practice consultations involving minor ailments were observed with the ALOS-global. Hypotheses were tested to determine validity, incorporating patients' perception of GPs' affective performance, GPs' verbal attention, patients' self-reported anxiety level and gender differences. The final 7-item ALOS-global had acceptable inter- and intra-observer agreement. Factor analysis revealed one homogeneous dimension. The scalescore was positively related to verbal attention measured by RIAS, to patients' perception of GPs' performance and to their pre-visit anxiety level. Female GPs received higher active listening scores. The results of this study are promising concerning the psychometric properties of the ALOS-global. More research is needed to confirm these preliminary findings. After establishing how active listening differentiates between health professionals, the ALOS-global may become a valuable tool in feedback and training aimed at increasing listening skills.

  4. On the Reconstruction of the Convection Pattern Below an Active Region of Solar Corona

    International Nuclear Information System (INIS)

    Pirot, Dorian; Gaudet, Jonathan; Vincent, Alain


    In order to better understand magneto-convective patterns and flux emergence, we use the Nudging Back and Forth, a data assimilation method with an anelastic convection model to reconstruct the convection zone below a solar active region from observed solar surface magnetograms. To mimic photosphere, vector magnetograms are computed using force free hypothesis. We find that the observed arcade system of AR9077-20000714 ( t he slinky ) of magnetic lines is actually formed by Ω and U loops generated in the convection zone. We generate temperature maps at top of the convective zone and find that high magnetic fields on either sides of the neutral line produce a local cooling by impeding the overturning motions.

  5. X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies

    International Nuclear Information System (INIS)

    Weisheit, J.C.; Shields, G.A.; Tarter, C.B.


    Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10 4 K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated Lα/Hα line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/Hα ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped Hα photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(Hα) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations

  6. Comprehensive Assessment of Integration Activity of Business Structures in Russian Regions

    Directory of Open Access Journals (Sweden)

    Mariya Gennad’evna Karelina


    Full Text Available In the context of economic sanctions and growing international isolation, the research into regional differences in integration development acquires special relevance for Russia; this fact determines the need for a comprehensive assessment of integration activity of business structures in Russian regions. The diversity of approaches to the study of problems and prospects of economic integration and the current debate about the role of integration processes in the development of regional economies determined a comprehensive approach to the concepts of “integration” and “integration activity” in order to create objective prerequisites for analyzing integration activity of business structures in the regions of Russia. The information base of the research is the data of Russian information and analytical agencies. The tools used in the research include methods for analyzing structural changes, methods for analyzing economic differentiation and concentration, nonparametric statistics methods, and econometric analysis methods. The first part of the paper shows that socio-economic development in constituent entities of Russia is closely connected with the operation of integrated business structures located on their territory. Having studied the structure and dynamics of integration activity, we reveal the growing heterogeneity of integration activity of business structures in Russian regions. The hypothesis about significant divergence of mergers and acquisitions for corporate structures in Russian regions was confirmed by high values of the Gini coefficient, the Herfindahl index and the decile differentiation coefficient. The second part of the paper contains a comparative analysis and proposes an econometric approach to the measurement of integration activity of business structures in subjects of the Russian Federation on the basis of integral synthetic categories. The approach we propose focuses on the development of a system of indicators

  7. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Directory of Open Access Journals (Sweden)

    S. Uyeda


    Full Text Available Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity. The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 – 40 Hz and meteorological recordings, together with seismo-acoustic (∆F = 30 – 1000 Hz and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 – 30 Hz, three-component electric potential variations ( ∆F 1.0 Hz, and VLF transmitter’s signal perturbations ( ∆F ~ 10 – 40 kHz.

  8. Drivers of Concentration of Economic Activity in Russia’s Regions

    Directory of Open Access Journals (Sweden)

    Svetlana Nikolaevna Rastvortseva


    Full Text Available The uneven distribution of economic activity in Russia promotes the differentiation of its constituent entities by level of development. Regions are independent participants of economic relations, and they often act as competitors rather than partners. Agglomeration effects arise in more successful regions and contribute to the concentration of resources, manufacturing enterprises, service providers, skilled workers, and scientific and technological knowledge. The aim of the study, the results of which are reflected in the paper, is to identify the factors and assess their impact on the concentration (dispersion of economic activity on the basis of Russia’s regions. The paper describes the benefits of agglomeration processes from the standpoint of economic geography, allocation theory and international trade theory. The concentration of economic activity in Russia’s regions is estimated by the Herfindahl–Hirschman index of industrial production taking into consideration the volume of investments in fixed capital and the number of people employed in the economy in Russia’s regions in 1990–2013. It is determined that fixed capital investments have the propensity to concentrate, but react strongly to economic crises. Labor resources, by contrast, are distributed relatively evenly, and their concentration in certain regions is increasing steadily. The article considers key factors such as wage growth, distance to large cities, direct foreign investment, road network density, the degree of development of the services sector in the region. The factor model is constructed using the least squares method. The authors conclude that the growth of wages in the region (relative to national average has a negative effect on the concentration of economic activity. There is a positive correlation between the growth of direct foreign investment and the density of hard surface roads. The development of services has the greatest positive impact on

  9. 78 FR 39638 - U.S. Integrated Ocean Observing System; Regulations To Certify and Integrate Regional... (United States)


    ... regional system operations and maintenance. The RICE must illustrate its standard operating procedures for... designing, operating, and improving regional coastal and ocean observing systems in order to ensure the... set priorities for distributing funds (e.g., requirement for Governing Board or governing body...

  10. Observed regional distribution of sulfur dioxide in Asia

    International Nuclear Information System (INIS)

    Carmichael, G.R.; Ferm, M.; Adikary, S.; Ahmad, J.; Mohan, M.; Hong, M.S.; Chen, L.; Fook, L.; Liu, C.M.; Soedomo, M.; Tran, G.; Suksomsank, K.; Zhao, D.; Arndt, R.; Chen, L.L.


    Increased use of coal for energy in Asia has led to increased SO 2 emissions. SO 2 concentrations have been measured for one year at forty-five locations throughout Asia using passive samplers. Duplicate samples were exposed at each site for one month intervals. The sites were selected to provide background information on the distribution of SO 2 over wide geographical regions, with emphasis on the regional characteristics around areas estimated to be sensitive to sulfur deposition. The annual mean values ranged from less than 0.3 μg/m 3 at Tana Rata, located at 1545 m on the Malaysia Peninsula, Lawa Mandau (Borneo), Malaysia, and Dhankuta, Nepal, to values greater than 20 μg/m 3 at Luchongguan (Guiyang) China, Babar Mahal, Nepal, and Hanoi, Vietnam. In general high concentrations were measured throughout China, with the highest concentrations in the heavy industrial areas in Guiyang. The concentrations in east Asia around the Korea peninsula were ∼ 5 μg/m 3 . The concentrations in the southeast Asia tropics were low, with no station in Malaysia and Indonesia having average concentrations exceeding 1.7 μg/m 3 . The observed SO 2 concentrations were found to display a distinct seasonal cycle which is strongly influenced by the seasonality of winds and precipitation patterns. 3 refs., 3 figs

  11. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin


    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  12. Intelligent Architecture for Enhanced Observability for Active Distribution System

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte


    There is a rapid increase of renewable energy resources (RE) and demand response resources (DRR) in the distribution networks. This is challenging for the reliable and stable operation of the grid. So, to ensure secure, optimized and economical operation in such active distribution grids they need...... for active distribution network which satisfies the need for higher observability reach with less field observation. Improved state estimation with composite load forecasting model is aimed for enhanced observability. This paper also summarizes the application of intelligent architecture in the operation...


    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J., E-mail: [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)


    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.


    Directory of Open Access Journals (Sweden)



    Full Text Available Economic areas with high technology are key drivers in sustainable regional development, including unemployment and consequently decreasing population migration in the region. Northeast Region is the largest development region of Romania in terms of number of inhabitants and the owned area. On 01/01/2014, according to balance employment, labor resources of the region were numbered 2,428,700, which represent 49.6% of employed population. The registered unemployment rate at 31 August 2014 was 6.5%, with 82 thousand unemployed registered. In terms of participation in the main economic activities, civilian employment in agriculture, forestry and fishing is predominant (40.1% while in service, civilian employment is 37.1%, while industry and construction is 22.8%. The paper aims to analyze the situation that the potential employment and development opportunities for the Northeast region through activities in the field of ITC domain. Unfortunately, this area was the worst in most indicators, the use of computers and the internet to the turnover of companies and investments in the IT & C and unfortunately in terms of employment population that is under 50%

  15. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.


    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  16. Antibody complementarity-determining regions (CDRs can display differential antimicrobial, antiviral and antitumor activities.

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    Full Text Available BACKGROUND: Complementarity-determining regions (CDRs are immunoglobulin (Ig hypervariable domains that determine specific antibody (Ab binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here. METHODOLOGY/PRINCIPAL FINDINGS: CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a a protein epitope of Candida albicans cell wall stress mannoprotein; b a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains. CONCLUSIONS/SIGNIFICANCE: The high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small

  17. Derivation of a regional active-optical reflectance sensor corn algorithm (United States)

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  18. OSO 8 observations of wave propagation in the solar chromosphere and transition region (United States)

    Chipman, E. G.


    The University of Colorado instrument on OSO 8 has been used to observe relative phases of the 300-s intensity variation between the temperature-minimum region and several emission lines formed in the solar chromosphere and chromosphere-corona transition region. The lines used are due to Fe II, Si II, C II, Si IV, and C IV. The scattered light in the spectrograph, which originates almost entirely in the spectral region between 1700 and 1900 A, was used as a probe of the temperature-minimum region. The lines of Fe II, Si II, and C II show almost identical delays of approximately 30 s relative to the temperature minimum, while the intensity oscillations of the lines of Si IV and C IV appear to lead the temperature-minimum intensity oscillations by about 10 s.


    International Nuclear Information System (INIS)

    Zhang Hongqi


    In this paper, we present fine magnetic features near the magnetic inversion line in the solar active region NOAA 10930. The high-resolution vector magnetograms obtained by Hinode allow detailed analyses around magnetic fibrils in the active region. The analyses are based on the fact that the electric current density can be divided into two components: the shear component caused by the magnetic inhomogeneity and the twist component caused by the magnetic field twist. The relationships between magnetic field, electric current density, and its two components are examined. It is found that the individual magnetic fibrils are dominated by the current density component caused by the magnetic inhomogeneity, while the large-scale magnetic region is generally dominated by the electric current component associated with the magnetic twist. The microstructure of the magnetic field in the solar atmosphere is far from the force-free field. The current mainly flows around the magnetic flux fibrils in the active regions.

  20. From Emergence to Eruption: The Physics and Diagnostics of Solar Active Regions (United States)

    Cheung, Mark


    The solar photosphere is continuously seeded by the emergence of magnetic fields from the solar interior. In turn, photospheric evolution shapes the magnetic terrain in the overlying corona. Magnetic fields in the corona store the energy needed to power coronal mass ejections (CMEs) and solar flares. In this talk, we recount a physics-based narrative of solar eruptive events from cradle to grave, from emergence to eruption, from evaporation to condensation. We review the physical processes which are understood to transport magnetic flux from the interior to the surface, inject free energy and twist into the corona, disentangle the coronal field to permit explosive energy release, and subsequently convert the released energy into observable signatures. Along the way, we review observational diagnostics used to constrain theories of active region evolution and eruption. Finally, we discuss the opportunities and challenges enabled by the large existing repository of solar observations. We argue that the synthesis of physics and diagnostics embodied in (1) data-driven modeling and (2) machine learning efforts will be an accelerating agent for scientific discovery.

  1. A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection

    Directory of Open Access Journals (Sweden)

    Stéphanie Jehan-Besson


    Full Text Available We propose a 3-step algorithm for the automatic detection of moving objects in video sequences using region-based active contours. First, we introduce a very full general framework for region-based active contours with a new Eulerian method to compute the evolution equation of the active contour from a criterion including both region-based and boundary-based terms. This framework can be easily adapted to various applications, thanks to the introduction of functions named descriptors of the different regions. With this new Eulerian method based on shape optimization principles, we can easily take into account the case of descriptors depending upon features globally attached to the regions. Second, we propose a 3-step algorithm for detection of moving objects, with a static or a mobile camera, using region-based active contours. The basic idea is to hierarchically associate temporal and spatial information. The active contour evolves with successively three sets of descriptors: a temporal one, and then two spatial ones. The third spatial descriptor takes advantage of the segmentation of the image in intensity homogeneous regions. User interaction is reduced to the choice of a few parameters at the beginning of the process. Some experimental results are supplied.

  2. Interprofessional pharmacy observation activity for third-year dental students. (United States)

    Conway, Susan E; Smith, Winter J; Truong, Teresa H; Shadid, Jill


    Interprofessional learning is a key component of today's health sciences education. Within a two-course series in dental pharmacology and therapeutics, a dental curriculum was revised to provide an interprofessional activity to expose dental students to a community pharmacy setting. The objectives of this activity were to augment students' learning about drug laws and prescription writing, as well as to foster interprofessional relationships and collaboration between pharmacists and dentists. Dental students were scheduled for one-hour observations at community pharmacies on campus. Learning objectives to guide this activity focused on demonstrating community pharmacy operating procedures, identifying ways to minimize prescribing and dosing errors, and understanding how pharmacists can assist dentists in prescribing. Following the observation, students were required to submit a written assignment, which accounted for 14 percent of their course grade. All 119 dental students (100 percent) enrolled in the course for the summers of 2012 and 2013 completed the activity. The average grade on the written assignment was 96.2 out of 100. At the end of the course, students were asked to participate in an online course evaluation survey, for which response rates were 37 percent and 43 percent for 2012 and 2013, respectively. The students rated the pharmacy observation activity favorably on this course evaluation. The pharmacy observation activity provided a successful interprofessional component to the didactic pharmacy course and was well received by the dental students as well as the community pharmacists.

  3. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region (United States)

    Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.


    In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.

  4. Regional scale variations of atmospheric CO2 and CH4 from satellite observation

    International Nuclear Information System (INIS)

    Ru, F; Lei, L; Guan, X; Bu, R; Qi, J


    To identify the sources, sinks and changes of atmospheric CO 2 and CH 4 , this study investigates the spatio-temporal changes of atmospheric CO 2 and CH 4 concentration on the regional scale by the satellite observations. In this paper, choosing the land region of China as the study area, we investigate the spatio-temporal changes of atmospheric CO 2 and CH 4 concentrations using the data of the CO 2 dry air mixing ratio (XCO 2 ), and the CH 4 dry air mixing ratio (XCH 4 ), retrieved by the Greenhouse Gases Observing Satellite (GOSAT) from Jan. 2010 to Dec. 2012. The results show that (1) both XCO 2 and XCH 4 show higher concentrations in southeastern regions than that in the northwestern, and tend to yearly increasing from 2010 to 2013; (2) XCO 2 shows obvious seasonal change with higher values in the spring than that in summer. The seasonal peak-to-peak amplitude is 8 ppm and the annual growth is about 2 ppm. XCH 4 , however, does not show a seasonal change; (3) With regard to different land-use backgrounds, XCO 2 shows larger concentrations over the areas of urban agglomeration than that over the grasslands and deserts, and XCH 4 shows lower concentrations over deserts than that over the Yangtze River Delta region and Sichuan Basin

  5. Investigating the correlations between water coma emissions and active regions in comet 67P/ Churyumov-Gerasimenko (United States)

    Migliorini, Alessandra; Filacchione, Gianrico; Capaccioni, Fabrizio; Piccioni, Giuseppe; Bockelee-Morvan, Dominique; Érard, Stéphane; Leyrat, Cedric; Combi, Michael R.; Fougere, Nicolas; Rinaldi, Giovanna; VIRTIS Team


    Vibrational emission lines of H2O and CO2 at 2.67 and 4.27 μm, respectively, were identified by the VIRTIS spectrometer (Bockelée-Morvan et al., 2015; Migliorini et al., 2016; Fink et al., 2016) and mapped from the surface up to about 10 km altitude with a spatial resolution on the order of tens of meters per pixel (Migliorini et al., 2016).Data acquired in April 2015 with the VIRTIS spectrometer on board the Rosetta mission, provided information on the possible correlation between the H2O emission in the inner coma and the exposed water deposits detected in the Hapi region on the 67P/Churyumov-Gerasimenko surface (Migliorini et al., 2106; De Sanctis et al., 2015). Further bright spots attributed to exposed water ice have been identified in other regions by OSIRIS at visible wavelengths (Pommerol, et al., 2015) and confirmed in the infrared by VIRTIS-M in the Imothep region (Filacchione et al., 2016). The small dimensions of these icy spots - approximately 100x100 m (Filacchione et al., 2016) - and the relatively small amount of water ice (about 5%) make uncertain the correlation with the strong emissions in the coma.However, VIRTIS data show that the distribution of jet-like emissions seems to follow the distribution of cliffs and exposed areas identified in the North hemisphere with OSIRIS camera (Vincent et al., 2015). These areas are mainly concentrated in correspondence of comet's rough terrains, while a lack of active regions is observed in the comet's neck. Nevertheless, strong H2O emission is observed above the neck with VIRTIS. This might be a consequence of gas jets that are originated in the surrounding of the neck but converging towards the neck itself. This gaseous activity is the main driver of the dust upwelling (Migliorini et al, 2016; Rinaldi et al., in preparation)In this paper, we investigate the relationship between H2O vapour observed with VIRTIS within 5 km from the 67P/C-G nucleus and the exposed regions identified by OSIRIS on the surface

  6. Observational Study of Solar Magnetic Active Phenomena Hongqi ...

    Indian Academy of Sciences (India)


    Jun 9, 1991 ... Key words. Sun: activity—flares—magnetic fields. 1. Introduction. It is believed that the newly emerging magnetic flux of opposite polarities and the shear of transverse magnetic field ... magnetic poles of negative polarity increased faster than positive one in active region. NOAA 6580-6619-6659. The total ...

  7. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region (United States)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre


    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  8. The Effect of "Rogue" Active Regions on the Solar Cycle (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul


    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.


    International Nuclear Information System (INIS)

    Abramenko, Valentyna; Yurchyshyn, Vasyl


    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, α, of the energy spectrum, E(k) ∼ k -α , and the total spectral energy, W = ∫E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of α and W as A = 10 b (αW) c , with b = -7.92 ± 0.58 and c = 1.85 ± 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  10. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations (United States)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide


    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation ( However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5


    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Esnard, T.; Trinidad, M. A. [Departamento de Astronomia, Universidad de Guanajuato, Apdo Postal 144, Guanajuato, GTO, Mexico CP 36000 (Mexico); Migenes, V., E-mail:, E-mail:, E-mail: [Department of Physics and Astronomy, Brigham Young University, ESC-N145, Provo, UT 84602 (United States)


    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.


    International Nuclear Information System (INIS)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.


    Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments

  13. Determination of GMPE functional form for an active region with limited strong motion data: application to the Himalayan region (United States)

    Bajaj, Ketan; Anbazhagan, P.


    Advancement in the seismic networks results in formulation of different functional forms for developing any new ground motion prediction equation (GMPE) for a region. Till date, various guidelines and tools are available for selecting a suitable GMPE for any seismic study area. However, these methods are efficient in quantifying the GMPE but not for determining a proper functional form and capturing the epistemic uncertainty associated with selection of GMPE. In this study, the compatibility of the recent available functional forms for the active region is tested for distance and magnitude scaling. Analysis is carried out by determining the residuals using the recorded and the predicted spectral acceleration values at different periods. Mixed effect regressions are performed on the calculated residuals for determining the intra- and interevent residuals. Additionally, spatial correlation is used in mixed effect regression by changing its likelihood function. Distance scaling and magnitude scaling are respectively examined by studying the trends of intraevent residuals with distance and the trend of the event term with magnitude. Further, these trends are statistically studied for a respective functional form of a ground motion. Additionally, genetic algorithm and Monte Carlo method are used respectively for calculating the hinge point and standard error for magnitude and distance scaling for a newly determined functional form. The whole procedure is applied and tested for the available strong motion data for the Himalayan region. The functional form used for testing are five Himalayan GMPEs, five GMPEs developed under NGA-West 2 project, two from Pan-European, and one from Japan region. It is observed that bilinear functional form with magnitude and distance hinged at 6.5 M w and 300 km respectively is suitable for the Himalayan region. Finally, a new regression coefficient for peak ground acceleration for a suitable functional form that governs the attenuation

  14. Diviner lunar radiometer observations of cold traps in the moon's south polar region (United States)

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.


    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  15. Universities and Economic Development Activities: A UK Regional Comparison (United States)

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.


    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  16. Estimates of Active Region Area Coverage through Simultaneous Measurements of the He i λλ 5876 and 10830 Lines

    Energy Technology Data Exchange (ETDEWEB)

    Andretta, Vincenzo; Covino, Elvira [INAF—Osservatorio Astronomico di Capodimonte Salita Moiariello, 16 I-80131 Naples (Italy); Giampapa, Mark S. [National Solar Observatory 950 N. Cherry Avenue Tucson, AZ 85719 (United States); Reiners, Ansgar [Institut für Astrophysik Georg-August-Universität Göttingen Friedrich-Hund-Platz 1 D-37077 Göttingen (Germany); Beeck, Benjamin, E-mail: [Max Planck Institute for Solar System Research Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)


    Simultaneous, high-quality measurements of the neutral helium triplet features at 5876 Å and 10830 Å in a sample of solar-type stars are presented. The observations were made with ESO telescopes at the La Silla Paranal Observatory under program ID 088.D-0028(A) and MPG Utility Run for Fiber Extended-range Optical Spectrograph 088.A-9029(A). The equivalent widths of these features combined with chromospheric models are utilized to infer the fractional area coverage, or filling factor, of magnetic regions outside of spots. We find that the majority of the sample is characterized by filling factors less than unity. However, discrepancies occur among the coolest K-type and the warmest and most rapidly rotating F-type dwarf stars. We discuss these apparently anomalous results and find that in the case of K-type stars, they are an artifact of the application of chromospheric models best suited to the Sun than to stars with significantly lower T {sub eff}. The case of the F-type rapid rotators can be explained by the measurement uncertainties of the equivalent widths, but they may also be due to a non-magnetic heating component in their atmospheres. With the exceptions noted above, preliminary results suggest that the average heating rates in the active regions are the same from one star to the other, differing in the spatially integrated, observed level of activity due to the area coverage. Hence, differences in activity in this sample are mainly due to the filling factor of active regions.

  17. Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data Sparse Regions (United States)

    Kucera, Paul; Steinson, Martin


    Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions of the World, surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The project is focused on improving weather observations for environmental monitoring and early warning alert systems on a regional to global scale. Instrumentation that has been developed use innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The goal of the project is to make the weather station designs, software, and processing tools an open community resource. The weather stations can be built locally by agencies, through educational institutions, and residential communities as a citizen effort to augment existing networks to improve detection of natural hazards for disaster risk reduction. The presentation will provide an overview of the open source weather station technology and evaluation of sensor observations for the initial networks that have been deployed in Africa.

  18. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A


    Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends (‘greening’) in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands. (paper)


    International Nuclear Information System (INIS)

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Török, Tibor


    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  20. Observation of the HH 1 and 2 region with IRAS

    International Nuclear Information System (INIS)

    Pravdo, S.H.; Chester, T.J.


    Infrared Astronomical Satellite (IRAS) observations of the region in Orion containing HH 1 and 2 reveal for the first time the large-scale distribution of newly formed stars. New infrared sources discovered in these observations are discussed, and attempts are made to untangle the complex infrared morphology of this field. A major finding of this study is that HH 1 is near the peak of an intense and broad plateau of 60 and 100 micron emission that spatially corresponds well with the boundaries of a previously detected molecular cloud. Other findings include the detection of an emitting circum-HH object dust complex around HH 2, 25 micron emission associated with the putative HH 1 and 2 exciting source discovered with the VLA, a new luminous far-infrared source, and numerous infrared source complexes, some in blank optical fields and others in fields containing optical emission-line stars. 37 references

  1. Positron-emission tomography of brain regions activated by recognition of familiar music. (United States)

    Satoh, M; Takeda, K; Nagata, K; Shimosegawa, E; Kuzuhara, S


    We can easily recognize familiar music by listening to only one or 2 of its opening bars, but the brain regions that participate in this cognitive processing remain undetermined. We used positron-emission tomography (PET) to study changes in regional cerebral blood flow (rCBF) that occur during listening to familiar music. We used a PET subtraction technique to elucidate the brain regions associated with the recognition of familiar melodies such as well-known nursery tunes. Nonmusicians performed 2 kinds of musical tasks: judging the familiarity of musical pieces (familiarity task) and detecting deliberately altered notes in the pieces (alteration-detecting task). During the familiarity task, bilateral anterior portions of bilateral temporal lobes, superior temporal regions, and parahippocampal gyri were activated. The alteration-detecting task bilaterally activated regions in the precunei, superior/inferior parietal lobules, and lateral surface of frontal lobes, which seemed to show a correlation with the analysis of music. We hypothesize that during the familiarity task, activated brain regions participate in retrieval from long-term memory and verbal and emotional processing of familiar melodies. Our results reinforced the hypothesis reported in the literature as a result of group and case studies, that temporal lobe regions participate in the recognition of familiar melodies.

  2. A brief report on the statistical study of net electric current in solar active regions with longitudinal fields of opposite polarity

    International Nuclear Information System (INIS)

    Gao Yu


    Dynamic processes occurring in solar active regions are dominated by the solar magnetic field. As of now, observations using a solar magnetograph have supplied us with the vector components of a solar photospheric magnetic field. The two transverse components of a photospheric magnetic field allow us to compute the amount of electric current. We found that the electric current in areas with positive (negative) polarity due to the longitudinal magnetic field have both positive and negative signs in an active region, however, the net current is found to be an order-of-magnitude less than the mean absolute magnitude and has a preferred sign. In particular, we have statistically found that there is a systematic net electric current from areas with negative (positive) polarity to areas with positive (negative) polarity in solar active regions in the northern (southern) hemisphere, but during the solar minimum this tendency is reversed over time at some latitudes. The result indicates that there is weak net electric current in areas of solar active regions with opposite polarity, thus providing further details about the hemispheric helicity rule found in a series of previous studies.

  3. Crossmodal Activation of Visual Object Regions for Auditorily Presented Concrete Words

    Directory of Open Access Journals (Sweden)

    Jasper J F van den Bosch


    Full Text Available Dual-coding theory (Paivio, 1986 postulates that the human mind represents objects not just with an analogous, or semantic code, but with a perceptual representation as well. Previous studies (eg, Fiebach & Friederici, 2004 indicated that the modality of this representation is not necessarily the one that triggers the representation. The human visual cortex contains several regions, such as the Lateral Occipital Complex (LOC, that respond specifically to object stimuli. To investigate whether these principally visual representations regions are also recruited for auditory stimuli, we presented subjects with spoken words with specific, concrete meanings (‘car’ as well as words with abstract meanings (‘hope’. Their brain activity was measured with functional magnetic resonance imaging. Whole-brain contrasts showed overlap between regions differentially activated by words for concrete objects compared to words for abstract concepts with visual regions activated by a contrast of object versus non-object visual stimuli. We functionally localized LOC for individual subjects and a preliminary analysis showed a trend for a concreteness effect in this region-of-interest on the group level. Appropriate further analysis might include connectivity and classification measures. These results can shed light on the role of crossmodal representations in cognition.

  4. Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles

    Directory of Open Access Journals (Sweden)

    Sara F. Martin


    Full Text Available Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their sunspots during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; sunspots form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3–4 Mm below sunspots as well as long-observed downflows from chromospheric/coronal arch filaments into sunspots from their earliest appearance. Time-distance helioseismology has been effective in revealing flows related to sunspots to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42–75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of

  5. Magnetic Separatrix as the Source Region of the Plasma Supply for an Active-region Filament

    Energy Technology Data Exchange (ETDEWEB)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)


    Solar filaments can be formed via chromospheric evaporation followed by condensation in the corona or by the direct injection of cool plasma from the chromosphere to the corona. We here confirm with high-resolution H α data observed by the 1.6 m New Solar Telescope of the Big Bear Solar Observatory on 2015 August 21 that an active-region filament is maintained by the continuous injection of cold chromospheric plasma. We find that the filament is rooted along a bright ridge in H α , which corresponds to the intersection of a magnetic quasi-separatrix layer with the solar surface. This bright ridge consists of many small patches whose sizes are comparable to the width of the filament threads. It is found that upflows originate from the brighter patches of the ridge, whereas the downflows move toward the weaker patches of the ridge. The whole filament is composed of two opposite-direction streams, implying that longitudinal oscillations are not the only cause of the counterstreamings, and unidirectional siphon flows with alternative directions are another possibility.

  6. Regional differences in commuting activities of inhabitants in the Tokyo metropolitan suburb

    Directory of Open Access Journals (Sweden)

    Masaki Kawase


    Full Text Available The purpose of this study is to elucidate gender differences and regional differences of co-mmuting activities by inhabitants in Japanese metropolitan suburbs. I found the different parts by districts in the metropolitan suburb. Regional factors cause gender differences in commuting activities and result in regional differences: In residential areas, inhabitants who work in metropolitan centers occupy much of the population. In older built-up areas, there are many “local” persons. In rural areas, motorization is progressing because access to rail-roads has been inconvenient. These regional factors influence the behavioral characteristics of commuting by married men, married women, never married men and never married women.

  7. Perceived built environment and physical activity in U.S. women by sprawl and region. (United States)

    Troped, Philip J; Tamura, Kosuke; Whitcomb, Heather A; Laden, Francine


    A number of studies have demonstrated relationships between the perceived built environment and physical activity among adults. However, little is known about whether these associations differ by U.S. region and level of urban sprawl. To examine associations between the perceived built environment and physical activity in U.S. women by region and urban sprawl. Nurses' Health Study II participants (N=68,968) completed four perceived neighborhood environment survey items in 2005. Logistic regression was used to estimate associations with meeting physical activity recommendations, adjusting for demographic and weight-status variables, and stratifying by region and sprawl. Data analyses were completed in 2011. Perceived proximity to shops/stores was positively associated with physical activity across regions and levels of sprawl (ORs=1.21-1.46). Perceived access to recreation facilities was also a positive physical activity correlate in most region-sprawl strata, with strongest relationships found in the West (ORs=1.31-1.70). Perceived crime and presence of sidewalks did not show statistically significant associations with physical activity in most region-sprawl strata, although ORs for perceived crime showed a consistent pattern of negative associations (ORs=0.60-0.95). A higher number of positive environmental attributes was associated with a greater odds of meeting physical activity recommendations. Findings indicate that perceived proximity to shops/stores and access to recreation facilities are important correlates of physical activity for women, irrespective of region or sprawl. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Amateur observations of exoplanets in Finland: History and recent activities (United States)

    Mäkelä, V.; Haukka, H.; Oksanen, A.; Kehusmaa, P.; Hentunen, V.-P.


    Exoplanet have been observed by Finnish amateur astronomers already 17 years. Recently there are two active observers, but the interest to photometric observations on exoplanet transits is increasing in Finland.

  9. Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Fritz, Teresa; Angle, Amanda; Kielian, Tammy


    Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.

  10. How can mountaintop CO2 observations be used to constrain regional carbon fluxes? (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.


    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  11. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis (United States)

    Jorge A. Ramirez; Michael T. Hobbins; Thomas C. Brown


    Using independent observations of actual and potential evapotranspiration at a wide range of spatial scales, we provide direct observational evidence of the complementary relationship in regional evapotranspiration hypothesized by Bouchet in 1963. Bouchet proposed that, for large homogeneous surfaces with minimal advection of heat and moisture, potential and actual...

  12. The HI Distribution Observed toward a Halo Region of the Milky Way

    Directory of Open Access Journals (Sweden)

    Ericson López


    Full Text Available We use observations of the neutral atomic hydrogen (HI 21-cm emission line to study the spatial distribution of the HI gas in a 80° × 90° region of the Galaxy halo. The HI column densities in the range of 3–11 × 10 20 cm − 2 have been estimated for some of the studied regions. In our map—obtained with a spectral sensitivity of ∼2 K—we do not detect any HI 21-cm emission line above 2 σ at Galactic latitudes higher than ∼46°. This report summarizes our contribution presented at the conference on the origin and evolution of barionic Galaxy halos.

  13. Spatial concentration of economic activity and competitiveness of Central European regions

    Directory of Open Access Journals (Sweden)

    Justyna Majewska


    Full Text Available The paper tackles with a still somewhat underdeveloped aspect of regional competiveness which regards to spillover effects stemming from spatial proximity of highly competitive neighbors. Although spillover effects are well recognized in the literature, we focus more on inter-regional concentration of business activity when enterprises are located in a particular district which is not far from the agglomeration center but not the center itself. We check for statistical significance of spatial autocorrelation measures (local Moran’s Ii statistic in order to identify spillovers between districts in Central European countries (Germany, Poland, Czech Republic and Slovakia. We use variables indicating Knowledge Intensive Services (KIS, in particular hi-tech KIS and information and communication services (including computer science. We compare 2009 with 2015 to notice agglomeration dynamics. We observe statistically significant spillover effects in Central European countries in urbanization-type clusters as well as strengthening of the effect over time. Taking into consideration more detailed data for Poland we conclude that while hi-tech KIS mostly spill over to neighboring districts, the reverse pattern may be observed for computer science (programming and consultancy. One explanation is that this subsector relies on highly demanded workforce and a prestigious localization (in the agglomeration centers works as a bargaining chip to attract programmers. In order to measure the spillover effects more precisely it is recommended to define and measure the neighborhood of agglomeration centers using localization of firms based on GPS coordinates instead of centroids (geometric means of districts – as shown in example of Poland.

  14. Earth observation for regional scale environmental and natural resources management (United States)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.


    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet

  15. Steady flows in the solar transition region observed with SMM

    International Nuclear Information System (INIS)

    Gebbie, K.B.; Hill, F.; Toomre, J.; November, L.J.; Simon, G.W.; Gurman, J.B.; Shine, R.A.; Woodgate, B.E.; Athay, R.G.; Bruner, E.C. Jr.; Rehse, R.A.; Tandberg-Hanssen, E.A.


    Steady flows in the quiet solar transition region have been observed with the Ultraviolet Spectrometer and Polarimeter (UVSP) experiment on the Solar Maximum Mission (SMM) satellite. The persistent vertical motions seen at disk center have spatial rms amplitudes of 1.4 km s -1 in the C II line, 3.9 km s -1 in Si IV, and 4.2 km s -1 in C IV. The amplitudes of the more horizontal flows seen toward the limb tend to be somewhat higher. Plots of steady vertical velocity versus intensity seen at disk center in Si IV and C IV show two distinct branches

  16. Abundance variations in solar active regions (United States)

    Strong, K. T.; Lemen, J. R.; Linford, G. A.


    The diversity in the published values of coronal abundances is unsettling, especially as the range of results seems to be beyond the quoted uncertainties. Measurements of the relative abundance of iron and neon derived from soft X-ray spectra of active regions are presented. From a data base of over 200 spectra taken by the Solar Maximum Mission Flat Crystal Spectrometer, it is found that the relative abundance can vary by as much as a factor of about 7 and can change on timescales of less than 1 h.

  17. What is the Best Model Specification and Earth Observation Product for Predicting Regional Grain Yields in Food Insecure Countries? (United States)

    Davenport, F., IV; Harrison, L.; Shukla, S.; Husak, G. J.; Funk, C. C.


    We evaluate the predictive accuracy of an ensemble of empirical model specifications that use earth observation data to predict sub-national grain yields in Mexico and East Africa. Products that are actively used for seasonal drought monitoring are tested as yield predictors. Our research is driven by the fact that East Africa is a region where decisions regarding agricultural production are critical to preventing the loss of economic livelihoods and human life. Regional grain yield forecasts can be used to anticipate availability and prices of key staples, which can turn can inform decisions about targeting humanitarian response such as food aid. Our objective is to identify-for a given region, grain, and time year- what type of model and/or earth observation can most accurately predict end of season yields. We fit a set of models to county level panel data from Mexico, Kenya, Sudan, South Sudan, and Somalia. We then examine out of sample predicative accuracy using various linear and non-linear models that incorporate spatial and time varying coefficients. We compare accuracy within and across models that use predictor variables from remotely sensed measures of precipitation, temperature, soil moisture, and other land surface processes. We also examine at what point in the season a given model or product is most useful for determining predictive accuracy. Finally we compare predictive accuracy across a variety of agricultural regimes including high intensity irrigated commercial agricultural and rain fed subsistence level farms.

  18. Ambient air quality observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)


    Both Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. In recognition of the effects that this will have on the environment, Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere, while Syncrude plans to develop additional ambient air quality, sulphur deposition and biomonitoring programs. This report discussed the ambient air quality monitoring that was undertaken in the Fort McMurray-Fort McKay airshed. Twelve continuous ambient air quality stations and 76 passive monitoring stations are maintained in the region. Environment Canada maintains eight precipitation monitoring stations in northern Alberta and Saskatchewan. Source characterization, ambient air quality and meteorology observations, air quality monitoring, and air quality data from continuous sulphur dioxide, hydrogen sulphide, nitrogen oxides, ozone, carbon monoxide, hydrocarbon, acid rain and particulates analyzers were reviewed. The documentation of all computer files used for the analysis of the air quality data is discussed in the Appendix. 47 refs., 39 tabs., 53 figs

  19. On the LHC observation of gluinos from the Egret-preferred region

    International Nuclear Information System (INIS)

    Bednyakov, V. A.; Budagov, Ju. A.; Gladyshev, A. V.; Kazakov, D. I.; Khramov, E. V.; Khubua, D. I.


    Prospects for observation of a SUSY-like signal from two gluinos g-bar g-bar are investigated within a certain region of the mSUGRA parameter space, where the cross section of the two-gluino production in pp-collisions at the LHC (√s = 14 TeV) is estimated at a rather high level of 17.3 pb. In this so-called EGRET-preferred region, the lightest stable neutralinos χ 1 0 can serve as cold-dark-matter particles and can naturally explain the excess of diffuse Galactic gamma rays observed by the EGRET space apparatus. The g-bar g-bar-event selection relies on a clear signature when decay products of each gluino contain one bb-bar pair, one or two ll-bar pair(s) or one or two light qq-bar pair(s), and a neutralino. Rather high transverse missing energy carried away by the two neutralinos is the essential signature of the events using of which allows the relevant Standard Model background to be reduced significantly. Furthermore, distributions of the reconstructed invariant masses of two opposite-charged-lepton or light-jet pairs produced by the χ 2 0 → χ 1 0 l + l - and χ 2 0 → χ 1 0 qq-bar three-body decays have kinematic end points which measure the difference between masses of χ 2 0 and χ 1 0 . In particular, it was found that these signatures of selected processes demonstrate good prospects for discovery of gluinos at the LHC. These signatures allow one to distinguish different mSUGRA parameters m 1/2 within the EGRET-preferred region (at a higher than 6σ confidence level with 300 fb -1 data).

  20. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)


    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  1. New global electron density observations from GPS-RO in the D- and E-Region ionosphere (United States)

    Wu, Dong L.


    Ne_Pert amplitudes in the solar maximum years. Enhanced Ne profiles are often observed in the polar winter, showing good correlation with solar proton events (SPEs) and geomagnetic activity. The new methodology offers great potential for retrieving low Ne in the D-region, where radio propagation and communication blackouts can occur due to enhanced ionization. For space weather applications it is recommended for GPS-RO operations to raise the top of high-rate data acquisition to ∼140 km in the future.

  2. The Existence of a Sticking Region in Free Weight Squats

    Directory of Open Access Journals (Sweden)

    Tillaar Roland van den


    Full Text Available The aim of this study was to investigate the existence of the sticking region in two legged free weight squats. Fifteen resistance-training males (age 24 ± 4 years, body mass 82 ± 11 kg, body height 179 ± 6 cm with 6 ± 3 years of resistance-training experience performed 6-RM in free weight squats. The last repetition was analyzed for the existence of a sticking region. Only in 10 out of 15 participants a sticking region was observed. The observed sticking region was much shorter than in the bench press. Furthermore, rectus femoris decreased the EMG activity in contrast to increased EMG activity in biceps femoris around the sticking and surrounding region. No significant change in EMG activity was found for the lateral and medial vastus muscles. It is suggested that a combination of these muscle activity changes could be one of the causes of the existence of the sticking region in free weight squats

  3. The existence of a sticking region in free weight squats. (United States)

    van den Tillaar, Roland; Andersen, Vidar; Saeterbakken, Atle Hole


    The aim of this study was to investigate the existence of the sticking region in two legged free weight squats. Fifteen resistance-training males (age 24 ± 4 years, body mass 82 ± 11 kg, body height 179 ± 6 cm) with 6 ± 3 years of resistance-training experience performed 6-RM in free weight squats. The last repetition was analyzed for the existence of a sticking region. Only in 10 out of 15 participants a sticking region was observed. The observed sticking region was much shorter than in the bench press. Furthermore, rectus femoris decreased the EMG activity in contrast to increased EMG activity in biceps femoris around the sticking and surrounding region. No significant change in EMG activity was found for the lateral and medial vastus muscles. It is suggested that a combination of these muscle activity changes could be one of the causes of the existence of the sticking region in free weight squats.


    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Matheny, P. O., E-mail: [Physics Department, University of Memphis, Memphis, TN 38152 (United States)


    Mechanisms invoked to heat the solar corona to millions of degrees kelvin involve either magnetic waves or magnetic reconnections. Turbulence in the convection zone produces MHD waves, which travel upward and dissipate. Photospheric motions continuously build up magnetic energy, which is released through magnetic reconnection. In this paper, we concentrate on hot non-flaring plasma with temperatures of 5 MK <  T  < 10 MK because it is one of the few observables for which wave and reconnection models make different predictions. Wave models predict no (or little) hot plasma, whereas reconnection models predict it, although in amounts that are challenging to detect with current instrumentation. We used data from the X-ray Telescope (XRT) and the Atmospheric Imaging Assembly (AIA). We requested a special XRT observing sequence, which cycled through the thickest XRT filter several times per hour so we could average these images and improve the signal-to-noise. We did differential emission measure (DEM) analysis using the time-averaged thick-filter data as well as all available channels from both the XRT and AIA for regions observed on 2014 December 11. Whereas our earlier work was only able to determine that plasma with a temperature greater than 5 MK was present , we are now able to find a well-constrained DEM distribution. We have therefore added a strong observational constraint that must be explained by any viable coronal heating model. Comparing state-of-the-art wave and reconnection model predictions, we can conclude that reconnection is heating the hot plasma in these active regions.

  5. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.


    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  6. Recent earthquake activity in Trichonis region and its tectonic significance

    Directory of Open Access Journals (Sweden)



    Full Text Available SUMMARY. - The aftershock activity associated with the central Greece
    (Trichonis Lake earthquake of |une-Dec. 1975, has been studied, with emphasis
    on the time and magnitude distribution. It has been found that the value of b,
    in Gutenberg - R i c h t e r ' s relationship was near the same for the primary as
    well as the secondary or second order aftershocks of the sequences, but depends
    upon the focal depth.
    A correlation between the calculated focal mechanisms and the associated
    stress components to the distribution pattern of meizoseismic effects as well
    as to the geological structure of the seismic region was found.
    The seismic region lies at the top of an anticline which was found moving
    downwards, apparently due to compressional stresses.
    Within the series of three earthquakes the progress of the destruction of
    the buildings was observed and reported. The interest is concentrated to modern
    buildings out of reinforced concrete and infill brick walls. The relatively unexpected
    rather bad performance of the later case of buildings was compared to that
    of the traditional small houses out of brick or stone masonry, the behaviour of
    which may be considered as better from what it was expected.

  7. Asian couples in negotiation: a mixed-method observational study of cultural variations across five Asian regions. (United States)

    Lee, Wai-Yung; Nakamura, Shin-Ichi; Chung, Moon Ja; Chun, Young Ju; Fu, Meng; Liang, Shu-Chuan; Liu, Cui-Lian


    The purpose of this study was to explore variations in how contemporary couples from five different Asian regions negotiate disagreements. Video recordings of 50 couples (10 each from Japan, Korea, Mainland China, Taiwan, and Hong Kong) discussing unresolved disagreements provided raw data for quantitative and qualitative analyses. First, teams of coders from each region used a common protocol to make quantitative ratings of content themes and interaction patterns for couples from their own region. An interregional panel of investigators then performed in-depth qualitative reviews for half of these cases, noting cultural differences not only in observed patterns of couple behavior but also in their own perceptions of these patterns. Both quantitative and qualitative analyses revealed clear regional differences on dimensions such as overt negativity, demand-withdraw interaction, and collaboration. The qualitative results also provided a richer, more nuanced view of other (e.g., gender-linked) conflict management patterns that the quantitative analyses did not capture. Inconsistencies between qualitative and quantitative data and between the qualitative observations of investigators from different regions were most pronounced for couples from Korea and Japan, whose conflict styles were subtler and less direct than those of couples from the other regions. © FPI, Inc.

  8. What controls the seasonal cycle of columnar methane observed by GOSAT over different regions in India? (United States)

    Chandra, Naveen; Hayashida, Sachiko; Saeki, Tazu; Patra, Prabir K.


    Methane (CH4) is one of the most important short-lived climate forcers for its critical roles in greenhouse warming and air pollution chemistry in the troposphere, and the water vapor budget in the stratosphere. It is estimated that up to about 8 % of global CH4 emissions occur from South Asia, covering less than 1 % of the global land. With the availability of satellite observations from space, variability in CH4 has been captured for most parts of the global land with major emissions, which were otherwise not covered by the surface observation network. The satellite observation of the columnar dry-air mole fractions of methane (XCH4) is an integrated measure of CH4 densities at all altitudes from the surface to the top of the atmosphere. Here, we present an analysis of XCH4 variability over different parts of India and the surrounding cleaner oceanic regions as measured by the Greenhouse gases Observation SATellite (GOSAT) and simulated by an atmospheric chemistry-transport model (ACTM). Distinct seasonal variations of XCH4 have been observed over the northern (north of 15° N) and southern (south of 15° N) parts of India, corresponding to the peak during the southwestern monsoon (July-September) and early autumn (October-December) seasons, respectively. Analysis of the transport, emission, and chemistry contributions to XCH4 using ACTM suggests that a distinct XCH4 seasonal cycle over northern and southern regions of India is governed by both the heterogeneous distributions of surface emissions and a contribution of the partial CH4 column in the upper troposphere. Over most of the northern Indian Gangetic Plain regions, up to 40 % of the peak-to-trough amplitude during the southwestern (SW) monsoon season is attributed to the lower troposphere ( ˜ 1000-600 hPa), and ˜ 40 % to uplifted high-CH4 air masses in the upper troposphere ( ˜ 600-200 hPa). In contrast, the XCH4 seasonal enhancement over semi-arid western India is attributed mainly ( ˜ 70 %) to the

  9. Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot (United States)

    Henze, W., Jr.; Tandberg-Hanssen, E.; Hagyard, M. J.; West, E. A.; Woodgate, B. E.; Shine, R. A.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; West, E. A.


    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arcsec and 3 arcsec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are compared from the two sets of data; the maximum gradients of 0.41 to 0.62 G/km occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.

  10. Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli

    Directory of Open Access Journals (Sweden)

    Tanja S. H. Wingenbach


    Full Text Available According to embodied cognition accounts, viewing others’ facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others’ facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a explicit imitation of viewed facial emotional expressions (stimulus-congruent condition, (b pen-holding with the lips (stimulus-incongruent condition, and (c passive viewing (control condition. It was hypothesised that (1 experimental condition (a and (b result in greater facial muscle activity than (c, (2 experimental condition (a increases emotion recognition accuracy from others’ faces compared to (c, (3 experimental condition (b lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c. Participants (42 males, 42 females underwent a facial emotion recognition experiment (ADFES-BIV while electromyography (EMG was recorded from five facial muscle sites. The experimental conditions’ order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.

  11. Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli (United States)

    Wingenbach, Tanja S. H.; Brosnan, Mark; Pfaltz, Monique C.; Plichta, Michael M.; Ashwin, Chris


    According to embodied cognition accounts, viewing others’ facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others’ facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others’ faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions’ order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed. PMID:29928240

  12. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors (United States)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia


    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  13. On acceleration of <1 MeV/n He ions in the corotating compression regions near 1 AU: STEREO observations

    Directory of Open Access Journals (Sweden)

    R. Bučík


    Full Text Available Observations of multi-MeV corotating interaction region (CIR ions are in general consistent with models of CIR shock acceleration and transport. The presence of suprathermal particles near 1 AU in unshocked compression regions is not adequately explained. Nonetheless, more recent works demonstrate that unshocked compression regions associated with CIRs near 1 AU could energize particles. In the energy range from ~0.1 to ~1 MeV/n we investigate CIR events observed in 2007–2008 by the STEREO A and B spacecraft. We treat the predictions of compression acceleration by comparing the observed ion intensities with the model parameters. These observations show that the ion intensity in CIR events with in-situ reverse shock is well organized by the parameters which characterize the compression region itself, like compression width, solar wind speed gradients and the total pressure. In turn, for CIR events with the absence of the shocks the model predictions are not fulfilled.

  14. Radon observation for earthquake prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wakita, Hiroshi [Tokyo Univ. (Japan)


    Systematic observation of groundwater radon for the purpose of earthquake prediction began in Japan in late 1973. Continuous observations are conducted at fixed stations using deep wells and springs. During the observation period, significant precursory changes including the 1978 Izu-Oshima-kinkai (M7.0) earthquake as well as numerous coseismic changes were observed. At the time of the 1995 Kobe (M7.2) earthquake, significant changes in chemical components, including radon dissolved in groundwater, were observed near the epicentral region. Precursory changes are presumably caused by permeability changes due to micro-fracturing in basement rock or migration of water from different sources during the preparation stage of earthquakes. Coseismic changes may be caused by seismic shaking and by changes in regional stress. Significant drops of radon concentration in groundwater have been observed after earthquakes at the KSM site. The occurrence of such drops appears to be time-dependent, and possibly reflects changes in the regional stress state of the observation area. The absence of radon drops seems to be correlated with periods of reduced regional seismic activity. Experience accumulated over the two past decades allows us to reach some conclusions: 1) changes in groundwater radon do occur prior to large earthquakes; 2) some sites are particularly sensitive to earthquake occurrence; and 3) the sensitivity changes over time. (author)

  15. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy (United States)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.


    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  16. Study of the galactic centre region in the soft γ ray domain from the observations performed by the space telescope SIGMA

    International Nuclear Information System (INIS)

    Cordier, Bertrand


    This research thesis reports the detailed presentation of the SIGMA telescope, and its use for the observation of the galactic centre region. The SIGMA (gamma imagery system with random mask) telescope is based on an imagery technique using a coded aperture mask, and comprises three main components: the code-mask which modulates information and defines the experiment angular resolution, a position detector which provides the coordinates of the point of interaction of photons and their energy, and allows images to be built up, and active and passive shielding to reduce the background noise. The telescope operating modes and performance (space resolution, angular resolution, camera energy response, sensitivity) are presented. The data reduction procedure is described. Then, the author presents the Galaxy centre, discusses previous observations, and reports and comments new observations performed by using SIGMA [fr

  17. Positivity effect in healthy aging in observational but not active feedback-learning. (United States)

    Bellebaum, Christian; Rustemeier, Martina; Daum, Irene


    The present study investigated the impact of healthy aging on the bias to learn from positive or negative performance feedback in observational and active feedback learning. In active learning, a previous study had already shown a negative learning bias in healthy seniors older than 75 years, while no bias was found for younger seniors. However, healthy aging is accompanied by a 'positivity effect', a tendency to primarily attend to stimuli with positive valence. Based on recent findings of dissociable neural mechanisms in active and observational feedback learning, the positivity effect was hypothesized to influence older participants' observational feedback learning in particular. In two separate experiments, groups of young (mean age 27) and older participants (mean age 60 years) completed an observational or active learning task designed to differentially assess positive and negative learning. Older but not younger observational learners showed a significant bias to learn better from positive than negative feedback. In accordance with previous findings, no bias was found for active learning. This pattern of results is discussed in terms of differences in the neural underpinnings of active and observational learning from performance feedback.

  18. Seismo-active faults in the Banat region, Romania

    International Nuclear Information System (INIS)

    Oros, E.


    The knowledge of the seismo-active faults represents a very important element in every seismic hazard analysis. The main purpose of our paper is to best define the seismo-active faults of the Banat Region. The region is characterized by high seismicity, with important focus of strong earthquakes (I>VII MSK degrees). The quality of the historical data is many times too weak for being used in seismotectonic studies. Thus a correlation between historical and recent seismicity must be done. In our study, several seismic sequences that occurred in the Banat Region, are analysed in detail. The distribution of the epicenters and the correlation tectonics-fault plane solutions reveal important seismotectonic features. The obtained results complete the image of the historical seismicity and offer important information for the future studies of seismic hazard. These results are also very important for the development and configuration of the Banat Seismic Network. The recent seismic activity was analysed for 1995-2002 period, when over 2500 local earthquakes were recorded (M min = 0.5 and M max = 4.8). 26 fault plane solutions were determined (first wave polarities method with additional amplitude constraints). For the earthquakes that occurred at the national border with Yugoslavia and Hungary we used the data from international bulletins. The main seismic sequences were concentrated in seven important zones: Moldova Noua, Herculane Spa - Orsova, Petrosani - Western Jiu Valey, Banloc, Voiteg, Timisoara East and Timisoara North. We also located a small seismic sequence in the Baia de Arama - Tirgu Jiu area. The results were correlated with the faults and major structures, with macroseismic field of the strongest local earthquakes, too. The seismic hazard sources and faults from outside the country (Hungary an Yugoslavia) are pointed out. (authors)

  19. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    International Nuclear Information System (INIS)

    Webb, J.R.


    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec

  20. Multiscale Currents Observed by MMS in the Flow Braking Region (United States)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.


    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  1. Multifrequency observations of the region associated with the cometary nebulae GM24

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, M; Roth, M; Rodriguez, L F; Canto, J; Persi, P; Ferrari-Toniolo, M; Lopez, J A


    The faint nebulosity GM24 = PP85 was observed at infrared (1-20 and radio (6-cm and CO line) wavelengths in the vicinity of a CO ''hot spot'' reported previously. Radio continuum (6-cm) emission from an H II region was detected with the Very Large Array. Its position coincides with a 1-4 emission peak. CM24 appears to be the visible part of an obscured H II region that is beginning to emerge from the molecular cloud. Our infrared maps made at the Observatorio Astronomico Nacional at San Pedro Martir, show two additional (1-20 peaks located at distances approx. 30 arcsec from the compact H II region, all surrounded by extended near-infrared (1-4 emission. A detailed CO (J = 1 ..-->.. 0) map of the whole molecular cloud was obtained with the University of Texas Milimeter Wave Telescope. High resolution spectroscopy of the H..cap alpha.. line was also obtained with the Anglo-Australian Telescope. Our results are interpreted in terms of recent formation of three massive stars; one of which, having developed an H II region, is at a slightly later phase of its evolution. The extended near-infrared emission may arise in a reflection nebula similar to NGC 7538-Irs 9.

  2. Multifrequency observations of the region associated with the cometary nebulae GM24

    International Nuclear Information System (INIS)

    Tapia, M.; Roth, M.; Rodriguez, L.F.; Canto, J.; Persi, P.; Ferrari-Toniolo, M.; Lopez, J.A.


    The faint nebulosity GM24 = PP85 was observed at infrared (1-20 μm) and radio (6-cm and CO line) wavelengths in the vicinity of a CO ''hot spot'' reported previously. Radio continuum (6-cm) emission from an H II region was detected with the Very Large Array. Its position coincides with a 1-4 μm emission peak. CM24 appears to be the visible part of an obscured H II region that is beginning to emerge from the molecular cloud. Our infrared maps made at the Observatorio Astronomico Nacional at San Pedro Martir, show to additional (1-20 μm) peaks located at distances approx. 30 arcsec from the compact H II region, all surrounded by extended near-infrared (1-4 μm) emission. A detailed CO (J = 1 → 0) map of the whole molecular cloud was obtained with the University of Texas Milimeter Wave Telescope. High resolution spectroscopy of the Hα line was also obtained with the Anglo-Australian Telescope. Our results are interpreted in terms of recent formation of three massive stars; one of which, having developed an H II region, is at a slightly later phase of its evolution. The extended near-infrared emission may arise in a reflection nebula similar to NGC 7538-Irs 9. (author)

  3. Contribution of Field Strength Gradients to the Net Vertical Current of Active Regions (United States)

    Vemareddy, P.


    We examined the contribution of field strength gradients for the degree of net vertical current (NVC) neutralization in active regions (ARs). We used photospheric vector magnetic field observations of AR 11158 obtained by Helioseismic and Magnetic Imager on board SDO and Hinode. The vertical component of the electric current is decomposed into twist and shear terms. The NVC exhibits systematic evolution owing to the presence of the sheared polarity inversion line between rotating and shearing magnetic regions. We found that the sign of shear current distribution is opposite in dominant pixels (60%–65%) to that of twist current distribution, and its time profile bears no systematic trend. This result indicates that the gradient of magnetic field strength contributes to an opposite signed, though smaller in magnitude, current to that contributed by the magnetic field direction in the vertical component of the current. Consequently, the net value of the shear current is negative in both polarity regions, which when added to the net twist current reduces the direct current value in the north (B z > 0) polarity, resulting in a higher degree of NVC neutralization. We conjecture that the observed opposite signs of shear and twist currents are an indication, according to Parker, that the direct volume currents of flux tubes are canceled by their return currents, which are contributed by field strength gradients. Furthermore, with the increase of spatial resolution, we found higher values of twist, shear current distributions. However, the resolution effect is more useful in resolving the field strength gradients, and therefore suggests more contribution from shear current for the degree of NVC neutralization.

  4. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations (United States)

    Beranová, Romana; Kyselý, Jan; Hanel, Martin


    The study compares characteristics of observed sub-daily precipitation extremes in the Czech Republic with those simulated by Hadley Centre Regional Model version 3 (HadRM3) and Rossby Centre Regional Atmospheric Model version 4 (RCA4) regional climate models (RCMs) driven by reanalyses and examines diurnal cycles of hourly precipitation and their dependence on intensity and surface temperature. The observed warm-season (May-September) maxima of short-duration (1, 2 and 3 h) amounts show one diurnal peak in the afternoon, which is simulated reasonably well by RCA4, although the peak occurs too early in the model. HadRM3 provides an unrealistic diurnal cycle with a nighttime peak and an afternoon minimum coinciding with the observed maximum for all three ensemble members, which suggests that convection is not captured realistically. Distorted relationships of the diurnal cycles of hourly precipitation to daily maximum temperature in HadRM3 further evidence that underlying physical mechanisms are misrepresented in this RCM. Goodness-of-fit tests indicate that generalised extreme value distribution is an applicable model for both observed and RCM-simulated precipitation maxima. However, the RCMs are not able to capture the range of the shape parameter estimates of distributions of short-duration precipitation maxima realistically, leading to either too many (nearly all for HadRM3) or too few (RCA4) grid boxes in which the shape parameter corresponds to a heavy tail. This means that the distributions of maxima of sub-daily amounts are distorted in the RCM-simulated data and do not match reality well. Therefore, projected changes of sub-daily precipitation extremes in climate change scenarios based on RCMs not resolving convection need to be interpreted with caution.

  5. EIT And SXT Observations of a Quiet-Region Filament Ejection: First Eruption, Then Reconnection (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Thompson, Barbara J.


    We observe a slow-onset quiet-region filament eruption with the Extreme Ultraviolet Imaging Telescope (EIT) on the Solar Heliospheric Observatory (SOHO) and the Soft X-ray Telescope (SXT) on Yohkoh. This event occurred on 1999 April 18 and was likely the origin of a coronal mass ejection detected by SOHO at 08:30 UT on that day. In the EIT observation, one-half of the filament shows two stages of evolution: stage 1 is a slow, roughly constant upward movement at approximately 1 km/s lasting approximately 0.5 hr, and stage 2 is a rapid upward eruption at approximately 16 km/s occurring just before the filament disappears into interplanetary space. The other half of the filament shows little motion along the line of sight during the time of stage 1 but erupts along with the rest of the filament during stage 2. There is no obvious emission from the filament in the SXT observation until stage 2; at that time, an arcade of EUV and soft X-ray loops forms first at the central location of the filament and then expands outward along the length of the filament channel. A plot of EUV intensity versus time of the central portion of the filament (where the postflare loops initially form) shows a flat profile during stage 1 and a rapid upturn after the start of stage 2. This light curve is delayed from what would be expected if 'tether-cutting' reconnection in the core of the erupting region were responsible for the initiation of the eruption. Rather, these observations suggest that a loss of stability of the magnetic field holding the filament initiates the eruption, with reconnection in the core region occurring only as a by-product.

  6. IUE observations of interstellar Si IV and C IV lines observed in the spectra of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Smith, L.J.; Willis, A.J.; Wilson, R.


    Recent IUE observations of Wolf-Rayet stars show narrow absorption lines in the highly ionized species of Si IV and C IV. The strengths of these 'interstellar' Si IV and C IV lines observed in the spectra of 10 WR stars and two other early-type stars are compared. Of the WR sample, six stars exhibit very strong Si IV and C IV lines (Wsub(lambda) approximately 0.3 to 0.5 A) whilst the other four stars show much weaker lines (Wsub(lambda) approximately 0.1 A). There is no correlation between the strengths of these lines with either stellar distance or colour excess. The weaker absorptions may arise in the individual stellar H II regions, the observed strengths being consistent with those expected for stars with Tsub(eff) = 30 000 K. Five of the other stars which exhibit very strong absorptions lie in the line of sight to active interstellar regions (Cygnus and Carina nebulae) and it is considered probable that, in addition to their H II region components, the bulk of the strong Si IV and C IV absorptions originate in hot gas associated with these active regions. In the case of the WN5 star HD 50896 violet-displaced components are observed in the interstellar lines of low ionization species. These are thought to be produced in the ring nebula S308 surrounding HD 50896. (author)

  7. Linking source region and ocean wave parameters with the observed primary microseismic noise (United States)

    Juretzek, C.; Hadziioannou, C.


    In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.

  8. Involvement of high plasma corticosterone status and activation of brain regional serotonin metabolism in long-term erythrosine-induced rearing motor hyper activity in young adult male rats. (United States)

    Dalal, Arindam; Poddar, Mrinal K


    Long-term consumption of artificial food color(s) can induce behavioral hyperactivity in human and experimental animals, but no neurobiochemical mechanism is defined. This study investigates the role of brain regional serotonin metabolism including its turnover, MAO-A activity, and plasma corticosterone status in relation to behavioral disturbances due to an artificial food color, erythrosine. Long-term (15 or 30 consecutive days) erythrosine administration with higher dosage (10 or 100 mg/kg/day, p.o.) produced optimal hyperactive state in exploratory behavior (rearing motor activity) after 2 h of last erythrosine administration, in young adult male albino rats. Erythrosine-induced stimulation in brain regional (medulla-pons, hypothalamus, hippocampus, and corpus striatum) serotonin metabolism (measuring steady state levels of 5-HT and 5-HIAA, MAO-A activity), including its turnover (pargyline-induced 5-HT accumulation and 5-HIAA declination rate), as well as plasma corticosterone were also observed depending on dosage(s) and duration(s) of erythrosine administration under similar experimental conditions. The lower dosage of erythrosine (1 mg/kg/day, p.o.) under similar conditions did not affect either of the above. These findings suggests (a) the induction as well as optimal effect of long-term erythrosine (artificial food color) on behavioral hyperactivity in parallel with increase in 5-HT level in brain regions, (b) the activation of brain regional serotonin biosynthesis in accordance with plasma corticosterone status under such behavioral hyperactivity, and (c) a possible inhibitory influence of the enhanced glucocorticoids-serotonin interaction on erythrosine-induced rearing motor hyperactivity in young adult mammals.

  9. Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation (United States)

    Georgoulis, Manolis K.

    Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  10. Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    Directory of Open Access Journals (Sweden)

    D. P. Monselesan


    Full Text Available During summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these

  11. Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    Directory of Open Access Journals (Sweden)

    D. P. Monselesan


    Full Text Available During summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these previously unreported polar

  12. Observing the Sun with NuSTAR (United States)

    Kohler, Susanna


    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a space telescope primarily designed to detect high-energy X-rays from faint, distant astrophysical sources. Recently, however, its occasionally been pointing much closer to home, with the goal of solving a few longstanding mysteries about the Sun.Intensity maps from an observation of a quiet-Sun region near the north solar pole and an active region just below the solar limb. The quiet-Sun data will be searched for small flares that could be heating the solar corona, and the high-altitude emission above the limb may provide clues about particle acceleration. [Adapted from Grefenstette et al. 2016]An Unexpected TargetThough we have a small fleet of space telescopes designed to observe the Sun, theres an important gap: until recently, there was no focusing telescope making solar observations in the hard X-ray band (above ~3 keV). Conveniently, there is a tool capable of doing this: NuSTAR.Though NuSTARs primary mission is to observe faint astrophysical X-ray sources, a team of scientists has recently conducted a series of observations in which NuSTAR was temporarily repurposed and turned to focus on the Sun instead.These observations pose an interesting challenge precisely because of NuSTARs extreme sensitivity: pointing at such a nearby, bright source can quickly swamp the detectors. But though the instrument cant be used to observe the bright flares and outbursts from the Sun, its the perfect tool for examining the parts of the Sun weve been unable to explore in hard X-rays before now such as faint flares, or the quiet, inactive solar surface.In a recently published study led by Brian Grefenstette (California Institute of Technology), the team describes the purpose and initial results of NuSTARs first observations of the Sun.Solar MysteriesWhat is NuSTAR hoping to accomplish with its solar observations? There are two main questions that hard X-ray observations may help to answer.How are particles accelerated in

  13. A study of lightning activity over land and oceanic regions of India

    Indian Academy of Sciences (India)

    important point and above results have strongly motivated us to take up the study of land–land and land–ocean contrast in lightning activity over. India. The geographic regions of India chosen for the present study include: • Eastern region (ER) and western region (WR) of India,. • East coast of India and a strip of six oceanic.

  14. Evaluation of the functional activity of activated sludge from local waste water treatment plant in the Arctic region

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.


    Full Text Available The paper considers characteristics of the activated sludge in the local wastewater treatment plant (LWTP and its ability to purify fully domestic sewage water in the Far North. Biochemical process of destruction of organic pollutants is influenced by a microbial complex functioning in aeration tanks. Taking into account climatic conditions of the region where the organic matter degradation processes are slowed, and lack of control over the operation, efficiency and occupational safety of LWTPs, it seems to be important to study the physiological characteristics of the bacteria used in bioremediation, and their ability to maximize the purifying domestic sewage in the Arctic region. Undue intervention in the biosphere systems leads to disruption of the balance of internal and external ecosystems communications. The goal of research is studying structural determination and functioning of activated sludge bacteriocenosis of LWTP TOPAS-5 (GK "Topol-ECO" in certain physical and chemical conditions of the habitat, and establishing completeness of cleaning process in this treatment plant. The paper considers the structure (quantitative and qualitative composition and function of LWTP activated sludge bacteriocenosis functioning in the Arctic region. The estimation of the activated sludge of full waste water treatment process of the LWTP has been given. The research's results have allowed to identify and determine the bacterial count of physiological groups of microorganisms purified domestic sewage; to isolate from activated sludge the bioflocculant-producing microorganisms' on the experimental medium; to evaluate efficiency of LWTP work in the Arctic region

  15. Shallow vent architecture of Puyehue Cordón-Caulle, as revealed by direct observation of explosive activity (United States)

    Schipper, C. I.; Tuffen, H.; Castro, J. M.


    On June 4, 2011, an explosive eruption of rhyodacitic magma began at the Puyehue Cordón-Caulle volcanic complex (PCCVC), southern Chile. Initial Plinian phases of the eruption produced tephra plumes reaching > 14 km high, the ash from which quickly circumnavigated the globe to cause widespread disruption to air traffic in the Southern Hemisphere. Within two weeks, the continuing explosive eruption was joined by synchronous effusion of lava. We present observations of complex vent activity made 7 months after the eruption onset, on January 4th and 10th, 2012, when explosive activity from PCCVC continued at a lower level of intensity. Fortuitous climatic conditions permitted direct, ground-based observation and video recording of transient vent dynamics within the asymmetrical tephra cone around the main eruptive vent complex and site of lava effusion, as well as real-time collection of juvenile ash as it rained out directly from the active plume. On Jan. 4, explosive activity was semi-continuous ash jetting punctuated by Vulcanian-like blasts. In the ~50m-diameter sub-circular base of the ~400 m-wide, asymmetrical tephra cone, near-continuous ash jetting was observed from two primary point sources. The northerly source was clearly visible, with time-averaged diameter of ~10 m, and the apparently larger southerly source was mostly obscured from view by the ash plume. Activity was at all times somewhat erratic, but followed a rough cyclicity on 30-45 s timescales, consisting of: (1) restriction of the point source into a focused ash jet up to ~50 m high, producing coarse ash dominated by tube pumice (with minor free pyroxene crystals); followed by (2) Vulcanian-like failure of the region around the point source, producing incandescent ballistic bombs thrown up to 100-200 m from the vent. Jetting from the two main point sources combined in the crater to produce a low gas-thrust region and sustained buoyant plume. Directed ash plumes that climbed and breached the inner

  16. Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition. (United States)

    Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio


    Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.

  17. Structure and Dynamics of Cool Flare Loops Observed by the Interface Region Imaging Spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Mikuła, K.; Berlicki, A. [Astronomical Institute, University of Wrocław, Kopernika 11, 51–622 Wrocław (Poland); Heinzel, P.; Liu, W., E-mail: [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov (Czech Republic)


    Flare loops were well observed with the Interface Region Imaging Spectrograph ( IRIS ) during the gradual phase of two solar flares on 2014 March 29 and 2015 June 22. Cool flare loops are visible in various spectral lines formed at chromospheric and transition-region temperatures and exhibit large downflows which correspond to the standard scenario. The principal aim of this work is to analyze the structure and dynamics of cool flare loops observed in Mg ii lines. Synthetic profiles of the Mg ii h line are computed using the classical cloud model and assuming a uniform background intensity. In this paper, we study novel IRIS NUV observations of such loops in Mg ii h and k lines and also show the behavior of hotter lines detected in the FUV channel. We obtained the spatial evolution of the velocities: near the loop top, the flow velocities are small and they are increasing toward the loop legs. Moreover, from slit-jaw image (SJI) movies, we observe some plasma upflows into the loops, which are also detectable in Mg ii spectra. The brightness of the loops systematically decreases with increasing flow velocity, and we ascribe this to the effect of Doppler dimming, which works for Mg ii lines. Emission profiles of Mg ii were found to be extremely broad, and we explain this through the large unresolved non-thermal motions.

  18. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    International Nuclear Information System (INIS)

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young


    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  19. From feedback- to response-based performance monitoring in active and observational learning. (United States)

    Bellebaum, Christian; Colosio, Marco


    Humans can adapt their behavior by learning from the consequences of their own actions or by observing others. Gradual active learning of action-outcome contingencies is accompanied by a shift from feedback- to response-based performance monitoring. This shift is reflected by complementary learning-related changes of two ACC-driven ERP components, the feedback-related negativity (FRN) and the error-related negativity (ERN), which have both been suggested to signal events "worse than expected," that is, a negative prediction error. Although recent research has identified comparable components for observed behavior and outcomes (observational ERN and FRN), it is as yet unknown, whether these components are similarly modulated by prediction errors and thus also reflect behavioral adaptation. In this study, two groups of 15 participants learned action-outcome contingencies either actively or by observation. In active learners, FRN amplitude for negative feedback decreased and ERN amplitude in response to erroneous actions increased with learning, whereas observational ERN and FRN in observational learners did not exhibit learning-related changes. Learning performance, assessed in test trials without feedback, was comparable between groups, as was the ERN following actively performed errors during test trials. In summary, the results show that action-outcome associations can be learned similarly well actively and by observation. The mechanisms involved appear to differ, with the FRN in active learning reflecting the integration of information about own actions and the accompanying outcomes.

  20. Improvement of Measurement and Evaluation of Regional Authorities Activity: Model and Statistical Approach

    Directory of Open Access Journals (Sweden)

    Petrova Elena Аleksandrovna


    Full Text Available Formation of strategy of long-term social and economic development is a basis for effective functioning of executive authorities and the assessment of its efficiency in general. Modern theories of assessment of public administration productivity are guided by the process approach when it is expedient to carry out the formation of business processes of regional executive authorities according to strategic indicators of territorial development. In this regard, there is a problem of modeling of interrelation of indicators of social and economic development of the region and quantitative indices of results of business processes of executive authorities. At the first stage of modeling, two main directions of strategic development, namely innovative and investment activity of regional economic systems are considered. In this regard, the work presents the results of modeling the interrelation between the indicators of regional social and economic development and innovative and investment activity. Therefore, for carrying out the analysis, the social and economic system of the region is presented in space of the main indicators of social and economic development of the territory and indicators of innovative and investment activity. The analysis is made on values of the indicators calculated for regions of the Russian Federation during 2000, 2005, 2008, 2010 and 2011. It was revealed that strategic indicators of innovative and investment activity have the most significant impact on key signs of social and economic development.

  1. Solar and Stellar Active Regions:Cosmic laboratories for the study of Complexity


    Vlahos, Loukas


    Solar active regions are driven dissipative dynamical systems. The turbulent convection zone forces new magnetic flux tubes to rise above the photosphere and shuffles the magnetic fields which are already above the photosphere. The driven 3D active region responds to the driver with the formation of Thin Current Sheets in all scales and releases impulsively energy, when special thresholds are met, on the form of nano-, micro-, flares and large scale coronal mass ejections. It has been documen...

  2. The Multiple Facets of Regional Innovation


    Matthias Siller; Christoph Hauser; Janette Walde; Gottfried Tappeiner


    Measuring innovation activities involves critical decisions in selecting appropriate indicators and levels of observation. The present article contributes to the literature on this subject by addressing innovation measurement on the regional level. The dimensionality of regional innovation is examined by applying a principal component analysis on seven innovation output indicators in European regions from the Community Innovation Survey and two traditional indicators, i.e. patent applications...


    Energy Technology Data Exchange (ETDEWEB)

    Toriumi, Shin [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Schrijver, Carolus J. [Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Harra, Louise K. [UCL-Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Hudson, Hugh [SUPA School of Physics and Astronomy, University of Glasgow (United Kingdom); Nagashima, Kaori, E-mail: [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)


    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory . More than 80% of the 29 ARs are found to exhibit δ -sunspots, and at least three ARs violate Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ -sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 10{sup 23} Mx, might be able to produce “superflares” with energies of the order of 10{sup 34} erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.

  4. Dissociation between active and observational learning from positive and negative feedback in Parkinsonism. (United States)

    Kobza, Stefan; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian


    Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson's Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson's Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson's Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning.

  5. Centro Regional de Ciencias Nucleares (a Brazilian regional center for nuclear sciences) - activities report - 1999

    International Nuclear Information System (INIS)


    The annual activities report of 1999 of nuclear sciences regional center - Brazilian organization - introduces the next main topics: institutional relations; sectorial actions - logistic support and training, laboratory of radiation protection and dosimetry, laboratory of metrology, laboratory of chemical characterization; technical and scientific events; and financial resources and perspectives for 2000

  6. Cloud-radiation-precipitation associations over the Asian monsoon region: an observational analysis (United States)

    Li, Jiandong; Wang, Wei-Chyung; Dong, Xiquan; Mao, Jiangyu


    This study uses 2001-2014 satellite observations and reanalyses to investigate the seasonal characteristics of Cloud Radiative Effects (CREs) and their associations with cloud fraction (CF) and precipitation over the Asian monsoon region (AMR) covering Eastern China (EC) and South Asia (SA). The CREs exhibit strong seasonal variations but show distinctly different relationships with CFs and precipitation over the two regions. For EC, the CREs is dominated by shortwave (SW) cooling, with an annual mean value of - 40 W m- 2 for net CRE, and peak in summer while the presence of extensive and opaque low-level clouds contributes to large Top-Of-Atmosphere (TOA) albedo (>0.5) in winter. For SA, a weak net CRE exists throughout the year due to in-phase compensation of SWCRE by longwave (LW) CRE associated with the frequent occurrence of high clouds. For the entire AMR, SWCRE strongly correlates with the dominant types of CFs, although the cloud vertical structure plays important role particularly in summer. The relationships between CREs and precipitation are stronger in SA than in EC, indicating the dominant effect of monsoon circulation in the former region. SWCRE over EC is only partly related to precipitation and shows distinctive regional variations. Further studies need to pay more attention to vertical distributions of cloud micro- and macro-physical properties, and associated precipitation systems over the AMR.

  7. Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B (United States)

    Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Dunlea, E. J.; Roberts, G. C.; Tomlinson, J. M.; Collins, D. R.; Howell, S. G.; Kapustin, V. N.; McNaughton, C. S.; Zhou, J.


    Remote sensing of cloud condensation nuclei (CCN) would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, κ, was calculated from hygroscopicity measured under saturation. κ for dry 100 nm particles decreased with increasing organic fraction of non-refractory mass of submicron particles (OMF) as 0.34-0.20×OMF over Central Mexico and 0.47-0.43×OMF over the US West Coast. These fits represent the critical dry diameter, centered near 100 nm for 0.2% supersaturation but varied as κ(-1/3), within measurement uncertainty (~20%). The decreasing trends of CCN activity with the organic content, evident also in our direct CCN counts, were consistent with previous ground and laboratory observations of highly organic particles. The wider range of OMF, 0-0.8, for our research areas means that aerosol composition will be more critical for estimation of CCN concentration than at the fixed sites previously studied. Furthermore, the wavelength dependence of extinction was anti-correlated with OMF as -0.70×OMF+2.0 for Central Mexico's urban and industrial pollution air masses, for unclear reasons. The Angstrom exponent of absorption increased with OMF, more rapidly under higher single scattering albedo, as expected for the interplay between soot and colored weak absorbers (some organic species and dust). Because remote sensing products currently use the wavelength dependence of extinction albeit in the column integral form and may potentially include that of absorption, these regional spectral dependencies are expected to facilitate retrievals of aerosol bulk chemical composition and CCN activity over Central Mexico.

  8. Recurrent flares in active region NOAA 11283 (United States)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.


    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at

  9. Cophasal regions on the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, N I [Moskovskij Gosudarstvennyj Univ. (USSR). Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' '


    The subsequent development of the phenomenological model of the solar convective zone is carried out. The cophasal region, in which unilateral movement of the matter is supposed, is considered. Quantitative relations for kinematic parameters of solar sport groups, agreeing well with the observations, are given. The cophasal regions distribution due to their linear dimensions is obtained. It is shown that the effective depth of the convective zone is found to change with the phase of the activity cycle: less in the minimum and more in the maximum of activity.

  10. X-ray photographs of a solar active region with a multilayer telescope at normal incidence (United States)

    Underwood, J. H.; Bruner, M. E.; Haisch, B. M.; Brown, W. A.; Acton, L. W.


    An astronomical photograph was obtained with a multilayer X-ray telescope. A 4-cm tungsten-carbon multilayer mirror was flown as part of an experimental solar rocket payload, and successful images were taken of the sun at normal incidence at a wavelength of 44 A. Coronal Si XII emission from an active region was recorded on film; as expected, the structure is very similar to that observed at O VIII wavelengths by the Solar Maximum Mission flat-crystal spectrometer at the same time. The small, simple optical system used in this experiment appears to have achieved a resolution of 5 to 10 arcsec.

  11. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao


    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  12. Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005

    Directory of Open Access Journals (Sweden)

    G. Prattes


    Full Text Available We present the results of ground-based Ultra Low Frequency (ULF magnetic field measurements observed from June to August 2004 during the Bovec earthquake on 12 July 2004. Further we give information about the seismic activity in the local observatory region for an extended time span 2004 and 2005. ULF magnetic field data are provided by the South European Geomagnetic Array (SEGMA where the experience and heritage from the CHInese MAGnetometer (CHIMAG fluxgate magnetometer comes to application. The intensities of the horizontal H and vertical Z magnetic field and the polarization ratio R of the vertical and horizontal magnetic field intensity are analyzed taking into consideration three SEGMA observatories located at different close distances and directions from the earthquake epicenter. We observed a significant increase of high polarization ratios during strong seismic activity at the observatory nearest to the Bovec earthquake epicenter. Apart from indirect ionospheric effects electromagnetic noise could be emitted in the lithosphere due to tectonic effects in the earthquake focus region causing anomalies of the vertical magnetic field intensity. Assuming that the measured vertical magnetic field intensities are of lithospheric origin, we roughly estimate the amplitude of electromagnetic noise in the Earths crust considering an average electrical conductivity of <σ>=10−3 S/m and a certain distance of the observatory to the earthquake epicenter.

  13. Measuring the Impact of Wildfire on Active Layer Thickness in a Discontinuous Permafrost region using Interferometric Synthetic Aperture Radar (InSAR) (United States)

    Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.


    In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of

  14. Numerical simulation of mid-latitude ionospheric E-region based on SEEK and SEEK-2 observations

    Directory of Open Access Journals (Sweden)

    T. Yokoyama


    Full Text Available Observational campaigns of the mid-latitude ionospheric E-region with sounding rockets and ground-based instruments were conducted in 1996 (SEEK and 2002 (SEEK-2. Both of them were successfully conducted to bring important findings about the mid-latitude E-region and quasi-periodic (QP VHF radar echoes. The observational results in the SEEK and the SEEK-2 are compared with numerical simulations and discussed in this paper. While sporadic-E (Es-layers are actually formed by the observed neutral wind, it is difficult for the constant wind shear to produce the sharp Es-layer gradient. However, once they are formed in the lower E-region, they cannot easily be dissipated by the simple diffusive motion. The polarization electric field, calculated under the condition at the rocket launch time, shows similar amplitude and structure to the measurement around the Es-layer altitude. The structure of the plasma density and the electric field above the Es-layer observed in the SEEK-2 showed a wave-like pattern up to an altitude of 150 km. Considering a mapping of the polarization electric field generated within the Es-layers, gravity waves are the possible source of the wave-like structure of the measured electric fields and sub-peaks of the electron density above the main Es-layers. Fluctuation of the measured magnetic field is reproduced by Hall or field-aligned current driven by the polarization electric field. The current theoretical models for QP echoes and the polarization electric field are basically verified by the discussion in this paper. Keywords. Ionospheric irregularities – Mid-latitude ionosphere – Numerical simulation studies


    Directory of Open Access Journals (Sweden)

    H. K. Lappalainen


    Full Text Available Pan-Eurasian Experiment (PEEX initiative (, initiated in 2012, is an international, multidisciplinary, multiscale program focused on solving interlinked global challenges influencing societies in the Northern Eurasian region and in China. As a part of the program, PEEX is aimed to establish an in situ observation network, which would cover environments from the Arctic coastal regions, tundra to boreal forests, from pristine to urban megacities. The PEEX network will be based on two components: (i the existing stations activities and (ii establishing new stations. The upgrading plans of the existing stations as well as the new stations will be based on a SMEAR (Stations for Measuring Earth surface ‒ Atmosphere Relations concept. The development of the coordinated, comprehensive PEEX observation network is contributing to the sustainable development of the Northern Eurasian regions. It is aimed at providing quantified information on climate relevant variables for the research communities and for constructing services, such as early warning systems, for the society.

  16. Observation of magnetic field perturbations during sawtooth activity in tokamak plasmas

    International Nuclear Information System (INIS)

    Soltwisch, H.; Koslowski, H.R.


    Sawtooth activity is a prominent example of a global plasma instability which is observed in virtually all tokamak devices. Despite numerous experimental and theoretical investigations, the phenomenon is still barely understood. As far as experimental effort is concerned, much attention has been paid to soft X-ray emission from the plasma and to its analysis in terms of two-dimensional contour plots, because it is thought to reflect the shape and temporal behaviour of magnetic flux surfaces during a sawtooth cycle. Recently, more direct methods of detecting sawtooth-related changes in the magnetic field structure have become available and have added new facets to the general picture. In this picture, some observations made on the Juelich tokamak TEXTOR by means of a Faraday rotation diagnostic technique will be reported. First, in correlation with the sawtooth collapse a localized periodic perturbation of the magnetic field with principal mode numbers m = 1 and n = 0 has been detected which, in the presence of an m = n = 1 island, may give rise to magnetic field line stochastization and thereby contribute significantly to a rapid expulsion of electronic energy from the plasma core region. Second, the so-called precursor oscillations prior to a sawtooth crash have been investigated and estimates have been obtained for the growth rate and width of a magnetic island forming immediately before the collapse. (Author)

  17. Determinants of anti-corruption activities at the regional level

    Directory of Open Access Journals (Sweden)

    T. I. Ovchinnikova


    Full Text Available The article explores the concept of corruption, defined as an obstacle to economic and social development, created by representatives of the power structures of the country, region, enterprise, weakening the efficiency of management and the institutional foundation of society. Anticorruption activity is presented in the article as conditions created by the state and ensuring that the country's economy is not irreparably damaged by internal and external economic threats. The estimated characteristics of the anti-corruption activities of the regions and the country as a whole, as a rule, are studied in the domestic sources and among foreign authors. Statistical evaluation of the relationship between the level of corruption and indicators: the dynamics of GRP growth, the index of real incomes of the population, the costs of training, health care is made on the basis of the coefficient Pearson correlation. Based on the correlation analysis, stable links were established between the level of corruption and the socio-economic indicators of the region's development: an increase in the level of corruption associated with an increase in the population's spending on education and medicine; a reduction in the level of corruption, as a result of increased incomes of the population and higher wages. The consequences of corruption are presented: legal (the undeveloped legislative base, which involves bribery of powerful people, the growth of corruption in the society, the increase in corruption crimes, the inefficiency of the regulatory framework, social (moral violation, low public evaluation of the activities of power structures, low level of culture and upbringing , economic (bias financial, investment decisions, illegal distribution of property and non-property benefits, the impossibility of competitors Vat with developed countries and others.

  18. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia. (United States)

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng


    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  19. Electrostatic quasi-monochromatic waves in the downstream region of the Earth's bow shock based on Geotail observations (United States)

    Shin, K.; Kojima, H.; Matsumoto, H.; Mukai, T.


    Geotail plasma wave observations show the existence of intense electrostatic quasi-monochromatic (EQM) waves in the downstream region of the Earth's bow shock. They oscillate parallel to the ambient magnetic field and appear at frequencies between the electron plasma and ion plasma frequencies. Although these waves have been believed to be Doppler-shifted ion acoustic waves, the typical plasma parameters observed in the downstream region do not support the generation conditions for ion acoustic waves. In this paper, the existence of cold electron beam-like components accompanying EQM waves is considered based on waveform and statistical analyses. Linear dispersion analyses using realistic plasma parameters revealed that the cold electron beams cause destabilization of electron acoustic waves at frequencies consistent with those of observed EQM waves. The results of observations and linear analyses suggest that EQM waves are generated by the destabilization of the electron acoustic mode.

  20. Ionospheric foF2 at EIA region: comparison between observations and IRI model (United States)

    Chuo, Y. J.; Lee, C. C.

    We have used data from an equatorial ionization anomaly area station in the western Pacific region to study the monthly variability of foF2 Diurnal seasonal and solar activity effects were investigated The data established by this study are proposed as valid input values for the development of URSI and CCIR options for the International Reference Ionosphere

  1. Multiple frequency radar observations of high-latitude E region irregularities in the HF modified ionosphere

    International Nuclear Information System (INIS)

    Noble, S.T.; Djuth, F.T.; Jost, R.J.


    In September 1983, experiments were conducted in Scandinavia using the high-power heating facility near Tromso, Norway. The purpose of the HF ionospheric modification experiments was to investigate the behavior of artificially produced E region irregularities at auroral latitudes. The majority of observations were made with backscatter radars operating at 46.9 and 143.8 MHz, but limited observations were also made at 21.4 and 140.0 MHz. These radars are sensitive to irregularities having scale lengths of between 1 and 7 m across the geomagnetic field lines. The growth and decay of the irregularities are scale length dependent with the shorter lengths growing and dissipating more rapidly than the longer lengths (e-folding growth times = 10 1 --10 2 ms; decay times = 10 2 --10 3 ms). During periods of full power ordinary mode heating, irregularities having peak cross sections of 10 4 m 2 at 46.9 MHz and 10 5 m 2 at 143.8 MHz are observed. However, the cross sections normally measured are 1 to 2 orders of magnitude smaller than the peak values. The cross sections are nonlinearly dependent on the HF power and begin to saturate at levels greater than 50--75 percent of full power. Past E and F region data from Arecibo are used in conjunction with the Tromso measurements to ascertain the relative roles played by various mechanisms in exciting irregularities. In the E region, the results tend to favor those instability processes which operate at the upper hybrid resonance level (e.g., thermal parametric and resonance instabilities) over those that operate at the reflection level (e.g., parametric decay instability). However, it is likely that anyh of the mechanisms studied could at times contribute to irregularity production in the E regions

  2. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin


    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  3. Observations of seasonal exchange in the Celtic Sea slope region from underwater gilders (United States)

    Porter, Marie; Inall, Mark; Smeed, David; Palmer, Matthew; Dumont, Estelle; Aleynik, Dmitry


    Between June 2012 and January 2013, four underwater gliders, profiling to a maximum depth of 1000m, occupied a transect between 47.6°N, 10.3°W and 48.4°N, 9.3°W, perpendicular to the Celtic Sea continental slope. Due to the significant and well-documented internal tide activity in this region and the relatively slow through-water speed of gliders it is first demonstrated that the chosen sampling methodology minimised aliasing of the internal tide. Gliders were flown along a repeat transect and care was taken to ensure that each location was sampled at a different phase of the tide on repeat occupations. Through monthly averaging of the transect data, the effects of the internal tide are minimised and the lower frequency processes made visible. In this presentation we highlight the importance of the lower frequency variability in contributing to cross-slope exchange. Analysis of monthly averaged glider transect data suggests two distinct regimes; 1) Summer, June - October, when the surface water was temperature stratified and, 2) Winter, from October to January, when the seasonal thermocline was mixed down to below the depth of the shelf break (200 m). During the stratified summer months a well-defined shelf break salinity front limits the exchange of water between the ocean and the shelf, preventing the spread of the more saline, sub-surface ocean water (centred at ~150m) onto the shelf. Nevertheless, some cross-slope flow is identified during these months: an intermediate depth salinity minimum (centred at ~600m) is observed to upwell (from 600m to 200-300m) up the slope, sometimes continuing onto the shelf. As the stratification is eroded during the winter months, subsurface upwelling switches to downwelling, and the intermediate depth salinity minimum (~600m) retreats away from the slope region removing it as a potential source of oceanic water on the shelf. Downwelling near to the slope does however allow for an intrusion of the shallower high salinity

  4. AoA Region: The regional organization for the protection of the marine environment/regional commission for fisheries (ROPME/RECOFI) area

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    and export of crude oil and natural gas is the mainstay of the economies of the ROPME Sea Area countries, while fi shing and agriculture are the other major economic activities. Because of the maritime transport ANNEX IV : REGIONAL SUMMARIES – THE REGIONAL... and the Kuwait Institute for Scientifi c Research, all of which have fairly well-developed observation programmes and datasets, including coastal time-series data. ROPME organizes basin-scale cruises from time to time. The Ministry of Agriculture...

  5. IRAS observations of chromospherically active dwarf stars (United States)

    Tsikoudi, Vassiliki


    Far-infrared observations of chromospherically active, spotted, and plage stars in the dF7-dk7 spectral range are examined. Most (75 percent) of the stars have detectable 12-micron fluxes, and 50 percent of them have 25-micron emission. The 12-micron luminosity, L(12), is found to be in the range of 1.5-13 x 10 to the 30th ergs/s and to comprise only 0.2-0.5 percent of the star's total luminosity, L(bol). The present work extends to earlier spectral types and higher stellar luminosities the L(12) vs L(bol) relationship noted previously for late-type active dwarfs (K5-M5).

  6. IRAS observations of chromospherically active dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Tsikoudi, V. (Ioannina Univ. (Greece))


    Far-infrared observations of chromospherically active, spotted, and plage stars in the dF7-dk7 spectral range are examined. Most (75 percent) of the stars have detectable 12-micron fluxes, and 50 percent of them have 25-micron emission. The 12-micron luminosity, L(12), is found to be in the range of 1.5-13 x 10 to the 30th ergs/s and to comprise only 0.2-0.5 percent of the star's total luminosity, L(bol). The present work extends to earlier spectral types and higher stellar luminosities the L(12) vs L(bol) relationship noted previously for late-type active dwarfs (K5-M5). 17 refs.

  7. A Comparative Observational Study of YSO Classification in Four Small Star-forming H ii Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung-Ju; Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Kerton, C. R., E-mail:, E-mail: [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)


    We have developed a new young stellar object (YSO) identification and classification technique using mid-infrared Wide-field Infrared Survey Explorer (WISE) data. We compare this new technique with previous WISE YSO detection and classification methods that used either infrared colors or spectral energy distribution slopes. In this study, we also use the new technique to detect and examine the YSO population associated with four small H ii regions: KR 7, KR 81, KR 120, and KR 140. The relatively simple structure of these regions allows us to effectively use both spatial and temporal constraints to identify YSOs that are potential products of triggered star formation. We are also able to identify regions of active star formation around these H ii regions that are clearly not influenced by the H ii region expansion, and thus demonstrate that star formation is on-going on megayear timescales in some of these molecular clouds.

  8. The selective alpha7 nicotinic acetylcholine receptor agonist A-582941 activates immediate early genes in limbic regions of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, M S; Mikkelsen, J D; Timmermann, D B


    to study whether alpha7 nAChR stimulation activates brain regions involved in cognition in juvenile as well as adult individuals. Here, we compared the effects of the novel and selective alpha7 nAChR agonist 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) in the juvenile...... regions critically involved in working memory and attention. Furthermore, this effect is more pronounced in juvenile than adult rats, indicating that the juvenile forebrain is more responsive to alpha7 nAChR stimulation. This observation may be relevant in the treatment of juvenile-onset schizophrenia....

  9. Noise storm coordinated observations

    International Nuclear Information System (INIS)

    Elgaroey, Oe.; Tlamicha, A.


    The usually accepted bipolar model of noise storm centers is irrelevant for the present observations. An alternative model has been proposed in which the different sources of a noise storm center are located in different flux tubes connecting active regions with their surroundings. Radio emission is observed from the wide, descending branch of the flux tubes, opposite to the flaring site. The relation between the sense of circular polarization of the radio emission and the magnetic polarity, has been more precisely defined. The radiation is in the ordinary mode with respect to the underlying large scale photospheric magnetic polarity. Thus the ''irregular'' polarity of noice storm center ''B'' is explained. As regards center ''C'', one should note that although the observed radio emission is polarized in the ordinary mode with respect to the leading spot of region HR 17653, center ''C'' is not situated in flux tubes originating from the leading part of this region according to the proposed model. Rather, the radio sources are located in the wide and descending part of flux tubes connecting a large, quiet area of south magnetic polarity with the following part of the region HR 17653 (of north magnetic polarity). Thus it is the polarity of the extended area which determines the polarization of the radio emission. The observed polarization should result rather from the emission process than from complicated conditions of propagation for the radio waves

  10. Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Török, Tibor; Titov, Viacheslav S. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, James E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here, we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs: two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL shear between these two groups is much less pronounced, which suggests that the degree of current neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.

  11. Far-infrared and CO observations of NGC 6357 and regions surrounding NGC 6357 and NGC 6334

    International Nuclear Information System (INIS)

    McBreen, B.; Jaffe, D.T.; Fazio, G.G.


    We have surveyed two 1.7 square degree sections of the galactic plane at 70 μm with one-arcminute resolution. The scanned areas included the giant southern H II region complexes NGC 6357 and NGC 6334. Nineteen far-infrared sources were observed. The sources range in luminosity from 1.6 x 10 4 to 5.5 x 10 5 L/sub sun/ . We present far-infrared continuum and CO line observations of NGC 6357. Four far-infrared sources were found in this complex and for one of these sources the exciting stars are identified. We present far-infrared and CO observations of sources in the field surrounding NGC 6357 and NGC 6334. The far-infrared sources coincide frequently with CO line temperature peaks. The CO clouds which surround the far-infrared sources have similar 13 CO column densities. Two of the far-infrared sources in the field have associated OH and H 2 O maser emission and compact H II regions

  12. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  13. Blue-green ZnSe lasers with a new type of active region

    International Nuclear Information System (INIS)

    Ivanov, S.V.; Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Sedova, I.V.; Kop'ev, P.S.; Alferov, Zh.I.; Waag, A.; Lugauer, H.J.; Reuscher, G.; Keim, M.; Fischer, F.F.; Landwehr, G.


    We report the results of an experimental study of molecular-beam epitaxy of ZnSe-based laser heterostructures with a new structure of the active region, which contains a fractional-monolayer CdSe recombination region in an expanded ZnSe quantum well and a waveguide based on a variably-strained, short-period superlattice are reported. Growth of a fractional-monolayer CdSe region with a nominal thickness of 2-3 ML, i.e., less than the critical thickness, on a ZnSe surface (Δa/a∼7%) leads to the formation of self-organized, pseudomorphic, CdSe-enriched islands with lateral dimensions ∼10-30 nm and density ∼2x10 10 cm -2 , which serve as efficient centers of carrier localization, giving rise to effective spatial separation of defective regions and regions of radiative recombination and, as a result, a higher quantum efficiency. Laser structures for optical pumping in the (Zn, Mg) (S, Se) system with a record-low threshold power density (less than 4 kW/cm 2 at 300 K) and continuous-wave laser diodes in the system (Be, Mg, Zn) Se with a 2.5 to 2.8-ML-thick, fractional-monolayer CdSe active region have been obtained. The laser structures and diodes have an improved degradation resistance

  14. The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions (United States)

    Kirichenko, A. S.; Bogachev, S. A.


    We present the result of a comparison between magnetic field parameters and the intensity of X-ray emission for solar microflares with Geosynchronous Operational Environmental Satellites (GOES) classes from A0.02 to B5.1. For our study, we used the monochromatic MgXII Imaging Spectroheliometer (MISH), the Full-disk EUV Telescope (FET), and the Solar PHotometer in X-rays (SphinX) instruments onboard the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon CORONAS- Photon spacecraft because of their high sensitivity in soft X-rays. The peak flare flux (PFF) for solar microflares was found to depend on the strength of the magnetic field and on the total unsigned magnetic flux as a power-law function. In the spectral range 2.8 - 36.6 Å, which shows very little increase related to microflares, the power-law index of the relation between the X-ray flux and magnetic flux for active regions is 1.48 ±0.86, which is close to the value obtained previously by Pevtsov et al. ( Astrophys. J. 598, 1387, 2003) for different types of solar and stellar objects. In the spectral range 1 - 8 Å, the power-law indices for PFF(B) and PFF(Φ) for microflares are 3.87 ±2.16 and 3 ±1.6, respectively. We also make suggestions on the heating mechanisms in active regions and microflares under the assumption of loops with constant pressure and heating using the Rosner-Tucker-Vaiana scaling laws.

  15. Tactile interactions activate mirror system regions in the human brain. (United States)

    McKyton, Ayelet


    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  16. Nature Run for the North Atlantic Ocean Hurricane Region: System Evaluation and Regional Applications (United States)

    Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.


    A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).

  17. Lyman continuum observations of solar flares (United States)

    Machado, M. E.; Noyes, R. W.


    A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

  18. Regional Brain Activation during Meditation Shows Time and Practice Effects: An Exploratory FMRI Study

    Directory of Open Access Journals (Sweden)

    E. Baron Short


    Full Text Available Meditation involves attentional regulation and may lead to increased activity in brain regions associated with attention such as dorsal lateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC. Using functional magnetic resonance imaging, we examined whether DLPFC and ACC were activated during meditation. Subjects who meditate were recruited and scanned on a 3.0 Tesla scanner. Subjects meditated for four sessions of 12 min and performed four sessions of a 6 min control task. Individual and group t-maps were generated of overall meditation response versus control response and late meditation response versus early meditation response for each subject and time courses were plotted. For the overall group (n = 13, and using an overall brain analysis, there were no statistically significant regional activations of interest using conservative thresholds. A region of interest analysis of the entire group time courses of DLPFC and ACC were statistically more active throughout meditation in comparison to the control task. Moreover, dividing the cohort into short (n = 8 and long-term (n = 5 practitioners (>10 years revealed that the time courses of long-term practitioners had significantly more consistent and sustained activation in the DLPFC and the ACC during meditation versus control in comparison to short-term practitioners. The regional brain activations in the more practised subjects may correlate with better sustained attention and attentional error monitoring. In summary, brain regions associated with attention vary over the time of a meditation session and may differ between long- and short-term meditation practitioners.

  19. Active Use of Parks in Flanders (Belgium: An Exploratory Observational Study

    Directory of Open Access Journals (Sweden)

    Linde Van Hecke


    Full Text Available Parks have the potential to increase physical activity at the community level by providing opportunities to be active. In order to inform interventions to promote physical activity in parks, insight is needed concerning park user characteristics, the activity level of park users, the types of activities performed and associations between park areas and temporal variables with observed physical activity levels. Park user characteristics (sex, age, ethnicity and activity level were recorded within pre-defined park areas in two parks in Ghent (Belgium using the System for Observing Play and Recreation in Communities (SOPARC. Most park users were male, adult, and engaged in vigorous-intensity physical activity (48%. Most popular activities were biking (38%, sitting (23% and walking (15%; accordingly, trails were used most and had the highest levels of physical activity compared to other park areas. Parks were used least frequently in the morning, during the weekend and by seniors. Therefore, active park use during morning periods, on weekend days and by seniors should be promoted and urban planners should consider that different park areas can possibly elicit varying activity levels among park users.