WorldWideScience

Sample records for active regions observed

  1. Observing coronal nanoflares in active region moss

    OpenAIRE

    Testa, Paola; De Pontieu, Bart; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss r...

  2. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    Energy Technology Data Exchange (ETDEWEB)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark [Smithsonian Astrophysical Observatory, 60 Garden street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Kuzin, Sergey [P. N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt, 53, 119991 Moscow (Russian Federation); Walsh, Robert [University of Central Lancashire, Lancashire, Preston PR1 2HE (United Kingdom); DeForest, Craig, E-mail: ptesta@cfa.harvard.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  3. Observing coronal nanoflares in active region moss

    CERN Document Server

    Testa, Paola; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by SDO/AIA in the 94A channel, and by Hinode/XRT. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few $10^{23}rg, also supporting the nanoflare scenario. These Hi-C...

  4. Observations of Transient Active Region Heating with Hinode

    OpenAIRE

    Warren, Harry P.; Ugarte-Urra, Ignacio; Brooks, David H.; Cirtain, Jonathan W.; Williams, David R.; Harra, Hirohisa

    2007-01-01

    We present observations of transient active region heating events observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode. This initial investigation focuses on NOAA active region 10940 as observed by Hinode on February 1, 2007 between 12 and 19 UT. In these observations we find numerous examples of transient heating events within the active region. The high spatial resolution and broad temperature coverage of these instruments allows us to track t...

  5. Observations of Transient Active Region Heating with Hinode

    CERN Document Server

    Warren, Harry P; Brooks, David H; Cirtain, Jonathan W; Williams, David R; Harra, Hirohisa

    2007-01-01

    We present observations of transient active region heating events observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode. This initial investigation focuses on NOAA active region 10940 as observed by Hinode on February 1, 2007 between 12 and 19 UT. In these observations we find numerous examples of transient heating events within the active region. The high spatial resolution and broad temperature coverage of these instruments allows us to track the evolution of coronal plasma. The evolution of the emission observed with XRT and EIS during these events is generally consistent with loops that have been heated and are cooling. We have analyzed the most energetic heating event observed during this period, a small GOES B-class flare, in some detail and present some of the spectral signatures of the event, such as relative Doppler shifts at one of the loop footpoints and enhanced line widths during the rise phase of the event. While the analysis of these transient even...

  6. Coronal loops above an Active Region - observation versus model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2014-01-01

    We conducted a high-resolution numerical simulation of the solar corona above a stable active region. The aim is to test the field-line braiding mechanism for a sufficient coronal energy input. We also check the applicability of scaling laws for coronal loop properties like the temperature and density. Our 3D-MHD model is driven from below by Hinode observations of the photosphere, in particular a high-cadence time series of line-of-sight magnetograms and horizontal velocities derived from the magnetograms. This driving applies stress to the magnetic field and thereby delivers magnetic energy into the corona, where currents are induced that heat the coronal plasma by Ohmic dissipation. We compute synthetic coronal emission that we directly compare to coronal observations of the same active region taken by Hinode. In the model, coronal loops form at the same places as they are found in coronal observations. Even the shapes of the synthetic loops in 3D space match those found from a stereoscopic reconstruction ...

  7. The SMM UV observations of Active Region 5395

    Science.gov (United States)

    Drake, Stephen A.; Gurman, Joseph B.

    1989-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft was used extensively to study the spatial morphology and time variability of solar active regions in the far UV (at approx. wavelength of 1370 A) since July 1985. The normal spatial resolution of UVSP observations in this 2nd-order mode is 10 sec., and the highest temporal resolution is 64 milliseconds. To make a full-field, 4 min. by 4 min. image this wavelength using 5 sec. raster steps takes about 3 minutes. UVSP can also make observations of the Sun at approx. wavelength of 2790 with 3 sec. spatial resolution when operated in its 1st-order mode; a full-field image at this wavelength (a so-called SNEW image) takes about 8 minutes. UVSP made thousands of observations (mostly in 2nd-order) of AR 5395 during its transit across the visible solar hemisphere (from 7 to 19 March, inclusive). During this period, UVSP's duty cycle for observing AR 5395 was roughly 40 percent, with the remaining 60 percent of the time being fairly evenly divided between aeronomy studies of the Earth's atmosphere and dead time due to Earth occultation of the Sun. UVSP observed many of the flares tagged to AR 5395, including 26 GOES M-level flares and 3 X-level flares, one of which produced so much UV emission that the safety software of UVSP turned off the detector to avoid damage due to saturation. Images and light curves of some of the more spectacular of the AR 5395 events are presented.

  8. ON THE ACTIVE REGION BRIGHT GRAINS OBSERVED IN THE TRANSITION REGION IMAGING CHANNELS OF IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Skogsrud, H.; Voort, L. Rouppe van der; Pontieu, B. De [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5–1.″7 that generally move limbward with velocities up to about 30 km s{sup −1}. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  9. Statistical region-based active contours with exponential family observations

    CERN Document Server

    Lecellier, François; Fadili, Jalal; Aubert, Gilles; Revenu, Marinette

    2008-01-01

    In this paper, we focus on statistical region-based active contour models where image features (e.g. intensity) are random variables whose distribution belongs to some parametric family (e.g. exponential) rather than confining ourselves to the special Gaussian case. Using shape derivation tools, our effort focuses on constructing a general expression for the derivative of the energy (with respect to a domain) and derive the corresponding evolution speed. A general result is stated within the framework of multi-parameter exponential family. More particularly, when using Maximum Likelihood estimators, the evolution speed has a closed-form expression that depends simply on the probability density function, while complicating additive terms appear when using other estimators, e.g. moments method. Experimental results on both synthesized and real images demonstrate the applicability of our approach.

  10. On the Active Region Bright Grains Observed in the Transition Region Imaging Channels of IRIS

    CERN Document Server

    Skogsrud, H; De Pontieu, B

    2015-01-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolution. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1-m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si IV 1394 and 1403 {\\AA} lines, reveal ubiquitous bright "grains" which are short-lived (2-5 min) bright roundish small patches of sizes 0.5-1.7" that generally move limbward with velocities up to about 30 km s$^{-1}$. In this paper we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in H{\\alpha}. We find that the grains show ...

  11. A Rapidly Evolving Active Region NOAA 8032 observed on April 15th, 1997

    Indian Academy of Sciences (India)

    Shibu K. Mathew; Ashok Ambastha

    2000-09-01

    The active region NOAA 8032 of April 15, 1997 was observed to evolve rapidly. The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. The magnetic evolution of this region is studied to ascertain its role in flare production. Large changes were observed in magnetic field configuration due to the emergence of new magnetic flux regions (EFR). Most of the new emergence occured very close to the existing magnetic regions, which resulted in strong magnetic field gradients in this region. EFR driven reconnection of the field lines and subsequent flux cancellation might be the reason for the continuous occurrence of sub-flares and other related activities.

  12. Magnetoseismology of Active Regions using Multi-wavelength Observations from GONG and SDO

    Science.gov (United States)

    Tripathy, Sushanta; Jain, Kiran; Kholikov, Shukur; Hill, Frank; Cally, Paul

    2016-05-01

    The structure and dynamics of active regions beneath the surface show significant uncertainties due to our limited understanding of the wave interaction with magnetic field. Recent numerical simulations further demonstrate that the atmosphere above the photospheric levels also modifies the seismic observables at the surface. Thus the key to improve helioseismic interpretation beneath the active regions requires a synergy between models and helioseismic inferences from observations. In this context, using data from Global Oscillation Network Group and from Helioseismic Magnetic Imager and Atmospheric Imaging Assembly onboard Solar Dynamics Observatory, we characterize the spatio-temporal power distribution in and around active regions. Specifically, we focus on the power enhancements seen around active regions as a function of wave frequencies, strength, inclination of magnetic field and observation height as well as the relative phases of the observables and their cross-coherence functions. It is expected that these effects will help us to comprehend the interaction of acoustic waves with magnetic field in the solar photosphere.

  13. FLOWS AT THE EDGE OF AN ACTIVE REGION: OBSERVATION AND INTERPRETATION

    Energy Technology Data Exchange (ETDEWEB)

    Boutry, C.; Buchlin, E.; Vial, J.-C. [Universite Paris Sud, Institut d' Astrophysique Spatiale, UMR8617, 91405 Orsay (France); Regnier, S., E-mail: eric.buchlin@ias.u-psud.fr [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2012-06-10

    Upflows observed at the edges of active regions have been proposed as the source of the slow solar wind. In the particular case of Active Region (AR) 10942, where such an upflow has been already observed, we want to evaluate the part of this upflow that actually remains confined in the magnetic loops that connect AR 10942 to AR 10943. Both active regions were visible simultaneously on the solar disk and were observed by STEREO/SECCHI EUVI. Using Hinode/EIS spectra, we determine the Doppler shifts and densities in AR 10943 and AR 10942 in order to evaluate the mass flows. We also perform magnetic field extrapolations to assess the connectivity between AR 10942 and AR 10943. AR 10943 displays a persistent downflow in Fe XII. Magnetic extrapolations including both ARs show that this downflow can be connected to the upflow in AR 10942. We estimate that the mass flow received by AR 10943 areas connected to AR 10942 represents about 18% of the mass flow from AR 10942. We conclude that the upflows observed on the edge of active regions represent either large-scale loops with mass flowing along them (accounting for about one-fifth of the total mass flow in this example) or open magnetic field structures where the slow solar wind originates.

  14. Determining the solar wind speed above active regions using remote radio-wave observations.

    Science.gov (United States)

    Bougeret, J L; Fainberg, J; Stone, R G

    1983-11-04

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  15. Chromospheric Observations of a Kink Wave in an On-disk Active Region Fibril

    Science.gov (United States)

    Pietarila, A. M.; Aznar Cuadrado, R.; Hirzberger, J.; Solanki, S.

    2011-12-01

    Most observations of kink and Alfven waves in the chromosphere are made in off-limb spicules. Here we present observations of a kink wave in high spatial and temporal resolution Ca II 8542 data of an active region fibril on the solar disk. The properties of the observed wave are similar to kink waves in spicules. From the inferred wave phase and period we estimate the lower limit for the field strength in the chromospheric fibril to be a few hundred Gauss. The observations indicate that the event may have been triggered by a small-scale reconnection event higher up in the atmosphere.

  16. High spatial resolution FeXII observations of solar active region

    CERN Document Server

    Testa, Paola; Hansteen, Viggo

    2016-01-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal FeXII 1349.4A emission at unprecedented high spatial resolution (~0.33"). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), FeXII emission can be studied with IRIS at high spatial and spectral resolution, at least for high density plasma (e.g., post-flare loops, and active region moss). We find that upper transition region (moss) FeXII emission shows very small average Doppler redshifts (v_Dop ~3 km/s), as well as modest non-thermal velocities (with an average ~24 km/s, and the peak of the distribution at ~15 km/s). The observed distribution of Doppler shifts appears to be compatible with advanced 3D radiative MHD simulations in which impulsive heating is concentrated at the transition region footpoints of a hot corona. While the non-thermal broadening of FeXII 1349.4A peaks at similar values as lower resolut...

  17. Observationally driven 3D MHD model of the solar corona above an active region

    CERN Document Server

    Bourdin, Ph -A; Peter, H

    2013-01-01

    Aims. The goal is to employ a 3D magnetohydrodynamics (MHD) model including spectral synthesis to model the corona in an observed solar active region. This will allow us to judge the merits of the coronal heating mechanism built into the 3D model. Methods. Photospheric observations of the magnetic field and horizontal velocities in an active region are used to drive our coronal simulation from the bottom. The currents induced by this heat the corona through Ohmic dissipation. Heat conduction redistributes the energy that is lost in the end through optically thin radiation. Based on the MHD model, we synthesized profiles of coronal emission lines which can be directly compared to actual coronal observations of the very same active region. Results. In the synthesized model data we find hot coronal loops which host siphon flows or which expand and lose mass through draining. These synthesized loops are at the same location as and show similar dynamics in terms of Doppler shifts to the observed structures. This m...

  18. Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2010-03-01

    The timescale for energy release is an important parameter for constraining the coronal heating mechanism. Observations of "warm" coronal loops (~1 MK) have indicated that the heating is impulsive and that coronal plasma is far from equilibrium. In contrast, observations at higher temperatures (~3 MK) have generally been consistent with steady heating models. Previous observations, however, have not been able to exclude the possibility that the high temperature loops are actually composed of many small-scale threads that are in various stages of heating and cooling and only appear to be in equilibrium. With new observations from the EUV Imaging Spectrometer and X-ray Telescope (XRT) on Hinode we have the ability to investigate the properties of high temperature coronal plasma in extraordinary detail. We examine the emission in the core of an active region and find three independent lines of evidence for steady heating. We find that the emission observed in XRT is generally steady for hours, with a fluctuation level of approximately 15% in an individual pixel. Short-lived impulsive heating events are observed, but they appear to be unrelated to the steady emission that dominates the active region. Furthermore, we find no evidence for warm emission that is spatially correlated with the hot emission, as would be expected if the high temperature loops are the result of impulsive heating. Finally, we also find that intensities in the "moss," the footpoints of high temperature loops, are consistent with steady heating models provided that we account for the local expansion of the loop from the base of the transition region to the corona. In combination, these results provide strong evidence that the heating in the core of an active region is effectively steady, that is, the time between heating events is short relative to the relevant radiative and conductive cooling times.

  19. Explosive events in active region observed by IRIS and SST/CRISP

    Science.gov (United States)

    Huang, Z.; Madjarska, M. S.; Scullion, E. M.; Xia, L.-D.; Doyle, J. G.; Ray, T.

    2017-01-01

    Transition-region explosive events (EEs) are characterized by non-Gaussian line profiles with enhanced wings at Doppler velocities of 50-150 km s-1. They are believed to be the signature of solar phenomena that are one of the main contributors to coronal heating. The aim of this study is to investigate the link of EEs to dynamic phenomena in the transition region and chromosphere in an active region. We analyse observations simultaneously taken by the Interface Region Imaging Spectrograph (IRIS) in the Si IV 1394 Å line and the slit-jaw (SJ) 1400 Å images, and the Swedish 1-m Solar Telescope in the Hα line. In total 24 events were found. They are associated with small-scale loop brightenings in SJ 1400 Å images. Only four events show a counterpart in the Hα-35 km s-1 and Hα+35 km s-1 images. Two of them represent brightenings in the conjunction region of several loops that are also related to a bright region (granular lane) in the Hα-35 km s-1 and Hα+35 km s-1 images. 16 are general loop brightenings that do not show any discernible response in the Hα images. Six EEs appear as propagating loop brightenings, from which two are associated with dark jet-like features clearly seen in the Hα-35 km s-1 images. We found that chromospheric events with jet-like appearance seen in the wings of the Hα line can trigger EEs in the transition region and in this case the IRIS Si IV 1394 Å line profiles are seeded with absorption components resulting from Fe II and Ni II. Our study indicates that EEs occurring in active regions have mostly upper-chromosphere/transition-region origin. We suggest that magnetic reconnection resulting from the braidings of small-scale transition region loops is one of the possible mechanisms of energy release that are responsible for the EEs reported in this paper.

  20. Ultraviolet observations of the structure and dynamics of an active region at the limb

    Science.gov (United States)

    Korendyke, C. M.; Dere, K. P.; Socker, D. G.; Brueckner, G. E.; Schmieder, B.

    1995-04-01

    The structure and dynamics of active region NOAA 7260 at the limb have been studied using ultraviolet spectra and spectroheliograms obtained during the eighth rocket flight of the Naval Research Laboratory's High Resolution Telescope an Spectrograph (HRTS). The instrument configuration included a narrow-bandpass spectroheliograph to observe the Sun in the lines of C IV lambda 550 and a tandem-Wadsworth mount spectrograph to record the profiles of chromospheric transition region and coronal lines in the 1850-2670 A region. The combination of high spatial resolution and high spectral purity C IV slit jaw images with ultraviolet emission-line spectra corresponding allows examination of a variety of active region phenomena. A time series of spectroheliograms shows large-scale loop systems composed of fine-scale threads with some extending up to 100 Mm above the limb. The proper motion of several supersonic features, including a surge were measured. The accelerated plasmas appear in several different geometries and environments. Spectrograph exposures were taken with the slit positioned at a range of altitudes above the limb and provide a direct comparison between coronal, transition region and chromospheric emission line profiles. The spectral profiles of chromospheric and transition region emission lines show line-of-sight velocities up to 70 km/s. These lower temperature, emission-line spectra show small-scale spatial and velocity variations which are correlated with the threadlike structures seen in C IV. Coronal lines of Fe XII show much lower velocities and no fine structure.

  1. Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE

    CERN Document Server

    Warren, Harry P; Brooks, David H

    2009-01-01

    The timescale for energy release is an important parameter for constraining the coronal heating mechanism. Observations of "warm" coronal loops (~1 MK) have indicated that the heating is impulsive and that coronal plasma is far from equilibrium. In contrast, observations at higher temperatures (~3 MK) have generally been consistent with steady heating models. Previous observations, however, have not been able to exclude the possibility that the high temperature loops are actually composed of many small scale threads that are in various stages of heating and cooling and only appear to be in equilibrium. With new observations from the EUV Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode we have the ability to investigate the properties of high temperature coronal plasma in extraordinary detail. We examine the emission in the core of an active region and find three independent lines of evidence for steady heating. We find that the emission observed in XRT is generally steady for hours, with a fluct...

  2. ICMEs Likely From the Same Active Region Observed by Both Helios 1 and IMP 8

    Institute of Scientific and Technical Information of China (English)

    DU Dan; WANG Chi

    2007-01-01

    The chance of an Interplanetary Coronal Mass Ejection (ICME) observed by widely-separated spacecraft is rare. However, such an event provides us a good opportunity to study the propagation and evolution of ICMEs in the heliosphere. On day 72 of 1975, an ICME was observed by Helios 1 at 0.3 AU, while a similar solar wind structure was observed by IMP 8 at Earth on day 70 of 1975. On the basis of comparison of the plasma signatures and the transit time from Helios 1 to IMP 8, we hypothesize the observed ICMEs by both spacecraft are resulted from the same active region on the solar surface. A one-dimensional MHD model was used to track the ICME from Helios 1 (0.3 AU) to Earth. The observed plasma profiles and timing are close to those predicted by our MHD model and thus, give the supports to the model.

  3. Coordinated Observations of X-ray and High-Resolution EUV Active Region Dynamics

    Science.gov (United States)

    Savage, Sabrina; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Golub, Leon; Korreck, Kelly

    2013-01-01

    The recently-launched High-resolution Coronal imager (Hi-C) sounding rocket provided the highest resolution images of coronal loops and other small-scale structures in the 193 Angstrom passband to date. With just 5 minutes of observations, the instrument recorded a variety of dynamic coronal events -- including even a small B-class flare. We will present our results comparing these extreme-ultraviolet (EUV) observations with X-ray imaging from Hinode/XRT as well as EUV AIA data to identify sources of hot plasma rooted in the photosphere and track their affect on the overall topology and dynamics of the active region.

  4. Non-LTE Inversion of Spectropolarimetric and Spectroscopic Observations of a Small Active-region Filament Observed at the VTT

    Science.gov (United States)

    Schwartz, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Gömöry, P.; Rybák, J.; Kučera, A.; Heinzel, P.

    2016-04-01

    An active region mini-filament was observed by VTT simultaneously in the HeI 10 830 Å triplet by the TIP 1 spectropolarimeter, in Hα by the TESOS Fabry-Pérot interferometer, and in Ca II 8542 Å by the VTT spectrograph. The spectropolarimetric data were inverted using the HAZEL code and Hα profiles were modelled solving a NLTE radiative transfer in a simple isobaric and isothermal 2D slab irradiated both from bottom and sides. It was found that the mini-filament is composed of horizontal fluxtubes, along which the cool plasma of T˜10 000 K can flow by very large - even supersonic - velocities.

  5. Explosive events in active region observed by IRIS and SST/CRISP

    CERN Document Server

    Huang, Z; Scullion, E M; Xia, L -D; Doyle, J G; Ray, T

    2016-01-01

    Transition-region explosive events (EEs) are characterized by non-Gaussian line profiles with enhanced wings at Doppler velocities of 50-150 km/s. They are believed to be the signature of solar phenomena that are one of the main contributors to coronal heating. The aim of this study is to investigate the link of EEs to dynamic phenomena in the transition region and chromosphere in an active region. We analyze observations simultaneously taken by the Interface Region Imaging Spectrograph (IRIS) in the Si IV 1394\\AA\\ line and the slit-jaw (SJ) 1400\\AA\\ images, and the Swedish 1-m Solar Telescope (SST) in the H$\\alpha$ line. In total 24 events were found. They are associated with small-scale loop brightenings in SJ 1400\\AA\\ images. Only four events show a counterpart in the H$\\alpha$-35 km/s and H$\\alpha$+35 km/s images. Two of them represent brightenings in the conjunction region of several loops that are also related to a bright region (granular lane) in the H$\\alpha$-35km/s and H$\\alpha$+35 km/s images. Sixte...

  6. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    Science.gov (United States)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  7. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    Science.gov (United States)

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  8. Regional National Cooperative Observer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA publication dedicated to issues, news and recognition of observers in the National Weather Service Cooperative Observer program. Issues published regionally...

  9. A THREE-DIMENSIONAL MODEL OF ACTIVE REGION 7986: COMPARISON OF SIMULATIONS WITH OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Yung [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Mikić, Zoran; Lionello, Roberto; Downs, Cooper; Linker, Jon A., E-mail: ymok@uci.edu [Predictive Science, Inc., San Diego, CA 92121 (United States)

    2016-01-20

    In the present study, we use a forward modeling method to construct a 3D thermal structure encompassing active region 7986 of 1996 August. The extreme ultraviolet (EUV) emissions are then computed and compared with observations. The heating mechanism is inspired by a theory on Alfvén wave turbulence dissipation. The magnetic structure is built from a Solar and Heliospheric Observatory (SOHO)/MDI magnetogram and an estimated torsion parameter deduced from observations. We found that the solution to the equations in some locations is in a thermal nonequilibrium state. The time variation of the density and temperature profiles leads to time dependent emissions, which appear as thin, loop-like structures with uniform cross-section. Their timescale is consistent with the lifetime of observed coronal loops. The dynamic nature of the solution also leads to plasma flows that resemble observed coronal rain. The computed EUV emissions from the coronal part of the fan loops and the high loops compare favorably with SOHO/EIT observations in a quantitative comparison. However, the computed emission from the lower atmosphere is excessive compared to observations, a symptom common to many models. Some factors for this discrepancy are suggested, including the use of coronal abundances to compute the emissions and the neglect of atmospheric opacity effects.

  10. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    Science.gov (United States)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  11. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    Science.gov (United States)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  12. Anti-parallel EUV flows observed along active region filament threads with Hi-C

    CERN Document Server

    Alexander, Caroline E; Regnier, Stephane; Cirtain, Jonathan; Winebarger, Amy R; Golub, Leon; Kobayashi, Ken; Platt, Simon; Mitchell, Nick; Korreck, Kelly; DePontieu, Bart; DeForest, Craig; Weber, Mark; Title, Alan; Kuzin, Sergey

    2013-01-01

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from H-alpha and cool EUV lines (e.g., 304A) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of `counter-steaming' flows has previously been inferred from these cool plasma observations but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193A). In this work we present observations of an active region filament observed with Hi-C that exhibits anti-parallel flows along adjacent filament threads. Complementary data from SDO/AIA and HMI are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km/s) and gives an indication of the resolvable thickness of the ind...

  13. Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature

    Science.gov (United States)

    Martín-Regalado, J.; Chilla, J. L. A.; Rocca, J. J.; Brusenbach, P.

    1997-06-01

    Polarization switching in gain-guided, vertical-cavity, surface-emitting lasers was studied as a function of the active region temperature. We show that polarization switching occurs even when the active region temperature is kept constant during fast pulse low duty cycle operation. This temperature independent polarization switching phenomenon is explained in terms of a recently developed model.

  14. NLTE modeling of a small active region filament observed with the VTT

    Science.gov (United States)

    Schwartz, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Gömöry, P.; Rybák, J.; Heinzel, P.; Kučera, A.

    2016-11-01

    An active region mini-discretionary-filament was observed with the Vacuum Tower Telescope (VTT) in Tenerife simultaneously in the He I infrared triplet using the Tenerife Infrared Polarimeter 1 (TIP 1), in Hα with the TESOS Fabry-Pérot interferometer, and in Ca II 8542 Å with the VTT spectrograph. The spectropolarimetric data were inverted using the HAZEL code and Hα profiles were modelled by solving a NLTE radiative transfer in a simple isobaric and isothermal 2D slab irradiated both from its bottom and sides from the solar surface. It was found that the mini-discretionary-filament is composed of horizontal fluxtubes, along which the cool plasma of T˜10 000 K can flow with very large, even supersonic, velocities.

  15. Quasi periodic oscillations of solar active regions in connection with their flare activity - NoRH observations

    CERN Document Server

    Abramov-Maximov, Vladimir E; Shibasaki, Kiyoto

    2011-01-01

    The sunspot-associated sources at the frequency of 17 GHz give information on plasma parameters in the regions of magnetic field about B=2000 G at the level of the chromosphere-corona transition region. The observations of short period (from 1 to 10 minutes) oscillations in sunspots reflect propagation of magnetohydrodynamic (MHD) waves in the magnetic flux tubes of the sunspots. We investigate the oscillation parameters in active regions in connection with their flare activity. We confirm the existence of a link between the oscillation spectrum and flare activity. We find differences in the oscillations between pre-flare and post-flare phases. In particular, we demonstrate a case of powerful three-minute oscillations that start just before the burst. This event is similar to the cases of the precursors investigated by Sych, R. et al. (Astron. Astrophys., vol.505, p.791, 2009). We also found well-defined eight-minute oscillations of microwave emission from sunspot. We interpret our observations in terms of a ...

  16. Tail reconnection region versus auroral activity inferred from conjugate ARTEMIS plasma sheet flow and auroral observations

    Science.gov (United States)

    Nishimura, Y.; Lyons, L. R.; Xing, X.; Angelopoulos, V.; Donovan, E. F.; Mende, S. B.; Bonnell, J. W.; Auster, U.

    2013-09-01

    sheet flow bursts have been suggested to correspond to different types of auroral activity, such as poleward boundary intensifications (PBIs), ensuing auroral streamers, and substorms. The flow-aurora association leads to the important question of identifying the magnetotail source region for the flow bursts and how this region depends on magnetic activity. The present study uses the ARTEMIS spacecraft coordinated with conjugate ground-based auroral imager observations to identify flow bursts beyond 45 RE downtail and corresponding auroral forms. We find that quiet-time flows are directed dominantly earthward with a one-to-one correspondence with PBIs. Flow bursts during the substorm recovery phase and during steady magnetospheric convection (SMC) periods are also directed earthward, and these flows are associated with a series of PBIs/streamers lasting for tens of minutes with similar durations to that of the series of earthward flows. Presubstorm onset flows are also earthward and associated with PBIs/streamers. The earthward flows during those magnetic conditions suggest that the flow bursts, which lead to PBIs and streamers, originate from further downtail of ARTEMIS, possibly from the distant-tail neutral line (DNL) or tailward-retreated near-Earth neutral line (NENL) rather than from the nominal NENL location in the midtail. We find that tailward flows are limited primarily to the substorm expansion phase. They continue throughout the period of auroral poleward expansion, indicating that the expansion-phase flows originate from the NENL and that NENL activity is closely related to the auroral expansion of the substorm expansion phase.

  17. Patterns of Nanoflare Storm Heating Exhibited by an Active Region Observed with SDO/AIA

    CERN Document Server

    Viall, Nicholeen M

    2011-01-01

    It is largely agreed that many coronal loops---those observed at a temperature of about 1 MK--- are bundles of unresolved strands that are heated by storms of impulsive nanoflares. The nature of coronal heating in hotter loops and in the very important but largely ignored diffuse component of active regions is much less clear. Are these regions also heated impulsively, or is the heating quasi steady? The spectacular new data from the Atmospheric Imaging Assembly (AIA) telescopes on the Solar Dynamics Observatory (SDO) offer an excellent opportunity to address this question. We analyze the light curves of coronal loops and the diffuse corona in 6 different AIA channels and compare them with the predicted light curves from theoretical models. Light curves in the different AIA channels reach their peak intensities with predictable orderings as a function the nanoflare storm properties. We show that while some sets of light curves exhibit clear evidence of cooling after nanoflare storms, other cases are less stra...

  18. Light Bridge in a Developing Active Region. I. Observation of Light Bridge and its Dynamic Activity Phenomena

    CERN Document Server

    Toriumi, Shin; Cheung, Mark C M

    2015-01-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, IRIS, and Solar Dynamics Observatory (SDO), we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening ...

  19. The 3D structure of an active region filament as extrapolated from photospheric and chromospheric observations

    CERN Document Server

    Chaouche, L Yelles; Pillet, V Martínez; Moreno-Insertis, F

    2012-01-01

    The 3D structure of an active region (AR) filament is studied using nonlinear force-free field (NLFFF) extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 \\AA\\ line and the He I 10830 \\AA\\ triplet obtained with the Tenerife Infrared Polarimeter (TIP) at the VTT (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 \\AA\\ signal of \\approx 2 Mm above the surface of the sun. It allows, as well, to cross-check the obtained 3D magnetic structures in view of verifying a possible deviation from the force- free condition especially at the photosphere. The extrapolati...

  20. VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); O' Dwyer, B.; Mason, H. E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2012-01-01

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

  1. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China); Su Jiangtao [Key Laboratory of Solar Activity, Chinese Academy of Sciences, Beijing 100012 (China); Li Hui [Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Ichimoto, Kiyoshi; Shibata, Kazunari, E-mail: ydshen@ynao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Kyoto 6078471 (Japan)

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  2. A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region

    CERN Document Server

    Centeno, Rebecca; Iniesta, Jose Carlos Del Toro; Solanki, Sami K; Barthol, Peter; Gandorfer, Achim; Gizon, Laurent; Hirzberger, Johann; Riethmuller, Tino L; van Noort, Michiel; Suarez, David Orozco; Schmidt, Wolfgang; Pillet, Valentin Martinez; Knolker, Michael

    2016-01-01

    In June 2013, the two scientific instruments onboard the second Sunrise mission witnessed, in detail, a small-scale magnetic flux emergence event as part of the birth of an active region. The Imaging Magnetograph Experiment (IMaX) recorded two small (~5 arcsec) emerging flux patches in the polarized filtergrams of a photospheric Fe I spectral line. Meanwhile, the Sunrise Filter Imager (SuFI) captured the highly dynamic chromospheric response to the magnetic fields pushing their way through the lower solar atmosphere. The serendipitous capture of this event offers a closer look at the inner workings of active region emergence sites. In particular, it reveals in meticulous detail how the rising magnetic fields interact with the granulation as they push through the Sun's surface, dragging photospheric plasma in their upward travel. The plasma that is burdening the rising field slides along the field lines, creating fast downflowing channels at the footpoints. The weight of this material anchors this field to the...

  3. Simultaneous SMM flat crystal spectrometer and Very Large Array observations of solar active regions

    Science.gov (United States)

    Lang, Kenneth R.; Willson, Robert F.; Smith, Kermit L.; Strong, Keith T.

    1987-01-01

    High-resolution images of the quiescent emission from two solar active regions at 20 cm (VLA) and soft X-ray (SMM FCS) wavelengths are compared. There are regions where the X-ray coronal loops have been completely imaged at 20 cm wavelength. In other regions, the X-ray radiation was detected without detectable 20 cm radiation, and vice versa. The X-ray data were used to infer average electron temperatures of about 3-million K and average electron densities of about 2.5 x 10 to the 9th/cu cm for the X-ray emitting plasma in the two active regions. The thermal bremsstrahlung of the X-ray emitting plasma is optically thin at 20 cm wavelength. The 20 cm brightness temperatures were always less than T(e), which is consistent with optically thin bremsstrahlung. The low T(B) can be explained if a higher, cooler plasma covers the hotter X-ray emitting plasma. Thermal gyroresonance radiation must account for the intense 20 cm radiation near and above sunspots where no X-ray radiation is detected.

  4. A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region

    Science.gov (United States)

    Centeno, R.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Orozco Suárez, D.; Berkefeld, T.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    In 2013 June, the two scientific instruments on board the second Sunrise mission witnessed, in detail, a small-scale magnetic flux emergence event as part of the birth of an active region. The Imaging Magnetograph Experiment (IMaX) recorded two small (∼ 5\\prime\\prime ) emerging flux patches in the polarized filtergrams of a photospheric Fe i spectral line. Meanwhile, the Sunrise Filter Imager (SuFI) captured the highly dynamic chromospheric response to the magnetic fields pushing their way through the lower solar atmosphere. The serendipitous capture of this event offers a closer look at the inner workings of active region emergence sites. In particular, it reveals in meticulous detail how the rising magnetic fields interact with the granulation as they push through the Sun’s surface, dragging photospheric plasma in their upward travel. The plasma that is burdening the rising field slides along the field lines, creating fast downflowing channels at the footpoints. The weight of this material anchors this field to the surface at semi-regular spatial intervals, shaping it in an undulatory fashion. Finally, magnetic reconnection enables the field to release itself from its photospheric anchors, allowing it to continue its voyage up to higher layers. This process releases energy that lights up the arch-filament systems and heats the surrounding chromosphere.

  5. RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2015-07-15

    Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions of compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.

  6. Radio Observations of the Star Formation Activities in the NGC 2024 FIR 4 Region

    CERN Document Server

    Choi, Minho; Lee, Jeong-Eun

    2015-01-01

    Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest-southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2-3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions of compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the ...

  7. Active region fine structure observed at 0.08 arcsec resolution

    CERN Document Server

    Schlichenmaier, R; Hoch, S; Soltau, D; Berkefeld, T; Schmidt, D; Schmidt, W; Denker, C; Balthasar, H; Hofmann, A; Strassmeier, K G; Staude, J; Feller, A; Lagg, A; Solanki, S K; Collados, M; Sigwarth, M; Volkmer, R; Waldmann, T; Kneer, F; Nicklas, H; Sobotka, M

    2016-01-01

    The various mechanisms of magneto-convective energy transport determines the structure of sunspots and active regions. We characterise the appearance of light bridges and other fine structure details and elaborate on their magneto-convective nature. We present speckle-reconstructed images taken with the broad band imager at the 1.5 m GREGOR telescope in the 486nm and 589nm bands. We estimate the spatial resolution from the noise characteristics of the image bursts and obtain 0.08" at 589nm. We describe structure details in individual best images as well as the temporal evolution of selected features. We find branched dark lanes extending along thin (~1") light bridges in sunspots at various heliocentric angles. In thick (~2") light bridges the branches are disconnected from the central lane and have a `Y' shape with a bright grain toward the umbra. The images reveal that light bridges exist on varying intensity levels and that their small-scale features evolve on time scales of minutes. Faint light bridges sh...

  8. High resolution ALMA observations of dense molecular medium in the central regions of active galaxies

    CERN Document Server

    Kohno, Kotaro; Taniguchi, Akio; Izumi, Takuma; Tosaki, Tomoka

    2016-01-01

    In the central regions of active galaxies, dense molecular medium are exposed to various types of radiation and energy injections, such as UV, X-ray, cosmic ray, and shock dissipation. With the rapid progress of chemical models and implementation of new-generation mm/submm interferometry, we are now able to use molecules as powerful diagnostics of the physical and chemical processes in galaxies. Here we give a brief overview on the recent ALMA results to demonstrate how molecules can reveal underlying physical and chemical processes in galaxies. First, new detections of Galactic molecular absorption systems with elevated HCO/H$^{13}$CO$^+$ column density ratios are reported, indicating that these molecular media are irradiated by intense UV fields. Second, we discuss the spatial distributions of various types of shock tracers including HNCO, CH$_3$OH and SiO in NGC 253 and NGC 1068. Lastly, we provide an overview of proposed diagnostic methods of nuclear energy sources using ALMA, with an emphasis on the syne...

  9. The Structure and Properties of Solar Active Regions and Quiet Sun Areas Observed With SERTS and YOHKOH

    Science.gov (United States)

    Brosius, J. W.; Davila, J. M.; Thomas, R. J.; Hara, H.

    1996-05-01

    We observed solar active regions, quiet sun areas, and a coronal hole simultaneously with Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS), and with the Yohkoh Soft X-Ray Telescope (SXT) on 1993 August 17. SERTS provided spatially resolved active region and quiet sun spectra in the 280 to 420 Angstroms wavelength range, and images in the lines of He II 304 Angstroms, Mg IX 368 Angstroms, Fe XV 284 Angstroms, and Fe XVI 335 Angstroms and 360 Angstroms. The SERTS waveband is accessible to CDS, SUMER, and EIT on SOHO. SXT provided images through multiple broadband filters. The SERTS images in Fe XV (T=2 MK) and XVI (T=2.5 MK) exhibit remarkable morphological similarity to the SXT images. Whereas the Fe XV and XVI images outline the loop structures seen with SXT, the cooler He II (T=0.1 MK) and Mg IX (T=1 MK) images seem to outline loop footpoints. From the spatially resolved spectra, we obtained emission line profiles for lines of Fe X (1 MK) through Fe XVI, and Mg IX and Ni XVIII (3.2 MK) for each spatial position. Based upon the spatial variations of the line intensities, the active region systematically narrows as it is viewed with successively hotter lines. The active region appears narrowest in the X-ray emission, which is consistent with our understanding that Yohkoh is most sensitive to the hottest plasma in its line of sight. EUV emission from Fe XVII (T=5 MK) is weak but detectable in the active region core. The most intense, central core straddles the magnetic neutral line. Temperature maps obtained with SERTS image ratios and with SXT filter ratios are compared. Line intensity ratios indicate that the active region temperature is greatest in the central core, but that the density varies very little across the region. Significant Doppler shifts are not detected in the EUV lines.

  10. Anti-parallel EUV Flows Observed along Active Region Filament Threads with Hi-C

    Science.gov (United States)

    Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane; Cirtain, Jonathan; Winebarger, Amy R.; Golub, Leon; Kobayashi, Ken; Platt, Simon; Mitchell, Nick; Korreck, Kelly; DePontieu, Bart; DeForest, Craig; Weber, Mark; Title, Alan; Kuzin, Sergey

    2013-09-01

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of "counter-steaming" flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, we present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s-1) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.

  11. ANTI-PARALLEL EUV FLOWS OBSERVED ALONG ACTIVE REGION FILAMENT THREADS WITH HI-C

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Cirtain, Jonathan; Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Golub, Leon; Korreck, Kelly; Weber, Mark [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kobayashi, Ken [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Platt, Simon; Mitchell, Nick [School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE (United Kingdom); DePontieu, Bart; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, 3251 Hanover Street, Org. ADBS, Bldg. 252, Palo Alto, CA (United States); DeForest, Craig [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Kuzin, Sergey [P.N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt, 53, 119991 Moscow (Russian Federation)

    2013-09-20

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of 'counter-steaming' flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, we present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s{sup –1}) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.

  12. Flows in and around active region NOAA12118 observed with the GREGOR solar telescope and SDO/HMI

    CERN Document Server

    Verma, M; Balthasar, H; Kuckein, C; Manrique, S J González; Sobotka, M; González, N Bello; Hoch, S; Diercke, A; Kummerow, P; Berkefeld, T; Collados, M; Feller, A; Hofmann, A; Kneer, F; Lagg, A; Löhner-Böttcher, J; Nicklas, H; Yabar, A Pastor; Schlichenmaier, R; Schmidt, D; Schmidt, W; Schubert, M; Sigwarth, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    Accurate measurements of magnetic and velocity fields in and around solar active regions are key to unlocking the mysteries of the formation and the decay of sunspots. High spatial resolution image and spectral sequences with a high cadence obtained with the GREGOR solar telescope give us an opportunity to scrutinize 3-D flow fields with local correlation tracking and imaging spectroscopy. We present GREGOR early science data acquired in 2014 July - August with the GREGOR Fabry-P\\'erot Interferometer and the Blue Imaging Channel. Time-series of blue continuum (? 450.6 nm) images of the small active region NOAA 12118 were restored with the speckle masking technique to derive horizontal proper motions and to track the evolution of morphological changes. In addition, high-resolution observations are discussed in the context of synoptic data from the Solar Dynamics Observatory.

  13. Constraining Hot Plasma in a Non-flaring Solar Active Region with FOXSI Hard X-ray Observations

    CERN Document Server

    Ishikawa, Shin-nosuke; Christe, Steven; Ishibashi, Kazunori; Brooks, David H; Williams, David R; Shimojo, Masumi; Sako, Nobuharu; Krucker, Sam

    2015-01-01

    We present new constraints on the high-temperature emission measure of a non-flaring solar active region using observations from the recently flown Focusing Optics X-ray Solar Imager sounding rocket payload. FOXSI has performed the first focused hard X-ray (HXR) observation of the Sun in its first successful flight on 2012 November 2. Focusing optics, combined with small strip detectors, enable high-sensitivity observations with respect to previous indirect imagers. This capability, along with the sensitivity of the HXR regime to high-temperature emission, offers the potential to better characterize high-temperature plasma in the corona as predicted by nanoflare heating models. We present a joint analysis of the differential emission measure (DEM) of active region 11602 using coordinated observations by FOXSI, Hinode/XRT and Hinode/EIS. The Hinode-derived DEM predicts significant emission measure between 1 MK and 3 MK, with a peak in the DEM predicted at 2.0-2.5 MK. The combined XRT and EIS DEM also shows emi...

  14. Kelvin--Helmholtz instability in an active region jet observed with \\emph{Hinode}

    CERN Document Server

    Zhelyazkov, I; Srivastava, A K

    2015-01-01

    Over past ten years a variety of jet-like phenomena were detected in the solar atmosphere, including plasma ejections over a range of coronal temperatures being observed as extreme ultraviolet (EUV) and X-ray jets. We study the possibility for the development of Kelvin--Helmholtz (KH) instability of transverse magnetohydrodynamic (MHD) waves traveling along an EUV jet situated on the west side of NOAA AR 10938 and observed by three instruments on board Hinode on 2007 January 15/16 (Chifor et al., Astron. Astrophys.481, L57 (2008)). The jet was observed around LogT_e = 6.2 with up-flow velocities exceeded 150 km/s. Using Fe XII lambda186 and lambda195 line ratios, the measured densities were found to be above LogN_e = 11. We have modeled that EUV jet as a vertically moving magnetic flux tube (untwisted and weakly twisted) and have studied the propagation characteristics of the kink (m=1) mode and the higher m modes with azimuthal mode numbers m=2,3,4. It turns out that all these MHD waves can become unstable a...

  15. Alfvén Wave Heating Model of an Active Region and Comparisons with the EIS Observations

    Science.gov (United States)

    Lawless, A. P.; Asgari-Targhi, M.

    2013-12-01

    We study the generation and dissipation of Alfvén waves in open and closed field lines using the images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) (van Ballegouijen et al. 2011; Asgari-Targhi & van Ballegouijen 2012; Asgari et al. 2013). The goal is to search for observational evidence of Alfvén waves in the solar corona and to understand their role in coronal heating. We focus on one particular active region on the 10th of December 2007. Using the MDI magnetogram and the potential field modeling of this region, we create three-dimensional MHD models for several open and closed field lines in different locations in the active region. For each model, we compute the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We then compare these results with the EIS observations. This research is supported by the NSF grant for the Solar physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241) and contract SP02H1701R from Lockheed-Martin to SAO.

  16. CNS activation and regional connectivity during pantomime observation: no engagement of the mirror neuron system for deaf signers.

    Science.gov (United States)

    Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen

    2010-01-01

    Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action.

  17. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liheng; Zhang, Jun; Li, Ting [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liu, Wei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Shen, Yuandeng, E-mail: yangliheng@bao.ac.cn, E-mail: zjun@bao.ac.cn, E-mail: liting@bao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Kyoto 607-8471 (Japan)

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.

  18. Determining Inclinations of Active Galactic Nuclei Via Their Narrow-Line Region Kinematics - II. Correlation With Observed Properties

    CERN Document Server

    Fischer, T C; Kraemer, S B; Schmitt, H R; Turner, T J

    2014-01-01

    Active Galactic Nuclei (AGN) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight, yet the specific inclinations of all but a few AGN are generally unknown. By determining the inclinations and geometries of nearby Seyfert galaxies using the kinematics of their narrow-line regions (NLRs), and comparing them with observed properties, we find strong correlations between inclination and total hydrogen column density, infrared color, and H-beta full-width at half maximum (FWHM). These correlations provide evidence that the orientation of AGN with respect to our line of sight affects how we perceive them, beyond the Seyfert type dichotomy. They can also be used to constrain 3D models of AGN components such as the broad-line region and torus. Additionally, we find weak correlations between AGN luminosity and several modeled NLR parameters, which suggests that the NLR geometry and kinematics are dependent to some degree on the ...

  19. Observed inflation-deflation cycles at Popocatepetl volcano using tiltmeters and its possible correlation with regional seismic activity in Mexico

    Science.gov (United States)

    Contreras Ruiz Esparza, M. G., Sr.; Jimenez Velazquez, J. C., Sr.; Valdes Gonzalez, C. M., Sr.; Reyes Pimentel, T. A.; Galaviz Alonso, S. A.

    2014-12-01

    Popocatepetl, the smoking mountain, is a stratovolcano located in central Mexico with an elevation of 5450 masl. The active volcano, close to some of the largest urban centers in Mexico - 60 km and 30 km far from Mexico City and Puebla, respectively - poses a high hazard to an estimated population of 500 thousand people living in the vicinity of the edifice. Accordingly, in July 1994 the Popocatepetl Volcanological Observatory (POVO) was established. The observatory is operated and supported by the National Center for Disaster Prevention of Mexico (CENAPRED), and is equipped to fully monitor different aspects of the volcanic activity. Among the instruments deployed, we use in this investigation two tiltmometers and broad-band seismometers at two sites (Chipiquixtle and Encinos), which send the information gathered continuously to Mexico City.In this research, we study the characteristics of the tiltmeters signals minutes after the occurrence of certain earthquakes. The Popocatepetl volcano starts inflation-deflation cycles due to the ground motion generated by events located at certain regions. We present the analysis of the tiltmeters and seismic signals of all the earthquakes (Mw>5) occurred from January 2013 to June 2014, recorded at Chipiquixtle and Encinos stations. First, we measured the maximum tilt variation after each earthquake. Next, we apply a band-pass filter for different frequency ranges to the seismic signals of the two seismic stations, and estimated the total energy of the strong motion phase of the seismic record. Finally, we compared both measurements and observed that the maximum tilt variations were occurring when the maximum total energy of the seismic signals were in a specific frequency range. We also observed that the earthquake records that have the maximum total energy in that frequency range were the ones with a epicentral location south-east of the volcano. We conclude that our observations can be used set the ground for an early

  20. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region

    Science.gov (United States)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; Auchere, F.

    2016-01-01

    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of time variations and relation to the coronal structure observed by SDO/AIA. We compared the Ly(alpha) time variations at footpoints of coronal magnetic fields observed by AIA 211 Å (approx.2 MK) and AIA 171 Å (0.6 MK), and non-loop regions. As the result, we found the time variations had more in the footpoint regions. On the other hand, the time variations had no dependency on the temperature of the loop.

  1. Evolution of Magnetic Field and Energy in A Major Eruptive Active Region Based on SDO/HMI Observation

    CERN Document Server

    Sun, Xudong; Liu, Yang; Wiegelmann, Thomas; Hayashi, Keiji; Chen, Qingrong; Thalmann, Julia

    2012-01-01

    We report the evolution of magnetic field and its energy in NOAA active region 11158 over 5 days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated non-linear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with sheared kilogauss field in the filament channel. The computed magnetic free energy reaches a maximum of ~2.6e32 erg, about 50% of which is stored below 6 Mm. It decreases by ~0.3e32 erg within 1 hour of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to...

  2. Observations of high-plasma density region in the inner coma of 67P/Churyumov-Gerasimenko during early activity

    Science.gov (United States)

    Yang, Lei; Paulsson, J. J. P.; Simon Wedlund, C.; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A. I.; Miloch, W. J.

    2016-11-01

    In 2014 September, as Rosetta transitioned to close bound orbits at 30 km from comet 67P/Churyumov-Gerasimenko, the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) data showed large systematic fluctuations in both the spacecraft potential and the collected currents. We analyse the potential bias sweeps from RPC-LAP, from which we extract three sets of parameters: (1) knee potential, that we relate to the spacecraft potential, (2) the ion attraction current, which is composed of the photoelectron emission current from the probe as well as contributions from local ions, secondary emission, and low-energy electrons, and (3) an electron current whose variation is, in turn, an estimate of the electron density variation. We study the evolution of these parameters between 4 and 3.2 au in heliocentric and cometocentric frames. We find on September 9 a transition into a high-density plasma region characterized by increased knee potential fluctuations and plasma currents to the probe. In conjunction with previous studies, the early cometary plasma can be seen as composed of two regions: an outer region characterized by solar wind plasma, and small quantities of pick-up ions, and an inner region with enhanced plasma densities. This conclusion is in agreement with other RPC instruments such as RPC-MAG, RPC-IES and RPC-ICA, and numerical simulations.

  3. Relationship Between Solar Coronal X-Ray Brightness and Active Region Magnetic Fields: A Study Using High Resolution Observations

    CERN Document Server

    Hazra, Soumitra; Ravindra, B

    2014-01-01

    By utilizing high resolution observations of nearly co-temporal and co-spatial SOT spectropolarimeter and XRT coronal X-ray data onboard Hinode, we revisit the contentious issue of the relationship between global magnetic quantities and coronal X-ray intensity. Co-aligned vector magnetogram and X-ray data are used for this study. We find that there is no pixel-to-pixel correlation between the observed loop brightness and magnetic quantities. However, the X-ray brightness is well correlated with the integrated magnetic quantities such as total unsigned magnetic flux, total unsigned vertical current, area integrated square of the vertical magnetic field and horizontal magnetic fields. Comparing all these quantities we find that the total magnetic flux correlates well with the observed integrated X-ray brightness, though there is some differences in the strength of the correlation when we use the X-ray data from different filters. While we get a good correlation between X-ray brightness and total unsigned vertic...

  4. Time-resolved emission from bright hot pixels of an active region observed in the EUV band with SDO/AIA and multi-stranded loop modeling

    CERN Document Server

    Tajfirouze, E; Petralia, A; Testa, P

    2015-01-01

    Evidence for small amounts of very hot plasma has been found in active regions and might be the indication of an impulsive heating, released at spatial scales smaller than the cross section of a single loop. We investigate the heating and substructure of coronal loops in the core of one such active region by analyzing the light curves in the smallest resolution elements of solar observations in two EUV channels (94 A and 335 A) from the Atmospheric Imaging Assembly on-board the Solar Dynamics Observatory. We model the evolution of a bundle of strands heated by a storm of nanoflares by means of a hydrodynamic 0D loop model (EBTEL). The light curves obtained from the random combination of those of single strands are compared to the observed light curves either in a single pixel or in a row of pixels, simultaneously in the two channels and using two independent methods: an artificial intelligent system (Probabilistic Neural Network, PNN) and a simple cross-correlation technique. We explore the space of the param...

  5. Variations of VLF/LF signals observed on the ground and satellite during a seismic activity in Japan region in May–June 2008

    Directory of Open Access Journals (Sweden)

    A. Rozhnoi

    2010-03-01

    Full Text Available Signals of two Japanese transmitters (22.2 kHz and 40 kHz recorded on the ground VLF/LF station in Petropavlovsk-Kamchatsky and on board the DEMETER French satellite have been analyzed during a seismic activity in Japan in May–June 2008. The period of analysis was from 18 April to 27 June. During this time two rather large earthquakes occurred in the north part of Honshu Island – 7 May (M=6.8 and 13 June (M=6.9. The ground and satellite data were processed by a method based on the difference between the real signal in nighttime and the model one. For ground observations a clear decrease in both signals has been found several days before the first earthquake. For the second earthquake anomalies were detected only in JJI signal. The epicenters of earthquakes were in reliable reception zone of 40 kHz signal on board the DEMETER. Signal enhancement above the seismic active region and significant signal intensity depletion in the magnetically conjugate area has been found for satellite observation before the first earthquake. Anomalies in satellite data coincide in time with those in the ground-based observation.

  6. TIME-RESOLVED EMISSION FROM BRIGHT HOT PIXELS OF AN ACTIVE REGION OBSERVED IN THE EUV BAND WITH SDO/AIA AND MULTI-STRANDED LOOP MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Reale, F.; Petralia, A. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Testa, P., E-mail: aastex-help@aas.org [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-01-01

    Evidence of small amounts of very hot plasma has been found in active regions and might be an indication of impulsive heating released at spatial scales smaller than the cross-section of a single loop. We investigate the heating and substructure of coronal loops in the core of one such active region by analyzing the light curves in the smallest resolution elements of solar observations in two EUV channels (94 and 335 Å) from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We model the evolution of a bundle of strands heated by a storm of nanoflares by means of a hydrodynamic 0D loop model (EBTEL). The light curves obtained from a random combination of those of single strands are compared to the observed light curves either in a single pixel or in a row of pixels, simultaneously in the two channels, and using two independent methods: an artificial intelligent system (Probabilistic Neural Network) and a simple cross-correlation technique. We explore the space of the parameters to constrain the distribution of the heat pulses, their duration, their spatial size, and, as a feedback on the data, their signatures on the light curves. From both methods the best agreement is obtained for a relatively large population of events (1000) with a short duration (less than 1 minute) and a relatively shallow distribution (power law with index 1.5) in a limited energy range (1.5 decades). The feedback on the data indicates that bumps in the light curves, especially in the 94 Å channel, are signatures of a heating excess that occurred a few minutes before.

  7. Time-resolved Emission from Bright Hot Pixels of an Active Region Observed in the EUV Band with SDO/AIA and Multi-stranded Loop Modeling

    Science.gov (United States)

    Tajfirouze, E.; Reale, F.; Petralia, A.; Testa, P.

    2016-01-01

    Evidence of small amounts of very hot plasma has been found in active regions and might be an indication of impulsive heating released at spatial scales smaller than the cross-section of a single loop. We investigate the heating and substructure of coronal loops in the core of one such active region by analyzing the light curves in the smallest resolution elements of solar observations in two EUV channels (94 and 335 Å) from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We model the evolution of a bundle of strands heated by a storm of nanoflares by means of a hydrodynamic 0D loop model (EBTEL). The light curves obtained from a random combination of those of single strands are compared to the observed light curves either in a single pixel or in a row of pixels, simultaneously in the two channels, and using two independent methods: an artificial intelligent system (Probabilistic Neural Network) and a simple cross-correlation technique. We explore the space of the parameters to constrain the distribution of the heat pulses, their duration, their spatial size, and, as a feedback on the data, their signatures on the light curves. From both methods the best agreement is obtained for a relatively large population of events (1000) with a short duration (less than 1 minute) and a relatively shallow distribution (power law with index 1.5) in a limited energy range (1.5 decades). The feedback on the data indicates that bumps in the light curves, especially in the 94 Å channel, are signatures of a heating excess that occurred a few minutes before.

  8. Active Region Soft X-Ray Spectra as Observed Using Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    Science.gov (United States)

    Wieman, S. R.; Didkovsky, L. V.; Woods, T. N.; Jones, A. R.; Caspi, A.; Warren, H. P.

    2015-12-01

    Observations of solar active regions (ARs) in the soft x-ray spectral range (0.5 to 3.0 nm) were made on sounding rocket flight NASA 36.290 using a modified Solar Aspect Monitor (SAM), a pinhole camera on the EUV Variability Experiment (EVE) sounding rocket instrument. The suite of EVE rocket instruments is designed for under-flight calibrations of the orbital EVE on SDO. While the sounding rocket EVE instrument is for the most part a duplicate of the EVE on SDO, the SAM channel on the rocket version was modified in 2012 to include a free-standing transmission grating so that it could provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features on it, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. For solar observations, this spectral separation is on a similar scale to the spatial size of the AR on the CCD, so dispersed AR images associated with emission lines of similar wavelength tend to overlap. Furthermore, SAM shares a CCD detector with MEGS-A, a separate EVE spectrometer channel, and artifacts of the MEGS-A signal (a set of bright spectral lines) appear in the SAM images. For these reasons some processing and analysis of the solar images obtained by SAM must be performed in order to determine spectra of the observed ARs. We present a method for determining AR spectra from the SAM rocket images and report initial soft X-ray spectra for two of the major active regions (AR11877 and AR11875) observed on flight 36.290 on 21 October 2013 at about 18:30 UT. We also compare our results with concurrent measurements from other solar soft x-ray instrumentation.

  9. Three spacecraft observe Jupiter's glowing polar regions

    Science.gov (United States)

    1996-09-01

    also privileged to be the last observer with IUE" says Rene Prang of Orsay, France, who was in charge of the Jupiter programme. "At the end it provided us wit 800 observations of Jupiter, so it was still doing important work at the leading edge of planetary astronomy and space research". Created jointly by NASA, the UK government and ESA, IUE was supposed to last for three years, when it was launched on 26 January 1978. Instead, the 700-kilogram spacecraft went on supplying astronomers with ultraviolet spectroscopic information available from no other spacecraft until the launch of the Hubble Space Telescope in 1990. As the only space observatory offering them a hands-on mode of operation, at ESA's ground station at Villafranca near Madrid, IUE was a favourite with astronomers. An astounding total of 114,000 individual observations of planets, stars, galaxies and quasars assures the spacecraft a cherished place in the history of astronomy. IUE supplied the bedrock ultraviolet data on top events during its lifetime. These included the apparition of Halley's Comet in 1986. At the comet's approach in September 1985, IUE detected the ultraviolet signature of water molecules, and regular observations thereafter showed that the comet shed 300 million tonnes of water during its visit to the Sun's vicinity. With the explosion of a star in the Large Magellan Cloud, as Supernova 1987A, IUE was trained instantly on the scene. Comparisons with previous IUE observations of the same region revealed exactly which star had blown up. The characteristic emissions of chemical elements flung into space by the explosion were also identified, IUE's detection of a delayed light echo, from a ring of dust surrounding the defunct star, later enabled the Hubble Space Telescope to measure the distance to Supernova 1987A precisely. Eruptions in the nuclei of active galaxies were a prominent theme in IUE's work throughout its lifetime. Intensive studies of selected galaxies, sometimes in concert

  10. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    Science.gov (United States)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  11. Regional Activities Division. Papers.

    Science.gov (United States)

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures affecting…

  12. Sounding Rocket Observations of Active Region Soft X-Ray Spectra Between 0.5 and 2.5 nm Using a Modified SDO/EVE Instrument

    Science.gov (United States)

    Wieman, Seth; Didkovsky, Leonid; Woods, Thomas; Jones, Andrew; Moore, Christopher

    2016-12-01

    Spectrally resolved measurements of individual solar active regions (ARs) in the soft X-ray (SXR) range are important for studying dynamic processes in the solar corona and their associated effects on the Earth's upper atmosphere. They are also a means of evaluating atomic data and elemental abundances used in physics-based solar spectral models. However, very few such measurements are available. We present spectral measurements of two individual ARs in the 0.5 to 2.5 nm range obtained on the NASA 36.290 sounding rocket flight of 21 October 2013 (at about 18:30 UT) using the Solar Aspect Monitor (SAM), a channel of the Extreme Ultaviolet Variability Experiment (EVE) payload designed for underflight calibrations of the orbital EVE on the Solar Dynamics Observatory (SDO). The EVE rocket instrument is a duplicate of the EVE on SDO, except the SAM channel on the rocket version was modified in 2012 to include a freestanding transmission grating to provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST/SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. We discuss techniques (incorporating the NIST/SURF data) for determining SXR spectra from the dispersed AR images as well as the resulting spectra for NOAA ARs 11877 and 11875 observed on the 2013 rocket flight. In comparisons with physics-based spectral models using the CHIANTI v8 atomic database we find that both AR spectra are in good agreement with isothermal spectra (4 MK), as well as spectra based on an AR differential emission measure (DEM) included with the CHIANTI distribution, with the exception of the relative intensities of strong Fe xvii lines associated with 2p6-2p53{s} and 2p6-2p

  13. 3D-Stereoscopic Analysis of Solar Active Region Loops. 2; SoHo/EIT Observations at Temperatures of 1.5-2.5 MK

    Science.gov (United States)

    Aschwanden, Markus J.; Alexander, David; Hurlburt, Neal; Newmark, Jeffrey S.; Neupert, Werner M.; Klimchuk, J. A.; Gary, G. Allen

    1999-01-01

    In this paper we study the three-dimensional (3D) structure of hot (T(sub e) approximately equals 1.5 - 2.5 MK) loops in solar active region NOAA 7986, observed on 1996 August 30 with the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO). This complements a first study on cooler (T(sub e) approximately equals 1.0 - 1.5 MK) loops of the same active region, using the same method of Dynamic Stereoscopy to reconstruct the 3D geometry. We reconstruct the 3D-coordinates x(s), y(s), z(s), the density n(sub e)(s), and temperature profile T(sub e)(s) of 35 individual loop segments (as function of the loop coordinate s) using EIT 195 A and 284 A images. The major findings are: (1) All loops are found to be in hydrostatic equilibrium, in the entire temperature regime of T(sub e) = 1.0 - 2.5 MK; (2) The analyzed loops have a height of 2-3 scale heights, and thus only segments extending over about one vertical scale height have sufficient emission measure contrast for detection; (3) The temperature gradient over the lowest scale height is of order dT/ds is approximately 1 - 4 K/km; (4) The radiative loss rate is found to exceed the conductive loss rate by about two orders or magnitude, making thermal conduction negligible to explain the temperature structure of the loops; (5) A steady-state can only be achieved when the heating rate E(sub H) matches the radiative loss rate in hydrostatic equilibrium, requiring a heat deposition length lambda(sub H) of the half density scale height lambda, predicting a scaling law with the loop base pressure, EH varies as p(sub 0 exp 2). This favors coronal heating mechanisms that operate near the loop footpoints; (6) We find a reciprocal correlation between the loop pressure p(sub 0) and loop length L, i.e. p(sub 0) varies as 1/L, implying a scaling law of the steady-state requirement with loop length, i.e. E(sub H ) varies as 1/L(exp 2). The heating rate shows no correlation with the loop

  14. 3D-Stereoscopic Analysis of Solar Active Region Loops: I: SoHo/EIT Observations at Temperatures of 1.0-1.5 MK

    Science.gov (United States)

    Aschwanden, Markus J.; Newmark, Jeff; Delaboudiniere, Jean-Pierre; Neupert, Werner M.; Portier-Fozzani, Fabrice; Gary, G. Allen; Zucker, Arik

    1998-01-01

    The three-dimensional (3D) structure of solar active region NOAA 7986 observed on 1996 August 30 with the Extrem-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO) is analyzed. We develop a new method of Dynamic Stereoscopy to reconstruct the 3D geometry of dynamically changing loops, which allows us to determine the orientation of the loop plane with respect to the line-of-sight, a prerequisite to correct properly for projection effects in 3D loop models. With this method and the filter-ratio technique applied to EIT 171 A and 195 A images we determine the 3D coordinates (x(s), y(s), z(s)), the loop width) w(s), the electron density n(sub e)(s), and the electron temperature T(sub e)(s) as function of the loop length s for 30 loop segments. Fitting the loop densities with an exponential density model n(sub e)(h) we find that the so inferred scale height temperatures, T(sub e)(sup lambda) = 1.22 +/- 0.23 MK, match closely the EIT filter-ratio temperatures, T(sub e)(sup FIT) = 1.21 +/- 0.06 MK. We conclude that these rather large-scale loops (with heights of h approx. equals 50 - 200 Mm) that dominate EIT 171 A images are close to thermal equilibrium. Most of the loops show no significant thickness variation w(s), but many exhibit a trend of increasing temperature (dT/ds greater than 0) above the footpoint.

  15. The Twist Limit for Bipolar Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  16. Observational Study of Solar Magnetic Active Phenomena

    Indian Academy of Sciences (India)

    Hongqi Zhang

    2006-06-01

    The electric current separated into two parts reflected the quantative properties of heterogeneity and chirality of magnetic field, and defined them as the shear and twist components of current. We analyze the basic configuration and evolution of superactive region NOAA 6580-6619-6659. It is found that the contribution of the twist component of current cannot be reflected in the normal analysis of the magnetic shear and gradient of the active regions. The observational evidence of kink magnetic ropes generated from the subatmosphere cannot be found completely in some super delta active regions.

  17. The Magnetic Free Energy in Active Regions

    Science.gov (United States)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  18. Active Region Emergence and Remote Flares

    Science.gov (United States)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  19. Magnetic Helicity Injection in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2006-01-01

    We present the evolution of magnetic field and its relationship with magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station, longitudinal magnetograms by MDI of SOHO and white light images of TRACE. The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere, even if the mean current helicity density brings the general chiral property in a layer of solar active regions. As new magnetic flux emerges in active regions, changes of photospheric current helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected, including changes in sign caused by the injection of magnetic helicity of opposite sign. Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere,the injected magnetic helicity is probably not proportional to the current helicity density remaining in the photosphere. The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions (such as, delta active regions). They represent different aspects of magnetic chirality. A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.

  20. Evolution of active region outflows throughout an active region lifetime

    Science.gov (United States)

    Zangrilli, L.; Poletto, G.

    2016-10-01

    Context. We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Aims: Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Methods: Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R⊙, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H i Lyα line and the O vi doublet lines at 1031.9 and 1037.6 Å. Results: Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two types of outflows at different latitudes, both possibly originating in the same negative polarity area of the AR. We also analyzed the behavior of the Si xii 520 Å line along the UVCS slit in an attempt to reveal changes in the Si abundance when different regions are traversed. Although we found some evidence for a Si enrichment in the AR outflows, alternative interpretations are also plausible. Conclusions: Our results demonstrate that outflows from ARs are detectable in the intermediate corona throughout the whole AR lifetime. This confirms that outflows contribute to the slow wind.

  1. Fourier transform spectrometer observations of solar carbon monoxide. II - Simultaneous cospatial measurements of the fundamental and first-overtone bands, and Ca II K, in quiet and active regions

    Science.gov (United States)

    Ayres, T. R.; Testerman, L.; Brault, J. W.

    1986-01-01

    Fourier transform spectrometry has yielded simultaneous cospatial measurements of important diagnostics of thermal structure in the high solar photosphere and low chromosphere. It is noted that the anomalous behavior of the fundamental bands of CO in quiet areas near the limb is accentuated in an active region plage observed close to the limb. The difference between the core temperatures of the CO fundamental bands in a plage and a nearby quiet region at the limb is larger than the corresponding brightness temperature differences in the inner wings of the Ca II line measured in a quiet region and several plages closer to the disk center. Numerical simulations indicate that the disparate behavior of the CO bands with respect to Ca II K cannot be reconciled with existing single component thermal structure models; a two-component atmosphere is required.

  2. Evolution of active region outflows throughout an active region lifetime

    CERN Document Server

    Zangrilli, L

    2016-01-01

    We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R_sun, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H I Lyman alpha line and the O VI doublet lines at 1031.9 and 1037.6 A. Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two t...

  3. Regional gravity field modelling from GOCE observables

    Science.gov (United States)

    Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert

    2017-01-01

    In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.

  4. Can a regional climate model reproduce observed extreme temperatures?

    Directory of Open Access Journals (Sweden)

    Peter F. Craigmile

    2013-10-01

    Full Text Available Using output from a regional Swedish climate model and observations from the Swedish synoptic observational network, we compare seasonal minimum temperatures from model output and observations using marginal extreme value modeling techniques. We make seasonal comparisons using generalized extreme value models and empirically estimate the shift in the distribution as a function of the regional climate model values, using the Doksum shift function. Spatial and temporal comparisons over south central Sweden are made by building hierarchical Bayesian generalized extreme value models for the observed minima and regional climate model output. Generally speaking the regional model is surprisingly well calibrated for minimum temperatures. We do detect a problem in the regional model to produce minimum temperatures close to 0◦C. The seasonal spatial effects are quite similar between data and regional model. The observations indicate relatively strong warming, especially in the northern region. This signal is present in the regional model, but is not as strong.

  5. Differential cortical activation during observation and observation-and-imagination

    NARCIS (Netherlands)

    Berends, H. I.; Wolkorte, R.; Ijzerman, M. J.; van Putten, M. J. A. M.

    2013-01-01

    The activity of the brain during observation or imagination of movements might facilitate the relearning of motor functions after stroke. The present study examines whether there is an additional effect of imagination over observation-only. Eight healthy subjects observed and observed-and-imagined a

  6. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  7. Observations of seismic activity in Southern Lebanon

    Science.gov (United States)

    Meirova, T.; Hofstetter, R.

    2013-04-01

    Recent seismic activity in southern Lebanon is of particular interest since the tectonic framework of this region is poorly understood. In addition, seismicity in this region is very infrequent compared with the Roum fault to the east, which is seismically active. Between early 2008 and the end of 2010, intense seismic activity occurred in the area. This was manifested by several swarm-like sequences and continuous trickling seismicity over many days, amounting in total to more than 900 earthquakes in the magnitude range of 0.5 ≤ M d ≤ 5.2. The region of activity extended in a 40-km long zone mainly in a N-S direction and was located about 10 km west of the Roum fault. The largest earthquake, with a duration magnitude of M d = 5.2, occurred on February 15, 2008, and was located at 33.327° N, 35.406° E at a depth of 3 km. The mean-horizontal peak ground acceleration observed at two nearby accelerometers exceeded 0.05 g, where the strongest peak horizontal acceleration was 55 cm/s2 at about 20 km SE of the epicenter. Application of the HypoDD algorithm yielded a pronounced N-S zone, parallel to the Roum fault, which was not known to be seismically active. Focal mechanism, based on full waveform inversion and the directivity effect of the strongest earthquake, suggests left-lateral strike-slip NNW-SSE faulting that crosses the NE-SW traverse faults in southern Lebanon.

  8. Statistical analysis of acoustic wave parameters near active regions

    CERN Document Server

    Soares, M Cristina Rabello; Scherrer, Philip H

    2016-01-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyse the differences in the parameters in magnetically quiet regions nearby an active region (which we call `nearby regions'), compared with those of quiet regions at the same disc locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring diagram analysis of all active regions observed by HMI during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhancement (the `acoustic halo effect') is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes...

  9. CME Productivity of Active Regions.

    Science.gov (United States)

    Liu, L.; Wang, Y.; Wang, J.; Shen, C.; Ye, P.; Zhang, Q.; Liu, R.; Wang, S.

    2015-12-01

    Solar active regions (ARs) are the major sources of two kinds of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). Although they are believed to be two phenomena in the same eruptive process, the productivity of them could be quiet different for various ARs. Why is an AR productive? And why is a flare-rich AR CME-poor? To answer these questions, we compared the recent super flare-rich but CME-poor AR 12192, with other four ARs; two were productive in both flares and CMEs and the other two were inert to produce any M-class or intenser flares or CMEs. By investigating the photospheric parameters based on the SDO/HMI vector magnetogram, we find the three productive ARs have larger magnetic flux, current and free magnetic energy than the inert ARs. Furthermore, the two ARs productive in both flares and CMEs contain higher current helicity, concentrating along both sides of the flaring neutral lines, indicating the presence of a seed magnetic structure( that is highly sheared or twisted) of a CME; they also have higher decay index in the low corona, showing weak constraint. The results suggest that productive ARs are always large and have strong current system and sufficient free energy to power flares, and more importantly whether or not a flare is accompanied by a CME is seemingly related to (1) if there is significant sheared or twisted core field serving as the seed of the CME and (2) if the constraint of the overlying arcades is weak enough. Moreover, some productive ARs may frequently produce more than one CME. How does this happen? We do a statistical investigation of waiting times of quasi-homologous CMEs ( CME ssuccessive originating from the same ARs within short intervals) from super ARs in solar cycle 23 to answer this question. The waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hours, the first component peaks at 7 hours. The correlation analysis among CME waiting times

  10. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    Science.gov (United States)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  11. Infrared Observations of Active Galaxies

    Directory of Open Access Journals (Sweden)

    J. Guichard

    2001-01-01

    Full Text Available We report medium resolution, spectroscopic observations of a selected sample of AGNs and Starburst galaxies, at wavelengths ranging from 1.1 to 2.4 microns . Strong HI, HeI, H2 and [FeII] emission lines have been detected, as well as stellar features, such as the CO bandheads in both H- and K-band, and SiI, NaI, and CaI lines. The excitation mechanisms for the H2 emission are discussed.

  12. SDO/HMI survey of emerging active regions for helioseismology

    CERN Document Server

    Schunker, H; Birch, A C; Burston, R B; Gizon, L

    2016-01-01

    Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which would enable us to perform statistical analyses. Our goal is to collate a uniform data set of emerging active regions observed by the SDO/HMI instrument suitable for helioseismic analysis up to seven days before emergence. We restricted the sample to active regions that were visible in the continuum and emerged into quiet Sun largely avoiding pre-existing magnetic regions. As a reference data set we paired a control region (CR), with the same latitude and distance from central meridian, with each emerging active region (EAR). We call this data set, which is currently comprised of 105 emerging active regions observed between May 2010 and November 2012, the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. To demonstrate the utility of a data set of a large number of emerging active regions, we measure the relative east-west velocity of the ...

  13. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  14. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    Science.gov (United States)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  15. Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B

    Directory of Open Access Journals (Sweden)

    Y. Shinozuka

    2009-05-01

    Full Text Available Remote sensing of cloud condensation nuclei (CCN would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, κ, was calculated from hygroscopicity measured under saturation. κ for dry 100-nm particles decreased with the organic fraction of non-refractory mass of submicron particles (OMF as 10(−0.43−0.44*OMF over Central Mexico and 10(−0.29−0.70*OMF over the US West Coast. These fits represent the critical dry diameter, centered near 100 nm for 0.2% supersaturation but varied as κ(−1/3, within measurement uncertainty (~20%. The decreasing trends of CCN activity with the organic content, evident also in our direct CCN counts, were consistent with previous ground and laboratory observations of highly organic particles. The wider range of OMF, 0–0.8, for our research areas means that aerosol composition will be more critical for estimation of CCN concentration than at the fixed sites previously studied. Furthermore, the wavelength dependence of extinction was anti-correlated with OMF as −0.70*OMF+2.0 for Central Mexico's urban and industrial pollution air masses, for unclear reasons. The Angstrom exponent of absorption increased with OMF, more rapidly under higher single scattering albedo, as expected for the interplay between soot and colored weak absorbers (some organic species and dust. Because remote sensing products currently use the wavelength dependence of extinction albeit in the column integral form and may potentially include that of absorption, these regional spectral dependencies are expected to facilitate retrievals of aerosol bulk chemistry and CCN activity over Central Mexico.

  16. Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B

    Directory of Open Access Journals (Sweden)

    Y. Shinozuka

    2009-09-01

    Full Text Available Remote sensing of cloud condensation nuclei (CCN would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, κ, was calculated from hygroscopicity measured under saturation. κ for dry 100 nm particles decreased with increasing organic fraction of non-refractory mass of submicron particles (OMF as 0.34–0.20×OMF over Central Mexico and 0.47–0.43×OMF over the US West Coast. These fits represent the critical dry diameter, centered near 100 nm for 0.2% supersaturation but varied as κ(−1/3, within measurement uncertainty (~20%. The decreasing trends of CCN activity with the organic content, evident also in our direct CCN counts, were consistent with previous ground and laboratory observations of highly organic particles. The wider range of OMF, 0–0.8, for our research areas means that aerosol composition will be more critical for estimation of CCN concentration than at the fixed sites previously studied. Furthermore, the wavelength dependence of extinction was anti-correlated with OMF as −0.70×OMF+2.0 for Central Mexico's urban and industrial pollution air masses, for unclear reasons. The Angstrom exponent of absorption increased with OMF, more rapidly under higher single scattering albedo, as expected for the interplay between soot and colored weak absorbers (some organic species and dust. Because remote sensing products currently use the wavelength dependence of extinction albeit in the column integral form and may potentially include that of absorption, these regional spectral dependencies are expected to facilitate retrievals of aerosol bulk chemical composition and CCN activity over Central Mexico.

  17. Western Pond Turtle Observations - Region 1 [ds313

    Data.gov (United States)

    California Department of Resources — This dataset was developed in an effort to compile Western Pond Turtle (Clemmys marmorata) observations in CDFG Region 1. Steve Burton (CDFG Staff Environmental...

  18. Cool transition region loops observed by the Interface Region Imaging Spectrograph

    CERN Document Server

    Huang, Zhenghua; Li, Bo; Madjarska, Maria S

    2015-01-01

    We report on the first Interface Region Imaging Spectrograph (IRIS) study of cool transition region loops. This class of loops has received little attention in the literature. A cluster of such loops was observed on the solar disk in active region NOAA11934, in the Si IV 1402.8 \\AA\\ spectral raster and 1400 \\AA\\ slit-jaw (SJ) images. We divide the loops into three groups and study their dynamics and interaction. The first group comprises relatively stable loops, with 382--626\\,km cross-sections. Observed Doppler velocities are suggestive of siphon flows, gradually changing from -10 km/s at one end to 20 km/s at the other end of the loops. Nonthermal velocities from 15 to 25 km/s were determined. These physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of $10^{15}$ Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two footpoin...

  19. Magnetic Energy Spectra in Active Regions

    CERN Document Server

    Abramenko, Valentyna

    2010-01-01

    Line-of-sight magnetograms for 217 active regions (ARs) of different flare rate observed at the solar disk center from January 1997 until December 2006 are utilized to study the turbulence regime and its relationship to the flare productivity. Data from {\\it SOHO}/MDI instrument recorded in the high resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs of higher flare productivity. We also report that both the power index, $\\alpha$, of the energy spectrum, $E(k) \\sim k^{-\\alpha}$, and the total spectral energy $W=\\int E(k)dk$ are comparably correlated with the flare index, $A$, of an active region. The correlations are found to be stronger than that found between the flare index and total unsigned flux. The flare index for an AR can be estimated based on measurements of $\\alpha$ and $W$ as $A=10^b (\\alpha W)^c$, with $b=-7.92 \\pm 0.58$ and $c=1.85 \\pm 0.13$. We found ...

  20. 3D MHD Models of Active Region Loops

    Science.gov (United States)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  1. Lidar Observation of Tropopause Ozone Profiles in the Equatorial Region

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. A DIAL (differential absorption lidar) system for vertical ozone profiles have been installed in the equatorial tropopause region over Kototabang, Indonesia (100.3E, 0.2S). We have observed large ozone enhancement in the upper troposphere, altitude of 13 - 17 km, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause at equatorial region.

  2. Kink waves in an active region dynamic fibril

    CERN Document Server

    Pietarila, A; Hirzberger, J; Solanki, S K

    2011-01-01

    We present high spatial and temporal resolution Ca II 8542 observations of a kink wave in an on-disk chromospheric active region fibril. The properties of the wave are similar to those observed in off-limb spicules. From the observed phase and period of the wave we determine a lower limit for the field strength in the chromospheric active region fibril located at the edge of a sunspot to be a few hundred Gauss. We find indications that the event was triggered by a small-scale reconnection event higher up in the atmosphere.

  3. Kink Waves in an Active Region Dynamic Fibril

    Science.gov (United States)

    Pietarila, A.; Aznar Cuadrado, R.; Hirzberger, J.; Solanki, S. K.

    2011-10-01

    We present high spatial and temporal resolution Ca II 8542 Å observations of a kink wave in an on-disk chromospheric active region fibril. The properties of the wave are similar to those observed in off-limb spicules. From the observed phase and period of the wave we determine a lower limit for the field strength in the chromospheric active region fibril located at the edge of a sunspot to be a few hundred gauss. We find indications that the event was triggered by a small-scale reconnection event higher up in the atmosphere.

  4. A Regional CO2 Observing System Simulation Experiment Using ASCENDS Observations and WRF-STILT Footprints

    Science.gov (United States)

    Wang, James S.; Kawa, S. Randolph; Eluszkiewicz, Janusz; Collatz, G. J.; Mountain, Marikate; Henderson, John; Nehrkorn, Thomas; Aschbrenner, Ryan; Zaccheo, T. Scott

    2012-01-01

    Knowledge of the spatiotemporal variations in emissions and uptake of CO2 is hampered by sparse measurements. The recent advent of satellite measurements of CO2 concentrations is increasing the density of measurements, and the future mission ASCENDS (Active Sensing of CO2 Emissions over Nights, Days and Seasons) will provide even greater coverage and precision. Lagrangian atmospheric transport models run backward in time can quantify surface influences ("footprints") of diverse measurement platforms and are particularly well suited for inverse estimation of regional surface CO2 fluxes at high resolution based on satellite observations. We utilize the STILT Lagrangian particle dispersion model, driven by WRF meteorological fields at 40-km resolution, in a Bayesian synthesis inversion approach to quantify the ability of ASCENDS column CO2 observations to constrain fluxes at high resolution. This study focuses on land-based biospheric fluxes, whose uncertainties are especially large, in a domain encompassing North America. We present results based on realistic input fields for 2007. Pseudo-observation random errors are estimated from backscatter and optical depth measured by the CALIPSO satellite. We estimate a priori flux uncertainties based on output from the CASA-GFED (v.3) biosphere model and make simple assumptions about spatial and temporal error correlations. WRF-STILT footprints are convolved with candidate vertical weighting functions for ASCENDS. We find that at a horizontal flux resolution of 1 degree x 1 degree, ASCENDS observations are potentially able to reduce average weekly flux uncertainties by 0-8% in July, and 0-0.5% in January (assuming an error of 0.5 ppm at the Railroad Valley reference site). Aggregated to coarser resolutions, e.g. 5 degrees x 5 degrees, the uncertainty reductions are larger and more similar to those estimated in previous satellite data observing system simulation experiments.

  5. PATTERNS OF ACTIVITY IN A GLOBAL MODEL OF A SOLAR ACTIVE REGION

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Viall, N. M., E-mail: stephen.bradshaw@rice.edu, E-mail: Nicholeen.M.Viall@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-04-10

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  6. High Resolution CO Observations of Massive Star Forming Regions

    CERN Document Server

    Klaassen, P D; Keto, E R; Zhang, Q; Galván-Madrid, R; Liu, H-Y B

    2011-01-01

    Context. To further understand the processes involved in the formation of massive stars, we have undertaken a study of the gas dynamics surrounding three massive star forming regions. By observing the large scale structures at high resolution, we are able to determine properties such as driving source, and spatially resolve the bulk dynamical properties of the gas such as infall and outflow. Aims. With high resolution observations, we are able to determine which of the cores in a cluster forming massive stars is responsible for the large scale structures. Methods. We present CO observations of three massive star forming regions with known HII regions and show how the CO traces both infall and outflow. By combining data taken in two SMA configurations with JCMT observations, we are able to see large scale structures at high resolution. Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17 \\times 10^44 erg) outflows emanating from the edges of two HII regions suggesting they are being ...

  7. Diagnostic Modeling of PAMS VOC Observation on Regional Scale Environment

    Science.gov (United States)

    Chen, S.; Liu, T.; Chen, T.; Ou Yang, C.; Wang, J.; Chang, J. S.

    2008-12-01

    While a number of gas-phase chemical mechanisms, such as CBM-Z, RADM2, SAPRC-07 had been successful in studying gas-phase atmospheric chemical processes they all used some lumped organic species to varying degrees. Photochemical Assessment Monitoring Stations (PAMS) has been in use for over ten years and yet it is not clear how the detailed organic species measured by PAMS compare to the lumped model species under regional-scale transport and chemistry interactions. By developing a detailed mechanism specifically for the PAMS organics and embedding this diagnostic model within a regional-scale transport and chemistry model we can then directly compare PAMS observation with regional-scale model simulations. We modify one regional-scale chemical transport model (Taiwan Air Quality Model, TAQM) by adding a submodel with chemical mechanism for interactions of the 56 species observed by PAMS. This submodel then calculates the time evolution of these 56 PAMS species within the environment established by TAQM. It is assumed that TAQM can simulate the overall regional-scale environment including impact of regional-scale transport and time evolution of oxidants and radicals. Therefore we can scale these influences to the PAMS organic species and study their time evolution with their species-specific source functions, meteorological transport, and chemical interactions. Model simulations of each species are compared with PAMS hourly surface measurements. A case study located in a metropolitan area in central Taiwan showed that with wind speeds lower than 3 m/s, when meteorological simulation is comparable with observation, the diurnal pattern of each species performs well with PAMS data. It is found that for many observations meteorological transport is an influence and that local emissions of specific species must be represented correctly. At this time there are still species that cannot be modeled properly. We suspect this is mostly due to lack of information on local

  8. Regional characteristics, opportunity perception and entrepreneurial activities

    DEFF Research Database (Denmark)

    Stuetzer, Michael; Obschonka, Martin; Brixy, Udo

    2014-01-01

    This article seeks to better understand the link between regional characteristics and individual entrepreneurship. We combine individual-level Global Entrepreneurship Monitor data for Western Germany with regional-level data, using multilevel analysis to test our hypotheses. We find no direct lin...... creation, the economic context and an entrepreneurial culture have an effect on the individual perception of founding opportunities, which in turn predicted start-up intentions and activity. © 2013 Springer Science+Business Media New York....... between regional knowledge creation, the economic context and an entrepreneurial culture on the one side and individual business start-up intentions and start-up activity on the other side. However, our findings point to the importance of an indirect effect of regional characteristics as knowledge...

  9. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Török, T.; Titov, V. S.; Mikić, Z. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Archontis, V. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Linton, M. G. [U.S. Naval Research Lab, 4555 Overlook Avenue, SW Washington, DC 20375 (United States); Dalmasse, K.; Aulanier, G. [LESIA, Observatoire de Paris, CNRS, UPMC, Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Kliem, B. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  10. Variation of TEC and related parameters over the Indian EIA region from ground and space based GPS observations during the low solar activity period of May 2007-April 2008

    Science.gov (United States)

    Chakravarty, S. C.; Nagaraja, Kamsali; Jakowski, N.

    2017-03-01

    The annual variations of ionospheric Total Electron Content (TEC), F-region peak ionisation (NmF2) and the ionospheric slab thickness (τ) over the Indian region during the low solar activity period of May 2007-April 2008 have been studied. For this purpose the ground based TEC data obtained from GAGAN measurements and the space based data from GPS radio occultation technique using CHAMP have been utilised. The results of these independent measurements are combined to derive additional parameters such as the equivalent slab thickness of the total and the bottom-side ionospheric regions (τT and τB). The one year hourly average values of all these parameters over the ionospheric anomaly latitude region (10-26°N) are presented here along with the statistical error estimates. It is expected that these results are potentially suited to be used as base level values during geomagnetically quiet and undisturbed solar conditions.

  11. Organized Subsurface Flows near Active Regions

    Science.gov (United States)

    Haber, D. A.; Hindman, B. W.; Toomre, J.; Thompson, M. J.

    2004-04-01

    Local helioseismic techniques, such as ring analysis and time-distance helioseismology, have already shown that large-scale flows near the surface converge towards major active regions. Ring analysis has further demonstrated that at greater depths some active regions exhibit strong outflows. A critique leveled at the ring-analysis results is that the Regularized Least Squares (RLS) inversion kernels on which they are based have negative sidelobes near the surface. Such sidelobes could result in a surface inflow being misidentified as a diverging outflow at depth. In this paper we show that the Optimally Located Averages (OLA) inversion technique, which produces kernels without significant sidelobes, generates flows markedly similar to the RLS results. Active regions are universally zones of convergence near the surface, while large complexes evince strong outflows deeper down.

  12. Determinants of Foreign Technological Activity in German Regions

    DEFF Research Database (Denmark)

    Dettmann, Eva; Lacasa, Iciar Dominguez; Günther, Jutta;

    This paper analyses the determinants of spatial distribution of foreign technological activity across 96 German regions (1996-2009). We identify foreign inventive activity by applying the ‘cross-border-ownership concept’ to transnational patent applications. The descriptive analysis shows...... that foreign technological activity more than doubled during the observation period with persistent spatial heterogeneity in Germany. Using a pooled count data model, we estimate the effect of various sources for externalities on the extent of foreign technological activity across regions. Our results show...... that foreign technological activity is attracted by technologically specialised sectors of regions. In contrast to existing findings this effect applies both to foreign as well as domestic sources of specialisation. We show that the relation between specialization and foreign technological activity is non...

  13. Photospheric Magnetic Free Energy Density of Solar Active Regions

    Science.gov (United States)

    Zhang, Hongqi

    2016-12-01

    We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity 1/4π{B}n\\cdot{B}p is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (Bp) and the non-potential magnetic field (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.

  14. Photospheric Magnetic Free Energy Density of Solar Active Regions

    CERN Document Server

    Zhang, Hongqi

    2016-01-01

    We present the photospheric energy density of magnetic fields in two solar active regions inferred from observational vector magnetograms, and compare it with the possible different defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in active region NOAA 6580-6619-6659 and 11158. It is noticed that the quantity 1/4pi Bn.Bp is an important energy parameter that reflects the contribution of magnetic shear on the difference between the potential magnetic field (Bp) and non-potential one (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density changes obviously before the powerful solar flares in the active region NOAA 11158, it is consistent with the change of magnetic fields in the lower atmosphere with flares.

  15. Static and Dynamic Modeling of a Solar Active Region

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.

    2007-09-01

    Recent hydrostatic simulations of solar active regions have shown that it is possible to reproduce both the total intensity and the general morphology of the high-temperature emission observed at soft X-ray wavelengths using static heating models. These static models, however, cannot account for the lower temperature emission. In addition, there is ample observational evidence that the solar corona is highly variable, indicating a significant role for dynamical processes in coronal heating. Because they are computationally demanding, full hydrodynamic simulations of solar active regions have not been considered previously. In this paper we make first application of an impulsive heating model to the simulation of an entire active region, AR 8156 observed on 1998 February 16. We model this region by coupling potential field extrapolations to full solutions of the time-dependent hydrodynamic loop equations. To make the problem more tractable we begin with a static heating model that reproduces the emission observed in four different Yohkoh Soft X-Ray Telescope (SXT) filters and consider impulsive heating scenarios that yield time-averaged SXT intensities that are consistent with the static case. We find that it is possible to reproduce the total observed soft X-ray emission in all of the SXT filters with a dynamical heating model, indicating that nanoflare heating is consistent with the observational properties of the high-temperature solar corona. At EUV wavelengths the simulated emission shows more coronal loops, but the agreement between the simulation and the observation is still not acceptable.

  16. Electron acceleration in the reconnection diffusion region: Cluster observations

    Science.gov (United States)

    Huang, S. Y.; Vaivads, A.; Khotyaintsev, Y. V.; Zhou, M.; Fu, H. S.; Retinò, A.; Deng, X. H.; André, M.; Cully, C. M.; He, J. S.; Sahraoui, F.; Yuan, Z. G.; Pang, Y.

    2012-06-01

    We present one case study of magnetic islands and energetic electrons in the reconnection diffusion region observed by the Cluster spacecraft. The cores of the islands are characterized by strong core magnetic fields and density depletion. Intense currents, with the dominant component parallel to the ambient magnetic field, are detected inside the magnetic islands. A thin current sheet is observed in the close vicinity of one magnetic island. Energetic electron fluxes increase at the location of the thin current sheet, and further increase inside the magnetic island, with the highest fluxes located at the core region of the island. We suggest that these energetic electrons are firstly accelerated in the thin current sheet, and then trapped and further accelerated in the magnetic island by betatron and Fermi acceleration.

  17. Helium line formation and abundance in a solar active region

    CERN Document Server

    Mauas, P J D; Falchi, A; Falciani, R; Teriaca, L N; Cauzzi, G

    2004-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines CaII K, Halpha and Na D as well as HeI 10830, 5876, 584 and HeII 304 AA lines have been observed.These simultaneous observations allow us to build semi-empirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it results of fundamental im...

  18. Estimating the Economic Benefits of Regional Ocean Observing Systems

    Science.gov (United States)

    2005-04-01

    Approved for Distribution: Andrew Solow , Director Marine Policy Center Estimating the Economic Benefits of Regional Ocean Observing Systems Report to...models that produce "nowcasts" or forecasts. See R. Adams, M. Brown, C. Colgan, N. Flemming, H. Kite-Powell, B. McCarl, J. Mjelde, A. Solow , T...like to acknowledge helpful discussions held with the following personnel: Ken Schaudt, Marathon; Norman Guinasso, Jr., Texas A&M University; Robert

  19. Enhancing Earth Observation Capacity in the Himalayan Region

    Science.gov (United States)

    Shrestha, B. R.

    2012-12-01

    Earth observations bear special significance in the Himalayan Region owing to the fact that routine data collections are often hampered by highly inaccessible terrain and harsh climatic conditions. The ongoing rapid environmental changes have further emphasized its relevance and use for informed decision-making. The International Center for Integrated Mountain Development (ICIMOD), with a regional mandate is promoting the use of earth observations in line with the GEOSS societal benefit areas. ICIMOD has a proven track record to utilize earth observations notably in the areas of understanding glaciers and snow dynamics, disaster risk preparedness and emergency response, carbon estimation for community forestry user groups, land cover change assessment, agriculture monitoring and food security analysis among others. This paper presents the challenges and lessons learned as a part of capacity building of ICIMOD to utilize earth observations with the primary objectives to empower its member countries and foster regional cooperation. As a part of capacity building, ICIMOD continues to make its efforts to augment as a regional resource center on earth observation and geospatial applications for sustainable mountain development. Capacity building possesses multitude of challenges in the region: the complex geo-political reality with differentiated capacities of member states, poorer institutional and technical infrastructure; addressing the needs for multiple user and target groups; integration with different thematic disciplines; and high resources intensity and sustainability. A capacity building framework was developed based on detailed needs assessment with a regional approach and strategy to enhance capability of ICIMOD and its network of national partners. A specialized one-week training course and curriculum have been designed for different thematic areas to impart knowledge and skills that include development practitioners, professionals, researchers and

  20. Atmospheric aerosol layers over Bangkok Metropolitan Region from CALIPSO observations

    Science.gov (United States)

    Bridhikitti, Arika

    2013-06-01

    Previous studies suggested that aerosol optical depth (AOD) from the Earth Observing System satellite retrievals could be used for inference of ground-level air quality in various locations. This application may be appropriate if pollution in elevated atmospheric layers is insignificant. This study investigated the significance of elevated air pollution layers over the Bangkok Metropolitan Region (BMR) from all available aerosol layer scenes taken from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for years 2007 to 2011. The results show that biomass burning smoke layers alone were the most frequently observed. The smoke layers accounted for high AOD variations and increased AOD levels. In the dry seasons, the smoke layers alone with high AOD levels were likely brought to the BMR via northeasterly to easterly prevailing winds and found at altitudes above the typical BMR mixing heights of approximately 0.7 to 1.5 km. The smoke should be attributed to biomass burning emissions outside the BMR.

  1. Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies

    Science.gov (United States)

    Xu, KONG; Lin, LIN; Jin-rong, LI; Xu, ZHOU; Hu, ZOU; Hong-yu, LI; Fu-zhen, CHEN; Wei, DU; Zhou, FAN; Ye-wei, MAO; Jing, WANG; Yi-nan, ZHU; Zhi-min, ZHOU

    2014-10-01

    In recent years the number of worldwide 8∼10 m-class ground-based telescopes is continually increased, the 4 m-diameter or smaller telescopes have become the small and medium-sized telescopes. In order to obtain some noticeable scientific results by using these existing small and medium-sized telescopes, we have to consider very carefully what we can do, and what we can not. For this reason, the Time Allocation Committee of the 2.16 m telescope of the National Astronomical observatories of China (NAOC) has decided to support some key projects since 2013. The long-term project “Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies” proposed by us is one of three key projects, it is supported by the committee with 30 dark/grey nights in each of three years. The primary goal of this project is to make the spectroscopic observations of the star formation regions along the directions parallel and perpendicular to the main-axes of 20 nearby galaxies with the NAO 2.16 m telescope and the Hec-tospec multi-fiber spectrograph on the 6.5 m MMT (Multiple Mirror Telescope) via the Telescope Access Program (TAP). With the spectra of a large sample of star formation regions, combining with the exising multi-wavelength data from UV to IR, we can study the galaxy dust extinction, star formation rate, metal abundance, and the two-dimensional distributions of stellar population proper-ties, as well as the relationships of the galaxy two-dimensional properties with the galaxy morphologies and environments. As the first paper of this project, we describe here the scientific objectives, sample selection, observation strategy, and present the preliminary result of the spectroscopic observation towards the galaxy NGC 2403.

  2. Infrared Photometry of Solar Active Regions

    Indian Academy of Sciences (India)

    Μ. Sobotka; Μ. V'azquez; Μ. S'anchez Cuberes; J. A. Bonet; A. Hanslmeier

    2000-09-01

    Simultaneous time series of broad-band images of two active regions close to the disk center were acquired at the maximum (0.80 m) and minimum (1.55 m) continuum opacities. Dark faculae are detected in images obtained as weighted intensity differences between both wave-length bands. The elements of quiet regions can be clearly distinguished from those of faculae and pores in scatter plots of brightness temperatures. There is a smooth transition between faculae and pores in the scatter plots. These facts are interpreted in terms of the balance between the inhibition of convective energy transport and the lateral radiative heating.

  3. TIME DEPENDENT NONEQUILIBRIUM IONIZATION OF TRANSITION REGION LINES OBSERVED WITH IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Sykora, Juan; Pontieu, Bart De; Hansteen, Viggo H. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Gudiksen, Boris, E-mail: j.m.sykora@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2016-01-20

    The properties of nonstatistical equilibrium ionization of silicon and oxygen ions are analyzed in this work. We focus on five solar targets (quiet Sun; coronal hole; plage; quiescent active region, AR; and flaring AR) as observed with the Interface Region Imaging Spectrograph (IRIS). IRIS is best suited for this work owing to the high cadence (up to 0.5 s), high spatial resolution (up to 0.″32), and high signal-to-noise ratios for O iv λ1401 and Si iv λ1402. We find that the observed intensity ratio between lines of three times ionized silicon and oxygen ions depends on their total intensity and that this correlation varies depending on the region observed (quiet Sun, coronal holes, plage, or active regions) and on the specific observational objects present (spicules, dynamic loops, jets, microflares, or umbra). In order to interpret the observations, we compare them with synthetic profiles taken from 2D self-consistent radiative MHD simulations of the solar atmosphere, where the statistical equilibrium or nonequilibrium treatment of silicon and oxygen is applied. These synthetic observations show vaguely similar correlations to those in the observations, i.e., between the intensity ratios and their intensities, but only in the nonequilibrium case do we find that (some of) the observations can be reproduced. We conclude that these lines are formed out of statistical equilibrium. We use our time-dependent nonequilibrium ionization simulations to describe the physical mechanisms behind these observed properties.

  4. A submllimeter observation and study of star-forming regions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using the 3-m radio telescope of KOSMA, we mapped 12CO (J = 3-2) lines for three molecular clouds, B35, S146 and TMC-2A. High-velocity molecular outflows are found in all these regions. The physical and dynamical parameters of the outflows are derived, and their shapes and driving sources are analyzed. Contour maps of center velocities show that the large scale systematic gradients exist in the three clouds. These observed motions are best explained by rotation after excluding the cause of outflows. Furthermore, in the core region of TMC-2A there is a velocity gradient in opposite direction from that of the large scale. It may be caused by magnetic braking. Finally, angular velocities of the clouds are calculated, and the effects of rotation against gravity and lowering the star-formation rate are also analyzed.

  5. 7 mm continuum observations of ultra compact HII regions

    Science.gov (United States)

    Leto, P.; Umana, G.; Trigilio, C.; Buemi, C. S.; Dolei, S.; Manzitto, P.; Cerrigone, L.; Siringo, C.

    2009-12-01

    Aims: Ultra compact HII (UCHII) regions are indicators of high-mass star formation sites and are distributed mainly in the Galactic plane. They exhibit a broad band spectrum with significant emission between near-IR and radio wavelengths. We intend to investigate the possible contribution of the forthcoming ESA Planck mission to the science of UCHII regions by evaluating the possibility of detecting UCHIIs that are bright in the radio regime. Methods: We performed new 7 mm observations of a sample of UCHII regions. The observations were designed to acquire high-frequency radio spectra. For each source in our sample, the free-free radio spectrum has been modeled. Along with far-IR measurements, our spectra allow us to estimate the flux densities of the sources in the millimeter and sub-millimeter bands. We extrapolated and summed the ionized-gas (free-free radio emission) and dust (thermal emission) contributions in the afore mentioned wavelength ranges. The possibility of Planck detecting the selected sources can be assessed by comparing the estimated flux densities to the expected sensitivity in each Planck channel. To obtain a realistic estimation of the noise produced by the Galactic emission, the Planck sky model software package was used. Results: For each target source, from our new 7 mm data and other radio measurements from the literature, important physical parameters such as electron density and their spatial distribution, source geometry and emission measure were derived. We conclude that, in the case of the present sample, located close to the Galactic center, Planck will have a very low detection rate. In contrast, assuming that our sample is representative of the whole UCHII-region population, we derive a very high probability of detecting this kind of source with Planck if located instead close to the anticenter. From the analysis of the ionized-gas properties, we suggest that the selected sample could also be contaminated by other kinds of Galactic

  6. The Magnetic Classification of Solar Active Regions 1992 - 2015

    CERN Document Server

    Jaeggli, Sarah A

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-groups e.g. $\\beta\\gamma$, $\\beta\\delta$) make up fractions of approximately 20% and 80% of the sample respectively. This fraction is relatively constant during high levels of activity, however, an increase in the $\\alpha$ fraction to about 35% and and a decrease in the $\\beta$ fraction to about 65% can be seen near each solar minimum and is statistically significant at the 2-$\\sigma$ level. Over 30% of all active regions observed during the years of solar maxima were appended with the classifications $\\gamma$ and/or $\\del...

  7. Recurrent solar jets in active regions

    CERN Document Server

    Archontis, V; Gontikakis, C; 10.1051/0004-6361/200913752

    2010-01-01

    We study the emergence of a toroidal flux tube into the solar atmosphere and its interaction with a pre-existing field of an active region. We investigate the emission of jets as a result of repeated reconnection events between colliding magnetic fields. We perform 3D simulations by solving the time-dependent, resistive MHD equations in a highly stratified atmosphere. A small active region field is constructed by the emergence of a toroidal magnetic flux tube. A current structure is build up and reconnection sets in when new emerging flux comes into contact with the ambient field of the active region. The topology of the magnetic field around the current structure is drastically modified during reconnection. The modification results in a formation of new magnetic systems that eventually collide and reconnect. We find that reconnection jets are taking place in successive recurrent phases in directions perpendicular to each other, while in each phase they release magnetic energy and hot plasma into the solar at...

  8. Observational Evidence of Magnetic Reconnection for Brightenings and Transition Region Arcades in IRIS Observations

    Science.gov (United States)

    Zhao, Jie; Schmieder, Brigitte; Li, Hui; Pariat, Etienne; Zhu, Xiaoshuai; Feng, Li; Grubecka, Michalina

    2017-02-01

    By using a new method of forced-field extrapolation, we study the emerging flux region AR11850 observed by the Interface Region Imaging Spectrograph and Solar Dynamical Observatory. Our results suggest that the bright points (BPs) in this emerging region exhibit responses in lines formed from the upper photosphere to the transition region, which have relatively similar morphologies. They have an oscillation of several minutes according to the Atmospheric Imaging Assembly data at 1600 and 1700 Å. The ratio between the BP intensities measured in 1600 and 1700 Å filtergrams reveals that these BPs are heated differently. Our analysis of the Helioseismic and Magnetic Imager vector magnetic field and the corresponding topology in AR11850 indicates that the BPs are located at the polarity inversion line and most of them are related to magnetic reconnection or cancelation. The heating of the BPs might be different due to different magnetic topology. We find that the heating due to the magnetic cancelation would be stronger than the case of bald patch reconnection. The plasma density rather than the magnetic field strength could play a dominant role in this process. Based on physical conditions in the lower atmosphere, our forced-field extrapolation shows consistent results between the bright arcades visible in slit-jaw image 1400 Å and the extrapolated field lines that pass through the bald patches. It provides reliable observational evidence for testing the mechanism of magnetic reconnection for the BPs and arcades in the emerging flux region, as proposed in simulation studies.

  9. First observation of top quark production in the forward region.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Lohn, S; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A

    2015-09-11

    Top quark production in the forward region in proton-proton collisions is observed for the first time. The W+b final state with W→μν is reconstructed using muons with a transverse momentum, p_{T}, larger than 25 GeV in the pseudorapidity range 2.020  GeV. The results are based on data corresponding to integrated luminosities of 1.0 and 2.0  fb^{-1} collected at center-of-mass energies of 7 and 8 TeV by LHCb. The inclusive top quark production cross sections in the fiducial region are σ(top)[7  TeV]=239±53(stat)±33(syst)±24(theory)  fb,σ(top)[8  TeV]=289±43(stat)±40(syst)±29(theory)  fb.These results, along with the observed differential yields and charge asymmetries, are in agreement with next-to-leading order standard model predictions.

  10. Regional Scaling of Airborne Eddy Covariance Flux Observation

    Science.gov (United States)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  11. Active region upflows: 2. Data driven MHD modeling

    CERN Document Server

    Galsgaard, K; Vanninathan, K; Huang, Z; Presmann, M

    2015-01-01

    Context. Observations of many active regions show a slow systematic outflow/upflow from their edges lasting from hours to days. At present no physical explanation has been proven, while several suggestions have been put forward. Aims. This paper investigates one possible method for maintaining these upflows assuming that convective motions drive the magnetic field to initiate them through magnetic reconnection. Methods. We use Helioseismic and Magnetic Imager (HMI) data to provide an initial potential three dimensional magnetic field of the active region NOAA 11123 on 2010 November 13 where the characteristic upflow velocities are observed. A simple one-dimensional hydrostatic atmospheric model covering the region from the photosphere to the corona is derived. Local Correlation Tracking of the magnetic features in the HMI data is used to derive a proxy for the time dependent velocity field. The time dependent evolution of the system is solved using a resistive three-dimensional MagnetoHydro-Dynamic code. Resu...

  12. Quantifying solar superactive regions with vector magnetic field observations

    CERN Document Server

    Chen, A Q

    2012-01-01

    The vector magnetic field characteristics of superactive regions (SARs) hold the key for understanding why SARs are extremely active and provide the guidance in space weather prediction. We aim to quantify the characteristics of SARs using the vector magnetograms taken by the Solar Magnetic Field Telescope at Huairou Solar Observatory Station. The vector magnetic field characteristics of 14 SARs in solar cycles 22 and 23 were analyzed using the following four parameters: 1) the magnetic flux imbalance between opposite polarities, 2) the total photospheric free magnetic energy, 3) the length of the magnetic neutral line with its steep horizontal magnetic gradient, and 4) the area with strong magnetic shear. Furthermore, we selected another eight large and inactive active regions (ARs), which are called fallow ARs (FARs), to compare them with the SARs. We found that most of the SARs have a net magnetic flux higher than 7.0\\times10^21 Mx, a total photospheric free magnetic energy higher than 1.0\\times10^24 erg/c...

  13. Earth observation for regional scale environmental and natural resources management

    Science.gov (United States)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.

    2013-12-01

    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet

  14. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    Science.gov (United States)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  15. Elementary Bipoles, the Building Blocks of Active Regions

    Science.gov (United States)

    Martin, Sara F.; Mkhitaryan, M.

    2013-07-01

    New magnetic flux even in very small active regions appears as a succession of tiny bipolar magnetic fields that successively and concurrently appear in tight clusters. These smallest observable bipoles were initially called “elementary bipoles” when first seen in videomagnetograms from the Big Bear Solar Observatory (Martin, S. F. 1990, “Elementary Bipoles of Active Regions and Ephemeral Active Regions” Societa Astronomica Italiana, Memorie 61, 293). The magnetic flux of each pole of elementary bipole is approximately the same and measures 1018 Mx or less depending on both the spatial resolution and sensitivity of the magnetograph with which the measurements are made. The two poles initially occur very close together and rapidly move in opposite directions with a typical speed of 3 km/sec. The elementary bipoles within a cluster tend to emerge with similar orientations. The most common orientation of the elementary bipoles at any given time determines the “orientation” of a whole simple bipolar region. In this paper we illustrate and compare 6 clusters of elementary bipoles during the development of a large active region less than 2 days old when observed in Hα at the Dutch Open Telescope along with HMI/SDO. Each cluster of elementary bipoles behaves like a single simple bipolar active region. However the clusters are so close together that the magnetic flux of each bipolar cluster merges or cancels with adjacent clusters. The study of elementary bipoles provides a means of simplifying our understanding of the development of complex active regions depending on both the spatial resolution and sensitivity of the magnetograph with which the measurements are made.

  16. Density and Temperature Measurements in a Solar Active Region

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  17. Formation and evolution of an active region filament

    CERN Document Server

    Kuckein, C; Pillet, V Martínez

    2013-01-01

    Several scenarios explaining how filaments are formed can be found in literature. In this paper, we analyzed the observations of an active region filament and critically evaluated the observed properties in the context of current filament formation models. This study is based on multi-height spectropolarimetric observations. The inferred vector magnetic field has been extrapolated starting either from the photosphere or from the chromosphere. The line-of-sight motions of the filament, which was located near disk center, have been analyzed inferring the Doppler velocities. We conclude that a part of the magnetic structure emerged from below the photosphere.

  18. Observational and Numerical Diagnostics of Galaxy Cluster Outer Regions

    Science.gov (United States)

    Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.

    2011-01-01

    Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r(sub 200) and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to several recent results, we observe a steepening of the density profiles beyond approximately 0.3r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or gas clumping are in better agreement with the observed gas distribution. We note a systematic difference between cool-core and non-cool core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. The general trend of steepening density around the virial radius indicates that the shallow density profiles found in several recent works were probably obtained along particular directions (e.g., filaments) and are not representative of the

  19. Global Dynamics of Subsurface Solar Active Regions

    CERN Document Server

    Jouve, L; Aulanier, G

    2012-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced in the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an \\Omega-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to the ones of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We moreover emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call "magnetic necklace" and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also ...

  20. Observational studies of regions of massive star formation

    Science.gov (United States)

    Cooper, Heather Danielle Blythe

    2013-03-01

    Massive stars have a profound influence on their surroundings. However, relatively little is known about their formation. The study of massive star formation is hindered by a lack of observational evidence, primarily due to difficulties observing massive stars at early stages in their development. The Red MSX Source survey (RMS survey) is a valuable tool with which to address these issues. Near-infrared H- and K-band spectra were taken for 247 candidate massive young stellar objects (MYSOs), selected from the RMS survey. 195 (∼80%) of the targets are YSOs, of which 131 are massive YSOs (LBOL>5E3L⊙, M>8 M⊙). This is the largest spectroscopic study of massive YSOs to date. This study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties, with HI, H2 Fe II, and CO among the most commonly observed lines. Evidence for disks and outflows was frequently seen. Comparisons of Brγ and H2 emission with low mass YSOs suggest that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs. It was found that the YSOs form an evolutionary sequence, based on their spectra, consistent with the existing theoretical models. Type I YSOs have strong H2 emission, no ionized lines, and are redder than the other two subtypes. As such, these are considered to be the youngest sources. The Type III sources are bluest, and therefore considered to be the oldest subtype. They have strong H I lines and fluorescent Fe II 1.6878 μm emission. They may also have weak H2 emission. Type III sources may even be beginning to form a mini-H II region. XSHOOTER data from 10 Herbig Be stars were analysed. The evidence suggests that winds and disks are common among Herbig stars, as they are among their main sequence classical Be star counterparts. Line

  1. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    CERN Document Server

    Tang, Xiangwei; Dombeck, John; Dai, Lei; Wilson, Lynn B; Breneman, Aaron; Hupach, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region at the sub-solar magnetopause using data from one THEMIS satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves and electrostatic electron cyclotron waves, are observed in the same 12-sec waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves which are at the electron scale and enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (~30 keV) within the electron diffusion region have anisotropic distributions with T_{e\\perp}/T_{e\\parallel}>1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whi...

  2. Bimanual passive movement: functional activation and inter-regional coupling.

    Science.gov (United States)

    Macaluso, Emiliano; Cherubini, Andrea; Sabatini, Umberto

    2007-01-01

    The aim of this study was to investigate intra-regional activation and inter-regional connectivity during passive movement. During fMRI, a mechanic device was used to move the subject's index and middle fingers. We assessed four movement conditions (unimanual left/right, bimanual symmetric/asymmetric), plus Rest. A conventional intra-regional analysis identified the passive stimulation network, including motor cortex, primary and secondary somatosensory cortex, plus the cerebellum. The posterior (sensory) part of the sensory-motor activation around the central sulcus showed a significant modulation according to the symmetry of the bimanual movement, with greater activation for asymmetric compared to symmetric movements. A second set of fMRI analyses assessed condition-dependent changes of coupling between sensory-motor regions around the superior central sulcus and the rest of the brain. These analyses showed a high inter-regional covariation within the entire network activated by passive movement. However, the specific experimental conditions modulated these patterns of connectivity. Highest coupling was observed during the Rest condition, and the coupling between homologous sensory-motor regions around the left and right central sulcus was higher in bimanual than unimanual conditions. These findings demonstrate that passive movement can affect the connectivity within the sensory-motor network. We conclude that implicit detection of asymmetry during bimanual movement relies on associative somatosensory region in post-central areas, and that passive stimulation reduces the functional connectivity within the passive movement network. Our findings open the possibility to combine passive movement and inter-regional connectivity as a tool to investigate the functionality of the sensory-motor system in patients with very poor mobility.

  3. Bimanual passive movement: functional activation and inter-regional coupling

    Directory of Open Access Journals (Sweden)

    Emiliano Macaluso

    2007-12-01

    Full Text Available The aim of this study was to investigate intra-regional activation and inter-regional connectivity during passive movement. During fMRI, a mechanic device was used to move the subject's index and middle fingers. We assessed four movement conditions (unimanual left/right, bimanual symmetric/asymmetric, plus Rest. A conventional intra-regional analysis identified the passive stimulation network, including motor cortex, primary and secondary somatosensory cortex, plus the cerebellum. The posterior (sensory part of the sensory-motor activation around the central sulcus showed a significant modulation according to the symmetry of the bimanual movement, with greater activation for asymmetric compared to symmetric movements. A second set of fMRI analyses assessed condition-dependent changes of coupling between sensory-motor regions around the superior central sulcus and the rest of the brain. These analyses showed a high inter-regional covariation within the entire network activated by passive movement. However, the specific experimental conditions modulated these patterns of connectivity. Highest coupling was observed during the Rest condition, and the coupling between homologous sensory-motor regions around the left and right central sulcus was higher in bimanual than unimanual conditions. These findings demonstrate that passive movement can affect the connectivity within the sensory-motor network. We conclude that implicit detection of asymmetry during bimanual movement relies on associative somatosensory region in post-central areas, and that passive stimulation reduces the functional connectivity within the passive movement network. Our findings open the possibility to combine passive movement and inter-regional connectivity as a tool to investigate the functionality of the sensory-motor system in patients with very poor mobility.

  4. Observing the reconnection region in a transequatorial loop system

    Institute of Scientific and Technical Information of China (English)

    Rui Liu; Tong-Jiang Wang; Jeongwoo Lee; Guillermo Stenborg; Chang Liu; Sung-Hong Park; Hai-Min Wang

    2011-01-01

    A vertical current sheet is a crucial element in many flare/coronal mass ejection (CME) models.For the first time,Liu et al.reported a vertical current sheet directly imaged during the flare rising phase with the EUV Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO).As a follow-up study,here we present the comprehensive analysis and detailed physical interpretation of the observation.The current sheet formed due to the gradual rise of a transequatorial loop system.As the loop legs approached each other,plasma flew at ~6 km s-1 into a local area where a cusp-shaped flare loop subsequently formed and the current sheet was seen as a bright,collimated structure of global length (≥ 0.25 R(@)) and macroscopic width ((5-10)× 103 km),extending from 50 Mm above the flaring loop to the border of the EIT field of view (FOV).The reconnection rate in terms of the Alfvén Mach number is estimated to be only 0.005-0.009,albeit a halo CME was accelerated from ~ 400 km s- 1 to ~ 1300 km s- 1 within the coronagraph FOV.Drifting pulsating structures at metric frequencies were recorded during the impulsive phase,implying tearing of the current sheet in the high corona.A radio Type Ⅲ burst occurred when the current sheet was clearly seen in EUV,indicative of accelerated electrons beaming upward from the upper tip of the current sheet.A cusp-shaped dimming region was observed to be located above the post-flare arcade during the decay phase in EIT;both the arcade and the dimming expanded with time.With the Coronal Diagnostic Spectrometer (CDS) aboard SOHO,a clear signature of chromospheric evaporation was seen during the decay phase,i.e.,the cusp-shaped dimming region was associated with plasma upflows detected with EUV hot emission lines,while the post-flare loop was associated with downflows detected with cold lines.This event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona.

  5. Size-Flux Relation in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We present a study of the relationship between integral area and corre-sponding total magnetic flux for solar active regions. It is shown that some of theserelationships are satisfied to simple power laws. Fractal examination showed thatsome of these power laws can not be justified inside the simple models of stationarymagnetic flux tube aggregation. All magnetic fluxes and corresponding areas werecalculated using the data measured with the Solar Magnetic Field Telescope of theHuairou Solar Observing Station in Beijing.

  6. On the Magnetic Field Strength of Active Region Filaments

    CERN Document Server

    Kuckein, C; Pillet, V Martinez; Casini, R; Sainz, R Manso; Shimizu, T

    2009-01-01

    We study the vector magnetic field of a filament observed over a compact Active Region Neutral Line. Spectropolarimetric data acquired with TIP-II (VTT, Tenerife, Spain) of the 10830 \\AA spectral region provide full Stokes vectors which were analyzed using three different methods: magnetograph analysis, Milne-Eddington inversions and PCA-based atomic polarization inversions. The inferred magnetic field strengths in the filament are of the order of 600 - 700 G by all these three methods. Longitudinal fields are found in the range of 100 - 200 G whereas the transverse components become dominant, with fields as large as 500 - 600 G. We find strong transverse fields near the Neutral Line also at photospheric levels. Our analysis indicates that strong (higher than 500 G, but below kG) transverse magnetic fields are present in Active Region filaments. This corresponds to the highest field strengths reliably measured in these structures. The profiles of the Helium 10830 \\AA lines observed in this Active Region filam...

  7. The Evolution of Dark Canopies Around Active Regions

    CERN Document Server

    Wang, Y -M; Muglach, K

    2011-01-01

    As observed in spectral lines originating from the chromosphere, transition region, and low corona, active regions are surrounded by an extensive "circumfacular" area which is darker than the quiet Sun. We examine the properties of these dark moat- or canopy-like areas using \\ion{Fe}{9} 17.1 nm images and line-of-sight magnetograms from the {\\it Solar Dynamics Observatory}. The 17.1 nm canopies consist of fibrils (horizontal fields containing EUV-absorbing chromospheric material) clumped into featherlike structures. The dark fibrils initially form a quasiradial or vortical pattern as the low-lying field lines fanning out from the emerging active region connect to surrounding network and intranetwork elements of the opposite polarity. The area occupied by the 17.1 nm fibrils expands as supergranular convection causes the active region flux to spread into the background medium; the outer boundary of the dark canopy stabilizes where the diffusing flux encounters a unipolar region of the opposite sign. The dark f...

  8. Observation of low frequency electromagnetic activity at 1000 km altitude

    Directory of Open Access Journals (Sweden)

    N. Ivchenko

    Full Text Available We present a statistical study of low frequency fluctuations of electric and magnetic fields, commonly interpreted as Alfvénic activity. The data base consists of six months of electric and magnetic field measurements by the Astrid-2 microsatellite. The occurrence of the events is studied with respect to the location and general activity. Large regions of broadband Alfvénic activity are persistently observed in the cusp/cleft and, during the periods of high geo-magnetic activity, also in the pre-midnight sector of the auroral oval.

    Key words. Ionosphere (auroral ionosphere – Space plasma physics (waves and instabilities – Magnetospheric physics (magnetosphere-ionosphere interactions

  9. Dynamic Precursors of Flares in Active Region NOAA 10486

    Indian Academy of Sciences (India)

    M. B. Korsós; N. Gyenge; T. Baranyi; A. Ludmány

    2015-03-01

    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted horizontal gradient WGM, is the generalized form of the horizontal gradient of the magnetic field, GM; the other is the sum of the horizontal gradient of the magnetic field, GS, for all sunspot pairs). WGM is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, Sl−f, considers the overall morphology. Further, GS and Sl−f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.

  10. Regional nitrogen oxides emission trends in East Asia observed from space

    Science.gov (United States)

    Mijling, B.; van der A, R. J.; Zhang, Q.

    2013-12-01

    Due to changing economic activity, emissions of air pollutants in East Asia are changing rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight into the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric constituents on a mesoscopic scale (~ 0.25° × 0.25°). The algorithm is used to construct a monthly NOx emission time series for the period 2007-2011 from tropospheric NO2 observations of GOME-2 for East Chinese provinces and surrounding countries. The new emission estimates correspond well with the bottom-up inventory of EDGAR v4.2, but are smaller than the inventories of INTEX-B and MEIC. They reveal a strong positive trend during 2007-2011 for almost all Chinese provinces, related to the country's economic development. We find a 41% increment of NOx emissions in East China during this period, which shows the need to update emission inventories in this region on a regular basis. Negative emission trends are found in Japan and South Korea, which can be attributed to a combined effect of local environmental policy and global economic crises. Analysis of seasonal variation distinguishes between regions with dominant anthropogenic or biogenic emissions. For regions with a mixed anthropogenic and biogenic signature, the opposite seasonality can be used for an estimation of the separate emission contributions. Finally, the non-local concentration/emission relationships calculated by the algorithm are used to quantify the direct effect of regional NOx emissions on tropospheric NO2 concentrations outside the region. For regions such as North Korea and the Beijing municipality, a substantial part of the tropospheric NO2 originates from emissions elsewhere.

  11. Regional nitrogen oxides emission trends in East Asia observed from space

    Directory of Open Access Journals (Sweden)

    B. Mijling

    2013-07-01

    Full Text Available Due to changing economic activity, emissions of air pollutants in East Asia change rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight in the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric constituents on a~mesoscopic scale (~ 0.25° × 0.25°. The algorithm is used to construct a monthly NOx emission time series for 2007–2011 from tropospheric NO2 observations of GOME-2 for East Chinese provinces and surrounding countries. The new emission estimates correspond well with the bottom-up inventory of EDGAR v4.2, but are smaller than the inventories of INTEX-B and MEIC. They reveal a strong positive trend during 2007–2011 for almost all Chinese provinces, related to the country's economic development. We find a 41% increment of NOx emissions in East China during this period, which shows the need to update emission inventories in this region on a regular basis. Negative emission trends are found in Japan and South Korea, which can be attributed to a combined effect of local environmental policy and global economic crises. Analysis of seasonal variation distinguishes between regions with dominant anthropogenic or biogenic emissions. For regions with a mixed anthropogenic and biogenic signature, the opposite seasonality can be used for an estimation of the separate emission contributions. Finally, the non-local concentration/emission relationships calculated by the algorithm are used to quantify the direct effect of regional NOx emissions on tropospheric NO2 concentrations outside the region. For regions such as North Korea and Beijing province, a substantial part of the tropospheric NO2 originates from emissions elsewhere.

  12. Active region upflows. II. Data driven magnetohydrodynamic modelling

    Science.gov (United States)

    Galsgaard, K.; Madjarska, M. S.; Vanninathan, K.; Huang, Z.; Presmann, M.

    2015-12-01

    Context. Observations of many active regions show a slow systematic outflow/upflow from their edges lasting from hours to days. At present no physical explanation has been proven, while several suggestions have been put forward. Aims: This paper investigates one possible method for maintaining these upflows assuming, that convective motions drive the magnetic field to initiate them through magnetic reconnection. Methods: We use Helioseismic and Magnetic Imager (HMI) data to provide an initial potential 3D magnetic field of the active region NOAA 11123 on 2010 November 13 where the characteristic upflow velocities are observed. A simple 1D hydrostatic atmospheric model covering the region from the photosphere to the corona is derived. Local correlation tracking of the magnetic features in the HMI data is used to derive a proxy for the time dependent velocity field. The time dependent evolution of the system is solved using a resistive 3D magnetohydrodynamic code. Results: The magnetic field contains several null points located well above the photosphere, with their fan planes dividing the magnetic field into independent open and closed flux domains. The stressing of the interfaces between the different flux domains is expected to provide locations where magnetic reconnection can take place and drive systematic flows. In this case, the region between the closed and open flux is identified as the region where observations find the systematic upflows. Conclusions: In the present experiment, the driving only initiates magneto-acoustic waves without driving any systematic upflows at any of the flux interfaces. Movie is available in electronic form at http://www.aanda.org

  13. The Life Cycle of Active Region Magnetic Fields

    Science.gov (United States)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  14. Active faulting in the Birjand region of NE Iran

    Science.gov (United States)

    Walker, R. T.; Khatib, M. M.

    2006-08-01

    We use satellite imagery and field observations to investigate the distribution of active faults around Birjand in eastern Iran to determine how the transition between conjugate zones of faulting can be accommodated by diffuse active faulting. In the south of the study area, right-lateral strike-slip faults of the Sistan Suture Zone end in thrusts which die away westward from the strike-slip faults. These thrust terminations appear to allow a northward change to E-W thrusting in central parts of the study area. The introduction of E-W thrusting is, in turn, likely to facilitate a change to E-W left-lateral faulting north of the study region. The relatively diffuse pattern of active faulting at Birjand relates to the regional transition between N-S and E-W strike-slip faulting in northeast Iran, which involves a change from nonrotational to rotational deformation. The change from N-S to E-W faulting is likely to result from the orientation of preexisting structures in Iran and western Afghanistan, which are roughly parallel to the active fault zones. The features described at Birjand also show the influence of preexisting structure on the location and style of active faulting at a local scale, with the position of individual faults apparently controlled by inherited geological weaknesses. Very few modern earthquakes have occurred in the region of Birjand and yet destructive events are known from the historical record. The large number of active faults mapped in this study pose a substantial seismic hazard to Birjand and surrounding regions.

  15. VHF radar observations of the dip equatorial E-region during sunset in the Brazilian sector

    Directory of Open Access Journals (Sweden)

    C. M. Denardini

    2006-07-01

    Full Text Available Using the RESCO 50 MHz backscatter radar (2.33° S, 44.2° W, DIP: –0.5, at São Luís, Brazil, we obtained Range Time Intensity (RTI maps covering the equatorial electrojet heights during daytime and evening. These maps revealed a scattering region at an altitude of about 108 km during the sunset period. The type of 3-m irregularity region we present here has not been reported before in the literature, to our knowledge. It was mainly observed around the Southern Hemisphere summer-solstice period, under quiet magnetic activity condition. The occurrence of this echo region coincides in local time with the maximum intensity of an evening pre-reversal eastward electric field of the ionospheric F-region. A tentative explanation is proposed here in terms of the theory of the divergence of the equatorial electrojet (EEJ current in the evening ionosphere presented by Haerendel and Eccles (1992, to explain the partial contribution of the divergence to the development of the pre-reversal electric field. The theory predicts an enhanced zonal electric field and hence a vertical electric field below 300 km as a consequence of the EEJ divergence in the evening. The experimental results of the enhanced echoes from the higher heights of the EEJ region seem to provide evidence that the divergence of the EEJ current can indeed be the driver of the observed scattering region.

  16. Magnetic structure of an activated filament in a flaring active region

    CERN Document Server

    Sasso, C; Solanki, S K

    2013-01-01

    While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We introduce observational results on the magnetic field structure of an activated filament in a flaring active region. We study, in particular, its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displays signs of rotation. We invert the Stokes profiles of the chromospheric He I 10830 A triplet and the photospheric Si I 10827 A line observed in this filament by the VTT on Tenerife. Using these inversion results we present and interpret the first maps of velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Up to 5 different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of...

  17. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  18. Image patch analysis of sunspots and active regions. II. Clustering via dictionary learning

    CERN Document Server

    Moon, Kevin R; Li, Jimmy J; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O

    2015-01-01

    Separating active regions that are quiet from potentially eruptive ones is a key issue in Space Weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature prevents systematic studies of an active region's evolution for example. We introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. We use a reduced-dimension representation of an active region that is obtained by factoring (i.e. applying dictionary learning to) the corresponding data matrix comprised of local image patches. Two factorizations can be compared via the definition of appropriate metrics on the resulting factors. The distances obtained from these metrics are then used to cluster the active regions. We find that these metrics result in natural clusterings of active regions...

  19. Aging worlds in contradiction: gerontological observations in the Mediterranean region

    Directory of Open Access Journals (Sweden)

    Hans-Joachim von Kondratowitz

    2015-12-01

    Full Text Available This article discusses the existing and developing aging regimes in the Northern and Southern rim countries of the whole Mediterranean region which are all undergoing considerable social and political transformation processes. It is argued that several eye-opening theoretical interventions for such a gerontological project may lead to some methodological problems and pitfalls, which have to be dealt with productively. Central collective concepts of such an analysis (as the change-oriented "modernization effects" of societal aging and the continuity-oriented gaze at the "unity of the region" have to be reconsidered and ought to be more differentiated in order to allow smaller social entities (such as kinship and community systems and their connectivity to be central orientations for analyzing poverty and care management in old age in the Mediterranean region. How to reconnect such a rather micro-political agenda with large processes and big structures of aging policies in the region however still remains an open question.

  20. Observations of the cusp region under northward IMF

    Directory of Open Access Journals (Sweden)

    F. Pitout

    Full Text Available We present a comparative study of the cusp region using the EISCAT Svalbard Radars (ESR and the Cluster spacecraft. We focus in this paper on 2 February 2001, over the time period from 07:30 UT to 12:00 UT when the oblique ESR antenna pointing northward at a low elevation recorded latitudinal motions of the cusp region in response to the IMF. Meanwhile, the Cluster satellites were flying over the EISCAT Svalbard Radar field-of-view around local magnetic noon. The spacecraft first flew near ESR, northeast of Svalbard and then passed over the field-of-view of the antenna at about 11:30 UT. From 08:00 UT to 09:00 UT, the IMF remains primarily southward yet several variations in the Z-component are seen to move the cusp. Around 09:00 UT, an abrupt northward turning of the IMF moves the cusp region to higher latitudes. As a result, the Cluster satellites ended up in the northernmost boundary of the high-altitude cusp region where the CIS instrument recorded highly structured plasma due to ion injections in the lobe of the magnetosphere. After 09:00 UT, the IMF remains northward for more than two hours. Over this period, the ESR records sunward plasma flow in the cusp region due to lobe reconnection, while Cluster spacecraft remain in the high-altitude cusp.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; plasma convection Ionosphere (polar ionosphere

  1. The Limit of Free Magnetic Energy in Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  2. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    Science.gov (United States)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  3. FLARE FOOTPOINT REGIONS AND A SURGE OBSERVED BY HINODE/EIS, RHESSI, AND SDO/AIA

    Energy Technology Data Exchange (ETDEWEB)

    Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Dennis, B. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Caspi, A. [Southwest Research Institute, Boulder, CO 80302 (United States)

    2015-11-01

    The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft observed flare footpoint regions coincident with a surge for an M3.7 flare observed on 2011 September 25 at N12 E33 in active region 11302. The flare was observed in spectral lines of O vi, Fe x, Fe xii, Fe xiv, Fe xv, Fe xvi, Fe xvii, Fe xxiii, and Fe xxiv. The EIS observations were made coincident with hard X-ray bursts observed by RHESSI. Overlays of the RHESSI images on the EIS raster images at different wavelengths show a spatial coincidence of features in the RHESSI images with the EIS upflow and downflow regions, as well as loop-top or near-loop-top regions. A complex array of phenomena were observed, including multiple evaporation regions and the surge, which was also observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly telescopes. The slit of the EIS spectrometer covered several flare footpoint regions from which evaporative upflows in Fe xxiii and Fe xxiv lines were observed with Doppler speeds greater than 500 km s{sup −1}. For ions such as Fe xv both evaporative outflows (∼200 km s{sup −1}) and downflows (∼30–50 km s{sup −1}) were observed. Nonthermal motions from 120 to 300 km s{sup −1} were measured in flare lines. In the surge, Doppler speeds are found from about 0 to over 250 km s{sup −1} in lines from ions such as Fe xiv. The nonthermal motions could be due to multiple sources slightly Doppler-shifted from each other or turbulence in the evaporating plasma. We estimate the energetics of the hard X-ray burst and obtain a total flare energy in accelerated electrons of ≥7 × 10{sup 28} erg. This is a lower limit because only an upper limit can be determined for the low-energy cutoff to the electron spectrum. We find that detailed modeling of this event would require a multithreaded model owing to its complexity.

  4. Two centuries of observed atmospheric variability and change over the North Sea region

    Science.gov (United States)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard; Woollings, Tim

    2016-04-01

    In the upcoming North Sea Region Climate Change Assessment (NOSCCA), we present a synthesis of current knowledge about past, present and possible future climate change in the North Sea region. A climate change assessment from published scientific work has been conducted as a kind of regional IPCC report, and a book has been produced that will be published by Springer in 2016. In the framework of the NOSCCA project, we examine past and present studies of variability and changes in atmospheric variables within the North Sea region over the instrumental period, roughly the past 200 years, based on observations and reanalyses. The variables addressed in this presentation are large-scale circulation, pressure and wind, surface air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine duration). While air temperature over land, not unexpectedly, has increased everywhere in the North Sea region, with strongest trends in spring and in the north of the region, a precipitation increase has been observed in the north and a decrease in the south of the region. This pattern goes along with a north-eastward shift of storm tracks and is in agreement with climate model projections under enhanced greenhouse gas concentrations. For other variables, it is not obvious which part of the observed changes may be due to anthropogenic activities and which is internally forced. It remains also unclear to what extent atmospheric circulation over the North Sea region is influenced by distant factors, in particular Arctic sea-ice decline in recent decades. There are indications of an increase in the number of deep cyclones (but not in the total number of cyclones), while storminess since the late 19th century shows no robust trends. The persistence of circulation types appears to have increased over the last century, and consequently, there is an indication for 'more extreme' extreme events. However, changes in extreme weather events are difficult to assess

  5. Observing Episodic Coronal Heating Events Rooted in Chromospheric Activity

    CERN Document Server

    McIntosh, Scott W

    2009-01-01

    We present results of a multi-wavelength study of episodic plasma injection into the corona of AR 10942. We exploit long-exposure images of the Hinode and Transition Region and Coronal Explorer (TRACE) spacecraft to study the properties of faint, episodic, "blobs" of plasma that are propelled upward along coronal loops that are rooted in the AR plage. We find that the source location and characteristic velocities of these episodic upflow events match those expected from recent spectroscopic observations of faint coronal upflows that are associated with upper chromospheric activity, in the form of highly dynamic spicules. The analysis presented ties together observations from coronal and chromospheric spectrographs and imagers, providing more evidence of the connection of discrete coronal mass heating and injection events with their source, dynamic spicules, in the chromosphere.

  6. Deep Sea Coral National Observation Database, Northeast Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The national database of deep sea coral observations. Northeast version 1.0. * This database was developed by the NOAA NOS NCCOS CCMA Biogeography office as part of...

  7. Local Helioseismology of Emerging Active Regions: A Case Study

    CERN Document Server

    Kosovichev, Alexander G; Ilonidis, Stathis

    2016-01-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the for...

  8. Material Supply and Magnetic Configuration of an Active Region Filament

    Science.gov (United States)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda

    2016-11-01

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  9. High resolution telescope and spectrograph observations of solar fine structure in the 1600 A region

    Science.gov (United States)

    Cook, J. W.; Brueckner, G. E.; Bartoe, J.-D. F.

    1983-01-01

    High spatial resolution spectroheliograms of the 1600 A region obtained during the HRTS rocket flight of 1978 February 13 are presented. The morphology, fine structure, and temporal behavior of emission bright points (BPs) in active and quiet regions are illustrated. In quiet regions, network elements persist as morphological units, although individual BPs may vary in intensity while usually lasting the flight duration. In cell centers, the BPs are highly variable on a 1 minute time scale. BPs in plages remain more constant in brightness over the observing sequence. BPs cover less than 4 percent of the quiet surface. The lifetime and degree of packing of BPs vary with the local strength of the magnetic field.

  10. Undercover EUV Solar Jets Observed by the Interface Region Imaging Spectrograph

    CERN Document Server

    Chen, N -H

    2016-01-01

    It is well-known that extreme ultraviolet emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from IRIS, consisting of UV spectra and slit-jaw images give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. There were collimated outflows with bright roots in the SJI 1400 {\\AA} (transition region) and 2796 {\\AA} (upper chromosphere) that were mostly not seen in AIA 304 {\\AA} (transition region) and AIA 171 \\AA\\ (lower corona) images. The Si IV spectra show strong blue-wing but no red-wing enhancements in the line profiles of the ejecta for all recurrent jets indicating outward flows without twists. We see two types of Mg II l...

  11. Observational Activities at Manipur University, India (Abstract)

    Science.gov (United States)

    Singh, K. Y.; Meitei, I. A.; Singh, S. A.; Singh, R. B.

    2015-06-01

    (Abstract only) We have innovatively designed and constructed three observatories each costing a few hundred USD for housing three small Schmidt-Cassegrain type telescopes namely, Celestron CGE925, Celestron CGE1400, Meade 12-inch LX200GPS. These observatories are completely different in design and are found to be perfectly usable for doing serious work on astronomical observation and measurements. The observatory with the Celestron CGE1400 telescope has been inducted, since January 2012, as one of the observatories of the international “Orion Project” headquartered at Phoenix, Arizona, which is dedicated for photometric and spectroscopic observations of five bright variable stars of the Orion constellation namely, Betelgeuse (alpha Ori), Rigel (beta Ori), Mintaka (delta Ori), Alnilam (epsilon Ori) and Alnitak (zeta Ori). Using this observatory, we have been producing BVRI photometric data for the five stars of the Orion project. The other observatory with the Meade 12-inch LX200GPS telescope is being inducted into service for CCD photometric study of SU UMa stars in connection with implementation of a project funded by Indian Space Research Organization (ISRO). In the present paper, we would like to describe our self-built observatories, our observational facilities, the BVRI photometric data that we acquired for the Orion project, and our future plan for observation of variable stars of interest.

  12. The black disk to be observed in the Orear region

    CERN Document Server

    Dremin, I M

    2012-01-01

    It is argued that the very first signatures of the approach to the black disk asymptotical limit in hadron collisions may be observed in the differential cross section of elastic scattering. The exponentially decreasing with the angle (or $\\sqrt {|t|}$) regime beyond the diffraction peak will become replaced by an oscillatory behavior. Some estimates of energies where this can happen are presented.

  13. The black disk to be observed in the Orear region

    Science.gov (United States)

    Dremin, I. M.

    2012-08-01

    It is argued that the very first signatures of the approach to the black disk asymptotical limit in hadron collisions may be observed in the differential cross section of elastic scattering. The exponentially decreasing with the angle (or √{|t|} ) regime beyond the diffraction peak will become replaced by an oscillatory behavior or by the power-like falloff. Some estimates of energies where this can happen are presented.

  14. The black disk to be observed in the Orear region

    Energy Technology Data Exchange (ETDEWEB)

    Dremin, I.M., E-mail: dremin@td.lpi.ru [Lebedev Physical Institute, Moscow 119991 (Russian Federation)

    2012-08-15

    It is argued that the very first signatures of the approach to the black disk asymptotical limit in hadron collisions may be observed in the differential cross section of elastic scattering. The exponentially decreasing with the angle (or {radical}(|t|) ) regime beyond the diffraction peak will become replaced by an oscillatory behavior or by the power-like falloff. Some estimates of energies where this can happen are presented.

  15. THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggli, S. A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States); Norton, A. A., E-mail: sarah.jaeggli@nasa.gov [W. W. Hansen Experimental Physics Laboratory, Stanford University, Palo Alto, CA 94305 (United States)

    2016-03-20

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity; however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  16. Lroc Observations of Permanently Shadowed Regions: Seeing into the Dark

    Science.gov (United States)

    Koeber, S. D.; Robinson, M. S.

    2013-12-01

    Permanently shadowed regions (PSRs) near the lunar poles that receive secondary illumination from nearby Sun facing slopes were imaged by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NAC). Typically secondary lighting is optimal in polar areas around respective solstices and when the LRO orbit is nearly coincident with the sub-solar point (low spacecraft beta angles). NAC PSR images provide the means to search for evidence of surface frosts and unusual morphologies from ice rich regolith, and aid in planning potential landing sites for future in-situ exploration. Secondary illumination imaging in PSRs requires NAC integration times typically more than ten times greater than nominal imaging. The increased exposure time results in downtrack smear that decreases the spatial resolution of the NAC PSR images. Most long exposure NAC images of PSRs were acquired with exposure times of 24.2-ms (1-m by 40-m pixels, sampled to 20-m) and 12-ms (1-m by 20-m, sampled to 10-m). The initial campaign to acquire long exposure NAC images of PSRs in the north pole region ran from February 2013 to April 2013. Relative to the south polar region, PSRs near the north pole are generally smaller (D6-km were successfully imaged (ex. Whipple, Hermite A, and Rozhestvenskiy U). The third PSR south polar campaign began in April 2013 and will continue until October 2013. The third campaign will expand previous NAC coverage of PSRs and follow up on discoveries with new images of higher signal to noise ratio (SNR), higher resolution, and varying secondary illumination conditions. Utilizing previous campaign images and Sun's position, an individualized approach for targeting each crater drives this campaign. Secondary lighting within the PSRs, though somewhat diffuse, is at low incidence angles and coupled with nadir NAC imaging results in large phase angles. Such conditions tend to reduce albedo contrasts, complicating identification of patchy frost or ice deposits. Within

  17. Observations of SNR CTA 1 and the Cyg OB1 region with VERITAS

    CERN Document Server

    Aliu, Ester

    2011-01-01

    The Cygnus region is a nearby very active star forming region, containing several OB associations, considered as tracers of young pulsars. Above 12 TeV, the Milagro Collaboration has reported the discovery of a very large source, MGRO J2019+37, lying towards the Cyg OB1 association, at the edge of the Cygnus region. The young and energetic pulsar PSR J2021+3651 has been proposed to power this emission. We present here the result of deep VERITAS observations of this region at energies above 650 GeV. These observations unveil extended and complex TeV emission compatible with MGRO J2019+37, likely made of multiple sources, and a clearly separated point source emission from the direction of CTB 87, a pulsar wind nebula candidate. We will also report on the detection of TeV emission from the young Galactic SNR CTA 1, likely powered by the first pulsar discovered through its gamma-ray radiation.

  18. Solar Activity Studies using Microwave Imaging Observations

    CERN Document Server

    Gopalswamy, Nat

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012 to 2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of ~5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar re...

  19. Narrow-line-width UV Bursts in the Transition Region above Sunspots Observed by IRIS

    Science.gov (United States)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-10-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s‑1, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s‑1 found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  20. Narrow-line-width UV bursts in the transition region above Sunspots observed by IRIS

    CERN Document Server

    Hou, Zhenyong; Xia, Lidong; Li, Bo; Madjarska, Maria S; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-01-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si IV line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as Narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise of one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two datasets (a raster and a sit-and-stare dataset). Among these, four events are short-living with a duration of $\\sim$10 mins while two last for more than 36 mins. All NUBs have Doppler shifts of 15--18 km/s, while the NUB found in sit-and-stare data possesses an additional component at $\\sim$50 km/s found only in the C II and Mg II lines. Given that these events are found to play a role in the local dynamics, it is impo...

  1. FIP Bias Evolution in a Decaying Active Region

    CERN Document Server

    Baker, D; Démoulin, P; Yardley, S L; van Driel-Gesztelyi, L; Long, D M; Green, L M

    2015-01-01

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode's EUV Imaging Spectrometer (EIS) instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR) 11389. The composition maps show how FIP bias evolves within the decaying AR from 2012 January 4-6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR's decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing time scales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Final...

  2. Optical polarization observations in the Scorpius region: NGC 6124

    Science.gov (United States)

    Vergne, M. Marcela; Feinstein, Carlos; Martínez, Ruben; Orsatti, Ana María; Alvarez, María Paula

    2010-04-01

    We have obtained optical multicolour (UBVRI) linear polarimetric data for 46 of the brightest stars in the area of the open cluster NGC 6124 in order to investigate the properties of the interstellar medium (ISM) that lies along the line of sight towards the cluster. Our data yield a mean polarization efficiency of PV/E(B - V) = 3.1 +/- 0.62, i.e. a value lower than the polarization produced by the ISM with normal efficiency for an average colour excess of E(B - V) = 0.80 as that found for NGC 6124. Besides, the polarization shows an orientation of which is not parallel to the Galactic disc, an effect that we think may be caused by the Lupus cloud. Our analysis also indicates that the observed visual extinction in NGC 6124 is caused by the presence of three different absorption sheets located between the Sun and NGC 6124. The values of the internal dispersion of the polarization (ΔPV ~ 1.3 per cent) and of the colour excess (ΔE(B - V) ~ 0.29 mag) for the members of NGC 6124 seem to be compatible with the presence of an intracluster dust component. Only six stars exhibit some evidence of intrinsic polarization. Our work also shows that polarimetry provides an excellent tool to distinguish between member and non-member stars of a cluster. Based on observations obtained at Complejo Astronómico El Leoncito (CASLEO), operated under agreement between the CONICET and the National Universities of La Plata, Córdoba, and San Juan, Argentina. E-mail: cfeinstein@fcaglp.unlp.edu.ar (CF)

  3. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    CERN Document Server

    Moon, Kevin R; Delouille, Veronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O

    2015-01-01

    Complexity of an active region is related to its flare-productivity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region fr...

  4. A Fractal Dimension Survey of Active Region Complexity

    Science.gov (United States)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  5. Undercover EUV Solar Jets Observed by the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Chen, N.-H.; Innes, D. E.

    2016-12-01

    It is well-known that extreme ultraviolet (EUV) emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions, dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from the Interface Region Imaging Spectrograph, consisting of UV spectra and slit-jaw images (SJI), give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. Collimated outflows with bright roots were present in SJI 1400 Å (transition region) and 2796 Å (upper chromosphere) that were mostly not seen in Atmospheric Imaging Assembly (AIA) 304 Å (transition region) and AIA 171 Å (lower corona) images. The Si iv spectra show a strong blue wing enhancement, but no red wing, in the line profiles of the ejecta for all recurrent jets, indicating outward flows without twists. We see two types of Mg ii line profiles produced by the jets spires: reversed and non-reversed. Mg ii lines remain optically thick, but turn optically thin in the highly Doppler shifted wings. The energy flux contained in each recurrent jet is estimated using a velocity differential emission measure technique that measures the emitting power of the plasma as a function of the line-of-sight velocity. We found that all the recurrent jets release similar energy (108 erg cm-2 s-1) toward the corona and the downward component is less than 3%.

  6. Steps towards determination of the size and structure of the Broad-Line Region in Active Galactic Nuclei; 13, Ultraviolet observations of the Broad-Line Radio Galaxy 3C 390.3

    CERN Document Server

    O'Brien, P T; Leighly, K; Alloin, D; Clavel, J; Crenshaw, D M; Edelson, R A; Horne, K; Kriss, G A; Krolik, J H; Malkan, M A; Netzer, H; Peterson, B M; Reichert, G A; Rodríguez-Pascual, P M; Wamsteker, W; Watch, The International AGN

    1998-01-01

    As part of an extensive multi-wavelength monitoring campaign, the International Ultraviolet Explorer satellite was used to observe the broad-line radio galaxy 3C 390.3 during the period 1994 December 31 to 1996 March 5. Spectra were obtained every 6-10 days. The UV continuum varied by a factor of 7 through the campaign, while the broad emission-lines varied by factors of 2-5. Unlike previously monitored Seyfert 1 galaxies, in which the X-ray continuum generally varies with a larger amplitude than the UV, in 3C 390.3 the UV continuum light-curve is similar in both amplitude and shape to the X-ray light-curve observed by ROSAT. The UV broad emission-line variability lags that of the UV continuum by 35-70 days for Ly-alpha and CIV 1549; values larger than those found for Seyfert 1 galaxies of comparable UV luminosity. These lags are also larger than those found for the Balmer lines in 3C 390.3 over the same period. The red and blue wings of CIV and Ly-alpha vary in phase, suggesting that radial motion does not d...

  7. Optical polarization observations in the Scorpius region: NGC 6124

    CERN Document Server

    Vergne, M Marcela; Martinez, Ruben; Orsatti, Ana Maria; Alvarez, Maria Paula

    2010-01-01

    We have obtained optical multicolour (UBVRI) linear polarimetric data for 46 of the brightest stars in the area of the open cluster NGC 6124 in order to investigate the properties of the interstellar medium (ISM) that lies along the line of sight toward the cluster. Our data yield a mean polarization efficiency of $P_V/E_{B-V}=3.1\\pm$0.62, i.e., a value lower than the polarization produced by the ISM with normal efficiency for an average color excess of $E_{B-V}=0.80$ as that found for NGC 6124. Besides, the polarization shows an orientation of $\\theta \\sim 8^\\circ$.1 which is not parallel to the Galactic Disk,an effect that we think may be caused by the Lupus Cloud. Our analysis also indicates that the observed visual extinction in NGC 6124 is caused by the presence of three different absorption sheets located between the Sun and NGC 6124. The values of the internal dispersion of the polarization ($\\Delta P_V\\sim 1.3% $) and of the colour excess ($\\Delta E_{B-V}\\sim 0.29$ mag) for the members of NGC 6124 see...

  8. Kinematic active region formation in a three-dimensional solar dynamo model

    CERN Document Server

    Yeates, A R

    2013-01-01

    We propose a phenomenological technique for modelling the emergence of active regions within a three-dimensional, kinematic dynamo framework. By imposing localised velocity perturbations, we create emergent flux-tubes out of toroidal magnetic field at the base of the convection zone, leading to the eruption of active regions at the solar surface. The velocity perturbations are calibrated to reproduce observed active region properties (including the size and flux of active regions, and the distribution of tilt angle with latitude), resulting in a more consistent treatment of flux-tube emergence in kinematic dynamo models than artificial flux deposition. We demonstrate how this technique can be used to assimilate observations and drive a kinematic 3D model, and use it to study the characteristics of active region emergence and decay as a source of poloidal field. We find that the poloidal components are strongest not at the solar surface, but in the middle convection zone, in contrast with the common assumption...

  9. Velocity Field Statistics in Star-Forming Regions, 1 Centroid Velocity Observations

    CERN Document Server

    Miesch, M S; Bally, J

    1998-01-01

    The probability density functions (pdfs) of molecular line centroid velocity fluctuations and fluctuation differences at different spatial lags are estimated for several nearby molecular clouds with active internal star formation. The data consist of over 75,000 $^{13}$CO line profiles divided among twelve spatially and/or kinematically distinct regions. Although three regions (all in Mon R2) appear nearly Gaussian, the others show strong evidence for non-Gaussian, often nearly exponential, centroid velocity pdfs, possibly with power law contributions in the far tails. Evidence for nearly exponential centroid pdfs in the neutral HI component of the ISM is also presented, based on older optical and radio observations. These results are in striking contrast to pdfs found in isotropic incompressible turbulence experiments and simulations. Furthermore, no evidence is found for the scaling of difference pdf kurtosis with Reynolds number which is seen in incompressible turbulence, and the spatial distribution of hi...

  10. Temporal evolution of continental lithospheric strength in actively deforming regions

    Science.gov (United States)

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  11. 3D models of slow motions in the Earth's crust and upper mantle in the source zones of seismically active regions and their comparison with highly accurate observational data: I. Main relationships

    Science.gov (United States)

    Molodenskii, S. M.; Molodenskii, M. S.; Begitova, T. A.

    2016-09-01

    Constructing detailed models for postseismic and coseismic deformations of the Earth's surface has become particularly important because of the recently established possibility to continuously monitor the tectonic stresses in the source zones based on the data on the time variations in the tidal tilt amplitudes. Below, a new method is suggested for solving the inverse problem about the coseismic and postseismic deformations in the real non-ideally elastic, radially and horizontally heterogeneous, self-gravitating Earth with a hydrostatic distribution of the initial stresses from the satellite data on the ground surface displacements. The solution of this problem is based on decomposing the parameters determining the geometry of the fault surface and the distribution of the dislocation vector on this surface and elastic modules in the source in the orthogonal bases. The suggested approach includes four steps: 1. Calculating (by the perturbation method) the variations in Green's function for the radial and tangential ground surface displacements with small 3D variations in the mechanical parameters and geometry of the source area (i.e., calculating the functional derivatives of the three components of Green's function on the surface from the distributions of the elastic moduli and creep function within the volume of the source area and Burgers' vector on the surface of the dislocations); 2. Successive orthogonalization of the functional derivatives; 3. Passing from the decompositions of the residuals between the observed and modeled surface displacements in the system of nonorthogonalized functional derivatives to their decomposition in the system of orthogonalized derivatives; finding the corrections to the distributions of the sought parameters from the coefficients of their decompositions in the orthogonalized basis; and 4. Analyzing the ambiguity of the inverse problem solution by constructing the orthogonal complement to the obtained basis. The described

  12. Gamma-Ray Observations of Active Galactic Nuclei

    Science.gov (United States)

    Madejski, Grzegorz (Greg); Sikora, Marek

    2016-09-01

    This article reviews the recent observational results regarding γ-ray emission from active galaxies. The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review. They are detected in all observable energy bands and are highly variable. The advent of the sensitive γ-ray observations, afforded by the launch and continuing operation of the Fermi Gamma-ray Space Telescope and the AGILE Gamma-ray Imaging Detector, as well as by the deployment of current-generation Air Cerenkov Telescope arrays such as VERITAS, MAGIC, and HESS-II, continually provides sensitive γ-ray data over the energy range of ˜100 MeV to multi-TeV. Importantly, it has motivated simultaneous, monitoring observations in other bands, resulting in unprecedented time-resolved broadband spectral coverage. After an introduction, in Sections 3, 4, and 5, we cover the current status and highlights of γ-ray observations with (mainly) Fermi but also AGILE and put those in the context of broadband spectra in Section 6. We discuss the radiation processes operating in blazars in Section 7, and we discuss the content of their jets and the constraints on the location of the energy dissipation regions in, respectively, Sections 8 and 9. Section 10 covers the current ideas for particle acceleration processes in jets, and Section 11 discusses the coupling of the jet to the accretion disk in the host galaxy. Finally, Sections 12, 13, and 14 cover, respectively, the contribution of blazars to the diffuse γ-ray background, the utility of blazars to study the extragalactic background light, and the insight they provide for study of populations of supermassive black holes early in the history of the Universe.

  13. Anger Style, Psychopathology, and Regional Brain Activity

    OpenAIRE

    Stewart, Jennifer L.; Levin, Rebecca L.; Sass, Sarah M.; Heller, Wendy; Gregory A. Miller

    2008-01-01

    Depression and anxiety often involve high levels of trait anger and disturbances in anger expression. Reported anger experience and outward anger expression have recently been associated with left-biased asymmetry of frontal cortical activity, assumed to reflect approach motivation. However, different styles of anger expression could presumably involve different brain mechanisms and/or interact with psychopathology to produce various patterns of brain asymmetry. The present study explored the...

  14. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P.; Ambastha, A. [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur-313001 (India); Maurya, R. A., E-mail: vema@prl.res.in, E-mail: ambastha@prl.res.in, E-mail: ramajor@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  15. HERSCHEL FAR-IR OBSERVATIONS OF THE GIANT H II REGION NGC 3603

    Energy Technology Data Exchange (ETDEWEB)

    Cecco, Alessandra Di [INAF-Osservatorio Astronomico di Teramo, Via Mentore Maggini snc, I-64100 Teramo (Italy); Faustini, Fabiana; Calzoletti, Luca [ASDC-ASI Science Data Center, Via G. Galilei snc, I-00044 Frascati (RM) (Italy); Paresce, Francesco [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Piero Gobetti 101, I-40129 Bologna (Italy); Correnti, Matteo, E-mail: dicecco@oa-teramo.inaf.it [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-01-20

    We observed the giant H II region around the NGC 3603 YC with the five broad bands (70, 160, 250, 350, 500 μm) of the SPIRE and PACS instruments, on board the Herschel Space Observatory. Together with what is currently known of the stellar, atomic, molecular, and warm dust components, this additional and crucial information should allow us to better understand the details of the star-formation history in this region. The main objective of the investigation is to study, at high spatial resolution, the distribution and main physical characteristics of the cold dust. By reconstructing the temperature and density maps, we found, respectively, a mean value of 36 K and log{sub 10} N {sub H} = 22.0 ± 0.1 cm{sup –2}. We carried out a photometric analysis detecting 107 point-like sources, mostly confined to the north and south of the cluster. By comparing our data with spectral energy distribution models, we found that 35 sources are well represented by young stellar objects in early evolutionary phases, from Class 0 to Class I. The Herschel detections also provided far-IR counterparts for 4 H{sub 2}O masers and 11 objects previously known from mid-IR observations. The existence of so many embedded sources confirms the hypothesis of intense and ongoing star-formation activity in the region around NGC 3603 YC.

  16. Behaviour of oscillations in loop structures above active regions

    CERN Document Server

    Kolobov, D Y; Chelpanov, A A; Kochanov, A A; Anfinogentov, S A; Chupin, S A; Myshyakov, I I; Tomin, V E

    2015-01-01

    In this study we combine the multiwavelength ultraviolet -- optical (Solar Dynamics Observatory, SDO) and radio (Nobeyama Radioheliograph, NoRH) observations to get further insight into space-frequency distribution of oscillations at different atmospheric levels of the Sun. We processed the observational data on NOAA 11711 active region and found oscillations propagating from the photospheric level through the transition region upward into the corona. The power maps of low-frequency (1--2 mHz) oscillations reproduce well the fan-like coronal structures visible in the Fe ix 171A line. High frequency oscillations (5--7 mHz) propagate along the vertical magnetic field lines and concentrate inside small-scale elements in the umbra and at the umbra-penumbra boundary. We investigated the dependence of the dominant oscillation frequency upon the distance from the sunspot barycentre to estimate inclination of magnetic tubes in higher levels of sunspots where it cannot be measured directly, and found that this angle i...

  17. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2011-08-01

    Full Text Available This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT and Köhler theory (KT to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method.

    Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to

  18. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    Science.gov (United States)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  19. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    Science.gov (United States)

    Ry, Rexha Verdhora; Nugraha, Andri Dian

    2015-04-01

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger's method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger's result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  20. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    Energy Technology Data Exchange (ETDEWEB)

    Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com [Master Program of Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia)

    2015-04-24

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  1. High-resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    CERN Document Server

    Li, Ting

    2015-01-01

    We report the observations of a flux rope at transition region temperatures with the \\emph{Interface Region Imaging Spectrograph} (IRIS) on 30 August 2014. Initially, magnetic flux cancellation constantly took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 {\\AA}, with a total twist of about 4$\\pi$. Afterwards, the flux rope underwent a counter-clockwise (viewed top-down) unwinding motion around its axis. Spectral observations of C {\\sc ii} 1335.71 {\\AA} at the southern leg of the flux rope showed that Doppler redshifts of 6$-$24 km s$^{-1}$ appeared at the western side of the axis, which is consistent with the counter-clockwise rotation motion. We suggest that the magnetic flux cancellation initiates reconnection and some activation of the flux rope. The stored twist and magnetic helicity of the flux rope are transpor...

  2. Research on the Dividing Method for Present-Day Regional Active Block

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoliang; Jiang Zaisen; Chen Bing; Wang Qi; Zhang Xi

    2006-01-01

    In this paper, a new idea that combines Quasi-Accurate Detection of gross errors (QUAD) with discontinuous deformation positive analysis, is brought forward to divide the regional active blocks. The method can improve the demarcation of active blocks for areas lacking with observation data and offer a new train of through for the complete study of the regional deformation of active blocks. In addition, using the Sichuan-Yunnan area as example, the practice process of the method is introduced briefly.

  3. Flare Footpoint Regions and a Surge Observed by the Hinode/EUV Imaging Spectrometer (EIS), RHESSI, and SDO/AIA

    CERN Document Server

    Doschek, George A; Dennis, Brian R; Reep, Jeffrey W; Caspi, Amir

    2015-01-01

    The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft observed flare footpoint regions coincident with a surge for a M3.7 flare observed on 25 September 2011 at N12 E33 in active region 11302. The flare was observed in spectral lines of O VI, Fe X, Fe XII, Fe XIV, Fe XV, Fe XVI, Fe XVII, Fe XXIII and Fe XXIV. The EIS observations were made coincident with hard X-ray bursts observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Overlays of the RHESSI images on the EIS raster images at different wavelengths show a spatial coincidence of features in the RHESSI images with the EIS upflow and downflow regions, as well as loop-top or near-loop-top regions. A complex array of phenomena was observed including multiple evaporation regions and the surge, which was also observed by the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) telescopes. The slit of the EIS spectrometer covered several flare footpoint regions from which evaporative upflows in Fe XX...

  4. Three Dimensional Structure and Time Evolution of a Transition Region Explosive Event Observed in He II

    Science.gov (United States)

    Fox, J. L.; Kankelborg, C. C.; Thomas, R. J.; Longcope, D.

    2007-12-01

    Transition Region Explosive Events (TREEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548A,1550A) and Si IV (1393A, 1402A). We report what we believe to be the first observation of a TREE in He II 304A. With the MOSES sounding rocket, a novel type of imaging spectrograph, we are able to see the spatial and spectral structure of the event. It consists of a bright core expelling two jets, oppositely directed but not collinear, which curve away from the axis of the core. The jets have both line-of-sight and sky-plane motion. The core is a region of high non-thermal doppler broadening, characteristic of TREEs. It is possible to resolve the core broadening into red and blue line-of-sight components. MOSES captured approximately 150 sec of time evolution before the rocket flight ended. We see the beginning (core activation) and middle (jet ejection), but not the end. It is clear from our data-set that TREEs in He II 304A are much less common than observed in other wavelengths.

  5. ASSESSMENT OF HUMAN RESOURCES FOR REGIONAL INNOVATION ACTIVITY

    Directory of Open Access Journals (Sweden)

    R. R. Lukyanova

    2010-03-01

    Full Text Available The paper deals with the issues of human resource development regarding an innovation activity. Concepts of labor and human resources have been surveyed. An integral index for assessment of human resources for regional innovation activity has been developed and assessment of the Russian regions has been made on the basis of it. Development tendencies of modern human resources for innovation activity in Russia have been revealed.

  6. Data-driven Simulations of Evolving Active Regions

    Science.gov (United States)

    Cheung, M.; DeRosa, M. L.

    2011-12-01

    We present results from numerical simulations of coronal field evolution in response to photospheric driving. In the simulations, the coronal field evolves according to magnetofriction, which ensures that the model field evolves toward a non-linear force-free state. Unlike static field extrapolation methods, this approach takes into account the history of the photospheric field evolution. This allows for the formation of flux ropes as well as current sheets between magnetic domains of connectivity. Using time sequences of HMI magnetograms as the bottom boundary condition, we apply this method to model the emergence and evolution of various active regions. Comparisons of the models with AIA observations and with HMI vector magnetogram inversions will be discussed.

  7. Confidence Region of Least Squares Solution for Single-Arc Observations

    Science.gov (United States)

    Principe, G.; Armellin, R.; Lewis, H.

    2016-09-01

    The total number of active satellites, rocket bodies, and debris larger than 10 cm is currently about 20,000. Considering all resident space objects larger than 1 cm this rises to an estimated minimum of 500,000 objects. Latest generation sensor networks will be able to detect small-size objects, producing millions of observations per day. Due to observability constraints it is likely that long gaps between observations will occur for small objects. This requires to determine the space object (SO) orbit and to accurately describe the associated uncertainty when observations are acquired on a single arc. The aim of this work is to revisit the classical least squares method taking advantage of the high order Taylor expansions enabled by differential algebra. In particular, the high order expansion of the residuals with respect to the state is used to implement an arbitrary order least squares solver, avoiding the typical approximations of differential correction methods. In addition, the same expansions are used to accurately characterize the confidence region of the solution, going beyond the classical Gaussian distributions. The properties and performances of the proposed method are discussed using optical observations of objects in LEO, HEO, and GEO.

  8. On the Role of Rotating Sunspots in the Activity of Solar Active Region NOAA 11158

    CERN Document Server

    Vemareddy, P; Maurya, R A

    2012-01-01

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots one connected to flare-prone region and another with CME. The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of the major eruptive events. Further, temporal profiles of twist parameters, viz., average shear angle, $\\alpha_{\\rm av}$, $\\alpha_{\\rm best}$, derived from HMI vector magnetograms and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, corresponded well with ...

  9. Strong Earthquake Activity and Its Relation to Regional Neotectonic Movement in Sichuan-Yunnan Region

    Institute of Scientific and Technical Information of China (English)

    Su Youjin; Qin Jiazheng

    2001-01-01

    Based on analyzing space inhomogeneous image of strong earthquake activity, the image of source rupture and the mechanical property of the source fault in Sichuan-Yunnan region, the relations among the strong earthquake activity, active fault, modern movement status of active blocks and structural background of the deep media have been discussed, and the characteristics of strong earthquake activity and possible mechanism have been also discussed.

  10. Study of solar active regions based on BOAO vector magnetograms

    CERN Document Server

    Moon, Y J; Yun, H S; Cho, E A

    1999-01-01

    In this study we present the study of solar active regions based on BOAO vector magnetograms and $H\\alpha$ filtergrams. With the new calibration method we analyzed BOAO vector magnetograms taken from the SOFT observational system to compare with those of other observing systems. In this study it has been demonstrated that (1) our longitudinal magnetogram matches very well the corresponding Mitaka's magnetogram to the extent that the maximum correlation yields r=0.962 between our re-scaled longitudinal magnetogram and the Mitaka's magnetogram; (2) according to a comparison of our magnetograms of AR 8422 with those taken at Mitaka solar observatory their longitudinal fields are very similar to each other while transverse fields are a little different possibly due to large noise level; (3) main features seen by our longitudinal magnetograms of AR 8422 and AR 8419 and the corresponding Kitt Peak magnetograms are very similar to each other; (4) time series of our vector magnetograms and H-alpha observations of AR ...

  11. 50 MHz continuous wave interferometer observations of the unstable mid-latitude E-region ionosphere

    Directory of Open Access Journals (Sweden)

    C. Haldoupis

    Full Text Available In this paper we describe the conversion of SESCAT (Sporadic-E SCATter experiment, a bistatic 50 MHz continuous wave (CW Doppler radar located on the island of Crete, Greece, to a single (east-west baseline interferometer. The first results show that SESCAT, which provides high quality Doppler spectra and excellent temporal resolution, has its measurement capabilities enhanced significantly when operated as an interferometer, as it can also study short-term dynamics of localized scattering regions within mid-latitude sporadic E-layers. The interferometric observations reveal that the aspect sensitive area viewed by the radar often contains a few zonally located backscatter regions, presumably blobs or patches of unstable metallic ion plasma, which drift across the radar field-of-view with the neutral wind. On average, these active regions of backscatter have mean zonal scales ranging from a few kilometers to several tens of kilometers and drift with westward speeds from ~ 20 m/s to 100 m/s, and occasionally up to 150 m/s. The cross-spectral analysis shows that mid-latitude type 1 echoes occur much more frequently than has been previously assumed and they originate in single and rather localized areas of elevated electric fields. On the other hand, typical bursts of type 2 echoes are often found to result from two adjacent regions in azimuth undergoing the same bulk motion westwards but producing scatter of opposite Doppler polarity, a fact that contradicts the notion of isotropic turbulence to which type 2 echoes are attributed. Finally, quasi-periodic (QP echoes are observed simply to be due to sequential unstable plasma patches or blobs which traverse across the radar field-of-view, sometimes in a wave-like fashion.

    Key words. Ionosphere (ionospheric irregularities; mid-latitude ionosphere; plasma waves and instabilities

  12. NANOOS, the Northwest Association of Networked Ocean Observing Systems: a regional Integrated Ocean Observing System (IOOS) for the Pacific Northwest US

    Science.gov (United States)

    Newton, J.; Martin, D.; Kosro, M.

    2012-12-01

    NANOOS is the Northwest Association of Networked Ocean Observing Systems, the Pacific Northwest Regional Association of the United States Integrated Ocean Observing System (US IOOS). User driven since its inception in 2003, this regional observing system is responding to a variety of scientific and societal needs across its coastal ocean, estuaries, and shorelines. Regional priorities have been solicited and re-affirmed through active engagement with users and stakeholders. NANOOS membership is composed of an even mix of academic, governmental, industry, and non-profit organizations, who appoint representatives to the NANOOS Governing Council who confirm the priority applications of the observing system. NANOOS regional priorities are: Maritime Operations, Regional Fisheries, Ecosystem Assessment, Coastal Hazards, and Climate. NANOOS' regional coastal ocean observing system is implemented by seven partners (three universities, three state agencies, and one industry). Together, these partners conduct the observations, modeling, data management and communication, analysis products, education and outreach activities of NANOOS. Observations, designed to span coastal ocean, shorelines, and estuaries, include physical, chemical, biological and geological measurements. To date, modeling has been more limited in scope, but has provided the system with increased coverage for some parameters. The data management and communication system for NANOOS, led by the NANOOS Visualization System (NVS) is the cornerstone of the user interaction with NANOOS. NVS gives users access to observational data, both real time and archived, as well as modeling output. Given the diversity of user needs, measurements, and the complexity of the coastal environment, the challenge for the system is large. NANOOS' successes take advantage of technological advances, including real-time data transmission, profiling buoys, gliders, HF radars, and modeling. The most profound challenges NANOOS faces stem

  13. In-depth survey of sunspot and active region catalogs

    Science.gov (United States)

    Lefèvre, Laure; Clette, Frédéric; Baranyi, Tunde

    2011-08-01

    When consulting detailed photospheric catalogs for solar activity studies spanning long time intervals, solar physicists face multiple limitations in the existing catalogs: finite or fragmented time coverage, limited time overlap between catalogs and even more importantly, a mismatch in contents and conventions. In view of a study of new sunspot-based activity indices, we have conducted a comprehensive survey of existing catalogs. In a first approach, we illustrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspot groups. For this, we use the unique Debrecen Photoheliographic Data (DPD), which is already a composite of several ground observatories and SOHO data, and the USAF/Mount Wilson catalog from the Solar Optical Observing Network (SOON). We also describe our semi-interactive cross-identification method, which was needed to match the non-overlapping solar active region nomenclature, the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database collecting all available sunspot group parameters to address future solar cycle studies beyond the traditional sunspot index time series Ri.

  14. Differential activation of the lateral premotor cortex during action observation

    Directory of Open Access Journals (Sweden)

    Stark Rudolf

    2010-07-01

    Full Text Available Abstract Background Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice in ballroom dancing and the visual viewpoint (internal vs. external viewpoint influence this activation within different parts of this area of the brain. Results Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. Conclusions The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.

  15. Context Matters: Systematic Observation of Place-Based Physical Activity.

    Science.gov (United States)

    McKenzie, Thomas L

    2016-12-01

    Physical activity is place-based, and being able to assess the number of people and their characteristics in specific locations is important both for public health surveillance and for practitioners in their design of physical activity spaces and programs. Although physical activity measurement has improved recently, many investigators avoid or are at a loss regarding the assessment of physical activity in explicit locations, especially in open environments where many people come and go in a seemingly indiscriminate fashion. Direct, systematic observation exceeds other methods in simultaneously assessing physical activity and the contexts in which it occurs. This commentary summarizes the development and use of 2 validated observation tools: the System for Observing Play and Leisure in Youth (SOPLAY) and System for Observing Play and Active Recreation in Communities (SOPARC). Their use is well supported by both behavior-analytic principles and social-ecological theory, and their methods have utility for both researchers and practitioners.

  16. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats.

  17. Movement observation specifies motor programs activated by the action observed objective.

    Science.gov (United States)

    Lago, Angel; Fernandez-del-Olmo, Miguel

    2011-04-15

    There are human cortical areas that fire both when a person executes an action and when he observes someone performing a similar action. The observer activates a motor program that resembles the observed action. However, it is not known whether the motor program activated via action observation is muscle specific. In this study, using simple pulse transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), we investigated whether the Mirror System activates a muscle specific motor program, or codes the observed action in terms of its goal. The results showed that when subjects observed a static effector in front of an object, cortical excitability was enhanced even in muscles not involved in the observed movement, but that are able to achieve the goal of the action. When there was an effector-object interaction the motor program activated via action observation is muscle specific. These results suggest that when subjects observe an object related action there is an activation of a motor program based on the observed action goal, that is transformed into a muscle specific program when the subject shows an effector-object interaction.

  18. Land-cover observations as part of a Global Earth Observation System of Systems (GEOSS): progress, activities, and prospects

    Science.gov (United States)

    Herold, M.; Woodcock, C.E.; Loveland, Thomas R.; Townshend, J.; Brady, M.; Steenmans, C.; Schmullius, C. C.

    2008-01-01

    The international land-cover community has been working with GEO since 2005 to build the foundations for land-cover observations as an integral part of a Global Earth Observation System of Systems (GEOSS). The Group on Earth Observation (GEO) has provided the platform to elevate the societal relevance of land cover monitoring and helped to link a diverse set of global, regional, and national activities. A dedicated 2007-2009 GEO work plan task has resulted in achievements on the strategic and implementation levels. Integrated Global Observations of the Land (IGOL), the land theme of the Integrated Global Observation Strategy (IGOS), has been approved and is now in the process of transition into GEO implementation. New global land-cover maps at moderate spatial resolutions (i.e., GLOBCOVER) are being produced using guidelines and standards of the international community. The Middecadal Global Landsat Survey for 2005-2006 is extending previous 1990 and 2000 efforts for global, high-quality Landsat data. Despite this progress, essential challenges for building a sustained global land-cover-observing system remain, including: international cooperation on the continuity of global observations; ensuring consistency in land monitoring approaches; community engagement and country participation in mapping activities; commitment to ongoing quality assurance and validation; and regional networking and capacity building.

  19. Observations of a 12 H wave in the mesopause region at the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Collins, R.L.; Senft, D.C.; Gardner, C.S. (Univ. of Illinois, Urbana (United States))

    1992-01-03

    In December 1989 a Na lidar was installed at the Amundsen-Scott South Pole Station and was used to measure aerosol, stratospheric temperature and mesospheric Na profiles through October 1990. The mesospheric Na data are used to characterize the gravity wave field in the mesopause region, These first lidar observations of Na layer dynamics at the South Pole show strong wave activity during the Antarctic winter. Data for 25 June and 19 August 1990 UT are presented here. The total wave induced variances in atmospheric density are respectively 29 and 35(%){sup 2}. The Na layer centroid height is very low during both observation periods. On 25 June a strong 12 h oscillation is observed in the bottomside of the Na layer which extends to altitudes as low as 74 km. The vertical displacement and temperature amplitudes associated with the 12 h oscillation are respectively 1.9 km and 19 K. The characteristics of the 12 h wave are similar to the pseudotide observed at Svalbard by Walterscheid et al.

  20. Slow magnetosonic waves and fast flows in active region loops

    CERN Document Server

    Ofman, Leon; Davila, Joseph M

    2012-01-01

    Recent EUV spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (~100-300 km/s) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux-tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast mode waves. The phase speed of the slow magn...

  1. Recent earthquake activity in Trichonis region and its tectonic significance

    Directory of Open Access Journals (Sweden)

    N. DELIBASIS

    1977-06-01

    Full Text Available SUMMARY. - The aftershock activity associated with the central Greece
    (Trichonis Lake earthquake of |une-Dec. 1975, has been studied, with emphasis
    on the time and magnitude distribution. It has been found that the value of b,
    in Gutenberg - R i c h t e r ' s relationship was near the same for the primary as
    well as the secondary or second order aftershocks of the sequences, but depends
    upon the focal depth.
    A correlation between the calculated focal mechanisms and the associated
    stress components to the distribution pattern of meizoseismic effects as well
    as to the geological structure of the seismic region was found.
    The seismic region lies at the top of an anticline which was found moving
    downwards, apparently due to compressional stresses.
    Within the series of three earthquakes the progress of the destruction of
    the buildings was observed and reported. The interest is concentrated to modern
    buildings out of reinforced concrete and infill brick walls. The relatively unexpected
    rather bad performance of the later case of buildings was compared to that
    of the traditional small houses out of brick or stone masonry, the behaviour of
    which may be considered as better from what it was expected.

  2. Magnetic observations during the recent declining phase of solar activity

    Science.gov (United States)

    Smith, E. J.

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  3. The JCMT Gould Belt Survey: First results from SCUBA-2 observations of the Cepheus Flare Region

    CERN Document Server

    Pattle, Kate; Kirk, Jason M; Di Francesco, James; Kirk, Helen; Mottram, Joseph C; Keown, Jared; Buckle, Jane; Beaulieu, Sylvie F; Berry, David S; Broekhoven-Fiene, Hannah; Currie, Malcolm J; Fich, Michel; Hatchell, Jenny; Jenness, Tim; Johnstone, Doug; Nutter, David; Pineda, Jaime E; Quinn, Ciera; Salji, Carl; Tisi, Sam; Walker-Smith, Samantha; Hogerheijde, Michiel R; Bastien, Pierre; Bresnahan, David; Butner, Harold; Chen, Mike; Chrysostomou, Antonio; Coudé, Simon; Davis, Chris J; Drabek-Maunder, Emily; Duarte-Cabral, Ana; Fiege, Jason; Friberg, Per; Friesen, Rachel; Fuller, Gary A; Graves, Sarah; Greaves, Jane; Gregson, Jonathan; Holland, Wayne; Joncas, Gilles; Knee, Lewis B G; Mairs, Steve; Marsh, Ken; Matthews, Brenda C; Moriarty-Schieven, Gerald; Mowat, Chris; Rawlings, Jonathan; Richer, John; Robertson, Damien; Rosolowsky, Erik; Rumble, Damian; Sadavoy, Sarah; Thomas, Holly; Tothill, Nick; Viti, Serena; White, Glenn J; Wouterloot, Jan; Yates, Jeremy; Zhu, Ming

    2016-01-01

    We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starless cores and protostars. We determine masses and densities for each of our sources, using source temperatures determined by the Herschel Gould Belt Survey. We compare the properties of starless cores in four different molecular clouds: L1147/58, L1172/74, L1251 and L1228. We find that the core mass functions for each region typically show shallower-than-Salpeter behaviour. We find that L1147/58 and L1228 have a high ratio of starless cores to Class II protostars, while L1251 and L1174 have a low ratio, consistent with the latter regions being more active sites of current star formation, while the former are forming stars less actively. We determine that, if modelled as thermally-supported Bonnor-Ebert spheres, most of our cores have stable configurations accessible...

  4. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2012-11-10

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  5. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    Directory of Open Access Journals (Sweden)

    Md. Nuruzzaman Haque

    2016-01-01

    Full Text Available Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1 has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p<0.001. Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP, containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons’ active ageing level in Thailand.

  6. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    OpenAIRE

    Md. Nuruzzaman Haque

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male...

  7. Power active filter control based on a resonant disturbance observer

    OpenAIRE

    Ramos Fuentes, German A.; Cortés Romero, John Alexander; Zou, Zhixiang; Costa Castelló, Ramon; Zhou, Keliang

    2015-01-01

    Active filters are power electronics devices used to eliminate harmonics from the distribution network. This article presents an active disturbance rejection control scheme for active filters. The controller is based on a linear disturbance observer combined with a disturbance rejection scheme. The parameter tuning is based on a combined pole placement and an optimal estimation based on Kalman-Bucy filter. Proposed scheme is validated through simulation and experimental work in an active filter.

  8. Data-driven coronal evolutionary model of active region 11944.

    Science.gov (United States)

    Kazachenko, M.

    2014-12-01

    Recent availability of systematic measurements of vector magnetic fields and Doppler velocities has allowed us to utilize a data-driven approach for modeling observed active regions (AR), a crucial step for understanding the nature of solar flare initiation. We use a sequence of vector magnetograms and Dopplergrams from the Helioseismic and Magnetic Imager (HMI) aboard the SDO to drive magnetofrictional (MF) model of the coronal magnetic field in the the vicinity of AR 11944, where an X1.2 flare on January 7 2014 occurred. To drive the coronal field we impose a time-dependent boundary condition based on temporal sequences of magnetic and electric fields at the bottom of the computational domain, i.e. the photosphere. To derive the electric fields we use a recently improved poloidal-toroidal decomposition (PTD), which we call the ``PTD-Doppler-FLCT-Ideal'' or PDFI technique. We investigate the results of the simulated coronal evolution, compare those with EUV observations from Atmospheric Imaging Assembly (AIA) and discuss what we could learn from them. This work is a a collaborative effort from the UC Berkeley Space Sciences Laboratory (SSL), Stanford University, and Lockheed-Martin and is a part of Coronal Global Evolutionary (CGEM) Model, funded jointly by NASA and NSF.

  9. Interchange reconnection between an active region and a corona hole

    CERN Document Server

    Ma, L; Yan, X L; Xue, Z K

    2013-01-01

    With the data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO), we present a magnetic interaction between an isolated coronal hole (CH) and an emerging active region (AR). The AR emerged nearby the CH and interacted with it. Bright loops constantly formed between them, which led to a continuous retreat of the CH boundaries (CHBs). Meanwhile, two coronal dimmings respectively appeared at the negative polarity of the AR and the east boundary of the bright loops, and the AR was partly disturbed. Loop eruptions followed by a flare occurred in the AR. The interaction was also accompanied by many jets and an arc-shaped brightening that appeared to be observational signatures of magnetic reconnection at the CHBs. By comparing the observations with the derived coronal magnetic configuration, it is suggested that the interaction between the CH and the AR excellently fitted in with the model of interchange reconnection. It appears t...

  10. Contracting and Erupting Components of Sigmoidal Active Regions

    CERN Document Server

    Liu, Rui; Török, Tibor; Wang, Yuming; Wang, Haimin

    2012-01-01

    It is recently noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO}). The magnitudes of the flares associated with the eruptions range from the GOES-class B to X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) onboard SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B and C flares), ...

  11. Oscillations in the Flaring Active Region NOAA 11272

    CERN Document Server

    Cuellar, S M Conde; Montaña, C E Cedeño

    2016-01-01

    We studied waves seen during the class C1.9 flare that occurred in Active Region NOAA 11272 on SOL2011-08-17. We found standing waves with periods in the 9- and 19-minute band in six extreme ultraviolet (EUV) wavelengths of the SDO/AIA instrument. We succeeded in identifying the magnetic arc where the flare started and two neighbour loops that were disturbed in sequence. The analysed standing waves spatially coincide with these observed EUV loops. To study the wave characteristics along the loops, we extrapolated field lines from the line-of-sight magnetograms using the force-free approximation in the linear regime. We used atmosphere models to determine the mass density and temperature at each height of the loop. Then, we calculated the sound and Alfv{\\'e}n speeds using densities $10^8 \\lesssim n_i \\lesssim 10^{17}$ cm$^{-3}$ and temperatures $10^3 \\lesssim T \\lesssim 10^7$ K. The brightness asymmetry in the observed standing waves resembles the Alfv{\\'e}n speed distribution along the loops, but the atmosphe...

  12. Variability of trace gas concentrations over Asian region: satellite observations vs model

    Science.gov (United States)

    Sheel, Varun; Richter, Andreas; Srivastava, Shuchita; Lal, Shyam

    2012-07-01

    Nitrogen dioxide (NO_2) and Carbon Monoxide (CO) play a key role in the chemistry of the tropospheric ozone and are emitted mainly by anthropogenic processes. These emissions have been increasing over Asia over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of these species over this region. We have analysed ten years of data from space borne instruments: Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and Measurements of Pollution in the Troposphere (MOPITT), which have been measuring the tropospheric abundance of these trace gases. We have examined trends over the period 1996-2008 in NO_2 and CO over a few Indian regions where high economic growth in the present decade is likely to see increased emissions for these species. However, even the highest growth rate of these species seen in the present study, is less when compared with similar polluted regions of China, where a much more rapid increase has been observed. In order to understand the trends and variability in atmospheric trace gas concentrations, one must take into account changes in emissions and transport. Only by assessing the relevance of each of these factors will it be possible to predict future changes with reasonable confidence. To this effect we have used a global chemical transport model, MOZART, to simulate concentrations of NO_2 and CO using the POET (European) and REAS (Asian) emission inventories. These are compared with satellite measurements to study seasonal variations and the discrepancies are discussed. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data.

  13. A Preliminary Study of Active Region Canopies With AIA

    Science.gov (United States)

    Lucchini, Scott; Saar, S.; Muglach, K.

    2013-01-01

    Active region canopies are areas frequently accompanying active regions which have extensive horizontal magnetic fields. The large-scale canopy fields have a significant effect on the kinds of structures which can exist beneath them, and how they evolve. Using data from the Atmospheric Imaging Assembly (AIA), we developed methods to automatically identify these regions. A Differential Emission Measure (DEM) analysis is consistent with the idea that the long, hotter active region loops overlie quite cool, small-scale features ("fibrils"). We suggest that the overlying loops restrict the growth of underlying structures to mostly very short, cool features. We also studied evolution of canopy regions over time. In several cases, a large quiescent filament formed out of the former canopy region over the course of a few solar rotations, confirming previous suggestions. The canopy remains visible for several rotations after its active regions have begun to decay; in this time, the fibril magnetic fields gradually align in such a way as to form a filament channel. Further analysis of our large canopy database should uncover more information on the frequency and characteristics of these canopy-to-filament evolutions, as well as other canopy properties. This work is supported by the NSF REU program at SAO (grant ATM-0851866) and contract SP02H1701R from Lockheed Martin to SAO for SDO research.

  14. Millimetre spectral line mapping observations towards four massive star-forming H II regions

    Science.gov (United States)

    Li, Shanghuo; Wang, Junzhi; Zhang, Zhi-Yu; Fang, Min; Li, Juan; Zhang, Jiangshui; Fan, Junhui; Zhu, Qingfeng; Li, Fei

    2017-04-01

    We present spectral line mapping observations towards four massive star-forming regions - Cepheus A, DR21S, S76E and G34.26+0.15 - with the IRAM 30-m telescope at the 2 and 3 mm bands. In total, 396 spectral lines from 51 molecules, one helium recombination line, 10 hydrogen recombination lines and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 140, 14-130, 13) was detected in G34.26+0.15, as the first detection in massive star-forming regions. We found that c-C3H2 and NH2D show enhancement in shocked regions, as suggested by the evidence of SiO and/or SO emission. The column density and rotational temperature of CH3CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of 12C/13C were derived using HC3N and its 13C isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value (∼65). The 14N/15N and 16O/18O abundance ratios in these sources were also derived using the double isotopic method, which were slightly lower than in the local interstellar medium. Except for Cep A, the 33S/34S ratios in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N(DCO+)/N(HCO+) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5 × 10-5. Our results show that the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage sources. Evidence of shock activity is seen in all stages studied.

  15. Satellite observations of lightning-induced hard X-ray flux enhancements in the conjugate region

    Directory of Open Access Journals (Sweden)

    R. Bučík

    2006-08-01

    Full Text Available Preliminary examination of October-December 2002 SONG (SOlar Neutron and Gamma rays data aboard the Russian CORONAS-F (Complex Orbital Near-Earth Observations of the Activity of the Sun low-altitude satellite has revealed many X-ray enhanced emissions (30–500 keV in the slot region (L ~ 2–3 between the Earth's radiation belts. In one case, CORONAS-F data were analyzed when the intense hard X-ray emissions were seen westward of the South Atlantic Anomaly in a rather wide L shell range from 1.7 to 2.6. Enhanced fluxes observed on day 316 (12 November were most likely associated with a Major Severe Weather Outbreak in Eastern USA, producing extensive lightning flashes, as was documented by simultaneous optical observations from space. We propose that whistler mode signals from these lightning discharges cause precipitation of energetic electrons from terrestrial trapped radiation belts, which, in turn, produce atmospheric X-rays in the Southern Hemisphere.

  16. Fuzzy statistic and comprehensive evaluating study for activity characterization of the active region

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the theory and method of the fuzzy mathematics areused to probe the connection between the activity of the active region and characterizat ion of the sunspot groups, to build the subordinating function according to the rela tionship between them and to evaluate comprehensively the activity of the active region on t he solar disk. The precise prediction of activity of the active regions has been obta ined by data reduction and analysis. The predicting accuracy is higher th an 95% . Forecast results indicate that the method of the fuzzy comprehensive evaluatio n is a good one for the solar activity prediction.

  17. Unsupervised segmentation of task activated regions in fmRI

    DEFF Research Database (Denmark)

    Røge, Rasmus; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard

    2015-01-01

    Functional Magnetic Resonance Imaging has become a central measuring modality to quantify functional activiation of the brain in both task and rest. Most analysis used to quantify functional activation requires supervised approaches as employed in statistical parametric mapping (SPM) to extract...... maps of task induced functional activations. This requires strong knowledge and assumptions on the BOLD response as a function of activitation while smoothing in general enhances the statistical power but at the cost of spatial resolution. We propose a fully unsupervised approach for the extraction...... of task activated functional units in multi-subject fMRI data that exploits that regions of task activation are consistent across subjects and can be more reliably inferred than regions that are not activated. We develop a non-parametric Gaussian mixture model that apriori assumes activations are smooth...

  18. Diagnostics of Coronal Heating in Active-region Loops

    Science.gov (United States)

    Fludra, A.; Hornsey, C.; Nakariakov, V. M.

    2017-01-01

    Understanding coronal heating remains a central problem in solar physics. Many mechanisms have been proposed to explain how energy is transferred to and deposited in the corona. We summarize past observational studies that attempted to identify the heating mechanism and point out the difficulties in reproducing the observations of the solar corona from the heating models. The aim of this paper is to study whether the observed extreme ultraviolet (EUV) emission in individual coronal loops in solar active regions can provide constraints on the volumetric heating function, and to develop a diagnostic for the heating function for a subset of loops that are found close to static thermal equilibrium. We reconstruct the coronal magnetic field from Solar Dynamics Observatory/HMI data using a nonlinear force-free magnetic field model. We model selected loops using a one-dimensional stationary model, with a heating rate dependent locally on the magnetic field strength along the loop, and we calculate the emission from these loops in various EUV wavelengths for different heating rates. We present a method to measure a power index β defining the dependence of the volumetric heating rate EH on the magnetic field, {E}H\\propto {B}β , and controlling also the shape of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints. The diagnostic is based on the dependence of the electron density on the index β. This method is free from the assumptions of the loop filling factor but requires spectroscopic measurements of the density-sensitive lines. The range of applicability for loops of different length and heating distributions is discussed, and the steps to solving the coronal heating problem are outlined.

  19. Activated region fitting: a robust high-power method for fMRI analysis using parameterized regions of activation.

    Science.gov (United States)

    Weeda, Wouter D; Waldorp, Lourens J; Christoffels, Ingrid; Huizenga, Hilde M

    2009-08-01

    An important issue in the analysis of fMRI is how to account for the spatial smoothness of activated regions. In this article a method is proposed to accomplish this by modeling activated regions with Gaussian shapes. Hypothesis tests on the location, spatial extent, and amplitude of these regions are performed instead of hypothesis tests of individual voxels. This increases power and eases interpretation. Simulation studies show robust hypothesis tests under misspecification of the shape model, and increased power over standard techniques especially at low signal-to-noise ratios. An application to real single-subject data also indicates that the method has increased power over standard methods.

  20. Analysis of visibility simulation of three polar regions from lunar-based earth observation

    Science.gov (United States)

    Ye, Hanlin; Liu, Guang; Ren, Yuanzhen; Guo, Huadong; Ding, Yixing

    2016-07-01

    Global environment change has caught the attention of many scientists around the world. The Arctic, Antarctic and Tibet Plateau are known as the three polar regions. They are the world's largest storage of cold and carbon which are the sensitive regions of global environment change. These three regions have significant impacts on the global environment change. It is extremely obvious that the environment change of these three regions is one of the major factors of global environment change. The special geographical positions of these three regions have great influence on the local climate and ecological environment that caused the climate is very bad and few people can get there, so there is very little observation data exists. In addition, these three regions have large scale and long-term observation characteristics. Since the meaning of remote sensing technology came out, we have developed airborne and space-borne Earth observation system. However, when taking three polar regions for researching, we will have to face the problems of temporal coherence and spatial continuity in the global scale, which challenges the Earth observation on the satellite and airborne platform. Moon is the unique natural satellite of the Earth, which always has one side facing it, with the advantages of large coverage, long-life platform, stable geological structure and multi-spheres three-dimensional detecting, turning out to be the ideal platform for observing three polar regions. At present and in the near future, the study of Earth observation data from a lunar observatory would be difficult to carry out, so a simulation is used in this paper to analyze the visibility of three polar regions. At first, we discuss the motion pattern of the Sun-Earth-Moon system. Then we construct a simulation system with simulated optical sensors setting up at different places on the Moon, finding that sunlight has great influence on optical observation. The visible region of a lunar-based optical

  1. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    Science.gov (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  2. Comparing tide gauge observations to regional patterns of sea-level change (1961–2003)

    NARCIS (Netherlands)

    Slangen, A.B.A.; Van de Wal, R.S.W.; Wada, Y.; Vermeersen, L.L.A.

    2014-01-01

    Although the global mean sea-level budget for the 20th century can now be closed, the understanding of sea-level change on a regional scale is still limited. In this study we compare observations from tide gauges to regional patterns from various contributions to sea-level change to see how much of

  3. Comparing tide gauge observations to regional patterns of sea-level change (1961–2003)

    NARCIS (Netherlands)

    Slangen, A.B.A.; van de Wal, R.S.W.; Wada, Y.; Vermeersen, L.L.A.

    2014-01-01

    Although the global mean sea-level budget for the20th century can now be closed, the understanding of sealevelchange on a regional scale is still limited. In this studywe compare observations from tide gauges to regional patternsfrom various contributions to sea-level change to seehow much of the re

  4. Comparing tide gauge observations to regional patterns of sea-level change (1961-2003)

    NARCIS (Netherlands)

    Slangen, A. B. A.; van de Wal, R. S. W.; Wada, Y.; Vermeersen, L. L. A.

    2014-01-01

    Although the global mean sea-level budget for the 20th century can now be closed, the understanding of sea-level change on a regional scale is still limited. In this study we compare observations from tide gauges to regional patterns from various contributions to sea-level change to see how much of

  5. On the non-Kolmogorov nature of flare-productive solar active regions

    CERN Document Server

    Mandage, Revati S

    2016-01-01

    A magnetic power spectral analysis is performed on 53 solar active regions, observed from August 2011 to July 2012. Magnetic field data obtained from the Helioseismic and Magnetic Imager, inverted as Active Region Patches, are used to study the evolution of the magnetic power index as each region rotates across the solar disk. Active regions are classified based on the number, and sizes, of solar flares they produce, in order to study the relationship between flare productivity and the magnetic power index. The choice of window size and inertial range plays a key role in determining the correct magnetic power index. The overall distribution of magnetic power indices has a range of $1.0-2.5$. Flare-quiet regions peak at a value of 1.6, however flare-productive regions peak at a value of 2.2. Overall, the histogram of the distribution of power indices of flare-productive active regions is well separated from flare-quiet active regions. Only 12\\% of flare-quiet regions exhibit an index greater than 2, whereas 90...

  6. A Regional CO2 Observing System Simulation Experiment for the ASCENDS Satellite Mission

    Science.gov (United States)

    Wang, J. S.; Kawa, S. R.; Eluszkiewicz, J.; Baker, D. F.; Mountain, M.; Henderson, J.; Nehrkorn, T.; Zaccheo, T. S.

    2014-01-01

    Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 will benefit from the increasing measurement density brought by recent and future additions to the suite of in situ and remote CO2 measurement platforms. In particular, the planned NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) satellite mission will provide greater coverage in cloudy regions, at high latitudes, and at night than passive satellite systems, as well as high precision and accuracy. In a novel approach to quantifying the ability of satellite column measurements to constrain CO2 fluxes, we use a portable library of footprints (surface influence functions) generated by the WRF-STILT Lagrangian transport model in a regional Bayesian synthesis inversion. The regional Lagrangian framework is well suited to make use of ASCENDS observations to constrain fluxes at high resolution, in this case at 1 degree latitude x 1 degree longitude and weekly for North America. We consider random measurement errors only, modeled as a function of mission and instrument design specifications along with realistic atmospheric and surface conditions. We find that the ASCENDS observations could potentially reduce flux uncertainties substantially at biome and finer scales. At the 1 degree x 1 degree, weekly scale, the largest uncertainty reductions, on the order of 50 percent, occur where and when there is good coverage by observations with low measurement errors and the a priori uncertainties are large. Uncertainty reductions are smaller for a 1.57 micron candidate wavelength than for a 2.05 micron wavelength, and are smaller for the higher of the two measurement error levels that we consider (1.0 ppm vs. 0.5 ppm clear-sky error at Railroad Valley, Nevada). Uncertainty reductions at the annual, biome scale range from 40 percent to 75 percent across our four instrument design cases, and from 65 percent to 85 percent for the continent as a whole. Our uncertainty

  7. A regional CO2 observing system simulation experiment for the ASCENDS Satellite Mission

    Directory of Open Access Journals (Sweden)

    J. S. Wang

    2014-05-01

    Full Text Available Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 will benefit from the increasing measurement density brought by recent and future additions to the suite of in situ and remote CO2 measurement platforms. In particular, the planned NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS satellite mission will provide greater coverage in cloudy regions, at high latitudes, and at night than passive satellite systems, as well as high precision and accuracy. In a novel approach to quantifying the ability of satellite column measurements to constrain CO2 fluxes, we use a portable library of footprints (surface influence functions generated by the WRF-STILT Lagrangian transport model in a regional Bayesian synthesis inversion. The regional Lagrangian framework is well suited to make use of ASCENDS observations to constrain fluxes at high resolution, in this case at 1° latitude × 1° longitude and weekly for North America. We consider random measurement errors only, modeled as a function of mission and instrument design specifications along with realistic atmospheric and surface conditions. We find that the ASCENDS observations could potentially reduce flux uncertainties substantially at biome and finer scales. At the 1° × 1°, weekly scale, the largest uncertainty reductions, on the order of 50%, occur where and when there is good coverage by observations with low measurement errors and the a priori uncertainties are large. Uncertainty reductions are smaller for a 1.57 μm candidate wavelength than for a 2.05 μm wavelength, and are smaller for the higher of the two measurement error levels that we consider (1.0 ppm vs. 0.5 ppm clear-sky error at Railroad Valley, Nevada. Uncertainty reductions at the annual, biome scale range from ∼40% to ∼75% across our four instrument design cases, and from ∼65% to ∼85% for the continent as a whole. Our uncertainty reductions at various scales are

  8. TARPs: Tracked Active Region Patches from SoHO/MDI

    Science.gov (United States)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  9. The JCMT Gould Belt Survey: first results from SCUBA-2 observations of the Cepheus Flare region

    Science.gov (United States)

    Pattle, K.; Ward-Thompson, D.; Kirk, J. M.; Di Francesco, J.; Kirk, H.; Mottram, J. C.; Keown, J.; Buckle, J.; Beaulieu, S. F.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Johnstone, D.; Nutter, D.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Walker-Smith, S.; Hogerheijde, M. R.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2017-02-01

    We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starless cores and protostars. We determine masses and densities for each of our sources, using source temperatures determined by the Herschel Gould Belt Survey. We compare the properties of starless cores in four different molecular clouds: L1147/58, L1172/74, L1251 and L1228. We find that the core mass functions for each region typically show shallower-than-Salpeter behaviour. We find that L1147/58 and L1228 have a high ratio of starless cores to Class II protostars, while L1251 and L1174 have a low ratio, consistent with the latter regions being more active sites of current star formation, while the former are forming stars less actively. We determine that if modelled as thermally supported Bonnor-Ebert spheres, most of our cores have stable configurations accessible to them. We estimate the external pressures on our cores using archival 13CO velocity dispersion measurements and find that our cores are typically pressure confined, rather than gravitationally bound. We perform a virial analysis on our cores, and find that they typically cannot be supported against collapse by internal thermal energy alone, due primarily to the measured external pressures. This suggests that the dominant mode of internal support in starless cores in the Cepheus Flare is either non-thermal motions or internal magnetic fields.

  10. Evolution of the magnetic field distribution of active regions

    Science.gov (United States)

    Dacie, S.; Démoulin, P.; van Driel-Gesztelyi, L.; Long, D. M.; Baker, D.; Janvier, M.; Yardley, S. L.; Pérez-Suárez, D.

    2016-12-01

    Aims: Although the temporal evolution of active regions (ARs) is relatively well understood, the processes involved continue to be the subject of investigation. We study how the magnetic field of a series of ARs evolves with time to better characterise how ARs emerge and disperse. Methods: We examined the temporal variation in the magnetic field distribution of 37 emerging ARs. A kernel density estimation plot of the field distribution was created on a log-log scale for each AR at each time step. We found that the central portion of the distribution is typically linear, and its slope was used to characterise the evolution of the magnetic field. Results: The slopes were seen to evolve with time, becoming less steep as the fragmented emerging flux coalesces. The slopes reached a maximum value of -1.5 just before the time of maximum flux before becoming steeper during the decay phase towards the quiet-Sun value of -3. This behaviour differs significantly from a classical diffusion model, which produces a slope of -1. These results suggest that simple classical diffusion is not responsible for the observed changes in field distribution, but that other processes play a significant role in flux dispersion. Conclusions: We propose that the steep negative slope seen during the late-decay phase is due to magnetic flux reprocessing by (super)granular convective cells.

  11. Magnetic helicity and energy spectra of a solar active region

    CERN Document Server

    Zhang, Hongqi; Sokoloff, D D

    2013-01-01

    We compute magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20 degr southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The relative magnetic helicity is around 8% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2 pi/k ~ 16 Mm. The same sign and a somewhat smaller value is also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The current helicity spectrum is estimated from the magnetic helicity spectrum and its modulus shows a k^{-5/3} spectrum at large wavenumbers. A similar power law is also obtained for...

  12. Evidence of Twisted flux-tube Emergence in Active Regions

    CERN Document Server

    Poisson, Mariano; Démoulin, Pascal; Fuentes, Marcelo López

    2015-01-01

    Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ tau] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, tau is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We syste...

  13. Daytime zonal drifts in the ionospheric E and 150 km regions estimated using EAR observations

    Science.gov (United States)

    Peddapati, PavanChaitanya; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Patra, Amit

    2016-07-01

    The Equatorial Atmosphere Radar (EAR), located at Kototabang (0.2o S, 100.32o E, mag. lat. 10.36o S), Indonesia, is capable of detecting both E region and 150 km echoes during daytime. We have conducted multi-beam observations using the EAR during daytime covering all seasons to study seasonal variations of these echoes and their dynamics. Given the facts that drifts at the 150 km region are governed primarily by electric field, drifts at the E region are governed by both electric field and neutral wind, simultaneous observations of drifts in both E and 150 km regions would help understand their variations. In this paper we present local time and seasonal variations of zonal drifts in the E and 150 km regions estimated using multi-beam observations. Zonal drifts (positive eastward) in the E and 150 km regions are found to be in the range of -10 to -60 m/s and -40 to 80 m/s, respectively. In the E region, zonal drifts show height reversal and temporal variations having tidal signature and noticeable seasonal variations. Zonal drifts in the 150 km region also show noticeable height and seasonal variations. These results are compared with model drifts and evaluated in terms of electric field and neutral wind.

  14. Results of seismological observations in the western Kaliningrad region and in the Baltic Sea water area

    Science.gov (United States)

    Kovachev, S. A.

    2008-09-01

    In 2006 2007, researchers of the IO RAS conducted seismological observations in the Baltic Sea and western Kaliningrad region with the use of ocean-bottom and land-based autonomous seismic stations. According to maps of general seismic zoning of the territory of Russia, the Kaliningrad region is aseismic. However, a series of seismic phenomena with magnitudes of about 5 and sources located near the Bay of Gdansk coast occurred here in September 2004. The total duration of the IO RAS seismological observations in five areas of the region under investigation was more than 200 days. The analysis of seismic records of the IO RAS network located sources of two local weak earthquakes with magnitudes M L = 3.4 3.5, which indicates that the seismic process in the western part of the Kaliningrad region continues and the region is far from being seismically stable.

  15. A classification of spectral populations observed in HF radar backscatter from the E region auroral electrojets

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.

    Key words. Ionosphere (ionospheric irregularities

  16. Testing models of low-excitation photodissociation regions with far-infrared observations of reflection nebulae

    NARCIS (Netherlands)

    Owl, RCY; Meixner, MM; Fong, D; Haas, MR; Rudolph, AL; Tielens, AGGM

    2002-01-01

    This paper presents Kuiper Airborne Observatory observations of the photodissociation regions ( PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O I] 63 and 145 mum, [C II] 158 mum, and [Si II] 35 mum and the adjacent far-infrared continuu

  17. Determinants of Regional Entrepreneurial Activity in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Ondřej Dvouletý

    2016-07-01

    Full Text Available The following study is focused on analysis of registered businesses in the 14 regions of the Czech Republic during the period of years 1995-2013. The aim of the study was to quantify factors that affect entrepreneurial activity expressed as rate of registered businesses per capita. Based on the previous empirical studies, the determinants were selected and hypothesis stated. Formed hypothesis investigated positive impact of GDP per capita, unemployment rate and R&D institutions on rate of registered business activity. To evaluate them, data were obtained from the Czech Statistical Office and formed into dataset. Firstly, panel regressions estimated with fixed effects method were employed and secondly, Granger causality tests to evaluate the relationship between entrepreneurial activity and GDP per capita were used. Regression estimates proved positive relationship between entrepreneurial activity in Czech regions and GDP per capita, unemployment rate and support activities of R&D institutions. Positive impact was also confirmed for population density, average age, share of tertiary educated population and real R&D expenditures. Testing Granger causality proved dual causality between entrepreneurial activity and GDP per capita confirming that GDP per capita as good predictor of economic development of Czech regions. Finally, economic growth motivates Czech individuals to enter entrepreneurial activity.

  18. Clinical Observation on Comprehensive Treatment on Cutaneous Region for Low Back Pain

    Institute of Scientific and Technical Information of China (English)

    Zhao Feng; Liu Shu-tian

    2014-01-01

    Objective: To observe the clinical effects of comprehensive treatmenton cutaneous region for low back pain. Methods: One hundred and twenty outpatients with low back pain who met the diagnostic criteria were randomly divided into a cutaneous region group or a medication group, 60 cases in each group. The cases in the cutaneous region group were treated by Nie-pinching up the skin of the lumbosacral region, cupping and acupuncture. Those in the medication group were treated by oral administration of Celecoxib capsule. The visual analogue scale (VAS) and Oswestry disability index (ODI) were used to assess the therapeutic effects. Results: After treatment, the VAS scores of both groups were different from those before treatment, showing statistical significances (allP Conclusion: Both comprehensive treatment on the cutaneous region and Celecoxib capsule can obviously relieve low back pain. But comprehensive treatment on the cutaneous region is better than Celecoxib capsule in the therapeutic effects.

  19. Near-Optimal Bayesian Active Learning with Noisy Observations

    CERN Document Server

    Golovin, Daniel; Ray, Debajyoti

    2010-01-01

    We tackle the fundamental problem of Bayesian active learning with noise, where we need to adaptively select from a number of expensive tests in order to identify an unknown hypothesis sampled from a known prior distribution. In the case of noise-free observations, a greedy algorithm called generalized binary search (GBS) is known to perform near-optimally. We show that if the observations are noisy, perhaps surprisingly, GBS can perform very poorly. We develop EC2, a novel, greedy active learning algorithm and prove that it is competitive with the optimal policy, thus obtaining the first competitiveness guarantees for Bayesian active learning with noisy observations. Our bounds rely on a recently discovered diminishing returns property called adaptive submodularity, generalizing the classical notion of submodular set functions to adaptive policies. Our results hold even if the tests have non-uniform cost and their noise is correlated. We also propose EffECXtive, a particularly fast approximation of EC2, and ...

  20. METHODOLOGICAL ESSENTIAL PRINCIPLES OF REGIONAL INVESTMENT ACTIVITY FINANCEMENT MECHANIZM IMPROVEMENT

    OpenAIRE

    V.V. Morozov

    2005-01-01

    The strategy principles and main directions of regional investment activity financement mechanism improvement are formulated and worked out in the article. The contemporary conditions are analyzed, the factors are researched, the priority directions are defined, the suggestions on the better use of investment sources are worked out, and on this base the suggestions on the investment process activization in the territorial systems are worked out.

  1. Socioeconomic and regional differences in active transportation in Brazil

    Directory of Open Access Journals (Sweden)

    Thiago Hérick de Sá

    2016-01-01

    Full Text Available ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey, we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making

  2. LOCAL DEVELOPMENT IN NORTHEST REGION THROUGH ACTIVITIES IN ITC DOMAIN

    Directory of Open Access Journals (Sweden)

    Daniela\tENACHESCU

    2015-06-01

    Full Text Available Economic areas with high technology are key drivers in sustainable regional development, including unemployment and consequently decreasing population migration in the region. Northeast Region is the largest development region of Romania in terms of number of inhabitants and the owned area. On 01/01/2014, according to balance employment, labor resources of the region were numbered 2,428,700, which represent 49.6% of employed population. The registered unemployment rate at 31 August 2014 was 6.5%, with 82 thousand unemployed registered. In terms of participation in the main economic activities, civilian employment in agriculture, forestry and fishing is predominant (40.1% while in service, civilian employment is 37.1%, while industry and construction is 22.8%. The paper aims to analyze the situation that the potential employment and development opportunities for the Northeast region through activities in the field of ITC domain. Unfortunately, this area was the worst in most indicators, the use of computers and the internet to the turnover of companies and investments in the IT & C and unfortunately in terms of employment population that is under 50%

  3. Enhanced ULF electromagnetic activity detected by DEMETER above seismogenic regions

    CERN Document Server

    Athanasiou, M; David, C; Anagnostopoulos, G

    2013-01-01

    In this paper we present results of a comparison between ultra low frequency (ULF) electromagnetic (EM) radiation, recorded by an electric field instrument (ICE) onboard the satellite DEMETER in the topside ionosphere, and the seismicity of regions with high and lower seiismic activity. In particular we evaluated the energy variations of the ULF Ez-electric field component during a period of four years (2006-2009), in order to examine check the possible relation of ULF EM radiation with seismogenic regions located in central America, Indonesia, Eastern Mediterranean Basin and Greece. As a tool of evaluating the ULF Ez energy variations we used Singular Spectrum Analysis (SSA) techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emmited from regions of highest seismic activity at the tectonic plates boundaries. We interpret these results as suggesting that the highest ULF EM energy detected in the topside ionosphere is originated from seismic processes within Earth's...

  4. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  5. Helicity of Solar Active Regions from a Dynamo Model

    Indian Academy of Sciences (India)

    Piyali Chatterjee

    2006-06-01

    We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. We use our solar dynamo model based on the Babcock–Leighton -effect to study how helicity varies with latitude and time.

  6. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  7. Unwinding motion of a twisted active-region filament

    CERN Document Server

    Yan, X L; Liu, J H; Kong, D F; Xu, C L

    2014-01-01

    To better understand the structures of active-region filaments and the eruption process, we study an active-region filament eruption in active region NOAA 11082 in detail on June 22, 2010. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament is consisted of twisted magnetic field lines. The total twist of the filament is at least 5$\\pi$ obtained by using time slice method. According to the morphology change during the filament eruption, it is found that the active-region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magn...

  8. Unwinding Motion of a Twisted Active Region Filament

    Science.gov (United States)

    Yan, X. L.; Xue, Z. K.; Liu, J. H.; Kong, D. F.; Xu, C. L.

    2014-12-01

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  9. Statistical study of network jets observed in the solar transition region: A comparison between coronal holes and quiet sun regions

    CERN Document Server

    Narang, Nancy; Tian, Hui; Banerjee, Dipankar; Cranmer, Steven R; DeLuca, Ed E; McKillop, Sean

    2016-01-01

    Recent IRIS observations have revealed a prevalence of intermittent small-scale jets with apparent speeds of 80 - 250 km s$^{-1}$, emanating from small-scale bright regions inside network boundaries of coronal holes. We find that these network jets appear not only in coronal holes but also in quiet-sun regions. Using IRIS 1330A (C II) slit-jaw images, we extract several parameters of these network jets, e.g. apparent speed, length, lifetime and increase in foot-point brightness. Using several observations, we find that some properties of the jets are very similar but others are obviously different between the quiet sun and coronal holes. For example, our study shows that the coronal-hole jets appear to be faster and longer than those in the quiet sun. This can be directly attributed to a difference in the magnetic configuration of the two regions with open magnetic field lines rooted in coronal holes and magnetic loops often present in quiet sun. We have also detected compact bright loops, likely transition r...

  10. The unresolved fine structure resolved: IRIS observations of the solar transition region.

    Science.gov (United States)

    Hansteen, V; De Pontieu, B; Carlsson, M; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; Pereira, T M D; De Luca, E E; Golub, L; McKillop, S; Reeves, K; Saar, S; Testa, P; Tian, H; Kankelborg, C; Jaeggli, S; Kleint, L; Martínez-Sykora, J

    2014-10-17

    The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long-standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the Interface Region Imaging Spectrograph (IRIS) at the solar limb reveal a plethora of short, low-lying loops or loop segments at transition-region temperatures that vary rapidly, on the time scales of minutes. We argue that the existence of these loops solves a long-standing observational mystery. At the same time, based on comparison with numerical models, this detection sheds light on a critical piece of the coronal heating puzzle.

  11. The Unresolved Fine Structure Resolved - IRIS observations of the Solar Transition Region

    CERN Document Server

    Hansteen, V; Carlsson, M; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; Pereira, T M D; De Luca, E E; Golub, L; McKillop, S; Reeves, K; Saar, S; Testa, P; Tian, H; Kankelborg, C; Jaeggli, S; Kleint, L; Martinez-Sykora, J

    2014-01-01

    The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the Interface Region Imaging Spectrograph (IRIS) at the solar limb reveal a plethora of short, low lying loops or loop segments at transition-region temperatures that vary rapidly, on the timescales of minutes. We argue that the existence of these loops solves a long standing observational mystery. At the same time, based on comparison with numerical models, this detection sheds light on a critical piece of the coronal heating puzzle.

  12. Regional differences in rat conjunctival ion transport activities

    OpenAIRE

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expressio...

  13. Observation

    Science.gov (United States)

    Patell, Hilla

    2016-01-01

    In order to achieve the goal of observation, preparation of the adult, the observer, is necessary. This preparation, says Hilla Patell, requires us to "have an appreciation of the significance of the child's spontaneous activities and a more thorough understanding of the child's needs." She discusses the growth of both the desire to…

  14. X-ray structures associated with disappearing H-alpha filaments in active regions

    Science.gov (United States)

    Kahler, S. W.

    1980-01-01

    The paper examines the relationship between active region disappearing H-alpha filaments and the associated coronal X-ray structures observed both before the disappearance event and afterwards. The events chosen for the study were selected from a list of active region X-ray transients observed in the images from the X-ray telescope on Skylab and from a list compiled by Webb (1976) of sudden disappearances of filaments during the Skylab period. Results indicate no distinction between the disappearing and the remaining active region filaments in terms of their pre-event associated X-ray emission features. However, X-ray brightenings were associated in a nearly one-to-one correspondence with disappearing portions of the filaments.

  15. Evaluation of Observation-Fused Regional Air Quality Model Results for Population Air Pollution Exposure Estimation

    Science.gov (United States)

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-01-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  16. Activation differences in observation of hand movements for imitation or velocity judgement.

    Science.gov (United States)

    Suchan, Boris; Melde, Cornelia; Herzog, Hans; Hömberg, Volker; Seitz, Rüdiger J

    2008-03-17

    We aimed to investigate the brain areas engaged in observation of hand movements with the intention of imitation or judging movement velocity. Both processes reflect different analytic approaches in movement observation. We were interested if these two processes can be distinguished or share common activation foci. Twelve healthy, right-handed volunteers were required to observe video clips of hand gestures and of object related grasping movements while the regional cerebral blood flow was measured using positron emission tomography. The subjects were instructed either to imitate the actions or to judge the velocity of the observed movements after scanning. Action observation with the instruction to judge movement velocity engaged bilaterally the temporo-occipital junction and adjacent visual cortical areas. In contrast, observation with the instruction to imitate them afterwards, yielded large activation clusters covering the left parietal and premotor cortex. Both contrasts demonstrated activation in the inferior frontal cortex, however, on opposite sides. Results suggest that movement observation with the goal of imitation activated specific areas of the parietal cortex in the dominant hemisphere probably related to programming of the movement kinematics. In contrast, observation with the goal to characterize the velocity of the finger movements activated the ventral visual pathways. Thus, movement observation recruits non-overlapping cortical networks, depending on the information attended to which are characterised by a dorsal ventral dissociation.

  17. Cluster observations and theoretical identification of broadband waves in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Backrud-Ivgren

    2005-12-01

    Full Text Available Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves, while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.

  18. The intermediate line region in active galactic nuclei

    CERN Document Server

    Adhikari, T P; Czerny, B; Hryniewicz, K; Ferland, G J

    2016-01-01

    We show that the recently observed suppression of the gap between the broad line region (BLR) and the narrow line region (NLR) in some AGN can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate velocity full width half maximum (FWHM) $\\sim$ 700 - 1200 km s$^{-1}$. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As it was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of {\\sc cloudy} photoionization code, show that the differences in the shape of spectral energy distribution (SED) from the central region of AGN, do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission vs radius exists for all lines at the dust sublimat...

  19. Time-Distance analysis of the Emerging Active Region NOAA 10790

    CERN Document Server

    Zharkov, S

    2008-01-01

    We investigate the emergence of Active Region NOAA 10790 by means of time--distance helioseismology. Shallow regions of increased sound speed at the location of increased magnetic activity are observed, with regions becoming deeper at the locations of sunspot pores. We also see a long-lasting region of decreased sound speed located underneath the region of the flux emergence, possibly relating to a temperature perturbation due to magnetic quenching of eddy diffusivity, or to a dense flux tube. We detect and track an object in the subsurface layers of the Sun characterised by increased sound speed which could be related to emerging magnetic flux and thus obtain a provisional estimate of the speed of emergence of around $1 {\\rm km s^{-1}}$.

  20. 12 Years of Stellar Activity Observations in Argentina

    CERN Document Server

    Mauas, Pablo J D; Diaz, R; Vieytes, M; Petrucci, R; Jofre, E; Abrevaya, X; Luoni, M L; Valenzuela, P

    2012-01-01

    We present an observational program we started in 1999, to systematically obtain mid-resolution spectra of late-type stars, to study in particular chromospheric activity. In particular, we found cyclic activity in four dM stars, including Prox-Cen. We directly derived the conversion factor that translates the known S index to flux in the Ca II cores, and extend its calibration to a wider spectral range. We investigated the relation between the activity measurements in the calcium and hydrogen lines, and found that the usual correlation observed is the product of the dependence of each flux on stellar color, and it is not always preserved when simultaneous observations of a particular star are considered. We also used our observations to model the chromospheres of stars of different spectral types and activity levels, and found that the integrated chromospheric radiative losses, normalized to the surface luminosity, show a unique trend for G and K dwarfs when plotted against the S index.

  1. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  2. [Ne II] Observations of Gas Motions in Compact and Ultracompact H II Regions

    CERN Document Server

    Zhu, Qingfeng; Jaffe, Daniel T; Richter, Matthew J; Greathouse, Thomas K

    2008-01-01

    We present high spatial and spectral resolution observations of sixteen Galactic compact and ultracompact H II regions in the [Ne II] 12.8 microns fine structure line. The small thermal width of the neon line and the high dynamic range of the maps provide an unprecedented view of the kinematics of compact and ultracompact H II regions. These observations solidify an emerging picture of the structure of ultracompact H II regions suggested in our earlier studies of G29.96-0.02 and Mon R2 IRS1; systematic surface flows, rather than turbulence or bulk expansion, dominate the gas motions in the H II regions. The observations show that almost all of the sources have significant (5-20 km/s) velocity gradients and that most of the sources are limb-brightened. In many cases, the velocity pattern implies tangential flow along a dense shell of ionized gas. None of the observed sources clearly fits into the categories of filled expanding spheres, expanding shells, filled blister flows, or cometary H II regions formed by ...

  3. Observational evidence for enhanced magnetic activity of superflare stars.

    Science.gov (United States)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-24

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  4. Recurrent Jets Occurred Nearby Active Region NOAA 11931

    Science.gov (United States)

    Yu-kun, Hu; Zhi, Xu; Zhi-ke, Xue; Xiao-li, Yan; Yuan-deng, Shen; Ning, Wu; Jun, Lin

    2016-10-01

    According to the 171 Å observation of Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) in 2013 December 25∼26, a series of homologous jets were continuously found in the southwestern area of the active region NOAA 11931, from which 12 typical jets were selected and studied in this paper. The magnetic field structures in most jets had an obviously untwisting motion in the ejection process, though a few of them didn't have. The process of some jets was divided into two phases: the slow ejection without untwisting, and the rapid untwisting ejection. Before some jets started, a bright point grew along the bottom of magnetic arcade, and extended from the end remote from the jet to the end proximate to the jet, and there were two parts of magnetic structures near the bottom of magnetic arcade untwisted simultaneously in the ejection process. During the final one jet, two magnetic arcades appeared successively in the southeastern end of the magnetic structure on the jet bottom, while a small magnetic loop emerged in the northwestern end. Compared with the line-of-sight magnetogram of SDO/Helioseismic and Magnetic Imager (SDO/HMI), in about 4 h before the first jet appeared, a pair of magnetic dipoles emerged from the bottom of magnetic structure, and continuously lifted during the whole jet event. Although overall the bottom magnetic field emerged before and after the 12 jets, but for each individual jet, the variation of the bottom magnetic field was different from one another: in some jets, the magnetic field near the magnetic arcade on the jet bottom exhibited both magnetic emergence and cancellation; but in other jets, the magnetic field near the jet bottom exhibited only an obvious emergence or cancellation.

  5. A Flare Observed in Coronal, Transition Region and Helium I 10830 \\AA\\ Emissions

    CERN Document Server

    Zeng, Zhicheng; Cao, Wenda; Judge, Philip G

    2014-01-01

    On June 17, 2012, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broad-band TiO at 706 nm (bandpass:10 \\AA) and He I 10830 \\AA\\ narrow-band (bandpass: 0.5 \\AA, centered 0.25 \\AA\\ to the blue). We analyze the spatio-temporal behavior of the He I 10830 \\AA\\ data, which were obtained over a 90" X 90" field of view with a cadence of 10 sec. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the "0D" Enthalpy-Based Thermal Evolution of Loops model (EBTEL: Klimchuk...

  6. Trypsinogen activation as observed in accelerated molecular dynamics simulations.

    Science.gov (United States)

    Boechi, Leonardo; Pierce, Levi; Komives, Elizabeth A; McCammon, J Andrew

    2014-11-01

    Serine proteases are involved in many fundamental physiological processes, and control of their activity mainly results from the fact that they are synthetized in an inactive form that becomes active upon cleavage. Three decades ago Martin Karplus's group performed the first molecular dynamics simulations of trypsin, the most studied member of the serine protease family, to address the transition from the zymogen to its active form. Based on the computational power available at the time, only high frequency fluctuations, but not the transition steps, could be observed. By performing accelerated molecular dynamics (aMD) simulations, an interesting approach that increases the configurational sampling of atomistic simulations, we were able to observe the N-terminal tail insertion, a crucial step of the transition mechanism. Our results also support the hypothesis that the hydrophobic effect is the main force guiding the insertion step, although substantial enthalpic contributions are important in the activation mechanism. As the N-terminal tail insertion is a conserved step in the activation of serine proteases, these results afford new perspective on the underlying thermodynamics of the transition from the zymogen to the active enzyme.

  7. Evaluation of observation-fused regional air quality model results for population air pollution exposure estimation.

    Science.gov (United States)

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-07-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRRs are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account for spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses.

  8. Lubbock Regional Airport, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    Science.gov (United States)

    1982-11-12

    FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 7 267 LUBOCK REGIONAL ARPT TX 73-81 ALUG ALL WEATHER 1 ]0-ZC02 SPEED MEAN IN’S) 5.- 4.-6 7.10...VISIBILITYA!;- EAITHER SF0VlCF/-AC :-’ LUBOCK ;ZE IONAL Af T T - C PERCENTAGE FREQUENCY OF OCCURRENCE FROM HOURLY OBSERVATIONS 672- 6 0. T 6 67 69.1~ 64

  9. Airborne Observations of Regional Variations in Fluorescent Aerosol Across the U.S.

    Science.gov (United States)

    Perring, A. E.; Schwarz, J. P.; Baumgardner, D.; Hernandez, M.; Spracklen, D. V.; Heald, C. L.; Gao, R. S.; Kok, G. L.; McMeeking, G.; McQuaid, J. B.; Fahey, D. W.

    2014-12-01

    Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wide band of longitude across the continental US between Florida and California between 28 and 37N latitude. Sampling occurred from near the surface to 1000 m above the ground. A Wide-band Integrated Bioaerosol Sensor (WIBS-4) measured concentrations of supermicron fluorescent particles with average regional concentrations ranging from 1.4±0.7 to 6.8±1.4 x 104 particles m-3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol populations. Fluorescent aerosol signatures detected in the east is largely consistent with those of mold spores observed in a laboratory setting. A shift to larger sizes associated with different fluorescent patterns is observed in the west. Loadings in the desert west were nearly as high as those near the Gulf of Mexico, indicating that bioaerosol is a substantial component of supermicron aerosol both of these humid and arid environments. The observations are compared to simulated fungal and bacterial loadings. Good agreement in both particle size and concentrations is observed in the east. In the west the model underestimates observed concentrations by a factor of 2 to 3 and the prescribed particle sizes are smaller than the observed bioaerosol.

  10. Action observation activates neurons of the monkey ventrolateral prefrontal cortex

    Science.gov (United States)

    Simone, Luciano; Bimbi, Marco; Rodà, Francesca; Fogassi, Leonardo; Rozzi, Stefano

    2017-01-01

    Prefrontal cortex is crucial for exploiting contextual information for the planning and guidance of behavioral responses. Among contextual cues, those provided by others’ behavior are particularly important, in primates, for selecting appropriate reactions and suppressing the inappropriate ones. These latter functions deeply rely on the ability to understand others’ actions. However, it is largely unknown whether prefrontal neurons are activated by action observation. To address this issue, we recorded the activity of ventrolateral prefrontal (VLPF) neurons of macaque monkeys during the observation of videos depicting biological movements performed by a monkey or a human agent, and object motion. Our results show that a population of VLPF neurons respond to the observation of biological movements, in particular those representing goal directed actions. Many of these neurons also show a preference for the agent performing the action. The neural response is present also when part of the observed movement is obscured, suggesting that these VLPF neurons code a high order representation of the observed action rather than a simple visual description of it. PMID:28290511

  11. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-02-01

    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  12. Long-Wavelength Observations of Jets from Polar Regions of the Sun

    Science.gov (United States)

    Ramesh, R.

    1999-10-01

    We report radio observations of enhanced emission associated with the extreme-ultraviolet (EUV) jets from polar coronal hole regions of the Sun, with the Gauribidanur radioheliograph (GRH). We have estimated the brightness temperature, electron density and mass of the ejected material. These jets were not accompanied by nonthermal radio bursts, particularly Type III events.

  13. Observations of the frontal region of a buoyant river plume using an autonomous underwater vehicle

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Chen, Jialin

    2014-11-01

    To characterize the transitional region from the near-field to far-field of a river plume entering coastal waters, we conducted four surveys using an autonomous underwater vehicle (AUV) to target the outflow of the New River Inlet, North Carolina, during maximum ebb tide. The utilization of a mobile sensor to synoptically observe current velocity data in tandem with natural river plume tracers (e.g., colored dissolved organic matter, salinity) was essential in understanding the mechanisms driving the observed circulation and mixing patterns within these waters. We find that this region is regularly impacted by two primary processes: (1) the interaction of an old dredged channel plume with the main discharge and (2) the recirculation of the discharge plume by an eddy that persistently forms between the old channel and main discharge location. Wind-driven processes in the nearshore can enhance the interaction of these two plumes resulting in unstable regions where mixing of the merged plume with the receiving waters is accelerated. We also conduct comparisons between AUV velocity observations from two surveys and their corresponding velocity outputs from a parallelized quasi-3-D model. We conclude that the ability to observe the estuarine outflow transitional region at near-synoptic temporal scales and resolutions discussed in this paper is key in providing the mechanisms driving local circulation which is essential for proper parameterization of high-resolution numerical coastal models.

  14. The effect of Galactic foreground subtraction on redshifted 21-cm observations of quasar HII regions

    CERN Document Server

    Geil, Paul M; Petrovic, Nada; Oh, Peng

    2008-01-01

    We assess the impact of Galactic synchrotron foreground removal on the observation of high-redshift quasar HII regions in redshifted 21-cm emission. We consider the case where a quasar is observed in an intergalactic medium (IGM) whose ionisation structure evolves slowly relative to the light crossing time of the HII region, as well as the case where the evolution is rapid. The latter case is expected towards the end of the reionisation era where the highest redshift luminous quasars will be observed. In the absence of foregrounds the fraction of neutral hydrogen in the IGM could be measured directly from the contrast between the HII region and surrounding IGM. However, we find that foreground removal lowers the observed contrast between the HII region and the IGM. This indicates that measurement of the neutral fraction would require modelling to correct for this systematic effect. On the other hand, foreground removal does not modify the most prominent features of the 21-cm maps. Using a simple algorithm we ...

  15. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection.

    Science.gov (United States)

    Eriksson, S; Wilder, F D; Ergun, R E; Schwartz, S J; Cassak, P A; Burch, J L; Chen, L-J; Torbert, R B; Phan, T D; Lavraud, B; Goodrich, K A; Holmes, J C; Stawarz, J E; Sturner, A P; Malaspina, D M; Usanova, M E; Trattner, K J; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Lindqvist, P-A; Drake, J F; Shay, M A; Nakamura, R; Marklund, G T

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300  km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  16. Observations of nightside auroral plasma upflows in the F-region and topside ionosphere

    Directory of Open Access Journals (Sweden)

    C. Foster

    Full Text Available Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 m s–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion tem- peratures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHF data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.

  17. High Power VCSEL Device with Periodic Gain Active Region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High power vertical cavity surface emitting lasers(VCSEKLs) with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structures, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the ca...

  18. Influence of the cardiac myosin hinge region on contractile activity.

    OpenAIRE

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P.; Slayter, H. S.

    1991-01-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myos...

  19. VSA Observations of the Anomalous Microwave Emission in the Perseus Region

    OpenAIRE

    2009-01-01

    The dust feature G159.6--18.5 in the Perseus region has previously been observed with the COSMOSOMAS experiment \\citep{Watson:05} on angular scales of $\\approx$ 1$^{\\circ}$, and was found to exhibit anomalous microwave emission. We present new observations of this dust feature, performed with the Very Small Array (VSA) at 33 GHz, to help increase the understanding of the nature of this anomalous emission. On the angular scales observed with the VSA ($\\approx$ 10 -- 40$^{\\prime}$), G159.6--18....

  20. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  1. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    Science.gov (United States)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  2. Signatures of the slow solar wind streams from active regions in the inner corona

    CERN Document Server

    Slemzin, V; Urnov, A; Kuzin, S; Goryaev, F; Berghmans, D

    2012-01-01

    Some of local sources of the slow solar wind can be associated with spectroscopically detected plasma outflows at edges of active regions accompanied with specific signatures in the inner corona. The EUV telescopes (e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes observed extended ray-like structures seen at the limb above active regions in 1MK iron emission lines and described as "coronal rays". To verify the relationship between coronal rays and plasma outflows, we analyze an isolated active region (AR) adjacent to small coronal hole (CH) observed by different EUV instruments in the end of July - beginning of August 2009. On August 1 EIS revealed in the AR two compact outflows with the Doppler velocities V =10-30 km/s accompanied with fan loops diverging from their regions. At the limb the ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July 31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic field lines expanded to the streamer sta...

  3. Stellar activity as observed by the KEPLER space telescope: The K Dwarf KIC 8429280

    Science.gov (United States)

    Savanov, I. S.

    2011-09-01

    The activity of the K dwarf KIC 8429280 (TYC 3146-35-1) has been studied. Unique high-precision photometric observations of this object obtained with the KEPLER space telescope suggest a pronounced amplitude modulation of the brightness of the star, and have made possible the analysis of surface-temperature inhomogeneities. The evolution of active regions on the surface of KIC 8429280 has been traced during 105 rotation periods. Evidence has been found for the existence of two active longitudes on the surface of KIC 8429280, separated by approximately 180°. The motion of the active longitudes on the surface of KIC 8429280 is complex and unstable. At some times, the active regions moved together in longitude with the rotation of the star, while they moved in opposite directions at other time. The less active region sometimes disappeared completely, and only one active region was observed on the stellar surface. The area of the spotted surface S is 4% of the visible stellar surface for the adopted inclination of the rotation axis of the star to the line of sight, i = 60°. The periodicity for variations in S is no less than 90 d. The timescale for the change in the amplitude of the brightness variations is 30 d. Three epochs of alternation of the active longitudes are close in time to three of four firmly established minima in the amplitudes of the brightness variations. The results of the light-curve analysis for KIC 8429280 are compared to results obtained for the young active solar-type star Corot-Exo-2, which has a similar light curve with a pronounced modulation.

  4. Brood surveys and hunter observations used to predict gobbling activity wild turkeys in Mississippi

    Science.gov (United States)

    Palumbo, Matthew D.; Vilella, Francisco; Strickland, Bronson K.; Wang, Guiming; Godwin, Dave

    2014-01-01

    The Mississippi Department of Wildlife, Fisheries, and Parks utilize data from turkey hunter observations and brood surveys from across the state to manage wild turkey Meleagris gallopavo populations. Since 1995, hunters have collected gobbling and jake observation data, while the Mississippi Department of Wildlife, Fisheries, and Parks' personnel and cooperating wildlife managers of several natural resource agencies throughout the state have collected brood survey data. Both sources of data serve to forecast poult recruitment and gobbling activity. The objective of this study was to evaluate if these data can serve as a viable predictor of gobbling activity. We used three mixed models to investigate the relationship between the number of jakes observed per hour of hunting 1 y prior and the total number of poults per hens 2 y prior (model 1), number of gobblers heard per hour of hunting and the number of jakes observed per hour of hunting 1 y prior (model 2), the number of gobblers heard per hour of hunting and the total number poults per total hens observed 2 y prior (model 3) using data from 1995 to 2008 among five wild turkey management regions encompassing the state. We incorporated region as a random effect to account for spatial variation. We found the number of jakes observed per hour of hunting 1 y prior correlated with the total number of poults per total hens observed 2 y prior. We also found the number of gobblers heard per hour of hunting correlated with the number of jakes observed per hour of hunting 1 y prior. Additionally, we found that the total poults per total hens observed 2 y prior was correlated to the number of gobblers heard per hour of hunting. Our results show promise for using indices of gobbling activity, jake observations, and brood surveys to estimate gobbling activity.

  5. VizieR Online Data Catalog: Radio observations of Galactic WISE HII regions (Anderson+, 2015)

    Science.gov (United States)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, D. S.; Wenger, T. V.; Cunningham, V.

    2016-01-01

    We draw our targets from the MIR objects in the WISE catalog of Anderson+, 2014, J/ApJS/212/1. We also include in our sample Sharpless H II regions (Sharpless 1959, VII/20). See section 2 for further details. Our observations were made with the GBT 100m telescope from 2012 July through 2014 August. There are seven radio recombination lines (RRLs) that can be cleanly observed simultaneously with the GBT in the X-band: H87α to H93α. We average these seven RRLs (each at two orthogonal polarizations) to create a single average RRL spectrum. We followed the same GBT observational procedure as in the original HRDS (Green Bank Telescope H II Region Discovery Survey (GBT HRDS; Bania et al. 2010ApJ...718L.106B). (3 data files).

  6. Temperature and Density Structure of a Recurring Active Region Jet

    CERN Document Server

    Mulay, Sargam M; Mason, Helen

    2016-01-01

    We present a study of a recurring jet observed on October 31, 2011 by SDO/AIA, Hinode/XRT and Hinode/EIS. We discuss the physical parameters of the jet such as density, differential emission measure, peak temperature, velocity and filling factor obtained using imaging and spectroscopic observations. A differential emission measure (DEM) analysis was performed at the region of the jet-spire and the footpoint using EIS observations and also by combining AIA and XRT observations. The DEM curves were used to create synthetic spectra with the CHIANTI atomic database. The plasma along the line-of-sight in the jet-spire and jet-footpoint was found to be peak at 2.0 MK. We calculated electron densities using the Fe XII ($\\lambda$186/$\\lambda$195) line ratio in the region of the spire (Ne = 7.6x$10^{10}$ $cm^{-3}$) and the footpoint (1.1x$10^{11}$ $cm^{-3}$). The plane-of-sky velocity of the jet is found to be 524 km/s. The resulting EIS DEM values are in good agreement with those obtained from AIA-XRT. There is no in...

  7. Multi-wavelength, Multi-scale Observations of Outflows in Star-Forming Regions

    Science.gov (United States)

    Plunkett, Adele Laurie Dennis

    ratio of outflow energy to gravitational binding energy; further, if gas escapes from NGC 1333, then outflow energy and gravitational energy may become comparable within the next N ~ 0.5 Myr, possibly disrupting the cluster. Finally, we investigate the properties of a particular Class 0 molecular outflow in Serpens South, providing evidence for episodic outflow events and corresponding accretion at a very early stage. This remarkable outflow remains intact even within the active, central hub region of Serpens South.

  8. Observation of a Sharp Negative Dipolarization Front in the Reconnection Outflow Region

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meng; HUANG Shi-Yong; DENG Xiao-Hua; PANG Ye

    2011-01-01

    A sharp dipolarization front (DF) has recently been detected in the Earth's magnetotail and is associated with complex kinetic effects. We present one event where a tailward propagating negative DF (with Bz decreasing sharply to negative value) was observed near a reconnection region. The thickness of the negative DF is comparable with the local ion gyro-radius/inertial length. There is a strong field-aligned current at the front. Electromagnetic whistler wave enhancements are observed around the front, associated with counter-streaming electron beams. We further compare the features of the observed negative DF with the recent kinetic simulation results, as well as the Earthward propagating DFs observed by the THEMIS spacecraft.%A sharp dipolarization front (DF) has recently been detected in the Earth's magnetotail and is associated with complex kinetic effects.We present one event where a tailward propagating negative DF (with Bz decreasing sharply to negative value) was observed near a reconnection region.The thickness of the negative DF is comparable with the local ion gyro-radius/inertial length.There is a strong field-aligned current at the front.Electromagnetic whistler wave enhancements are observed around the front,associated with counter-streaming electron beams.We further compare the features of the observed negative DF with the recent kinetic simulation results,as well as the Earthward propagating DFs observed by the THEMIS spacecraft.A substorm is an explosive energy release process that occurs in the magnetosphere of many planets.Magnetic field dipolarization is believed to be an essential ingredient of the substorm process,each of which is generally associated with dipolarization.Traditionally,dipolarization was believed to be associated with a decrease in the cross-tail current in the nearEarth region,which might be caused by cross-tail current instability[1] or the dawnward inertial current due to fast-flow braking.[2

  9. ISO Mid-Infrared Observations of Giant HII Regions in M33

    Science.gov (United States)

    Skelton, B. P.; Waller, W. H.; Hodge, P. W.; Boulanger, F.; Cornett, R. H.; Fanelli, M. N.; Lequeux, J.; Stecher, T. P.; Viallefond, F.; Hui, Y.

    1999-01-01

    We present Infrared Space Observatory Camera (ISOCAM) Circular Variable Filter scans of three giant HII regions in M33. IC 133, NGC 595, and CC 93 span a wide range of metallicity, luminosity, nebular excitation, and infrared excess; three other emission regions (CC 43, CC 99, and a region to the northeast of the core of NGC 595) are luminous enough in the mid-infrared to be detected in the observed fields. ISOCAM CVF observations provide spatially resolved observations (5'') of 151 wavelengths between 5.1 and 16.5 microns with a spectral resolution R = 35 to 50. We observe atomic emission lines ([Ne II], [Ne III], and [S IV]), several "unidentified infrared bands" (UIBs; 6.2, 7.7, 8.6, 11.3, 12.0, and 12.7 microns), and in some cases a continuum which rises steeply at longer wavelengths. We conclude that the spectra of these three GHRs are well explained by combinations of ionized gas, PAHs, and very small grains in various proportions and with different spatial distributions. Comparisons between observed ratios of the various UIBs with model ratios indicate that the PAHs in all three of the GHRs are dehydrogenated and that the small PAHs have been destroyed in IC 133 but have survived in NGC 595 and CC 93. The [Ne III]/[Ne II] ratios observed in IC 133 and NGC 595 are consistent with their ages of 5 and 4.5 Myr, respectively; the deduced ionization parameter is higher in IC 133, consistent with its more compact region of emission.

  10. Insights from Synthetic Star-forming Regions: I. Reliable Mock Observations from SPH Simulations

    CERN Document Server

    Koepferl, Christine M; Dale, James E; Biscani, Francesco

    2016-01-01

    Through synthetic observations of a hydrodynamical simulation of an evolving star-forming region, we assess how the choice of observational techniques affects the measurements of properties which trace star formation. Testing and calibrating observational measurements requires synthetic observations which are as realistic as possible. In this part of the paper series (Paper I), we explore different techniques for how to map the distributions of densities and temperatures from the particle-based simulations onto a Voronoi mesh suitable for radiative transfer and consequently explore their accuracy. We further test different ways to set up the radiative transfer in order to produce realistic synthetic observations. We give a detailed description of all methods and ultimately recommend techniques. We have found that the flux around 20 microns is strongly overestimated when blindly coupling the dust radiative transfer temperature with the hydrodynamical gas temperature. We find that when instead assuming a consta...

  11. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  12. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Esnard, T.; Trinidad, M. A. [Departamento de Astronomia, Universidad de Guanajuato, Apdo Postal 144, Guanajuato, GTO, Mexico CP 36000 (Mexico); Migenes, V., E-mail: tatiana@iga.cu, E-mail: trinidad@astro.ugto.mx, E-mail: vmigenes@byu.edu [Department of Physics and Astronomy, Brigham Young University, ESC-N145, Provo, UT 84602 (United States)

    2012-12-20

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  13. The Continuously Operating Caribbean Observational Network (COCONet): Supporting Regional Development of Geoscience Research Across the Circum-Caribbean

    Science.gov (United States)

    Braun, J.; Miller, M. M.; Mattioli, G. S.; Wang, G.; Feaux, K.; Rowan, L.; La Femina, P. C.

    2014-12-01

    The Continuously Operating Caribbean Observational Network (COCONet) is a National Science Foundation (NSF) funded infrastructure project that stretches across the circum-Caribbean to include Central America and the northern portions of South America. Its objective is to develop a large-scale network of geodetic and atmospheric infrastructure to support a broad range of geoscience and atmospheric investigations and enable research on process-oriented science with direct relevance to geo-hazards. The network includes over 60 new and refurbished continuously operating Global Positioning System (GPS) and surface meterology stations. It will also include data from at least 60 existing stations that are being operated by one of our more than 40 regional partners. As COCONet approaches the completion of its build-out phase, it is appropriate to evaluate the activities associated with the project that facilitate capacity building. These activities include three workshops to solicit feedback from regional partners regarding science objectives, station location, and long-term network operation. COCONet graduate research fellowships have been used to support nine students, with seven from countries within the COCONet footprint. The establishment of three regional data and archive centers to foster access to data and promote free and open data standards. Lastly, two Pan American Advanced Studies Institute (PASI) workshops on topics that are central to the main goals of COCONet were also organized to engage early career scientists who are interested in working on topics that are directly relevant to the region. Perhaps the most significant effort on expanding capacity in the region is the recent deployment of a station in Camaguey, Cuba with full support from both the U.S. and Cuban governments. This presentation summarizes the activities of the COCONet project to enhance and support both the human resource development and technical capabilities within the region.

  14. Observational evidence for new instabilities in the midlatitude E and F region

    Science.gov (United States)

    Hysell, David L.; Larsen, Miguel; Sulzer, Michael

    2016-11-01

    Radar observations of the E- and F-region ionosphere from the Arecibo Observatory made during moderately disturbed conditions are presented. The observations indicate the presence of patchy sporadic E (Es) layers, medium-scale traveling ionospheric disturbances (MSTIDs), and depletion plumes associated with spread F conditions. New analysis techniques are applied to the dataset to infer the vector plasma drifts in the F region as well as vector neutral wind and temperature profiles in the E region. Instability mechanisms in both regions are evaluated. The mesosphere-lower-thermosphere (MLT) region is found to meet the conditions for neutral dynamic instability in the vicinity of the patchy Es layers even though the wind shear was relatively modest. An inversion in the MLT temperature profile contributed significantly to instability in the vicinity of one patchy layer. Of particular interest is the evidence for the conditions required for neutral convective instability in the lower-thermosphere region (which is usually associated with highly stable conditions) due to the rapid increase in temperature with altitude. A localized F-region plasma density enhancement associated with a sudden ascent up the magnetic field is shown to create the conditions necessary for convective plasma instability leading to the depletion plume and spread F. The growth time for the instability is short compared to the one described by [Perkins(1973)]. This instability does not offer a simple analytic solution but is clearly present in numerical simulations. The instability mode has not been described previously but appears to be more viable than the various mechanisms that have been suggested previously as an explanation for the occurrence of midlatitude spread F.

  15. Action sentences activate sensory motor regions in the brain independently of their status of reality.

    Science.gov (United States)

    de Vega, Manuel; León, Inmaculada; Hernández, Juan A; Valdés, Mitchell; Padrón, Iván; Ferstl, Evelyn C

    2014-07-01

    Some studies have reported that understanding concrete action-related words and sentences elicits activations of motor areas in the brain. The present fMRI study goes one step further by testing whether this is also the case for comprehension of nonfactual statements. Three linguistic structures were used (factuals, counterfactuals, and negations), referring either to actions or, as a control condition, to visual events. The results showed that action sentences elicited stronger activations than visual sentences in the SMA, extending to the primary motor area, as well as in regions generally associated with the planning and understanding of actions (left superior temporal gyrus, left and right supramarginal gyri). Also, we found stronger activations for action sentences than for visual sentences in the extrastriate body area, a region involved in the visual processing of human body movements. These action-related effects occurred not only in factuals but also in negations and counterfactuals, suggesting that brain regions involved in action understanding and planning are activated by default even when the actions are described as hypothetical or as not happening. Moreover, some of these regions overlapped with those activated during the observation of action videos, indicating that the act of understanding action language and that of observing real actions share neural networks. These results support the claim that embodied representations of linguistic meaning are important even in abstract linguistic contexts.

  16. Impact of urban expansion on meteorological observation data and overestimation to regional air temperature in China

    Institute of Scientific and Technical Information of China (English)

    SHAO Quanqin; SUN Chaoyang; LIU Jiyuan; HE Jianfeng; KUANG Wenhui; TAO Fulu

    2011-01-01

    Since the implementation of the reform and opening up policy in China in the late 1970s,some meteorological stations 'entered' cities passively due to urban expansion.Changes in the surface and built environment around the stations have influenced observations of air temperature.When the observational data from urban stations are applied in the interpolation of national or regional scale air temperature dataset,they could lead to overestimation of regional air temperature and inaccurate assessment of warming.In this study,the underlying surface surrounding 756 meteorological stations across China was identified based on remote sensing images over a number of time intervals to distinguish the rural stations that 'entered' into cities.Then,after removing the observational data from these stations which have been influenced by urban expansion,a dataset of background air temperatures was generated by interpolating the observational data from the remaining rural stations.The mean urban heat island effect intensity since 1970 was estimated by comparing the original observational records from urban stations with the background air temperature interpolated.The result shows that urban heat island effect does occur due to urban expansion,with a higher intensity in winter than in other seasons.Then the overestimation of regional air temperature is evaluated by comparing the two kinds of grid datasets of air temperature which are respectively interpolated by all stations' and rural stations' observational data.Spatially,the overestimation is relatively higher in eastern China than in the central part of China; however,both areas exhibit a much higher effect than is observed in western China.We concluded that in the last 40 years the mean temperature in China increased by about 1.58℃,of which about 0.01℃ was attributed to urban expansion,with a contribution of up to 0.09℃ in the core areas from the overestimation of air temperature.

  17. Magnetic Nonpotentiality in Photospheric Active Regions as a Predictor of Solar Flares

    CERN Document Server

    Yang, Xiao; Zhang, HongQi; Mao, XinJie

    2013-01-01

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform ...

  18. Characteristics of Mesospheric Gravity Waves Observed in the Central Region of Brazil

    Science.gov (United States)

    Wrasse, Cristiano Max; Messias Almeida, Lazaro; Abalde Guede, Jose Ricardo; Valentin Bageston, José; Pillat, Valdir G.; Lima, Washington L. C.

    Gravity waves observations were carried out at Palmas (10.16o S, 48.26o W) Brazil, between September 2007 and December 2008, using an all-sky airglow imager to measure the OH emis-sion. The gravity waves were divided in two groups following they morphology as band and ripples type waves. The main characteristics of the band type waves are: horizontal wavelength between 10-35 km; observed period raging from 5 to 25 minutes; observed phase speed between 5-60 m/s. Preferential propagation directions of the bands are northward and southward, show-ing a clear anisotropy. For the ripples the main wave parameters are: horizontal wavelength ranging between 5 and 15 km; observed period mainly distributed between 5 and 15 minutes and horizontal phase velocity from 5 to 30 m/s. The ripples showed the same anisotropy as in the preferential propagation direction as the band type waves. The gravity wave characteristics observed at Palmas were compared with other observations carried out in Brazil, showing simi-lar features. In order to explain the seasonal variation of the wave propagation direction, maps of Outgoing Longwave Radiation (ORL) were used to locate regions with intense deep con-vection (OLR < 220 W.m-2 ) in the lower atmosphere. During summer and autumn the wave sources regions are well correlated with deep convection areas located at west and northwest of Palmas.

  19. Observations about chemical composition of aerosols in the Brazilian Amazon region - Case study: Biomass burning in the subequatorial Amazon region

    Science.gov (United States)

    Gioda, A.; Monteiro, I. L.; Almeida, A. C.; Hacon, S. S.; Dallacort, R.; Ignotti, E.; Godoy, J. M.; Loureiro, A. L.; Morais, F.; Artaxo, P.

    2012-04-01

    The study was carried out in two cities in the Brazilian Amazon region, Tangará da Serra (14 ° 37'10 "S, 57 ° 29'09" W, 427 m asl), located in a transition area between the Amazon biome and the Cerrado and has the characteristics of urban area in Amazon region; and Alta Floresta (9 ° 52 '32 "S, 56 ° 5' 10" W, 283 m asl) situated in the extreme north of the state of Mato Grosso (MT), both in the subequatorial Amazon region. Tangara da Serra has the largest production of sugar cane in the subequatorial Amazon region. They are located 800 km from each other. These two regions are inserted in a region with typical cycles of drought and rain that alter air pollution levels, and lies in the dispersion path of the pollution plume resulting from burnings in the Brazilian Amazon and pollution emanating from neighboring countries. Both cities have wet tropical climate with two well defined seasons: rainy summer (November to May) and dry winter (June to October). During the dry winter, biomass burnings are frequent in these regions. In 2008, the Department of the Environment has banned fires in the period from July 15 to September 15 throughout the State. In this study chemical characterization was performed for approximately 100 aerosol samples collected in each site during 2008. Fine and coarse aerosol samples collected in SFUs were analyzed by ion chromatography for determination of cations (Na+, K+, NH3+, Ca2+ and Mg2+), anions (SO42-, Cl- and NO3-) and organic acids (acetate and formiate) and also measures of black carbon (BC) (Aethalometer). The results showed that for both sites the average concentrations were quite similar for PM2.5 (16 µg/m3), PM10 (11 and 13 µg/m3) and black carbon (1.4 µg/m3 for PM2.5 and 1.6 µg/m3 for PM10). Sulfate was the predominant species in fine (45%) and coarse (26%) particles in both sites. The sulfate concentrations ranged from 0.01-1.92 µg/m3 in PM2.5 and 0.01-1.66 µg/m3 in PM10 in Tangará da Serra and 0.01-2.93 µg/m3 in PM2

  20. First E- and D-region incoherent scatter spectra observed over Jicamarca

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2006-07-01

    Full Text Available We present here the first Jicamarca observations of incoherent scatter radar (ISR spectra detected from E- and D-region altitudes. In the past such observations have not been possible at Jicamarca due a combined effect of strong equatorial electrojet (EEJ clutter and hardware limitations in the receiving system. The observations presented here were made during weak EEJ conditions (i.e., almost zero zonal electric field using an improved digital receiving system with a wide dynamic range and a high data throughput.

    The observed ISR spectra from E- and D-region altitudes are, as expected, narrow and get even narrower with decreasing altitude due to increasing ion-neutral collision frequencies. Therefore, it was possible to obtain accurate spectral measurements using a pulse-to-pulse data analysis. At lower altitudes in the D-region where signal correlation times are relatively long we used coherent integration to improve the signal-to-noise ratio of the collected data samples. The spectral estimates were fitted using a standard incoherent scatter (IS spectral model between 87 and 120 km, and a Lorentzian function below 110 km. Our preliminary estimates of temperature and ion-neutral collisions frequencies above 87 km are in good agreement with the MSISE-90 model. Below 87 km, the measured spectral widths are larger than expected, causing an overestimation of the temperatures, most likely due to spectral distortions caused by atmospheric turbulence.

  1. Multispectral optical observations of ionospheric F-region storm effects at low latitude

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Y.; Bittencourt, J.A.; Takahashi, H.; Teixeira, N.R.; Sobral, J.H.A.; Tinsley, B.A.; Rohrbaugh, R.P.

    1988-04-01

    Simultaneous measurements of specified nightglow emissions have been carried out at Cachoeira Paulista, since 1982, to study the response of the low-latitude ionospheric F-region to magnetic storms. The observations obtained during three magnetic storms in Brazil in 1983 and 1984 are presented and discussed. Emissions excited by energetic particle precipitation were observed during the main phase of strong magnetic storms. In contrast to the observations reported from mid-latitude stations by other investigators, no enhancements in the OI 7774 A emission due to energetic particle precipitation were evident at our latitude. Radiative recombination is suggested as the main excitation mechanism. The OI 6300 A emission, on 7-8 August and 28-29 March, showed periodic intensity variations, which are associated with vertical oscillations of the ionospheric F-region plasma, as shown by the periodic height variations of the F-region seen from the ionograms obtained at the same location. Also, the North-South scanning observation of this wavelength on one occasion showed no meridional and longitudinal phase change, indicating the absence of propagation.

  2. A Transition Region Explosive Event Observed in He II with the MOSES Sounding Rocket

    Science.gov (United States)

    Fox, J. Lewis; Kankelborg, Charles C.; Thomas, Roger J.

    2010-08-01

    Transition region explosive events (EEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548 Å, 1550 Å) and Si IV (1393 Å, 1402 Å). We report what we believe to be the first observation of a transition region EE in He II 304 Å. With the Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket, a novel slitless imaging spectrograph, we are able to see the spatial structure of the event. We observe a bright core expelling two jets that are distinctly non-collinear, in directions that are not anti-parallel. The jets have sky-plane velocities of order 75 km s-1 and line-of-sight velocities of +75 km s-1 (blue) and -30 km s-1 (red). The core is a region of high non-thermal Doppler broadening, characteristic of EEs, with maximal broadening 380 km s-1 FWHM. It is possible to resolve the core broadening into red and blue line-of-sight components of maximum Doppler velocities +160 km s-1 and -220 km s-1. The event lasts more than 150 s. Its properties correspond to the larger, long-lived, and more energetic EEs observed in other wavelengths.

  3. Monitoring rice farming activities in the Mekong Delta region

    Science.gov (United States)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  4. Both novelty and expertise increase action observation network activity

    Directory of Open Access Journals (Sweden)

    Sook-Lei eLiew

    2013-09-01

    Full Text Available Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON, is modulated by one’s expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices, 11 experienced occupational therapists (OTs who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ, as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ and extreme novelty (novices can result in the greatest AON activity.

  5. A flare observed in coronal, transition region, and helium I 10830 Å emissions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhicheng; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307-3000 (United States)

    2014-10-01

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  6. Observations of Galactic star-forming regions with the Cosmic Background Imager at 31 GHz

    CERN Document Server

    Demetroullas, Constantinos; Stamadianos, Dimitrios; Harper, Stuart; Cleary, Kieran; Jones, Mike; Pearson, Tim; Readhead, Anthony; Taylor, Angela

    2015-01-01

    Studies of the diffuse Galactic radio emission are interesting both for better understanding the physical conditions in our Galaxy and for minimising the contamination in cosmological measurements. Motivated by this we present Cosmic Background Imager 31 GHz observations of the Galactic regions NGC 6357, NGC 6334, W51 and W40 at $\\sim$4$'$.5 resolution and conduct an investigation of the spectral emission process in the regions at 4$'$.5 and 1$^{\\circ}$ resolution. We find that most of the emission in the regions is due to optically thin free-free. For 2 sub-regions of NGC 6334 and for a sub-region of W51 though, at 4$'$.5 resolution and at 31 GHz we detect less emission than expected from extrapolation of radio data at lower frequencies assuming a spectral index of $-$0.12 for optically thin free-free emission, at 3.3$\\sigma$, 3.7$\\sigma$ and 6.5$\\sigma$ respectively. We also detect excess emission in a sub-region of NCG 6334 at 6.4$\\sigma$, after ruling out any possible contribution from Ultra Compact HII (...

  7. Rice Crop Monitoring by Earth Observation Data in the Asian Region

    Science.gov (United States)

    Oyoshi, K.; Sobue, S.; Tomiyama, N.; Okumura, T.; Rakwatin, P.

    2012-12-01

    the soil, physiological crop characteristics, and daily weather such as photosynthetic active radiation, precipitation, wind velocity and humidity. Some of these parameters were acquired by satellite observations and others are by in-situ measurements. Table 1 shows the result of rice yield estimation of the pilot study area. The results were highly consistent with the validation data of in-situ measurements and the accuracy of paddy acreage and rice yield are 98.6% and 81.9%, respectively. The prototype system to estimate rice yield was developed only for the small pilot area. To expand the system to the whole country for national food security and statistics, crop calendar which identifies the timing of planting or harvesting of each area is needed to estimate productivity of rice. The Asian region has a large variety of the crop intensity such as single or double and sometimes triple cropping and the pattern is mostly relies on the water availability. Since crop intensity affects the rice yield, it is imperative for rice yield estimates to identify crop intensity. High revisit frequency of EO data such as MODIS is useful for identifying crop intensity. Spatial distribution of crop intensities over the Thailand were identified by applying spectrum analysis to the historical MODIS data, then, we demonstrated the relationships between crop intensity and productivity in Thailand with provincial level.

  8. Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Hyung-Il; Laprise, Rene [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Gachon, Philippe [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Environment Canada, Adaptation and Impacts Research Section, Climate Research Division, Montreal, QC (Canada); Ouarda, Taha [University of Quebec, INRS-ETE (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement), Quebec, QC (Canada)

    2012-04-15

    This study presents a combined weighting scheme which contains five attributes that reflect accuracy of climate data, i.e. short-term (daily), mid-term (annual), and long-term (decadal) timescales, as well as spatial pattern, and extreme values, as simulated from Regional Climate Models (RCMs) with respect to observed and regional reanalysis products. Southern areas of Quebec and Ontario provinces in Canada are used for the study area. Three series of simulation from two different versions of the Canadian RCM (CRCM4.1.1, and CRCM4.2.3) are employed over 23 years from 1979 to 2001, driven by both NCEP and ERA40 global reanalysis products. One series of regional reanalysis dataset (i.e. NARR) over North America is also used as reference for comparison and validation purpose, as well as gridded historical observed daily data of precipitation and temperatures, both series have been beforehand interpolated on the CRCM 45-km grid resolution. Monthly weighting factors are calculated and then combined into four seasons to reflect seasonal variability of climate data accuracy. In addition, this study generates weight averaged references (WARs) with different weighting factors and ensemble size as new reference climate data set. The simulation results indicate that the NARR is in general superior to the CRCM simulated precipitation values, but the CRCM4.1.1 provides the highest weighting factors during the winter season. For minimum and maximum temperature, both the CRCM4.1.1 and the NARR products provide the highest weighting factors, respectively. The NARR provides more accurate short- and mid-term climate data, but the two versions of the CRCM provide more precise long-term data, spatial pattern and extreme events. Or study confirms also that the global reanalysis data (i.e. NCEP vs. ERA40) used as boundary conditions in the CRCM runs has non-negligible effects on the accuracy of CRCM simulated precipitation and temperature values. In addition, this study demonstrates

  9. Formation of Solar Delta Active Regions:Twist and Writhe of Magnetic Ropes

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2004-01-01

    We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere,the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere,is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) The proposition is that the large-scale delta active regions are formed from contribution by small-scale non-potential magnetic flux bundles generated in the subatmosphere.

  10. Active tectonics and earthquake potential of the Myanmar region

    Science.gov (United States)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  11. Influence of the cardiac myosin hinge region on contractile activity.

    Science.gov (United States)

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  12. Distinct characteristics of asymmetric magnetic reconnections: Observational results from the exhaust region at the dayside magnetopause

    Science.gov (United States)

    Zhang, Y. C.

    2016-01-01

    Magnetic reconnection plays a key role in the conversion of magnetic energy into the thermal and kinetic energy of plasma. On either side of the diffusion region in space plasma, the conditions for the occurrence of reconnections are usually not symmetric. Previous theoretical studies have predicted that reconnections under asymmetric conditions will bear different features compared with those of symmetric reconnections, and numerical simulations have verified these distinct features. However, to date, the features of asymmetric reconnections have not been thoroughly investigated using in situ observations; thus, some results from theoretical studies and simulations have not been tested with observations sufficiently well. Here, spacecraft observations are used in a statistical investigation of asymmetric magnetic reconnection exhaust at the dayside magnetopause. The resulting observational features are consistent with the theoretical predictions. The results presented here advance our understanding of the development of reconnections under asymmetric conditions. PMID:27270685

  13. The lightning activity associated with the dry and moist convections in the Himalayan Regions

    Science.gov (United States)

    Penki, R. K.; Kamra, A. K.

    2013-06-01

    Lightning activity in the dry environment of northwest India and Pakistan (NW) and in the moist environment of northeast India (NE) has been examined from the Optical Transient Detector and Lightning Imaging Sensor data obtained from the Tropical Rainfall Measuring Mission satellite during 1995-2010. In the NW region, seasonal variation of flash rate is annual with a maximum in July but is semi-annual with a primary maximum in April and a secondary maximum in September, in the NE region. On diurnal scale, flash rate is the maximum in the afternoons, in both the NE and NW regions. The correlation of flash rate with convective parameters, viz. surface temperature, convective available potential energy (CAPE) and outgoing long-wave radiation is better with convective activity in the NW than in the NE region. Mean value of aerosol optical depth at 550 nm is ~ 26% higher and is highly correlated with flash rate in NW as compared to that in NE. Results indicate that CAPE is ~ 120 times more efficient in NW than in the NE region for production of lightning. The empirical orthogonal function analysis of flash rate, surface temperature, and CAPE shows that variance of lightning activity in these regions cannot be fully explained by the variance in the surface temperature and CAPE alone, and that some other factors, such as orographic lifting, precipitation, topography, etc., may also contribute to this variance in these mountainous regions. Further, the increase in CAPE due to orographic lifting in the Himalayan foothills in the NE region may contribute to ~ 7.5% increase in lightning activity. Relative roles of the thermally induced and moisture-induced changes in CAPE are examined in these regions. This study merely raises the questions, and that additional research is required for explaining the fundamental reasons for the reported observations here.

  14. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam

    2013-07-01

    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  15. Solar Surface Emerging Flux Regions: A Comparative Study of Radiative MHD Modeling and Hinode SOT Observations

    Science.gov (United States)

    Cheung, M.; Schüssler, M.; Tarbell, T. D.; Title, A. M.

    2009-12-01

    We present results from three-dimensional radiative MHD simulations of the rise of buoyant magnetic flux tubes through the convection zone and into the photosphere. Due to the strong stratification of the convection zone, the rise results in a lateral expansion of the tube into a magnetic sheet, which acts as a reservoir for small-scale flux emergence events at the scale of granulation. The interaction of the convective downflows and the rising magnetic flux tube undulates it to form serpentine field lines that emerge into the photosphere. Observational characteristics of the simulated emerging flux regions are discussed in the context of new observations from Hinode SOT.

  16. New radio observations of anomalous microwave emission in the HII region RCW175

    CERN Document Server

    Battistelli, E S; Cruciani, A; de Bernardis, P; Genova-Santos, R; Masi, S; Naldi, A; Paladini, R; Piacentini, F; Tibbs, C T; Verstraete, L; Ysard, N

    2015-01-01

    We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolutio...

  17. The impact of new ionizing fluxes on ISO observations of HII regions and starbursts

    CERN Document Server

    Schärer, D; Schaerer, Daniel; Stasinska, Grazyna

    1998-01-01

    Extensive grids of photoionization models have been calculated for single star HII regions and evolving starbursts. We illustrate the predictions for IR fine structure lines which are used to analyse the stellar content, and derive properties such as the age and IMF. The impact of recent ionizing fluxes on the IR lines are shown. First comparisons of our starburst models with IR-diagnostics and the ISO observations of Genzel et al. (1998) are also presented.

  18. Broad plasma depletions detected in the bottomside of the equatorial F region: Simultaneous ROCSAT-1 and JULIA observations

    Science.gov (United States)

    Kil, Hyosub; Kwak, Young-Sil; Lee, Woo Kyoung; Oh, Seung-Jun; Milla, Marco; Galkin, Ivan

    2014-07-01

    We investigated the association of broad plasma depletions (BPDs) with plasma bubbles and ionospheric uplift in the equatorial F region using the coincident satellite and radar observations over Jicamarca in Peru. BPDs were detected by the first Republic of China satellite (ROCSAT-1) on the nights of 21 and 22 December 2002 during the period of moderate geomagnetic activity. The observations of the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere radar and an ionosonde showed that the F peak height was lifted above the ROCSAT-1 altitude (600 km) at the times of the BPD detection. The fraction of NO+ was substantial at the locations of BPDs. These observations support the association of the BPDs with the ionospheric uplift. However, the absence of large backscatter plumes at the times of the BPD detection indicates that the BPDs were not produced by a single large bubble or a merger of bubbles.

  19. Observation of Andreev bound states at spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)

    2013-07-01

    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.

  20. Active Chemical Sensing With Partially Observable Markov Decision Processes

    Science.gov (United States)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2009-05-01

    We present an active-perception strategy to optimize the temperature program of metal-oxide sensors in real time, as the sensor reacts with its environment. We model the problem as a partially observable Markov decision process (POMDP), where actions correspond to measurements at particular temperatures, and the agent is to find a temperature sequence that minimizes the Bayes risk. We validate the method on a binary classification problem with a simulated sensor. Our results show that the method provides a balance between classification rate and sensing costs.

  1. ACTIVE OBSERVATION TACTICS IN PATIENTS WITH KIDNEY NEOPLASMS

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2012-01-01

    Full Text Available As of now, about 40-60% of the first detected kidney tumors are accidentally diagnosed. These are most often asymptomatic small kidney tumors (SKT without distant metastases; 15–20% of them are benign. A number of studies have revealed that kidney malignant tumors grow slowly and spread extremely rarely, as evidenced by a histological study. These and other data formed the basis for the active observation tactic that became possible and acceptable in well-selected patients, in elderly patients with SKT and severe comorbidity in particular.

  2. Wind observations of low energy particles within a solar wind reconnection region

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2008-09-01

    Full Text Available We report characteristics of thermal particle observations during the encounter of the Wind satellite with the separatrix and the outflow domains of a reconnection event on 22 July 1999 in the solar wind. During the studied event the electrostatic analyzers on Wind were transmitting three-dimensional electron and proton distributions in a burst mode every 3 s, the spin period of the spacecraft. The event was associated with a magnetic shear angle of 114° and a large guide magnetic field. The observations suggest that Wind crossed the separatrix and outflow regions about a thousand of ion skin depths from the X-line. At the leading separator boundary, a strong proton beam was identified that originated from the direction of the X-line. In the separatrix and the outflow regions, the phase space distributions of thermal electrons displayed field aligned bidirectional anisotropy. During the crossings of the current sheets bounding the outflow region, we identified two adjacent layers in which the dominant thermal electron flows were towards the X-line at the inner edges of the current sheets and away from the X-line at the outer edges. Interestingly, simulation studies and observations in the Earth's magnetosphere have revealed that the electron flows are reversed, consistent with the Hall current system.

  3. Research of Earthquake Potential from Active Fault Observation in Taiwan

    Science.gov (United States)

    Chien-Liang, C.; Hu, J. C.; Liu, C. C.; En, C. K.; Cheng, T. C. T.

    2015-12-01

    We utilize GAMIT/GLOBK software to estimate the precise coordinates for continuous GPS (CGPS) data of Central Geological Survey (CGS, MOEA) in Taiwan. To promote the software estimation efficiency, 250 stations are divided by 8 subnets which have been considered by station numbers, network geometry and fault distributions. Each of subnets include around 50 CGPS and 10 international GNSS service (IGS) stations. After long period of data collection and estimation, a time series variation can be build up to study the effect of earthquakes and estimate the velocity of stations. After comparing the coordinates from campaign-mode GPS sites and precise leveling benchmarks with the time series from continuous GPS stations, the velocity field is consistent with previous measurement which show the reliability of observation. We evaluate the slip rate and slip deficit rate of active faults in Taiwan by 3D block model DEFNODE. First, to get the surface fault traces and the subsurface fault geometry parameters, and then establish the block boundary model of study area. By employing the DEFNODE technique, we invert the GPS velocities for the best-fit block rotate rates, long term slip rates and slip deficit rates. Finally, the probability analysis of active faults is to establish the flow chart of 33 active faults in Taiwan. In the past two years, 16 active faults in central and northern Taiwan have been assessed to get the recurrence interval and the probabilities for the characteristic earthquake occurred in 30, 50 and 100 years.

  4. Region-based active contour with noise and shape priors

    CERN Document Server

    Lecellier, François; Fadili, Jalal; Aubert, Gilles; Revenu, Marinette; Saloux, Eric

    2008-01-01

    In this paper, we propose to combine formally noise and shape priors in region-based active contours. On the one hand, we use the general framework of exponential family as a prior model for noise. On the other hand, translation and scale invariant Legendre moments are considered to incorporate the shape prior (e.g. fidelity to a reference shape). The combination of the two prior terms in the active contour functional yields the final evolution equation whose evolution speed is rigorously derived using shape derivative tools. Experimental results on both synthetic images and real life cardiac echography data clearly demonstrate the robustness to initialization and noise, flexibility and large potential applicability of our segmentation algorithm.

  5. Peptides of the constant region of antibodies display fungicidal activity.

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    Full Text Available Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA of antibodies (Fc-peptides exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.

  6. Impact of various observing systems on weather analysis and forecast over the Indian region

    Science.gov (United States)

    Singh, Randhir; Ojha, Satya P.; Kishtawal, C. M.; Pal, P. K.

    2014-09-01

    To investigate the potential impact of various types of data on weather forecast over the Indian region, a set of data-denial experiments spanning the entire month of July 2012 is executed using the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system. The experiments are designed to allow the assessment of mass versus wind observations and terrestrial versus space-based instruments, to evaluate the relative importance of the classes of conventional instrument such as radiosonde, and finally to investigate the role of individual spaceborne instruments. The moist total energy norm is used for validation and forecast skill assessment. The results show that the contribution of wind observations toward error reduction is larger than mass observations in the short range (48 h) forecast. Terrestrial-based observations generally contribute more than space-based observations except for the moisture fields, where the role of the space-based instruments becomes more prevalent. Only about 50% of individual instruments are found to be beneficial in this experiment configuration, with the most important role played by radiosondes. Thereafter, Meteosat Atmospheric Motion Vectors (AMVs) (only for short range forecast) and Special Sensor Microwave Imager (SSM/I) are second and third, followed by surface observations, Sounder for Probing Vertical Profiles of Humidity (SAPHIR) radiances and pilot observations. Results of the additional experiments of comparative performance of SSM/I total precipitable water (TPW), Microwave Humidity Sounder (MHS), and SAPHIR radiances indicate that SSM/I is the most important instrument followed by SAPHIR and MHS for improving the quality of the forecast over the Indian region. Further, the impact of single SAPHIR instrument (onboard Megha-Tropiques) is significantly larger compared to three MHS instruments (onboard NOAA-18/19 and MetOp-A).

  7. Measurements of Non-thermal Line Widths in Solar Active Regions

    Science.gov (United States)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  8. Measurements of Non-Thermal Line Widths in Solar Active Regions

    CERN Document Server

    Brooks, David H

    2015-01-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1--5MK) often found in the cores of solar active regions. This survey of $\\textit{Hinode}$ Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17km s$^{-1}$, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfv\\'en wave turbulence models. Furthermore, because the observed non-thermal widths are generally small their measurements are ...

  9. MEASUREMENTS OF NON-THERMAL LINE WIDTHS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-03-20

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1–4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s{sup −1}, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  10. E-region decameter-scale plasma waves observed by the dual TIGER HF radars

    Directory of Open Access Journals (Sweden)

    B. A. Carter

    2009-01-01

    Full Text Available The dual Tasman International Geospace Environment Radar (TIGER HF radars regularly observe E-region echoes at sub-auroral magnetic latitudes 58°–60° S including during geomagnetic storms. We present a statistical analysis of E-region backscatter observed in a period of ~2 years (late 2004–2006 by the TIGER Bruny Island and Unwin HF radars, with particular emphasis on storm-time backscatter. It is found that the HF echoes normally form a 300-km-wide band at ranges 225–540 km. In the evening sector during geomagnetic storms, however, the HF echoes form a curved band joining to the F-region band at ~700 km. The curved band lies close to the locations where the geometric aspect angle is zero, implying little to no refraction during geomagnetic storms, which is an opposite result to what has been reported in the past. The echo occurrence, Doppler velocity, and spectral width of the HF echoes are examined in order to determine whether new HF echo types are observed at sub-auroral latitudes, particularly during geomagnetic storms. The datasets of both TIGER radars are found to be dominated by low-velocity echoes. A separate population of storm-time echoes is also identified within the datasets of both radars with most of these echoes showing similar characteristics to the low-velocity echo population. The storm-time backscatter observed by the Bruny Island radar, on the other hand, includes near-range echoes (r<405 km that exhibit some characteristics of what has been previously termed the High Aspect angle Irregularity Region (HAIR echoes. We show that these echoes appear to be a storm-time phenomenon and further investigate this population by comparing their Doppler velocity with the simultaneously measured F- and E-region irregularity velocities. It is suggested that the HAIR-like echoes are observed only by HF radars with relatively poor geometric aspect angles when electron density is low and when the electric field is particularly

  11. The Interplay of Turbulence & Magnetic Fields in Star-Forming Regions: Simulations and Observations

    CERN Document Server

    Kirk, H; Basu, Shantanu

    2009-01-01

    We analyze a suite of thin sheet magnetohydrodynamical simulations based on the formulation of Basu, Ciolek, Dapp & Wurster. These simulations allow us to examine the observational consequences to a star-forming region of varying the input level of turbulence (between thermal and a Mach number of 4) and the initial magnetic field strength corresponding to a range of mass to flux ratios between subcritical (mu_0=0.5) and supercritical (mu_0=10). The input turbulence is allowed to decay over the duration of the simulation. We compare the measured observable quantities with those found from surveying the Perseus molecular cloud. We find that only the most turbulent of simulations (high Mach number and weak magnetic field) have sufficient large-scale velocity dispersion (at ~1 pc) to match that observed across extinction regions in Perseus. Generally, the simulated core (~0.02 pc) and line of sight velocity dispersions provide a decent match to observations. The motion between the simulated core and its local...

  12. Transition Region Explosive Events in He II 304Å: Observation and Analysis

    Science.gov (United States)

    Rust, Thomas; Kankelborg, Charles C.

    2016-05-01

    We present examples of transition region explosive events observed in the He II 304Å spectral line with the Multi Order Solar EUV Spectrograph (MOSES). With small (thermal (100-150 km/s) velocities these events satisfy the observational signatures of transition region explosive events. Derived line profiles show distinct blue and red velocity components with very little broadening of either component. We observe little to no emission from low velocity plasma, making the plasmoid instability reconnection model unlikely as the plasma acceleration mechanism for these events. Rather, the single speed, bi-directional jet characteristics suggested by these data are consistent with acceleration via Petschek reconnection.Observations were made during the first sounding rocket flight of MOSES in 2006. MOSES forms images in 3 orders of a concave diffraction grating. Multilayer coatings largely restrict the passband to the He II 303.8Å and Si XI 303.3Å spectral lines. The angular field of view is about 8.5'x17', or about 20% of the solar disk. These images constitute projections of the volume I(x,y,λ), the intensity as a function of sky plane position and wavelength. Spectral line profiles are recovered via tomographic inversion of these projections. Inversion is carried out using a multiplicative algebraic reconstruction technique.

  13. VLA Observations of Solar Decimetric Spike Bursts: Direct Signature of Accelerated Electrons in Reconnection Outflow Region

    Science.gov (United States)

    Chen, B.; Bastian, T.; Gary, D. E.

    2014-12-01

    Solar decimetric spike bursts, which appear in a radio dynamic spectrum as a cluster of short-lived and narrowband brightenings, have been suggested as a possible signature of many, "elementary" particle accelerations at or near a magnetic reconnection site. Their dynamic spectral feature can be potentially used to diagnose important parameters of the reconnection site such as plasma density and spatial size of the fragmentation. Yet direct observational evidence supporting this scenario has been elusive mainly due to the lack of imaging observations. The upgraded Karl G. Jansky Very Large Array (VLA) provides the first opportunity of performing simultaneous radio imaging and dynamic spectroscopy, which allows radio sources to be imaged at every spatio-temporal pixel in the dynamic spectrum. Here we report Jansky VLA observations of decimetric spike bursts recorded during an eruptive solar limb flare. Combined with EUV and X-ray data from SDO and RHESSI, we show that the spike bursts coincide spatially with a loop-top hard X-ray source, which are located in a region where supra-arcade downflows meet the underlying hot, EUV/X-ray loops. We interpret the observed spike bursts as a direct signature of non-thermal electrons accelerated by turbulences and/or shocks in the reconnection outflow region.

  14. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    Directory of Open Access Journals (Sweden)

    Michael Villiger

    Full Text Available The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective of a foot kicking a ball. They were instructed to observe-only the action (O, observe and simultaneously imagine performing the action (O-MI, or imitate the action (O-IMIT. We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i combining observation with motor imagery (O-MI enhances activation compared to observation-only (O in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks.

  15. Satellite observations of seasonal and regional variability of particulate organic carbon concentration in the Barents Sea

    Science.gov (United States)

    Stramska, Malgorzata; Białogrodzka, Jagoda

    2016-04-01

    The Nordic and Barents Seas are of special interest for research on climate change, since they are located on the main pathway of the heat transported from low to high latitudes. Barents Sea is known to be an important area for formation of deep water and significant uptake from the atmosphere and sequestration of carbon dioxide (CO2). This region is characterized by supreme phytoplankton blooms and large amount of carbon is sequestered here due to biological processes. It is important to monitor the biological variability in this region in order to derive in depth understanding whether the size of carbon reservoirs and fluxes may vary as a result of climate change. In this presentation we analyze the 17 years (1998-2014) of particulate organic carbon (POC) concentration derived from remotely sensed ocean color. POC concentrations in the Barents Sea are among the highest observed in the global ocean with monthly mean concentrations in May exceeding 300 mg m-3. The seasonal amplitude of POC concentration in this region is larger when compared to other regions in the global ocean. Our results indicate that the seasonal increase in POC concentration is observed earlier in the year and higher concentrations are reached in the southeastern part of the Barents Sea in comparison to the southwestern part. Satellite data indicate that POC concentrations in the southern part of the Barents Sea tend to decrease in recent years, but longer time series of data are needed to confirm this observation. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  16. Temperature and density structure of a recurring active region jet

    Science.gov (United States)

    Mulay, Sargam M.; Zanna, Giulio Del; Mason, Helen

    2017-01-01

    Aims: We present a study of a recurring jet observed on October 31, 2011 by the Atmosphereic Imaging Assembly (AIA) on board the Solar Dynamic Observatory, the X-ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) on board Hinode. We discuss the physical parameters of the jet that are obtained using imaging and spectroscopic observations, such as density, differential emission measure, peak temperature, velocity, and filling factor. Methods: A differential emission measure (DEM) analysis was performed at the region of the jet spire and the footpoint using EIS observations and also by combining AIA and XRT observations. The resulting EIS DEM curves were compared to those obtained with AIA-XRT. The DEM curves were used to create synthetic spectra with the CHIANTI atomic database. The predicted total count rates for each AIA channel were compared with the observed count rates. The effects of varying elemental abundances and the temperature range for the DEM inversion were investigated. Spectroscopic diagnostics were used to obtain an electron number density distribution for the jet spire and the jet footpoint. Results: The plasma along the line of sight in the jet spire and jet footpoint was found to be peak at 2.0 MK (log T [K] = 6.3). We calculated electron densities using the Fe XII (λ186/λ195) line ratio in the region of the spire (Ne = 7.6 × 1010 cm-3) and the footpoint (1.1 × 1011 cm-3). The plane-of-sky velocity of the jet is found to be 524 km s-1. The resulting EIS DEM values are in good agreement with those obtained from AIA-XRT. The synthetic spectra contributing to each AIA channel confirms the multi-thermal nature of the AIA channels in both regions. There is no indication of high temperatures, such as emission from Fe XVII (λ254.87) (log T [K] = 6.75) seen in the jet spire. In the case of the jet footpoint, synthetic spectra predict weak contributions from Ca XVII (λ192.85) and Fe XVII (λ254.87). With further investigation, we confirmed

  17. STACEE Observations of Active Galactic Nuclei and Other Sources

    Science.gov (United States)

    Ong, R. A.; Boone, L. M.; Bramel, D.; Chae, E.; Covault, C. E.; Fortin, P.; Gingrich, D.; Hanna, D. S.; Hinton, J. A.; Meuller, C.; Mukherjee, R.; Ragan, K.; Scalzo, R. A.; Schuette, D. R.; Theoret, C. G.; Williams, D. A.

    2001-08-01

    We describe recent observations and future plans for the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) located at Sandia National Laboratories in Albuquerque, New Mexico. STACEE is a ground-based experiment for detecting atmospheric Cherenkov light from γrays in the energy range 50 to 500 GeV. We describe recent observations of active galactic nuclei such as Mrk 501, and also outline plans for the observations of other AGN, including Flat Spectrum Radio Quasars (FSRQs) detected by EGRET above 1 GeV and other BL-Lac objects. We summarize plans for observing other sources, including the Crab Nebula, other pulsars, supernova remnants, and unidentified EGRET objects. The up-to-date results from recent source observations by STACEE will be presented at the conference. 1 Intergalactic absorption and the γ-ray horizon The energy range from 50 to 250 GeV is important for understanding many high energy astrophysical objects, especially active galactic nuclei. Great progress has been made during the last decade, but many problems remain. For example, while dozens of AGN at a variety of redshifts were detected by EGRET, only a few of the closest AGN have been detected by ground-based experiments above 250 GeV. These results imply that the power-law spectra of many AGN cut off at energies between 20 and 250 GeV, and the fact that only nearby AGN are seen at very high energies argues that the γrays are attenuated on their long journey to Earth. High energy γ-rays interact with photons at infrared/optical/UV energies via the pair-production process (Stecker and de Jager, 1993; Biller, 1995). The level of such extragalactic background light (EBL) from galaxies is not well known, but measurements of absorption features of AGN should provide constraints on its flux and spectral shape. These constraints in turn could give us valuable information about the epoch of galaxy formation and the composition of dark mat-

  18. A study of solar preflare activity using two-dimensional radio and SMM-XRP observations

    Science.gov (United States)

    Kundu, M. R.; Gopalswamy, N.; Saba, J. L. R.; Schmelz, J. T. S.; Strong, K. T.

    1987-01-01

    A study of type III activity at meter-decameter wavelengths in the preflare phase of the February 3, 1986 flare is presented, using data obtained with the Clark Lake Multifrequency Radioheliograph. This activity is compared with similar type III burst activity during the impulsive phase, and it is found that there is a displacement of burst sources between the onset and end times of the activity. A comparison of this displacement at three frequencies suggests that the type III emitting electrons gain access progressively to diverging and different field lines relative to the initial field lines. The energetics of the type III emitting electrons are inferred from observations and compared with those of the associated hard X-ray emitting electrons. The soft X-ray data from SMM-XRP show enhanced emission measure, density, and temperature in the region associated with the preflare type III activity.

  19. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    Science.gov (United States)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  20. Regional frequency analysis of observed sub-daily rainfall maxima over eastern China

    Science.gov (United States)

    Sun, Hemin; Wang, Guojie; Li, Xiucang; Chen, Jing; Su, Buda; Jiang, Tong

    2017-02-01

    Based on hourly rainfall observational data from 442 stations during 1960-2014, a regional frequency analysis of the annual maxima (AM) sub-daily rainfall series (1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast (NE1, NE2), Central (C), Central North (CN1, CN2), Central East (CE1, CE2, CE3), Southeast (SE1, SE2, SE3, SE4), and Southwest (SW). The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80-270 mm (1-h to 24-h rainfall) and 108-390 mm (1-h to 24-h rainfall) for 20- and 100 yr, respectively. Minimum return levels were in the CN1 and NE1 regions, with values of 37-104 mm and 53-140 mm for 20 and 100 yr, respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1-24-h rainfall varied from -3-4 mm to -23-11 mm (-10%-10%) for 20-yr events, reaching -6-26 mm (-10%-30%) and -10-133 mm (-10%-90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.

  1. Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation

    Institute of Scientific and Technical Information of China (English)

    Yan HUANG; William L. CHAMEIDES; Qian TAN; Robert E. DICKINSON

    2008-01-01

    The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO42-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO42- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO42-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.

  2. An observational and numerical study of a flash flood event in Eastern Marmara Region.

    Science.gov (United States)

    Kahraman, A.

    2010-09-01

    Warm season cut-off cyclones over North-western Anatolia frequently triggers storms with heavy precipitation over Marmara and Western Black Sea Region. Since the area is highly urbanized with a deficiency in substructure, an important percentage of these storms result in flash floods, producing severe damage and fatalities. A heavy precipitation case from 5th to 9th of June, 2010 is studied. With the large scale circulation of the cut-off low, the storm system over Northern Anatolia moved Black Sea, and after getting richer in moisture, turned back to land over Eastern Marmara Region resulting more than 100 mm of precipitation in 24 hours. A peak of 77 mm in 6 hours is observed at Istanbul Sabiha Gokcen Airport on 7th of June, 2010. Damage in some buildings and one death occured related with the flash flood. In addition to synoptic charts, satellite data, surface and upper air observations, numerical simulation with WRF-ARW is used to make a mesoscale analysis of the meteorological conditions. Heavy rain ingredients such as conditionally unstability, low level jet and high moisture exist over the region according to the model output. Precipitable water and storm relative helicity values are mature and CAPE is moderate.

  3. Neutral and Ionized Hydrides in Star-forming Regions -- Observations with Herschel/HIFI

    CERN Document Server

    Benz, Arnold O; van Dishoeck, Ewine F; Staeuber, Pascal; Wampfler, Susanne F

    2013-01-01

    The cosmic abundance of hydrides depends critically on high-energy UV, X-ray, and particle irradiation. Here we study hydrides in star-forming regions where irradiation by the young stellar object can be substantial, and density and temperature can be much enhanced over interstellar values. Lines of OH, CH, NH, SH and their ions OH+, CH+, NH+, SH+, H2O+, and H3O+ were observed in star-forming regions by the HIFI spectrometer onboard the Herschel Space Observatory. Molecular column densities are derived from observed ground-state lines, models, or rotational diagrams. We report here on two prototypical high-mass regions, AFGL 2591 and W3 IRS5, and compare them to chemical calculations making assumptions on the high-energy irradiation. A model assuming no ionizing protostellar emission is compared with (i) a model assuming strong protostellar X-ray emission and (ii) a two-dimensional (2D) model including emission in the far UV (FUV, 6 -- 13.6 eV) irradiating the outflow walls that separate the outflowing gas an...

  4. Activity in preserved left hemisphere regions predicts anomia severity in aphasia.

    Science.gov (United States)

    Fridriksson, Julius; Bonilha, Leonardo; Baker, Julie M; Moser, Dana; Rorden, Chris

    2010-05-01

    Understanding the neural mechanism that supports preserved language processing in aphasia has implications for both basic and applied science. This study examined brain activation associated with correct picture naming in 15 patients with aphasia. We contrasted each patient's activation to the activation observed in a neurologically healthy control group, allowing us to identify regions with unusual activity patterns. The results revealed that increased activation in preserved left hemisphere areas is associated with better naming performance in aphasia. This relationship was linear in nature; progressively less cortical activation was associated with greater severity of anomia. These findings are consistent with others who suggests that residual language function following stroke relies on preserved cortical areas in the left hemisphere.

  5. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    Science.gov (United States)

    Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2015-12-01

    interoperable resources in this way will help to ensure improved capacities for conducting activities such as assessing the status of arctic observing efforts, optimizing logistic operations, and for quickly accessing external and project-focused web resources for more detailed information and access to scientific data and derived products.

  6. On the Area Expansion of Magnetic Flux-Tubes in Solar Active Regions

    CERN Document Server

    Dudik, Jaroslav; Cirtain, Jonathan W

    2014-01-01

    We calculated the 3D distribution of the area expansion factors in a potential magnetic field extrapolated from the high-resolution \\textit{Hinode}/SOT magnetogram of a quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux-tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the SOT magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes t...

  7. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2011-04-01

    Full Text Available This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT and Köhler theory (KT to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  8. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    Science.gov (United States)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  9. Discovering young stars in the Gum 31 region with infrared observations

    CERN Document Server

    Ohlendorf, Henrike; Gaczkowski, Benjamin; Ratzka, Thorsten; Ngoumou, Judith; Roccatagliata, Veronica; Grellmann, Rebekka

    2013-01-01

    Context. The Gum 31 bubble containing the stellar cluster NGC 3324 is a poorly-studied young region close to the Carina Nebula. Aims. We are aiming to characterise the young stellar and protostellar population in and around Gum 31 and to investigate the star-formation process in this region. Methods. We identify candidate young stellar objects from Spitzer, WISE, and Herschel data. Combining these, we analyse the spectral energy distributions of the candidate young stellar objects. With density and temperature maps obtained from Herschel data and comparisons to a 'collect and collapse' scenario for the region we are able to further constrain the characteristics of the region as a whole. Results. 661 candidate young stellar objects are found from WISE data, 91 protostar candidates are detected through Herschel observations in a 1.0 deg x 1.1 deg area. Most of these objects are found in small clusters or are well aligned with the H II bubble. We also identify the sources of Herbig-Haro jets. The infrared morpho...

  10. Si and Fe depletion in Galactic star-forming regions observed by the Spitzer Space Telescope

    CERN Document Server

    Okada, Yoko; Miyata, Takashi; Okamoto, Yoshiko K; Sakon, Itsuki; Shibai, Hiroshi; Takahashi, Hidenori

    2008-01-01

    We report the results of the mid-infrared spectroscopy of 14 Galactic star-forming regions with the high-resolution modules of the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. We detected [SiII] 35um, [FeII] 26um, and [FeIII] 23um as well as [SIII] 33um and H2 S(0) 28um emission lines. Using the intensity of [NII] 122um or 205um and [OI] 146um or 63um reported by previous observations in four regions, we derived the ionic abundance Si+/N+ and Fe+/N+ in the ionized gas and Si+/O0 and Fe+/O0 in the photodissociation gas. For all the targets, we derived the ionic abundance of Si+/S2+ and Fe2+/S2+ for the ionized gas. Based on photodissociation and HII region models the gas-phase Si and Fe abundance are suggested to be 3-100% and <8% of the solar abundance, respectively, for the ionized gas and 16-100% and 2-22% of the solar abundance, respectively, for the photodissociation region gas. Since the [FeII] 26um and [FeIII] 23um emissions are weak, the high sensitivity of the IRS enables to de...

  11. Cloud-radiation-precipitation associations over the Asian monsoon region: an observational analysis

    Science.gov (United States)

    Li, Jiandong; Wang, Wei-Chyung; Dong, Xiquan; Mao, Jiangyu

    2017-01-01

    This study uses 2001-2014 satellite observations and reanalyses to investigate the seasonal characteristics of Cloud Radiative Effects (CREs) and their associations with cloud fraction (CF) and precipitation over the Asian monsoon region (AMR) covering Eastern China (EC) and South Asia (SA). The CREs exhibit strong seasonal variations but show distinctly different relationships with CFs and precipitation over the two regions. For EC, the CREs is dominated by shortwave (SW) cooling, with an annual mean value of - 40 W m- 2 for net CRE, and peak in summer while the presence of extensive and opaque low-level clouds contributes to large Top-Of-Atmosphere (TOA) albedo (>0.5) in winter. For SA, a weak net CRE exists throughout the year due to in-phase compensation of SWCRE by longwave (LW) CRE associated with the frequent occurrence of high clouds. For the entire AMR, SWCRE strongly correlates with the dominant types of CFs, although the cloud vertical structure plays important role particularly in summer. The relationships between CREs and precipitation are stronger in SA than in EC, indicating the dominant effect of monsoon circulation in the former region. SWCRE over EC is only partly related to precipitation and shows distinctive regional variations. Further studies need to pay more attention to vertical distributions of cloud micro- and macro-physical properties, and associated precipitation systems over the AMR.

  12. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    Science.gov (United States)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  13. Atmospheric observations and emissions estimates of methane and nitrous oxide from regional to global scale

    Science.gov (United States)

    Kort, Eric Adam

    2011-12-01

    Methane (CH4) and Nitrous Oxide (N2O) are the two most significant anthropogenic, long-lived, non-CO2 greenhouse gases, together perturbing the earth's energy balance by an amount comparable to that of CO2. This dissertation will focus on the use of atmospheric observations to quantify emissions of CH4 and N2O. First top-down emissions constraints on the regional scale, covering large areas of the U.S and southern Canada, are derived from airborne observations made in Spring of 2003. Using a receptor-oriented Lagrangian particle dispersion model provides robust validation of bottom-up emission estimates from EDGAR 32FT2000 and GEIA inventories. It is found that EDGAR CH4 emission rates are slightly low by a factor of 1.08 +/- 0.15 (2 sigma), while both EDGAR and GEIA N2O emissions are significantly too low, by factors of 2.62 +/- 0.50 and 3.05 +/- 0.61 respectively. This analysis is then extended over a full calendar year in 2004 with observations from NOAA's tall tower and aircraft profile network. EDGAR 32FT2000 CH 4 emissions are found to be consistent with observations, though the newer EDGAR v4.0 reduces CH4 emissions by 30%, and this reduction is not consistent with this study. Scaling factors found for N2O in May/June of 2003 (2.62 & 3.05) are found to hold for February-May of 2004, suggesting inventories are significantly too low in primary growing season coincident with significant fertilizer inputs. A new instrument for airborne observation of CO2, CH 4, N2O, and CO is introduced, and its operation and in-field performance are highlighted (demonstrated 1-sec precisions of 20 ppb, 0.5 ppb, 0.09 ppb, and 0.15 ppb respectively). Finally, global N2O observations collected with this sensor on the HIPPO (Hlaper Pole to Pole Observations) campaign are assessed. Comparison with a global model and subsequent inversion indicates strong, episodic inputs of nitrous oxide from tropical regions are necessary to bring observations and model in agreement. Findings

  14. Deep VLA observations of nearby star forming regions I: Barnard 59 and Lupus 1

    Science.gov (United States)

    Dzib, S. A.; Loinard, L.; Medina, S.-N. X.; Rodríguez, L. F.; Mioduszewski, A. J.; Torres, R. M.

    2016-10-01

    Barnard 59 and Lupus 1 are two nearby star-forming regions visible from the southern hemisphere. In this manuscript, we present deep (σ˜15 μJy) radio observations (ν=6 GHz) of these regions, and report the detection of a total of 114 sources. Thirteen of these sources are associated with known young stellar objects, nine in Barnard 59 and four in Lupus 1. The properties of the radio emission (spectral index and, in some cases, polarization) suggest a thermal origin for most young stellar objects. Only for two sources (Sz 65 and Sz 67) are there indications for a possible non-thermal origin. The remaining radio detections do not have counterparts at other wavelengths, and the number of sources detected per unit solid angle is in agreement with extragalactic number counts, suggesting that they are extragalactic sources.

  15. Airborne observations of regional variation in fluorescent aerosol across the United States

    Science.gov (United States)

    Perring, A. E.; Schwarz, J. P.; Baumgardner, D.; Hernandez, M. T.; Spracklen, D. V.; Heald, C. L.; Gao, R. S.; Kok, G.; McMeeking, G. R.; McQuaid, J. B.; Fahey, D. W.

    2015-02-01

    Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wideband of longitude across the continental U.S. between Florida and California and between 28 and 37 N latitudes. Sampling occurred from near the surface to 1000 m above the ground. A Wideband Integrated Bioaerosol Sensor (WIBS-4) measured average concentrations of supermicron fluorescent particles aloft (1 µm to 10 µm), revealing number concentrations ranging from 2.1 ± 0.8 to 8.7 ± 2.2 × 104 particles m-3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol. Fluorescent aerosol detected in the east is largely consistent with mold spores observed in a laboratory setting, while a shift to larger sizes associated with different fluorescent patterns is observed in the west. Fluorescent bioaerosol loadings in the desert west were as high as those near the Gulf of Mexico, suggesting that bioaerosol is a substantial component of supermicron aerosol both in humid and arid environments. The observations are compared to model fungal and bacterial loading predictions, and good agreement in both particle size and concentrations is observed in the east. In the west, the model underestimated observed concentrations by a factor between 2 and 4 and the prescribed particle sizes are smaller than the observed fluorescent aerosol. A classification scheme for use with WIBS data is also presented.

  16. Spectro-polarimetric observation in UV with CLASP to probe the chromosphere and transition region

    Science.gov (United States)

    Kano, Ryouhei; Ishikawa, Ryohko; Winebarger, Amy R.; Auchère, Frédéric; Trujillo Bueno, Javier; Narukage, Noriyuki; Kobayashi, Ken; Bando, Takamasa; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-Nosuke; Giono, Gabriel; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Tsuneta, Saku; Ichimoto, Kiyoshi; Goto, Motoshi; Cirtain, Jonathan W.; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca; Carlsson, Mats

    2016-05-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a NASA sounding-rocket experiment that was performed in White Sands in the US on September 3, 2015. During its 5-minute ballistic flight, CLASP successfully made the first spectro-polarimetric observation in the Lyman-alpha line (121.57 nm) originating in the chromosphere and transition region. Since the Lyman-alpha polarization is sensitive to magnetic field of 10-100 G by the Hanle effect, we aim to infer the magnetic field information in such upper solar atmosphere with this experiment.The obtained CLASP data showed that the Lyman-alpha scattering polarization is about a few percent in the wings and the order of 0.1% in the core near the solar limb, as it had been theoretically predicted, and that both polarization signals have a conspicuous spatio-temporal variability. CLASP also observed another upper-chromospheric line, Si III (120.65 nm), whose critical field strength for the Hanle effect is 290 G, and showed a measurable scattering polarization of a few % in this line. The polarization properties of the Si III line could facilitate the interpretation of the scattering polarization observed in the Lyman-alpha line.In this presentation, we would like to show how the upper chromosphere and transition region are seen in the polarization of these UV lines and discuss the possible source of these complicated polarization signals.

  17. Radar observations of artificial E-region field-aligned irregularities

    Directory of Open Access Journals (Sweden)

    E. Nossa

    2009-07-01

    Full Text Available Artificial E region field aligned plasma density irregularities (FAIs were generated using HAARP in four different experimental modes and observed with a coherent scatter radar imager located 450 km to the southwest where it could detect field-aligned backscatter. The experiments were conducted in July of 2008, during the Polar Aeronomy and Radio Science Summer School (PARS, during quiet conditions in the daytime when the E layer was dense and absorption was modest. The echoes observed during zenith and magnetic zenith heating experiments were deflected from their nominally anticipated horizontal positions toward the midpoint position. The occurrence of hysteresis when heating with amplitude modulated pulses implied the development of the resonance instability, although the threshold for the onset of instability appeared to be higher than what has been predicted theoretically. Heating experiments involving pump frequencies slightly above and below the second electron gyroharmonic frequency produced no significant differences in the observed echoes. Finally, heating with a pump frequency slightly above the E region critical frequency appears to have produced FAIs at two distinct altitudes where the upper-hybrid resonance condition could be satisfied.

  18. GRB follow-up observations in the East-Asian region

    CERN Document Server

    Urata, Y; Ip, W H; Qiu, Y; Hu, J Y; Zhou, X; Tamagawa, T; Onda, K; Makishima, K; Zhou, Xn.

    2005-01-01

    In 2004, we established a Japan-Taiwan-China collaboration for GRB study in the East-Asian region. This serves as a valuable addition to the world-wide optical and infrared follow-up network, because the East-Asia region would otherwise be blank. We have been carrying out imaging and spectroscopic follow-up observations at Lulin (Taiwan), Kiso (Japan), WIDGET (Japan) and Xinglong (China). From Xinglong and Kiso, we can locate candidates and obtain early time spectra for afterglows. While WIDGET provides early time observations before the burst, the high-time resolution for multi-band light curves can be obtained at Lulin. With the data from these sites, we can obtain detailed information about the light curve and redshift of GRBs, which are important to understand the mechanism of the afterglows. Up to March 2005, ten follow-up observations have been provided by this East-Asia cooperation. Two optical afterglows were detected, GRB 040924 and GRB 041006. The results of the two detected afterglows are reported ...

  19. Spitzer Observations of M83 and the Hot Star, H II Region Connection

    CERN Document Server

    Rubin, R H; Colgan, S W J; Dufour, R J; Ray, K L; Erickson, E F; Haas, M R; Pauldrach, A W A; Citron, R I; Rubin, Robert H.; Simpson, Janet P.; Colgan, Sean W.J.; Dufour, Reginald J.; Ray, Katherine L.; Erickson, Edwin F.; Haas, Michael R.; Pauldrach, Adalbert W.A.; Citron, Robert I.

    2007-01-01

    We have undertaken a program to observe emission lines of SIV 10.5, NeII 12.8, NeIII 15.6, & SIII 18.7 um in a number of extragalactic HII regions with the Spitzer Space Telescope. We report our results for the nearly face-on spiral galaxy M83. The nebulae selected cover a wide range of galactocentric radii (R_G). The observations were made with the Infrared Spectrograph in the short wavelength, high dispersion configuration. The above set of 4 lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++, and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger R_G. By sampling the dominant ionization states of Ne and S for HII regions, Ne/S ~ (Ne+ + Ne++)/(S++ + S3+). Our findings of ratios that exceed the benchmark Orion value are more likely due to other effects than a true gradient in Ne/S. Both Ne and S are primary elements produced in alpha- chain...

  20. Spitzer Observations of M33 and the Hot Star, H II Region Connection

    CERN Document Server

    Rubin, Robert H; Colgan, Sean W J; Dufour, Reginald J; Brunner, Gregory; McNabb, Ian A; Pauldrach, Adalbert W A; Erickson, Edwin F; Haas, Michael R; Citron, Robert I

    2008-01-01

    We have observed emission lines of [S IV] 10.51, H(7-6) 12.37, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71 um in a number of extragalactic H II regions with the Spitzer Space Telescope. A previous paper presented our data and analysis for the substantially face-on spiral galaxy M83. Here we report our results for the local group spiral galaxy M33. The nebulae selected cover a wide range of galactocentric radii (R_G). The observations were made with the Infrared Spectrograph with the short wavelength, high resolution module. The above set of five lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++, and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger R_G. By sampling the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) for H II regions, we can estimate the Ne/H, S/H, and Ne/S ratios. We find from linear least-squares fits that ...

  1. Deep XMM-Newton Observations of the NW Radio Relic Region of Abell 3667

    CERN Document Server

    Sarazin, Craig L; Wik, Daniel R; Clarke, Tracy E

    2016-01-01

    The results of long XMM-Newton X-ray observations of the NW radio relic of Abell 3667 are presented. A shock is detected at the sharp outer edge of the radio relic, both in the X-ray surface brightness and the temperature profiles. The Mach number is M = 2.54^+0.80_-0.43. The temperature jump at the shock is larger than expected from the density jump, which may indicate that a dynamically important magnetic field aligned primarily parallel to the shock front is present. The gas temperature rises gradually over several arc minutes within the shock region. This could indicate that the shock energy is initially dissipated into some mix of thermal and nonthermal (e.g., turbulence) components, and that the nonthermal energy decays into heat in the post-shock region. The observed radio relic can be powered if ~0.2% of the energy dissipated in the shock goes into the (re)acceleration of relativistic electrons. We show that the observed steepening of the radio spectrum with distance behind the shock is consistent wit...

  2. Transition Region and Chromospheric Signatures of Impulsive Heating Events. I. Observations

    CERN Document Server

    Warren, Harry P; Crump, Nicholas A; Simoes, Paulo J A

    2016-01-01

    We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph (IRIS) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations from RHESSI provide constraints on the energetic electrons precipitating into the flare footpoints while observations of XRT, AIA, and EIS allow us to measure the temperatures and emission measures from the resulting flare loops. We find clear evidence for heating over an extended period on the spatial scale of a single IRIS pixel. During the impulsive phase of this event the intensities in each pixel for the Si IV 1402.770, C II 1334.535, Mg II 2796.354 and O I 1355.598 emission lines are characterized by numerous, small-scale bursts typically lasting 60s or less. Red shifts are observed in Si IV, C II, and Mg II during the impulsive phase. Mg II shows red-shifts during the bursts and stationary emission at other times. The Si IV and C II profiles, in contrast, are ...

  3. Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations

    Directory of Open Access Journals (Sweden)

    L. Guicking

    2010-04-01

    Full Text Available We investigate wave properties of low-frequency magnetic field fluctuations in Venus' solar wind interaction region based on the measurements made on board the Venus Express spacecraft. The orbit geometry is very suitable to investigate the fluctuations in Venus' low-altitude magnetosheath and mid-magnetotail and provides an opportunity for a comparative study of low-frequency waves at Venus and Mars. The spatial distributions of the wave properties, in particular in the dayside and nightside magnetosheath as well as in the tail and mantle region, are similar to observations at Mars. As both planets do not have a global magnetic field, the interaction process of the solar wind with both planets is similar and leads to similar instabilities and wave structures. We focus on the spatial distribution of the wave intensity of the fluctuating magnetic field and detect an enhancement of the intensity in the dayside magnetosheath and a strong decrease towards the terminator. For a detailed investigation of the intensity distribution we adopt an analytical streamline model to describe the plasma flow around Venus. This allows displaying the evolution of the intensity along different streamlines. It is assumed that the waves are generated in the vicinity of the bow shock and are convected downstream with the turbulent magnetosheath flow. However, neither the different Mach numbers upstream and downstream of the bow shock, nor the variation of the cross sectional area and the flow velocity along the streamlines play probably an important role in order to explain the observed concentration of wave intensity in the dayside magnetosheath and the decay towards the nightside magnetosheath. But, the concept of freely evolving or decaying turbulence is in good qualitative agreement with the observations, as we observe a power law decay of the intensity along the streamlines. The observations support the assumption of wave convection through the magnetosheath, but

  4. Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available Here, and in a companion paper by Hamrin et al. (2009 [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15–20 RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E·J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs as Concentrated Generator Regions (CGRs. We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL. For both CLRs and CGRs, E and J in the GSM y (cross-tail direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.

  5. Evolution of twist-shear and dip-shear in Faring active region NOAA 10930

    CERN Document Server

    Gosain, Sanjay

    2010-01-01

    We study the evolution of magnetic shear angle in a flare productive active region NOAA 10930. The magnetic shear angle is defined as the deviation in the orientation of the observed magnetic field vector with respect to the potential field vector. The shear angle is measured in horizontal as well as vertical plane. The former is computed by taking the difference between the azimuth angles of the observed and potential field and is called the twist-shear, while the latter is computed by taking the difference between the inclination angles of the observed and potential field and is called the dip-shear. The evolution of the two shear angles is then tracked over a small region located over the sheared penumbra of the delta sunspot in NOAA 10930. We find that, while the twist-shear shows an increasing trend after the flare the dip-shear shows a significant drop after the flare.

  6. The Counter-kink Rotation of a Non-Hale Active Region

    CERN Document Server

    Fuentes, M C López; Mandrini, C H; van Driel-Gesztelyi, L

    2014-01-01

    We describe the long-term evolution of a bipolar non-Hale active region which was observed from October, 1995, to January, 1996. Along these four solar rotations the sunspots and subsequent flux concentrations, during the decay phase of the region, were observed to move in such a way that by December their orientation conformed to the Hale-Nicholson polarity law. The sigmoidal shape of the observed soft X-ray coronal loops allows us to determine the sense of the twist in the magnetic configuration. This sense is confirmed by extrapolating the observed photospheric magnetic field, using a linear force-free approach, and comparing the shape of computed field lines to the observed coronal loops. This sense of twist agrees with that of the dominant helicity in the solar hemisphere where the region lies, as well as with the evolution observed in the longitudinal magnetogram during the first rotation. At first sight the relative motions of the spots may be miss-interpreted as the rising of an $\\Omega$-loop deformed...

  7. Radar observations of F region field-aligned irregularities over Hainan island, China in 2014-2015

    Science.gov (United States)

    Shang, She-Ping; Wu, Qiongzhi; Chunxiao, Yan; Yan, Jingye; Shi, Jiankui; Yang, Guotao

    2016-07-01

    The morphology characteristics of low latitude F region 3-m scale field-aligned irregularities (FAIs) have been investigated by using the continuous observation of Hainan VHF radar (19.5ºN,109.1ºE,dip latitude:14.0ºN) in 2014-2015. The monthly mean F10.7 solar flux show the clear decrease from the peak in the start of 2014 to the foot in the end of 2015. F region FAIs can be further classified into the three cases: radar plumes (RP), broad spread F (BSF) and weak spread F (WSF), in which the first are mainly generated and developed within the field of view (FoV) of radar and the latter two generally originate outside of the FoV of radar and drift into the FoV of radar. They indicate the different phases of generation, evolution and decay of low latitude F region irregularities. The main results exhibit the F region FAIs mainly present in Feb.-Apr. and in Sep.-Nov. near the two equinoxes and are greatly reduced in May-Aug. near summer solstice, and almost completely disappeared in Dec.-Jan. near winter solstice, which are greatly affected by the solar activity. F region FAIs are more robust in spring equinox than in fall equinox, which can be shown as the occurrence rate, the structure and evolution, the duration time and so on. In spring equinox, the occurrence rate is far higher, and F region FAIs show the more structures and the longer duration time. RP near sunset are greatly enhanced. The following BSF and WSF can present intermittently and may persist into the post-midnight. F region FAIs in summer solstice mainly show BSF and WSF with the clear time delay. BSF mainly present in the pre-midnight, and there are mostly WSF in the post-midnight. The clear decrease of sola flux cause different effects to the occurrence of F region FAIs in the equinoxes and summer solstice. F region FAIs are greatly reduced in the equinoxes, in which RP are greatly reduced compared with BSF and WSF. F region FAIs seem not to be evidently affected in the summer solstice, in which

  8. Meteor head echo characteristics observed with MAARSY in the polar region

    Science.gov (United States)

    Schult, Carsten; Stober, Gunter; Chau, Jorge L.

    2016-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY, 53.5 MHz), on the North Norwegian island Andoya (69.30° N, 16.04° E) , is the only high power large aperture (HPLA) radar system with interferometric capabilities providing daily meteor head echo observations since November 2013. Meanwhile, the data set of meteor head echoes contains over one million events with a perfect daily and seasonal coverage of the four northern hemisphere sporadic sources. Although, the North Apex meteor source dominates the observation by far (more than 40%), the statistic is large enough for a comparison of the observational meteor parameters for all sporadic sources. Furthermore, due to the large spread of the antenna gain of the HPLA radar system in combination with the interferometric solutions, the observation area can be divided into high and low sensitive regions with different collecting sizes. This separation is equivalent with a measurement of various radar systems with different beam characteristics, observing at the same time and geographical location. This helps answering question on the impact of the radar specifications on the meteor head echo measurements.

  9. Direct observations of plasma upflows and condensation in a catastrophically cooling solar transition region loop

    Energy Technology Data Exchange (ETDEWEB)

    Orange, N. B.; Chesny, D. L.; Oluseyi, H. M.; Hesterly, K.; Patel, M.; Champey, P. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2013-12-01

    Minimal observational evidence exists for fast transition region (TR) upflows in the presence of cool loops. Observations of such occurrences challenge notions of standard solar atmospheric heating models as well as their description of bright TR emission. Using the EUV Imaging Spectrometer on board Hinode, we observe fast upflows (v {sub λ} ≤ –10 km s{sup –1}) over multiple TR temperatures (5.8 ≤log T ≤ 6.0) at the footpoint sites of a cool loop (log T ≤ 6.0). Prior to cool loop energizing, asymmetric flows of +5 km s{sup –1} and –60 km s{sup –1} are observed at footpoint sites. These flows, speeds, and patterns occur simultaneously with both magnetic flux cancellation (at the site of upflows only) derived from the Solar Dynamics Observatory's Helioseismic Magnetic Imager's line-of-sight magnetogram images, and a 30% mass influx at coronal heights. The incurred non-equilibrium structure of the cool loop leads to a catastrophic cooling event, with subsequent plasma evaporation indicating that the TR is the heating site. From the magnetic flux evolution, we conclude that magnetic reconnection between the footpoint and background field is responsible for the observed fast TR plasma upflows.

  10. Optical Observation of Oxygen Ion Upflow in the Cusp/Cleft Region

    Science.gov (United States)

    Tashiro, S.; Yamazaki, A.; Yoshikawa, I.; Takizawa, Y.; Ogawa, Y.; Miyake, W.; Nakamura, M.

    2002-12-01

    We built the Extreme ultraviolet scanner (XUV) for imaging oxygen ions to outflow from the polar ionosphere into the magnetosphere. The XUV onboard a sounding rocket SS-520-2 imaged the oxygen ions above 1000 km altitude near the polar cusp on December 4, 2000. The XUV is a normal incidence telescope that has a peak sensitivity at the wavelength 83.4 nm of OII emission and consists of a Mo coated mirror, a band pass filter and a channel electron multiplier. The band pass filter selectively transmits OII emission and eliminates background emissions such as HeI emission at the 30.4 nm, HeII emission at the 58.4 nm, and HI emission at the 121.6 nm. The observed OII emission intensity is proportional to the ion density integrated along the line of sight. Therefore the observed OII emission intensity distribution makes possible to determine the oxygen ion distribution. After 0928UT, the sudden increase in the OII emission intensity was observed from the cusp region identified by the radar observation. In this presentation, we will discuss the cause of the sudden increase in the OII emission intensity in comparison with the result of ground-based observations.

  11. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  12. On the area expansion of magnetic flux tubes in solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Dzifčáková, Elena [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Cirtain, Jonathan W., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: elena@asu.cas.cz [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  13. Dense seismic networks as a tool to characterize active faulting in regions of slow deformation

    Science.gov (United States)

    Custódio, Susana; Arroucau, Pierre; Carrilho, Fernando; Cesca, Simone; Dias, Nuno; Matos, Catarina; Vales, Dina

    2016-04-01

    The theory of plate tectonics states that the relative motion between lithospheric plates is accommodated at plate boundaries, where earthquakes occur on long faults. However, earthquakes with a wide range of magnitudes also occur both off plate boundaries, in intra-plate settings, and along discontinuous, diffuse plate boundaries. These settings are characterized by low rates of lithospheric deformation. A fundamental limitation in the study of slowly deforming regions is the lack of high-quality observations. In these regions, earthquake catalogs have traditionally displayed diffuse seismicity patterns. The location, geometry and activity rate of faults - all basic parameters for understanding fault dynamics - are usually poorly known. The dense seismic networks deployed in the last years around the world have opened new windows in observational seismology. Although high-magnitude earthquakes are rare in regions of slow deformation, low-magnitude earthquakes are well observable on the time-scale of these deployments. In this presentation, we will show how data from dense seismic deployments can be used to characterize faulting in regions of slow deformation. In particular, we will present the case study of western Iberia, a region undergoing low-rate deformation and which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). The methods that we employ include automated earthquake detection methods to lower the completeness magnitude of catalogs, earthquake relocations, focal mechanisms patterns, waveform similarity and clustering analysis.

  14. Observations of E region irregularities generated at auroral latitudes by a high-power radio wave

    Science.gov (United States)

    Djuth, F. T.; Jost, R. J.; Noble, S. T.; Gordon, W. E.; Stubbe, P.

    1985-01-01

    The initial results of a series of observations made with the high-power HF heating facility near Tromso, Norway are reported. During these experiments, attention was focused on the production of artificial geomagnetic field-aligned irregularities (AFAIs) in the auroral E region by HF waves. A mobile 46.9-MHz radar was used to diagnose the formation of AFAIs having spatial scales of 3.2 across geomagnetic field lines. The dynamic characteristics of the AFAIs are discussed within the context of current theoretical work dealing with the natural production of AFAIs in the ionosphere.

  15. On the modified active region design of interband cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J. [Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, Wrocław (Poland); Weih, R.; Dallner, M.; Kamp, M. [Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg (Germany); Höfling, S. [Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, KY16 9SS, St. Andrews (United Kingdom)

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  16. Seismic Halos Around Active Regions: An MHD Theory

    CERN Document Server

    Hanasoge, Shravan M

    2007-01-01

    Comprehending the manner in which magnetic fields affect propagating waves is a first step toward the helioseismic construction of accurate models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Results from a simulation of waves interacting with a flux tub...

  17. Witnessing hateful people in pain modulates brain activity in regions associated with physical pain and reward.

    Directory of Open Access Journals (Sweden)

    Glenn Ryan Fox

    2013-10-01

    Full Text Available How does witnessing a hateful person in pain compare to witnessing a likable person in pain? The current study compared the brain bases for how we perceive likable people in pain with those of viewing hateful people in pain. While social bonds are built through sharing the plight and pain of others in the name of empathy, viewing a hateful person in pain also has many potential ramifications. In this functional Magnetic Resonance Imaging (fMRI study, Caucasian Jewish male participants viewed videos of (1 disliked, hateful, anti-Semitic individuals, and (2 liked, non-hateful, tolerant individuals in pain. The results showed that, compared with viewing liked people, viewing hateful people in pain elicited increased responses in regions associated with observation of physical pain (the insular cortex, the anterior cingulate cortex, and the somatosensory cortex, reward processing (the striatum, and frontal regions associated with emotion regulation. Functional connectivity analyses revealed connections between seed regions in the left anterior cingulate cortex and right insular cortex with reward regions, the amygdala, and frontal regions associated with emotion regulation. These data indicate that regions of the brain active while viewing someone in pain may be more active in response to the danger or threat posed by witnessing the pain of a hateful individual more so than the desire to empathize with a likable person’s pain.

  18. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    Science.gov (United States)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  19. Structures of magnetic null points in reconnection diffusion region: Cluster observations

    Institute of Scientific and Technical Information of China (English)

    HU YunHui; R.NAKAMURA; W.BAUMJOHANN; H.R'EME; C.M.CARR; DENG XiaoHua; ZHOU Meng; TANG RongXin; ZHAO Hui; FU Song; SU ZhiWen; WANG JingFang; YUAN ZhiGang

    2008-01-01

    Magnetic reconnection is a very important and fundamental plasma process in transferring energy from magnetic field into plasma. Previous theory, numerical simulations and observations mostly concen-trate on 2-dimensional (2D) model; however, magnetic reconnection is a 3-dimensional (3D) nonlinear process in nature. The properties of reconnection in 3D and its associated singular structure have not been resolved completely. Here we investigate the structures and characteristics of null points inside the reconnection diffusion region by introducing the discretized Poincaré index through Gauss integral and using magnetic field data with high resolution from the four satellites of Cluster mission. We esti-mate the velocity and trajectory of null points by calculating its position in different times, and compare and discuss the observations with different reconnection models with null points based on character-istics of electric current around null points.

  20. Regional variation of inner core anisotropy from seismic normal mode observations.

    Science.gov (United States)

    Deuss, Arwen; Irving, Jessica C E; Woodhouse, John H

    2010-05-21

    Earth's solid inner core is surrounded by a convecting liquid outer core, creating the geodynamo driving the planet's magnetic field. Seismic studies using compressional body waves suggest hemispherical variation in the anisotropic structure of the inner core, but are poorly constrained because of limited earthquake and receiver distribution. Here, using normal mode splitting function measurements from large earthquakes, based on extended cross-coupling theory, we observe both regional variations and eastern versus western hemispherical anisotropy in the inner core. The similarity of this pattern with Earth's magnetic field suggests freezing-in of crystal alignment during solidification or texturing by Maxwell stress as origins of the anisotropy. These observations limit the amount of inner core super rotation, but would be consistent with oscillation.

  1. First observation of low-energy {\\gamma}-ray enhancement in the rare-earth region

    CERN Document Server

    Simon, A; Larsen, A C; Beausang, C W; Humby, P; Burke, J T; Casperson, R J; Hughes, R O; Ross, T J; Allmond, J M; Chyzh, R; Dag, M; Koglin, J; McCleskey, E; McCleskey, M; Ota, S; Saastamoinen, A

    2016-01-01

    The {\\gamma}-ray strength function and level density in the quasi-continuum of 151,153Sm have been measured using BGO shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow for an extraction of the {\\gamma} strength down to unprecedentedly low {\\gamma} energies of about 500 keV. For the first time an enhanced low- energy {\\gamma}-ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low {\\gamma} energies could have an impact of 2-3 orders of magnitude on the (n,{\\gamma}) reaction rates for the r-process nucleosynthesis.

  2. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region

    Science.gov (United States)

    Zhong, Xi; Qi, Jianhua; Li, Hongtao; Dong, Lijie; Gao, Dongmei

    2016-09-01

    Microbial activities in the atmosphere can indicate the physiological processes of microorganisms and can indirectly affect cloud formation and environmental health. In this study, the microbial activity in bioaerosols collected in the Qingdao coastal region was investigated using the fluorescein diacetate (FDA) hydrolysis method to detect the enzyme activity of microorganisms. The results showed that the microbial activity ranged from 5.49 to 102 ng/m3 sodium fluorescein from March 2013 to February 2014; the average value was 34.4 ng/m3. Microbial activity has no statistical correlation with total microbial quantity. Multiple linear regression analysis showed that meteorological factors such as atmospheric temperature, relative humidity and wind speed accounted for approximately 35.7% of the variation of the microbial activity, although their individual impacts on microbial activity varied. According to the correlation analysis, atmospheric temperature and wind speed had a significant positive and negative influence on microbial activity, respectively, whereas relative humidity and wind direction had no significant influence. The seasonal distribution of microbial activity in bioaerosols was in the order of summer > autumn > winter > spring, with high fluctuations in the summer and autumn. Microbial activity in bioaerosols differed in different weather conditions such as the sunny, foggy, and hazy days of different seasons. Further in situ observations in different weather conditions at different times and places are needed to understand the seasonal distribution characteristics of microbial activity in bioaerosols and the influence factors of microbial activity.

  3. Methane depletion in both polar regions of Uranus inferred from HST/STIS and Keck/NIRC2 observations

    CERN Document Server

    Sromovsky, Lawrence; Fry, Patrick; Hammel, Heidi; de Pater, Imke; Rages, Kathy

    2015-01-01

    From STIS observations of Uranus in 2012, we found that the methane volume mixing ratio declined from about 4% at low latitudes to about 2% at 60 deg N and beyond. This is similar to that found in the south polar regions in 2002, in spite of what appears to be strikingly different convective activity in the two regions. Keck and HST imaging observations close to equinox imply that the depletions were simultaneously present in 2007, suggesting they are persistent features. The depletions appear to be mainly restricted to the upper troposphere, with depth increasing poleward from about 30 deg N, reaching ~4 bars at 45 deg N and perhaps much deeper at 70 deg N. The latitudinal variations in degree and depth of the depletions are important constraints on models of meridional circulation. Our observations are qualitatively consistent with previously suggested circulation cells in which rising methane-rich gas at low latitudes is dried out by condensation and sedimentation of methane ice particles as the gas ascend...

  4. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015

    Science.gov (United States)

    Krotkov, Nickolay A.; McLinden, Chris A.; Li, Can; Lamsal, Lok N.; Celarier, Edward A.; Marchenko, Sergey V.; Swartz, William H.; Bucsela, Eric J.; Joiner, Joanna; Duncan, Bryan N.; Folkert Boersma, K.; Pepijn Veefkind, J.; Levelt, Pieternel F.; Fioletov, Vitali E.; Dickerson, Russell R.; He, Hao; Lu, Zifeng; Streets, David G.

    2016-04-01

    The Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2) and sulfur dioxide (SO2), since October 2004. The data products from the same instrument provide consistent spatial and temporal coverage and permit the study of anthropogenic and natural emissions on local-to-global scales. In this paper, we examine changes in SO2 and NO2 over some of the world's most polluted industrialized regions during the first decade of OMI observations. In terms of regional pollution changes, we see both upward and downward trends, sometimes in opposite directions for NO2 and SO2, for different study areas. The trends are, for the most part, associated with economic and/or technological changes in energy use, as well as regional regulatory policies. Over the eastern US, both NO2 and SO2 levels decreased dramatically from 2005 to 2015, by more than 40 and 80 %, respectively, as a result of both technological improvements and stricter regulations of emissions. OMI confirmed large reductions in SO2 over eastern Europe's largest coal-fired power plants after installation of flue gas desulfurization devices. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend has been observed since 2011, with about a 50 % reduction in 2012-2015, due to an economic slowdown and government efforts to restrain emissions from the power and industrial sectors. In contrast, India's SO2 and NO2 levels from coal power plants and smelters are growing at a fast pace, increasing by more than 100 and 50 %, respectively, from 2005 to 2015. Several SO2 hot spots observed over the Persian Gulf are probably related to oil and gas operations and indicate a possible underestimation of emissions from these sources in bottom-up emission inventories. Overall, OMI observations have proved valuable in documenting rapid changes in air quality over different

  5. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015

    Science.gov (United States)

    Krotkov, Nickolay A.; McLinden, Chris A; Li, Can; Lamsal, Lok N.; Celarier, Edward A.; Marchenko, Sergey V.; Swartz, William H.; Bucsela, Eric J.; Joiner, Joanna; Duncan, Bryan N.; Boersma, K. Folkert; Veefkind, J. Pepijn; Levelt, Pieternel F.; Fioletov, Vitali E.; Dickerson, Russell R.; He, Hao; Lu, Zifeng; Streets, David G.

    2016-01-01

    The Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2/ and sulfur dioxide (SO2/, since October 2004. The data products from the same instrument provide consistent spatial and temporal coverage and permit the study of anthropogenic and natural emissions on local-to-global scales. In this paper, we examine changes in SO2 and NO2 over some of the world's most polluted industrialized regions during the first decade of OMI observations. In terms of regional pollution changes, we see both upward and downward trends, sometimes in opposite directions for NO2 and SO2, for different study areas. The trends are, for the most part, associated with economic and/or technological changes in energy use, as well as regional regulatory policies. Over the eastern US, both NO2 and SO2 levels decreased dramatically from 2005 to 2015, by more than 40 and 80 %, respectively, as a result of both technological improvements and stricter regulations of emissions. OMI confirmed large reductions in SO2 over eastern Europe's largest coal-fired power plants after installation of flue gas desulfurization devices. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend has been observed since 2011, with about a 50% reduction in 2012- 2015, due to an economic slowdown and government efforts to restrain emissions from the power and industrial sectors. In contrast, India's SO2 and NO2 levels from coal power plants and smelters are growing at a fast pace, increasing by more than 100 and 50 %, respectively, from 2005 to 2015. Several SO2 hot spots observed over the Persian Gulf are probably related to oil and gas operations and indicate a possible underestimation of emissions from these sources in bottom-up emission inventories. Overall, OMI observations have proved valuable in documenting rapid changes in air quality over different

  6. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2014

    Directory of Open Access Journals (Sweden)

    N. A. Krotkov

    2015-10-01

    Full Text Available The Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2 and sulfur dioxide (SO2, since October 2004. The data products from the same instrument provide consistent spatial and temporal coverage and permit the study of anthropogenic and natural emissions on local-to-global scales. In this paper we examine changes in SO2 and NO2 over some of the world's most polluted industrialized regions during the first decade of OMI observations. In terms of regional pollution changes, we see both upward and downward trends, sometimes in opposite directions for NO2 and SO2, for the different study areas. The trends are, for the most part, associated with economic and/or technological changes in energy use, as well as regional regulatory policies. Over the eastern US, both NO2 and SO2 levels decreased dramatically from 2005 to 2014, by more than 40 and 80 %, respectively, as a result of both technological improvements and stricter regulations of emissions. OMI confirmed large reductions in SO2 over eastern Europe's largest coal power plants after installation of flue gas desulfurization devices. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend has been observed since 2011, with about a 50 % reduction in 2012–2014, due to an economic slowdown and government efforts to restrain emissions from the power and industrial sectors. In contrast, India's SO2 and NO2 levels from coal power plants and smelters are growing at a fast pace, increasing by more than 100 and 50 %, respectively, from 2005 to 2014. Several SO2 hot spots observed over the Persian Gulf are probably related to oil and gas operations and indicate a possible underestimation of emissions from these sources in bottom-up emission inventories. Overall, OMI observations have proved to be very valuable in documenting rapid changes in

  7. Active region plasma outflows as sources of slow/intermediate solar wind

    Science.gov (United States)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), P. Démoulin (2), Culhane, J.L. (1), M.L. DeRosa (4) C.H. Mandrini (5,6), D.H. Brooks (7), A.N. Fazakerley (1), L.K. Harra (1), L. Zhao (7), T.H. Zurbuchen (7), F.A. Nuevo (5,6), A.M. Vásquez (5,6), G.D. Cristiani (5,6) M. Pick (2)1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Lockheed Martin Solar and Astrophysics Laboratory, USA, (5) IAFE, CONICET-UBA, Argentina (6) FCEN, UBA, Argentina (7) Dept. of Atmospheric, Oceanic and Earth Sciences, Univ. of Michigan, USAWe analyse plasma upflows of tens of km/s from the edges of solar active regions discovered by Hinode/EIS and investigate whether or not they become outflows, i.e. find their way into the solar wind. We analyse two magnetic configurations: bipolar and quadrupolar and find that the active region plasma may be directly channeled into the solar wind via interchange reconnection at a high-altitude null point above the active region especially when active regions are located besides coronal holes or in a more complex way via multiple reconnections even from under a closed helmet streamer. We relate the solar observations to in-situ slow/intermediate solar wind streams.

  8. Institutional Capacity of Innovation Activity Development in theRegion

    Directory of Open Access Journals (Sweden)

    Aleksei Aleksandrovich Rumyantsev

    2016-09-01

    Full Text Available The article presents the results of the study under the theme of development of institutions of innovation sphere, transfer of scientific results to the real sector of the economy. The purpose of the study is to reveal institutional capacities of strengthening the implementation of research findings, drawing on the functional properties of institutions with regard to innovation activities. The methodology is to apply well-known methodological principles to the solution of emerging challenges (software-based method for fundamental scientific result implementation, sectoral research organizations in the new management environment and statistical records of process innovations by analogy with product innovations. The article puts forward and justifies the proposal for strategic innovation as the institution of communicating the results of fundamental research to social practice by integrating into a single process the results of oriented fundamental research, applied research, engineering development, development and other works, which are realized in the form of a material object or service of a high technology level. The distinguishing feature of strategic innovation is a future-oriented outlook and the solution of long-term objectives. Russian scientific achievements can become the basis for strategic innovation development. The article gives examples of possible research field where strategic innovation can be developed and demonstrates an innovative implementation mechanism in the format of specialized research-and-production program which combines government and business participation. The paper gives arguments and development ways of the institution of sectoral research organizations as providers of state technological policy in sectors and regions; coordination of import substitution; centers of communication establishment with engineering companies; analytical and predictive research. The study justifies the expediency of developing an

  9. High Resolution HC3N Observations toward the Central Region of Sagittarius B2

    Science.gov (United States)

    Chung, Hyun Soo; Ohishi, Masatoshi; Morimoto, Masaki

    1994-04-01

    We have observed the emission of HC3N J=4-3, 5-4, 10-9 and 12-11 transitions toward the Sgr B2 central region in an area of 150"*150" with resolution of 16"-48". The intensities and central velocities of line profiles show significant variations with positions. In contrast to the intensities of the low J-level transitions which gradually increase from the central source toward the outside region, the HC3N emission of the high J-level transition become stronger toward the central radio continuum source MD5. Systematic change in the radial velocity of each line profile occurs along north-south direction. There are a few peaks in most line profiles, and these indicate that there are multiple velocity components along the line of sight. Distributions of excitation temperature and column density which were estimated from the excitation calculations show the existence of a small(1*2pc), hot(Tex > 50K) core which contains two temperature peaks at about 15" east and north of MD5. The column density of HC3N is (1-3)*10E14 /cm2. Column density at distant position from MD5 is larger than that in the central region. We have deduced that this 'hot-core' has a mass of 10E5 Mo, which is about an order of magnitude larger than those obtained by previous studies.

  10. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-09-01

    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  11. Incoherent scatter radar observations of D-region charged aerosol species

    Science.gov (United States)

    Strelnikova, Irina; Rapp, Markus; Li, Qiang

    There is today substantial interest in aerosols in the mesosphere and their interaction with their neutral and charged environment. These aerosols comprise both ice particles in the polar summer mesopause region and smoke particles of meteoric origin that are expected to occur in the entire middle atmosphere and during all seasons. The presence of ice particles in the mesosphere has been known for many decades and is most prominently revealed in the form of noctilucent clouds, also known as polar mesospheric clouds. Smoke particles, on the other hand, have sizes of few nanometers only such that their detection by remote sensing techniques has long been deemed impossible. In consequence, sporadic rocket borne in-situ measurements have long been the only source of experimental evidence regarding the existence and properties of these particles. However, it has recently been realized that charged mesospheric aerosol particles modify the plasma properties of the D-region and thereby influence the characteristics of radar backscatter from these altitudes (i.e., radar reflectivity and/or spectral properties). Hence, it is possible to infer properties of these charged aerosol particles in the D-Region using radar observations. In this paper we present two independent methods yielding particles properties based on such measurements and give an overview of recent results.

  12. Pillars and globules at the edges of H ii regions, Confronting Herschel observations and numerical simulations

    CERN Document Server

    Tremblin, P; Schneider, N; Audit, E; Hill, T; Didelon, P; Peretto, N; Arzoumanian, D; Motte, F; Zavagno, A; Bontemps, S; Anderson, L D; Andre, Ph; Bernard, J P; Csengeri, T; Di Francesco, J; Elia, D; Hennemann, M; Konyves, V; Marston, A P; Luong, Q Nguyen; Rivera-Ingraham, A; Roussel, H; Sousbie, T; Spinoglio, L; White, G J; Williams, J

    2013-01-01

    Pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. The formation mechanisms of these structures are still being debated. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M16 and Rosette. The column density structure of the interface between molecular clouds and H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Finally, their velocity structu...

  13. Type II supernovae as probes of environment metallicity: observations of host HII regions

    CERN Document Server

    Anderson, J P; Dessart, L; Hamuy, M; Galbany, L; Morrell, N I; Stritzinger, M D; Phillips, M M; Folatelli, G; Boffin, H M J; de Jaeger, T; Kuncarayakti, H; Prieto, J L

    2016-01-01

    Spectral modelling of SNII atmospheres indicates a clear dependence of metal line strengths on progenitor metallicity. This motivates further work to evaluate the accuracy with which these SNe can be used as metallicity indicators. To assess this accuracy we present a sample of SNII HII-region spectroscopy, from which environment abundances are derived. These environment abundances are compared to the observed strength of metal lines in SN spectra. Combining our sample with measurements from the literature, we present oxygen abundances of 119 host HII regions, by extracting emission line fluxes and using abundance diagnostics. Then, following Dessart et al., these abundances are compared to equivalent widths of Fe 5018 A at various time and colour epochs. Our distribution of inferred SNII host HII-region abundances has a range of ~0.6 dex. We confirm the dearth of SNeII exploding at metallicities lower than those found (on average) in the Large Magellanic Cloud. The equivalent width of Fe 5018 A at 50 days po...

  14. The Role of Active Regions in the Generation of Torsional Oscillations

    CERN Document Server

    Petrovay, K

    2002-01-01

    We present a model for torsional oscillations where the inhibiting effect of active region magnetic fields on turbulence locally reduces turbulent viscous torques, leading to a cycle- and latitude-dependent modulation of the differential rotation. The observed depth dependence of torsional oscillations as well as their phase relationship with the sunspot butterfly diagram are reproduced quite naturally in this model. The resulting oscillation amplitudes are significantly smaller than observed, though they depend rather sensitively on model details. Meridional circulation is found to have only a weak effect on the oscillation pattern.

  15. Observation of Energetic particles between a pair of Corotating Interaction Regions

    CERN Document Server

    Wu, Z; Li, G; Zhao, L L; Ebert, R W; Desai, M I; Mason, G M; Lavraud, B; Zhao, L; Liu, Y C -M; Guo, F; Tang, C L; Landi, E; Sauvaud, J

    2014-01-01

    We report observations of the acceleration and trapping of energetic ions and electrons between a pair of corotating interaction regions (CIRs). The event occurred in Carrington Rotation 2060. Observed at spacecraft STEREO-B, the two CIRs were separated by less than 5 days. In contrast to other CIR events, the fluxes of energetic ions and electrons in this event reached their maxima between the trailing-edge of the first CIR and the leading edge of the second CIR. The radial magnetic field (Br) reversed its sense and the anisotropy of the flux also changed from sunward to anti-sunward between the two CIRs. Furthermore, there was an extended period of counter-streaming suprathermal electrons between the two CIRs. Similar observations for this event were also obtained for ACE and STEREO-A. We conjecture that these observations were due to a "U-shape" large scale magnetic field topology connecting the reverse shock of the first CIR and the forward shock of the second CIR. Such a disconnected U-shaped magnetic fi...

  16. LABOCA observations of giant molecular clouds in the south west region of the Small Magellanic Cloud

    CERN Document Server

    Bot, Caroline; Boulanger, Francois; Albrecht, Marcus; Leroy, Adam; Bolatto, Alberto D; Bertoldi, Frank; Gordon, Karl; Engelbracht, Chad; Block, Miwa; Misselt, Karl

    2010-01-01

    The amount of molecular gas is a key for understanding the future star formation in a galaxy. Because H2 is difficult to observe directly in dense and cold clouds, tracers like CO are used. However, at low metallicities especially, CO only traces the shielded interiors of the clouds. mm dust emission can be used as a tracer to unveil the total dense gas masses. The comparison of masses deduced from the continuum SIMBA 1.2 mm emission and virial masses in a sample of giant molecular clouds (GMCs), in the SW region of the Small Magellanic Cloud (SMC), showed a discrepancy that is in need of an explanation. This study aims at better assessing possible uncertainties on the dust emission observed in the sample of GMCs from the SMC and focuses on the densest parts of the GMCs where CO is detected. New observations were obtained with the LABOCA camera on the APEX telescope. All GMCs previously observed in CO are detected and their emission at 870microns is compared to ancillary data. The different contributions to t...

  17. Observations of energetic particles between a pair of corotating interaction regions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Chen, Y.; Tang, C. L. [Institute of Space Sciences and School of Space Science and Physics, Shandong University at Weihai, Weihai 264209 (China); Li, G.; Zhao, L. L. [Department of Space Science and CSPAR, University of Alabama in Huntsville, AL 35899 (United States); Ebert, R. W.; Desai, M. I. [Southwest Research Institute, San Antonio, TX 78228 (United States); Mason, G. M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Lavraud, B.; Sauvaud, J. [Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS) and Centre National de la Recherche Scientifique, UMR 5277, Toulouse (France); Zhao, L.; Landi, E. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Liu, Y. C.-M. [State Key Laboratory of Space Weather, National Space Science Center, CAS. Beijing 100190 (China); Guo, F., E-mail: gang.li@uah.edu [Theoretical Division, Los Alamos National Laboratory, NM 87545 (United States)

    2014-01-20

    We report observations of the acceleration and trapping of energetic ions and electrons between a pair of corotating interaction regions (CIRs). The event occurred in Carrington Rotation 2060. Observed by the STEREO-B spacecraft, the two CIRs were separated by less than 5 days. In contrast to other CIR events, the fluxes of the energetic ions and electrons in this event reached their maxima between the trailing edge of the first CIR and the leading edge of the second CIR. The radial magnetic field (B{sub r} ) reversed its sense and the anisotropy of the flux also changed from Sunward to anti-Sunward between the two CIRs. Furthermore, there was an extended period of counterstreaming suprathermal electrons between the two CIRs. Similar observations for this event were also obtained with the Advanced Composition Explorer and STEREO-A. We conjecture that these observations were due to a U-shaped, large-scale magnetic field topology connecting the reverse shock of the first CIR and the forward shock of the second CIR. Such a disconnected U-shaped magnetic field topology may have formed due to magnetic reconnection in the upper corona.

  18. Observations of gravity wave forcing of themesopause region during the January 2013 major Sudden Stratospheric Warming

    CERN Document Server

    deWit, R J; Espy, P J; Orsolini, Y J; Limpasuvan, V; Kinnison, D E

    2016-01-01

    Studies of vertical and interhemispheric coupling during Sudden Stratospheric Warmings (SSWs) suggest that gravity wave (GW) momentum flux divergence plays a key role in forcing the middle atmosphere, although observational validation of GW forcing is limited. We present a whole atmosphere view of zonal winds from the surface to 100 km during the January 2013 major SSW, together with observed GW momentum fluxes in the mesopause region derived from uninterrupted high-resolution meteor radar observations from an All-Sky Interferometric Meteor Radar system located at Trondheim, Norway (63.4 $^{\\circ}$N, 10.5 $^{\\circ}$E). Observations show GW momentum flux divergence 6 days prior to the SSW onset, producing an eastward forcing with peak values of $\\sim$+145 $\\pm$ 60m $s^{-1}$ $d^{-1}$. As the SSW evolves, GW forcing turns westward, reaching a minimum of $\\sim$-240 $\\pm$ 70 m $s^{-1}$ $d^{-1}$ $\\sim$+18 days after the SSW onset. These results are discussed in light of previous studies and simulations using the Wh...

  19. Using a Differential Emission Measure and Density Measurements in an Active Region Core to Test a Steady Heating Model

    CERN Document Server

    Winebarger, Amy; Warren, Harry; Saar, Steve; Kashyap, Vinay

    2011-01-01

    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high temperature active region loops close to equilibrium. In this paper, we couple observations of Active Region 10955 made with XRT and EIS on \\textit{Hinode} to test a simple steady heating model. First we calculate the differential emission measure of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3\\,MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6...

  20. Observations of Multi - Component Ion Beams in the High-Altitude Cusp/Cleft Region

    Science.gov (United States)

    Koleva, R.; Semkova, J.; Smirnov, V.; Fedorov, A.

    Both Solar wind and the Earth ionosphere serve as sources of magnetospheric plasma. Having entered (SW ions) or being ejected (ionospheric ions) into the magnetosphere, ions are involved in the magnetospheric circulation. The common idea is that ions, convected to the lobe region, due to the ExB drift, enter the region of the plasma sheet and get energized by different processes. Magnetospheric plasma flows have been widely investigated, using mainly energy-per-charge measurements. While this method successfully differentiates ion species, which have near - equal flow speed and low thermal velocities [e.g. Seki et al., J. Geophys. Res., 1998], the ionic composition of hot magnetospheric flows could only be revealed in mass or mass-per-charge measurements. Recent plasma flows studies based on ion composition measurements [Lennartson, J. Geophys. Res., 2001] showed a great deal of similarity between the tailward drifts of the different ions, especially in the transition region between the central plasma sheet and the tail lobes, and evoked the idea of near-Earth mixing of the Solar wind and ionospheric ions. We present some experimental evidence on near-Earth mixing of magnetospheric ions of different origin. Used are data from the Low Energy Plasma Composition Experiment (AMEI-2) onboard the high-apogee INTERBALL-1 satellite. We present and discuss several cases of ion beams with energies above 3 keV, registered in the cusp/cleft region at distances from 5 to 9 Re, in which both He++ and O+ are present. The beams are observed on filed lines connected with different magnetospheric regions: the LLBL, the plasma mantle and the lobe. The energy/pitch angle behaviour of both He++ (Solar wind origin) and O+ (ionospheric origin) reveals great similarity, as if they are from one and the same source. Only the wider distributions of the He++ fluxes and the narrow ones of the O+ ions indicate their different origin. The distributions bare the signatures of various acceleration

  1. The Climatology of Neutral Winds in the MLT Region as Observed From Orbit

    Science.gov (United States)

    Niciejewski, R.; Skinner, W.; Gell, D.; Cooper, M.; Marsh, A.; Killeen, T.; Wu, Q.; Solomon, S.; Ortland, D.; Drob, D.; Emmert, J.

    2005-12-01

    Unique observations of the horizontal neutral winds in the altitude range 70 to 115 km have been performed from satellite platforms by HRDI and WINDII (UARS) and by TIDI (TIMED), the former since September 1991 and the latter since January 2002. All three experiments observed airglow on the terrestrial limb and derived vertical wind profiles of geophysical quantities by inverting altitude scans of Doppler shifted emission spectra. As a result, the global mesosphere / lower thermosphere region has been sampled for 14 years by a common technique resulting in an unparalleled neutral wind database. This database will be one of the key contributions to an improved Horizontal Wind Model (HWM). This paper will describe results from the first long term climatological study of the MLT region based on satellite wind measurements. The basic dynamic structure in the MLT is a tide, which also has long-term variation that has similar periods to the 27-month QBO (quasi-biennial oscillation) and the SAO (semi-annual oscillation). Signatures of ultra-long variability require analysis of the full wind database.

  2. Silicon Monoxide Observations Reveal a Cluster of Hidden Compact Outflows in the OMC1 South Region

    CERN Document Server

    Zapata, L A; Rodríguez, L F; O'Dell, C R; Zhang, Q; Muench, A; Zapata, Luis A.; Ho, Paul T. P.; Rodriguez, Luis F.; Zhang, Qizhou; Muench, August

    2006-01-01

    We present high angular resolution ($2\\rlap.{''}8 \\times 1\\rlap.{''}7$) SiO J=5$\\to$4; $v=0$ line observations of the OMC1S region in the Orion Nebula made using the Submillimeter Array (SMA). We detect for the first time a cluster of four compact bipolar and monopolar outflows that show high, moderate and low velocity gas and appear to be energized by millimeter and infrared sources associated with this region. The SiO molecular outflows are compact ($<$ 3500 AU), and in most of the cases, they are located very close to their exciting sources. We thus propose that the SiO thermal emission is tracing the youngest and most highly excited parts of the outflows which cannot be detected by other molecules. Moreover, since the ambient cloud is weak in the SiO line emission, these observations can reveal flows that in other molecular transitions will be confused with the ambient velocity cloud emission. Analysis of their positional-velocity diagrams show that some components of these outflows may be driven by wi...

  3. Assessing physical activity during youth sport: the Observational System for Recording Activity in Children: Youth Sports.

    Science.gov (United States)

    Cohen, Alysia; McDonald, Samantha; McIver, Kerry; Pate, Russell; Trost, Stewart

    2014-05-01

    The purpose of this study was to evaluate the validity and interrater reliability of the Observational System for Recording Activity in Children: Youth Sports (OSRAC:YS). Children (N = 29) participating in a parks and recreation soccer program were observed during regularly scheduled practices. Physical activity (PA) intensity and contextual factors were recorded by momentary time-sampling procedures (10-second observe, 20-second record). Two observers simultaneously observed and recorded children's PA intensity, practice context, social context, coach behavior, and coach proximity. Interrater reliability was based on agreement (Kappa) between the observer's coding for each category, and the Intraclass Correlation Coefficient (ICC) for percent of time spent in MVPA. Validity was assessed by calculating the correlation between OSRAC:YS estimated and objectively measured MVPA. Kappa statistics for each category demonstrated substantial to almost perfect interobserver agreement (Kappa = 0.67-0.93). The ICC for percent time in MVPA was 0.76 (95% C.I. = 0.49-0.90). A significant correlation (r = .73) was observed for MVPA recorded by observation and MVPA measured via accelerometry. The results indicate the OSRAC:YS is a reliable and valid tool for measuring children's PA and contextual factors during a youth soccer practice.

  4. Regional estimation of Q from seismic coda observations by the Gauribidanur seismic array (southern India)

    Science.gov (United States)

    Tripathi, Jayant Nath; Ugalde, Arantza

    2004-07-01

    Attenuation properties of the lithosphere in southern India are estimated from 1219 vertical-component, short-period observations of microearthquake codas recorded by the Gauribidanur seismic array. The magnitudes of the earthquakes range from 0.3 to 3.7 and have focal depths less than 10 km. Coda-wave attenuation ( Qc-1) is estimated by means of a single isotropic scattering method and a multiple lapse time window analysis based on the hypothesis of multiple isotropic scattering and uniform distribution of scatterers is used to estimate the contribution of intrinsic absorption ( Qi-1) and scattering ( Qs-1) to total attenuation ( Qt-1). All the attenuation parameters are estimated, as a function of frequency for hypocentral distances up to 255 km. Results show a frequency dependent relation of the Qc-1 values in the range 1-10 Hz that fit the power law Q -1(f)=Q 0-1(f/f 0) ηA Q 0-1 value of 0.014 and a decrease of f-1.2 have been found using data from the whole region. On the other hand, scattering attenuation is found to be greater than intrinsic absorption for all the frequency bands. A high value of the seismic albedo (which ranges from 0.68 to 1) is found which indicates that scattering is the dominant effect in the study region. Nevertheless, the attenuation parameters estimated are much lower than the obtained for other regions in the world. On the other hand, the observed energy at 0-15 s from the S-wave arrival time bends significantly downward with decreasing distance. In order to clarify this phenomenon, there is a need to take into account the vertical varying velocity structure in the theoretical model.

  5. Observation of regional air pollutant transport between the megacity Beijing and the North China Plain

    Science.gov (United States)

    Li, Yingruo; Ye, Chunxiang; Liu, Jun; Zhu, Yi; Wang, Junxia; Tan, Ziqiang; Lin, Weili; Zeng, Limin; Zhu, Tong

    2016-11-01

    Megacities have strong interactions with the surrounding regions through transport of air pollutants. It has been frequently addressed that the air quality of Beijing is influenced by the influx of air pollutants from the North China Plain (NCP). Estimations of air pollutant cross-boundary transport between Beijing and the NCP are important for air quality management. However, evaluation of cross-boundary transport using long-term observations is very limited. Using the observational results of the gaseous pollutants SO2, NO, NO2, O3, and CO from August 2006 to October 2008 at the Yufa site, a cross-boundary site between the megacity Beijing and the NCP, together with meteorological parameters, we explored a method for evaluating the transport flux intensities at Yufa, as part of the "Campaign of Air Quality Research in Beijing and Surrounding Region 2006-2008" (CAREBeijing 2006-2008). The hourly mean ± SD (median) concentration of SO2, NO, NO2, NOx, O3, Ox, and CO was 15 ± 16 (9) ppb, 12 ± 25 (3) ppb, 24 ± 19 (20) ppb, 36 ± 39 (23) ppb, 28 ± 27 (21) ppb, 52 ± 24 (45) ppb, and 1.6 ± 1.4 (1.2) ppm during the observation period, respectively. The bivariate polar plots showed the dependence of pollutant concentrations on both wind speed and wind direction, and thus inferred their dominant transport directions. Surface flux intensity calculations further demonstrated the regional transport influence of Beijing and the NCP on Yufa. The net surface transport flux intensity (mean ± SD) of SO2, NO, NO2, NOx, O3, Ox, and CO was 6.2 ± 89.5, -4.3 ± 29.5, -0.6 ± 72.3, -4.9 ± 93.0, 14.7 ± 187.8, 14.8 ± 234.9, and 70 ± 2830 µg s-1 m-2 during the observation period, respectively. For SO2, CO, O3, and Ox the surface flux intensities from the NCP to Yufa surpassed those from Beijing to Yufa in all seasons except winter, with the strongest net fluxes largely in summer, which were about 4-8 times those of other seasons. The surface transport flux intensity of NOx

  6. Test of the Formation mechanism of the Broad Line Region in Active Galactic Nuclei

    CERN Document Server

    Czerny, Bozena; Wang, Jian-Min; Karas, Vladimir

    2016-01-01

    The origin of the Broad Line Region (BLR) in active galaxies remains unknown. It seems to be related to the underlying accretion disk but an efficient mechanism is required to rise the material from the disk surface without giving too strong signatures of the outflow in the case of the low ionization lines. We discuss in detail two proposed mechanisms: (i) radiation pressure acting on dust in the disk atmosphere creating a failed wind (ii) the gravitational instability of the underlying disk. We compare the predicted location of the inner radius of the BLR in those two scenarios with the observed position obtained from the reverberation studies of several active galaxies. The failed dusty outflow model well represents the observational data while the predictions of the self-gravitational instability are not consistent with observations. The issue remains why actually we do not see any imprints of the underlying disk instability in the BLR properties.

  7. 77 FR 24952 - Agency Information Collection Activities; Proposed Collection; Comment Request; Regional Haze...

    Science.gov (United States)

    2012-04-26

    ... ICR (August 26, 2009; 74 FR 43118). The last collection request anticipated the program progressing... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Regional Haze... organizations and facilities potentially regulated under the regional haze rule. Title: Regional...

  8. Aerosol variability and atmospheric transport in the Himalayan region from CALIOP 2007-2010 observations

    Science.gov (United States)

    Bucci, S.; Cagnazzo, C.; Cairo, F.; Di Liberto, L.; Fierli, F.

    2013-06-01

    Himalayan Plateau is surrounded by regions with high natural and anthropogenic aerosol emissions that have a strong impact on regional climate. This is particularly critical for the Himalayan glaciers whose equilibrium is also largely influenced by radiative direct and indirect effects induced by aerosol burden. This work focuses on the spatial and vertical distribution of different aerosol types, their seasonal variability and sources. The analysis of the 2007-2010 yr of CALIPSO vertically resolved satellite data allows the identification of spatial patterns of desert dust and carbonaceous particles in different atmospheric layers. Clusters of Lagrangian back-trajectories highlight the transport pathways from source regions during the dusty spring season. The analysis shows a prevalence of dust; at low heights they are distributed mainly north (with a main contribution from the Gobi and Taklamakan deserts) and west of the Tibetan Plateau (originating from the deserts of South-West Asia and advected by the westerlies). Above the Himalayas the dust amount is minor but still not negligible (detectable in around 20% of the measurements), and transport from more distant deserts (Sahara and Arabian Peninsula) is important. Smoke aerosol, produced mainly in North India and East China, is subject to shorter range transport and is indeed observed closer to the sources while there is a limited amount reaching the top of the plateau. Data analysis reveals a clear seasonal variability in the frequencies of occurrence for the main aerosol types; dust is regulated principally by the monsoon dynamics, with maxima of occurrence in spring. The study also highlights relevant interannual differences, showing a larger presence of aerosol in the region during 2007 and 2008 yr.

  9. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  10. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    CERN Document Server

    Lin, Chia-Hsien

    2016-01-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer.In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the extension of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of $\\approx$~4~Mm hr$^{-1}$ and decreases to $\\le$~1~Mm hr$^{-1}$ after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3~Mm hr$^{-1}$...

  11. Coronal energy input and dissipation in a solar active region 3D MHD model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2015-01-01

    Context. We have conducted a 3D MHD simulation of the solar corona above an active region in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the active region (AR) core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperatur...

  12. Unusual Energetic Particle Behavior in the Depletion Region at > 121 AU observed with LECP on Voyager 1

    Science.gov (United States)

    Krimigis, S. M.; Decker, R. B.; Hill, M. E.; Roelof, E. C.

    2013-12-01

    An outstanding feature of energetic particle observations just before and after crossing into the recently identified "depletion region" at 122 AU has been the organization of the data by pitch angle, revealed by LECP's 360° rotation scheme and the MAG magnetic field direction measurements. Immediately beyond the "heliocliff", the anomalous cosmic ray (ACR) protons at ~3 Mev exhibit faster decay rates along the magnetic field than perpendicular to it. At all distances beyond the heliocliff, galactic cosmic rays (GCR) display general isotropy in all but the direction nearly perpendicular to the magnetic field. There is a general and continuing decay in intensities of GCRs at 90° pitch angles, with occasional, time-ordered disruptions, indicative of continuing heliospheric control in this region. In early June, 2013, there was an onset of relativistic electron burst activity with FWHM as small as ~ 6 hours that persisted for ~ 20 days. These electrons appeared ~ 1 month after an outburst of X-class solar flares, suggesting a possible solar origin and hence magnetic connection back to the Sun. In contrast to the GCRs, the electon intensities were essentially isotropic, based on three-day averages. Ion activity in the depletion region is detected above background only in the lowest energy PHA proton channels (E ~ 400 keV). Over the past few months there has been an increase of well over an order of magnitude at these energies, but no change at > 1 Mev. Nor have the heavier species (He, C, O) increased at any energy. It would appear that ACRs are totally absent from the depletion region to this date.

  13. SIZE ENTERPRISES’ INFLUENCE FOR INNOVATION ACTIVITY IN REGIONAL INDUSTRIAL SYSTEM IN POMORSKIE REGION IN 2009-2011

    Directory of Open Access Journals (Sweden)

    Arkadiusz Świadek

    2014-06-01

    Full Text Available In transition countries, company’s size has a big impact on economy processes, including innovation activity in industry. The main objective of the study was to search for the impact of class size of enterprises on their innovation activity within the regional industrial system in Pomorskie region, and consequently determine the boundary conditions for the model structure of regional innovation networks, which take into account the specificity of region, allowing a skillful creation of innovation policy. Methodological part of the study was based on probit modeling (probability theory.

  14. High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques

    Science.gov (United States)

    Wu, Yihao; Luo, Zhicai; Chen, Wu; Chen, Yongqi

    2017-02-01

    We adopt Poisson wavelets for regional gravity field recovery using data acquired from various observational techniques; the method combines data of different spatial resolutions and coverage, and various spectral contents and noise levels. For managing the ill-conditioned system, the performances of the zero- and first-order Tikhonov regularization approaches are investigated. Moreover, a direct approach is proposed to properly combine Global Positioning System (GPS)/leveling data with the gravimetric quasi-geoid/geoid, where GPS/leveling data are treated as an additional observation group to form a new functional model. In this manner, the quasi-geoid/geoid that fits the local leveling system can be computed in one step, and no post-processing (e.g., corrector surface or least squares collocation) procedures are needed. As a case study, we model a new reference surface over Hong Kong. The results show solutions with first-order regularization are better than those obtained from zero-order regularization, which indicates the former may be more preferable for regional gravity field modeling. The numerical results also demonstrate the gravimetric quasi-geoid/geoid and GPS/leveling data can be combined properly using this direct approach, where no systematic errors exist between these two data sets. A comparison with 61 independent GPS/leveling points shows the accuracy of the new geoid, HKGEOID-2016, is around 1.1 cm. Further evaluation demonstrates the new geoid has improved significantly compared to the original model, HKGEOID-2000, and the standard deviation for the differences between the observed and computed geoidal heights at all GPS/leveling points is reduced from 2.4 to 0.6 cm. Finally, we conclude HKGEOID-2016 can be substituted for HKGEOID-2000 for engineering purposes and geophysical investigations in Hong Kong.

  15. On Magnetic Activity Band Overlap, Interaction, and the Formation of Complex Solar Active Regions

    CERN Document Server

    McIntosh, Scott W

    2014-01-01

    Recent work has revealed an phenomenological picture of the how the $\\sim$11-year sunspot cycle of Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22-year magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle we anticipate that those complex active regions may be particular susceptible to profoundly catastrophic breakdown---producing flares and coronal mass ejections of most severe magnitude.

  16. The INAF contribution to the ASI Space Debris program: observational activities.

    Science.gov (United States)

    Pupillo, G.; Salerno, E.; Bartolini, M.; Di Martino, M.; Mattana, A.; Montebugnoli, S.; Portelli, C.; Pluchino, S.; Schillirò, F.; Konovalenko, A.; Nabatov, A.; Nechaeva, M.

    Space debris are man made objects orbiting around Earth that pose a serious hazard for both present and future human activities in space. Since 2007 the Istituto Nazionale di Astrofisica (INAF) carried out a number of radar campaigns in the framework of the ASI ``Space Debris'' program. The observations were performed by using bi- and multi-static radars, composed of the INAF 32-m Italian radiotelescopes located at Medicina and Noto (used as receivers) and the 70-m parabolic antenna at Evpatoria (Ukraine) used as transmitter. The 32 m Ventspils antenna in Latvia also participated in the last campaign at the end of June 2010. Several kinds of objects in various orbital regions (radar calibrators, rocket upper stages, debris of different sizes) were observed and successfully detected. Some unknown objects were also discovered in LEO during the beam-park sessions. In this paper we describe some results of the INAF-ASI space debris research activity.

  17. Regional Evaluation of ERA-40 Reanalysis Data with Marine Atmospheric Observations in the North Sea Area

    Directory of Open Access Journals (Sweden)

    Nils H. Schade

    2013-12-01

    Full Text Available An important task of the departmental research programme KLIWAS is the evaluation and assessment of climate model results by means of a comprehensive reference data set. For validation purposes, and to create a North Sea wide maritime atmospheric and oceanographic reference database, in-situ observations of the Centre for Global Marine Meteorological Observations (GZS of the National Meteorological Service DWD have been compared to the ERA-40 reanalysis. ERA-40 is used as forcing for the hindcast runs of the ENSEMBLES regional climate models, which is used within the KLIWAS model chain. The GZS hosts a regularly updated, quality controlled, world-wide data bank of weather observations from the oceans. It includes data from all sorts of observation platforms as Voluntary Observing Ships (VOS, drifting and moored buoys, light vessels, and offshore platforms, either from real-time (RT via the Global Telecommunication System (GTS or from international exchange in delayed-mode (DM. In addition to the automated set of programs applied for high quality control, erroneous data are also manually corrected to a certain extent, if possible. To assure reliable statistics for the evaluation, the corrected observations are gridded to a resolution of 2.25 degree, so each grid box includes four ERA-40 reanalysis grid points. The temporal coverage of the grid boxes depends on shipping routes and the positions of automated systems. Observed air temperatures, covering a period of 40 years (1961?2000, show noticeable differences to the reanalysis data for all land influenced boxes, specifically in the winter months. The same differences can be found if ERA-40 data alone are compared between land- and sea facing boxes. They can not be found in GZS data. It can be assumed that the differences are not resulting from measurement errors or uncertain fraction variabilities, since they are small during the winter months. A comparison of the differences basing on the 1981

  18. Eruption of the magnetic flux rope in a fast decayed active region

    CERN Document Server

    Yang, Shangbin; Liu, Jihong

    2013-01-01

    An isolated and fast decayed active region (NOAA 9729) was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22 degrees comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. Two magnetic cancelation regions have been observed clearly just before filament eruption. Moreover, the magnetic flux rope erupted as the magnetic helicity approach the maximum and the normalized helicity is -0.036 when the magnetic flux rope erupted, which is close to the predic...

  19. Observational Signatures of Galactic Winds Powered by Active Galactic Nuclei

    CERN Document Server

    Nims, Jesse; Faucher-Giguere, Claude-Andre

    2014-01-01

    We predict the observational signatures of galaxy scale outflows powered by active galactic nuclei (AGN). Most of the emission is produced by the forward shock driven into the ambient interstellar medium (ISM) rather than by the reverse shock. AGN powered galactic winds with energetics suggested by phenomenological feedback arguments should produce spatially extended 1-10 keV X-ray emission of 10^(41-44) erg/s, significantly in excess of the spatially extended X-ray emission associated with normal star forming galaxies. The presence of such emission is a direct test of whether AGN outflows significantly interact with the ISM of their host galaxy. We further show that even radio quiet quasars should have a radio luminosity comparable to or in excess of the far infrared-radio correlation of normal star forming galaxies. This radio emission directly constrains the total kinetic energy flux in AGN-powered galactic winds. Radio emission from AGN wind shocks can also explain the recently highlighted correlations be...

  20. Visual observations of glottic activity during didgeridoo performance

    Science.gov (United States)

    Izdebski, Krzysztof; Hyde, Lydia; Ward, Ronald R.; Ross, Joel C.

    2012-02-01

    Australian didgeridoo is a reed-less hollow conically shape wooden tubular wind instrument typically measuring up to 150 cm in length, with distal and proximal diameters ranging from 150 to 30 mm. This tube allows a player to produce only a narrow variety of sound and sounds effects because it is coupled directly to the player's vocal tract. The typical frequency of the tube typically called the drone, is approximately within 60 to 100 Hz range. This tone generation modulated by lip vibration is supported by circular breathing, allowing for an uninterrupted (indefinite) length of sound generation. Inhalation introduces sound pulsation, while specific tonal effects can be consciously created by manipulation of the player's lips and/or the vocal tract, including conscious phonation using vocal folds vibration, all used to enrich both the sound and the artistic meaning of the played sequence. Though the results of the research on the acoustics of this instrument are often reported in the literature, physiologic data regarding vocal tract configurations, and especially on the behavior of the vocal folds in regulation of ventilation and in phonation, remain less than underreported. The data presented here comprises (as far as we were able to determine) the first ever physiologic account of vocal fold activity in a didgeridoo player observed with help of trans-nasal endoscopy. Our focus was to reveal the work of t

  1. Intensification of the regional scale variability of extreme precipitation derived from RCM simulations and observations

    Science.gov (United States)

    Feldmann, H.; Schädler, G.; Panitz, H.-J.

    2012-04-01

    Future climate change patterns are usually derived from ensembles of coarse global climate model simulations (GCMs), for instance within the Coupled Model Intercomparison Project (CMIP) or from regional climate projections at resolutions of some tens of km, for instance for Europe from the ENSEMBLES or PRUDENCE projects. For regions with complex topography like Central Europe the horizontal resolution of these climate projections is still too coarse to resolve the typical topographical length scales, and therefore the impact of the large scale changes with the regional geography cannot be captured adequately. For this task high resolution ensemble simulations with regional climate models (RCMs) are needed. The generation of an ensemble of such high resolution simulations requires great computational efforts. With the RCM COSMO-CLM several simulations with resolutions down to 7 km have been performed, using different driving GCMs and GCM realisations. This ensemble approach is needed to estimate the robustness of the change signals and to account for the uncertainties introduced by differences in the large scale forcing due to the variability of the climate change signals caused by the different GCMs or the natural variability. The focus of the study is on the changes of extreme precipitation for the near future until the middle of the 21st century. An increase of the temporal and spatial variability is found for the precipitation extremes, especially for summer. The change patterns seem to be statistically robust. Based on long-term observation climatologies for the second half of the 20th century, similar structures where found with areas of decrease and increase only a few tens of kilometres apart from each other. The combination of the findings from the RCM projections and observations suggests a continuation of the trends from the recent past into the near future. Possible causes for the horizontally heterogeneous change patterns are related to weather pattern

  2. HI deficiency in the galaxy cluster ACO 3627. ATCA observations in the Great Attractor region

    CERN Document Server

    Vollmer, B; Van Driel, W; Henning, P A; Kraan-Korteweg, R C; Balkowski, C; Woudt, P A; Duschl, W J

    2001-01-01

    ATCA 21 cm HI observations of the rich galaxy cluster ACO 3627 in the Great Attractor region are presented. Three fields of 30' diameter located within one Abell radius of ACO 3627 were observed with a resolution of 15'' and an rms noise of \\sim 1 mJy/beam. Only two galaxies were detected in these fields. We compare their HI distribution to new optical R-band images and discuss their velocity fields. The first galaxy is a gas-rich unperturbed spiral whereas the second shows a peculiar HI distribution. The estimated 3-sigma HI mass limit of our observations is \\sim 7 x 10^8 M_{\\odot} for a line width of 150 km s^{-1}. The non-detection of a considerable number of luminous spiral galaxies indicates that the spiral galaxies are HI deficient. The low detection rate is comparable to the HI deficient Coma cluster (Bravo-Alfaro et al. 2000). ACO 3627 is a bright X-ray cluster. We therefore suspect that ram pressure stripping is responsible for the HI deficiency of the bright cluster spirals.

  3. Far and mid infrared observations of two ultracompact H II regions and one compact CO clump

    CERN Document Server

    Verma, R P; Mookerjea, B; Rengarajan, T N

    2003-01-01

    Two ultracompact H II regions (IRAS 19181+1349 and 20178+4046) and one compact molecular clump (20286+4105) have been observed at far infrared wavelengths using the TIFR 1 m balloon-borne telescope and at mid infrared wavelengths using ISO. Far infrared observations have been made simultaneously in two bands with effective wavelengths of ~ 150 and ~ 210 micron, using liquid 3He cooled bolometer arrays. ISO observations have been made in seven spectral bands using the ISOCAM instrument; four of these bands cover the emission from Polycyclic Aromatic Hydrocarbon (PAH) molecules. In addition, IRAS survey data for these sources in the four IRAS bands have been processed using the HIRES routine. In the high resolution mid infrared maps as well as far infrared maps multiple embedded energy sources have been resolved. There are structural similarities between the images in the mid infrared and the large scale maps in the far infrared bands, despite very different angular resolutions of the two. Dust temperature and ...

  4. VSA Observations of the Anomalous Microwave Emission in the Perseus Region

    CERN Document Server

    Tibbs, Christopher T; Dickinson, Clive; Davies, Rodney D; Davis, Richard J; del Burgo, Carlos; Franzen, Thomas M O; Génova-Santos, Ricardo; Grainge, Keith; Hobson, Michael P; Padilla-Torres, Carmen P; Rebolo, Rafael; Rubiño-Martín, Jóse Alberto; Saunders, Richard D E; Scaife, Anna M M; Scott, Paul F

    2009-01-01

    The dust feature G159.6--18.5 in the Perseus region has previously been observed with the COSMOSOMAS experiment \\citep{Watson:05} on angular scales of $\\approx$ 1$^{\\circ}$, and was found to exhibit anomalous microwave emission. We present new observations of this dust feature, performed with the Very Small Array (VSA) at 33 GHz, to help increase the understanding of the nature of this anomalous emission. On the angular scales observed with the VSA ($\\approx$ 10 -- 40$^{\\prime}$), G159.6--18.5 consists of five distinct components, each of which have been individually analysed. All five of these components are found to exhibit an excess of emission at 33 GHz, and are found to be highly correlated with far-infrared emission. We provide evidence that each of these compact components have anomalous emission that is consistent with electric dipole emission from very small, rapidly rotating dust grains. These components contribute $\\approx$ 10 % to the flux density of the diffuse extended emission detected by COSMO...

  5. CO observations of massive star forming regions at different evolutionary phases

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi; XU; Ye; SHEN; Zhiqiang; LI; Jingjing

    2006-01-01

    The 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) emissions in 9 massive star forming regions, which are believed to be at different stages of massive star formation,were mapped with the 13.7 m millimeter wave telescope at Qinghai Station of Purple Mountain Observatory. Of the observed 9 sources, 13CO cores were detected in seven of them, and C18O cores in five of them. And only two sources associated with C18O cores and H2O masers showed the extended structures and strong outflows. This is the first detection of outflow associated with IRAS 22566+5828 in the observing field of S152/S153.The physical parameters of cores and outflows for these sources, derived from Local Thermal Equilibrium (LTE) analysis, are presented. These observing results suggest that the C18O cores will only appear when the gas density is high enough and the probability to have an outflow is very high when the clumps show the C18O and H2O maser simultaneously.

  6. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    Science.gov (United States)

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may

  7. Optical spectrophotometry of the nuclear region of M51. II - Further evidence for nuclear activity

    Science.gov (United States)

    Rose, J. A.; Cecil, G.

    1983-03-01

    Spectrophotometric observations of the spiral galaxy M51 conducted by Rose and Searle (1982) have revealed that the ionized gas within the central region exhibits a peculiar emission-line spectrum and is undergoing large chaotic motions. These phenomena appear to result from low-level nuclear activity qualitatively similar to that seen in Seyfert galaxy nuclei and QSOs. It has been proposed that the gas is photoionized by a central nonstellar ultraviolet continuum. The present study is concerned with a further investigation of the ionization source in the nuclear region of M51, taking into account high signal-to-noise spectra obtained with an intensified Reticon detector on the 2.24 m telescope at the Mauna Kea Observatory. It is found that photoionization by a central nonstellar ionizing continuum source provides the most consistent explanation for the observed anomalous emission-line spectrum.

  8. Eastern region represents a worrying cluster of active hepatitis C in Algeria in 2012.

    Science.gov (United States)

    Bensalem, Aïcha; Selmani, Karima; Hihi, Narjes; Bencherifa, Nesrine; Mostefaoui, Fatma; Kerioui, Cherif; Pineau, Pascal; Debzi, Nabil; Berkane, Saadi

    2016-08-01

    Algeria is the largest country of Africa, peopled with populations living a range of traditional/rural and modern/urban lifestyles. The variations of prevalence of chronic active hepatitis care poorly known on the Algerian territory. We conducted a retrospective survey on all patients (n = 998) referred to our institution in 2012 and confirmed by us for an active hepatitis C. Half of the hepatitis C virus (HCV) isolates were genotyped. Forty Algerian regions out of the 48 were represented in our study. Three geographical clusters (Aïn-Temouchent/SidiBelAbbes, Algiers, and a large Eastern region) with an excess of active hepatitis C were observed. Patients coming from the Eastern cluster (Batna, Khenchela, Oum el Bouaghi, and Tebessa) were strongly over-represented (49% of cases, OR = 14.5, P < 0.0001). The hallmarks of Eastern region were an excess of women (65% vs. 46% in the remaining population, P < 0.0001) and the almost exclusive presence of HCV genotype 1 (93% vs. 63%, P = 0.0001). The core of the epidemics was apparently located in Khenchela (odds ratio = 24.6, P < 0.0001). This situation is plausibly connected with nosocomial transmission or traditional practices as scarification (Hijama), piercing or tattooing, very lively in this region. Distinct hepatitis C epidemics are currently affecting Algerian population. The most worrying situation is observed in rural regions located east of Algeria. J. Med. Virol. 88:1394-1403, 2016. © 2016 Wiley Periodicals, Inc.

  9. Photospheric, Chromospheric and Helioseismic Signatures of a Large Flare in Super-active Region NOAA 10486

    Indian Academy of Sciences (India)

    Ashok Ambastha

    2006-06-01

    NOAA 10486 produced several powerful flares, including the 4B/X17.2 superflare of October 28, 2003/11:10 UT. This flare was extensively covered by the H and GONG instruments operated at the Udaipur Solar Observatory (USO). The central location of the active region on October 28, 2003was well-suited for the ring diagram analysis to obtain the 3-D power spectra and search for helioseismic response of this large flare on the amplitude, frequency and width of the p-modes. Further, using USO observations, we have identified the sites of new flux emergences, large proper motions and line-of-sight velocity flows in the active region and their relationship with the flare.

  10. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    Science.gov (United States)

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  11. Forum for Arctic Modeling and Observational Synthesis (FAMOS): Past, current, and future activities

    Science.gov (United States)

    Proshutinsky, A.; Steele, M.; Timmermans, M.-L.

    2016-06-01

    The overall goal of the Forum for Arctic Modeling and Observational Synthesis (FAMOS) community activities reported in this special issue is to enhance understanding of processes and mechanisms driving Arctic Ocean marine and sea ice changes, and the consequences of those changes especially in biogeochemical and ecosystem studies. Major 2013-2015 FAMOS accomplishments to date are: identification of consistent errors across Arctic regional models; approaches to reduce these errors, and recommendations for the most effective coupled sea ice-ocean models for use in fully coupled regional and global climate models. 2013-2015 FAMOS coordinated analyses include many process studies, using models together with observations to investigate: dynamics and mechanisms responsible for drift, deformation and thermodynamics of sea ice; pathways and mechanisms driving variability of the Atlantic, Pacific and river waters in the Arctic Ocean; processes of freshwater accumulation and release in the Beaufort Gyre; the fate of melt water from Greenland; characteristics of ocean eddies; biogeochemistry and ecosystem processes and change, climate variability, and predictability. Future FAMOS collaborations will focus on employing models and conducting observations at high and very high spatial and temporal resolution to investigate the role of subgrid-scale processes in regional Arctic Ocean and coupled ice-ocean and atmosphere-ice-ocean models.

  12. Decay of Activity Complexes, Formation of Unipolar Magnetic Regions and Coronal Holes in their Causal Relation

    CERN Document Server

    Golubeva, Elena

    2016-01-01

    North-south asymmetry of sunspot activity resulted in an asynchronous reversal of the Sun's polar fields in the current cycle. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope aboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory are analyzed here to study a causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun's open magnetic flux. In particular, the...

  13. Acetylcholine activity in selective striatal regions supports behavioral flexibility.

    Science.gov (United States)

    Ragozzino, Michael E; Mohler, Eric G; Prior, Margaret; Palencia, Carlos A; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m(2) muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility.

  14. Plasma composition in a sigmoidal anemone active region

    CERN Document Server

    Baker, D; Demoulin, P; van Driel-Gesztelyi, L; Green, L M; Steed, K; Carlyle, J

    2013-01-01

    Using spectra obtained by the EIS instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359 arcsec x 485 arcsec. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the AR age, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP b...

  15. Evolution of the Magnetic Field Distribution of Active Regions

    CERN Document Server

    Dacie, Sally; van Driel-Gesztelyi, Lidia; Long, David; Baker, Deb; Janvier, Miho; Yardley, Stephanie; Pérez-Suárez, David

    2016-01-01

    Aims. Although the temporal evolution of active regions (ARs) is relatively well understood, the processes involved continue to be the subject of investigation. We study how the magnetic field of a series of ARs evolves with time to better characterise how ARs emerge and disperse. Methods. We examine the temporal variation in the magnetic field distribution of 37 emerging ARs. A kernel density estimation plot of the field distribution was created on a log-log scale for each AR at each time step. We found that the central portion of the distribution is typically linear and its slope was used to characterise the evolution of the magnetic field. Results. The slopes were seen to evolve with time, becoming less steep as the fragmented emerging flux coalesces. The slopes reached a maximum value of ~ -1.5 just before the time of maximum flux before becoming steeper during the decay phase towards the quiet Sun value of ~ -3. This behaviour differs significantly from a classical diffusion model, which produces a slope...

  16. Simulation of the Formation of a Solar Active Region

    Science.gov (United States)

    Cheung, M. C. M.; Rempel, M.; Title, A. M.; Schüssler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B vprop rhov1/2. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  17. Seasat altimeter observations of dynamic topography in the Gulf Stream region

    Science.gov (United States)

    Cheney, R. E.; Marsh, J. G.

    1981-01-01

    A straightforward approach to altimeter data analysis in the Gulf Stream system is presented, using a detailed geoid model to remove the gravitational component. The resulting sea surface height profiles compare remarkably well with independent oceanographic observations. Specific features such as cold rings, warm rings, and no anomaly regions are analyzed and it is shown that known positions of cyclonic and anticyclonic rings correspond with depressions and elevations, respectively, with amplitudes as large as 95 cm. The apparent fluctuation of the Gulf Stream is indicated by the results, as in the finding that on time scales of a few days, surface transport indicated by the sea surface height difference across the stream varied by nearly 30%

  18. Regional-scale surface flux observations across the boreal forest during BOREAS

    DEFF Research Database (Denmark)

    Oncley, S.P.; Lenschow, D.H.; Campos, T.L.;

    1997-01-01

    study area to the subarctic tundra. Typical midsummer, midday, large-scale net ecosystem exchanges of carbon dioxide were about -10 mu mol m(-2) s(-1) for primarily deciduous forests, about -6 mu mol m(-2) s(-1) for the primarily coniferous regions between and including the two BOREAS study areas......A major role of the National Center for Atmospheric Research (NCAR) Electra aircraft during the Boreal Ecosystem-Atmosphere Study (BOREAS) was to measure fluxes of momentum, sensible and latent heat, carbon dioxide, and ozone on a transect that crossed the entire boreal forest biome....... The observations spanned the growing season (late May to mid-September 1994) and extended the fluxes obtained in two intensive study areas to larger spatial scales to help provide a data set that is useful for comparison with and validation of large-scale models and satellite retrievals. We found the deciduous...

  19. Observation of associated production of a $Z$ boson with a $D$ meson in the forward region

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dorosz, Piotr; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; van Eijk, Daan; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garosi, Paola; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Hafkenscheid, Tom; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Huse, Torkjell; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Iakovenko, Viktor; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Klaver, Suzanne; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luisier, Johan; Luo, Haofei; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marconi, Umberto; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Mous, Ivan; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Polok, Grzegorz; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redford, Sophie; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wiggers, Leo; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    A search for associated production of a $Z$ boson with an open charm meson is presented using a data sample, corresponding to an integrated luminosity of $1.0\\mathrm{fb}^{-1}$ of proton--proton collisions at a centre-of-mass energy of 7 TeV, collected by the LHCb experiment. Seven candidate events for associated production of a $Z$ boson with a $D^0$ meson and four candidate events for a $Z$ boson with a $D^+$ meson are observed with a combined significance of 5.1 standard deviations. The production cross-sections in the forward region are measured to be $$\\sigma_{Z\\rightarrow\\mu^+\\mu^-\\!,D^0} = 2.50\\pm1.12\\pm0.22pb$$ $$\\sigma_{Z\\rightarrow\\mu^+\\mu^-\\!,D^+} = 0.44\\pm0.23\\pm0.03pb,$$ where the first uncertainty is statistical and the second systematic.

  20. Polar patches observed by ESR and their possible origin in the cusp region

    Directory of Open Access Journals (Sweden)

    A. M. Smith

    Full Text Available Observations by the EISCAT Svalbard radar in summer have revealed electron density enhancements in the magnetic noon sector under conditions of IMF Bz southward. The features were identified as possible candidates for polar-cap patches drifting anti-Sunward with the plasma flow. Supporting measurements by the EISCAT mainland radar, the CUTLASS radar and DMSP satellites, in a multi-instrument study, suggested that the origin of the structures lay upstream at lower latitudes, with the modulation in density being attributed to variability in soft-particle precipitation in the cusp region. It is proposed that the variations in precipitation may be linked to changes in the location of the reconnection site at the magnetopause, which in turn results in changes in the energy distribution of the precipitating particles.

    Key words: Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; polar ionosphere

  1. Estimating methane emissions in California's urban and rural regions using multitower observations

    Science.gov (United States)

    Jeong, Seongeun; Newman, Sally; Zhang, Jingsong; Andrews, Arlyn E.; Bianco, Laura; Bagley, Justin; Cui, Xinguang; Graven, Heather; Kim, Jooil; Salameh, Peter; LaFranchi, Brian W.; Priest, Chad; Campos-Pineda, Mixtli; Novakovskaia, Elena; Sloop, Christopher D.; Michelsen, Hope A.; Bambha, Ray P.; Weiss, Ray F.; Keeling, Ralph; Fischer, Marc L.

    2016-11-01

    We present an analysis of methane (CH4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH4 emissions for spatial regions (0.3° pixels for major regions) by comparing measured CH4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 95% confidence), higher (1.2-1.8 times) than the current CARB inventory (1.64 Tg CH4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for 58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32).

  2. Acute leukemias in Piauí: comparison with features observed in other regions of Brazil

    Directory of Open Access Journals (Sweden)

    Rego M.F.N.

    2003-01-01

    Full Text Available Differences in age and sex distribution as well as FAB (French-American-British classification types have been reported for acute leukemias in several countries. We studied the demographics and response to treatment of patients with acute myeloid leukemia (AML and acute lymphoblastic leukemia (ALL between 1989 and 2000 in Teresina, Piauí, and compared these results with reports from Brazil and other countries. Complete data concerning 345 patients (230 ALL, 115 AML were reviewed. AML occurred predominantly in adults (77%, with a median age of 34 years, similar to that found in the southeast of Brazil but lower than the median age in the United States and Europe (52 years. FAB distribution was similar in children and adults and FAB-M2 was the most common type, as also found in Japan. The high frequency of FAB-M3 described in most Brazilian studies and for Hispanics in the United States was not observed. Overall survival for adults was 40%, similar to other studies in Brazil. A high mortality rate was observed during induction. No clinical or hematological parameter influenced survival in the Cox model. ALL presented the characteristic peak of incidence between 2-8 years. Most of the cases were CD10+ pre-B ALL. In 25%, abnormal expression of myeloid antigens was observed. Only 10% of the patients were older than 30 years. Overall survival was better for children. Age and leukocyte count were independent prognostic factors. These data demonstrate that, although there are regional peculiarities, the application of standardized treatments and good supportive care make it possible to achieve results observed in other countries for the same chemotherapy protocols.

  3. Mesoscale convection system and occurrence of extreme low tropopause temperatures. Observations over Asian summer monsoon region

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A.R.; Mandal, T.K.; Gautam, R. [National Physical Laboratory, New Delhi (India). Radio and Atmospheric Div.; Panwar, V. [National Physical Laboratory, New Delhi (India). Radio and Atmospheric Div.; Delhi Univ. (India). Dept. of Physics and Astrophysics; Rao, V.R. [India Meteorology Dept., New Delhi (India). Satellite Meteorology Div.; Goel, A. [Delhi Univ. (India). Dept. of Physics and Astrophysics; Das, S.S. [Vikram Sarabhai Space Center, Trivandrum