WorldWideScience

Sample records for active recombinant full-length

  1. Cocrystallization studies of full-length recombinant butyrylcholinesterase (BChE) with cocaine

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin Ajibola; Asojo, Oluyomi Adebola; Ngamelue, Michelle N.; Homma, Kohei; Lockridge, Oksana (Nebraska-Med)

    2011-09-16

    Human butyrylcholinesterase (BChE; EC 3.1.1.8) is a 340 kDa tetrameric glycoprotein that is present in human serum at about 5 mg l{sup -1} and has well documented therapeutic effects on cocaine toxicity. BChE holds promise as a therapeutic that reduces and finally eliminates the rewarding effects of cocaine, thus weaning an addict from the drug. There have been extensive computational studies of cocaine hydrolysis by BChE. Since there are no reported structures of BChE with cocaine or any of the hydrolysis products, full-length monomeric recombinant wild-type BChE was cocrystallized with cocaine. The refined 3 {angstrom} resolution structure appears to retain the hydrolysis product benzoic acid in sufficient proximity to form a hydrogen bond to the active-site Ser198.

  2. Purification and Fibrillation of Full-Length Recombinant PrP

    OpenAIRE

    Makarava, Natallia; Baskakov, Ilia V.

    2012-01-01

    Misfolding and aggregation of prion protein (PrP) is related to several neurodegenerative diseases in humans such as Creutzfeldt–Jacob disease, fatal familial insomnia, and Gerstmann–Straussler–Sheinker disease. Certain applications in prion area require recombinant PrP of high purity and quality. Here, we report an experimental procedure for expression and purification of full-length mammalian PrP. This protocol has been proved to yield PrP of extremely high purity that lac...

  3. Expression, purification and characterization of a full-length recombinant HIV-1 Vpu from inclusion bodies.

    Science.gov (United States)

    Njengele, Zikhona; Kleynhans, Ronel; Sayed, Yasien; Mosebi, Salerwe

    2016-12-01

    Vpu is one of four accessory proteins encoded by human immunodeficiency virus type I (HIV-1). Vpu modulates the expression of several cellular restriction factors within the HIV-1 infected cell including CD4, CD74, the bone marrow stromal antigen 2 (BST-2) and NK-T-and-B antigen. The interaction of HIV-1 Vpu with these proteins interferes with the innate immune response directed against HIV-1; thereby promoting viral persistence. The involvement of HIV-1 Vpu in manipulating the cellular environment in ways that favor viral replication makes it an attractive target for anti-HIV drug intervention. This paper describes the over-expression and purification of a soluble HIV-1 Vpu from inclusion bodies by ion-exchange chromatography, allowing production of 6 mg of highly purified protein (>95% purity) per 10 mg of pelleted cells obtained from 1 L of bacterial culture. Far-UV circular dichroism showed that the recombinant protein is folded and retained its secondary structure. Moreover, using ELISA, known HIV-1 Vpu binding partners, BST-2 and CD74, showed that the refolded purified protein is functional or at least assumes a conformation that is capable of binding these putative binding partners. To our knowledge, this is the first report of the purification and successful solubilization of full-length, wild-type HIV-1 Vpu from inclusion bodies in Escherichia coli.

  4. Production of enzymatically active recombinant full-length barley high pI alpha-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification

    DEFF Research Database (Denmark)

    Næsted, Henrik; Kramhøft, Birte; Lok, F.

    2006-01-01

    of the alcohol oxidase 1 promoter using methanol induction of P. pastoris fermentation in a Biostat B 5 L reactor. Forty-two milligrams a-glucosidase was purified from 3.5 L culture in four steps applying an N-terminal hexa-histidine tag. The apparent molecular mass of the recombinant alpha-glucosidase was 100 k...

  5. Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures.

    Directory of Open Access Journals (Sweden)

    Asma Rehman

    Full Text Available Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4 vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1-2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies.

  6. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  7. Near full-length genomic characterization of a HIV type 1 BC recombinant strain from Manipur, India.

    Science.gov (United States)

    Sarkar, Roni; Sarkar, Kamalesh; Singh, N Brajachand; Singh, Y Manihar; Chakrabarti, Sekhar

    2012-10-01

    Genetic complexity of HIV-1 is brought about by recombination between HIV-1 subtypes which leads to the development of epidemiologically significant founder strains. In the present study, the near full-length genome sequence of an HIV-1 isolate from an injecting drug user of Manipur (India) was determined, which evidenced the presence of a novel HIV-1 BC recombinant strain. Near full-length genome was amplified by polymerase chain reaction using primer walking approach. The recombination break points were detected using bootscan and simplot analyses. This isolate exhibited a mosaic structure consisting of subtype C backbone with subtype B insertions at the upstream of pol gene (3026-3259) and the downstream of env gene which spanned till the nef gene (8183-8961). Phylogenetic relationships determined with neighbor-joining trees, revealed that the subtype C sequences clustered with sequences from Indian subtype C HIV-1 strains, and the subtype B sequences clustered with HIV-1 subtype B strains from Thailand. This finding may create a complex scenario of HIV-1 epidemic among the injecting drug users of Manipur in near future.

  8. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting.

    Science.gov (United States)

    Fu, Jun; Bian, Xiaoying; Hu, Shengbaio; Wang, Hailong; Huang, Fan; Seibert, Philipp M; Plaza, Alberto; Xia, Liqiu; Müller, Rolf; Stewart, A Francis; Zhang, Youming

    2012-05-01

    Functional analysis of genome sequences requires methods for cloning DNA of interest. However, existing methods, such as library cloning and screening, are too demanding or inefficient for high-throughput application to the wealth of genomic data being delivered by massively parallel sequencing. Here we describe direct DNA cloning based on the discovery that the full-length Rac prophage protein RecE and its partner RecT mediate highly efficient linear-linear homologous recombination mechanistically distinct from conventional recombineering mediated by Redαβ from lambda phage or truncated versions of RecET. We directly cloned all ten megasynthetase gene clusters (each 10–52 kb in length) from Photorhabdus luminescens into expression vectors and expressed two of them in a heterologous host to identify the metabolites luminmycin A and luminmide A/B. We also directly cloned cDNAs and exactly defined segments from bacterial artificial chromosomes. Direct cloning with full-length RecE expands the DNA engineering toolbox and will facilitate bioprospecting for natural products.

  9. Purification and activity testing of the full-length YycFGHI proteins of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Michael Türck

    Full Text Available BACKGROUND: The YycFG two-component regulatory system (TCS of Staphylococcus aureus represents the only essential TCS that is almost ubiquitously distributed in gram-positive bacteria with a low G+C-content. YycG (WalK/VicK is a sensor histidine-kinase and YycF (WalR/VicR is the cognate response regulator. Both proteins play an important role in the biosynthesis of the cell envelope and mutations in these proteins have been involved in development of vancomycin and daptomycin resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here we present high yield expression and purification of the full-length YycG and YycF proteins as well as of the auxiliary proteins YycH and YycI of Staphylococcus aureus. Activity tests of the YycG kinase and a mutated version, that harbours an Y306N exchange in its cytoplasmic PAS domain, in a detergent-micelle-model and a phosholipid-liposome-model showed kinase activity (autophosphorylation and phosphoryl group transfer to YycF only in the presence of elevated concentrations of alkali salts. A direct comparison of the activity of the kinases in the liposome-model indicated a higher activity of the mutated YycG kinase. Further experiments indicated that YycG responds to fluidity changes in its microenvironment. CONCLUSIONS/SIGNIFICANCE: The combination of high yield expression, purification and activity testing of membrane and membrane-associated proteins provides an excellent experimental basis for further protein-protein interaction studies and for identification of all signals received by the YycFGHI system.

  10. Functional Recombinant Extra Membrane Loop of Human CD20, an Alternative of the Full Length CD20 Antigen

    OpenAIRE

    Anbouhi, Mahdi Habibi; Baraz, Aida Feiz; Bouzari, Saeid; Abolhassani,Mohsen; Khanahmad, Hossein; Golkar, Majid; Aghasadeghi, Mohammad Reza; Behdani, Mahdi; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2012-01-01

    Background: Targeting of CD20 antigen with monoclonal antibodies has become the mainstay in the treatment of non-Hodgkin's lymphomas and immunotherapeutic depletion of malignant B cells. Accessibility of antigen is one of the crucial factors in development of monoclonal antibodies against this antigen. One major problem in expression of full length CD20 is aggregation and misfolding. Therefore, production of an alternative polypeptide is easer and favorable comparing to that of a full length ...

  11. Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Risager, Peter Christian; Fahnøe, Ulrik

    2013-01-01

    . This strategy allows manipulation of viral cDNA by targeted recombination-mediated mutagenesis within bacteria. Results A new CSFV-BAC (pBeloR26) derived from the Riems vaccine strain has been constructed and subsequently modified in the E2 coding sequence, using the targeted recombination strategy to enable......Background Infectious cDNA clones are a prerequisite for directed genetic manipulation of RNA viruses. Here, a strategy to facilitate manipulation and rescue of classical swine fever viruses (CSFVs) from full-length cDNAs present within bacterial artificial chromosomes (BACs) is described...... recombination-mediated mutagenesis provides a powerful tool for expediting the construction of novel RNA genomes and should be applicable to the manipulation of other RNA viruses....

  12. Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    B.M. Ribeiro

    1998-06-01

    Full Text Available The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs. Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV. The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.

  13. Purification and characterization of recombinant full-length and protease domain of murine MMP-9 expressed in Drosophila S2 cells

    DEFF Research Database (Denmark)

    Rasch, Morten G; Lund, Ida K.; Illemann, Martin;

    2010-01-01

    Matrix metalloproteinase-9 (MMP-9) is a 92-kDa soluble pro-enzyme implicated in pathological events including cancer invasion. It is therefore an attractive target for therapeutic intervention studies in mouse models. Development of inhibitors requires sufficient amounts of correctly folded murine...... MMP-9. Constructs encoding zymogens of full-length murine MMP-9 and a version lacking the O-glycosylated linker region and hemopexin domains were therefore generated and expressed in stably transfected Drosophila S2 insect cells. After 7 days of induction the expression levels of the full....... No immunoreactivity was observed when the antibody was probed against skin wound material from MMP-9 deficient mice. In conclusion, we have generated and purified two proteolytically active recombinant murine MMP-9 protein constructs, which are critical reagents for future cancer drug discovery studies....

  14. A simple strategy for the purification of native recombinant full-length human RPL10 protein from inclusion bodies.

    Science.gov (United States)

    Pereira, Larissa M; Silva, Luana R; Alves, Joseane F; Marin, Nélida; Silva, Flavio Sousa; Morganti, Ligia; Silva, Ismael D C G; Affonso, Regina

    2014-09-01

    The L10 ribosomal protein (RPL10) plays a role in the binding of the 60 S and 40 S ribosomal subunits and in mRNA translation. The evidence indicates that RPL10 also has multiple extra-ribosomal functions, including tumor suppression. Recently, the presence of RPL10 in prostate and ovarian cancers was evaluated, and it was demonstrated to be associated with autistic disorders and premature ovarian failure. In the present work, we successfully cloned and expressed full-length human RPL10 (hRPL10) protein and isolated inclusion bodies containing this protein that had formed under mild growth conditions. The culture produced 376mg of hRPL10 protein per liter of induced bacterial culture, of which 102.4mg was present in the soluble fraction, and 25.6mg was recovered at approximately 94% purity. These results were obtained using a two-step process of non-denaturing protein extraction from pelleted inclusion bodies. We studied the characteristics of this protein using circular dichroism spectroscopy and by monitoring the changes induced by the presence or absence of zinc ions using fluorescence spectrometry. The results demonstrated that the protein obtained using these non-conventional methods retained its secondary and tertiary structure. The conformational changes induced by the incorporation of zinc suggested that this protein could interact with Jun or the SH3 domain of c-yes. The results suggested that the strategy used to obtain hRPL10 is simple and could be applied to obtaining other proteins that are susceptible to degradation.

  15. Crystallization and preliminary X-ray diffraction analysis of full-length and proteolytically activated pyruvate oxidase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, Annett; Neumann, Piotr; Wille, Georg; Stubbs, Milton T.; Tittmann, Kai, E-mail: kai.tittmann@biochemtech.uni-halle.de [Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Institut für Biochemie und Biotechnologie, Kurt-Mothes-Strasse 3, D-06120 Halle (Germany)

    2008-03-01

    The peripheral membrane flavoprotein pyruvate oxidase from E. coli has been crystallized in the full-length form and as a proteolytically activated truncation variant lacking the last 23 amino acids at the C-terminus. The thiamine diphosphate- and flavin-dependent peripheral membrane enzyme pyruvate oxidase from Escherichia coli (EcPOX) has been crystallized in the full-length form and as a proteolytically activated C-terminal truncation variant which lacks the last 23 amino acids (Δ23 EcPOX). Crystals were grown by the hanging-drop vapour-diffusion method using either protamine sulfate (full-length EcPOX) or 2-methyl-2,4-pentanediol (Δ23 EcPOX) as precipitants. Native data sets were collected at a X-ray home source to a resolution of 2.9 Å. The two forms of EcPOX crystallize in different space groups. Whereas full-length EcPOX crystallizes in the tetragonal space group P4{sub 3}2{sub 1}2 with two monomers per asymmetric unit, the crystals of Δ23 EcPOX belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and contain 12 monomers per asymmetric unit.

  16. Full length and protease domain activity of chikungunya virus nsP2 differ from other alphavirus nsP2 proteases in recognition of small peptide substrates

    OpenAIRE

    Saisawang, Chonticha; Sillapee, Pornpan; Sinsirimongkol, Kwanhathai; Ubol, Sukathida; Smith, Duncan R.; Ketterman, Albert J.

    2015-01-01

    Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. ...

  17. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation.

    Science.gov (United States)

    Thapar, Roopa; Williams, Jason G; Campbell, Sharon L

    2004-11-01

    The C terminus, also known as the hypervariable region (residues 166-189), of H-, N-, and K-Ras proteins has sequence determinants necessary for full activation of downstream effectors such as Raf kinase and PI-3 kinase as well as for the correct targeting of Ras proteins to lipid rafts and non-raft membranes. There is considerable interest in understanding how residues in the extreme C terminus of the different Ras proteins and farnesylation of the CaaX box cysteine affect Ras membrane localization and allosteric activation of Raf kinase. To provide insights into the structural and dynamic changes that occur in Ras upon farnesylation, we have used NMR spectroscopy to compare the properties of truncated H-Ras (1-166), to non-processed full-length H-Ras (residues 1-185) and full-length (1-189) farnesylated H-Ras. We report that the C-terminal helix alpha-5 extends to residue N172, and the remaining 17 amino acid residues in the C terminus are conformationally averaged in solution. Removal of either 23 or 18 amino acid residues from the C terminus of full length H-Ras generates truncated H-Ras (1-166) and H-Ras (1-171) proteins, respectively, that have been structurally characterized and are biochemical active. Here we report that C-terminal truncation of H-Ras results in minor structural and dynamic perturbations that are propagated throughout the H-Ras protein including increased flexibility of the central beta-sheet and the C-terminal helix alpha-5. Ordering of residues in loop-2, which is involved in Raf CRD binding is also observed. Farnesylation of full-length H-Ras at C186 does not result in detectable conformational changes in H-Ras. Chemical shift mapping studies of farnesylated and non-farnesylated forms of H-Ras with the Raf-CRD show that the farnesyl moiety, the extreme H-Ras C terminus and residues 23-30, contribute to H-Ras:Raf-CRD interactions, thereby increasing the affinity of H-Ras for the Raf-CRD.

  18. Full length and protease domain activity of chikungunya virus nsP2 differ from other alphavirus nsP2 proteases in recognition of small peptide substrates.

    Science.gov (United States)

    Saisawang, Chonticha; Sillapee, Pornpan; Sinsirimongkol, Kwanhathai; Ubol, Sukathida; Smith, Duncan R; Ketterman, Albert J

    2015-04-22

    Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. Enzyme characterization shows that the protease domain alone has different properties compared with the full length nsP2 protease. We also show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity. Moreover, the chikungunya nsP2 also appears to differ from other alphavirus nsP2 in its distinctive ability to recognize small peptide substrates.

  19. BAY 81-8973, a full-length recombinant factor VIII: Human heat shock protein 70 improves the manufacturing process without affecting clinical safety.

    Science.gov (United States)

    Maas Enriquez, Monika; Thrift, John; Garger, Stephen; Katterle, Yvonne

    2016-11-01

    BAY 81-8973 is a full-length, unmodified recombinant human factor VIII (FVIII) approved for the treatment of hemophilia A. BAY 81-8973 has the same amino acid sequence as the currently marketed sucrose-formulated recombinant FVIII (rFVIII-FS) product and is produced using additional advanced manufacturing technologies. One of the key manufacturing advances for BAY 81-8973 is introduction of the gene for human heat shock protein 70 (HSP70) into the rFVIII-FS cell line. HSP70 facilitates proper folding of proteins, enhances cell survival by inhibiting apoptosis, and potentially impacts rFVIII glycosylation. HSP70 expression in the BAY 81-8973 cell line along with other manufacturing advances resulted in a higher-producing cell line and improvements in the pharmacokinetics of the final product as determined in clinical studies. HSP70 protein is not detected in the harvest or in the final BAY 81-8973 product. However, because this is a new process, clinical trial safety assessments included monitoring for anti-HSP70 antibodies. Most patients, across all age groups, had low levels of anti-HSP70 antibodies before exposure to the investigational product. During BAY 81-8973 treatment, 5% of patients had sporadic increases in anti-HSP70 antibody levels above a predefined threshold (cutoff value, 239 ng/mL). No clinical symptoms related to anti-HSP70 antibody development occurred. In conclusion, addition of HSP70 to the BAY 81-8973 cell line is an innovative technology for manufacturing rFVIII aimed at improving protein folding and expression. Improved pharmacokinetics and no effect on safety of BAY 81-8973 were observed in clinical trials in patients with hemophilia A.

  20. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Science.gov (United States)

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-01

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  1. Purification and characterization of recombinant full-length and protease domain of murine MMP-9 expressed in Drosophila S2 cells

    DEFF Research Database (Denmark)

    Rasch, Morten G; Lund, Ida K; Illemann, Martin;

    2010-01-01

    MMP-9. Constructs encoding zymogens of full-length murine MMP-9 and a version lacking the O-glycosylated linker region and hemopexin domains were therefore generated and expressed in stably transfected Drosophila S2 insect cells. After 7 days of induction the expression levels of the full...

  2. Full-length characterization of A1/D intersubtype recombinant genomes from a therapy-induced HIV type 1 controller during acute infection and his noncontrolling partner

    DEFF Research Database (Denmark)

    Fomsgaard, Anders; Vinner, Lasse; Therrien, Dominic;

    2008-01-01

    homology in shared regions. Four of seven crossover points were identical; however, the env gene from UG1 was subtype D, but A1 in DK1. Both viruses encoded proteins of the expected length and replicated equally well in vitro. DK1 and UG1 shared the HLA-A02 tissue type. HLA-A02-restricted CD8(+) T cell IFN...... after 1 year in Uganda. Following transient antiretroviral therapy DK1 maintained undetectable viral load for more than 10 years. His Ugandan wife (UG1) developed high viral load. HIV-1 sequences from both individuals were compared by bootscanning for recombination break points. Diversity plots......-gamma IC-FACS response in DK1 was detected against only one (Pol(476)) of 23 conserved epitopes. Neutralizing antibodies were induced only to the homologous isolate. These results indicate an A1D intersubtype recombination or transmission of a minor variant. Transient early antiretroviral therapy may have...

  3. Generation of a vector system facilitating cloning of DMBT1 variants and recombinant expression of functional full-length DMBT1

    DEFF Research Database (Denmark)

    End, Caroline; Lyer, Stefan; Renner, Marcus

    2005-01-01

    Deleted in malignant brain tumours 1 (DMBT1) codes for a approximately 340kDa glycoprotein with highly repetitive scavenger receptor cysteine-rich (SRCR) domains. DMBT1 was implicated in cancer, defence against viral and bacterial infections, and differentiation of epithelial cells. Recombinant...... yields, and protein preparations which may substantially vary due to differential processing and genetic polymorphism, all of which impedes functional research on DMBT1. Cloning of DMBT1 cDNAs is hampered because of the size and the 13 highly homologous SRCR exons. In this study, we report on the setup...

  4. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients' sera using short overlapping peptides and full-length recombinant protein.

    Science.gov (United States)

    Komatsu, Nobukazu; Jackson, Heather M; Chan, Kok-fei; Oveissi, Sara; Cebon, Jonathan; Itoh, Kyogo; Chen, Weisan

    2013-07-01

    The tumor antigen NY-ESO-1 is one of the most antigenic cancer-testis antigens, first identified by serologic analysis of a recombinant cDNA expression library (SEREX). NY-ESO-1 is expressed in different types of cancers including melanoma. NY-ESO-1-specific spontaneous humoral and cellular immune responses are detected in a large proportion of patients with advanced NY-ESO-1-expressing cancers. Therefore NY-ESO-1 is a good candidate antigen for immunotherapy. Although cellular immune responses to NY-ESO-1 are well characterized, much less is known about the humoral immune responses. In this study, we finely mapped linear antibody epitopes using sera from melanoma patients and shorter overlapping peptide sets. We have shown that melanoma patients' humoral immune systems responded to NY-ESO-1 differently in each individual with widely differing antibody specificity, intensity and antibody subtypes. This knowledge will help us further understand anti-tumor immunity and may also help us to monitor cancer progress and cancer vaccine efficacy in the future.

  5. Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B.

    Science.gov (United States)

    Huang, Qiwei; Li, Qingxin; Joy, Joma; Chen, Angela Shuyi; Ruiz-Carrillo, David; Hill, Jeffrey; Lescar, Julien; Kang, Congbao

    2013-12-01

    Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV.

  6. Expression Analysis and Nuclear Import Study of Full-length Isoforms Importin α as 6x Histidin-tagged Fusion Protein on the Intracellular Localization of Recombinant HBV Core Protein

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2015-10-01

    Full Text Available Isoform importin α molecules play a central role in the classical nuclear import pathway, that occurs throughthe nuclear pore complex (NPC and typically requires a specific nuclear localization signal (NLS. In this study,it was investigated the role of isoforms importin α in the nuclear import of wild type recombinant hepatitis B viruscore protein (WT rHBc, phosphorylated recombinant HBV core (rHBc and recombinant HBV core without NLSby co-immunoprecipitation. Four recombinant full-length isoforms importin α as 6x histidin-tagged fusion proteinwere expressed and analysed from expression plasmid vectors Rch1, pHM 1969, pHM 1967 and pHM 1965. Theresults indicated that importin α-1, importin α-3, importin α-4 and importin α-5 can be expressed and isolatedfrom E. coli transformed recombinant DNA plasmid as protein in size around 58-60 kDa. By the nuclear transportstudy shown that isoforms importin α are involved in the nuclear import of WT rHBc, phosphorylated rHBc andrHBc without NLS. It also indicated that they have an important role for nuclear transport of from cytoplasm intothe nucleus.Keywords: NPC, NLS, importin α, importin β, isoforms importin α as 6x histidin-tagged fusion protein, WTrHBc, SV40 Tag, co-immunoprecipitation, westernblotting.

  7. Genetic characterization of eight full-length HIV type 1 genomes from the Democratic Republic of Congo (DRC) reveal a new subsubtype, A5, in the A radiation that predominates in the recombinant structure of CRF26_A5U.

    Science.gov (United States)

    Vidal, Nicole; Bazepeo, Samuel Edidi; Mulanga, Claire; Delaporte, Eric; Peeters, Martine

    2009-08-01

    In this study, we characterized HIV-1 strains from the Democratic Republic of Congo (DRC), previously described as divergent subtype A (n = 1, 97CD.KMST91) or untypable (n = 7) in the V3-V5 env region. Four strains had the same structure over the entire genome, including alternating fragments of a new subsubtype, A5, within the subtype A radiation and fragments that remain unclassified. Therefore, the cluster of new viruses represents a new circulating recombinant, CRF26_A5U. Three additional strains were unique recombinants with the newly described CRF26_A5U and subtype C. Finally, the nearly full-length sequence of 97CD.KMST91 showed that this strain also consisted of alternating fragments of a divergent subtype A lineage and unclassified fragments, although different from previously reported A and U sequences. The high genetic distances among the different CRF26-A5U strains suggest their longstanding presence in the DRC.

  8. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam (NU Sinapore); (Van Andel); (IMT-India)

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  9. Low risk of inhibitor formation in haemophilia A patients following en masse switch in treatment to a third generation full length plasma and albumin-free recombinant factor VIII product (ADVATE®).

    LENUS (Irish Health Repository)

    Bacon, C L

    2011-05-01

    Previous studies have suggested that development of inhibitors in previously treated patients (PTPs) may be attributable to a switch in factor VIII (FVIII) therapeutic product. Consequently, it is widely recognized that inhibitor development must be assessed in PTPs following the introduction of any new FVIII product. Following a national tender process in 2006, all patients with haemophilia A in Ireland changed their FVIII treatment product en masse to a plasma and albumin-free recombinant full-length FVIII product (ADVATE(®)). In this study, we retrospectively reviewed the case records of Irish PTPs to evaluate risk of inhibitor formation following this treatment switch. One hundred and thirteen patients participated in the study. Most patients (89%) had severe haemophilia. Only one of 96 patients with no inhibitor history developed an inhibitor. Prior to the switch in his recombinant FVIII (rFVIII) treatment of choice, this child had only experienced three exposure days (EDs). Consequently, in total he had only received 6 EDs when his inhibitor was first diagnosed. In keeping with this lack of de novo inhibitor development, we observed no evidence of any recurrent inhibitor formation in any of 16 patients with previously documented inhibitors. Similarly, following a previous en masse switch, we have previously reported that changing from a Chinese hamster ovary cell-produced to a baby hamster kidney cell-produced rFVIII was also associated with a low risk of inhibitor formation in PTPs. Our cumulative findings from these two studies clearly emphasizes that the risk of inhibitor development for PTPs following changes in commercial rFVIII product is low, at least in the Irish population.

  10. Analysis of ORF5 and Full-Length Genome Sequences of Porcine Reproductive and Respiratory Syndrome Virus Isolates of Genotypes 1 and 2 Retrieved Worldwide Provides Evidence that Recombination Is a Common Phenomenon and May Produce Mosaic Isolates

    DEFF Research Database (Denmark)

    Martín-Valls, G. E.; Kvisgaard, Lise Kirstine; Tello, M.

    2014-01-01

    Recombination is currently recognized as a factor for high genetic diversity, but the frequency of such recombination events and the genome segments involved are not well known. In the present study, we initially focused on the detection of recombinant porcine reproductive and respiratory syndrom...

  11. A NEW METHOD TO CONSTRUCT A FULL-LENGTH cDNA LIBRARY OF HUMAN NORMAL BLADDER TISSUE

    Institute of Scientific and Technical Information of China (English)

    成瑜; 李旭; 陈葳; 杨玉琮; 赵乐

    2003-01-01

    Objective Using template-switch mechanism at the 5'-end of mRNA technique (SMART) to construct a full-length cDNA library of human normal bladder tissue. Methods The novel procedures used the template-switching activity of powerscript reverse transcriptase to synthesize and anchor first-strand cDNA in one step. Following reverse transcription, 5 cycles of PCR were performed using a modified oligo(dT) primer and an anchor primer to enrich the full-length cDNA population with 1.0 g human normal bladder poly(A)+RNA, then double-strand cDNA was synthesized. After digestion with sfiI and size-fractionation by CHROMA SPIN-400 columns, double-strand cDNA was ligated into λTripIEx2 vector and was packaged. We determined the titer of the primary library and the percentage of recombinant clones and finally amplified the library. Results The titer of the cDNA library constructed was 2.1×106 pfu*mL-1, and the amplified cDNA library was 6×1011 pfu*mL-1, the percentage of recombination clones was 99%. Conclusion Using SMART technique helps us to construct full-length cDNA library with high efficiency and high capacity which lays solid foundation for screening target genes of bladder diseases with probes and antibodies.

  12. Cloning, Expression and Activity Analysis of Full-length Gene Encoding Thioredoxin Peroxidase from Oncomelania hupensis%湖北钉螺硫氧还蛋白过氧化物酶全长基因克隆、表达与蛋白活性分析

    Institute of Scientific and Technical Information of China (English)

    马宪亮; 刘琴; 张仪

    2012-01-01

    Objective To clone and express full-length thioredoxin peroxidase (TPx) gene of Oncomelania hupensis and study on the peroxidase activity of the recombinant protein. Methods Total RNA was obtained from the cultivated O. hupensis and a cDNA sequence of the TPx gene was cloned by RT-PCR. The TPx cDNA ends were amplified by the SMARTer RACE cDNA Amplification Kit. After sequencing, blasting and matching, the full-length cDNA of the TPx gene was obtained. The TPx cDNA was ligated with the pGEM-Teasy and transformed into E. coli DH5α. After sequencing and blasting, the characteristics of biological information of the TPx gene was analyzed. The positive recombinants with pGEM-Teasy/TPx and expression vector pET-28a were digested by the double restriction enzymes, ligated each other, transformed into E. coli BL21(DE3), and induced by IPTG for expression. The recombinant TPx was expressed as a histidine fusion protein and was purified with Ni chromatography and NTA cation exchange chromatography. The expressed and purified TPx was analyzed by SDS-PAGE. The different concentrations of TPx recombinant protein (10, 20, 30, 40, and 50 μg/ml) were added into hydrogen peroxide (H2O2) reduction test in vitro to calculate the clearance rate of H2O2, each concentration with parallel control of dithiothreitol sugar alcohol (DTT). In the protection test of super-coiled DNA, the TPx protein was added with a concentration of 2.5,5.0, and 10 μg/ml, respectively, to observe the protective effect of super-coiled DNA in metal-catalyzed oxidation (MCO). Results The complate cDNA encoding TPx was 992 bp. ORF was 747 bp with GenBank accession number of JN831437. The ORF encoded 249 amino acids, and the relative molecular weight {Mr) of predicted protein was 27 000. The recombinant plasmid pET28a/T'Px was built, and the soluble recombinant protein was obtained by induction and purification. The results of SDS-PAGE showed that the M, was 27 000. H2O2 reduction test in vitro showed that the H

  13. Full-length genomic analysis of korean porcine sapelovirus strains

    DEFF Research Database (Denmark)

    Son, Kyu-Yeol; Kim, Deok-Song; Kwon, Joseph

    2014-01-01

    the structural features of PSV genomes, the full-length nucleotide sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 3' poly(A) tail, and showed...

  14. Recovering full-length viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2015-01-01

    textabstractInfectious disease metagenomics is driven by the question: "what is causing the disease?" in contrast to classical metagenome studies which are guided by "what is out there?" In case of a novel virus, a first step to eventually establishing etiology can be to recover a full-length viral

  15. Recombination analysis and homology alignment of full-length genome sequences of die novel A/H1N1 influenza virus in 2009%2009年新型甲型H1N1流感病毒全基因组序列重组分析及同源性比对

    Institute of Scientific and Technical Information of China (English)

    鹿文英; 殷建华; 李淑华; 韩磊; 韩一芳; 苏彤; 曹广文

    2009-01-01

    Objective To analyze the genetic variation and recombination of the novel A/H1N1 influenza pandemic virus in 2009. Methods Full-length sequence of typical novel A/H1N1 influenza virus was downloaded from NCBI database. MEGA4.0 software was used to connect and align the eight fragments of the virus. Then the fragments of different subtypes such as H1N1, H5N1 and H3N2 of the historical strains from different hosts, including human, poultry and pigs, were connected and aligned in the same way. A phylogenetic tree was constructed by NJ method. The recombination analysis of 2009 pandemic virus was made with Simplot 3. 5.1 software. Results There was no clear variation (identity was 99.69% - 99. 93%) in the novel A/H1N1 influenza virus from April to September, 2009. Simplot and MEGA analysis indicated that the PB2, PB1, PA, HA, NP and NS of the novel A/H1N1 virus might originally evolve from the swine and human H1N1 virus isolated in North America (identity was 95. 25%, 95.08%, 95.21%, 93.52%, 95.23% and 94.78%, respectively). NA and MP showed high homology with the European swine H1N1 virus, the identity was 90.21% and 94.43%, respectively. Full-length sequence of the novel A/H1N1 influenza virus had a highest similarity with swine H1N1 virus isolated from North America (identity was 92.22%). Conclusions The novel A/H1N1 influenza pandemic virus in 2009 was originated from the reassortment and evolution of swine H1N1 2005 pandemic virus in North America, and the NA and MP fragments of European swine H1N1. There is no clear variation in novel influenza virus up to now. The novel A/H1N1 influenza vaccine possesses protective effect.%目的 分析2009年新型甲型H1N1流感爆发以来流感病毒的全基因组进化变异及重组情况.方法 从NCBI基因数据库下载2009年新型甲型H1N1流感病毒(A/H1N1)代表性全基因组序列,先用MEGA4.0软件对8个基因序列片段进行比对和拼接;然后将历史上流行的H1N1、H5N1、H3N2等不同宿

  16. Renal Agenesis with Full Length Ipsilateral Refluxing Ureter

    Directory of Open Access Journals (Sweden)

    DilipKumar Pal

    2016-04-01

    Full Text Available Unilateral renal agenesis with vesicoureteral reflux in the ipsilateral full length ureter is a rare phenomenon. Herein we report a case of 10-year old boy who presented with recurrent urinary tract infections. No renal tissue was identified on left side in various imaging studies. Micturating cystourethrogram (MCUG showed left sided refluxing and blind ending ureter. Left ureterectomy was done because of recurrent UTI in the refluxing system.

  17. Construction, characterization and expression of full length cDNA clone of sheep YAP1 gene.

    Science.gov (United States)

    Sun, Wei; Li, Da; Su, Rui; Musa, Hassan H; Chen, Ling; Zhou, Hong

    2014-02-01

    RT-PCR, 5'RACE, 3'RACE were used to clone sheep full length cDNA sequence of YAP1 (Yes-associated protein 1), eukaryotic expression plasmid and a mutant that cannot be phosphorylated at Ser42 was successfully constructed. The amino acid sequence analysis revealed that sheep YAP1 gene encoded water-soluble protein and its relative molecular weight and isoelectric point was 44,079.0 Da and 4.91, respectively. Sub-cellular localization of YAP1 was in the nucleus, it is hydrophilic non-transmembrane and non-secreted protein. YAP1 protein contained 33 phosphorylation sites, seven glycosylation sites and two WW domains. The secondary structure of YAP1 was mainly composed of random coil, while the tertiary structure of domain area showed a forniciform helix structure. YAP1 gene was expressed in different tissues, the highest expression was in kidney and the lowest was in hypothalamus. The CDS of sheep YAP1was amplified by RT-PCR from healthy sheep longissimus dorsi muscle, cloned into pMD19-T simple vector by T/A ligation. YAP1 coding region was further sub-cloned into pEGFP-C1 vector by T4 Ligase to construct a eukaryotic expression plasmid and then make the eukaryotic expression vector as the template to construct the phosphorylation site mutant. PCR, restriction enzyme and sequencing were used to confirm the recombinant plasmid. The sheep full-length YAP1 cDNA sequence is 1712 in length encoding 403 amino acids. It was confirmed that the sheep YAP1 CDS was correctly inserted into eukaryotic expression vector and serine had been mutated to alanine by PCR, restriction digestion and sequencing. The result showed that the recombinant plasmid pEGFP-C1-YAP1 and pEGFP-C1-YAP1 S42A was constructed correctly, this will help for further studies on the YAP1 protein expression and its biological activities.

  18. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Suchita

    2011-01-01

    Full Text Available Abstract The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1. However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER, Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP, it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.

  19. Technology development for gene discovery and full-length sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Marcelo Bento Soares

    2004-07-19

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  20. Clusterin: full-length protein and one of its chains show opposing effects on cellular lipid accumulation

    Science.gov (United States)

    Matukumalli, Suvarsha Rao; Tangirala, Ramakrishna; Rao, C. M.

    2017-01-01

    Proteins, made up of either single or multiple chains, are designed to carry out specific biological functions. We found an interesting example of a two-chain protein where administration of one of its chains leads to a diametrically opposite outcome than that reported for the full-length protein. Clusterin is a highly glycosylated protein consisting of two chains, α- and β-clusterin. We have investigated the conformational features, cellular localization, lipid accumulation, in vivo effects and histological changes upon administration of recombinant individual chains of clusterin. We demonstrate that recombinant α- and β-chains exhibit structural and functional differences and differ in their sub-cellular localization. Full-length clusterin is known to lower lipid levels. In contrast, we find that β-chain-treated cells accumulate 2-fold more lipid than controls. Interestingly, α-chain-treated cells do not show such increase. Rabbits injected with β-chain, but not α-chain, show ~40% increase in weight, with adipocyte hypertrophy, liver and kidney steatosis. Many, sometimes contrasting, roles are ascribed to clusterin in obesity, metabolic syndrome and related conditions. Our findings of differential localization and activities of individual chains of clusterin should help in understanding better the roles of clusterin in metabolism. PMID:28120874

  1. Full-length minor ampullate spidroin gene sequence.

    Directory of Open Access Journals (Sweden)

    Gefei Chen

    Full Text Available Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps. Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level.

  2. A drosophila full-length cDNA resource

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Mark; Carlson, Joseph; Brokstein, Peter; Yu, Charles; Champe, Mark; George, Reed; Guarin, Hannibal; Kronmiller, Brent; Pacleb, Joanne; Park, Soo; Rubin, Gerald M.; Celniker, Susan E.

    2003-05-09

    Background: A collection of sequenced full-length cDNAs is an important resource both for functional genomics studies and for the determination of the intron-exon structure of genes. Providing this resource to the Drosophila melanogaster research community has been a long-term goal of the Berkeley Drosophila Genome Project. We have previously described the Drosophila Gene Collection (DGC), a set of putative full-length cDNAs that was produced by generating and analyzing over 250,000 expressed sequence tags (ESTs) derived from a variety of tissues and developmental stages. Results: We have generated high-quality full-insert sequence for 8,921 clones in the DGC. We compared the sequence of these clones to the annotated Release 3 genomic sequence, and identified more than 5,300 cDNAs that contain a complete and accurate protein-coding sequence. This corresponds to at least one splice form for 40 percent of the predicted D. melanogaster genes. We also identified potential new cases of RNA editing. Conclusions: We show that comparison of cDNA sequences to a high-quality annotated genomic sequence is an effective approach to identifying and eliminating defective clones from a cDNA collection and ensure its utility for experimentation. Clones were eliminated either because they carry single nucleotide discrepancies, which most probably result from reverse transcriptase errors, or because they are truncated and contain only part of the protein-coding sequence.

  3. Universal full-length nucleosome mapping sequence probe.

    Science.gov (United States)

    Tripathi, Vijay; Salih, Bilal; Trifonov, Edward N

    2015-01-01

    For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs - 10-11 base long sequences - and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property - alternation of runs of purine-purine (RR) and pyrimidine-pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.

  4. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs...... to the subfamily of protein Z-type serpins and the amino acid sequence is 70%, identical with the barley serpins BSZ4 and BSZx and 27-33% identical with human serpins such as alpha(1)-proteinase inhibitor, antithrombin III, and plasminogen activator inhibitor. The cDNA was subcloned in the pET3d expression vector......, equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...

  5. Crystal Structure of a Full-Length [beta]-Catenin

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yi; Takemaru, Ken-Ichi; Liu, Jing; Berndt, Jason D.; Zheng, Jie J.; Moon, Randall T.; Xu, Wenqing (UW-MED); (SJCH)

    2008-08-19

    {beta}-catenin plays essential roles in cell adhesion and Wnt signaling, while deregulation of {beta}-catenin is associated with multiple diseases including cancers. Here, we report the crystal structures of full-length zebrafish {beta}-catenin and a human {beta}-catenin fragment that contains both the armadillo repeat and the C-terminal domains. Our structures reveal that the N-terminal region of the C-terminal domain, a key component of the C-terminal transactivation domain, forms a long {alpha} helix that packs on the C-terminal end of the armadillo repeat domain, and thus forms part of the {beta}-catenin superhelical core. The existence of this helix redefines our view of interactions of {beta}-catenin with some of its critical partners, including ICAT and Chibby, which may form extensive interactions with this C-terminal domain {alpha} helix. Our crystallographic and NMR studies also suggest that the unstructured N-terminal and C-terminal tails interact with the ordered armadillo repeat domain in a dynamic and variable manner.

  6. Highly efficient full-length hepatitis C virus genotype 1 (strain TN) infectious culture system

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Brun Jensen, Sanne;

    2012-01-01

    viruses acquired two adaptive mutations located in NS3 and NS4B. Introduction of these changes into a replication-deficient TN full-length genome, harboring LSG, permitted efficient HCV production. Additional identified NS4B and NS5B mutations fully adapted the TN full-length virus. Thus, a TN genome......Chronic infection with hepatitis C virus (HCV) is an important cause of end stage liver disease worldwide. In the United States, most HCV-related disease is associated with genotype 1 infection, which remains difficult to treat. Drug and vaccine development was hampered by inability to culture...... patient isolates representing HCV genotypes 1-7 and subtypes; only a recombinant 2a genome (strain JFH1) spontaneously replicated in vitro. Recently, we identified three mutations F1464L/A1672S/D2979G (LSG) in the nonstructural (NS) proteins, essential for development of full-length HCV 2a (J6) and 2b (J8...

  7. Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available Huntingtin (Htt is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington's disease (HD is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q and mutant (46Q and 128Q Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on "gutless" adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.

  8. Synthesis of full length and truncated microcin B17 analogues as DNA gyrase poisons.

    Science.gov (United States)

    Thompson, Robert E; Collin, Frédéric; Maxwell, Anthony; Jolliffe, Katrina A; Payne, Richard J

    2014-03-14

    Microcin B17 (MccB17) is a post-translationally modified peptide containing thiazole and oxazole heterocycles that interrupt the peptide backbone. MccB17 is capable of poisoning DNA gyrase through stabilization of the gyrase-DNA cleavage complex and has therefore attracted significant attention. Using a combination of Fmoc-strategy solid-phase peptide synthesis and solution-phase fragment assembly we have prepared a library of full-length and truncated MccB17 analogues to investigate key structural requirements for gyrase-poisoning activity. Synthetic peptides lacking the glycine-rich N-terminal portion of the full-length sequence showed strong stabilization of the gyrase-DNA cleavage complex with increased potency relative to the full-length sequences. This truncation, however, led to a decrease in antibacterial activity of these analogues relative to their full-length counterparts indicating a potential role of the N-terminal region of the natural product for cellular uptake.

  9. Generation of a Mouse Full-length Balancer with Versatile Cassette-shuttling Selection Strategy.

    Science.gov (United States)

    Ye, Zhisheng; Sun, Lei; Li, Rongbo; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2016-01-01

    Balancer chromosomes are important tools for a variety of genetic manipulations in lower model organisms, owing to their ability to suppress recombination. In mouse, however, such effort has not been accomplished, mostly due to the size of the chromosomes and the complexity of multiple step chromosomal engineering. We developed an effective and versatile cassette-shuttling selection (CASS) strategy involving only two selection markers to achieve the sequential production of multiple large inversions along the chromosome. Using this strategy, we successfully generated the first full-length balancer in mice and showed that Balancer 17M-GFP can efficiently suppress recombination. Our study has not only generated a useful genetic resource, but also provided a strategy for constructing mammalian balancer chromosomes.

  10. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes.

    Directory of Open Access Journals (Sweden)

    Nadia A Ayoub

    Full Text Available Spider dragline (major ampullate silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons, recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers.

  11. Performance Studies of the Full Length Prototype for the CASTOR Forward Calorimeter of the CMS Experiment

    CERN Document Server

    Basegmez, S; Gouskos, L; Katsas, P; Katkov, I; Khein, L

    2008-01-01

    CASTOR is a project of a forward \\v{C}erenkov sampling calorimeter for the CMS experiment at the LHC collider, with quartz plates as active medium and tungsten as absorber. Several prototypes of the calorimeter have been constructed and tested at CERN. Results of the beam test performed with a full length prototype in summer of 2007 at CERN SPS machine are reported here.

  12. Construction of full length cDNA expression library of hepatopancreas of Penaeus monodon

    Institute of Scientific and Technical Information of China (English)

    罗田; 徐洵

    2002-01-01

    --mRNA was isolated from the hepatopancrease of shrimp Penaeus monodon with a PolyATtract System 1000 Kit. By using mRNA as template, double- strand cDNA with EcoR I/Xho I ends was synthesized by using a ZAP Express cDNA Synthesis Kit. The cDNA was inserted into the lambda ZAP Express vector predigested with EcoR I/Xho I, and the recombinant DNA was in vitro packaged into larnbda phage with GigapackⅢ Gold packaging extracts. These recombinant phages were then used to transfect E. coli XLl - Blue MRF', and finally a cDNA expression library was constructed. The library is 7.2 × 105pfu in capacity and its recombination ratio is higher than 99%. The size of the inserted cDNAs was determined by EcoR I/Xho I digestion of 9 phagemids prepared by in vivo excision of plaques selected randomly from amplified cDNA library . The longest inserted cDNA is about 1.6 kb in length. The complete sequence (about 1.2 kb) of actin cDNA was amplified from the library by PCR reveals that this library contains full-length cDNAs of Penaeus mod on hepatopancreas and is available for screening and expression of shrimp genes.

  13. Pleiotrophin gene therapy for peripheral ischemia: evaluation of full-length and truncated gene variants.

    Directory of Open Access Journals (Sweden)

    Qizhi Fang

    Full Text Available Pleiotrophin (PTN is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN, along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1 delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2 the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3 PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.

  14. Purification of full-length human Pregnane and Xenobiotic Receptor: polyclonal antibody preparation for immunological characterization

    Institute of Scientific and Technical Information of China (English)

    Mallampati SARADHI; Biji KRISHNA; Gauranga MUKHOPADHYAY; Rakesh K TYAGI

    2005-01-01

    Pregnane and Xenobiotic Receptor (PXR; or Steroid and Xenobiotic Receptor, SXR), a new member of the nuclear receptor superfamily, is thought to modulate a network of genes that are involved in xenobiotic metabolism and elimination. To further explore the role of PXR in body's homeostatic mechanisms, we for the first time, report successful prokaryotic expression and purification of full-length PXR and preparation of polyclonal antibody against the whole protein. Thefull-length cDNA encoding a 434 amino acids protein was sub-cloned into prokaryotic expression vector, pET-30b and transformed into E. coli BL21 (DE3) cells for efficient over expression. The inclusion body fraction, containing the expressed recombinant protein, was purified first by solubilizing in sarcosine extraction buffer and then by affinity column chromatography using Ni-NTA His-Bind matrix. The efficacy of anti-PXR antibody was confirmed by immunocytology, Western blot analysis, EMSA and immunohistochemistry. The antibody obtained was capable of detecting human and mouse PXR with high specificity and sensitivity. Immunofluorescence staining of COS-1 cells transfected with human or mouse PXR showed a clear nuclear localization. Results from immunohistochemistry showed that level of PXR in liver sections is immunologically detectable in the nuclei. Similar to exogenously transfected PXR, Western blot analysis of cell extract from HepG2 and COLO320DM cells revealed a major protein band for endogenous PXR having the expected molecular weight of 50 kDa. Relevance of other immunodetectable bands with reference to PXR isoforms and current testimony are evaluated. Advantages of antibody raised against full-length PXR protein for functional characterization of receptor is discussed and its application for clinical purposes is envisaged.

  15. Characterisation of full-length cDNA sequences provides insights into the Eimeria tenellatranscriptome

    Directory of Open Access Journals (Sweden)

    Amiruddin Nadzirah

    2012-01-01

    Full Text Available Abstract Background Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis. Results More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs. Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis. Conclusions This paper describes the generation and characterisation of full-length cDNA sequences from E

  16. Shear-induced unfolding and enzymatic cleavage of full-length VWF multimers

    CERN Document Server

    Lippok, Svenja; Obser, Tobias; Kleemeier, Lars; Schneppenheim, Reinhard; Budde, Ulrich; Netz, Roland R; Rädler, Joachim O

    2015-01-01

    Proteolysis of the multimeric blood coagulation protein von Willebrand Factor (VWF) by ADAMTS13 is crucial for prevention of microvascular thrombosis. ADAMTS13 cleaves VWF within the mechanosensitive A2 domain, which is believed to open under shear flow. Here, we combine Fluorescence Correlation Spectroscopy (FCS) and a microfluidic shear cell to monitor real-time kinetics of full-length VWF proteolysis as a function of shear stress. For comparison, we also measure the Michaelis-Menten kinetics of ADAMTS13 cleavage of wild-type VWF in the absence of shear but partially denaturing conditions. Under shear, ADAMTS13 activity on full-length VWF arises without denaturing agent as evidenced by FCS and gel-based multimer analysis. In agreement with Brownian hydrodynamics simulations, we find a sigmoidal increase of the enzymatic rate as a function of shear at a threshold shear rate 5522/s. The same flow-rate dependence of ADAMTS13 activity we also observe in blood plasma, which is relevant to predict hemostatic dysf...

  17. Expression, Purification and Activity Assay of the Full-length and Truncated Human Cystathionine β-Synthase%人胱硫醚β-合酶及其截短型片段的表达、纯化和活性测定

    Institute of Scientific and Technical Information of China (English)

    牛卫宁; 羊梦林; 曹珊珊; 许乐; 钦传光

    2011-01-01

    used. From a 1L culture, some 15.2 mg of purified CBS protein at 95% purity as judged by SDS-PAGE could be abtained, and the purified enzyme had a specific activity of 143 unit/mg protein. S-adenosylmethionine(AdoMet) activates the CBS enzyme by as much as 5. 1-fold in the presence of 1 mmol/L AdoMet with a specific activity of 735 unit/mg protein. Additionally, the recombinant E. Coli Rosetta (pETDuet-l-CBS1-413) strain which highly express truncated CBS(CBS1-413) gene was constructed. Using a His Trap Fast Flow affinity chromatography, the purity of recombinant CBS1-413 lacking the C-terminal regulatory domain reached 95% by one-step purification with the specific activity of 965 unit/mg. The productivity of the soluble CBS reached 12. 8mg/L and in 74. 3% overall yield. In addition, The expression and purification of recombinant cystathionine p-lyase (CBL) in E. Coli were described. The present study established a novel method, which relies on CBL as coupling enzyme, for detemination of CBS activity based on the color reaction between pyruvate and 2,4-dinitrophenylhydrazine.

  18. Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A.

    Science.gov (United States)

    Markovic-Mueller, Sandra; Stuttfeld, Edward; Asthana, Mayanka; Weinert, Tobias; Bliven, Spencer; Goldie, Kenneth N; Kisko, Kaisa; Capitani, Guido; Ballmer-Hofer, Kurt

    2017-02-07

    Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases: VEGFR-1, -2, and -3. Partial structures of VEGFR/VEGF complexes based on single-particle electron microscopy, small-angle X-ray scattering, and X-ray crystallography revealed the location of VEGF binding and domain arrangement of individual receptor subdomains. Here, we describe the structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A at 4 Å resolution. We combined X-ray crystallography, single-particle electron microscopy, and molecular modeling for structure determination and validation. The structure reveals the molecular details of ligand-induced receptor dimerization, in particular of homotypic receptor interactions in immunoglobulin homology domains 4, 5, and 7. Functional analyses of ligand binding and receptor activation confirm the relevance of these homotypic contacts and identify them as potential therapeutic sites to allosterically inhibit VEGFR-1 activity.

  19. First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer.

    Science.gov (United States)

    Arturo, Emilia C; Gupta, Kushol; Héroux, Annie; Stith, Linda; Cross, Penelope J; Parker, Emily J; Loll, Patrick J; Jaffe, Eileen K

    2016-03-01

    Improved understanding of the relationship among structure, dynamics, and function for the enzyme phenylalanine hydroxylase (PAH) can lead to needed new therapies for phenylketonuria, the most common inborn error of amino acid metabolism. PAH is a multidomain homo-multimeric protein whose conformation and multimerization properties respond to allosteric activation by the substrate phenylalanine (Phe); the allosteric regulation is necessary to maintain Phe below neurotoxic levels. A recently introduced model for allosteric regulation of PAH involves major domain motions and architecturally distinct PAH tetramers [Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL, Jr (2013) Arch Biochem Biophys 530(2):73-82]. Herein, we present, to our knowledge, the first X-ray crystal structure for a full-length mammalian (rat) PAH in an autoinhibited conformation. Chromatographic isolation of a monodisperse tetrameric PAH, in the absence of Phe, facilitated determination of the 2.9 Å crystal structure. The structure of full-length PAH supersedes a composite homology model that had been used extensively to rationalize phenylketonuria genotype-phenotype relationships. Small-angle X-ray scattering (SAXS) confirms that this tetramer, which dominates in the absence of Phe, is different from a Phe-stabilized allosterically activated PAH tetramer. The lack of structural detail for activated PAH remains a barrier to complete understanding of phenylketonuria genotype-phenotype relationships. Nevertheless, the use of SAXS and X-ray crystallography together to inspect PAH structure provides, to our knowledge, the first complete view of the enzyme in a tetrameric form that was not possible with prior partial crystal structures, and facilitates interpretation of a wealth of biochemical and structural data that was hitherto impossible to evaluate.

  20. High-level expression of a full-length Eph receptor.

    Science.gov (United States)

    Paavilainen, Sari; Grandy, David; Karelehto, Eveliina; Chang, Elizabeth; Susi, Petri; Erdjument-Bromage, Hediye; Nikolov, Dimitar; Himanen, Juha

    2013-11-01

    Eph receptors are the largest family of Receptor Tyrosine Kinases containing a single membrane-spanning segment. They are involved in a various developmental and cell-cell communication events. Although there is extensive structural information available on both the extra- and intracellular regions of Eph's in isolation, no structures are available for the entire receptor. To facilitate structural studies on functionally relevant Eph/ephrin complexes, we have developed an expression system for producing the full-length human EphA2 receptor. We successfully expressed milligram amounts of the receptor using baculovirus-based vector and insect cells. We were also able to extract the protein from the cell membranes and purify it to near homogeneity in two simple steps. The purified receptor was shown to retain its biological activity in terms of both binding to its functional ligands and being able to auto-phosphorylate the key tyrosine residues of the cytoplasmic kinase domain.

  1. Structure and function of the Zika virus full-length NS5 protein

    Science.gov (United States)

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei; Chuang, Yin-Chih; Vaughan, Robert C.; Sankaran, Banumathi; Kao, C. Cheng; Li, Pingwei

    2017-01-01

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions to those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Overall, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication. PMID:28345656

  2. Recombination-activating gene 1 and 2 (RAG1 and RAG2) in flounder (Paralichthys olivaceus)

    Indian Academy of Sciences (India)

    Xianlei Wang; Xungang Tan; Pei-Jun Zhang; Yuqing Zhang; Peng Xu

    2014-12-01

    During the development of B and T lymphocytes, Ig and TCR variable region genes are assembled from germline V, D, and J gene segments by a site-specific recombination reaction known as V(D)J recombination. The process of somatic V(D)J recombination, mediated by the recombination-activating gene (RAG) products, is the most significant characteristic of adaptive immunity in jawed vertebrates. Flounder (Paralichthys olivaceus) RAG1 and RAG2 were isolated by Genome Walker and RT-PCR, and their expression patterns were analysed by RT-PCR and in situ hybridization on sections. RAG1 spans over 7.0 kb, containing 4 exons and 3 introns, and the full-length ORF is 3207 bp, encoding a peptide of 1068 amino acids. The first exon lies in the 5′-UTR, which is an alternative exon. RAG2 full-length ORF is 1062 bp, encodes a peptide of 533 amino acids, and lacks introns in the coding region. In 6-month-old flounders, the expression of RAG1 and RAG2 was essentially restricted to the pronephros (head kidney) and mesonephros (truck kidney). Additionally, both of them were mainly expressed in the thymus. These results revealed that the thymus and kidney most likely serve as the primary lymphoid tissues in the flounder.

  3. Biomimetic Precipitation of Uniaxially Grown Calcium Phosphate Crystals from Full-Length Human Amelogenin Sols

    Institute of Scientific and Technical Information of China (English)

    Vuk Uskokovié; Wu Li; Stefan Habelitz

    2011-01-01

    Human dental enamel forms over a period of 2 - 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense amelogenin matrix is presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aims to establish the physicochemical and biochemical conditions for the synthesis of fibrous apatite crystals under the control of a recombinant full-length human amelogenin matrix in combination with a programmable titration system. The growth of apatite substrates was initiated from supersaturated calcium phosphate solutions in the presence of dispersed amelogenin assemblies. It was shown earlier and confirmed in this study that binding of amelogenin onto apatite surfaces presents the first step that leads to substrate-specific crystal growth. In this work, we report enhanced nucleation and growth under conditions at which amelogenin and apatite carry opposite charges and adsorption of the protein onto the apatite seeds is even more favored. Experiments at pH below the isoelectric point of amelogenin showed increased protein binding to apatite and at low Ca/P molar ratios resulted in a change in crystal morphology from plate-like to fibrous and rod-shaped. Concentrations of calcium and phosphate ions in the supernatant did not show drastic decreases throughout the titration period, indicating controlled precipitation from the protein suspension metastable with respect to calcium phosphate. It is argued that ameloblasts in the developing enamel may vary the density of the protein matrix at the nano scale by varying local pH, and thus control the interaction between the mineral and protein phases. The biomimetic experimental setting applied in this study has thus proven as convenient for gaining insight into the fundamental nature of the process of

  4. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    Science.gov (United States)

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-01

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  5. Construction of a full-length cDNA library of Solen grandis dunker and identification of defense- and immune-related genes

    Science.gov (United States)

    Sun, Guohua; Liu, Xiangquan; Ren, Lihua; Yang, Jianmin; Wei, Xiumei; Yang, Jialong

    2013-11-01

    The basic genetic characteristics, important functional genes, and entire transcriptome of Solen grandis Dunker were investigated by constructing a full-length cDNA library with the `switching mechanism at the 5'-end of the RNA transcript' (SMART) technique. Total RNA was isolated from the immune-relevant tissues, gills and hemocytes, using the Trizol reagent, and cDNA fragments were digested with Sfi I before being ligated to the pBluescript II SK* vector. The cDNA library had a titer of 1048 cfu μL-1 and a storage capacity of 1.05×106 cfu. Approximately 98% of the clones in the library were recombinants, and the fragment lengths of insert cDNA ranged from 0.8 kb to 3.0 kb. A total of 2038 expressed sequence tags were successfully sequenced and clustered into 965 unigenes. BLASTN analysis showed that 240 sequences were highly similar to the known genes (E-value 80%), accounting for 25% of the total unigenes. According to the Gene Ontology, these unigenes were related to several biological processes, including cell structure, signal transport, protein synthesis, transcription, energy metabolism, and immunity. Fifteen of the identified sequences were related to defense and immunity. The full-length cDNA sequence of HSC70 was obtained. The cDNA library of S. grandis provided a useful resource for future researches of functional genomics related to stress tolerance, immunity, and other physiological activities.

  6. Cloning and Expression of Highly Pathogenic Avian Influenza Virus Full-Length Nonstructural Gene in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    M. B. Abubakar

    2011-01-01

    Full Text Available Avian influenza (AI is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1 was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA plasmid and subsequently subcloned into pPICZαA vector to construct a recombinant plasmid. Recombinant plasmid designated as pPICZαA-NS1 gene was confirmed by PCR colony screening, restriction enzyme digestion, and nucleotide sequence analysis. The recombinant plasmid was transformed into Pichia pastoris GS115 strain by electroporation, and expressed protein was identified by SDS-PAGE and western blotting. A recombinant protein of approximately ~28 kDa was produced. The expressed protein was able to bind a rabbit polyclonal antibody of nonstructural protein (NS1 avian influenza virus H5N1. The result of the western blotting and solid-phase ELISA assay using H5N1 antibody indicated that the recombinant protein produced retained its antigenicity. This further indicates that Pichia pastoris could be an efficient expression system for a avian influenza virus nonstructural (NS1.

  7. Characterization of full-length enterovirus 71 strains from severe and mild disease patients in northeastern China.

    Directory of Open Access Journals (Sweden)

    Xiaomei Wang

    Full Text Available Human enterovirus 71 (EV71-associated hand, foot, and mouth disease (HFMD has been a leading cause of childhood infection in China since 2008. Epidemic and molecular characteristics of HFMD have been examined in many areas of China, including the central and southern regions. However, clinical and genetic characterization of EV71 in the northeastern region of China is scarce. In this study, a series of analyses were performed on seven full-length EV71 sequences from HFMD patients who had either severe or mild disease. We have determined that these seven circulating EV71 viruses from Changchun, China are actually complex recombinant viruses involving multiple type A human enterovirus (HEV. Classified as EV71 subtype C4 (EV71 C4, these Changchun EV71 viruses contain genetic recombination events between the CA4, CA5, EV71B4 and EV71C1 strains. Most of the structural protein region (P1 of these viruses resembled that of the prototype EV71 C1 strains. The non-structural protein domains (P2 and P3 showed a high degree of similarity with CA4, CA5 and EV71 B4 in different regions. The 5'UTR had unclassified recombination,while partial 3D region of these viruses showed a high degree of similarity to CA16. Phylogenetic analysis of full-length or partial sequences of isolates from severe or mild disease patients in Changchun always formed a single cluster in various phylogenetic analyses of different genomic regions, suggesting that all seven strains originated from one single common ancestor. There was no correlation between viral genomic sequence and virulence. Thus, we found that circulating recombinant forms of EV71 are prevalent among HFMD patients in Northeastern China. The existence of a unique cluster of EV71 related viruses in Northeast China has important implications for vaccine development that would address the increasing prevalence of HFMD.

  8. Gibson assembly : an easy way to clone potyviral full-length infectious cDNA clones ex pressing an ectopic VPg

    OpenAIRE

    Bordat, Amandine; Houvenaghel, Marie-Christine

    2015-01-01

    Background Approaches to simplify and accelerate the construction of full-length infectious cDNA clones for plant potyviruses have been described, based on cloning strategies involving in vitro ligation or homologous recombination in yeast. In the present study, we developed a faster and more efficient in vitro recombination system using Gibson assembly (GA), to engineer a Lettuce mosaic virus (LMV) infectious clone expressing an ectopic mcherry-tagged VPg (Viral protein genome-linked) for in...

  9. Genetic characterization of three CRF01_AE full-length HIV type 1 sequences from Fujian Province, China

    Institute of Scientific and Technical Information of China (English)

    HUANG Hai-long; YAN Yan-sheng; YAN Ping-ping; ZHENG Jian; WU Shou-li; CHENG Ge; LIN Xun; ZHENG Wu-xiong; XIE Mei-rong; ZHANG Jian-ming

    2006-01-01

    Background One of the major characteristics of the human immunodeficiency virus type 1 (HIV-1) is its unusually high degree of genetic variability, which involves in genetic diagnosis, subtyping, vaccine design, and epidemiology. HIV-1 CRF01_AE is a main prevalent HIV-1 recombinant strain in China. In this study, three full-length CRF01_AE genomes from Fujian Province, China were cloned, sequenced, and analyzed; and the further genetic diversity defining and epidemiologic analysis were carried out.Methods Proviral DNA was extracted from non-cultured peripheral blood mononuclear cells, the near full-length HIV-1 genome was amplified and the PCR products were cloned into Pcr-XL-TOPO vector and sequenced. 5'-long terminal repeat (LTR) and 3'-LTRs were amplified by additional independent PCR and cloned into Pmd18t vector. Gene-based phylogenic tree was constructed and genetic distances were calculated by MEGA 3.1. Simplot was used for Bootscan analysis.Results The phylogeny and genetic distance analysis of the three near full-length sequences confirmed that these three samples clustered with CRF01_AE isolates, more close to Thailand CRF01_AE strain CM240, and were distantly related to African CRF01_AE strain 90CF402. Analysis of their genomic organization revealed the presence of nine potential open reading frames. There were no major deletions, rearrangements, or insertions in the three sequences, but an in-frame stop codon was found in tat gene of Fj051. LTRs of the three sequences contained a few nucleotides mutation. We did not find new mosaic recombinant in the three sequences. The V3 motif was GPGQ in all the three sequences, and there were only few amino acids differences in all three V3 loop sequences.Conclusion This report reveals the background of the three full-length CRF01_AE genomes, the most dominantly circulating HIV-1 strain in Fujian Province, China. The work is essential for the design and development of an effective AIDS vaccine for the region.

  10. Structural characterization suggests models for monomeric and dimeric forms of full-length ezrin.

    Science.gov (United States)

    Phang, Juanita M; Harrop, Stephen J; Duff, Anthony P; Sokolova, Anna V; Crossett, Ben; Walsh, James C; Beckham, Simone A; Nguyen, Cuong D; Davies, Roberta B; Glöckner, Carina; Bromley, Elizabeth H C; Wilk, Krystyna E; Curmi, Paul M G

    2016-09-15

    Ezrin is a member of the ERM (ezrin-radixin-moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.

  11. Full Length Bid is sufficient to induce apoptosis of cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Ward Manus W

    2007-02-01

    Full Text Available Abstract Background Bcl-2 homology domain (BH 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid, which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM. Results Western blot experiments confirmed a translocation of FL-Bid to the mitochondria during excitotoxic apoptosis that was associated with the release of cytochrome-C from mitochondria. These results were confirmed by immunofluorescence analysis of Bid translocation during excitotoxic cell death using an antibody raised against the amino acids 1–58 of mouse Bid that is not able to detect tBid. Finally, inducible overexpression of FL-Bid or a Bid mutant that can not be cleaved by caspase-8 was sufficient to induce apoptosis in the hippocampal neuron cultures. Conclusion Our data suggest that translocation of FL-Bid is sufficient for the activation of mitochondrial cell death pathways in response to glutamate receptor overactivation.

  12. Screening for plant transporter function by expressing a normalized Arabidopsis full-length cDNA library in Xenopus oocytes

    Directory of Open Access Journals (Sweden)

    Halkier Barbara A

    2006-10-01

    Full Text Available Abstract Background We have developed a functional genomics approach based on expression cloning in Xenopus oocytes to identify plant transporter function. We utilized the full-length cDNA databases to generate a normalized library consisting of 239 full-length Arabidopsis thaliana transporter cDNAs. The genes were arranged into a 96-well format and optimized for expression in Xenopus oocytes by cloning each coding sequence into a Xenopus expression vector. Results Injection of 96 in vitro transcribed cRNAs from the library in pools of columns and rows into oocytes and subsequent screening for glucose uptake activity identified three glucose transporters. One of these, AtSTP13, had not previously been experimentally characterized. Conclusion Expression of the library in Xenopus oocytes, combined with uptake assays, has great potential in assignment of plant transporter function and for identifying membrane transporters for the many plant metabolites where a transporter has not yet been identified.

  13. Platelet full length TFPI-α in healthy volunteers is not affected by sex or hormonal use

    Science.gov (United States)

    Winckers, Kristien; Thomassen, Stella; ten Cate, Hugo; Hackeng, Tilman M.

    2017-01-01

    Background Only 10% of plasma TFPIα (TFPI) exists in the full length form, the rest circulates as a C-terminally truncated form. However, blood platelets exclusively contain full length TFPI, which is released at the site of injury upon platelet activation, and which could play an important local regulatory role in thrombin generation and prevention of thrombosis. Methods The anticoagulant activities of full length and truncated TFPI were investigated using thrombin generation assays. Blood samples were obtained from 30 healthy volunteers (10 male subjects, 10 female subjects, and 10 females using oral contraceptives). Platelet TFPI was released in platelet rich plasma and in platelet isolates using convulxin or thrombin, and measured by free TFPI ELISA and thrombin generation assays. Results Full length TFPI and platelet TFPI were much more potent inhibitors of thrombin generation than truncated TFPI, which was virtually inactive. Although mean plasma TFPI antigen levels decreased from men (0.30 nM) to women (0.20 nM) to women using oral contraceptives (0.11 nM), no relevant differences were found in platelet TFPI among those subgroups. Conclusions Platelets release similar amounts of TFPI regardless of plasma TFPI concentrations and is unaffected by sex or oral contraceptive use. We speculate that platelet TFPI is important to prevent systemic coagulation and thrombosis and restrict thrombus formation to the site of the growing platelet plug. The stable contribution of platelet TFPI to the anticoagulant potential in plasma is likely to become particularly relevant under conditions of low plasma TFPI levels in combination of oral contraceptives use. PMID:28158181

  14. Insertion of Introns: A Strategy to Facilitate Assembly of Infectious Full Length Clones

    DEFF Research Database (Denmark)

    Johansen, Ida Elisabeth; Lund, Ole Søgaard

    2008-01-01

    Some DNA fragments are difficult to clone in Escherichia coli by standard methods. It has been speculated that unintended transcription and translation result in expression of proteins that are toxic to the bacteria. This problem is frequently observed during assembly of infectious full-length vi...

  15. Direct recovery of infectious Pestivirus from a full-length RT-PCR amplicon

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, Ilona; Hoffmann, Bernd;

    2008-01-01

    , and the resulting RNA transcripts were electroporated into ovine cells. Infectious virus was obtained after one cell culture passage. The rescued viruses had a phenotype similar to the parental Border Disease virus strain. Therefore, direct generation of infectious pestiviruses from full-length RT-PCR cDNA products...

  16. Full-length high-temperature severe fuel damage test No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, W.N.; Hesson, G.M.; Pilger, J.P.; King, L.L.; Goodman, R.L.; Panisko, F.E.

    1993-08-01

    This report describes the first full-length high-temperature test (FLHT-1) performed by Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. The test is part of a series of experiments being performed for the NRC as a part of their Severe Fuel Damage Program and is one of several planned for PNL`s Coolant Boilaway and Damage Progression Program. The report summarizes the test design and test plan. it also provides a summary and discussion of the data collected during the test and of the photos taken during the post-test examination. All objectives for the test were met. The key objective was to demonstrate that severe fuel damage tests on full-length fuel bundles can be safely conducted in the NRU reactor.

  17. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling

    Science.gov (United States)

    Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal

    2017-01-01

    Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here. PMID:28099529

  18. Expression of full-length and splice forms of FoxP3 in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ryder, L R; Woetmann, A; Ødum, N;

    2010-01-01

    OBJECTIVE: The aim of our study was to compare the presence of full-length and alternative splice forms of FoxP3 mRNA in CD4 cells from rheumatoid arthritis (RA) patients and healthy controls. METHODS: A quantitative real-time polymerase chain reaction (QRT-PCR) method was used to measure...... the amount of FoxP3 mRNA full-length and splice forms. CD4-positive T cells were isolated from peripheral blood from 50 RA patients by immunomagnetic separation, and the FoxP3 mRNA expression was compared with the results from 10 healthy controls. RESULTS: We observed an increased expression of full......-length FoxP3 mRNA in RA patients when compared to healthy controls, as well as an increase in CD25 mRNA expression, but no corresponding increase in CTLA-4 mRNA expression. The presence of an alternative splice form of FoxP3 lacking exon 2 was confirmed in both RA patients and healthy controls...

  19. A novel genome-wide full- length kinesin prediction analysis reveals additional mammalian kinesins

    Institute of Scientific and Technical Information of China (English)

    XUE Yu; LIU Dan; FU Chuanhai; DOU Zhen; ZHOU Qing; YAO Xuebiao

    2006-01-01

    Kinesin superfamily of microtubule- based motor orchestrates a variety of cellular processes. Recent availability of mammalian genomes has enabled analyses of kinesins on the whole genome. Here we present a novel full-length kinesin prediction program (FKPP) for mammalian kinesin gene discovery based on a comparative genomics approach. Contrary to previous predictions of 94 kinesins, we identify a total of 134 potentially kinesin genes from mammalian genomes, including 45 from mouse, 45 from rat and 44 from human. In addition, FKPP synthesizes 25 potentially full-length mammalian kinesins based on the partial sequences in the database. Surprisingly, FKPP reveals that full-length human CENP-E contains 2701 aa rather than 2663 aa in the database. Experimentation using sequence specific antibody and cDNA sequencing of human CENP-E validates the accuracy of FKPP. Given the remarkable computing efficiency and accuracy of FKPP, we reclassify the mammalian kinesin superfamily. Since current databases contain many incomplete sequences, FKPP may provide a novel approach for molecular delineation of kinesins and other protein families.

  20. Generation and Analysis of Expressed Sequence Tags (ESTs) from Muscle Full-Length cDNA Library of Wujin Pig

    Institute of Scientific and Technical Information of China (English)

    ZHAO Su-mei; LIU Yong-gang; PAN Hong-bing; ZHANG Xi; GE Chang-rong; JIA Jun-jing; GAO Shi-zheng

    2014-01-01

    Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle tissues. In addition, novel genes for further research could be identiifed in the library. In this study, we constructed a full-length cDNA library from porcine muscle tissue. The estimated average size of the cDNA inserts was 1076 bp, and the cDNA fullness ratio was 86.2%. A total of 1058 unique sequences with 342 contigs (32.3%) and 716 singleton (67.7%) expressed sequence tags (EST) were obtained by clustering and assembling. Meanwhile, 826 (78.1%) ESTs were categorized as known genes, and 232 (21.9%) ESTs were categorized as unknown genes. 65 novel porcine genes that exhibit no identity in the TIGR gene index ofSus scrofa and 124 full-length sequences with unknown functions were deposited in the dbEST division of GenBank (accession numbers: EU650784-EU650788, GE843306, GH228978-GH229100). The abundantly expressed genes in porcine muscle tissue were related to muscle ifber development, energy metabolism and protein synthesis. Gene ontology analysis showed that sequences expressed in porcine muscle tissue contained a high percentage of binding activity, catalytic activity, structural molecule activity and motor activity, which involved mainly in metabolic, cellular and developmental process, distributed mainly in intracellular region. The sequence data generated in this study would provide valuable information for identifying porcine genes expressed in muscle tissue and help to advance the study on the structure and function of genes in pigs.

  1. Cloning and expression of full-length human insulin-like growth factor binding protein 3 (IGFBP3 in the Escherichia coli

    Directory of Open Access Journals (Sweden)

    Emad Khodadadi

    2015-01-01

    Conclusion: DNA fragment encoding the full-length IGFBP3 protein was accurately cloned in the pET-11a expression vector and the recombinant plasmid transformed to E. coli BL21 (DE3 expression host. Results of the SDS-PAGE analysis verified that recombinant IGFBP3 (31.6 kDa are successfully expressed under the control of T7 promoter. As we shown pET-11a can be successfully used for expression of the IGFBP3 protein.

  2. 3.5A cryoEM structure of hepatitis B virus core assembled from full-length core protein.

    Directory of Open Access Journals (Sweden)

    Xuekui Yu

    Full Text Available The capsid shell of infectious hepatitis B virus (HBV is composed of 240 copies of a single protein called HBV core antigen (HBc. An atomic model of a core assembled from truncated HBc was determined previously by X-ray crystallography. In an attempt to obtain atomic structural information of HBV core in a near native, non-crystalline environment, we reconstructed a 3.5Å-resolution structure of a recombinant core assembled from full-length HBc by cryo electron microscopy (cryoEM and derived an atomic model. The structure shows that the 240 molecules of full-length HBc form a core with two layers. The outer layer, composed of the N-terminal assembly domain, is similar to the crystal structure of the truncated HBc, but has three differences. First, unlike the crystal structure, our cryoEM structure shows no disulfide bond between the Cys61 residues of the two subunits within the dimer building block, indicating such bond is not required for core formation. Second, our cryoEM structure reveals up to four more residues in the linker region (amino acids 140-149. Third, the loops in the cryoEM structures containing this linker region in subunits B and C are oriented differently (~30° and ~90° from their counterparts in the crystal structure. The inner layer, composed of the C-terminal arginine-rich domain (ARD and the ARD-bound RNAs, is partially-ordered and connected with the outer layer through linkers positioned around the two-fold axes. Weak densities emanate from the rims of positively charged channels through the icosahedral three-fold and local three-fold axes. We attribute these densities to the exposed portions of some ARDs, thus explaining ARD's accessibility by proteases and antibodies. Our data supports a role of ARD in mediating communication between inside and outside of the core during HBV maturation and envelopment.

  3. Escherichia coli–expressed near full length HIV-1 envelope glycoprotein is a highly sensitive and specific diagnostic antigen

    Directory of Open Access Journals (Sweden)

    Talha Sheikh M

    2012-11-01

    Full Text Available Abstract Background The Human Immunodeficiency Virus type 1 (HIV-1 envelope glycoprotein gp160, useful in detecting anti-HIV-1 antibodies, is difficult to express in heterologous hosts. The major hurdles are its signal sequence, strong hydrophobic regions and heavy glycosylation. While it has not been possible to express full length recombinant (r-gp160 in E. coli, it can be expressed in insect and mammalian cells, but at relatively higher cost. In this work, we report E. coli-based over-expression of r-gp160 variant and evaluate its performance in diagnostic immunoassays for the detection of anti-HIV-1 antibodies. Methods A deletion variant of r-gp160 lacking hydrophobic regions of the parent full length molecule was expressed in E. coli and purified to near homogeneity using single-step Ni(II-affinity chromatography. Biotinylated and europium(III chelate-labeled versions of this antigen were used to set up one- and two-step time-resolved fluorometric double antigen sandwich assays. The performance of these assays was evaluated against a collection of well-characterized human sera (n=131, that included an in-house panel and four commercially procured panels. Results In-frame deletion of three hydrophobic regions, spanning amino acid residues 1–43, 519–538 and 676–706, of full length HIV-1 gp160 resulted in its expression in E. coli. Both the one- and two-step assays manifested high sensitivity unambiguously identifying 75/77 and 77/77 HIV-1 positive sera, respectively. Both assays also identified all 52 HIV-seronegative sera correctly. Between the two assays, the mean signal-to-cutoff value of the two-step assay was an order of magnitude greater than that of the one-step assay. Both assays were highly specific manifesting no cross-reactivity towards antibodies specific to other viruses like hepatitis B, C, and human T cell leukemia viruses. Conclusions This study has demonstrated the expression of r-gp160 variant in E. coli, by deletion

  4. Ultrastructural changes in the interstitial cells of Cajal and gastric dysrhythmias in mice lacking full-length dystrophin (mdx mice).

    Science.gov (United States)

    Vannucchi, Maria-Giuliana; Zizzo, Maria-Grazia; Zardo, Claudio; Pieri, Laura; Serio, Rosa; Mulè, Flavia; Faussone-Pellegrini, Maria-Simonetta

    2004-05-01

    At least two populations of c-kit positive interstitial cells of Cajal (ICC) lie in the gastric wall, one located at the myenteric plexus level has a pace-making function and the other located intramuscularly is intermediary in the neurotransmission and regenerates the slow waves. Both of these ICC sub-types express full-length dystrophin. Mdx mice, an animal model lacking in full-length dystrophin and used to study Duchenne muscular dystrophy (DMD), show gastric dismotilities. The aim of the present study was to verify in mdx mice whether: (i) gastric ICC undergo morphological changes, through immunohistochemical and ultrastructural analyses; and (ii) there are alterations in the electrical activity, using intracellular recording technique. In control mice, ICC sub-types showed heterogeneous ultrastructural features, either intramuscularly or at the myenteric plexus level. In mdx mice, all of the ICC sub-types underwent important changes: coated vesicles were significantly more numerous and caveolae significantly fewer than in control; moreover, cytoskeleton and smooth endoplasmic reticulum were reduced and mitochondria enlarged. c-Kit-positivity and integrity of the ICC networks were maintained. In the circular muscle of normal mice slow waves, which consisted of initial and secondary components, occurred with a regular frequency. In mdx mice, slow waves occurred in a highly dysrhythmic fashion and they lacked a secondary component. We conclude that the lack of the full-length dystrophin is associated with ultrastructural modifications of gastric ICC, most of which can be interpreted as signs of new membrane formation and altered Ca(2+) handling, and with defective generation and regeneration of slow wave activity.

  5. Functional annotation of a full-length mouse cDNA collection

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, J.; Shinagawa, A.; Shibata, K.; Yoshino, M.; Itoh, M.; Ishii, Y.; Arakawa, T.; Hara, A.; Fukunishi, Y.; Konno, H.; Adachi, J.; Fukuda, S.; Aizawa, K.; Izawa, M.; Nishi, K.; Kiyosawa, H.; Kondo, S.; Yamanaka, I.; Saito, T.; Okazaki, Y.; Gojobori, T.; Bono, H.; Kasukawa, T.; Saito, R.; Kadota, K.; Matsuda, H.; Ashburner, M.; Batalov, S.; Casavant, T.; Fleischmann, W.; Gaasterland, T.; Gissi, C.; King, B.; Kochiwa, H.; Kuehl, P.; Lewis, S.; Matsuo, Y.; Nikaido, I.; Pesole, G.; Quackenbush, J.; Schriml, L.M.; Staubli, F.; Suzuki, R.; Tomita, M.; Wagner, L.; Washio, T.; Sakai, K.; Okido, T.; Furuno, M.; Aono, H.; Baldarelli, R.; Barsh, G.; Blake, J.; Boffelli, D.; Bojunga, N.; Carninci, P.; de Bonaldo, M.F.; Brownstein, M.J.; Bult, C.; Fletcher, C.; Fujita, M.; Gariboldi, M.; Gustincich, S.; Hill, D.; Hofmann, M.; Hume, D.A.; Kamiya, M.; Lee, N.H.; Lyons, P.; Marchionni, L.; Mashima, J.; Mazzarelli, J.; Mombaerts, P.; Nordone, P.; Ring, B.; Ringwald, M.; Rodriguez, I.; Sakamoto, N.; Sasaki, H.; Sato, K.; Schonbach, C.; Seya, T.; Shibata, Y.; Storch, K.-F.; Suzuki, H.; Toyo-oka, K.; Wang, K.H.; Weitz, C.; Whittaker, C.; Wilming, L.; Wynshaw-Boris, A.; Yoshida, K.; Hasegawa, Y.; Kawaji, H.; Kohtsuki, S.; Hayashizaki, Y.; RIKEN Genome Exploration Research Group Phase II T; FANTOM Consortium

    2001-01-01

    The RIKEN Mouse Gene Encyclopedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analyzed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.

  6. Generation and Analysis of Full-length cDNA Sequences from Elephant Shark (Callorhinchus milii)

    KAUST Repository

    Kodzius, Rimantas

    2009-03-17

    Cartilaginous fishes are the oldest living group of jawed vertebrates and therefore is an important group for understanding the evolution of vertebrate genomes including the human genome. Our laboratory has proposed elephant shark (C. milii) as a model cartilaginous fish genome because of its relatively small genome size (910 Mb). The whole genome of C. milii is being sequenced (first cartilaginous fish genome to be sequenced completely). To characterize the transcriptome of C. milii and to assist in annotating exon-intron boundaries, transcriptional start sites and alternatively spliced transcripts, we are generating full-length cDNA sequences from C. milii.

  7. Full-Length High-Temperature Severe Fuel Damage Test No. 5: Final safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Lombardo, N.J.; Panisko, F.E.

    1993-09-01

    This report presents the final safety analysis for the preparation, conduct, and post-test discharge operation for the Full-Length High Temperature Experiment-5 (FLHT-5) to be conducted in the L-24 position of the National Research Universal (NRU) Reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test is sponsored by an international group organized by the US Nuclear Regulatory Commission. The test is designed and conducted by staff from Pacific Northwest Laboratory with CRNL staff support. The test will study the consequences of loss-of-coolant and the progression of severe fuel damage.

  8. Dielectronic Recombination In Active Galactic Nuclei

    Science.gov (United States)

    Lukić, D.; Savin, D. W.; Schnell, M.; Brandau, C.; Schmidt, E.; Schippers, S.; Müller, A.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2006-05-01

    Recent X-ray satelitte observations of active galactic nuclei point out shortcomings in our understanding of low temperature dielectronic recombination (DR) for iron M- shell ions. In order to resolve this issue and to provide reliable iron M-shell DR data for modeling astrophysical plasmas, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring at the Max- Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage rings are currently the only laboratory method capable of studying low temperature DR. We use our results to produce experimentally- derived DR rate coefficients. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we will report our recent DR results for selected Fe M-shell ions. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients.

  9. De novo assembly ofZea nicaraguensis root transcriptome identiifed 5261full-length transcripts

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; LIU Hai-lan; WU Yuan-qi; ZHANG Su-zhi; LIU Jian; LU Yan-li; TANG Qi-lin; RONG Ting-zhao

    2016-01-01

    Zea nicaraguensis, a wild relative of cultivated maize (Zea mayssubsp. mays), is considered to be a valuable germplasm to improve the waterlogging tolerance of cultivated maize. Use of reverse genetic-based gene cloning and function veriif-cation to discover waterlogging tolerance genes inZ. nicaraguensis is currently impractical, because little gene sequence information forZ. nicaraguensis is available in public databases. In this study,Z. nicaraguensis seedlings were subjected to simulated waterlogging stress and total RNAs were isolated from roots stressed and non-stressed controls. In total, 80 mol L–1 Ilumina 100-bp paired-end reads were generated.De novo assembly of the reads generated 81002 ifnal non-re-dundant contigs, from which 5261 full-length transcripts were identiifed. Among these full-length transcripts, 3169 had at least one Gene Ontology (GO) annotation, 2354 received cluster of orthologous groups (COG) terms, and 1992 were assigned a Kyoto encyclopedia of genes and genomes (KEGG) Orthology number. These sequence data represent a valuable resource for identiifcation ofZ. nicaraguensisgenes involved in waterlogging response.

  10. Full length parathyroid hormone (1–84 in the treatment of osteoporosis in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Esteban Jódar-Gimeno

    2007-04-01

    Full Text Available Esteban Jódar-GimenoEndocrinology and Metabolism Service, University Hospital “12 de Octubre”, Madrid, Spain. Associate Professor of Medicine Universidad Complutense, Madrid, SpainObjective: To review the pharmacological properties and the available clinical data of full length parathyroid hormone (PTH in post-menopausal osteoporosis.Sources: A MEDLINE search was completed, together with a review of information obtained from the manufacturer and from the medicine regulatory agencies.Study and data selection: Studies were selected according to relevance and availability. Relevant information (design, objectives, patients’ characteristics, outcomes, adverse events, dosing, etc was analyzed.Results: Different studies have shown that, when administered intermittently as a subcutaneous injection in the abdomen, PTH increases bone mineral density (BMD and prevents vertebral fractures. On completion of PTH therapy (up to 24 months, there is evidence that sequential treatment with alendronate is associated with a therapeutic benefit in terms of increase in BMD. Further trials are necessary to determine long-term safety and the role of PTH in combination with other treatments for osteoporosis and the effect of repeated cycles of PTH followed by an anti-catabolic agent. There are currently no completed comparative trials with other osteoporosis treatments.Conclusions: Full length PTH, given intermittently as an abdominal subcutaneous injection, appears to be a safe and efficacious treatment option for high risk osteoporosis. More data are needed to determine its specific role in osteoporosis treatment.Keywords: postmenopausal osteoporosis, anabolic therapy, PTH (1–84

  11. Isolation and annotation of 10828 putative full length cDNAs from indica rice

    Institute of Scientific and Technical Information of China (English)

    XIE; Kabin; ZHANG; Jianwei; XIANG; Yong; FENG; Qi; HAN; Bin

    2005-01-01

    We reported the isolation and identification of 10828 putative full-length cDNAs (FL-cDNA) from an indica rice cultivar, Minghui 63, with the long-term goal to isolate all full-length cDNAs from indica genome. Comparison with the databases showed that 780 of them are new rice cDNAs with no match in japonica cDNA database. Totally, 9078 of the FL-cDNAs contained predicted ORFs matching with japonica FL-cDNAs and 6543 could find homologous proteins with complete ORFs. 53% of the matched FL-cDNAs isolated in this study had longer 5′UTR than japonica FL-cDNAs. In silico mapping showed that 9776 (90.28%) of the FL-cDNAs had matched genomic sequences in the japonica genome and 10046 (92.78%) had matched genomic sequences in the indica genome. The average nucleotide sequence identity between the two subspecies is 99.2%. A majority of FL-cDNAs (90%) could be classified with GO (gene ontology) terms based on homology proteins. More than 60% of the new cDNAs isolated in this study had no homology to the known proteins. This set of FL-cDNAs should be useful for functional genomics and proteomics studies.

  12. Electrotransfer of the full-length dog dystrophin into mouse and dystrophic dog muscles.

    Science.gov (United States)

    Pichavant, Christophe; Chapdelaine, Pierre; Cerri, Daniel G; Bizario, Joao C S; Tremblay, Jacques P

    2010-11-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by the absence of dystrophin (427 kDa). An approach to eventually restore this protein in patients with DMD is to introduce into their muscles a plasmid encoding dystrophin cDNA. Because the phenotype of the dystrophic dog is closer to the human phenotype than is the mdx mouse phenotype, we have studied the electrotransfer of a plasmid carrying the full-length dog dystrophin (FLDYS(dog)) in dystrophic dog muscle. To achieve this nonviral delivery, the FLDYS(dog) cDNA was cloned in two plasmids containing either a cytomegalovirus or a muscle creatine kinase promoter. In both cases, our results showed that the electrotransfer of these large plasmids (∼17 kb) into mouse muscle allowed FLDYS(dog) expression in the treated muscle. The electrotransfer of pCMV.FLDYS(dog) in a dystrophic dog muscle also led to the expression of dystrophin. In conclusion, introduction of the full-length dog dystrophin cDNA by electrotransfer into dystrophic dog muscle is a potential approach to restore dystrophin in patients with DMD. However, the electrotransfer procedure should be improved before applying it to humans.

  13. Relationship between full-length sequence characteristics of the vacA gene from high-cytotoxic and low-cytotoxic Helicobacter pylori in China and VacA activities%中国幽门螺杆菌强细胞毒株和弱细胞毒株vacA 基因全长序列特征与VacA活性的关系

    Institute of Scientific and Technical Information of China (English)

    杨泽民

    2011-01-01

    AIM: To evaluate the effect of vacA gene sequence variation on VacA activity by analyzing the full-length sequence of the vacA gene of high- and low-cytotoxic Helicobacter pylori (H. Pylori) strains isolated from China.METHODS: The full-length sequences of the vacA gene of four high- and four low-cytotoxic H. Pylori strains were retrieved from GenBank database and analyzed using three bioinformatic programs (DNAMAN, Lasergene 7.0 and MEGA 5.0).RESULTS: There existed significant sequence variations in the vacA gene among high- and low-cytotoxic H. Pylori strains isolated fromChina and a high-cytotoxic H. Pylori 60190 strain isolated from west country. These variations were mainly concentrated on the p55 domain of the vacA gene, resulting in transitions between hydrophobic and polar amino acids. Several insertion variations were detected in low-cytotoxic H. Pylori strains compared to the H. Pylori 60190 strain. High- and low-cytotoxic strains as well as strains isolated from China and west country-were clustered as different H. Pylori lineages.CONCLUSION: Sequence and insert variation in the vacA gene might be an important reason resulting in VacA activity difference among H. Pylori strains.%目的:探讨中国幽门螺杆菌(Helicobacter pylori,H.pylori )强细胞毒株和弱细胞毒株vacA 基因序列差异对其VacA活性的影响.方法:从GenBank数据库下载4个强细胞毒株和4个弱细胞毒株vacA 基因全长DNA和氨基酸序列,利用DNAMAN、lasergene 7.0、MEGA 5.0 3个生物信息学软件对其进行分析.结果:(1)中国H.pylori 强细胞毒株、弱细胞毒株和西方强细胞毒株60190株3者之间在vacA基因序列上都存在明显的差异,这些差异主要集中在vacA 基因p55结构域,表现为疏水性氨基酸与极性氨基酸之间的转换; (2)弱细胞毒株还存在多个插入变异位点; (3)强细胞毒株和弱细胞毒株,中国和西方分离株在系统发育树中分别聚类为不同的谱系.结论:vacA 基因

  14. Characterization of full-length sequenced cDNA inserts (FLIcs from Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Lunner Sigbjørn

    2009-10-01

    Full Text Available Abstract Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP, the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91% of the transcripts were annotated using Gene Ontology (GO terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS. The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS. This

  15. Full length cDNA cloning and expression analysis of annexinA2 gene from deer antler tissue

    Institute of Scientific and Technical Information of China (English)

    Li Hao; Xianghong Xiao; Heping Li

    2014-01-01

    ANXA2(AnnexinA2), a calcium-dependent phospholipid bind-ing protein, is involved in various Ca2+-related biological activities. In the present study, full-length cDNA of ANXA2 was isolated from the velvet antler tip tissue of sika deer (Cervus nippon hortulorum);the amino acid sequence and gene expression was analyzed by using bioinformatics and real-time reverse transcriptase polymerase chain reaction (RT-PCR) techniques. Nucleotide sequence analysis reveals that the full-length cDNA of the ANXA2 gene was 1372 bp, of which 1020 bp was in the open-reading frame (ORF) encoding 339 amino acids; its relative mo-lecular weight was 38.3 kDa; and isoelectric point was 6.72. Sequence analysis indicates that the protein includes four conserved tan-dem-duplication ANX domains. The gene-accession nucleotide sequence number in GenBank is JX315571. Expression analysis by RT-PCR re-veals that ANXA2 gene expression has a significant positive correlation with the antler-tissue mineralization process, indicating that this gene may play an important role in the regulation of antler-tissue mineraliza-tion.

  16. High avidity antibodies to full-length VAR2CSA correlate with absence of placental malaria

    DEFF Research Database (Denmark)

    Tutterrow, Yeung Lo; Salanti, Ali; Avril, Marion;

    2012-01-01

    VAR2CSA mediates sequestration of Plasmodium falciparum-infected erythrocytes in the placenta, increasing the risk of poor pregnancy outcomes. Naturally acquired antibodies (Ab) to placental parasites at delivery have been associated with improved pregnancy outcomes, but Ab levels and how early...... in pregnancy Ab must be present in order to eliminate placental parasites before delivery remains unknown. Antibodies to individual Duffy-binding like domains of VAR2CSA have been studied, but the domains lack many of the conformational epitopes present in full-length VAR2CSA (FV2). Thus, the purpose...... of this study was to describe the acquisition of Ab to FV2 in women residing in high and low transmission areas and determine how Ab levels during pregnancy correlate with clearance of placental parasites. Plasma samples collected monthly throughout pregnancy from pregnant women living in high and low...

  17. Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia.

    Science.gov (United States)

    Carninci, Piero; Waki, Kazunori; Shiraki, Toshiyuki; Konno, Hideaki; Shibata, Kazuhiro; Itoh, Masayoshi; Aizawa, Katsunori; Arakawa, Takahiro; Ishii, Yoshiyuki; Sasaki, Daisuke; Bono, Hidemasa; Kondo, Shinji; Sugahara, Yuichi; Saito, Rintaro; Osato, Naoki; Fukuda, Shiro; Sato, Kenjiro; Watahiki, Akira; Hirozane-Kishikawa, Tomoko; Nakamura, Mari; Shibata, Yuko; Yasunishi, Ayako; Kikuchi, Noriko; Yoshiki, Atsushi; Kusakabe, Moriaki; Gustincich, Stefano; Beisel, Kirk; Pavan, William; Aidinis, Vassilis; Nakagawara, Akira; Held, William A; Iwata, Hiroo; Kono, Tomohiro; Nakauchi, Hiromitsu; Lyons, Paul; Wells, Christine; Hume, David A; Fagiolini, Michela; Hensch, Takao K; Brinkmeier, Michelle; Camper, Sally; Hirota, Junji; Mombaerts, Peter; Muramatsu, Masami; Okazaki, Yasushi; Kawai, Jun; Hayashizaki, Yoshihide

    2003-06-01

    We report the construction of the mouse full-length cDNA encyclopedia,the most extensive view of a complex transcriptome,on the basis of preparing and sequencing 246 libraries. Before cloning,cDNAs were enriched in full-length by Cap-Trapper,and in most cases,aggressively subtracted/normalized. We have produced 1,442,236 successful 3'-end sequences clustered into 171,144 groups, from which 60,770 clones were fully sequenced cDNAs annotated in the FANTOM-2 annotation. We have also produced 547,149 5' end reads,which clustered into 124,258 groups. Altogether, these cDNAs were further grouped in 70,000 transcriptional units (TU),which represent the best coverage of a transcriptome so far. By monitoring the extent of normalization/subtraction, we define the tentative equivalent coverage (TEC),which was estimated to be equivalent to >12,000,000 ESTs derived from standard libraries. High coverage explains discrepancies between the very large numbers of clusters (and TUs) of this project,which also include non-protein-coding RNAs,and the lower gene number estimation of genome annotations. Altogether,5'-end clusters identify regions that are potential promoters for 8637 known genes and 5'-end clusters suggest the presence of almost 63,000 transcriptional starting points. An estimate of the frequency of polyadenylation signals suggests that at least half of the singletons in the EST set represent real mRNAs. Clones accounting for about half of the predicted TUs await further sequencing. The continued high-discovery rate suggests that the task of transcriptome discovery is not yet complete.

  18. Inhibition of full length Hepatitis C Virus particles of 1a genotype through small interference RNA

    Directory of Open Access Journals (Sweden)

    Rehman Sidra

    2011-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV, a member of the Flaviviridae family of viruses, is a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Currently, the only treatment available consists of a combination of Pegylated interferon alpha (INF-α and ribavirin, but only half of the patients treated show a sufficient antiviral response. Thus there is a great need for the development of new treatments for HCV infections. RNA interference (RNAi represents a new promising approach to develop effective antiviral drugs and has been extremely effective against HCV infection. Results This study was design to assess or explore the silencing effect of small interference RNAs (siRNAs against full length HCV particles of genotype 1a. In the present study six 21-bp siRNAs were designed against different regions of HCV structural genes (Core, E1 and E2. Selected siRNAs were labeled as Csi 301, Csi 29, E1si 52, E1si 192, E2si 86 and E2si 493. Our results demonstrated that siRNAs directed against HCV core gene showed 70% reduction in viral titer in HCV infected liver cells. Moreover, siRNAs against E1 and E2 envelop genes showed a dramatic reduction in HCV viral RNA, E2si 86 exhibited 93% inhibition, while E1si 192, E2si 493 and E1si 52 showed 87%, 80%, and 66% inhibition respectively. No significant inhibition was detected in cells transfected with the negative control siRNA. Conclusion Our results suggested that siRNAs targeted against HCV structural genes efficiently silence full length HCV particles and provide an effective therapeutic option against HCV infection.

  19. Rapid hepatic clearance of full length CCN-2/CTGF: a putative role for LRP1-mediated endocytosis.

    Science.gov (United States)

    Gerritsen, K G F; Bovenschen, N; Nguyen, T Q; Sprengers, D; Koeners, M P; van Koppen, A N; Joles, J A; Goldschmeding, R; Kok, R J

    2016-12-01

    CCN-2 (connective tissue growth factor; CTGF) is a key factor in fibrosis. Plasma CCN-2 has biomarker potential in numerous fibrotic disorders, but it is unknown which pathophysiological factors determine plasma CCN-2 levels. The proteolytic amino-terminal fragment of CCN-2 is primarily eliminated by the kidney. Here, we investigated elimination and distribution profiles of full length CCN-2 by intravenous administration of recombinant CCN-2 to rodents. After bolus injection in mice, we observed a large initial distribution volume (454 mL/kg) and a fast initial clearance (120 mL/kg/min). Immunosorbent assay and immunostaining showed that CCN-2 distributed mainly to the liver and was taken up by hepatocytes. Steady state clearance in rats, determined by continuous infusion of CCN-2, was fast (45 mL/kg/min). Renal CCN-2 clearance, determined by arterial and renal vein sampling, accounted for only 12 % of total clearance. Co-infusion of CCN-2 with receptor-associated protein (RAP), an antagonist of LDL-receptor family proteins, showed that RAP prolonged CCN-2 half-life and completely prevented CCN-2 internalization by hepatocytes. This suggests that hepatic uptake of CCN-2 is mediated by a RAP-sensitive mechanism most likely involving LRP1, a member of the LDL-receptor family involved in hepatic clearance of various plasma proteins. Surface plasmon resonance binding studies confirmed that CCN-2 is an LRP1 ligand. Co-infusion of CCN-2 with an excess of the heparan sulphate-binding protamine lowered the large initial distribution volume of CCN-2 by 88 % and reduced interstitial staining of CCN-2, suggesting binding of CCN-2 to heparan sulphate proteoglycans (HSPGs). Protamine did not affect clearance rate, indicating that RAP-sensitive clearance of CCN-2 is HSPG independent. In conclusion, unlike its amino-terminal fragment which is cleared by the kidney, full length CCN-2 is primarily eliminated by the liver via a fast RAP-sensitive, probably LRP1-dependent

  20. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator.

    Science.gov (United States)

    Takeshita, A; Yen, P M; Misiti, S; Cardona, G R; Liu, Y; Chin, W W

    1996-08-01

    Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that regulate target gene transcription. The conserved carboxy-terminal region of the ligand-binding domain (AF-2) has been thought to play a critical role in mediating ligand-dependent transactivation by the interaction with coactivator(s). Using bacterially-expressed TR as a probe, far-Western-based expression cDNA library screening identified cDNAs that encode, in part, the recently reported partial steroid receptor coactivator-1 (SRC-1) sequence. Additional work, including 5' RACE, has characterized a full-length cDNA that encodes a approximately 160 kD protein as a putative thyroid hormone receptor coactivator (F-SRC-1). In vitro binding studies show that F-SRC-1 binds to a variety of nuclear hormone receptors in a ligand-dependent manner, along with TBP and TFIIB, suggesting that F-SRC-1 may play a role as a bridging molecule between nuclear hormone receptors and general transcription factors. Interestingly, AF-2 mutants also retain ligand-dependent interaction with F-SRC-1. Although F-SRC-1 recognizes the ligand-induced conformational changes of nuclear hormone receptors, our observations suggest that F-SRC-1 may bind directly with subregion(s) in nuclear hormone receptors other than the AF-2 region.

  1. Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq.

    Science.gov (United States)

    Ode, Hirotaka; Matsuda, Masakazu; Matsuoka, Kazuhiro; Hachiya, Atsuko; Hattori, Junko; Kito, Yumiko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru

    2015-01-01

    Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only 1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome.

  2. High-quality full-length immunoglobulin profiling with unique molecular barcoding.

    Science.gov (United States)

    Turchaninova, M A; Davydov, A; Britanova, O V; Shugay, M; Bikos, V; Egorov, E S; Kirgizova, V I; Merzlyak, E M; Staroverov, D B; Bolotin, D A; Mamedov, I Z; Izraelson, M; Logacheva, M D; Kladova, O; Plevova, K; Pospisilova, S; Chudakov, D M

    2016-09-01

    High-throughput sequencing analysis of hypermutating immunoglobulin (IG) repertoires remains a challenging task. Here we present a robust protocol for the full-length profiling of human and mouse IG repertoires. This protocol uses unique molecular identifiers (UMIs) introduced in the course of cDNA synthesis to control bottlenecks and to eliminate PCR and sequencing errors. Using asymmetric 400+100-nt paired-end Illumina sequencing and UMI-based assembly with the new version of the MIGEC software, the protocol allows up to 750-nt lengths to be sequenced in an almost error-free manner. This sequencing approach should also be applicable to various tasks beyond immune repertoire studies. In IG profiling, the achieved length of high-quality sequence covers the variable region of even the longest chains, along with the fragment of a constant region carrying information on the antibody isotype. The whole protocol, including preparation of cells and libraries, sequencing and data analysis, takes 5 to 6 d.

  3. The Revised Junior Eysenck Personality Questionnaire (JEPQ-R): Dutch replications of the full length, short, and abbreviated forms

    NARCIS (Netherlands)

    Scholte, R.H.J.; Bruyn, E.E.J. De

    2001-01-01

    This study examines the full-length, short and abbreviated forms of the Revised Junior Eysenck Personality Questionnaire (JEPQ-R) in a Dutch sample of 215 boys and 207 girls, aged 12–14. The reliability and concurrent validity of the scales of the full-length form (JEPQ-R, 81 items), short form (JEP

  4. Construction and characterization of bacterial artificial chromosomes (BACs) containing herpes simplex virus full-length genomes.

    Science.gov (United States)

    Nagel, Claus-Henning; Pohlmann, Anja; Sodeik, Beate

    2014-01-01

    Bacterial artificial chromosomes (BACs) are suitable vectors not only to maintain the large genomes of herpesviruses in Escherichia coli but also to enable the traceless introduction of any mutation using modern tools of bacterial genetics. To clone a herpes simplex virus genome, a BAC replication origin is first introduced into the viral genome by homologous recombination in eukaryotic host cells. As part of their nuclear replication cycle, genomes of herpesviruses circularize and these replication intermediates are then used to transform bacteria. After cloning, the integrity of the recombinant viral genomes is confirmed by restriction length polymorphism analysis and sequencing. The BACs may then be used to design virus mutants. Upon transfection into eukaryotic cells new herpesvirus strains harboring the desired mutations can be recovered and used for experiments in cultured cells as well as in animal infection models.

  5. Uroporphyrinogen-III synthase: Molecular cloning, nucleotide sequence, expression of a mouse full-length cDNA, and its localization on mouse chromosome 7

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Desnick, R.J. [Mount Sinai School of Medicine, New York, NY (United States); Kozak, C.A. [National Institute of Health, Bethesda, MD (United States)

    1995-04-10

    Uroporphyrinogen-III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for the conversion of hydroxymethylbilane to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-S is the enzymatic defect in congenital erythropoietic porphyria (CEP), an autosomal recessive disorder. For the generation of a mouse model of CEP, the human URO-S cDNA was used to screen 2 X 10{sup 6} recombinants from a mouse adult liver cDNA library. Ten positive clones were isolated, and dideoxy sequencing of the entire 1.6-kb insert of clone pmUROS-1 revealed 5{prime} and 3{prime} untranslated sequences of 144 and 623 bp, respectively, and an open reading frame of 798 bp encoding a 265-amino-acid polypeptide with a predicted molecular mass of 28,501 Da. The mouse and human coding sequences had 80.5 and 77.8% nucleotide and amino acid identity, respectively. The authenticity of the mouse cDNA was established by expression of the active monomeric enzyme in Escherichia coli. In addition, the analysis of two multilocus genetic crosses localized the mouse gene on chromosome 7, consistent with the mapping of the human gene to a position of conserved synteny on chromosome 10. The isolation, expression, and chromosomal mapping of this full-length cDNA should facilitate studies of the structure and organization of the mouse genomic sequence and the development of a mouse model of CEP for characterization of the disease pathogenesis and evaluation of gene therapy. 38 refs., 1 tab.

  6. RNA transcripts of full-length cDNA clones of rabbit hepatitis E virus are infectious in rabbits.

    Science.gov (United States)

    Cossaboom, Caitlin M; Huang, Yao-Wei; Yugo, Danielle M; Kenney, Scott P; Piñeyro, Pablo; Matzinger, Shannon R; Heffron, C Lynn; Pierson, F William; Meng, Xiang-Jin

    2014-11-07

    Hepatitis E virus (HEV), the causative agent of hepatitis E, is a single-stranded positive-sense RNA virus belonging to the family Hepeviridae. At least four genotypes of the family infect humans: genotypes 1 and 2 are transmitted to humans through contaminated water, while genotypes 3 and 4 are zoonotic and have animal reservoirs. A novel strain of HEV recently identified in rabbits is a distant member of genotype 3, and thus poses a potential risk of zoonotic transmission to humans. The objective of this study was to construct and characterize an infectious cDNA clone of the rabbit HEV. Two full-length cDNA clones of rabbit HEV, pT7g-rabHEV and pT7-rabHEV, were constructed and their infectivity was tested by in vitro transfection of Huh7 human liver cells and by direct intrahepatic inoculation of rabbits with capped RNA transcripts. Results showed that positive signal for rabbit HEV protein was detected by an immunofluorescence assay with a HEV-specific antibody in Huh7 human liver cells transfected with capped RNA transcripts from the two full-length cDNA clones. Rabbits intrahepatically inoculated with capped RNA transcripts from each of the two clones developed active HEV infection as evidenced by seroconversion to anti-HEV antibodies, and detection of rabbit HEV RNA in sera and feces of inoculated animals. The availability of a rabbit HEV infectious cDNA clone now affords us the ability to delineate the mechanism of HEV replication and cross-species infection in a small animal model.

  7. Cloning, expression and mapping of the full-length cDNA of human CCTβ subunit

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chaperonins assist the proper folding of target proteins without being a part of the substrates. The eukaryotic cytosolic chaperonin, CCT-Chaperonin Containing TCP-1 (tailless complex polypeptide-1), is mainly involved in the formation of cytoskeletal proteins and is essential for cell viability. Mammalian CCT is commonly a protein complex composed of 7-9 subunit species. We have isolated a novel full-length cDNA from human testis cDNA library. This cDNA of 1935 bp contains a 1605 bp open reading frame (ORF) encoding 535 amino acids (aa). The deduced protein of the cDNA is highly homologous to the CCTβ subunit of saccharomyces cerevisiae, schizosaccharomyces pombe, caenorhabditis elegans and mouse, etc. Especially high homology (97%) is found between the deduced protein and mouse CCTb. On the basis of such high homology, the protein encoded by the new gene was proposed to be a human CCTβ subunit. Northern hybridization showed that human CCTβ gene is expressed as a transcript of about 2.0 kb in various tissues. Overexpression was seen in testis with the expression level 3-24 times of those in other tissues. The CCTβ gene was mapped to human chromosome 12q14 by Radiation Hybrid Mapping. Through homologous search, the 5′-end of the cDNA sequence was found to share intermittent regional homology with the 3′-end of human genomic sequence (U91327). The genomic structure of the 5′-end of CCTβ was also described in detail through comparative analysis.

  8. Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs.

    Directory of Open Access Journals (Sweden)

    Carol Soderlund

    2009-11-01

    Full Text Available Full-length cDNA (FLcDNA sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5' and 3' UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs, only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org.

  9. Full-length cDNA cloning and structural characterization of preproinsulin in Alligator sinensis.

    Science.gov (United States)

    Zhang, R; Zhang, S Z; Li, E; Wang, C; Wang, C L; Wu, X B

    2014-10-27

    Insulin is an important endocrine hormone that plays a critical physiological role in regulating metabolism and glucostasis in vertebrates. In this study, the complete cDNA of Alligator sinensis preproinsulin gene was cloned for the first time by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends methods; the amino acid sequence encoded and protein structure were analyzed. The full-length of preproinsulin cDNA sequence consists of 528 base pairs (bp), comprising a 34-bp 5'-untranslated region, a 170-bp 3'-untranslated region and an open reading frame that is 324 bp in length. The open reading frame encodes a 107-amino acid preproinsulin with a molecular weight of approximately 12,153.8 Da, theoretical isoelectric point of 5.68, aliphatic index of 92.06, and grand average of hydropathicity of -0.157, from which a signal peptide, a B-chain, a C-peptide, and an A-chain are derived. Online analysis suggested that the deduced preproinsulin amino acid sequence contains a transmembrane region, and that it has a signal peptide whose cleavage site occurs between alanine 24 and alanine 25. Comparative analysis of preproinsulin amino acid sequences indicated that the A-chain and B-chain sequences of preproinsulins are highly conserved between reptiles and birds, and that the preproinsulin amino acid sequence of Alligator sinensis shares 89% similarity to that of Chelonia mydas, but low similarity of 48-63% to those of mammals and fishes. The phylogenetic tree constructed using the neighbor-joining method revealed that preproinsulin of Alligator sinensis had high homology with reptiles and birds, such as Chelonia mydas, Gallus gallus, and Columba livia.

  10. Preparation of Monoclonal Antibodies Against Prion Proteins With Full-length Hamster PrP

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To prepare the PrP specific monoclonal antibodies (mAbs) that can be used for the detection of mammalian prions and study of pathogenesis of prion diseases. Methods Several BALB/c mice were immunized with recombinant hamster prion protein (HaPrP). Three hybridoma cell lines designated as B7, B9, and B10, secreting monoclonal antibodies against HaPrP, were established by hybridoma technique. The mAbs reactivities were evaluated with ELISA, Western blot, and immunohistochemistry. Results The mAbs produced by these cell lines reacted well with different recombinant hamster PrP proteins. Western blot analyses showed that mAbs B7 and B9 reacted with PrPSc from the scrapie-infected animals after proteinase K digestion with three glycosylated forms. The mAbs exhibited cross-reactivity with various PrPC from several other mammalian species, including humans and cattles. Immunohistochemistry assays confirmed that mAbs B7 and B9 could recognize not only extracellular but also intracellular PrPSc. Conclusion The mAbs of prion protein are successfully generated by hybridoma technique and can be applied for the diagnosis of prion associated diseases.

  11. Application of full-length anchor support technology in a large-section roadway under complicated geological conditions

    Institute of Scientific and Technical Information of China (English)

    DONG Yun-fei; WANG Yun-gang

    2012-01-01

    Coal roadway support is the foundation and strong guarantee of safe coal production.With the FLAC3D numerical simulation,the roadway full-length anchor support mechanism was studied,and the full-length anchor force-transferring mechanism and stress-field distribution formed by roadway surrounding rocks were analyzed,which will provide a scientific basis for a support technology in large-section roadways under complicated geological conditions and lay a foundation for the popularization and application of a full-length anchor support system under special geological conditions.

  12. A novel copper(II) coordination at His186 in full-length murine prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yasuko [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Hiraoka, Wakako [Laboratory of Biophysics, School of Science and Technology, Meiji University, Kawasaki 214-8571 (Japan); Igarashi, Manabu; Ito, Kimihito [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Shimoyama, Yuhei [Soft-Matter Physics Laboratory, Graduate School of Emergent Science, Muroran Institute of Technology, Muroran 050-8585 (Japan); Horiuchi, Motohiro [Laboratory of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Yamamori, Tohru; Yasui, Hironobu; Kuwabara, Mikinori [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Inagaki, Fuyuhiko [Laboratory of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2010-04-09

    To explore Cu(II) ion coordination by His{sup 186} in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP{sup C}.

  13. High avidity antibodies to full-length VAR2CSA correlate with absence of placental malaria.

    Directory of Open Access Journals (Sweden)

    Yeung Lo Tutterrow

    Full Text Available VAR2CSA mediates sequestration of Plasmodium falciparum-infected erythrocytes in the placenta, increasing the risk of poor pregnancy outcomes. Naturally acquired antibodies (Ab to placental parasites at delivery have been associated with improved pregnancy outcomes, but Ab levels and how early in pregnancy Ab must be present in order to eliminate placental parasites before delivery remains unknown. Antibodies to individual Duffy-binding like domains of VAR2CSA have been studied, but the domains lack many of the conformational epitopes present in full-length VAR2CSA (FV2. Thus, the purpose of this study was to describe the acquisition of Ab to FV2 in women residing in high and low transmission areas and determine how Ab levels during pregnancy correlate with clearance of placental parasites. Plasma samples collected monthly throughout pregnancy from pregnant women living in high and low transmission areas in Cameroon were evaluated for Ab to FV2 and the proportion of high avidity Ab (i.e., Ab that remain bound in the presence of 3M NH(4SCN was assessed. Ab levels and proportion of high avidity Ab were compared between women with placental malaria (PM(+ and those without (PM(- at delivery. Results showed that PM(- women had significantly higher Ab levels (p = 0.0047 and proportion of high avidity Ab (p = 0.0009 than PM(+ women throughout pregnancy. Specifically, women with moderate to high Ab levels (>5,000 MFI and those with ≥ 35% high avidity Ab at 5-6 months were found to have 2.3 (95% CI, 1.0-4.9 and 7.6-fold (p = 0.0013, 95% CI: 1.2-50.0 reduced risk of placental malaria, respectively. These data show that high levels of Ab to FV2, particularly those with high avidity for FV2, produced by mid-pregnancy are important in clearing parasites from the placenta. Both high Ab levels and proportion of high avidity Ab to FV2 may serve as correlates of protection for assessing immunity against placental malaria.

  14. Functional characterization of a full length pregnane X receptor, expression in vivo, and identification of PXR alleles, in Zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 (Brazil); Kubota, Akira; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Lille-Langøy, Roger [Department of Biology, University of Bergen, N-5020 Bergen (Norway); Karchner, Sibel I. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Celander, Malin C. [Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30 Göteborg (Sweden); Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Goksøyr, Anders [Department of Biology, University of Bergen, N-5020 Bergen (Norway); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-15

    Highlights: •Full-length pxr has been cloned from zebrafish. •Alleles of pxr were identified in zebrafish. •Full length Pxr was activated less strongly than ligand binding domain in cell-based reporter assays. •High levels of pxr expression were found in eye and brain as well as in liver. •TCPOBOP and PB did not significantly alter expression of pxr in liver. -- Abstract: The pregnane X receptor (PXR) (nuclear receptor NR1I2) is a ligand activated transcription factor, mediating responses to diverse xenobiotic and endogenous chemicals. The properties of PXR in fish are not fully understood. Here we report on cloning and characterization of full-length PXR of zebrafish, Danio rerio, and pxr expression in vivo. Initial efforts gave a cDNA encoding a 430 amino acid protein identified as zebrafish pxr by phylogenetic and synteny analysis. The sequence of the cloned Pxr DNA binding domain (DBD) was highly conserved, with 74% identity to human PXR-DBD, while the ligand-binding domain (LBD) of the cloned sequence was only 44% identical to human PXR-LBD. Sequence variation among clones in the initial effort prompted sequencing of multiple clones from a single fish. There were two prominent variants, one sequence with S183, Y218 and H383 and the other with I183, C218 and N383, which we designate as alleles pxr*1 (nr1i2*1) and pxr*2 (nr1i2*2), respectively. In COS-7 cells co-transfected with a PXR-responsive reporter gene, the full-length Pxr*1 (the more common variant) was activated by known PXR agonists clotrimazole and pregnenolone 16α-carbonitrile but to a lesser extent than the full-length human PXR. Activation of full-length Pxr*1 was only 10% of that with the Pxr*1 LBD. Quantitative real time PCR analysis showed prominent expression of pxr in liver and eye, as well as brain and intestine of adult zebrafish. The pxr was expressed in heart and kidney at levels similar to that in intestine. The expression of pxr in liver was weakly induced by ligands for

  15. Robust full-length hepatitis C virus genotype 2a and 2b infectious cultures using mutations identified by a systematic approach applicable to patient strains

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Gottwein, Judith M;

    2012-01-01

    Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases worldwide, but treatment options are limited. Basic HCV research required for vaccine and drug development has been hampered by inability to culture patient isolates, and to date only the JFH1 (genotype 2a) recombinant...... replicates spontaneously in hepatoma cells and releases infectious virus. A JFH1 chimera with the 5' end through NS2 from another genotype 2a strain, J6, had enhanced infectivity. However, the full-length J6 clone (J6CF), which we previously found to be fully functional in vivo, was replication incompetent...... of the genetically divergent isolate J8 (genotype 2b), which differed from the J6 nucleotide sequence by 24%. The most efficient recombinant, J8cc, had nine adaptive mutations and was genetically stable after viral passage. The availability of these robust JFH1-independent genotype 2a and 2b culture systems...

  16. Analysis of the full-length VP2 protein of canine parvoviruses circulating in Hungary.

    Science.gov (United States)

    Cságola, Attila; Varga, Szilvia; Lőrincz, Márta; Tuboly, Tamás

    2014-09-01

    In recent years, the number of cases of disease caused by canine parvovirus 2 (CPV-2) in vaccinated dogs has increased. The aim of the present study was to identify CPV-2 strains present in Hungary. Forty-two out of 50 faecal specimens examined were positive, and 25 VP2 sequences were determined and analysed. Based on the current classification, the Hungarian viruses belong to New CPV-2a type, except two viruses that are recombinants of vaccine viruses and CPV-2a strains. The Tyr324Ile alteration was detected for the first time in Europe, and a "Hungarian-specific" substitution (Ala516Thr) was also identified in this study. The immunologically important parts of the currently spreading canine parvoviruses were examined and found to differ greatly from the vaccine strains that are widely used in Hungary.

  17. [Two-step synthesis of the full length Aspergillus niger lipase gene lipA leads to high-level expression in Pichia pastoris].

    Science.gov (United States)

    Yang, Jiangke; Yan, Xiangxiang; Zhang, Zhengping; Jiang, Xueqing; Yan, Yunjun

    2009-03-01

    Aspergillus niger lipases are important biocatalysis widely used in industries for food processing and pharmaceutical preparation. High-level expression recombinants can lead to cost effective lipase large scale production. Full length gene synthesis is an efficient measure to enhance the expression level of the gene. In order to reduce the non-specific binding between oligonucleotides and bases mutation caused by the complicate secondary structure of DNA and excessive PCR amplification, a frequently phenomenon in one-step gene synthesis, we used a two-step method including assembly PCR (A-PCR) and digestion-ligation step to synthesis Aspergillus niger lipase gene lipA. Assisted by DNA2.0 and Gene2Oliga software, we optimized the codon usage and secondary structure of RNA and induced enzyme sites Cla I (237 site) and Pst I (475 site) into the gene. In the first step, fragments F1 (237 bp), F2 (238 bp) and F3 (422 bp) were separately synthesized by assembly PCR. In the second step, fragments F1, F2 and F3 were separately digested by Cla I and Pst I, and then ligated into a full length lipA gene. Two-step method efficiently enhanced successful ratio for full-length gene synthesis and dispersed the risk for gene redesign. The synthesized gene was cloned into pPIC9K vector and transferred into Pichia pastoris. After methanol inducement, the expression level of the codon optimized lipA-syn gene reached 176.0 U/mL, 10.8-fold of the original lipA gene (16.3 U/mL) in Pichia pastoris GS1115. The recombinant offers the possibility for lipase large-scale production.

  18. Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1).

    Science.gov (United States)

    Yang, A H; Yeh, K W

    2005-06-01

    A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5'-/3'-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST-CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 microg recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150-200 microg/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium.

  19. Full-length PGC-1α salvages the phenotype of a mouse model of human neuropathy through mitochondrial proliferation.

    Science.gov (United States)

    Rona-Voros, Krisztina; Eschbach, Judith; Vernay, Aurélia; Wiesner, Diana; Schwalenstocker, Birgit; Geniquet, Pauline; Mousson De Camaret, Bénédicte; Echaniz-Laguna, Andoni; Loeffler, Jean-Philippe; Ludolph, Albert C; Weydt, Patrick; Dupuis, Luc

    2013-12-20

    Increased mitochondrial mass, commonly termed mitochondrial proliferation, is frequently observed in many human diseases directly or indirectly involving mitochondrial dysfunction. Mitochondrial proliferation is thought to counterbalance a compromised energy metabolism, yet it might also be detrimental through alterations of mitochondrial regulatory functions such as apoptosis, calcium metabolism or oxidative stress. Here, we show that prominent mitochondrial proliferation occurs in Cramping mice, a model of hereditary neuropathy caused by a mutation in the dynein heavy chain gene Dync1h1. The mitochondrial proliferation correlates with post-prandial induction of full-length (FL) and N-terminal truncated (NT) isoforms of the transcriptional co-activator PGC-1α. The selective knock-out of FL-PGC-1α isoform, preserving expression and function of NT-PGC-1α, led to a complete reversal of mitochondrial proliferation. Moreover, FL-PGC-1α ablation potently exacerbated the mitochondrial dysfunction and led to severe weight loss. Finally, FL-PGC-1α ablation triggered pronounced locomotor dysfunction, tremors and inability to rear in Cramping mice. In summary, endogenous FL-PGC-1α activates mitochondrial proliferation and salvages neurological and metabolic health upon disease. NT-PGC-1α cannot fulfil this protective action. Activation of this endogenous salvage pathway might thus be a valuable therapeutic target for diseases involving mitochondrial dysfunction.

  20. Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae.

    Science.gov (United States)

    Margheri, Francesca; Chillà, Anastasia; Laurenzana, Anna; Serratì, Simona; Mazzanti, Benedetta; Saccardi, Riccardo; Santosuosso, Michela; Danza, Giovanna; Sturli, Niccolò; Rosati, Fabiana; Magnelli, Lucia; Papucci, Laura; Calorini, Lido; Bianchini, Francesca; Del Rosso, Mario; Fibbi, Gabriella

    2011-09-29

    Endothelial urokinase-type plasminogen activator receptor (uPAR) is thought to provide a regulatory mechanism in angiogenesis. Here we studied the proangiogenic role of uPAR in endothelial colony-forming cells (ECFCs), a cell population identified in human umbilical blood that embodies all of the properties of an endothelial progenitor cell matched with a high proliferative rate. By using caveolae-disrupting agents and by caveolin-1 silencing, we have shown that the angiogenic properties of ECFCs depend on caveolae integrity and on the presence of full-length uPAR in such specialized membrane invaginations. Inhibition of uPAR expression by antisense oligonucleotides promoted caveolae disruption, suggesting that uPAR is an inducer of caveolae organization. Vascular endothelial growth factor (VEGF) promoted accumulation of uPAR in ECFC caveolae in its undegraded form. We also demonstrated that VEGF-dependent ERK phosphorylation required integrity of caveolae as well as caveolar uPAR expression. VEGF activity depends on inhibition of ECFC MMP12 production, which results in impairment of MMP12-dependent uPAR truncation. Further, MMP12 overexpression in ECFC inhibited vascularization in vitro and in vivo. Our data suggest that intratumor homing of ECFCs suitably engineered to overexpress MMP12 could have the chance to control uPAR-dependent activities required for tumor angiogenesis and malignant cells spreading.

  1. Global Identification of the Full-Length Transcripts and Alternative Splicing Related to Phenolic Acid Biosynthetic Genes in Salvia miltiorrhiza

    OpenAIRE

    Zhichao eXu; Hongmei eLuo; Aijia eJi; Xin eZhang; Jingyuan eSong; Shilin eChen

    2016-01-01

    Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing) of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and...

  2. CLONING AND HIGH EXPRESSION OF FULL LENGTH hTRF1 IN E. COLI

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To express human telomeric repeat binding factor (TRF1) at high level in E. coli. Method: Two primers were designed with KpnⅠand EcoRⅠ sites respectively, TRF1 cDNA fragments was amplified and cloned into plasmid pET29a, each step was confirmed by sequencing and restriction endonuclease map analysis. And the recombinant plasmid pET29a-TRF1 was then transformed into E. coli BL21 (DE3) PlysS. Fusion protein was purified by S-protein Kit and checked by SDS-PAGE and by western blot. Result: E. coli BL21 (DE3) PlysS expressing high level of 30 KD partial TRF1 was obtained, and TRF1 fusion protein was purified. The optimal induction time was at 2.5 h. Excessive expression system was established and 18.6% inductive protein was obtained. Conclusion: The expressed protein can be used for producing both polyclonal and monoclonal antibodies and for further study of the function and structure of TRF1 and its association with malignant tumor and leukemia.

  3. Expression and purification of full length mouse metal response element binding transcription factor-1 using Pichia pastoris.

    Science.gov (United States)

    Huyck, Ryan W; Keightley, Andrew; Laity, John H

    2012-09-01

    The metal response element binding transcription factor-1 (MTF-1) is an important stress response, heavy metal detoxification, and zinc homeostasis factor in eukaryotic organisms from Drosophila to humans. MTF-1 transcriptional regulation is primarily mediated by elevated levels of labile zinc, which direct MTF-1 to bind the metal response element (MRE). This process involves direct zinc binding to the MTF-1 zinc fingers, and zinc dependent interaction of the MTF-1 acidic region with the p300 coactivator protein. Here, the first recombinant expression system for mutant and wild type (WT) mouse MTF-1 (mMTF-1) suitable for biochemical and biophysical studies in vitro is reported. Using the methyltropic yeast Pichia pastoris, nearly half-milligram recombinant WT and mutant mMTF-1 were produced per liter of P. pastoris cell culture, and purified by a FLAG-tag epitope. Using a first pass ammonium sulfate purification, followed by anti-FLAG affinity resin, mMTF-1 was purified to >95% purity. This recombinant mMTF-1 was then assayed for direct protein-protein interactions with p300 by co-immunoprecipitation. Surface plasmon resonance studies on mMTF-1 provided the first quantitative DNA binding affinity measurements to the MRE promotor element (K(d)=5±3 nM). Both assays demonstrated the functional activity of the recombinant mMTF-1, while elucidating the molecular basis for mMTF-1-p300 functional synergy, and provided new insights into the mMTF-1 domain specific roles in DNA binding. Overall, this production system provides accessibility for the first time to a multitude of in vitro studies using recombinant mutant and WT mMTF-1, which greatly facilitates new approaches to understanding the complex and varied functions of this protein.

  4. Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns

    Directory of Open Access Journals (Sweden)

    Hayashizaki Yoshihide

    2009-06-01

    Full Text Available Abstract Background Wheat is an allopolyploid plant that harbors a huge, complex genome. Therefore, accumulation of expressed sequence tags (ESTs for wheat is becoming particularly important for functional genomics and molecular breeding. We prepared a comprehensive collection of ESTs from the various tissues that develop during the wheat life cycle and from tissues subjected to stress. We also examined their expression profiles in silico. As full-length cDNAs are indispensable to certify the collected ESTs and annotate the genes in the wheat genome, we performed a systematic survey and sequencing of the full-length cDNA clones. This sequence information is a valuable genetic resource for functional genomics and will enable carrying out comparative genomics in cereals. Results As part of the functional genomics and development of genomic wheat resources, we have generated a collection of full-length cDNAs from common wheat. By grouping the ESTs of recombinant clones randomly selected from the full-length cDNA library, we were able to sequence 6,162 independent clones with high accuracy. About 10% of the clones were wheat-unique genes, without any counterparts within the DNA database. Wheat clones that showed high homology to those of rice were selected in order to investigate their expression patterns in various tissues throughout the wheat life cycle and in response to abiotic-stress treatments. To assess the variability of genes that have evolved differently in wheat and rice, we calculated the substitution rate (Ka/Ks of the counterparts in wheat and rice. Genes that were preferentially expressed in certain tissues or treatments had higher Ka/Ks values than those in other tissues and treatments, which suggests that the genes with the higher variability expressed in these tissues is under adaptive selection. Conclusion We have generated a high-quality full-length cDNA resource for common wheat, which is essential for continuation of the

  5. Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase.

    Science.gov (United States)

    Giallongo, A; Feo, S; Moore, R; Croce, C M; Showe, L C

    1986-01-01

    We previously purified a 48-kDa protein (p48) that specifically reacts with an antiserum directed against the 12 carboxyl-terminal amino acids of the c-myc gene product. Using an antiserum directed against the purified p48, we have cloned a cDNA from a human expression library. This cDNA hybrid-selects an mRNA that translates to a 48-kDa protein that specifically reacts with anti-p48 serum. We have isolated a full-length cDNA that encodes p48 and spans 1755 bases. The coding region is 1299 bases long; 94 bases are 5' noncoding and 359 bases are 3' noncoding. The cDNA encodes a 433 amino acid protein that is 67% homologous to yeast enolase and 94% homologous to the rat non-neuronal enolase. The purified protein has been shown to have enolase activity and has been identified to be of the alpha type by isoenzyme analysis. The transcriptional regulation of enolase expression in response to mitogenic stimulation of peripheral blood lymphocytes and in response to heat shock is also discussed. Images PMID:3529090

  6. Structural dissection of human translation elongation factor 1Bγ (eEF1Bγ: expression of full-length protein and its truncated forms

    Directory of Open Access Journals (Sweden)

    Trosiuk T. V.

    2014-03-01

    Full Text Available Aim. To gain more insights into properties of the human translation elongation factor eEF1Bγ and its interaction with partners we intended to produce the full-length protein and its truncated forms. Methods. cDNAs encoding truncated forms of eEF1Bγ were generated by PCR amplification with respective primers and cloned into vectors providing polyhistidine, glutathione S-transferase or maltose binding protein tags. The recombinant proteins were expressed in Escherichia coli and purified by affinity chromatography. An aggregation state of the proteins was analyzed by analytical gel filtration. Results. The expression, purification and storage conditions for the full-length recombinant His-eEF1Bγ were optimized. Several truncated forms of eEF1Bγ were also expressed and purified to homogeneity. Two short variants of C-terminal domain comprising amino acids 263–437 or 228–437 were obtained in monomeric state. Two short variants of N-terminal domain comprising amino acids 1–33 or 1–230, fused with glutathione S-transferase, were obtained and estimated to be dimers by gel filtration. The mutants of N-terminal domain comprising amino acids 1–93 or 1–165, fused with maltose binding protein, were obtained as soluble high molecular weight aggregates only. Conclusions. The purified recombinant His-eEF1Bγ and several truncated forms of the protein were obtained and characterized. These protein variants will be used for further studies on the protein-protein interaction.

  7. Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal Tiger Panthera tigris tigris.

    Science.gov (United States)

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-05-24

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers.

  8. Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer.

    Directory of Open Access Journals (Sweden)

    Giulia Morra

    2009-03-01

    Full Text Available Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies have illuminated mechanisms related to the chaperone function. However, an atomic resolution view of Hsp90 conformational dynamics, determined by the presence of different binding partners, is critical to define communication pathways between remote residues in different domains intimately affecting the chaperone cycle. Here, we present a computational analysis of signal propagation and long-range communication pathways in Hsp90. We carried out molecular dynamics simulations of the full-length Hsp90 dimer, combined with essential dynamics, correlation analysis, and a signal propagation model. All-atom MD simulations with timescales of 70 ns have been performed for complexes with the natural substrates ATP and ADP and for the unliganded dimer. We elucidate the mechanisms of signal propagation and determine "hot spots" involved in interdomain communication pathways from the nucleotide-binding site to the C-terminal domain interface. A comprehensive computational analysis of the Hsp90 communication pathways and dynamics at atomic resolution has revealed the role of the nucleotide in effecting conformational changes, elucidating the mechanisms of signal propagation. Functionally important residues and secondary structure elements emerge as effective mediators of communication between the nucleotide-binding site and the C-terminal interface. Furthermore, we show that specific interdomain signal propagation pathways may be activated as a function of the ligand. Our results support a "conformational selection model" of the Hsp90 mechanism, whereby the protein may

  9. Cloning and functional characterization of the ovine Hormone Sensitive Lipase (HSL) full-length cDNAs: an integrated approach.

    Science.gov (United States)

    Lampidonis, Antonis D; Argyrokastritis, Alexandros; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E; Ntouroupi, Triantafyllia G; Margaritis, Lukas H; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-06-15

    Hormone Sensitive Lipase (HSL) is a highly regulated enzyme that mediates lipolysis in adipocytes. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signalling cascade reactions. Since HSL constitutes the key enzyme in the regulation of lipid stores and the only enzyme being subjected to hormonal regulation [in terms of the recently identified Adipose Triglyceride Lipase (ATGL)], the ovine Hormone Sensitive Lipase (ovHSL) full-length cDNA clones were isolated, using a Polymerase Chain Reaction-based (PCR) strategy. The two isolated isoforms ovHSL-A and ovHSL-B contain two highly homologous Open Reading Frame (ORF) regions of 2.089 Kb and 2.086 Kb, respectively, the latter having been missed the 688th triplet coding for glutamine (DeltaQ(688)). The putative 695 and 694 amino acid respective sequences bear strong homologies with other HSL protein family members. Southern blotting analysis revealed that HSL is represented as a single copy gene in the ovine genome, while Reverse Transcription-PCR (RT-PCR) approaches unambiguously dictated its variable transcriptional expression profile in the different tissues examined. Interestingly, as undoubtedly corroborated by both RT-PCR and Western blotting analysis, ovHSL gene expression is notably enhanced in the adipose tissue during the fasting period, when lipolysis is highly increased in ruminant species. Based on the crystal structure of an Archaeoglobus fulgidus enzyme, a three-dimensional (3D) molecular model of the ovHSL putative catalytic domain was constructed, thus providing an inchoative insight into understanding the enzymatic activity and functional regulation mechanisms of the ruminant HSL gene product(s).

  10. Construction of a full-length cDNA library for Senecio scandens%千里光全长cDNA文库的构建及分析

    Institute of Scientific and Technical Information of China (English)

    平军娇; 张珍; 蔡振锋; 汤贤春; 钱刚

    2012-01-01

    目的 构建千里光全长cDNA文库,以期研究千里光的功能基因组学信息,为克隆药理学性状相关的功能基因提供数据资源.方法 Trizol法提取千里光叶片总RNA,通过SMART(switching mechanism at 5’end of RNA transcript)构建全长cDNA文库,随机挑取600个单克隆测序分析文库滴度、全长率及冗余率,得到的EST序列进行Blast分析(NR、NT、Swiss-Prot、KEGG)及COG功能分类.结果 文库的库容为4.3×106 cfu/mL,插入片段大小平均1.7 kb,文库重组率96.35%,全长率58.24%,冗余率10.88%;获得524条全长EST序列,含有467条独立基因(unigenes),其中5条序列与千里光次生代谢产物的合成、运输与代谢有关.结论 经检测,SMART技术成功构建了千里光全长cDNA文库,该文库可用于千里光功能基因组鉴定、新基因筛选及次生代谢产物生物合成的表达调控研究.%Objective In the present study, our information from Senecio scandens full-length cDNA clones will serve as a useful resource for elucidating functional genes and will also aid a precise annotation of genomics in Compositae plants. Methods The total RNA was extracted from S. Scandens using Trizol method. SMART (switching mechanism at 5' end of RNA transcript) was applied to constructing the full-length cDNA library. Titer of the library, full-length ratio, and redundancy rate for 600 monoclone randomly selected sequencing library were evaluated by PCR amplification. NCBI and COG database was used to compare those sequences. Results Parameters of the the quality of cDNA library were as follows: the capacity of the library (4.3* 106 cfu/mL), the average size of the inserted fragment (1.7 kb), the recombination rate (96.35%), the full-length rate (58.24%), and the redundancy rate (10.88%). EST sequences for 524 full-length were obtained in this study, involving 467 unigenes, among which five sequences associated with synthesis, transport, and metabolism of S. Scandens secondary

  11. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo.

    Science.gov (United States)

    Powers, Natalie R; Parvanov, Emil D; Baker, Christopher L; Walker, Michael; Petkov, Petko M; Paigen, Kenneth

    2016-06-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  12. Cloning and Sequence Analysis of Interleukin 10 (IL-10) Full-length cDNA from Cyprinus carpio L.

    Institute of Scientific and Technical Information of China (English)

    Xiangru FENG; Yilong CHEN; Xiao ZHAO; Wendong WANG; Junhui ZHANG; Zhenguo YANG SUN; Shengmei JIA; Qiang LU

    2012-01-01

    Abstract [Objective] This study aimed to obtain IL-IO (interleukin 10) full-length cD- NA of common carp (Cyprinus carpio L.) and conduct the sequence analysis. []~lethod] The differentially expressed cDNA fragment was obtained by DD-RTPCR (differential display RT-PCR). The cDNA library of peripheral blood leukocytes which were separated from common carp and stimulated by mitogen was screened with a probe labeled with DIG (digoxigenin). The IL-IO full-length cDNA was cloned from 0.8x104 pfu of recombinant phages, and the sequence analysis and homology com- parison were carried out. [Result] Sequence analysis indicated that the IL-IO full- length cDNA of common carp was 1 117 bp long, containing a.55 bp 5'-UTR, a 522 bp 3"-UTR, and a 540 bp open reading frame(ORF) encoding 179 amino acids. In addition, there were three mRNA instability motifs (ATTTA) in the 3"-untranslated region. The deduced protein sequence shared typical sequence features of the IL-IO family. Homology comparison indicated that the obtained sequence shared 89.1% homology with the carp IL-IO gene from GenBank. [Conclusion] This study laid foun- dation for further study of the expression manner, functional characteristic and regu- lation mechanism of IL-IO in vivo and the interaction mechanism in the inflammatory reaction and immune response.

  13. Designing a Soluble Near Full-Length HIV-1 GP41 Trimer

    Science.gov (United States)

    2012-11-26

    stabilized in a prehairpin-like structure, as evident from binding of a HR2 peptide to exposed HR1 grooves, lack of binding to hexa -helical bundle...the HR1 helices. The hexa -helical bundle thus formed brings the host and viral membranes in close proximity facilitating membrane fusion and...crystal structure of the hexa - helical bundle intermediate (see Fig. 1B and Fig. 3A), the core of fusion-active gp41, has been determined (33), very

  14. The X-ray Crystal Structure of Full-Length Human Plasminogen

    Directory of Open Access Journals (Sweden)

    Ruby H.P. Law

    2012-03-01

    Full Text Available Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp domain, five kringle domains (KR1-5, and a serine protease (SP domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.

  15. Solution behavior of the intrinsically disordered N-terminal domain of the Retinoid X Receptor alpha in the context of full-length protein

    Science.gov (United States)

    Peluso-Iltis, Carole; Kieffer, Bruno; Svergun, Dmitri I.; Rochel, Natacha

    2016-01-01

    Retinoid X receptors (RXRs) are transcription factors with important functions in embryonic development, metabolic processes, differentiation and apoptosis. A particular feature of RXRs is their ability to act as obligatory heterodimerisation partners of class II nuclear receptors. At the same time, these receptors are also able to form homodimers that bind to direct repeat (DR1) hormone response elements. Since the discovery of RXRs, most of the studies focused on its ligand binding and DNA-binding domains, while its N-terminal domain (NTD) harboring a ligand-independent activation function remained poorly characterized. Here, we investigated the solution properties of the NTD domain of RXRα alone and in the context of the full-length receptor using small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy. We report the solution structure of the full-length homodimeric RXRα on DNA and show that the NTD remains highly flexible within this complex. PMID:26937780

  16. Inhibitor discovery of full-length New Delhi metallo-β-lactamase-1 (NDM-1.

    Directory of Open Access Journals (Sweden)

    Bingzheng Shen

    Full Text Available New Delhi metallo-β-lactmase-1 (NDM-1 has recently attracted extensive attention for its biological activities to catalyze the hydrolysis of almost all of β-lactam antibiotics. To study the catalytic property of NDM-1, the steady-kinetic parameters of NDM-1 toward several kinds of β-lactam antibiotics have been detected. It could effectively hydrolyze most β-lactams (k cat/K m ratios between 0.03 to 1.28 µmol⁻¹.s⁻¹, except aztreonam. We also found that thiophene-carboxylic acid derivatives could inhibit NDM-1 and have shown synergistic antibacterial activity in combination with meropenem. Flexible docking and quantum mechanics (QM study revealed electrostatic interactions between the sulfur atom of thiophene-carboxylic acid derivatives and the zinc ion of NDM-1, along with hydrogen bond between inhibitor and His189 of NDM-1. The interaction models proposed here can be used in rational design of NDM-1 inhibitors.

  17. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain

    Science.gov (United States)

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X.; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  18. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1 Reveals Features of Its Chitin Binding Domain.

    Directory of Open Access Journals (Sweden)

    Firas Fadel

    Full Text Available Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1 is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD. This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1 structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain.

  19. Molecular cloning and expression of full-length DNA copies of the genomic RNAs of cowpea mosaic virus.

    NARCIS (Netherlands)

    Vos, P.A.J.

    1987-01-01

    The experiments described in this thesis were designed to unravel various aspects of the mechanism of gene expression of cowpea mosaic virus (CPMV). For this purpose full-length DNA copies of both genomic RNAs of CPMV were constructed. Using powerful invitro transcription systems RNA t

  20. Characterization of near full-length genomes of HIV type 1 strains in Denmark: Basis for a universal therapeutic vaccine

    DEFF Research Database (Denmark)

    Andresen, Betina S.; Vinner, Lasse; Tang, Sheila Tuyet;

    2007-01-01

    We report here the near full-length sequence characterization of 17 Danish clinical HIV-1 strains isolated from HLA-A02 patients not in need of ART, with relatively low viral loads and normal CD4 cell counts. Sequencing was performed directly on DNA extracted from short-term cocultures of PBMCs...

  1. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus

    2015-01-01

    knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays....

  2. Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression

    DEFF Research Database (Denmark)

    Pouladi, Mahmoud A; Xie, Yuanyun; Skotte, Niels Henning;

    2010-01-01

    Levels of full-length huntingtin (FL htt) influence organ and body weight, independent of polyglutamine length. The growth hormone-insulin like growth factor-1 (GH-IGF-1) axis is well established as a regulator of organ growth and body weight. In this study, we investigate the involvement of the ...

  3. Giardia canis: ultrastructural analysis of G. canis trophozoites transfected with full length G. canis virus cDNA transcripts

    Science.gov (United States)

    Giardia canis virus (GCV) is a double-stranded RNA (dsRNA) virus of the family Totiviridae. In this study, the full-length cDNA of the G. canis virus was constructed in pPoly2/sfinot vector and RNA was transcribed in vitro. Virus-free G. canis trophozoites were transfected with in vitro transcribed ...

  4. Persistence of full-length caspase-12 and its relation to malaria in West and Central African populations.

    NARCIS (Netherlands)

    McCall, M.B.B.; Ferwerda, B.; Hopman, J.; Ploemen, I.H.J.; Maiga, B.; Daou, M.; Dolo, A.; Hermsen, C.C.; Doumbo, O.K.; Bedu-Addo, G.; Meer, J.W.M. van der; Troye-Blomberg, M.; Ven, A.J.A.M. van der; Schumann, R.R.; Sauerwein, R.W.; Mockenhaupt, F.P.; Netea, M.G.

    2010-01-01

    BACKGROUND: The full-length (L-) variant of caspase-12 is believed to predispose to sepsis. It has been replaced in the genome of most human populations by the (S-) variant, which leads to premature termination of translation. Strikingly, the L-allele is still widely prevalent in African populations

  5. Transformation of Cowpea Vigna unguiculata with a Full-Length DNA Copy of Cowpea Mosaic Virus M-RNA

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1987-01-01

    A full-length DNA copy of the M-RNA of cowpea mosaic virus (CPMV), supplied with either the 35S promoter from cauliflower mosaic virus (CaMV) or the nopaline synthase promoter from Agrobacterium tumefaciens, was introduced into the T-DNA region of a Ti-plasmid-derived gene vector and transferred to

  6. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon

    Directory of Open Access Journals (Sweden)

    Bendahmane Abdelhafid

    2011-05-01

    Full Text Available Abstract Background Melon (Cucumis melo, an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs and 3,073 single nucleotide polymorphisms (SNPs in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but

  7. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization.

    Science.gov (United States)

    Smejkal, Benjamin; Agrawal, Neeraj J; Helk, Bernhard; Schulz, Henk; Giffard, Marion; Mechelke, Matthias; Ortner, Franziska; Heckmeier, Philipp; Trout, Bernhardt L; Hekmat, Dariusch

    2013-09-01

    The potential of process crystallization for purification of a therapeutic monoclonal IgG1 antibody was studied. The purified antibody was crystallized in non-agitated micro-batch experiments for the first time. A direct crystallization from clarified CHO cell culture harvest was inhibited by high salt concentrations. The salt concentration of the harvest was reduced by a simple pretreatment step. The crystallization process from pretreated harvest was successfully transferred to stirred tanks and scaled-up from the mL-scale to the 1 L-scale for the first time. The crystallization yield after 24 h was 88-90%. A high purity of 98.5% was reached after a single recrystallization step. A 17-fold host cell protein reduction was achieved and DNA content was reduced below the detection limit. High biological activity of the therapeutic antibody was maintained during the crystallization, dissolving, and recrystallization steps. Crystallization was also performed with impure solutions from intermediate steps of a standard monoclonal antibody purification process. It was shown that process crystallization has a strong potential to replace Protein A chromatography. Fast dissolution of the crystals was possible. Furthermore, it was shown that crystallization can be used as a concentrating step and can replace several ultra-/diafiltration steps. Molecular modeling suggested that a negative electrostatic region with interspersed exposed hydrophobic residues on the Fv domain of this antibody is responsible for the high crystallization propensity. As a result, process crystallization, following the identification of highly crystallizable antibodies using molecular modeling tools, can be recognized as an efficient, scalable, fast, and inexpensive alternative to key steps of a standard purification process for therapeutic antibodies.

  8. All-atom molecular dynamics studies of the full-length {beta}-amyloid peptides

    Energy Technology Data Exchange (ETDEWEB)

    Luttmann, Edgar [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany); Fels, Gregor [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany)], E-mail: fels@uni-paderborn.de

    2006-03-31

    {beta}-Amyloid peptides are believed to play an essential role in Alzheimer's disease (AD), due to their sedimentation in the form of {beta}-amyloid aggregates in the brain of AD-patients, and the in vitro neurotoxicity of oligomeric aggregates. The monomeric peptides come in different lengths of 39-43 residues, of which the 42 alloform seems to be most strongly associated with AD-symptoms. Structural information on these peptides to date comes from NMR studies in acidic solutions, organic solvents, or on shorter fragments of the peptide. In addition X-ray and solid-state NMR investigations of amyloid fibrils yield insight into the structure of the final aggregate and therefore define the endpoint of any conformational change of an A{beta}-monomer along the aggregation process. The conformational changes necessary to connect the experimentally known conformations are not yet understood and this process is an active field of research. In this paper, we report results from all-atom molecular dynamics simulations based on experimental data from four different peptides of 40 amino acids and two peptides consisting of 42 amino acids. The simulations allow for the analysis of intramolecular interactions and the role of structural features. In particular, they show the appearance of {beta}-turn in the region between amino acid 21 and 33, forming a hook-like shape as it is known to exist in the fibrillar A{beta}-structures. This folding does not depend on the formation of a salt bridge between Asp-23 and Lys-28 but requires the A{beta}(1-42) as such structure was not observed in the shorter system A{beta}(1-40)

  9. Insulin and IGF-1 regularize energy metabolites in neural cells expressing full-length mutant huntingtin.

    Science.gov (United States)

    Naia, Luana; Ribeiro, Márcio; Rodrigues, Joana; Duarte, Ana I; Lopes, Carla; Rosenstock, Tatiana R; Hayden, Michael R; Rego, A Cristina

    2016-08-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder linked to the expression of mutant huntingtin. Bioenergetic dysfunction has been described to contribute to HD pathogenesis. Thus, treatment paradigms aimed to ameliorate energy deficits appear to be suitable candidates in HD. In previous studies, we observed protective effects of insulin growth factor-1 (IGF-1) in YAC128 and R6/2 mice, two HD mouse models, whereas IGF-1 and/or insulin halted mitochondrial-driven oxidative stress in mutant striatal cells and mitochondrial dysfunction in HD human lymphoblasts. Here, we analyzed the effect of IGF-1 versus insulin on energy metabolic parameters using striatal cells derived from HD knock-in mice and primary cortical cultures from YAC128 mice. STHdh(Q111/Q111) cells exhibited decreased ATP/ADP ratio and increased phosphocreatine levels. Moreover, pyruvate levels were increased in mutant cells, most probably in consequence of a decrease in pyruvate dehydrogenase (PDH) protein expression and increased PDH phosphorylation, reflecting its inactivation. Insulin and IGF-1 treatment significantly decreased phosphocreatine levels, whereas IGF-1 only decreased pyruvate levels in mutant cells. In a different scenario, primary cortical cultures derived from YAC128 mice also displayed energetic abnormalities. We observed a decrease in both ATP/ADP and phosphocreatine levels, which were prevented following exposure to insulin or IGF-1. Furthermore, decreased lactate levels in YAC128 cultures occurred concomitantly with a decline in lactate dehydrogenase activity, which was ameliorated with both insulin and IGF-1. These data demonstrate differential HD-associated metabolic dysfunction in striatal cell lines and primary cortical cultures, both of which being alleviated by insulin and IGF-1.

  10. 乙醇脱氢酶Ⅰ类基因全长cDNA的克隆与表达%Cloning and Expression of the Full-length cDNAs Encoding Human Class Ⅰ Alcohol Dehydrogenases

    Institute of Scientific and Technical Information of China (English)

    周文婷; 李景鹏; 崔羽; 张永红; 李世荣

    2007-01-01

    Background & Objective:Background &Objective: The class Ⅰ Alcohol Dehydrogenases (ADH) play a key role in hepatic alcohol catabolism. Human ADH is encoded by at least seven genes, and three class Ⅰ ADH genes-ADH1, ADH2 and ADH3, which encode the α, β, and γ subunit respectively, had been isolated and mapped on chromosome 4q21-q25. This experiment tends to clone the human class Ⅰ ADH and investigate its role in the hepatic alcohol catabolism. Methods: A pair of primers were designed and the full-length cDNAs encoding human Class Ⅰ ADH were cloned at one time. Class Ⅰ ADH cDNAs were amplified with RT-PCR from total RNA extracted from fetal human liver and kidney, and cloned into pGEM-T vector. To identify cDNA segments, a pair of differential primers was designed. By using them, a portion of the ADHs which encodes the segment from -4 to 296 was cloned. These cDNA segments then were detected directly when being digested with Kpn Ⅰ and Pst Ⅰ, respectively. Then all the full-length cDNAs were subcloned in the plasmid pTYB11 and expressed in E. Coli. Stably. Alcohol Dehydrogenase activity of catalyzing alcohol were monitored at 340 nm. Results: Here we had successfully the human class Ⅰ ADH cloned and the full-length cDNAs expressed in E.col.I stably. The relative activity of recombinant enzymes metabolizing ethanol was 0.81 ~1.31 U/mg,0.09 ~0.15 U/mg and 0.76~1.11 U/mg, respectively. Conclusions: In the paper, the full-length cDNAs encoding human class Ⅰ AD H were successfully cloned and expressed and the recombinant enzymes showed the activities similar to the ones isolated from liver.%目的:克隆编码人Ⅰ类乙醇脱氢酶基因,并探讨Ⅰ类乙醇脱氢酶(ADH)在乙醇的肝代谢中的作用.方法:从胎儿肝,肾提取的总RNA;经RT-PCR扩增得到cDNA并克隆至pGEM-T载体.cDNA序列用Kpn Ⅰ和Pst Ⅰ酶切鉴定,并检测其在大肠杆菌中表达活性.通过吸光法检测酶的活性.结果:成功克隆了人Ⅰ类乙

  11. Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A.

    Science.gov (United States)

    Matsui, Hideto; Fujimoto, Naoko; Sasakawa, Noriko; Ohinata, Yasuhide; Shima, Midori; Yamanaka, Shinya; Sugimoto, Mitsuhiko; Hotta, Akitsu

    2014-01-01

    Viral vectors have been used for hemophilia A gene therapy. However, due to its large size, full-length Factor VIII (FVIII) cDNA has not been successfully delivered using conventional viral vectors. Moreover, viral vectors may pose safety risks, e.g., adverse immunological reactions or virus-mediated cytotoxicity. Here, we took advantages of the non-viral vector gene delivery system based on piggyBac DNA transposon to transfer the full-length FVIII cDNA, for the purpose of treating hemophilia A. We tested the efficiency of this new vector system in human 293T cells and iPS cells, and confirmed the expression of the full-length FVIII in culture media using activity-sensitive coagulation assays. Hydrodynamic injection of the piggyBac vectors into hemophilia A mice temporally treated with an immunosuppressant resulted in stable production of circulating FVIII for over 300 days without development of anti-FVIII antibodies. Furthermore, tail-clip assay revealed significant improvement of blood coagulation time in the treated mice. piggyBac transposon vectors can facilitate the long-term expression of therapeutic transgenes in vitro and in vivo. This novel gene transfer strategy should provide safe and efficient delivery of FVIII.

  12. Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A.

    Directory of Open Access Journals (Sweden)

    Hideto Matsui

    Full Text Available Viral vectors have been used for hemophilia A gene therapy. However, due to its large size, full-length Factor VIII (FVIII cDNA has not been successfully delivered using conventional viral vectors. Moreover, viral vectors may pose safety risks, e.g., adverse immunological reactions or virus-mediated cytotoxicity. Here, we took advantages of the non-viral vector gene delivery system based on piggyBac DNA transposon to transfer the full-length FVIII cDNA, for the purpose of treating hemophilia A. We tested the efficiency of this new vector system in human 293T cells and iPS cells, and confirmed the expression of the full-length FVIII in culture media using activity-sensitive coagulation assays. Hydrodynamic injection of the piggyBac vectors into hemophilia A mice temporally treated with an immunosuppressant resulted in stable production of circulating FVIII for over 300 days without development of anti-FVIII antibodies. Furthermore, tail-clip assay revealed significant improvement of blood coagulation time in the treated mice. piggyBac transposon vectors can facilitate the long-term expression of therapeutic transgenes in vitro and in vivo. This novel gene transfer strategy should provide safe and efficient delivery of FVIII.

  13. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus.

    Science.gov (United States)

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-03-01

    Developing efficient native promoters is important for improving recombinant protein expression by fungal genetic engineering. The promoter region of glyceraldehyde-3-phosphate dehydrogenase gene in Pleurotus ostreatus (Pogpd) was isolated and optimized by upstream truncation. The activities of these promoters with different lengths were further confirmed by fluorescence, quantitative real-time PCR and Western blot analysis. A truncated Pogpd-P2 fragment (795 bp) drove enhanced green fluorescence protein (egfp) gene expression in P. ostreatus much more efficiently than full-length Pogpd-P1. Further truncating Pogpd-P2 to 603, 403 and 231 bp reduced the eGFP expression significantly. However, the 403-bp fragment between -356 bp and the start codon was the minimal but sufficient promoter element for eGFP expression. Compact native promoters for genetic engineering of P. ostreatus were successfully developed and validated in this study. This will broaden the preexisting repertoire of fungal promoters for biotechnology application.

  14. Activity of recombinant factor VIIa under different conditions in vitro

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Jespersen, Jørgen

    2008-01-01

    Recombinant activated factor VII (NovoSeven; Novo Nordisk A/S, Måløv, Denmark) is an effective drug for treatment of bleeding in patients with haemophilia A or B and inhibitors. Little is known about physiological conditions influencing the efficacy of recombinant activated factor VII. We......, 33, 37, and 40 degrees C, or diluted 0, 10, 20, 40, and 60% with dextran before analysis. Samples were analysed as rotational thromboelastometry in whole blood (clotting time, clot formation time, and maximum clot firmness) with and without Innovin (tissue factor), and as factor VII coagulant...... activity in plasma. Significant effects of pH were observed for clotting time, clot formation time, maximum clot firmness, and factor VII coagulant activity in the direction of longer clot formation times and less firm clots with decreasing pH. Temperature had significant effects on clotting time, clot...

  15. Full-length sequence analysis of a distinct isolate of Bidens mottle virus infecting sunflower in Taiwan.

    Science.gov (United States)

    Liao, J Y; Hu, Chung-Chi; Chen, C C; Chang, C H; Deng, T C

    2009-01-01

    The full-length genome of a potyvirus, previously known as sunflower chlorotic spot virus isolate SF-1 (SCSV-SF-1) which causes novel symptoms on sunflowers (Helianthus annuus), was sequenced and analyzed. The genome of SCSV-SF-1 is 9,741 nucleotides long, encoding a polyprotein of 3,071 amino acids containing the consensus motifs of potyviruses. Sequence comparison revealed that the 3'-terminus of SCSV-SF-1 shared over 96% similarities with isolates of Bidens mottle virus (BiMoV). However, SCSV-SF-1 has a very narrow host range, excluding the diagnostic host species for BiMoV, Bidens pilosa and Zinnia elegans. Therefore, SCSV-SF-1 is a distinct isolate of BiMoV. This is the first report of the full-length nucleotide sequence of BiMoV infecting sunflower in Taiwan.

  16. Construction of human and mouse brain cDNA libraries and isolation of full-length cDNAs

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    cDNA libraries from aborted human 3-month fetal brain,adult rat and mouse brain were constructed by using a yZAP express cDNA library construction kin.Low molecular weight fragments of the second strand cDNASA were removed by flowing through the Sepharose CL-4B column and the frractionated long,Middle,Short fragments and the combined fragments weire respectively inserted into clone vectors to construct the cDNA libraries of the brain of human 3-month fetus.The 5'ends of 1200 clones from each of human fetal brain cDNA libraries were sequenced.A total of 894 ESTs were obtained and some full-length clones were squenced.By andalyaing the se-quences,12 novel full-length cDNAs were obtained.

  17. Systemic delivery of full-length C/EBPβ /liposome complex suppresses growth of human colon cancer in nude mice

    Institute of Scientific and Technical Information of China (English)

    Li SUN; Bei Bei FU; Ding Gan LIU

    2005-01-01

    C/EBPβ(CCAAT/enhancer-binding protein β) is an important transcription factor involved in cellular proliferation and differentiation. Overexpression of the full-length C/EBPβ protein results in cellular growth arrest and apoptosis.Using a nonviral liposome as carrier, we delivered the full-length C/EBPβ expression plasmid, Pcn, into nude mice bearing CW-2 human colon cancer tumors via tail vein. Southern blots revealed that the major organs and tumors were transfected. Experimental gene therapy showed that a strong suppression of tumor growth was observed in the pCNtreated mice, and such suppression was due to the overexpression of C/EBPβ, leading to the increased apoptosis in tumors of Pcn-treated mice. No apparent toxic effects of Pcn/liposome complex were observed in the animals. Thus, C/EBPβ has tumor suppression effect in vivo and may be used in gene therapy for cancers.

  18. Infective viruses produced from full-length complementary DNA of swine vesicular disease viruses HK/70 strain

    Institute of Scientific and Technical Information of China (English)

    ZHENG Haixue; FENG Xia; YIN Shuanghui; GUO Jianhong; CONG Guozheng; LIU Zaixin; CHANG Huiyun; MA Junwu; XIE Qingge; LIU Xiangtao; SHANG Youjun; WU Jinyan; BAI Xingwen; JIN Ye; SUN Shiqi; GUO Huichen; TIAN Hong

    2006-01-01

    The full-length cDNA clone of swine vesicular disease virus HK/70 strain named pSVOK12 was constructed in order to study the antigenicity, replication, maturation and pathogenicity of swine vesicular disease virus. In vitro transcription RNA from pSVOK12 transfected IBRS-2 cells and the recovered virus RNA were isolated and sequenced, then indirect hemagglutination test, indirect immunofluorescence assays, eleectron microscope test, 50% tissue culture infecting dose (TCID50) assays and mouse virulence studies were performed to study the antigenicity and virulence of the recovered virus. The result showed that the infectious clones we obtained and the virus derived from pSVOK12 had the same biological properties as the parental strain HK/70. The full-length infectious cDNA clone, pSVOK12, will be very useful in studies of the antigenicity, virulence, pathogenesis, maturation and replication of SVDV.

  19. Structural analysis of the complex between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule.

    Science.gov (United States)

    Majava, Viivi; Wang, Chaozhan; Myllykoski, Matti; Kangas, Salla M; Kang, Sung Ung; Hayashi, Nobuhiro; Baumgärtel, Peter; Heape, Anthony M; Lubec, Gert; Kursula, Petri

    2010-06-01

    Myelin basic protein (MBP) is present between the cytoplasmic leaflets of the compact myelin membrane in both the peripheral and central nervous systems, and characterized to be intrinsically disordered in solution. One of the best-characterized protein ligands for MBP is calmodulin (CaM), a highly acidic calcium sensor. We pulled down MBP from human brain white matter as the major calcium-dependent CaM-binding protein. We then used full-length brain MBP, and a peptide from rodent MBP, to structurally characterize the MBP-CaM complex in solution by small-angle X-ray scattering, NMR spectroscopy, synchrotron radiation circular dichroism spectroscopy, and size exclusion chromatography. We determined 3D structures for the full-length protein-protein complex at different stoichiometries and detect ligand-induced folding of MBP. We also obtained thermodynamic data for the two CaM-binding sites of MBP, indicating that CaM does not collapse upon binding to MBP, and show that CaM and MBP colocalize in myelin sheaths. In addition, we analyzed the post-translational modifications of rat brain MBP, identifying a novel MBP modification, glucosylation. Our results provide a detailed picture of the MBP-CaM interaction, including a 3D model of the complex between full-length proteins.

  20. RT-PCR and sequence analysis of the full-length fusion protein of Canine Distemper Virus from domestic dogs.

    Science.gov (United States)

    Romanutti, Carina; Gallo Calderón, Marina; Keller, Leticia; Mattion, Nora; La Torre, José

    2016-02-01

    During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks.

  1. A novel full-length gene of human ribosomal protein L14.22 related to human glioma

    Institute of Scientific and Technical Information of China (English)

    QI Zhen-yu; HUI Guo-zhen; LI Yao; ZHOU Zong-xiang; GU Shao-hua; XIE Yi

    2006-01-01

    Background This study was undertaken to obtain differentially expressed genes related to human glioma by cDNA microarray and the characterization of a novel full-length gene. Methods Total RNA was extracted from human glioma and normal brain tissues, and mRNA was used as a probe. The results of hybridization procedure were scanned with the computer system. The gene named 507E08clone was subsequently analyzed by northern blot, bioinformatic approach, and protein expression.Results Fifteen differentially expressed genes were obtained from human glioma by hybridization and scanning for four times. Northern blot analysis confirmed that the 507E08 clone was low expressed in human brain tissue and over expressed in human glioma tissues. The analysis of BLASTn and BLASTx showed that the 507E08clone was a novel full-length gene, which codes 203 amino acid of protein and is called human ribosomal protein 14.22 gene. The nucleotide sequence had been submitted to the GenBankTM with the accession number of AF329277. After expression in E. Coli., protein yielded a major band of apparent molecular mass 22 kDa on an SDS-PAGE gel.Conclusions cDNA microarray technology can be successfully used to identify differentially expressed genes.The novel full-length gene of human ribosomal protein 14.22 may be correlated with the development of human glioma.

  2. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation

    Directory of Open Access Journals (Sweden)

    MacDonald Marcy E

    2005-01-01

    Full Text Available Abstract Background Huntington's disease (HD is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotype-phenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expression of mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1–171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 HdhQ111/Q111 striatal cells. Conclusions At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that

  3. Generation of recombinant single-chain antibodies neutralizing the cytolytic activity of vaginolysin, the main virulence factor of Gardnerella vaginalis

    Directory of Open Access Journals (Sweden)

    Pleckaityte Milda

    2011-11-01

    Full Text Available Abstract Background Gardnerella vaginalis is identified as the predominant colonist of the vaginal tract in women with bacterial vaginosis. Vaginolysin (VLY is a protein toxin released by G. vaginalis. VLY possesses cytolytic activity and is considered as a main virulence factor of G. vaginalis. Inhibition of VLY-mediated cell lysis by antibodies may have important physiological relevance. Results Single-chain variable fragments of immunoglobulins (scFvs were cloned from two hybridoma cell lines producing neutralizing antibodies against VLY and expressed as active proteins in E. coli. For each hybridoma, two variants of anti-VLY scFv consisting of either VL-VH or VH-VL linked with a 20 aa-long linker sequence (G4S4 were constructed. Recovery of scFvs from inclusion bodies with subsequent purification by metal-chelate chromatography resulted in VLY-binding proteins that were predominantly monomeric. The antigen-binding activity of purified scFvs was verified by an indirect ELISA. The neutralizing activity was investigated by in vitro hemolytic assay and cytolytic assay using HeLa cell line. Calculated apparent Kd values and neutralizing potency of scFvs were in agreement with those of parental full-length antibodies. VH-VL and VL-VH variants of scFvs showed similar affinity and neutralizing potency. The anti-VLY scFvs derived from hybridoma clone 9B4 exhibited high VLY-neutralizing activity both on human erythrocytes and cervical epithelial HeLa cells. Conclusions Hybridoma-derived scFvs with VLY-binding activity were expressed in E. coli. Recombinant anti-VLY scFvs inhibited VLY-mediated cell lysis. The monovalent scFvs showed reduced affinity and neutralizing potency as compared to the respective full-length antibodies. The loss of avidity could be restored by generating scFv constructs with multivalent binding properties. Generated scFvs is the first example of recombinant single-chain antibodies with VLY-neutralizing activity produced in

  4. Llama immunization with full-length VAR2CSA generates cross-reactive and inhibitory single-domain antibodies against the DBL1X domain.

    Science.gov (United States)

    Nunes-Silva, Sofia; Gangnard, Stéphane; Vidal, Marta; Vuchelen, Anneleen; Dechavanne, Sebastien; Chan, Sherwin; Pardon, Els; Steyaert, Jan; Ramboarina, Stephanie; Chêne, Arnaud; Gamain, Benoît

    2014-12-09

    VAR2CSA stands today as the leading vaccine candidate aiming to protect future pregnant women living in malaria endemic areas against the severe clinical outcomes of pregnancy associated malaria (PAM). The rational design of an efficient VAR2CSA-based vaccine relies on a profound understanding of the molecular interactions associated with P. falciparum infected erythrocyte sequestration in the placenta. Following immunization of a llama with the full-length VAR2CSA recombinant protein, we have expressed and characterized a panel of 19 nanobodies able to recognize the recombinant VAR2CSA as well as the surface of erythrocytes infected with parasites originating from different parts of the world. Domain mapping revealed that a large majority of nanobodies targeted DBL1X whereas a few of them were directed towards DBL4ε, DBL5ε and DBL6ε. One nanobody targeting the DBL1X was able to recognize the native VAR2CSA protein of the three parasite lines tested. Furthermore, four nanobodies targeting DBL1X reproducibly inhibited CSA adhesion of erythrocytes infected with the homologous NF54-CSA parasite strain, providing evidences that DBL1X domain is part or close to the CSA binding site. These nanobodies could serve as useful tools to identify conserved epitopes shared between different variants and to characterize the interactions between VAR2CSA and CSA.

  5. Biological effects and use of PrPSc- and PrP-specific antibodies generated by immunization with purified full-length native mouse prions.

    Science.gov (United States)

    Petsch, Benjamin; Müller-Schiffmann, Andreas; Lehle, Anna; Zirdum, Elizabeta; Prikulis, Ingrid; Kuhn, Franziska; Raeber, Alex J; Ironside, James W; Korth, Carsten; Stitz, Lothar

    2011-05-01

    The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.

  6. Detection of recombinant and cellular MALT1 paracaspase activity.

    Science.gov (United States)

    Nagel, Daniel; Krappmann, Daniel

    2015-01-01

    MALT1 (mucosa-associated lymphoid tissue protein 1) is a key regulator of antigen-induced NF-κB activation in the adaptive immune response. Activation of proteolytic activity of the MALT1 paracaspase was shown to boost the immune response. Additionally, MALT1 proteolytic activity is essential for the survival of MALT1-dependent lymphoma, such as the activated B-cell type (ABC) of diffuse large B-cell lymphoma (DLBCL) or MALT lymphoma. The functional impact of MALT1 paracaspase on T-cell activation and lymphomagenesis suggests that MALT1 is a promising therapeutic target for the treatment of autoimmune diseases and distinct lymphoma entities. To evaluate the requirement of MALT1 in further detail, direct measurement of its activity status is of great importance. We have established a fluorogenic cleavage assay which can be used to measure activity of recombinant and cellular MALT1. Here we describe the basis of the cleavage assay and include a detailed protocol for recombinant production of MALT1 and also the cellular immunoprecipitation of endogenous MALT1 to determine its proteolytic activity.

  7. FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits.

    Science.gov (United States)

    Himuro, Yasuyo; Tanaka, Hidenori; Hashiguchi, Masatsugu; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Fujita, Miki; Shinozaki, Kazuo; Matsui, Minami; Akashi, Ryo; Hoffmann, Franz

    2011-01-15

    Using the full-length cDNA overexpressor (FOX) gene-hunting system, we have generated 130 Arabidopsis FOX-superroot lines in bird's-foot trefoil (Lotus corniculatus) for the systematic functional analysis of genes expressed in roots and for the selection of induced mutants with interesting root growth characteristics. We used the Arabidopsis-FOX Agrobacterium library (constructed by ligating pBIG2113SF) for the Agrobacterium-mediated transformation of superroots (SR) and the subsequent selection of gain-of-function mutants with ectopically expressed Arabidopsis genes. The original superroot culture of L. corniculatus is a unique host system displaying fast root growth in vitro, allowing continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely hormone-free culture conditions. Several of the Arabidopsis FOX-superroot lines show interesting deviations from normal growth and morphology of roots from SR-plants, such as differences in pigmentation, growth rate, length or diameter. Some of these mutations are of potential agricultural interest. Genomic PCR analysis revealed that 100 (76.9%) out of the 130 transgenic lines showed the amplification of single fragments. Sequence analysis of the PCR fragments from these 100 lines identified full-length cDNA in 74 of them. Forty-three out of 74 full-length cDNA carried known genes. The Arabidopsis FOX-superroot lines of L. corniculatus, produced in this study, expand the FOX hunting system and provide a new tool for the genetic analysis and control of root growth in a leguminous forage plant.

  8. Molecular Characterization of Full-length Genome of Japanese Encephalitis Virus Genotype V Isolated from Tibet, China

    Institute of Scientific and Technical Information of China (English)

    LI Ming Hua; FU Shi Hong; CHEN Wei Xin; WANG Huan Yu; CAO Yu Xi; LIANG Guo Dong

    2014-01-01

    Objective To determine the molecular characterization of full-length genome of Japanese encephalitis virus (JEV) genotype V. Methods The full-length nucleotide sequences of JEV strains isolated from different locations and sources were used in sequence and phylogenetic analysis. Results The full-length genome of genotypes V JEV, XZ0934, and Muar strain were composed of 10 983 and 10 988 nucleotides respectively and shared a lower level of identity with JEV genotypes I-IV, ranging from 78.4% (G I, KV1899) to 79.7% (G III, JaGAr01), for the nucleotide sequences, and from 90.0%(G I, KV1899) to 91.8%(G III, JaGAr01) for the amino acid sequences. The open reading frame (ORF) of JEV genotype V spanned nucleotides 96 to 10 397 and encoded 3 433 amino acids. Interestingly, a comparison with JEV genotype I-IV revealed that 3 nucleotides (encoded with a serine residue) were inserted in the NS4A gene of JEV genotype V, and the insertion of nucleotides was also found in downstream of the ORF stop codon in 3’-untranslated region. Moreover, numerous amino acid mutations were observed in 3 functional domains of the E gene of JEV genotype V. Conclusion The molecular characterization of JEV genotype V is significantly different from that of the known genotypes I-IV. The mutations located in the coding region and the non-coding region may be molecular markers of JEV genotype V and warrant further studies to determine their effects on biology and immunogenicity of genotype V strains.

  9. An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library

    Directory of Open Access Journals (Sweden)

    Wallis James G

    2007-07-01

    Full Text Available Abstract Background Castor seeds are a major source for ricinoleate, an important industrial raw material. Genomics studies of castor plant will provide critical information for understanding seed metabolism, for effectively engineering ricinoleate production in transgenic oilseeds, or for genetically improving castor plants by eliminating toxic and allergic proteins in seeds. Results Full-length cDNAs are useful resources in annotating genes and in providing functional analysis of genes and their products. We constructed a full-length cDNA library from developing castor endosperm, and obtained 4,720 ESTs from 5'-ends of the cDNA clones representing 1,908 unique sequences. The most abundant transcripts are genes encoding storage proteins, ricin, agglutinin and oleosins. Several other sequences are also very numerous, including two acidic triacylglycerol lipases, and the oleate hydroxylase (FAH12 gene that is responsible for ricinoleate biosynthesis. The role(s of the lipases in developing castor seeds are not clear, and co-expressing of a lipase and the FAH12 did not result in significant changes in hydroxy fatty acid accumulation in transgenic Arabidopsis seeds. Only one oleate desaturase (FAD2 gene was identified in our cDNA sequences. Sequence and functional analyses of the castor FAD2 were carried out since it had not been characterized previously. Overexpression of castor FAD2 in a FAH12-expressing Arabidopsis line resulted in decreased accumulation of hydroxy fatty acids in transgenic seeds. Conclusion Our results suggest that transcriptional regulation of FAD2 and FAH12 genes maybe one of the mechanisms that contribute to a high level of ricinoleate accumulation in castor endosperm. The full-length cDNA library will be used to search for additional genes that affect ricinoleate accumulation in seed oils. Our EST sequences will also be useful to annotate the castor genome, which whole sequence is being generated by shotgun sequencing at

  10. Collection and Comparative Analysis of 1888 Full-length cDNAs from Wild Rice Oryza rufipogon Griff. W1943

    OpenAIRE

    Lu, Tingting; Yu, Shuliang; Fan, Danlin; Mu, Jie; Shangguan, Yingying; Wang, Zixuan; Minobe, Yuzo; Lin, Zhixin; Han, Bin

    2008-01-01

    A huge amount of cDNA and EST resources have been developed for cultivated rice species Oryza sativa; however, only few cDNA resources are available for wild rice species. In this study, we isolated and completely sequenced 1888 putative full-length cDNA (FLcDNA) clones from wild rice Oryza rufipogon Griff. W1943 for comparative analysis between wild and cultivated rice species. Two cDNA libraries were constructed from 3-week-old leaf samples under either normal or cold-treated conditions. Ho...

  11. Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein.

    OpenAIRE

    Jiang, H P; Serrero, G

    1992-01-01

    We have previously isolated from a 1246 adipocyte cDNA library a cDNA clone called 154, corresponding to a mRNA that increases abundantly at a very early time during the differentiation of 1246 adipocytes and in adipocyte precursors in primary culture. We show here that the mRNA encoded by this cDNA is expressed abundantly and preferentially in mouse fat pads. A full-length cDNA for clone 154 was isolated by the RACE (rapid amplification of cDNA ends) protocol. Sequence analysis of this cDNA ...

  12. Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein

    OpenAIRE

    Jiang, Hui-Ping; Serrero, Ginette

    1992-01-01

    We have previously isolated from a 1246 adipocyte cDNA library a cDNA clone called 154, corresponding to a mRNA that increases abundantly at a very early time during the differentiation of 1246 adipocytes and in adipocyte precursors in primary culture. We show here that the mRNA encoded by this cDNA is expressed abundantly and preferentially in mouse fat pads. A full-length cDNA for clone 154 was isolated by the RACE (rapid amplification of cDNA ends) protocol. Sequence analysis of this cDNA ...

  13. Molecular-level secondary structure, polymorphism, and dynamics of full-length -synuclein fibrils studied by solid-state NMR

    Science.gov (United States)

    Heise, Henrike; Hoyer, Wolfgang; Becker, Stefan; Andronesi, Ovidiu C.; Riedel, Dietmar; Baldus, Marc

    2005-11-01

    The 140-residue protein -synuclein (AS) is able to form amyloid fibrils and as such is the main component of protein inclusions involved in Parkinson's disease. We have investigated the structure and dynamics of full-length AS fibrils by high-resolution solid-state NMR spectroscopy. Homonuclear and heteronuclear 2D and 3D spectra of fibrils grown from uniformly 13C/15N-labeled AS and AS reverse-labeled for two of the most abundant amino acids, K and V, were analyzed. 13C and 15N signals exhibited linewidths of HR ALIGN=LEFT WIDTH=50% NOSHADE SIZE=1>

  14. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    Science.gov (United States)

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  15. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    Directory of Open Access Journals (Sweden)

    Decai Tuo

    2015-12-01

    Full Text Available Papaya leaf distortion mosaic virus (PLDMV is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV. The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA, was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  16. Functional and expression analyses of transcripts based on full-length cDNAs of Sorghum bicolor.

    Science.gov (United States)

    Shimada, Setsuko; Makita, Yuko; Kuriyama-Kondou, Tomoko; Kawashima, Mika; Mochizuki, Yoshiki; Hirakawa, Hideki; Sato, Shusei; Toyoda, Tetsuro; Matsui, Minami

    2015-12-01

    Sorghum bicolor is one of the most important crops for food and bioethanol production. Its small diploid genome and resistance to environmental stress make sorghum an attractive model for studying the functional genomics of the Saccharinae and other C4 grasses. We analyzed the domain-based functional annotation of the cDNAs using the gene ontology (GO) categories for molecular function to characterize all the genes cloned in the full-length cDNA library of sorghum. The sorghum cDNA library successfully captured a wide range of cDNA-encoded proteins with various functions. To characterize the protein function of newly identified cDNAs, a search of their deduced domains and comparative analyses in the Oryza sativa and Zea mays genomes were carried out. Furthermore, genes on the sense strand corresponding to antisense transcripts were classified based on the GO of molecular function. To add more information about these genes, we have analyzed the expression profiles using RNA-Seq of three tissues (spikelet, seed and stem) during the starch-filling phase. We performed functional analysis of tissue-specific genes and expression analysis of genes of starch biosynthesis enzymes. This functional analysis of sorghum full-length cDNAs and the transcriptome information will facilitate further analysis of the Saccharinae and grass families.

  17. Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Zhichao eXu

    2016-02-01

    Full Text Available Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and 4 alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that 6 candidate cytochrome P450s and 5 candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.

  18. A comparative phylogenetic analysis of full-length mariner elements isolated from the Indian tasar silkmoth, Antheraea mylitta (Lepidoptera: saturniidae)

    Indian Academy of Sciences (India)

    M Dharma Prasad; J Nagaraju

    2003-06-01

    Mariner like elements (MLEs) are widely distributed type II transposons with an open reading frame (ORF) for transposase. We studied comparative phylogenetic evolution and inverted terminal repeat (ITR) conservation of MLEs from Indian saturniid silkmoth, Antheraea mylitta with other full length MLEs submitted in the database. Full length elements from A. mylitta were inactive with multiple mutations. Many conserved amino acid blocks were identified after aligning transposase sequences. Mariner signature sequence, DD(34)D was almost invariable although a few new class of elements had different signatures. A. mylitta MLEs (Anmmar) get phylogenetically classified under cecropia subfamily and cluster closely with the elements from other Bombycoidea superfamily members implying vertical transmission from a common ancestor. ITR analysis showed a conserved sequence of AGGT(2-8N)ATAAGT for forward repeat and AGGT(2-8N)ATGAAAT for reverse repeat. These results and additional work may help us to understand the dynamics of MLE distribution in A. mylitta and construction of appropriate vectors for mariner mediated transgenics.

  19. Posturographic stabilisation of healthy subjects exposed to full-length mirror image is inversely related to body-image preoccupations.

    Science.gov (United States)

    Galeazzi, Gian Maria; Monzani, Daniele; Gherpelli, Chiara; Covezzi, Roberta; Guaraldi, Gian Paolo

    2006-12-13

    Affective states, anxiety in particular, have been shown to negatively influence human postural control efficiency as measured by posturographic means, while exposure to a full-length mirror image of one's body exerts a stabilizing effect. We tested the hypothesis that body image concerns and preoccupations would relate negatively to this stabilising effect. Sixty-six healthy students, who screened negative for psychiatric disorders, completed rating scales for anxiety, depression and body image concerns. Posturography recordings of body sway were taken under three conditions: with eyes closed, looking at a vertical bar and looking at a full-length mirror. The Eyes Open/Mirror Stabilometric Quotient [EOMQ=(sway path with eyes closed/sway path looking at the mirror)x100], an index of how much postural control is stabilized by mirror feedback in comparison to the visual vertical bar condition, was significantly inversely related to body image concerns and preoccupations, and to trait anxiety. This finding confirms the impact of emotional factors on human postural control, which warrant further studies. If confirmed in clinical populations characterized by high levels of body image disturbances, e.g. eating disorders, it could lead to developments in the assessment and monitoring of these patients.

  20. Generation and characterisation of a full-length cDNA encoding murine myotonic dystrophy protein kinase from cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Carey, N.; Tongeren, T. van; Winchester, C. [Charing Cross & Wesminster Medical School, London (United Kingdom)] [and others

    1994-09-01

    The mutation underlying myotonic dystrophy (DM) is a CTG trinucleotide expansion in the 3{prime} untranslated region of a putative protein kinase gene (DMPK). We report the isolation of a full-length cDNA clone of the murine (DMPK) gene from a heart cDNA library. Sequence analysis shows that the clone is a splice isoform which has only previously been identified in brain, suggesting that there may be some flexibility of the splicing pattern in some tissues. We are currently analyzing the library for the presence of other isoforms. The full-length cDNA has been cloned into a bacterial expression system and the expressed protein is being used as an immunogen to generate both polyclonal and monoclonal antisera. These reagents will allow the analysis of the intracellular targets of the DMPK. Subclones of the cDNA have been generated for use as in situ hybridization probes, allowing investigation of the normal patterns of expression of the gene and the differential expression of the protein isoforms. These data will be essential for deciding on a rational use of rare patient material and will provide the necessary baseline for the analysis of transgenic and {open_quotes}knock-out{close_quotes} mice.

  1. Three faces of recombination activating gene 1 (RAG1) mutations.

    Science.gov (United States)

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation.

  2. Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2.

    Science.gov (United States)

    Shetty, Jagathpala; Sinville, Rondedrick; Shumilin, Igor A; Minor, Wladek; Zhang, Jianhai; Hawkinson, Jon E; Georg, Gunda I; Flickinger, Charles J; Herr, John C

    2016-05-01

    The testis-specific serine/threonine kinase 2 (TSSK2) has been proposed as a candidate male contraceptive target. Development of a selective inhibitor for this kinase first necessitates the production of highly purified, soluble human TSSK2 and its substrate, TSKS, with high yields and retention of biological activity for crystallography and compound screening. Strategies to produce full-length, soluble, biologically active hTSSK2 in baculovirus expression systems were tested and refined. Soluble preparations of TSSK2 were purified by immobilized-metal affinity chromatography (IMAC) followed by gel filtration chromatography. The biological activities of rec.hTSSK2 were verified by in vitro kinase and mobility shift assays using bacterially produced hTSKS (isoform 2), casein, glycogen synthase peptide (GS peptide) and various TSKS peptides as target substrates. Purified recombinant hTSSK2 showed robust kinase activity in the in vitro kinase assay by phosphorylating hTSKS isoform 2 and casein. The ATP Km values were similar for highly and partially purified fractions of hTSSK2 (2.2 and 2.7 μM, respectively). The broad spectrum kinase inhibitor staurosporine was a potent inhibitor of rec.hTSSK2 (IC50 = 20 nM). In vitro phosphorylation experiments carried out with TSKS (isoform 1) fragments revealed particularly strong phosphorylation of a recombinant N-terminal region representing aa 1-150 of TSKS, indicating that the N-terminus of human TSKS is phosphorylated by human TSSK2. Production of full-length enzymatically active recombinant TSSK2 kinase represents the achievement of a key benchmark for future discovery of TSSK inhibitors as male contraceptive agents.

  3. Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O' Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O.; Barrero, Roberto A.; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A.; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; de Fatima Bonaldo, Maria; Bono Hidemasa; Bromberg, Susan K.; Brookes, Anthony J.; Bruford, Elspeth; Carninci Piero; Chelala, Claude; Couillault, Christine; de Souza, Sandro J.; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; Gopinath, Gopal R.; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Paul; Kikuno Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino Takashi; Mano, Shuhei; Mariage-Samson, Regine; Mashima, Jun; Matsuda, Hideo; Mewes, Hans-Werner; Minoshima, Shinsei; Nagai, Keiichi; Nagasaki, Hideki; Nagata, Naoki; Nigam, Rajni; Ogasawara, Osamu; Ohara, Osamu; Ohtsubo, Masafumi; Okada, Norihiro; Okido, Toshihisa; Oota, Satoshi; Ota, Motonori; Ota, Toshio; Otsuki, Tetsuji; Piatier-Tonneau, Dominique; Poustka, Annemarie; Ren, Shuang-Xi; Saitou, Naruya; Sakai, Katsunaga; Sakamoto, Shigetaka; Sakate, Ryuichi; Schupp, Ingo; Servant, Florence; Sherry, Stephen; Shiba Rie; et al.

    2004-01-15

    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4 percent of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5 percent of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for nonprotein-coding RNA

  4. Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Directory of Open Access Journals (Sweden)

    Tadashi Imanishi

    2004-06-01

    Full Text Available The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/. It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs, identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA

  5. Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila

    Directory of Open Access Journals (Sweden)

    Seki Motoaki

    2008-11-01

    Full Text Available Abstract Background Thellungiella halophila (also known as Thellungiella salsuginea is a model halophyte with a small plant size, short life cycle, and small genome. It easily undergoes genetic transformation by the floral dipping method used with its close relative, Arabidopsis thaliana. Thellungiella genes exhibit high sequence identity (approximately 90% at the cDNA level with Arabidopsis genes. Furthermore, Thellungiella not only shows tolerance to extreme salinity stress, but also to chilling, freezing, and ozone stress, supporting the use of Thellungiella as a good genomic resource in studies of abiotic stress tolerance. Results We constructed a full-length enriched Thellungiella (Shan Dong ecotype cDNA library from various tissues and whole plants subjected to environmental stresses, including high salinity, chilling, freezing, and abscisic acid treatment. We randomly selected about 20 000 clones and sequenced them from both ends to obtain a total of 35 171 sequences. CAP3 software was used to assemble the sequences and cluster them into 9569 nonredundant cDNA groups. We named these cDNAs "RTFL" (RIKEN Thellungiella Full-Length cDNAs. Information on functional domains and Gene Ontology (GO terms for the RTFL cDNAs were obtained using InterPro. The 8289 genes assigned to InterPro IDs were classified according to the GO terms using Plant GO Slim. Categorical comparison between the whole Arabidopsis genome and Thellungiella genes showing low identity to Arabidopsis genes revealed that the population of Thellungiella transport genes is approximately 1.5 times the size of the corresponding Arabidopsis genes. This suggests that these genes regulate a unique ion transportation system in Thellungiella. Conclusion As the number of Thellungiella halophila (Thellungiella salsuginea expressed sequence tags (ESTs was 9388 in July 2008, the number of ESTs has increased to approximately four times the original value as a result of this effort. Our

  6. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    Directory of Open Access Journals (Sweden)

    Tania Rivera-Hernandez

    2016-06-01

    Full Text Available Group A Streptococcus (GAS is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i streptolysin O (SLO, interleukin 8 (IL-8 protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP], group A streptococcal C5a peptidase (SCPA, arginine deiminase (ADI, and trigger factor (TF; (ii the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model.

  7. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab.

    Science.gov (United States)

    Scapin, Giovanna; Yang, Xiaoyu; Prosise, Winifred W; McCoy, Mark; Reichert, Paul; Johnston, Jennifer M; Kashi, Ramesh S; Strickland, Corey

    2015-12-01

    Immunoglobulin G4 antibodies exhibit unusual properties with important biological consequences. We report the structure of the human full-length IgG4 S228P anti-PD1 antibody pembrolizumab, solved to 2.3-Å resolution. Pembrolizumab is a compact molecule, consistent with the presence of a short hinge region. The Fc domain is glycosylated at the CH2 domain on both chains, but one CH2 domain is rotated 120° with respect to the conformation observed in all reported structures to date, and its glycan chain faces the solvent. We speculate that this new conformation is driven by the shorter hinge. The structure suggests a role for the S228P mutation in preventing the IgG4 arm exchange. In addition, this unusual Fc conformation suggests possible structural diversity between IgG subclasses and shows that use of isolated antibody fragments could mask potentially important interactions, owing to molecular flexibility.

  8. Full-length clone and characterization of a human immunodeficiency virus type 1 subtype B' isolated from Hubei Province, China

    Institute of Scientific and Technical Information of China (English)

    TAN Jian-xin; KANG Xian-jiang; ZHANG Wei; LIU Ping-ping; TONG Xiao; YANG Rong-ge

    2007-01-01

    @@ There are two types of Human Immunodeficiency Virus (HIV): HIV-1 and HIV-2. HIV-1 dominates epidemics in many different parts of the world, and HIV-2 is principally responsible for the epidemic in western Africa. In China, Zeng et al1 have reported the first individual infected with HIV-1 in 1985. And in the 1990s,there was a severe epidemic involving the HIV-1 B' strain among people who sold blood and plasma in Henan,Hubei and adjacent provinces.2 To further study in HIV/AIDS vaccines and HIV-1 drug resistance for people in these regions, we need to construct an infectious HIV-1 B' molecular clone which is representative of the virus in these areas.3 To this end, we have isolated a HIV-1 B' virus from a child who was infected with HIV-1 from his mother in Hubei province, and have constructed a full-length clone from this genome.

  9. Full-length protein extraction protocols and gel-based downstream applications in formalin-fixed tissue proteomics.

    Science.gov (United States)

    Tanca, Alessandro; Uzzau, Sergio; Addis, Maria Filippa

    2015-01-01

    Archival formalin-fixed, paraffin-embedded (FFPE) tissue repositories and their associated clinical information can represent a valuable resource for tissue proteomics. In order to make these tissues available for protein biomarker discovery and validation studies, dedicated sample preparation procedures overcoming the intermolecular cross-links introduced by formalin need to be implemented. This chapter describes a full-length protein extraction protocol optimized for downstream gel-based proteomics applications. Using the procedures detailed here, SDS-PAGE, western immunoblotting, GeLC-MS/MS, 2D-PAGE, and 2D-DIGE can be carried out on FFPE tissues. Technical tips, critical aspects, and drawbacks of the method are presented and discussed.

  10. The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NAS

    Science.gov (United States)

    2002-01-01

    The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NASA's Dryden flight Research Center, Edwards, California. The 247-foot span solar-powered aircraft, resting on its ground maneuvering dolly, was on display for a visit of NASA Administrator Sean O'Keefe and other NASA officials on January 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on August 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  11. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    Science.gov (United States)

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.

  12. Full-length core sequence dependent complex-type glycosylation of hepatitis C virus E2 glycoprotein

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; Ying-Chun Li; Yu-Ying Kong; Caroline Staib; Gerd Sutter; Yuan Wang; Guang-Di Li

    2002-01-01

    AIM: To study HCV polyprotein processing is important forthe understanding of the natural history of HCV and thedesign of vaccines against HCV. The purpose of this studyis to investigate the affection of context sequences onhepatitis C virus (HCV) E2 processingMETHODS: HCV genes of different lengths were expressedand compared in vaccinia virus/T7 system with homologouspatient serum S94 and mouse anti-serum ME2116 raisedagainst E. coli-derived E2 peptide, respectively.Deglycosylation analysis and GNA (Galanthus nivalus )lectin binding assay were performed to study the post-translational processing of the expressed products.RESULTS: E2 glycoproteins with different molecular weights( ~ 75kDa end ~ 60kDa) were detected using S94 and ME2116,respectively. Deglycosylation analysis showed that thisdifference was mainly due to different glycosylation. Endo Hresistance and its failure to bind to GNA lectin demonstratedthat the higher molecular weight form (75kDa) of E2 wascomplex-type glycosylated, which was readily recognized byhomologous patient serum S94. Expression of complex-typeglycosylated E2 could not be detected in all of the core-truncated constructs tested, but readily detected inconstructs encoding full-length core sequences.CONCLUSION: The upstream conserved full-length corecoding sequence was required for the production of E2glycoproteins carrying complex-type N-glycans whichreacted strongly with homologous patient serum andtherefore possibly represented more mature forms of E2. Ascomplex-type N-glycans indicated modification by Golgienzymes, the results suggest that the presence of full-lengthcore might be critical for E1/E2 complex to leave ER. Ourdata may contribute to a better understanding of theprocessing of HCV structural proteins as well as HCVmorphogenesis.

  13. Legalon-SIL downregulates HCV core and NS5A in human hepatocytes expressing full-length HCV

    Institute of Scientific and Technical Information of China (English)

    Marjan Mehrab-Mohseni; Hossein Sendi; Nury Steuerwald; Sriparna Ghosh; Laura W Schrum; Herbert L Bonkovsky

    2011-01-01

    AIM: To determine the effect of Legalon-SIL (LS) on hepatitis C virus (HCV) core and NS5A expression and on heme oxygenase-1 (HMOX-1) and its transcriptionalregulators in human hepatoma cells expressing full length HCV genotype 1b.METHODS: CON1 cells were treated with 50 μmol/or 200 μmol/L LS. Cells were harvested after 2, 6 and 24 h. HCV RNA and protein levels were determined byquantitative real-time polymerase chain reaction and Western blotting, respectively.RESULTS: HCV RNA (core and NS5A regions) was decreased after 6 h with LS 200 μmol/L (P < 0.05).Both 50 and 200 μmol/L LS decreased HCV RNA levels[core region (by 55% and 88%, respectively) and NS5A region (by 62% and 87%, respectively) after 24 h compared with vehicle (dimethyl sulphoxide) control (P< 0.01). Similarly HCV core and NS5A protein were decreased(by 85%, P < 0.01 and by 65%, P < 0.05, respectively)by LS 200 μmol/L. Bach1 and HMOX-1 RNAwere also downregulated by LS treatment (P < 0.01),while Nrf2 protein was increased (P < 0.05).CONCLUSION: Our results demonstrate that treatment with LS downregulates HCV core and NS5A expression in CON1 cells which express full length HCVgenotype 1b, and suggests that LS may prove to be a valuable alternative or adjunctive therapy for the treatment of HCV infection.

  14. Multiplexed next-generation sequencing and de novo assembly to obtain near full-length HIV-1 genome from plasma virus.

    Science.gov (United States)

    Aralaguppe, Shambhu G; Siddik, Abu Bakar; Manickam, Ashokkumar; Ambikan, Anoop T; Kumar, Milner M; Fernandes, Sunjay Jude; Amogne, Wondwossen; Bangaruswamy, Dhinoth K; Hanna, Luke Elizabeth; Sonnerborg, Anders; Neogi, Ujjwal

    2016-10-01

    Analysing the HIV-1 near full-length genome (HIV-NFLG) facilitates new understanding into the diversity of virus population dynamics at individual or population level. In this study we developed a simple but high-throughput next generation sequencing (NGS) protocol for HIV-NFLG using clinical specimens and validated the method against an external quality control (EQC) panel. Clinical specimens (n=105) were obtained from three cohorts from two highly conserved HIV-1C epidemics (India and Ethiopia) and one diverse epidemic (Sweden). Additionally an EQC panel (n=10) was used to validate the protocol. HIV-NFLG was performed amplifying the HIV-genome (Gag-to-nef) in two fragments. NGS was performed using the Illumina HiSeq2500 after multiplexing 24 samples, followed by de novo assembly in Iterative Virus Assembler or VICUNA. Subtyping was carried out using several bioinformatics tools. Amplification of HIV-NFLG has 90% (95/105) success-rate in clinical specimens. NGS was successful in all clinical specimens (n=45) and EQA samples (n=10) attempted. The mean error for mutations for the EQC panel viruses were <1%. Subtyping identified two as A1C recombinant. Our results demonstrate the feasibility of a simple NGS-based HIV-NFLG that can potentially be used in the molecular surveillance for effective identification of subtypes and transmission clusters for operational public health intervention.

  15. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    Science.gov (United States)

    Golubnitchaya-Labudová, O.; Portele, A.; Vaçata, V.; Lubec, G.; Rink, H.; Höfer, M.

    1997-10-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating domains in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the insert of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9.

  16. Telomerase repeat amplification protocol (TRAP) activity upon recombinant expression and purification of human telomerase in a bacterial system.

    Science.gov (United States)

    Hansen, Debra T; Thiyagarajan, Thirumagal; Larson, Amy C; Hansen, Jeffrey L

    2016-07-01

    Telomerase biogenesis is a highly regulated process that solves the DNA end-replication problem. Recombinant expression has so far been accomplished only within a eukaryotic background. Towards structural and functional analyses, we developed bacterial expression of human telomerase. Positive activity by the telomerase repeat amplification protocol (TRAP) was identified in cell extracts of Escherichia coli expressing a sequence-optimized hTERT gene, the full-length hTR RNA with a self-splicing hepatitis delta virus ribozyme, and the human heat shock complex of Hsp90, Hsp70, p60/Hop, Hsp40, and p23. The Hsp90 inhibitor geldanamycin did not affect post-assembly TRAP activity. By various purification methods, TRAP activity was also obtained upon expression of only hTERT and hTR. hTERT was confirmed by tandem mass spectrometry in a ∼120 kDa SDS-PAGE fragment from a TRAP-positive purification fraction. TRAP activity was also supported by hTR constructs lacking the box H/ACA small nucleolar RNA domain. End-point TRAP indicated expression levels within 3-fold of that from HeLa carcinoma cells, which is several orders of magnitude below detection by the direct assay. These results represent the first report of TRAP activity from a bacterium and provide a facile system for the investigation of assembly factors and anti-cancer therapeutics independently of a eukaryotic setting.

  17. Insect immune activation by recombinant Galleria mellonella apolipophorin III(1).

    Science.gov (United States)

    Niere, M; Meisslitzer, C; Dettloff, M; Weise, C; Ziegler, M; Wiesner, A

    1999-08-17

    Apolipophorin III (apoLp-III) is an exchangeable insect apolipoprotein. Its function, as currently understood, lies in the stabilization of low-density lipophorin particles (LDLp) crossing the hemocoel in phases of high energy consumption to deliver lipids from the fat body to the flight muscle cells. Recent studies with native Galleria mellonella-apoLp-III gave first indications of an unexpected role of that protein in insect immune activation. Here we report the immune activation by the recombinant protein, documenting a newly discovered correlation between lipid physiology and immune defense in insects. The complete cDNA sequence of G. mellonella-apoLp-III was identified by mixed oligonucleotide-primed amplification of cDNA (MOPAC), 3'-RACE-PCR, and cRACE-PCR. The sequence coding for the native protein was ligated into a pET-vector; this construct was transfected into Escherichia coli and overexpressed in the bacteria. Photometric turbidity assays with human low density lipoprotein (LDL) and transmission electron microscopy studies on apoLp-III-stabilized lipid discs revealed the full functionality of the isolated recombinant apoLp-III with regard to its lipid-association ability. For proving its immune-stimulating capacity, apoLp-III was injected into the hemocoel of last instar G. mellonella larvae and the antibacterial activity in cell-free hemolymph was determined 24 h later. As a result, the hemolymph samples of injected insects contained strongly increased antibacterial activities against E. coli as well as clearly enhanced lysozyme-like activities. From Northern blot analysis of total RNA from insects injected with apoLp-III or the bacterial immune provocator lipopolysaccharide, it could be concluded that the transcription rate of apoLp-III mRNA does not vary in comparison to untreated last instar larvae.

  18. The full-length clone of cucumber green mottle mosaic virus and its application as an expression system for Hepatitis B surface antigen.

    Science.gov (United States)

    Ooi, Aikseng; Tan, Sianghee; Mohamed, Rosmawati; Rahman, Noorsaadah Abdul; Othman, Rofina Yasmin

    2006-02-24

    A cucumber green mosaic mottle virus (CGMMV) full-length clone was developed for the expression of Hepatitis B surface antigen (HBsAg). The expression of the surface displayed HBsAg by the chimeric virus was confirmed through a double antibody sandwich ELISA. Assessment of the coat protein composition of the chimeric virus particles by SDS-PAGE analysis showed that 50% of the coat proteins were fused to the HBsAg. Biological activity of the expressed HBsAg was assessed through the stimulation of in vitro antibody production by cultured peripheral blood mononuclear cells (PBMC). PBMC that were cultured in the presence of the chimeric virus showed up to an approximately three-fold increase in the level of anti HBsAg immunoglobulin thus suggesting the possible use of this new chimeric virus as an effective Hepatitis B vaccine.

  19. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Xing-Xia Li

    2016-01-01

    Full Text Available The shell of the pearl oyster (Pinctada fucata mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization.

  20. Full-length model of the human galectin-4 and insights into dynamics of inter-domain communication

    Science.gov (United States)

    Rustiguel, Joane K.; Soares, Ricardo O. S.; Meisburger, Steve P.; Davis, Katherine M.; Malzbender, Kristina L.; Ando, Nozomi; Dias-Baruffi, Marcelo; Nonato, Maria Cristina

    2016-09-01

    Galectins are proteins involved in diverse cellular contexts due to their capacity to decipher and respond to the information encoded by β-galactoside sugars. In particular, human galectin-4, normally expressed in the healthy gastrointestinal tract, displays differential expression in cancerous tissues and is considered a potential drug target for liver and lung cancer. Galectin-4 is a tandem-repeat galectin characterized by two carbohydrate recognition domains connected by a linker-peptide. Despite their relevance to cell function and pathogenesis, structural characterization of full-length tandem-repeat galectins has remained elusive. Here, we investigate galectin-4 using X-ray crystallography, small- and wide-angle X-ray scattering, molecular modelling, molecular dynamics simulations, and differential scanning fluorimetry assays and describe for the first time a structural model for human galectin-4. Our results provide insight into the structural role of the linker-peptide and shed light on the dynamic characteristics of the mechanism of carbohydrate recognition among tandem-repeat galectins.

  1. Isolation and expression of the full-length cDNA encoding CD59 antigen of human lymphocytes.

    Science.gov (United States)

    Sawada, R; Ohashi, K; Anaguchi, H; Okazaki, H; Hattori, M; Minato, N; Naruto, M

    1990-04-01

    To identify the primary structure of CD59 antigen and to elucidate its function, a full-length cDNA clone of CD59 was isolated. The cDNA sequence contained an open reading frame that encodes an 128-amino-acid peptide. The amino-terminal 25 amino acids represented a typical signal peptide sequence and the carboxy-terminal hydrophobic amino acids were characteristic for phosphatidylinositol-anchored proteins. The predicted mature protein sequence showed 35% homology with murine Ly-6C.1 and 31% with Ly-6A.2. The number and the distribution of cysteine residues were conserved, implying that the CD59 represented a human homologue of murine Ly-6. RNA blot hybridization analysis revealed the expression of CD59 mRNA in placental, lung, and pancreatic tissues. The mRNA was not only expressed in T-cell lines but in some of monocytic, myeloid, and B-cell lines. In all of these tissues and cell lines, at least four mRNA species were detected. DNA blot hybridization analysis revealed a rather simple genomic structure, which suggested a single gene as compared with the complex multigene family of murine Ly-6.

  2. Cloning and Analysis of Full-Length cDNA of PumNPR1 Gene from Pyrus ussuriensis Maxim

    Institute of Scientific and Technical Information of China (English)

    CHE Daidi; FAN Jinping; WANG Jingang; XU Ping; YANG Tao; LIU Shenkui

    2008-01-01

    The purpose of this study is to find a new gene resource for the researches of molecular breeding of Rosaceae plants disease-resistance. Pyrus ussuriensis Maxim is used as a starting material to clone the full-length cDNA of NPR1(nonexpressor of pathogenesis- related genes 1) which is a key regulator in SA (salicylic acid)-mediated systemic acquired resistance (SAR) by homologous cloning and RACE techniques. The length of the cDNA sequence was 1 767 bp, the ORF was 1 761 bp, it coded 586 amino acids, pI=5.58, the relative molecular weight was 65.009 ku, contained 19 kinds of amino acids, and had full BTB/POZ and ANK domains. Compared the homology of NPR1 gene in GenBank database, the homology with Pyrus pyrifolia, Arabidopsis thaliana, Nicotiana tabacum, Lycopersicon esculentum, Oryza sativa, Helianthus annuus were 98%, 62%, 68%, 65%, 57%, 63%. The homology of functional area were 99%, 78%, 82%, 79%, 74%, 77%. This NPR1 gene was considered as homologic gene of Pyrus ussuriensis Maxim and named PumNPR1.

  3. Collection and comparative analysis of 1888 full-length cDNAs from wild rice Oryza rufipogon Griff. W1943.

    Science.gov (United States)

    Lu, Tingting; Yu, Shuliang; Fan, Danlin; Mu, Jie; Shangguan, Yingying; Wang, Zixuan; Minobe, Yuzo; Lin, Zhixin; Han, Bin

    2008-10-01

    A huge amount of cDNA and EST resources have been developed for cultivated rice species Oryza sativa; however, only few cDNA resources are available for wild rice species. In this study, we isolated and completely sequenced 1888 putative full-length cDNA (FLcDNA) clones from wild rice Oryza rufipogon Griff. W1943 for comparative analysis between wild and cultivated rice species. Two cDNA libraries were constructed from 3-week-old leaf samples under either normal or cold-treated conditions. Homology searching of these cDNA sequences revealed that >96.8% of the wild rice cDNAs were matched to the cultivated rice O. sativa ssp. japonica cv. Nipponbare genome sequence. However, sequence. The comparative analysis showed that O. rufipogon W1943 had greater similarity to O. sativa ssp. japonica than to ssp. indica cultivars. In addition, 17 novel rice cDNAs were identified, and 41 putative tissue-specific expression genes were defined through searching the rice massively parallel signature-sequencing database. In conclusion, these FLcDNA clones are a resource for further function verification and could be broadly utilized in rice biological studies.

  4. Full-length VP2 gene analysis of canine parvovirus reveals emergence of newer variants in India.

    Science.gov (United States)

    Nookala, Mangadevi; Mukhopadhyay, Hirak Kumar; Sivaprakasam, Amsaveni; Balasubramanian, Brindhalakshmi; Antony, Prabhakar Xavier; Thanislass, Jacob; Srinivas, Mouttou Vivek; Pillai, Raghavan Madhusoodanan

    2016-12-01

    The canine parvovirus (CPV) infection is a highly contagious and serious enteric disease of dogs with high fatality rate. The present study was taken up to characterize the full-length viral polypeptide 2 (VP2) gene of CPV of Indian origin along with the commercially available vaccines. The faecal samples from parvovirus suspected dogs were collected from various states of India for screening by PCR assay and 66.29% of samples were found positive. Six CPV-2a, three CPV-2b, and one CPV-2c types were identified by sequence analysis. Several unique and existing mutations have been noticed in CPV types analyzed indicating emergence of newer variants of CPV in India. The phylogenetic analysis revealed that all the field CPV types were grouped in different subclades within two main clades, but away from the commercial vaccine strains. CPV-2b and CPV-2c types with unique mutations were found to be establishing in India apart from the prevailing CPV-2a type. Mutations and the positive selection of the mutants were found to be the major mechanism of emergence and evolution of parvovirus. Therefore, the incorporation of local strain in the vaccine formulation may be considered for effective control of CPV infections in India.

  5. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    Science.gov (United States)

    Li, Xing-Xia; Yu, Wen-Chao; Cai, Zhong-Qiang; He, Cheng; Wei, Na

    2016-01-01

    The shell of the pearl oyster (Pinctada fucata) mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas) is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM) is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM) and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization. PMID:27703977

  6. REAL-Select: full-length antibody display and library screening by surface capture on yeast cells.

    Science.gov (United States)

    Rhiel, Laura; Krah, Simon; Günther, Ralf; Becker, Stefan; Kolmar, Harald; Hock, Björn

    2014-01-01

    We describe a novel approach named REAL-Select for the non-covalent display of IgG-molecules on the surface of yeast cells for the purpose of antibody engineering and selection. It relies on the capture of secreted native full-length antibodies on the cell surface via binding to an externally immobilized ZZ domain, which tightly binds antibody Fc. It is beneficial for high-throughput screening of yeast-displayed IgG-libraries during antibody discovery and development. In a model experiment, antibody-displaying yeast cells were isolated from a 1:1,000,000 mixture with control cells confirming the maintenance of genotype-phenotype linkage. Antibodies with improved binding characteristics were obtained by affinity maturation using REAL-Select, demonstrating the ability of this system to display antibodies in their native form and to detect subtle changes in affinity by flow cytometry. The biotinylation of the cell surface followed by functionalization with a streptavidin-ZZ fusion protein is an approach that is independent of the genetic background of the antibody-producing host and therefore can be expected to be compatible with other eukaryotic expression hosts such as P. pastoris or mammalian cells.

  7. REAL-Select: full-length antibody display and library screening by surface capture on yeast cells.

    Directory of Open Access Journals (Sweden)

    Laura Rhiel

    Full Text Available We describe a novel approach named REAL-Select for the non-covalent display of IgG-molecules on the surface of yeast cells for the purpose of antibody engineering and selection. It relies on the capture of secreted native full-length antibodies on the cell surface via binding to an externally immobilized ZZ domain, which tightly binds antibody Fc. It is beneficial for high-throughput screening of yeast-displayed IgG-libraries during antibody discovery and development. In a model experiment, antibody-displaying yeast cells were isolated from a 1:1,000,000 mixture with control cells confirming the maintenance of genotype-phenotype linkage. Antibodies with improved binding characteristics were obtained by affinity maturation using REAL-Select, demonstrating the ability of this system to display antibodies in their native form and to detect subtle changes in affinity by flow cytometry. The biotinylation of the cell surface followed by functionalization with a streptavidin-ZZ fusion protein is an approach that is independent of the genetic background of the antibody-producing host and therefore can be expected to be compatible with other eukaryotic expression hosts such as P. pastoris or mammalian cells.

  8. Cloning and Characterization of Full Length cDNA of a CC-NBS-LRR Resistance Gene in Sweetpotato

    Institute of Scientific and Technical Information of China (English)

    CHEN Guan-shui; ZHOU Yi-fei; HOU Li-li; PAN Da-ren

    2009-01-01

    Conserved domain such as nucleotide binding site (NBS) was found in several cloned plant disease resistance genes.Based on the NBS domain,resistance gene analogues (RGAs) have been isolated.A full-length cDNA,SPRI was obtained by rapid amplification of cDNA ends (RACE) method.Sequence analysis indicated that the length of SPR1 was 3 066 bp,including a complete open reading frame of 2 667 bp encoding SPRI protein of 888 amino acids.Compared with known NBS-LRR genes,it presented relatively high amino acid sequence identity.The polypeptide has a typical structure of non TIR-NBS-LRR genes,with NB-ARC,CC,and LRR domains.The SPR1-related sequences belonged to multicopy gene family in sweetpotato genome according to the result of Southern blotting.Semi-quantitative RT-PCR analysis showed SPR1 expressed in all tested tissues.The cloning of putative resistance gene from sweetpotato provides a basis for studying the structure and function of sweetpotato disease-resistance relating genes and disease resistant genetic breeding in sweetpotato.The gene has been submitted to the GenBank database,and the accession number is EF428453.

  9. The full-length cell-cell fusogen EFF-1 is monomeric and upright on the membrane

    Science.gov (United States)

    Zeev-Ben-Mordehai, Tzviya; Vasishtan, Daven; Siebert, C. Alistair; Grünewald, Kay

    2014-05-01

    Fusogens are membrane proteins that remodel lipid bilayers to facilitate membrane merging. Although several fusogen ectodomain structures have been solved, structural information on full-length, natively membrane-anchored fusogens is scarce. Here we present the electron cryo microscopy three-dimensional reconstruction of the Caenorhabditis elegans epithelial fusion failure 1 (EFF-1) protein natively anchored in cell-derived membrane vesicles. This reveals a membrane protruding, asymmetric, elongated monomer. Flexible fitting of a protomer of the EFF-1 crystal structure, which is homologous to viral class-II fusion proteins, shows that EFF-1 has a hairpin monomeric conformation before fusion. These structural insights, when combined with our observations of membrane-merging intermediates between vesicles, enable us to propose a model for EFF-1 mediated fusion. This process, involving identical proteins on both membranes to be fused, follows a mechanism that shares features of SNARE-mediated fusion while using the structural building blocks of the unilaterally acting class-II viral fusion proteins.

  10. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Morin, R D; Chang, E; Petrescu, A; Liao, N; Kirkpatrick, R; Griffith, M; Butterfield, Y; Stott, J; Barber, S; Babakaiff, R; Matsuo, C; Wong, D; Yang, G; Smailus, D; Brown-John, M; Mayo, M; Beland, J; Gibson, S; Olson, T; Tsai, M; Featherstone, R; Chand, S; Siddiqui, A; Jang, W; Lee, E; Klein, S; Prange, C; Myers, R M; Green, E D; Wagner, L; Gerhard, D; Marra, M; Jones, S M; Holt, R

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence between the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.

  11. [Analysis of the molecular characteristics and cloning of full-length coding sequence of interleukin-2 in tree shrews].

    Science.gov (United States)

    Huang, Xiao-Yan; Li, Ming-Li; Xu, Juan; Gao, Yue-Dong; Wang, Wen-Guang; Yin, An-Guo; Li, Xiao-Fei; Sun, Xiao-Mei; Xia, Xue-Shan; Dai, Jie-Jie

    2013-04-01

    While the tree shrew (Tupaia belangeri chinensis) is an excellent animal model for studying the mechanisms of human diseases, but few studies examine interleukin-2 (IL-2), an important immune factor in disease model evaluation. In this study, a 465 bp of the full-length IL-2 cDNA encoding sequence was cloned from the RNA of tree shrew spleen lymphocytes, which were then cultivated and stimulated with ConA (concanavalin). Clustal W 2.0 was used to compare and analyze the sequence and molecular characteristics, and establish the similarity of the overall structure of IL-2 between tree shrews and other mammals. The homology of the IL-2 nucleotide sequence between tree shrews and humans was 93%, and the amino acid homology was 80%. The phylogenetic tree results, derived through the Neighbour-Joining method using MEGA5.0, indicated a close genetic relationship between tree shrews, Homo sapiens, and Macaca mulatta. The three-dimensional structure analysis showed that the surface charges in most regions of tree shrew IL-2 were similar to between tree shrews and humans; however, the N-glycosylation sites and local structures were different, which may affect antibody binding. These results provide a fundamental basis for the future study of IL-2 monoclonal antibody in tree shrews, thereby improving their utility as a model.

  12. Full-length genomic analysis of porcine rotavirus strains isolated from pigs with diarrhea in Northern Italy.

    Science.gov (United States)

    Monini, Marina; Zaccaria, Guendalina; Ianiro, Giovanni; Lavazza, Antonio; Vaccari, Gabriele; Ruggeri, Franco M

    2014-07-01

    Group A rotaviruses (RVA) cause acute dehydrating diarrhea in young of man and many animal species, including pigs. Swine RVA has an important economic impact on the farming industry, and pigs represent a potential reservoir for zoonotic transmission of RVA to humans. To investigate the genetic diversity of porcine RVA strains in Italy and identify their possible zoonotic characteristics, 25 RVA-positive feces were collected from diarrheic pigs in Northern Italy, in 2009-2010; all viral strains were characterized by G and P genotyping RT-PCR. Three samples were selected for full genome sequencing. Sequencing of the NSP3 genes of all samples was also performed. Rotavirus diagnosis was carried out by ELISA and electron microscopy. RT-PCR and Sanger sequencing were performed in a one-tube format, using primer sets specific for each of the 11 genome segments. Analysis of the G (VP7) and P (VP4) genotypes showed that all strains identified were typical porcine RVAs (G4, G5, G9; P[6], P[13], P[23]). Full-length genome sequencing was performed on selected G9 isolates. Most segments belonged to the genotype constellation 1 (Wa-like), which is shared by most human RVA strains, but gene types such as I5 (VP6) and A8 (NSP1), which are typical of porcine and rare among human RVAs, were also detected. We identified RVA strains showing the T7 genotype, an NSP3 gene type that was previously reported in unusual strains of possible porcine or bovine origin from children with diarrhea. Recent reports suggested that G9 RVA may have been introduced from swine to human populations involving gene reassortment events. The observation that some of the RVA genotypes from swine in Italy were similar to viruses characterized in children underlines the importance of animal RVA surveillance, to clarify and monitor the role of animals as genetic reservoirs of emerging RVA strains pathogenic for humans.

  13. Structure and function of the first full-length murein peptide ligase (Mpl cell wall recycling protein.

    Directory of Open Access Journals (Sweden)

    Debanu Das

    Full Text Available Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc. MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl, which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl. Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters. Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  14. Proteomic analysis of HUH-7 cells harboring in vitro-transcribed full-length hepatitis C virus 1b RNA

    Institute of Scientific and Technical Information of China (English)

    Meng XUN; Si-hai ZHAO; Chun-xia CAO; Juan SONG; Ming-ming SHAO; Yong-lie CHU

    2008-01-01

    Aim: The present study examined the differential expression of proteins in HuH-7 cells and HUH-7 cells harboring in vitro-transcribed full-length hepatitis C virus 1b RNA (HuH-7-HCV), and elucidated the cellular responses to HCV replication. Methods: The protein profiles of matched pairs of HuH-7-HCV cells and HUH-7 mock cells were analyzed by 2-D electrophoresis (2DE). Solubilized proteins were separated in the first dimension by isoelectric focusing, and by 12.5% SDS-PAGE in the second dimension. The differential protein expression was analyzed by use of image analysis software to identify candidates for HCV infection-associated proteins. Results: In total, 29 protein spots showed increases and 25 protein spots showed decreases in signal in HuH-7-HCV cell 2DE profiles as compared with HuH-7 mock cells. In the next step, the 10 spots showing the greatest in-crease and the 10 spots showing the greatest decrease were excised from gels and the proteins present were identified by Matrix-Assisted Laser Desorption/Ioniza-tion Time of Flight Mass Spectrometer (MALDI-TOF MS) or MALDI-TOF/TOF MS. In total, 13 proteins were identified successfully. The potential significance of the differential expression due to HCV replication was discussed. Conclusion: Our study identifies changes in the proteome of HuH-7 cells in the presence of HCV replication and yields information of the mechanism of HCV pathogenesis. These results will be useful for the identification of HCV infection-associated proteins that could be molecular targets for treatment.

  15. Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes

    Science.gov (United States)

    Thomson, Emma; Ip, Camilla L. C.; Badhan, Anjna; Christiansen, Mette T.; Adamson, Walt; Ansari, M. Azim; Breuer, Judith; Brown, Anthony; Bowden, Rory; Bonsall, David; Da Silva Filipe, Ana; Hinds, Chris; Hudson, Emma; Klenerman, Paul; Lythgow, Kieren; Mbisa, Jean L.; McLauchlan, John; Myers, Richard; Piazza, Paolo; Roy, Sunando; Trebes, Amy; Sreenu, Vattipally B.; Witteveldt, Jeroen; Simmonds, Peter

    2016-01-01

    Affordable next-generation sequencing (NGS) technologies for hepatitis C virus (HCV) may potentially identify both viral genotype and resistance genetic motifs in the era of directly acting antiviral (DAA) therapies. This study compared the ability of high-throughput NGS methods to generate full-length, deep, HCV sequence data sets and evaluated their utility for diagnostics and clinical assessment. NGS methods using (i) unselected HCV RNA (metagenomics), (ii) preenrichment of HCV RNA by probe capture, and (iii) HCV preamplification by PCR implemented in four United Kingdom centers were compared. Metrics of sequence coverage and depth, quasispecies diversity, and detection of DAA resistance-associated variants (RAVs), mixed HCV genotypes, and other coinfections were compared using a panel of samples with different viral loads, genotypes, and mixed HCV genotypes/subtypes [geno(sub)types]. Each NGS method generated near-complete genome sequences from more than 90% of samples. Enrichment methods and PCR preamplification generated greater sequence depth and were more effective for samples with low viral loads. All NGS methodologies accurately identified mixed HCV genotype infections. Consensus sequences generated by different NGS methods were generally concordant, and majority RAVs were consistently detected. However, methods differed in their ability to detect minor populations of RAVs. Metagenomic methods identified human pegivirus coinfections. NGS provided a rapid, inexpensive method for generating whole HCV genomes to define infecting genotypes, RAVs, comprehensive viral strain analysis, and quasispecies diversity. Enrichment methods are particularly suited for high-throughput analysis while providing the genotype and information on potential DAA resistance. PMID:27385709

  16. Structure of the Full-Length Human RPA14/32 Complex Gives Insights Into the Mechanism of DNA Binding And Complex Formation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, X.; Habel, J.E.; Kabaleeswaran, V.; Snell, E.H.; Wold, M.S.; Borgstahl, G.E.O.

    2009-06-03

    Replication protein A (RPA) is the ubiquitous, eukaryotic single-stranded DNA (ssDNA) binding protein and is essential for DNA replication, recombination, and repair. Here, crystal structures of the soluble RPA heterodimer, composed of the RPA14 and RPA32 subunits, have been determined for the full-length protein in multiple crystal forms. In all crystals, the electron density for the N-terminal (residues 1--42) and C-terminal (residues 175--270) regions of RPA32 is weak and of poor quality indicating that these regions are disordered and/or assume multiple positions in the crystals. Hence, the RPA32 N terminus, that is hyperphosphorylated in a cell-cycle-dependent manner and in response to DNA damaging agents, appears to be inherently disordered in the unphosphorylated state. The C-terminal, winged helix-loop-helix, protein-protein interaction domain adopts several conformations perhaps to facilitate its interaction with various proteins. Although the ordered regions of RPA14/32 resemble the previously solved protease-resistant core crystal structure, the quaternary structures between the heterodimers are quite different. Thus, the four-helix bundle quaternary assembly noted in the original core structure is unlikely to be related to the quaternary structure of the intact heterotrimer. An organic ligand binding site between subunits RPA14 and RPA32 was identified to bind dioxane. Comparison of the ssDNA binding surfaces of RPA70 with RPA14/32 showed that the lower affinity of RPA14/32 can be attributed to a shallower binding crevice with reduced positive electrostatic charge.

  17. Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 strain of foot-and-mouth disease virus. These two viruses were rescued by co-transfection of pCA/FMDV with pCT7RNAP, which can express T7 RNA polymerase in BHK-21 cell-lines, or by transfection of the in vitro transcribed RNA. Their biological properties were analyzed for their antigenicity, virulence in suckling-mice (LD50) and growth kinetics in BHK-21 cells. The in vivo rescued viruses showed high pathogenicity for 3-day-old unweaned mice (LD50=10?7.5). However, the in vitro transcribed RNA derived from pTA/FMDV had lower pathogenicity for suckling-mice (LD50=10?6), and the in vivo transcribed RNA recovered from pCA/FMDV co-transfected with pCT7RNAP showed no significant differences from the wild type virus. These data showed that recovery of the infectious foot-and-mouth disease virus directly from the use of in vivo techniques was better than from in vitro methods. Furthermore, the reverse genetic procedure technique was simplified to a faster one-step procedure based on co-transfection with pCT7RNAP. These results suggest that in vivo RNA tran- scripts may be more valuable for engineering recombinant foot-and-mouth disease virus than in vitro RNA transcripts, and may contribute to further understanding of the biological properties, such as replication, maturation and quasispecies, of the foot-and-mouth disease virus.

  18. Full-length CD4 electroinserted in the erythrocyte membrane as a long-lived inhibitor of infection by human immunodeficiency virus

    Energy Technology Data Exchange (ETDEWEB)

    Zeira, M.; Volsky, D.J. (Columbia Univ., New York, NY (United States)); Tosi, P.F.; Mouneimne, Y.; Lazarte, J.; Sneed, L.; Nicolau, C. (Texas A and M Univ., College Station (United States))

    1991-05-15

    Recombinant full-length CD4 expressed in Spodoptera frugiperda 9 cells with the baculovirus system was electroinserted in erythrocyte (RBC) membranes. Of the inserted CD4, 70% was correctly oriented as shown by fluorescence quenching experiments with fluorescein-labeled CD4. The inserted CD4 displayed the same epitopes as the naturally occurring CD4 in human T4 cells. Double-labeling experiments ({sup 125}I-CD4 and {sup 51}Cr-RBC) showed that the half-life of CD4 electroinserted in RBC membrane in rabbits was approximately 7 days. Using the fluorescence dequenching technique with octadecylrhodamine B-labeled human immunodeficiency virus (HIV)-1, the authors showed fusion of the HIV envelope with the plasma membrane of RBC-CD4, whereas no such fusion could be detected with RBC. The dequenching efficiency of RBC-CD4 is the same as that of CEM cells. Exposure to anti-CD4 monoclonal antibody OKT4A, which binds to the CD4 region that attaches to envelope glycoprotein gp120, caused a significant decrease in the dequenching of fluorescence. In vitro infectivity studies showed that preincubation of HIV-1 with RBC-CD4 reduced by 80-90% the appearance of HIV antigens in target cells, the amount of viral reverse transcriptase, and the amount of p24 core antigen produced by the target cells. RBC-CD4, but not RBCs, aggregated with chronically HIV-1-infected T cells and caused formation of giant cells. These data show that the RBC-CD4 reagent is relatively long lived in circulation and efficient in attaching to HIV-1 and HIV-infected cells, and thus it may have value as a therapeutic agent against AIDS.

  19. Cloning, expression and protective immunity evaluation of the full-length cDNA encoding succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum

    Institute of Scientific and Technical Information of China (English)

    YU JunLong; WANG ShiPing; LI WenKai; DAI Gan; XU ShaoRui; HE Zhuo; PENG XianChu; ZHOU SongHua; LIU XueQin

    2007-01-01

    1071-bp fragment was obtained from the Schistosoma japonicum (Chinese strain) adult cDNA library after the 3' and 5' ends of the incomplete expression sequence tag (EST) of succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum (SjSDISP) were amplified by the anchored PCR with 2pairs of primers designed according to the EST of SjSDISP and the sequence of multiclone sites of the library vector. Sequence analysis indicated that the fragment was a full-length cDNA with a complete open reading frame (ORF), encoding 278 amino acid residues. The fragment was cloned into prokaryotic expression vector pQE30, and subsequently sequenced and expressed in Escherichia coll.SDS-PAGE and Western-blot analyses showed that the recombinant protein was about 32 kD and could be recognized by the polyclonal antisera from rabbits immunized with Schistosoma japonicum adult worm antigen. Compared with the FCA controls, mice vaccinated with rSjSDISP (test) or rSjGST (positive control) all revealed high levels of specific antibody and significant reduction in worm burden, liver eggs per gram (LEPG), fecal eggs per gram (FEPG) and intrauterine eggs. These results suggest that SjSDISP may be a novel and partially protective vaccine candidate against schistosomiasis. In contrast to the worm burden reduction rate, the higher degree of egg reduction rate in the test group also suggested that SjSDISP vaccine may primarily play a role in anti-embryonation or anti-fecundity immunity.

  20. Cloning, expression and protective immunity evalua- tion of the full-length cDNA encoding succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1071-bp fragment was obtained from the Schistosoma japonicum (Chinese strain) adult cDNA library after the 3′ and 5′ ends of the incomplete expression sequence tag (EST) of succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum (SjSDISP) were amplified by the anchored PCR with 2 pairs of primers designed according to the EST of SjSDISP and the sequence of multiclone sites of the library vector. Sequence analysis indicated that the fragment was a full-length cDNA with a complete open reading frame (ORF), encoding 278 amino acid residues. The fragment was cloned into prokary- otic expression vector pQE30, and subsequently sequenced and expressed in Escherichia coli. SDS-PAGE and Western-blot analyses showed that the recombinant protein was about 32 kD and could be recognized by the polyclonal antisera from rabbits immunized with Schistosoma japonicum adult worm antigen. Compared with the FCA controls, mice vaccinated with rSjSDISP (test) or rSjGST (posi- tive control) all revealed high levels of specific antibody and significant reduction in worm burden, liver eggs per gram (LEPG), fecal eggs per gram (FEPG) and intrauterine eggs. These results suggest that SjSDISP may be a novel and partially protective vaccine candidate against schistosomiasis. In contrast to the worm burden reduction rate, the higher degree of egg reduction rate in the test group also sug- gested that SjSDISP vaccine may primarily play a role in anti-embryonation or anti-fecundity immunity.

  1. Expression of recombination-activating genes and T cell receptor gene recombination in the human T cell leukemia cell line

    Institute of Scientific and Technical Information of China (English)

    ZOU Hong-yun; MA Li; MENG Min-jie; YAO Xin-sheng; LIN Ying; WU Zhen-qiang; HE Xiao-wei; WANG Ju-fang; WANG Xiao-ning

    2007-01-01

    Background Recent studies have suggested that mature T cells can change their specificity through reexpression of recombination-activating genes (RAG) and RAG-mediated V(D)J recombination. This process is named receptor revision and has been observed in mature peripheral T cells from transgenic mice and human donors. However, whether the receptor revision in mature T cells is a random or orientated process remains poorly understood. Here we used the Jurkat human T cell line, which represents a mature stage of T cell development, as a model to investigate the regulation of T cell receptor (TCR) gene recombination.Methods TCR Dβ-Jβ signal joint T cell receptor excision DNA circles (sjTRECs) were determined by nested and seminested PCR. Double-strand DNA breaks at recombination signal sequences (RSSs) in the TCRVβ chain locus were detected by ligation-mediated-PCR. Further analysis of the complementarity-determining region 3 (CDR3) size of the TCRVβ chain was examined by the TCR GeneScan technique.Results RAG1, RAG2, and three crucial components of the nonhomologous DNA end-joining (NHEJ) pathway were readily detected in Jurkat. Characteristics of junctional diversity of Dβ2-Jβ2 signal joints and ds RSS breaks associated with the Dβ25' and Dβ 23' sites were detected in DNA from Jurkat cells. CDR3 size and the gene sequences of the TCRVβ chain did not change during cell proliferation.Conclusions RAG1 and RAG2 and ongoing TCR gene recombination are coexpressed in Jurkat cells, but the ongoing recombination process may not play a role in modification of the TCR repertoire. However, the results suggest that Jurkat could be used as a model for studying the regulation of RAGs and V(D)J recombination and as a "special" model of the coexistence of TCR gene rearrangements and "negative" receptor revision.

  2. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion blocking antibodies

    DEFF Research Database (Denmark)

    Khunrae, Pongsak; Dahlbäck, Madeleine; Nielsen, Morten A;

    2010-01-01

    Plasmodium falciparum malaria remains one of the world's leading causes of human suffering and poverty. Each year, the disease takes 1-3 million lives, mainly in sub-Saharan Africa. The adhesion of parasite-infected erythrocytes to the vascular endothelium or the placenta is the key event...

  3. Full-length characterization of A1/D intersubtype recombinant genomes from a therapy-induced HIV type 1 controller during acute infection and his noncontrolling partner

    DEFF Research Database (Denmark)

    Fomsgaard, A.; Vinner, L.; Therrien, D.;

    2008-01-01

    homology in shared regions. Four of seven crossover points were identical; however, the env gene from UG1 was subtype D, but A1 in DK1. Both viruses encoded proteins of the expected length and replicated equally well in vitro. DK1 and UG1 shared the HLA-A02 tissue type. HLA-A02-restricted CD8(+) T cell IFN...

  4. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2013-05-13

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology Activities (NIH OBA) proposes... by mail to the NIH Office of Biotechnology Activities, National Institutes of Health, 6705...

  5. 75 FR 28811 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-05-24

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... Office of Biotechnology Activities (OBA) by the Institutional Biosafety Committee at Lawrence Livermore... Biotechnology Activities, National Institutes of Health. BILLING CODE 4140-01-P...

  6. Screening cDNA Libraries Using Partial Probes to Isolate Full-Length cDNAs from Vascular Cells.

    Science.gov (United States)

    Csortos, C; Lazar, V; Garcia, J G

    1999-01-01

    The purpose of screening cDNA libraries is to isolate a particular cDNA clone encoding a mRNA and by implication, a protein, of interest. The screening is based on identification of the desired clone among a large number of recombinant clones within the library selected (1,2). As an example of both the utility and power of library screening, we will relate our own library screening efforts utilized to isolate the nonmuscle high molecular weight myosin light chain kinase isoform from a human umbilical vein endothelial cell cDNA library (3). This unique nonmuscle myosin light chain kinase isoform phosphorylates myosin light chains, thereby playing an essential role in agonist-mediated endothelial cell contraction, paracellular gap formation and increased vascular permeability. We are hopeful that this step-by-step approach will help the reader to understand the discussed methods.

  7. [Comparison of expression and antibacterial activities of recombinant porcine lactoferrin expressed in four Lactobacillus species].

    Science.gov (United States)

    Yu, Hui; Jiang, Yanping; Cui, Wen; Wu, Xiao; He, Jia; Qiao, Xinyuan; Li, Yijing; Tang, Lijie

    2014-09-01

    The coding sequence for the mature peptide of porcine lactoferrin (Plf) was synthesized according to the codon usage of lactobacillus, to establish optimized porcine lactoferrin Lactobacillus expression system. The gene was ligated into the Xho I/BamH I site of Lactobacillus expression vector pPG612.1 and the recombinant plasmid pPG612.1-plf was transformed individually into Lactobacillus casei ATCC393, Lactobacillus pentosus KLDS1.0413, Lactobacillus plantarum KLDS1.0344 or Lactobacillus paracasei KLDS1.0652 by electroporation. After induction with xylose, expression of the recombinant proteins was detected by Western blotting and confocal laser scanning microscopy. Secretion of recombinant Plf proteins from four recombinant species was determined quantitatively by ELISA. The antibacterial activities of recombinant proteins were measured by agar diffusion method. The result shows that Plf was correctly expressed in four species of recombinant lactobacillus, with molecular weight of about 73 kDa. The expression levels in recombinant Lactobacillus casei, Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus paracasei were 9.6 μg/mL, 10.8 μg/mL, 12.5 μg/mL and 9.9 μg/mL, respectively. Antimicrobial activity experiment shows that the recombinant proteins were active against E. coli, Staphylococcus aureus, Salmonella typhimurium, Listeria, Pasteurella. The recombinant Plf expressed by recombinant Lactobacillus plantarum showed the best antibacterial activity among all recombinant lactobacillus species. These data represent a basis for the development and application of porcine lactoferrin from recombinant lactobacillus.

  8. Identification and expression analysis of a full-length cDNA encoding a Kandelia candel tonoplast intrinsic protein.

    Science.gov (United States)

    Huang, Wei; Fang, Xiao-Dong; Lin, Qi-Fen; Li, Guan-Yi; Zhao, Wen-Ming

    2003-03-01

    corresponding to the 5' end of this gene was obtained using the GSP2 primer. Two primers that flank the putative open reading frame (ORF) were designed to obtain the cDNA containing the complete ORF by RACE PCR reaction. The full-length cDNA of KCTIP1, containing a 756 bp open reading frame (ORF), was approximately 1.1 kb; the start codon was located at the nucleotides of 99-101 and stop codon at the nucleotides of 855-857 followed by a poly (A) tail. The KCTIP1 cDNA sequence in this research was released in GenBank with accession number AF521135. Using ExPASy Proteomics tools provided by EMBL, the isoelectric point and MWt of KCTIP1 are estimated as 5.77 and 26.3 kD respectively. Transmembrane prediction analysis revealed the deduced KCTIP1 protein sequence contains six transmembrane regions at amino acid residues of 20 - 42, 57 - 79, 86 - 108, 113 - 135, 142 - 164 and 217 - 239. Two highly conserved asparagine-proline-alanine (NPA) motifs were located at 85 - 87 and 199 - 201 amino acid residues respectively. KCTIP1 is also predicted to contain the Cys residue (Cys 118) that are shown to confer Hg-sensitivity in Arabidopsis gamma-TIP and delta-TIP. Similarity analysis showed that KCTIP1 shared 77% - 79% amino acid sequence identity with the TIPs from Vitis berlandieri, Brassica oleracea and Arabidopsis thaliana. Expression analyses indicated that KCTIP1 had different expression among species of Mangroves. Expressions of KCTIP1 in Kandelia candel, Rhizophora apoculata and Ceriops tagal were suppressed by salt, and were insensitive to salt stress in unknown species of Mangroves. Previous studied showed that salt conditions might result in large and rapid changes in extracellular water potential and serious disturbance to the cytoplasm. In order to compensate for this imbalance, the relative contribution of water channels to flow across the root could thus vary. K. candel is a species that is native to intertial zone of tropical and subtropical coast and is well-adapted to salt

  9. In vivo Dopamine Efflux is Decreased in Striatum of both Fragment (R6/2) and Full-Length (YAC128) Transgenic Mouse Models of Huntington's Disease.

    Science.gov (United States)

    Callahan, Joshua W; Abercrombie, Elizabeth D

    2011-01-01

    Huntington's disease (HD) is characterized by numerous alterations within the corticostriatal circuitry. The striatum is innervated by a dense array of dopaminergic (DA) terminals and these DA synapses are critical to the proper execution of motor functions. As motor disturbances are prevalent in HD we examined DA neurotransmission in the striatum in transgenic (tg) murine models of HD. We used in vivo microdialysis to compare extracellular concentrations of striatal DA in both a fragment (R6/2) model, which displays a rapid and severe phenotype, and a full-length (YAC128) model that expresses a more progressive phenotype. Extracellular striatal DA concentrations were significantly reduced in R6/2 mice and decreased concomitantly with age-dependent increasing motor impairments on the rotarod task (7, 9, and 11 weeks). In a sample of 11-week-old R6/2 mice, we also measured tissue concentrations of striatal DA and found that total levels of DA were significantly depleted. However, the loss of total DA content (<50%) was insufficient to account for the full extent of DA depletion in the extracellular fluid (ECF; ∼75%). We also observed a significant reduction in extracellular DA concentrations in the striatum of 7-month-old YAC128 mice. In a separate set of experiments, we applied d-amphetamine (AMPH; 10 μm) locally into the striatum to stimulate the release of intracellular DA into the ECF. The AMPH-induced increase in extracellular DA levels was significantly blunted in 9-week-old R6/2 mice. There also was a decrease in AMPH-stimulated DA efflux in 7-month-old YAC128 mice in comparison to WT controls, although the effect was milder. In the same cohort of 7-month-old YAC128 mice we observed a significant reduction in the total locomotor activity in response to systemic AMPH (2 mg/kg). Our data demonstrate that extracellular DA release is attenuated in both a fragment and full-length tg mouse model of HD and support the concept of DA involvement in aspects of

  10. Early and late antibody responses to full-length and truncated constructs of outer surface protein A of Borrelia burgdorferi in Lyme disease.

    Science.gov (United States)

    Kalish, R A; Leong, J M; Steere, A C

    1995-06-01

    The immunoglobulin G (IgG) antibody response to outer surface protein A (OspA) of Borrelia burgdorferi has been reported to occur late in the course of Lyme disease. To learn when reactivity to particular epitopes of OspA develops and whether the strength of particular responses correlates with the duration of arthritis and HLA-DR specificities, we determined the IgM and IgG responses by enzyme-linked immunosorbent assay in 128 patients with various manifestations of Lyme disease to full-length recombinant OspA and three OspA fragments which divided the protein approximately into thirds. Among the 10 patients who were followed serially, an early IgM response was often found to epitopes in all three fragments of OspA, sometimes accompanied by a weak IgG response, primarily to an epitope in the middle third of the protein. Months to years later, the seven patients who had prolonged or moderate episodes of arthritis developed strong IgG responses to OspA, especially to epitopes in the N-terminal and C-terminal fragments, that paralleled the course of the arthritis. In single serum samples from 128 patients, a similar pattern of IgM and IgG reactivity with OspA epitopes was seen in patients with early or late manifestations of the illness. Of the 80 patients with arthritis, 62 (78%) had IgG responses to OspA, usually with the strongest reactivity to the C-terminal fragment. In these patients, the strength of the IgG response to OspA correlated with the duration of arthritis; in HLA-DR4-positive patients, most of whom had chronic arthritis, this association was attributable to reactivity with the C-terminal fragment. Thus, patients with Lyme disease often have early responses to OspA, but those with prolonged arthritis do not develop IgG responses to certain epitopes of the protein until late in the illness. In patients with HLA-DR4, the strength of IgG reactivity with one or more epitopes in the C-terminal fragment of OspA correlates with the duration of arthritis.

  11. Complex mosaic composition of near full-length genomes of two NED (NIH-ENVA-DOD) subtype panel HIV type 1 strains, BCF-Dioum and BCF-Kita, originating from the Democratic Republic of Congo (DRC).

    Science.gov (United States)

    Huang, Diana D; Foley, Brian T; Tolzmann, Catlin A; Ouma, Annastasia; Bremer, James W

    2009-10-01

    Sequence characterization of the near full-length genomes of HIV-1 isolates BCF-Dioum and BCF-Kita, originating from the Democratic Republic of Congo (DRC), was continued. These NED panel isolates, contributed by F. Brun-Vezinet (ENVA-France), were first identified as subtypes G and H, respectively. Our earlier analyses of portions of their pol genes showed that both were likely to be intersubtype recombinants of different composition. This study analyzed the remainder of each genome, confirming them to be complex recombinants. The BCF-Dioum genome resembles CRF06_cpx strains found in West Africa, composed of subtypes A/G/J/K. The BCF-Kita genome is a unique complex recombinant A-F-G-H-K-U strain. These data support previous observations of the complexity of strains originating from the DRC. BCF-Dioum may be a suitable strain for standards and reagents since it matches a defined circulating recombinant form. Studies and reagents made from BCF-Kita should take into account its complex genome.

  12. 75 FR 31795 - Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting

    Science.gov (United States)

    2010-06-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA...-Curay, Acting Director, Office of Biotechnology Activities, National Institutes of Health. BILLING...

  13. 76 FR 27653 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Science.gov (United States)

    2011-05-12

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA.... lactis certified host-vector 1 system. In addition, the Office of Biotechnology Activities is updating...: Background documentation and additional information can be obtained from the Office of...

  14. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    Science.gov (United States)

    Upadhyay, Anup K.; Longenecker, Kenton; Tripathi, Rakesh; Sun, Chaohong; Kempf, Dale J.

    2017-01-01

    The rapid spread of the recent Zika virus (ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 of Zika virus (ZIKV-NS5) is critical for ZIKV replication through the 5′-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space group P21212 and containing two protein molecules in the asymmetric unit. The structure is similar to that reported for the NS5 protein from Japanese encephalitis virus and suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain. PMID:28291746

  15. Transgenic parasites stably expressing full-length Plasmodium falciparum circumsporozoite protein as a model for vaccine down-selection in mice using sterile protection as an endpoint.

    Science.gov (United States)

    Porter, Michael D; Nicki, Jennifer; Pool, Christopher D; DeBot, Margot; Illam, Ratish M; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R; Bennett, Jason W; Schwenk, Robert J; Ockenhouse, Christian F; Dutta, Sheetij

    2013-06-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations.

  16. Extensive simulations of the full-length matrix metalloproteinase-2 enzyme in a prereactive complex with a collagen triple-helical peptide.

    Science.gov (United States)

    Díaz, Natalia; Suárez, Dimas

    2015-02-10

    Collagen hydrolysis catalyzed by matrix metalloproteinases is an important and complex process involved in a variety of physiological and pathological conditions. To contribute to its characterization at the molecular level, herein we analyze three different models for the complex formed between the full-length matrix metalloproteinase-2 (MMP-2) enzyme and a synthetic triple-helical peptide (fTHP-5). The considered MMP-2/fTHP-5 complexes mainly differ in the location of the C-terminal hemopexin-like domain, but in all of them, the middle α-chain of the substrate (B-chain) is placed within the active site groove. We performed extended molecular dynamics (MD) simulations to determine the most likely rearrangements of the MMP-2 domains in response to the presence of the triple helix. The relative stability of the MD models is assessed in terms of molecular mechanics Poisson-Boltzmann calculations and approximate estimations of configurational entropy. In addition, the most significant MMP-2···fTHP-5 interactions at the catalytic and noncatalytic domains are also analyzed to gather some clues about the role of the different domains during collagenolysis.

  17. Polymerase reaction without primers throughout for the reconstruction of full-length cDNA from products of rapid amplification of cDNA ends (RACE).

    Science.gov (United States)

    Sunohara, Mitsuhiro; Kawakami, Masanori; Kage, Hidenori; Watanabe, Kousuke; Emoto, Noriko; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2011-07-01

    Rapid amplification of cDNA ends (RACE) has widely been used to determine both ends of the cDNA from its partial sequence. Conventionally, 5'- and 3'-RACE products were ligated at a restriction site in the overlap region to reconstruct the full-length cDNA; however, reconstruction is difficult if no appropriate restriction enzymes are available. Here, we report a novel method to reconstruct full-length cDNA with DNA polymerase. Instead of usual PCR, chain reactions were avoided and the elongation time was shortened, which enables non-specific products or undesired point mutations to be minimized. We successfully reconstructed and TA-cloned a full-length cDNA of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene variant 2 from RACE products obtained from a surgically resected lung adenocarcinoma sample. We also evaluated some parameters to provide recommendations for this new method.

  18. The autolytic activity of the recombinant amidase of Staphylococcus saprophyticus is inhibited by its own recombinant GW repeats.

    Science.gov (United States)

    Hell, Wolfgang; Reichl, Sylvia; Anders, Agnes; Gatermann, Sören

    2003-10-10

    The Aas (autolysin/adhesin of Staphylococcus saprophyticus) is a multifunctional surface protein containing two enzymatic domains an N-acetyl-muramyl-L-alanine amidase, an endo-beta-N-acetyl-D-glucosaminidase, and two different regions of repetitive sequences, an N-terminal and a C-terminal repetitive domain. The C-terminal repetitive domain is built up by the repeats R1, R2 and R3, which interconnect the putative active centers of the amidase and glucosaminidase. To investigate the influence of the C-terminal repeats and the N-terminal repeats on the amidase activity, the repetitive domains and fragments of them were cloned and expressed in Escherichia coli. The influence of the different fragments on the activity of the recombinant amidase of the Aas, consisting of the active center of the enzyme and repeat R1, was investigated in a turbidimetric microassay. The different fragments derived from the C-terminal repeats inhibited the amidase activity, while the N-terminal repeats did not influence the activity of the enzyme. The inhibiting activity increased with the number of GW repeats the recombinant fragment contained. Thus we conclude, that the C-terminal GW repeats and not the N-terminal repeats are necessary for the cell wall targeting and the autolytic function of the amidase.

  19. Cloning Full-Length cDNAs from Vascular Tissues and Cells by Rapid Amplification of cDNA Ends (RACE) and RT-PCR.

    Science.gov (United States)

    Shen

    1999-01-01

    The isolation of full-length cDNAs remains a frequent task undertaken in many laboratories. A full-length cDNA is often desirable for one of the following purposes: 1) to complete the sequence of a partial cDNA cloned by library screenings or the yeast one- or two-hybrid system; 2) to derive the cDNA sequence encoding a protein, based on peptide sequences; 3) to obtain the sequence of a reported cDNA for functional analysis or expression studies; and 4) to define exon/intron boundaries of a cloned gene or determine transcription start site(s) of a promoter.

  20. ASC-J9 Suppresses Castration-Resistant Prostate Cancer Growth through Degradation of Full-length and Splice Variant Androgen Receptors

    Directory of Open Access Journals (Sweden)

    Shinichi Yamashita

    2012-01-01

    Full Text Available Early studies suggested androgen receptor (AR splice variants might contribute to the progression of prostate cancer (PCa into castration resistance. However, the therapeutic strategy to target these AR splice variants still remains unresolved. Through tissue survey of tumors from the same patients before and after castration resistance, we found that the expression of AR3, a major AR splice variant that lacks the AR ligand-binding domain, was substantially increased after castration resistance development. The currently used antiandrogen, Casodex, showed little growth suppression in CWR22Rv1 cells. Importantly, we found that AR degradation enhancer ASC-J9 could degrade both full-length (fAR and AR3 in CWR22Rv1 cells as well as in C4-2 and C81 cells with addition of AR3. The consequences of such degradation of both fAR and AR3 might then result in the inhibition of AR transcriptional activity and cell growth in vitro. More importantly, suppression of AR3 specifically by short-hairpin AR3 or degradation of AR3 by ASC-J9 resulted in suppression of AR transcriptional activity and cell growth in CWR22Rv1-fARKD (fAR knockdown cells in which DHT failed to induce, suggesting the importance of targeting AR3. Finally, we demonstrated the in vivo therapeutic effects of ASC-J9 by showing the inhibition of PCa growth using the xenografted model of CWR22Rv1 cells orthotopically implanted into castrated nude mice with undetectable serum testosterone. These results suggested that targeting both fAR- and AR3-mediated PCa growth by ASC-J9 may represent the novel therapeutic approach to suppress castration-resistant PCa. Successful clinical trials targeting both fAR and AR3 may help us to battle castration-resistant PCa in the future.

  1. Full-Length Structures of BenM and Two Variants Reveal Different Oligomerization Schemes for LysR-Type Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ruangprasert, Ajchareeya; Craven, Sarah H.; Neidle, Ellen L.; Momany, Cory (Georgia)

    2010-11-30

    BenM, a LysR-type transcriptional regulator (LTTR) from the bacterium Acinetobacter baylyi, responds synergistically to benzoate and cis,cis-muconate. With these effectors, BenM activates gene expression during benzoate consumption. Without effectors, BenM represses transcription. Here, X-ray crystallography was used to determine the full-length structures of BenM and two variants that activate transcription without benzoate or cis,cis-muconate: BenM(R156H) and BenM(E226K). Previous studies indicate that these regulators function as tetramers. Here, interconnections between subunits in the crystals prevented the formation of a closed oligomer and highlighted the inherent flexibility of this multidomain regulator. Nevertheless, analysis of subunit interfaces suggested the functional significance of key interactions. The structures of BenM and its variants were nearly identical, implying that transcriptional differences rely on factors beyond major conformational changes defined solely by sequence. Comparisons of BenM with other LTTRs, including unpublished structures in the Protein Data Bank, revealed extensive variation in the relative orientations of DNA-binding domains (DBDs) and effector-binding domains (EBDs). To form dimers, different LTTRs used similar interfaces between two EBDs, each containing two subdomains: EBD-I and EBD-II. Surprisingly, the dimers used three substantially different schemes to form higher-order oligomers. In one scheme used by BenM, oligomer assembly involved contacts between the EBD-II regions and the DBD regions of adjacent subunits. In another scheme, there were no contacts between the EBDs; only the DBDs were involved in tetramer formation. In the third scheme, the oligomer interface involved DBD and EBD-I/EBD-II contacts. These diverse schemes demonstrate novel variation in the oligomeric structures of individual LTTRs within this large and important family.

  2. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme.

    Science.gov (United States)

    Pellegrini, Vanessa O A; Serpa, Viviane Isabel; Godoy, Andre S; Camilo, Cesar M; Bernardes, Amanda; Rezende, Camila A; Junior, Nei Pereira; Franco Cairo, João Paulo L; Squina, Fabio M; Polikarpov, Igor

    2015-11-01

    Trichoderma filamentous fungi have been investigated due to their ability to secrete cellulases which find various biotechnological applications such as biomass hydrolysis and cellulosic ethanol production. Previous studies demonstrated that Trichoderma harzianum IOC-3844 has a high degree of cellulolytic activity and potential for biomass hydrolysis. However, enzymatic, biochemical, and structural studies of cellulases from T. harzianum are scarce. This work reports biochemical characterization of the recombinant endoglucanase I from T. harzianum, ThCel7B, and its catalytic core domain. The constructs display optimum activity at 55 °C and a surprisingly acidic pH optimum of 3.0. The full-length enzyme is able to hydrolyze a variety of substrates, with high specific activity: 75 U/mg for β-glucan, 46 U/mg toward xyloglucan, 39 U/mg for lichenan, 26 U/mg for carboxymethyl cellulose, 18 U/mg for 4-nitrophenyl β-D-cellobioside, 16 U/mg for rye arabinoxylan, and 12 U/mg toward xylan. The enzyme also hydrolyzed filter paper, phosphoric acid swollen cellulose, Sigmacell 20, Avicel PH-101, and cellulose, albeit with lower efficiency. The ThCel7B catalytic domain displays similar substrate diversity. Fluorescence-based thermal shift assays showed that thermal stability is highest at pH 5.0. We determined kinetic parameters and analyzed a pattern of oligosaccharide substrates hydrolysis, revealing cellobiose as a final product of C6 degradation. Finally, we visualized effects of ThCel7B on oat spelt using scanning electron microscopy, demonstrating the morphological changes of the substrate during the hydrolysis. The acidic behavior of ThCel7B and its considerable thermostability hold a promise of its industrial applications and other biotechnological uses under extremely acidic conditions.

  3. Structure of the HIV-1 Full-Length Capsid Protein in a Conformationally Trapped Unassembled State Induced by Small-Molecule Binding

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shoucheng; Betts, Laurie; Yang, Ruifeng; Shi, Haibin; Concel, Jason; Ahn, Jinwoo; Aiken, Christopher; Zhang, Peijun; Yeh, Joanne I. (Pitt); (Vanderbilt); (UNC)

    2012-11-26

    The capsid (CA) protein plays crucial roles in HIV infection and replication, essential to viral maturation. The absence of high-resolution structural data on unassembled CA hinders the development of antivirals effective in inhibiting assembly. Unlike enzymes that have targetable, functional substrate-binding sites, the CA does not have a known site that affects catalytic or other innate activity, which can be more readily targeted in drug development efforts. We report the crystal structure of the HIV-1 CA, revealing the domain organization in the context of the wild-type full-length (FL) unassembled CA. The FL CA adopts an antiparallel dimer configuration, exhibiting a domain organization sterically incompatible with capsid assembly. A small compound, generated in situ during crystallization, is bound tightly at a hinge site ('H site'), indicating that binding at this interdomain region stabilizes the ADP conformation. Electron microscopy studies on nascent crystals reveal both dimeric and hexameric lattices coexisting within a single condition, in agreement with the interconvertibility of oligomeric forms and supporting the feasibility of promoting assembly-incompetent dimeric states. Solution characterization in the presence of the H-site ligand shows predominantly unassembled dimeric CA, even under conditions that promote assembly. Our structure elucidation of the HIV-1 FL CA and characterization of a potential allosteric binding site provides three-dimensional views of an assembly-defective conformation, a state targeted in, and thus directly relevant to, inhibitor development. Based on our findings, we propose an unprecedented means of preventing CA assembly, by 'conformationally trapping' CA in assembly-incompetent conformational states induced by H-site binding.

  4. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    Directory of Open Access Journals (Sweden)

    Cassandra M Modahl

    2016-06-01

    Full Text Available Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus, and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only

  5. hSmad5 gene, a human hSmad family member: its full length cDNA, genomic structure, promoter region and mutation analysis in human tumors.

    Science.gov (United States)

    Gemma, A; Hagiwara, K; Vincent, F; Ke, Y; Hancock, A R; Nagashima, M; Bennett, W P; Harris, C C

    1998-02-19

    hSmad (mothers against decapentaplegic)-related proteins are important messengers within the Transforming Growth Factor-beta1 (TGF-beta1) superfamily signal transduction pathways. To further characterize a member of this family, we obtained a full length cDNA of the human hSmad5 (hSmad5) gene by rapid amplification of cDNA ends (RACE) and then determined the genomic structure of the gene. There are eight exons and two alternative transcripts; the shorter transcript lacks exon 2. We identified the hSmad5 promoter region from a human genomic YAC clone by obtaining the nucleotide sequence extending 1235 base pairs upstream of the 5' end of the cDNA. We found a CpG island consistent with a promoter region, and we demonstrated promoter activity in a 1232 bp fragment located upstream of the transcription initiation site. To investigate the frequency of somatic hSmad5 mutations in human cancers, we designed intron-based primers to examine coding regions by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. Neither homozygous deletions or point mutations were found in 40 primary gastric tumors and 51 cell lines derived from diverse types of human cancer including 20 cell lines resistant to the growth inhibitory effects of TGF-beta1. These results suggest that the hSmad5 gene is not commonly mutated and that other genetic alterations mediate the loss of TGF-beta1 responsiveness in human cancers.

  6. A macrocyclic HCV NS3/4A protease inhibitor interacts with protease and helicase residues in the complex with its full-length target

    Science.gov (United States)

    Schiering, Nikolaus; D’Arcy, Allan; Villard, Frederic; Simić, Oliver; Kamke, Marion; Monnet, Gaby; Hassiepen, Ulrich; Svergun, Dmitri I.; Pulfer, Ruth; Eder, Jörg; Raman, Prakash; Bodendorf, Ursula

    2011-01-01

    Hepatitis C virus (HCV) infection is a global health burden with over 170 million people infected worldwide. In a significant portion of patients chronic hepatitis C infection leads to serious liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma. The HCV NS3 protein is essential for viral polyprotein processing and RNA replication and hence viral replication. It is composed of an N-terminal serine protease domain and a C-terminal helicase/NTPase domain. For full activity, the protease requires the NS4A protein as a cofactor. HCV NS3/4A protease is a prime target for developing direct-acting antiviral agents. First-generation NS3/4A protease inhibitors have recently been introduced into clinical practice, markedly changing HCV treatment options. To date, crystal structures of HCV NS3/4A protease inhibitors have only been reported in complex with the protease domain alone. Here, we present a unique structure of an inhibitor bound to the full-length, bifunctional protease-helicase NS3/4A and show that parts of the P4 capping and P2 moieties of the inhibitor interact with both protease and helicase residues. The structure sheds light on inhibitor binding to the more physiologically relevant form of the enzyme and supports exploring inhibitor-helicase interactions in the design of the next generation of HCV NS3/4A protease inhibitors. In addition, small angle X-ray scattering confirmed the observed protease-helicase domain assembly in solution. PMID:22160684

  7. A macrocyclic HCV NS3/4A protease inhibitor interacts with protease and helicase residues in the complex with its full-length target.

    Science.gov (United States)

    Schiering, Nikolaus; D'Arcy, Allan; Villard, Frederic; Simic, Oliver; Kamke, Marion; Monnet, Gaby; Hassiepen, Ulrich; Svergun, Dmitri I; Pulfer, Ruth; Eder, Jörg; Raman, Prakash; Bodendorf, Ursula

    2011-12-27

    Hepatitis C virus (HCV) infection is a global health burden with over 170 million people infected worldwide. In a significant portion of patients chronic hepatitis C infection leads to serious liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma. The HCV NS3 protein is essential for viral polyprotein processing and RNA replication and hence viral replication. It is composed of an N-terminal serine protease domain and a C-terminal helicase/NTPase domain. For full activity, the protease requires the NS4A protein as a cofactor. HCV NS3/4A protease is a prime target for developing direct-acting antiviral agents. First-generation NS3/4A protease inhibitors have recently been introduced into clinical practice, markedly changing HCV treatment options. To date, crystal structures of HCV NS3/4A protease inhibitors have only been reported in complex with the protease domain alone. Here, we present a unique structure of an inhibitor bound to the full-length, bifunctional protease-helicase NS3/4A and show that parts of the P4 capping and P2 moieties of the inhibitor interact with both protease and helicase residues. The structure sheds light on inhibitor binding to the more physiologically relevant form of the enzyme and supports exploring inhibitor-helicase interactions in the design of the next generation of HCV NS3/4A protease inhibitors. In addition, small angle X-ray scattering confirmed the observed protease-helicase domain assembly in solution.

  8. Full-length coding sequence for 12 bovine viral diarrhea virus isolates from persistently infected cattle in a feedyard in Kansas

    Science.gov (United States)

    We report here the full-length coding sequence of 12 bovine viral diarrhea virus (BVDV) isolates from persistently infected cattle from a feedyard in southwest Kansas, USA. These 12 genomes represent the three major genotypes (BVDV 1a, 1b, and 2a) of BVDV currently circulating in the United States....

  9. Genome-wide comparisons of phylogenetic similarities between partial genomic regions and the full-length genome in Hepatitis E virus genotyping.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3'-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.

  10. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  11. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome

    Directory of Open Access Journals (Sweden)

    Holt Robert A

    2010-04-01

    Full Text Available Abstract Background Salmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar, but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution. Results From existing expressed sequence tag (EST resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates. Conclusions 9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate.

  12. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues.

    Science.gov (United States)

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter

    2015-05-01

    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding.

  13. Identification of full-length transmitted/founder viruses and their progeny in primary HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Hraber, Peter [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Bhattacharya, T [Los Alamos National Laboratory

    2009-01-01

    Identification of transmitted/founder virus genomes and their progeny by is a novel strategy for probing the molecular basis of HIV-1 transmission and for evaluating the genetic imprint of viral and host factors that act to constrain or facilitate virus replication. Here, we show in a cohort of twelve acutely infected subjects (9 clade B; 3 clade C), that complete genomic sequences of transmitted/founder viruses could be inferred using single genome amplification of plasma viral RNA, direct amplicon sequencing, and a model of random virus evolution. This allowed for the precise identification, chemical synthesis, molecular cloning, and biological analysis of those viruses actually responsible for productive clinical infection and for a comprehensive mapping of sequential viral genomes and proteomes for mutations that are necessary or incidental to the establishment of HIV-1 persistence. Transmitted/founder viruses were CD4 and CCR5 tropic, replicated preferentially in activated primary T-Iymphocytes but not monocyte-derived macrophages, and were effectively shielded from most heterologous or broadly neutralizing antibodies. By 3 months of infection, the evolving viral quasispecies in three subjects showed mutational fixation at only 2-5 discreet genomic loci. By 6-12 months, mutational fixation was evident at 18-27 genomic loci. Some, but not all, of these mutations were attributable to virus escape from cytotoxic Tlymphocytes or neutralizing antibodies, suggesting that other viral or host factors may influence early HIV -1 fitness.

  14. Pharmacological efficacy of anti-IL-1β scFv, Fab and full-length antibodies in treatment of rheumatoid arthritis.

    Science.gov (United States)

    Qi, Jianying; Ye, Xianlong; Ren, Guiping; Kan, Fangming; Zhang, Yu; Guo, Mo; Zhang, Zhiyi; Li, Deshan

    2014-02-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that mainly causes the synovial joint inflammation and cartilage destruction. Interleukin-1β (IL-1β) is an important proinflammatory cytokine involved in the pathogenesis of RA. In this study, we constructed and expressed anti-IL-1β-full-length antibody in CHO-K1-SV, anti-IL-1β-Fab and anti-IL-1β-scFv in Rosetta. We compared the therapeutic efficacy of three anti-IL-1β antibodies for CIA mice. Mice with CIA were subcutaneously injected with humanized anti-IL-1β-scFv, anti-IL-1β-Fab or anti-IL-1β-full-length antibody. The effects of treatment were determined by arthritis severity score, autoreactive humoral, cellular immune responses, histological lesion and cytokines production. Compared with anti-IL-1β-scFv treatments, anti-IL-1β-Fab and anti-IL-1β-full-length antibody therapy resulted in more significant effect in alleviating the severity of arthritis by preventing bone damage and cartilage destruction, reducing humoral and cellular immune responses, and down-regulating the expression of IL-1β, IL-6, IL-2, IFN-γ, TNF-α and MMP-3 in inflammatory tissue. The therapeutic effects of anti-IL-1β-Fab and anti-IL-1β-full-length antibodies on CIA mice had no significant difference. However, production of anti-IL-1β-full-length antibody in eukaryotic system is, in general, time-consuming and more expensive than that of anti-IL-1β-Fab in prokaryotic systems. In conclusion, as a small molecule antibody, anti-IL-1β-Fab is an ideal candidate for RA therapy.

  15. Bacterial superglue generates a full-length circumsporozoite protein virus-like particle vaccine capable of inducing high and durable antibody responses

    DEFF Research Database (Denmark)

    Janitzek, Christoph M; Matondo, Sungwa; Thrane, Susan;

    2016-01-01

    system (SpyTag/SpyCatcher) and the immunogenicity is tested in mice. METHODS: Full-length 3d7 CSP protein was genetically fused at the C-terminus to SpyCatcher. The CSP-SpyCatcher antigen was then covalently attached (via the SpyTag/SpyCatcher interaction) to Acinetobacter phage AP205 VLPs which were...... modified to display one SpyTag per VLP subunit. To evaluate the VLP-display effect, the immunogenicity of the VLP vaccine was tested in mice and compared to a control vaccine containing AP205 VLPs plus unconjugated CSP. RESULTS: Full-length CSP was conjugated at high density (an average of 112 CSP...

  16. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends.

    Science.gov (United States)

    Schaefer, B C

    1995-05-20

    Rapid amplification of cDNA ends (RACE) is a polymerase chain reaction (PCR)-based technique which was developed to facilitate the cloning of full-length cDNA 5'- and 3'-ends after a partial cDNA sequence has been obtained by other methods. While RACE can yield complete sequences of cDNA ends in only a few days, the RACE procedure frequently results in the exclusive amplification of truncated cDNA ends, undermining efforts to generate full-length clones. Many investigators have suggested modifications to the RACE protocol to improve the effectiveness of the technique. Based on first-hand experience with RACE, a critical review of numerous published variations of the key steps in the RACE method is presented. Also included is a detailed, effective protocol based on RNA ligase-mediated RACE/reverse ligation-mediated PCR, as well as a demonstration of its utility.

  17. Amplification of the Full-Length PAMP Gene and Difference of the mRNA Expression Among Three Lean Pig Breeds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To understand the function of porcine adipocyte-special membrane protein (PAMP) gene and the difference of fat deposition ability among various lean pig breeds, a full-length porcine adipocyte-special membrane protein (PAMP) gene was successfully amplified using reverse transcription polymerase chain reaction (RT-PCR) and 5'-rapid amplification of cDNA end (5'-RACE). The open reading frame was 1 587 bp encoding 529 amino acids. The nucleotide sequence of the full-length PAMP gene was deposited in the GenBank under the accession number EF433431. The PAMP gene mRNA expression was analyzed on three lean pig breeds by quantitative reverse transcription polymerase chain reaction (QRT-PCR). The PAMP gene mRNA levels in YHM (Yorkshire × Hampshire × Meishan) pig and DLY (Duroc×Landrance× Yorkshire) pig were about 0.82 and 0.38 times of that in SW (Shanxi-White) pig, respectively.

  18. Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA genes.

    Science.gov (United States)

    Lie, Alle A Y; Liu, Zhenfeng; Hu, Sarah K; Jones, Adriane C; Kim, Diane Y; Countway, Peter D; Amaral-Zettler, Linda A; Cary, S Craig; Sherr, Evelyn B; Sherr, Barry F; Gast, Rebecca J; Caron, David A

    2014-07-01

    Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages.

  19. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    OpenAIRE

    Alamar Santiago; Arribas Raquel; Forment Javier; Alonso-Cantabrana Hugo; Marques M Carmen; Conejero Vicente; Perez-Amador Miguel A

    2009-01-01

    Abstract Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information an...

  20. Sequencing and analysis of full-length cDNAs, 5'-ESTs and 3'-ESTs from a cartilaginous fish, the elephant shark (Callorhinchus milii).

    KAUST Repository

    Brenner, Sydney

    2012-10-08

    Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initiated to obtain its whole genome sequence. In this study, we have generated and sequenced full-length enriched cDNA libraries of the elephant shark using the \\'oligo-capping\\' method and Sanger sequencing. A total of 6,778 full-length protein-coding cDNA and 10,701 full-length noncoding cDNA were sequenced from six tissues (gills, intestine, kidney, liver, spleen, and testis) of the elephant shark. Analysis of their polyadenylation signals showed that polyadenylation usage in elephant shark is similar to that in mammals. Furthermore, both coding and noncoding transcripts of the elephant shark use the same proportion of canonical polyadenylation sites. Besides BLASTX searches, protein-coding transcripts were annotated by Gene Ontology, InterPro domain, and KEGG pathway analyses. By comparing elephant shark genes to bony vertebrate genes, we identified several ancient genes present in elephant shark but differentially lost in tetrapods or teleosts. Only ∼6% of elephant shark noncoding cDNA showed similarity to known noncoding RNAs (ncRNAs). The rest are either highly divergent ncRNAs or novel ncRNAs. In addition to full-length transcripts, 30,375 5\\'-ESTs and 41,317 3\\'-ESTs were sequenced and annotated. The clones and transcripts generated in this study are valuable resources for annotating transcription start sites, exon-intron boundaries, and UTRs of genes in the elephant shark genome, and for the functional characterization of protein sequences. These resources will also be useful for annotating genes in other cartilaginous fishes whose genomes have been targeted for

  1. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity

    OpenAIRE

    YAN, JING; Gong, Yuewen; She, Yi-Min; Wang, Guqi; Roberts, Michael S; Burczynski, Frank J.

    2009-01-01

    Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrup...

  2. 78 FR 12074 - Office of Biotechnology Activities; Recombinant DNA Research: Actions Under the NIH Guidelines...

    Science.gov (United States)

    2013-02-21

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... recommendations of the RAC, the NIH Office of Biotechnology Activities (OBA) concluded that more specific guidance... address or by fax at 301-496-9839 or by mail to the Office of Biotechnology Activities,...

  3. 75 FR 21008 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-04-22

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... the NIH Guidelines. SUMMARY: In March 2009, the NIH Office of Biotechnology Activities (OBA) published... e-mail address or by fax to 301-496-9839 or mail to the Office of Biotechnology Activities,...

  4. 75 FR 69687 - Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-11-15

    ... of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH Guidelines for... system has been submitted to the NIH Office of Biotechnology Activities (OBA). The data to be considered... Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, MSC 7985,...

  5. 76 FR 62816 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Science.gov (United States)

    2011-10-11

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... Biotechnology Activities (OBA) is updating Appendix B of the NIH Guidelines to specify the risk group (RG...: October 3, 2011. Jacqueline Corrigan-Curay, Acting Director, Office of Biotechnology Activities,...

  6. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Chen Xianming

    2007-06-01

    Full Text Available Abstract Background Puccinia striiformis is a plant pathogenic fungus causing stripe rust, one of the most important diseases on cereal crops and grasses worldwide. However, little is know about its genome and genes involved in the biology and pathogenicity of the pathogen. We initiated the functional genomic research of the fungus by constructing a full-length cDNA and determined functions of the first group of genes by sequence comparison of cDNA clones to genes reported in other fungi. Results A full-length cDNA library, consisting of 42,240 clones with an average cDNA insert of 1.9 kb, was constructed using urediniospores of race PST-78 of P. striiformis f. sp. tritici. From 196 sequenced cDNA clones, we determined functions of 73 clones (37.2%. In addition, 36 clones (18.4% had significant homology to hypothetical proteins, 37 clones (18.9% had some homology to genes in other fungi, and the remaining 50 clones (25.5% did not produce any hits. From the 73 clones with functions, we identified 51 different genes encoding protein products that are involved in amino acid metabolism, cell defense, cell cycle, cell signaling, cell structure and growth, energy cycle, lipid and nucleotide metabolism, protein modification, ribosomal protein complex, sugar metabolism, transcription factor, transport metabolism, and virulence/infection. Conclusion The full-length cDNA library is useful in identifying functional genes of P. striiformis.

  7. Modification of the full-length cDNA clone of Newcastle disease virus Isolated from an outbreak In the goose

    Institute of Scientific and Technical Information of China (English)

    LIU Yuliang; HU Shunli; ZHANG Yanmei; WU Yantao; LIU Xiufan; R(o)emer-Oberdoerfer Angela; Veits Jutta; Lange Martina

    2006-01-01

    A 6.5-kb specific fragment containing the T7 promoter and the transcription vector was excised from the full-length eDNA clone of the Newcastle disease virus (NDV) strain ZJI of goose origin,and thereafter it was self-ligated to form a high quality plasmid for mutagenesis.Site-directed mutagenesis was used for inserting three additional G nucleotides (nts) into the region between the T7 promoter and the leader sequence of the NDV genome.RT-PCR was employed to amplify the F/HN gene fragments,and then they were ligated by the shared restriction enzyme BsmBI.Finally,the corresponding fragment in the mutant full-length eDNA was substituted with the new one.The sequencing results showed that the three additional Gnts were successfully inserted and the mutant nts in the full-length eDNA were corrected.This study lays a good foundation for research on the reverse genetics of NDV strain ZJI.

  8. Cloning and expression analysis of recombination activating genes (RAG1/2) in red snapper (Lutjanus sanguineus).

    Science.gov (United States)

    Zhang, X L; Lu, Y S; Jian, J C; Wu, Z H

    2012-04-01

    Recombination activating genes (RAG1 and RAG2), involved in the V(D)J recombination of immunoglobulin and T-cell receptor genes play a crucial role in the adaptive immune response in vertebrates. The expression of these genes was required for the proper development and maturity of lymphocytes so that they can be used as useful markers to evaluate the development of lymphoid organ. In this paper, the cDNA of RAG1 and RAG2 in red snapper, Lutjanus sanguineus were cloned by homological cloning and rapid amplification of cDNA ends (RACE) methods. Results showed the full length of RAG1 cDNA was 3944 bp, containing a 5' untranslated region (UTR) of 200 bp, a 3'-UTR of 561 bp and an open reading frame of 3183 bp encoding 1060 amino acids. Three important structural motifs, a RING/U-box domain, a RING/FYVE/PHD-type domain and a RAG Nonamer-binding domain were detected in the deduced amino acid sequence of RAG1 by InterProScan analysis. The full length of RAG2 cDNA was 2200 bp, consisting of a 141 bp 5'-UTR, a 457 bp 3'-UTR and an open reading frame of 1602 bp encoding 533 amino acids. Two important structural motifs, a Galactose oxidase/kelch, beta-propeller domain and a kelch-type beta-propeller domain were detected in the deduced amino acid sequence of RAG2 by InterProScan analysis. BLAST analysis revealed that the RAG1 and RAG2 in red snapper shared a high homology with other known RAG1 and RAG2 genes, while the greatest degree of identity was observed with Hippoglossus hippoglossus RAG1 at 82% and Takifugu rubripes RAG2 at 87%, respectively. The differential expressions of RAG1 and RAG2 in various tissues of red snapper were analyzed by fluorescent quantitative real-time PCR. The overall expression pattern of the two genes was quite similar. In healthy red snappers, the RAGs transcripts were mainly detected in thymus, following head kidney, spleen, intestine, liver and brain. After vaccinated with inactivated Vibrio alginolyticus 48 h later, the RAGs m

  9. Correlation of the level of full-length CFTR transcript with pulmonary phenotype in patients carrying R117H and 1342-1,-2delAG mutations

    Energy Technology Data Exchange (ETDEWEB)

    Hamosh, A.; Cutting, G.R. [Johns Hopkins Univ. School of Medicine, Balitmore, MD (United States); Oates, R.; Amos, J. [Boston Univ. School of Medicine, Boston, MA (United States)

    1994-09-01

    The R117H mutation occurs on two chromosome backgrounds, one associated with a 7 thymidine tract (7T-R11H) in the splice-acceptor site of intron 8, the other with a 5 thymidine tract (5T-R117H). We examined exon 9 splicing efficiency in 5 patients of genotype R117H/{delta}F508 and one carrying 1342-1,-2delAG{delta}F508, an obligate exon 9 slice site mutation. Four patients carried R117H on a 7T background -- three adult men with congenital bilateral absence of the vas deferens and one adolescent female with pancreatitis and borderline sweat chloride concentration. The patient with R117H on a 5T background had pancreatic sufficient CF (PS-CF). The 1342-1,-2delAG patient has classic pancreatic insufficient CF (PI-CF). cDNA was synthesized from total RNA extracted from nasal epithlial cells and analyzed for CFTR splicing by 35 cycle PCR using primers in exon 7 and 11. The quantity of full length transcript derived from the R117H or {delta}F508 alleles was assessed by allele-specific oligonucleotide hybridization. While 91.4% of transcript from the 5T-R117H allele was full-length, only 42.2% of CFTR transcript from the 5T-R117H allele was full length. Since CBAVD patients have no lung disease and PS-CF patients do, this indicates that the threshold of developing CF lung disease is crossed when the amount of CFTR transcript bearing R117H is reduced by half. Interestingly, 17.1% of transcript derived from the 1342-1,-2delAG allele (or 8.6% of total CFTR transcript) was normal and full length. This suggests that up to 9% of full length wild-type CFTR transcript may be inadequate to escape the lung disease of CF and that a 9 thymidine tract followed by AAC (the result of the AG deletion) can be used as a splice donor with 2-9% efficiency.

  10. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Directory of Open Access Journals (Sweden)

    Alamar Santiago

    2009-09-01

    Full Text Available Abstract Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new

  11. Recombinant dioscorins of the yam storage protein expressed in Escherichia coli exhibit antioxidant and immunomodulatory activities.

    Science.gov (United States)

    Jheng, Yi-Jyun; Tsai, Wei-Yi; Chen, Kuo-Hsuan; Lin, Kuo-Wei; Chyan, Chia-Lin; Yang, Ching-Chi; Lin, Kuo-Chih

    2012-09-01

    Dioscorins, the major storage proteins in yam tubers, exhibit biochemical and immunomodulatroy activities. To investigate the potential application of dioscorins in biomedical research, we expressed the dioscorin genes Dj-dioA3 and Dp-dioA2 from Dioscorea japonica and Dioscorea pseudojaponica, respectively, in E. coli and routinely obtained approximately 15 mg proteins per liter Escherichia coli culture (mg/L) to 30 mg/L of rDj-dioscorinA3 and 4 to 8 mg/L of rDp-dioscorinA2. Western blot analyses revealed that both recombinant dioscorins contained epitopes with similar antigenicities to those of the native dioscorins. Results from dithiothreitol (DTT) treatment followed by monobromobimane (mBBr) staining showed that both recombinant dioscorins, like the native dioscorins, contain an intramolecular disulfide bond between Cys(28) and Cys(187) residues. Circular dichroism spectroscopy findings indicated that the secondary structural contents of the recombinant dioscorins showed high similarity to those of their corresponding native dioscorins. Both recombinant dioscorins, like the native dioscorins, exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and Toll-like receptor 4 signaling activities, and stimulated the phagocytosis of E. coli by macrophage. Overall, our results indicated that substantial amounts of recombinant dioscorins can be purified easily from E. coli and that these recombinant dioscorins are appropriate for application in future investigations of the biomedical functions of dioscorins.

  12. 牛TLR2全长基因表达质粒的构建及其在HEK293细胞中的表达(英文)%Construction of an Expression Plasmid pEGFP-N1-boTLR2 for Full-length Bovine TLR2 and Its Expression in HEK293 Cells

    Institute of Scientific and Technical Information of China (English)

    王玉明; 王静萱

    2012-01-01

    [Objective] This study aimed to construct a full-length bovine TLR2 expression plasmid pEGFP-N1-boTLR2 and express it in HEK293 cells. [Method] A fulllength coding sequence of bovine TLR2 was cloned by RT-PCR, and ligated into the pMD18-T simple vector and then subcloned into the pEGFP-N1 vector. A recombinant eukaryotic expression plasmid containing the full-length CDS region of bovine TLR2 was constructed and transiently transfected into HEK293 cells. The transfection efficiency and the location of recombinant protein were examined by FCM and confocal microscopy. Then the bovine TLR2 mRNA expression in HEK293/boTLR2 was detected by qRT-PCR. Finally, we analyzed the biological activity through the response that lipoteichoic acid stimulates HEK293/boTLR2 cells. [Result] The full-length TLR2 gene was successfully cloned and ligated into eukaryotic expression vector. The recombinant expression vector expressed bovine TLR2 in HEK293 cells. HEK293/boTLR2 cells produced higher levels of IL-8 secretion than nontransfected HEK293 cells when stimulated with LTA from Staphylococcus aureus. [Conclusion] The established cell model can provide a fast, flexible and convenient means for screening TLR agonists and antagonists, and may also be useful for investigating the interaction between TLR agonists and TLRs.%[目的]构建牛TLR2全长基因表达质粒,并在HEK293细胞中表达。[方法]利用RT-PCR技术克隆TLR2基因的全长编码区,连接到pMD18-Tsimplevector,再亚克隆到pEGFP-N1载体,得到包含TLR2基因全长的重组真核表达质粒。将重组质粒瞬时转染到HEK293细胞。流式细胞计数法和共聚焦显微镜法检测转染效率和表达蛋白在细胞中的定位;qRT-PCR法检测TLR2 mRNA在HEK293/boTLR2中的表达。最后,通过脂膜酸刺激HEK293/boTLR2细胞试验来分析TLR2蛋白的生物活性。[结果]成功克隆TLR2基因全长并连接到真核表达载体,并在HEK293细胞中表达。在LTA刺激的条件下,转染重

  13. 75 FR 42114 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Action Under the NIH...

    Science.gov (United States)

    2010-07-20

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... transgenic rodent and a non-transgenic rodent). The NIH Office of Biotechnology Activities (OBA) received a... to the same email address or by fax to 301-496-9839 or mail to the Office of Biotechnology...

  14. 76 FR 3150 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Science.gov (United States)

    2011-01-19

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA...). On July 20, 2010 the NIH Office of Biotechnology Activities (OBA) published a proposed action (75 FR... contact OBA by e- mail at oba@od.nih.gov , telephone, 301-496-9838 or mail to the Office of...

  15. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    Science.gov (United States)

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage.

  16. Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori.

    Science.gov (United States)

    Suetsugu, Yoshitaka; Futahashi, Ryo; Kanamori, Hiroyuki; Kadono-Okuda, Keiko; Sasanuma, Shun-ichi; Narukawa, Junko; Ajimura, Masahiro; Jouraku, Akiya; Namiki, Nobukazu; Shimomura, Michihiko; Sezutsu, Hideki; Osanai-Futahashi, Mizuko; Suzuki, Masataka G; Daimon, Takaaki; Shinoda, Tetsuro; Taniai, Kiyoko; Asaoka, Kiyoshi; Niwa, Ryusuke; Kawaoka, Shinpei; Katsuma, Susumu; Tamura, Toshiki; Noda, Hiroaki; Kasahara, Masahiro; Sugano, Sumio; Suzuki, Yutaka; Fujiwara, Haruhiko; Kataoka, Hiroshi; Arunkumar, Kallare P; Tomar, Archana; Nagaraju, Javaregowda; Goldsmith, Marian R; Feng, Qili; Xia, Qingyou; Yamamoto, Kimiko; Shimada, Toru; Mita, Kazuei

    2013-09-01

    The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.

  17. Sequencing and rescuing a highly virulent classical swine fever virus: Chinese strain cF114 from a full-length cDNA clone

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The complete nucleotide sequence of classical swine fever virus (CSFV) strain cF114 (F114 strain propa- gated on PK-15 cells) was cloned by RT-PCR. The analyses of nucleotide and amino acids identity between cF114 and F114, Brescia, Alfort or C strain were 99.41%, 96.80%, 86.03%, 95.70% and 99.28%, 98.54%, 93.33%, 97.41% re- spectively. The cDNA fragments with correct sequence were ligated into a full-length cDNA and inserted into pMC18 plasmid (pMC12297). A full-length infectious viral RNA was synthesized by runoff transcription and transfected to PK15 cells. Viruses were recovered from transfected cells which wese titrated on PK-15 cells by endpoint dilution and indirect immunofluorescence with a CSFV-specific monoclonal antibody. The antigenicity and replication kinetics of the plasmid-derived virus (vM12297) were similar to the parental virus in vitro. The E01 or E2 gene was replaced with the genes from strain C and the pM/CE01 and pM/CE2 with chimeric full-length cDNA of cF114 were generated. The infectious viruses were obtained from pM/CE01 and pM/CE2. Both of the chimeric viruses can infect PK-15, SK- 6 and primary testicle cell of swine. The chimeric viruses can grow to a titer of 8×105 F-PFU/mL. These results are very important for understanding the genes related to the CSFV propagation and pathogenesis.

  18. Single-stranded heteroduplex intermediates in λ Red homologous recombination

    Directory of Open Access Journals (Sweden)

    Zhang Youming

    2010-07-01

    Full Text Available Abstract Background The Red proteins of lambda phage mediate probably the simplest and most efficient homologous recombination reactions yet described. However the mechanism of dsDNA recombination remains undefined. Results Here we show that the Red proteins can act via full length single stranded intermediates to establish single stranded heteroduplexes at the replication fork. We created asymmetrically digestible dsDNA substrates by exploiting the fact that Redα exonuclease activity requires a 5' phosphorylated end, or is blocked by phosphothioates. Using these substrates, we found that the most efficient configuration for dsDNA recombination occurred when the strand that can prime Okazaki-like synthesis contained both homology regions on the same ssDNA molecule. Furthermore, we show that Red recombination requires replication of the target molecule. Conclusions Hence we propose a new model for dsDNA recombination, termed 'beta' recombination, based on the formation of ssDNA heteroduplexes at the replication fork. Implications of the model were tested using (i an in situ assay for recombination, which showed that recombination generated mixed wild type and recombinant colonies; and (ii the predicted asymmetries of the homology arms, which showed that recombination is more sensitive to non-homologies attached to 5' than 3' ends. Whereas beta recombination can generate deletions in target BACs of at least 50 kb at about the same efficiency as small deletions, the converse event of insertion is very sensitive to increasing size. Insertions up to 3 kb are most efficiently achieved using beta recombination, however at greater sizes, an alternative Red-mediated mechanism(s appears to be equally efficient. These findings define a new intermediate in homologous recombination, which also has practical implications for recombineering with the Red proteins.

  19. Inconsistencies of genome annotations in apicomplexan parasites revealed by 5'-end-one-pass and full-length sequences of oligo-capped cDNAs

    Directory of Open Access Journals (Sweden)

    Sugano Sumio

    2009-07-01

    Full Text Available Abstract Background Apicomplexan parasites are causative agents of various diseases including malaria and have been targets of extensive genomic sequencing. We generated 5'-EST collections for six apicomplexa parasites using our full-length oligo-capping cDNA library method. To improve upon the current genome annotations, as well as to validate the importance for physical cDNA clone resources, we generated a large-scale collection of full-length cDNAs for several apicomplexa parasites. Results In this study, we used a total of 61,056 5'-end-single-pass cDNA sequences from Plasmodium falciparum, P. vivax, P. yoelii, P. berghei, Cryptosporidium parvum, and Toxoplasma gondii. We compared these partially sequenced cDNA sequences with the currently annotated gene models and observed significant inconsistencies between the two datasets. In particular, we found that on average 14% of the exons in the current gene models were not supported by any cDNA evidence, and that 16% of the current gene models may contain at least one mis-annotation and should be re-evaluated. We also identified a large number of transcripts that had been previously unidentified. For 732 cDNAs in T. gondii, the entire sequences were determined in order to evaluate the annotated gene models at the complete full-length transcript level. We found that 41% of the T. gondii gene models contained at least one inconsistency. We also identified and confirmed by RT-PCR 140 previously unidentified transcripts found in the intergenic regions of the current gene annotations. We show that the majority of these discrepancies are due to questionable predictions of one or two extra exons in the upstream or downstream regions of the genes. Conclusion Our data indicates that the current gene models are likely to still be incomplete and have much room for improvement. Our unique full-length cDNA information is especially useful for further refinement of the annotations for the genomes of

  20. Analysis of expression sequence tags from a full-length-enriched cDNA library of developing sesame seeds (Sesamum indicum

    Directory of Open Access Journals (Sweden)

    Ke Tao

    2011-12-01

    Full Text Available Abstract Background Sesame (Sesamum indicum is one of the most important oilseed crops with high oil contents and rich nutrient value. However, genetic improvement efforts in sesame could not get benefit from molecular biology technology due to poor DNA and RNA sequence resources. In this study, we carried out a large scale of expressed sequence tags (ESTs sequencing from developing sesame seeds and further conducted analysis on seed storage products-related genes. Results A normalized and full-length enriched cDNA library from 5 ~ 30 days old immature seeds was constructed and randomly sequenced, leading to generation of 41,248 expressed sequence tags (ESTs which then formed 4,713 contigs and 27,708 singletons with 44.9% uniESTs being putative full-length open reading frames. Approximately 26,091 of all these uniESTs have significant matches to the counterparts in Nr database of GenBank, and 21,628 of them were assigned to one or more Gene ontology (GO terms. Homologous genes involved in oil biosynthesis were identified including some conservative transcription factors regulating oil biosynthesis such as LEAFY COTYLEDON1 (LEC1, PICKLE (PKL, WRINKLED1 (WRI1 and majority of them were found for the first time in sesame seeds. One hundred and 17 ESTs were identified possibly involved in biosynthesis of sesame lignans, sesamin and sesamolin. In total, 9,347 putative functional genes from developing seeds were identified, which accounts for one third of total genes in the sesame genome. Further analysis of the uniESTs identified 1,949 non-redundant simple sequence repeats (SSRs. Conclusions This study has provided an overview of genes expressed during sesame seed development. This collection of sesame full-length cDNAs covered a wide variety of genes in seeds, in particular, candidate genes involved in biosynthesis of sesame oils and lignans. These EST sequences enriched with full length will contribute to comparative genomic studies on sesame and

  1. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    OpenAIRE

    Decai Tuo; Wentao Shen; Pu Yan; Xiaoying Li; Peng Zhou

    2015-01-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length ...

  2. Development of an agroinoculation system for full-length and GFP-tagged cDNA clones of cucumber green mottle mosaic virus.

    Science.gov (United States)

    Zheng, Hongying; Xiao, Caili; Han, Kelei; Peng, Jiejun; Lin, Lin; Lu, Yuwen; Xie, Li; Wu, Xiaohua; Xu, Pei; Li, Guojing; Chen, Jianping; Yan, Fei

    2015-11-01

    The complete 6243-nucleotide sequence of a cucumber green mottle mosaic virus (CGMMV) isolate from bottle gourd in Zhejiang province, China, was determined. A full-length cDNA clone of this isolate was constructed by inserting the cDNA between the 35S promoter and the ribozyme in the binary plasmid pCB301-CH. A suspension of an Agrobacterium tumefaciens EHA105 clone carrying this construct was highly infectious in Nicotiana benthamiana and bottle gourd. Another infectious clone containing the green fluorescence protein (GFP) reporter gene was also successfully constructed. This study is the first report of the efficient use of agroinoculation for generating CGMMV infections.

  3. V(D)J recombination frequency is affected by the sequence interposed between a pair of recombination signals: sequence comparison reveals a putative recombinational enhancer element.

    Science.gov (United States)

    Roch, F A; Hobi, R; Berchtold, M W; Kuenzle, C C

    1997-06-15

    The immunoglobulin heavy chain intron enhancer (Emu) not only stimulates transcription but also V(D)J recombination of chromosomally integrated recombination substrates. We aimed at reproducing this effect in recombination competent cells by transient transfection of extrachromosomal substrates. These we prepared by interposing between the recombination signal sequences (RSS) of the plasmid pBlueRec various fragments, including Emu, possibly affecting V(D)J recombination. Our work shows that sequences inserted between RSS 23 and RSS 12, with distances from their proximal ends of 26 and 284 bp respectively, can markedly affect the frequency of V(D)J recombination. We report that the entire Emu, the Emu core as well as its flanking 5' and 3' matrix associated regions (5' and 3' MARs) upregulate V(D)J recombination while the downstream section of the 3' MAR of Emu does not. Also, prokaryotic sequences markedly suppress V(D)J recombination. This confirms previous results obtained with chromosomally integrated substrates, except for the finding that the full length 3' MAR of Emu stimulates V(D)J recombination in an episomal but not in a chromosomal context. The fact that other MARs do not share this activity suggests that the effect is no mediated through attachment of the recombination substrate to a nuclear matrix-associated recombination complex but through cis-activation. The presence of a 26 bp A-T-rich sequence motif in the 5' and 3' MARs of Emu and in all of the other upregulating fragments investigated, leads us to propose that the motif represents a novel recombinational enhancer element distinct from those constituting the Emu core.

  4. Expression of feline recombinant interferon-gamma in baculovirus and demonstration of biological activity.

    Science.gov (United States)

    Argyle, D J; Harris, M; Lawrence, C; McBride, K; Barron, R; McGillivray, C; Onions, D E

    1998-07-08

    We have previously reported the cloning of the coding sequence for feline-specific interferon-gamma. Here, we describe the expression of this sequence in a baculovirus system and demonstrate the biological activity of the recombinant protein. The coding sequence for feline interferon was directionally cloned into the baculovirus transfer vector pAcCL29-1. Transfer vector and linearized wild-type AcMNPV (BacPAK6) were used to co-transfect Sf9 cells by calcium phosphate coprecipitation. Subsequently, wild-type and recombinant viruses were separated by plaque assay. Recombinant plaques were expanded and a master stock of virus is produced. Production of biologically active interferon-gamma from infected Sf9 cells was demonstrated using a standard cytopathic effect reduction assay, utilising vesicular stomatitis virus (VSV), and an MHC class II induction assay.

  5. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction

    Science.gov (United States)

    Birla, Bhagyashree S.; Chou, Hui-Hsien

    2015-01-01

    Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly. PMID:26716828

  6. Bacterial superglue generates a full-length circumsporozoite protein virus-like particle vaccine capable of inducing high and durable antibody responses

    DEFF Research Database (Denmark)

    Janitzek, Christoph M; Matondo, Sungwa; Thrane, Susan;

    2016-01-01

    system (SpyTag/SpyCatcher) and the immunogenicity is tested in mice. METHODS: Full-length 3d7 CSP protein was genetically fused at the C-terminus to SpyCatcher. The CSP-SpyCatcher antigen was then covalently attached (via the SpyTag/SpyCatcher interaction) to Acinetobacter phage AP205 VLPs which were...... modified to display one SpyTag per VLP subunit. To evaluate the VLP-display effect, the immunogenicity of the VLP vaccine was tested in mice and compared to a control vaccine containing AP205 VLPs plus unconjugated CSP. RESULTS: Full-length CSP was conjugated at high density (an average of 112 CSP...... molecules per VLP) to AP205 SpyTag-VLPs. Vaccination of mice with the CSP Spy-VLP vaccine resulted in significantly increased antibody titres over a course of 7 months as compared to the control group (2.6-fold higher at 7 months after immunization). Furthermore, the CSP Spy-VLP vaccine appears to stimulate...

  7. Divergence of host range and biological properties between natural isolate and full-length infectious cDNA clone of the Beet mild yellowing virus 2ITB.

    Science.gov (United States)

    Klein, Elodie; Brault, Véronique; Klein, Delphine; Weyens, Guy; Lefèbvre, Marc; Ziegler-Graff, Véronique; Gilmer, David

    2014-01-01

    Plant infection by poleroviruses is restricted to phloem tissues, preventing any classical leaf rub inoculation with viral RNA or virions. Efficient virus inoculation to plants is achieved by viruliferous aphids that acquire the virus by feeding on infected plants. The use of promoter-driven infectious cDNA is an alternative means to infect plants and allows reverse genetic studies to be performed. Using Beet mild yellowing virus isolate 2ITB (BMYV-2ITB), we produced a full-length infectious cDNA clone of the virus (named BMYV-EK) placed under the control of the T7 RNA polymerase and the Cauliflower mosaic virus 35S promoters. Infectivity of the engineered BMYV-EK virus was assayed in different plant species and compared with that of the original virus. We showed that in vitro- or in planta-derived transcripts were infectious in protoplasts and in whole plants. Importantly, the natural aphid vector Myzus persicae efficiently transmitted the viral progeny produced in infected plants. By comparing agroinoculation and aphid infection in a host range assay, we showed that the engineered BMYV-EK virus displayed a similar host range to BMYV-2ITB, except for Nicotiana benthamiana, which proved to be resistant to systemic infection with BMYV-EK. Finally, both the BMYV-EK P0 and the full-length clone were able to strongly interfere with post-transcriptional gene silencing.

  8. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2007-12-01

    Full Text Available Abstract Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs. Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome.

  9. Update on the efficacy, safety, and adherence to treatment of full length parathyroid hormone, PTH (1-84, in the treatment of postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    Luca Pietrogrande

    2009-11-01

    Full Text Available Luca PietrograndeDipartimento di Medicina Chirurgia e Odontoiatria Polo San Paolo, Università degli Studi di Milano, Milan, ItalyAbstract: Full length (1-84 parathyroid hormone (PTH was introduced in Europe as a treatment for postmenopausal osteoporosis in 2006. The efficacy of PTH (1-84 in the prevention of vertebral fractures is very high, and is similar to that of teriparatide. Its action in the prevention of femoral fractures has yet to be fully demonstrated, but the incidence of such fractures in trials was very low, and a decrease in nonvertebral fractures was seen in high-risk patients. The effect on bone mineral density (BMD was clearly demonstrated in the spine and also in the hip. The effects on BMD were evident and increased progressively with treatment until 36 months. After its discontinuation there was a clear decrease in BMD if no antiresorptive treatment was initiated. Increases in bone volumetric density and bone volume in trabecular sites were also reported. Moreover, a bone volume increase was detected in cortical sites. Hypercalcemia and hypercalciuria are frequent consequences of PTH treatment, but rarely have clinical effects and are usually well controlled by reducing calcium and vitamin D supplementation.Keywords: PTH (1-84, full-length parathyroid hormone, osteoporosis treatment

  10. Study of canine parvovirus evolution: comparative analysis of full-length VP2 gene sequences from Argentina and international field strains.

    Science.gov (United States)

    Gallo Calderón, Marina; Wilda, Maximiliano; Boado, Lorena; Keller, Leticia; Malirat, Viviana; Iglesias, Marcela; Mattion, Nora; La Torre, Jose

    2012-02-01

    The continuous emergence of new strains of canine parvovirus (CPV), poorly protected by current vaccination, is a concern among breeders, veterinarians, and dog owners around the world. Therefore, the understanding of the genetic variation in emerging CPV strains is crucial for the design of disease control strategies, including vaccines. In this paper, we obtained the sequences of the full-length gene encoding for the main capsid protein (VP2) of 11 canine parvovirus type 2 (CPV-2) Argentine representative field strains, selected from a total of 75 positive samples studied in our laboratory in the last 9 years. A comparative sequence analysis was performed on 9 CPV-2c, one CPV-2a, and one CPV-2b Argentine strains with respect to international strains reported in the GenBank database. In agreement with previous reports, a high degree of identity was found among CPV-2c Argentine strains (99.6-100% and 99.7-100% at nucleotide and amino acid levels, respectively). However, the appearance of a new substitution in the 440 position (T440A) in four CPV-2c Argentine strains obtained after the year 2009 gives support to the variability observed for this position located within the VP2, three-fold spike. This is the first report on the genetic characterization of the full-length VP2 gene of emerging CPV strains in South America and shows that all the Argentine CPV-2c isolates cluster together with European and North American CPV-2c strains.

  11. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction.

    Directory of Open Access Journals (Sweden)

    Bhagyashree S Birla

    Full Text Available Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.

  12. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction.

    Science.gov (United States)

    Birla, Bhagyashree S; Chou, Hui-Hsien

    2015-01-01

    Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.

  13. Cloning and Sequence Analysis of the Full-length cDNA of a Novel yp05 Gene Associated With Citrinin Production in Monascus aurantiacus

    Institute of Scientific and Technical Information of China (English)

    YON-GHUA XIONG; YANG XU; WEI-HUA LAI; YAN-PIN LI; HUA WEI

    2007-01-01

    Objective To obtain the full-length cDNA of a novel gene (named yp05) associated with citrinin production-related genes in Monascus aurantiacus. Methods Total RNA was extracted from mycelium, 3' and 5' cDNA end of yp05 gene was amplified using smartTM trace cDNA amplification kit, and the full-length cDNA of a novel gene (named yp05) was obtained from the electronic assembly of 3'-RACE and 5'- RACE products. Results This yp05 gene was 787 bp including a 597 bp open reading frame (ORF) and encoded a deduced protein with 199 amino acid residues, and the amino acid sequence of this protein was found similar with the sequences of many fungal manganese-superoxide dismutases in the GenBank with the aid of BLASTp. The transcription of yp05 gene in Monascus strains was analyzed with the aid of Northern blotting. The transcription of yp05 gene was only detected in Monascus strains, provided that citrinin was produced. Conclusion The transcription of yp05 gene belongs to differential expression genes of citrinin yielded from Monascus and has no correlation with the biosynthesis pathway of red pigments.

  14. cDNA microarray in isolation of novel differentially expressed genes related to human glioma and clone of a novel full-length gene

    Institute of Scientific and Technical Information of China (English)

    QI Zhen-yu; HUI Guo-zhen; LI Yao; ZHOU Zong-xiang; GU Shao-hua; YING Kang; XIE Yi

    2005-01-01

    Background This investigation was undertaken to obtain differentially expressed genes related to human glioma using cDNA microarray and the characterization of one novel full-length gene. Methods Total RNA was extracted from human glioma tissues and normal brain tissues, and mRNA was used to make probes. After hybridization and washing, the results were scanned using a computer system. The gene named 681F05 clone was an expressed gene to human glioma through four-time hybridization and scanning. Subsequently northern blot analysis was performed by northern blot, 5'RACE and bioinformatics. Results Fifteen differentially expressed genes to human glioma were obtained through four-time hybridization and scanning. Northern blot analysis confirmed that 681F05 clone was low-expressed in human brain tissues and over-expressed in human glioma tissues. The analysis of BLASTn and BLASTx showed that 681F05 clone is two cDNA clones encoding two novel proteins that are highly identified to the cyclophilin isoform 10 of C. Elgans, respectively. Sequence analysis revealed the two cDNA clones are two different splicing variants of a novel cycophilin-like gene (PPIL3a and PPIL3b).Conclusions cDNA microarray technology can be successfully used to identify differentially expressed genes. The novel full-length gene of human PPIL3 may be correlated with the formation of human glioma.

  15. Characterization of ATPase Activity of Recombinant Human Pif1

    Institute of Scientific and Technical Information of China (English)

    Yu HUANG; Deng-Hong ZHANG; Jin-Qiu ZHOU

    2006-01-01

    Saccharomyces cerevisiae Pif1p helicase is the founding member of the Pif1 subfamily that is conserved from yeast to human. The potential human homolog of the yeast PIF1 gene has been cloned from the cDNA library of the Hek293 cell line. Here, we described a purification procedure of glutathione Stransferase (GST)-fused N terminal truncated human Pif1 protein (hPif1△N) from yeast and characterized the enzymatic kinetics of its ATP hydrolysis activity. The ATPase activity of human Pif1 is dependent on divalent cation, such as Mg2+, Ca2+ and single-stranded DNA. Km for ATP for the ATPase activity is approximately 200 μM. As the ATPase activity is essential for hPif1's helicase activity, these results will facilitate the further investigation on hPif1.

  16. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping.

    Directory of Open Access Journals (Sweden)

    Timothy Billings

    Full Text Available The success of high resolution genetic mapping of disease predisposition and quantitative trait loci in humans and experimental animals depends on the positions of key crossover events around the gene of interest. In mammals, the majority of recombination occurs at highly delimited 1-2 kb long sites known as recombination hotspots, whose locations and activities are distributed unevenly along the chromosomes and are tightly regulated in a sex specific manner. The factors determining the location of hotspots started to emerge with the finding of PRDM9 as a major hotspot regulator in mammals, however, additional factors modulating hotspot activity and sex specificity are yet to be defined. To address this limitation, we have collected and mapped the locations of 4829 crossover events occurring on mouse chromosome 11 in 5858 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. This chromosome was chosen for its medium size and high gene density and provided a comparison with our previous analysis of recombination on the longest mouse chromosome 1. Crossovers were mapped to an average resolution of 127 kb, and thirteen hotspots were mapped to <8 kb. Most crossovers occurred in a small number of the most active hotspots. Females had higher recombination rate than males as a consequence of differences in crossover interference and regional variation of sex specific rates along the chromosome. Comparison with chromosome 1 showed that recombination events tend to be positioned in similar fashion along the centromere-telomere axis but independently of the local gene density. It appears that mammalian recombination is regulated on at least three levels, chromosome-wide, regional, and at individual hotspots, and these regulation levels are influenced by sex and genetic background but not by gene content.

  17. Base composition, selection, and phylogenetic significance of indels in the recombination activating gene-1 in vertebrates

    NARCIS (Netherlands)

    Chiari, Y.; Meijden, van der A.; Madsen, O.; Vences, M.; Meyer, A.

    2009-01-01

    Background: The Recombination Activating Proteins, RAG1 and RAG2, play a crucial role in the immune response in vertebrates. Among the nuclear markers currently used for phylogenetic purposes, Rag1 has especially enjoyed enormous popularity, since it successfully contributed to elucidating the relat

  18. Staphylococcus simulans Recombinant Lysostaphin: Production, Purification, and Determination of Antistaphylococcal Activity.

    Science.gov (United States)

    Boksha, I S; Lavrova, N V; Grishin, A V; Demidenko, A V; Lyashchuk, A M; Galushkina, Z M; Ovchinnikov, R S; Umyarov, A M; Avetisian, L R; Chernukha, M Iu; Shaginian, I A; Lunin, V G; Karyagina, A S

    2016-05-01

    Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed. The level of produced biologically active lysostaphin comprised 6-30% of total E. coli cell protein (depending on E. coli M15 or BL21 producer) under batch cultivation conditions. New methods were developed for purification of lysostaphin without affinity domains and for testing its enzymatic activity. As judged by PAGE, the purified recombinant lysostaphin is of >97% purity. The produced lysostaphin lysed cells of Staphylococcus aureus and Staphylococcus haemolyticus clinical isolates. In vitro activity and general biochemical properties of purified recombinant lysostaphin produced by M15 or BL21 E. coli strains were identical to those of recombinant lysostaphin supplied by Sigma-Aldrich (USA) and used as reference in other known studies. The prepared recombinant lysostaphin represents a potential product for development of enzymatic preparation for medicine and veterinary due to the simple purification scheme enabling production of the enzyme of high purity and antistaphylococcal activity.

  19. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  20. Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers

    Science.gov (United States)

    Bag, Monojit; Renna, Lawrence A.; Jeong, Seung Pyo; Han, Xu; Cutting, Christie L.; Maroudas, Dimitrios; Venkataraman, D.

    2016-10-01

    Using impedance spectroscopy and computation, we show that incorporation of multi-walled carbon nanotubes (MWCNTs) in the bulk of the active layer of perovskite-based solar cells reduces charge recombination and increases the open circuit voltage. An ∼87% reduction in recombination was achieved when MWCNTs were introduced in the planar-heterostructure perovskite solar cell containing mixed counterions. The open circuit voltage (Voc) of perovskite/MWCNTs devices was increased by 70 mV, while the short circuit current density (Jsc) and fill factor (FF) remained unchanged.

  1. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    Science.gov (United States)

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  2. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Blanca Iglesias-Figueroa

    2016-06-01

    Full Text Available In this study, bovine lactoferrin (bLf, an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin demonstrated antibacterial activity against Escherichia coli (E. coli BL21DE3, Staphylococcus aureus (S. aureus FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly.

  3. Cloning a Full-length cDNA Encoding UDP-glucose Pyrophosphorylase from Amorpha fruticosa by PCR-based Methods

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method based on degenerate Oligo-primed polymerase chain reaction (PCR) and random amplification of cDNA end (RACE) PCR for cloning a full-length cDNA is described. An Amorpha fruticosa cDNA clone encoding UDP-glucose pyrophosphorylase (UGP), a key enzyme producing UDP-glucose in the synthesis of sucrose and cell ulose, is cloned by using this method. We design 5' RACE primers based on UGP A1 fragment, which obtains from degenerate PCR. Inverse PCR and nested PCR enable cloning of the remainder 5' and 3' end fragments of the gene. The deduced amino acid sequence exhibits significant homology with the other UGP genes cloned. This method is more simple and inexpensive than screening cDNA library, and can be easily adapted to clone other genes.

  4. Expressed Sequence Tags Analysis and Design of Simple Sequence Repeats Markers from a Full-Length cDNA Library in Perilla frutescens (L.

    Directory of Open Access Journals (Sweden)

    Eun Soo Seong

    2015-01-01

    Full Text Available Perilla frutescens is valuable as a medicinal plant as well as a natural medicine and functional food. However, comparative genomics analyses of P. frutescens are limited due to a lack of gene annotations and characterization. A full-length cDNA library from P. frutescens leaves was constructed to identify functional gene clusters and probable EST-SSR markers via analysis of 1,056 expressed sequence tags. Unigene assembly was performed using basic local alignment search tool (BLAST homology searches and annotated Gene Ontology (GO. A total of 18 simple sequence repeats (SSRs were designed as primer pairs. This study is the first to report comparative genomics and EST-SSR markers from P. frutescens will help gene discovery and provide an important source for functional genomics and molecular genetic research in this interesting medicinal plant.

  5. Identification of 32 full-length NAC transcription factors in ramie (Boehmeria nivea L. Gaud) and characterization of the expression pattern of these genes.

    Science.gov (United States)

    Liu, Touming; Zhu, Siyuan; Tang, Qingming; Tang, Shouwei

    2014-08-01

    NAM, ATAF, and CUC (NAC) genes are plant-specific transcription factors (TFs) that play key roles in plant growth, development, and stress tolerance. To date, none of the ramie NAC (BnNAC) genes had been identified, even though ramie is one of the most important natural fiber crops. In order to mine the BnNAC TFs and identify their potential function, the search for BnNAC genes against two pools of unigenes de novo assembled from the RNA-seq in our two previous studies was performed, and a total of 32 full-length BnNAC genes were identified in this study. Forty-seven function-known NAC proteins published in other species, in concert with these 32 BnNAC proteins were subjected to phylogenetic analysis, and the result showed that all the 79 NAC proteins can be divided into eight groups (NAC-I-VIII). Among the 32 BnNAC genes, 24, 2, and 1 gene showed higher expression in stem xylem, leaf, and flower, respectively. Furthermore, the expression of 14, 11 and 4 BnNAC genes was regulated by drought, cadmium stress, and infection by root lesion nematode, respectively. Interestingly, there were five BnNAC TFs which showed high homology with the NAC TFs of other species involved in regulating the secondary wall synthesis, and their expressions were not regulated by drought and cadmium stress. These results suggested that the BnNAC family might have a functional diversity. The identification of these 32 full-length BnNAC genes and the characterization of their expression pattern provide a basis for future clarification of their functions in ramie growth and development.

  6. Full-Length Genome Analyses of Two New Simian Immunodeficiency Virus (SIV Strains from Mustached Monkeys (C. Cephus in Gabon Illustrate a Complex Evolutionary History among the SIVmus/mon/gsn Lineage

    Directory of Open Access Journals (Sweden)

    Florian Liégeois

    2014-07-01

    Full Text Available The Simian Immunodeficiency Virus (SIV mus/mon/gsn lineage is a descendant of one of the precursor viruses to the HIV-1/SIVcpz/gor viral lineage. SIVmus and SIVgsn were sequenced from mustached and greater spot nosed monkeys in Cameroon and SIVmon from mona monkeys in Cameroon and Nigeria. In order to further document the genetic diversity of SIVmus, we analyzed two full-length genomes of new strains identified in Gabon. The whole genomes obtained showed the expected reading frames for gag, pol, vif, vpr, tat, rev, env, nef, and also for a vpu gene. Analyses showed that the Gabonese SIVmus strains were closely related and formed a monophyletic clade within the SIVmus/mon/gsn lineage. Nonetheless, within this lineage, the position of both new SIVmus differed according to the gene analyzed. In pol and nef gene, phylogenetic topologies suggested different evolutions for each of the two new SIVmus strains whereas in the other nucleic fragments studied, their positions fluctuated between SIVmon, SIVmus-1, and SIVgsn. In addition, in C1 domain of env, we identified an insertion of seven amino acids characteristic for the SIVmus/mon/gsn and HIV‑1/SIVcpz/SIVgor lineages. Our results show a high genetic diversity of SIVmus in mustached monkeys and suggest cross-species transmission events and recombination within SIVmus/mon/gsn lineage. Additionally, in Central Africa, hunters continue to be exposed to these simian viruses, and this represents a potential threat to humans.

  7. Construction and characterization of a full-length infectious cDNA clone of foot-and-mouth disease virus strain O/JPN/2010 isolated in Japan in 2010.

    Science.gov (United States)

    Nishi, Tatsuya; Onozato, Hiroyuki; Ohashi, Seiichi; Fukai, Katsuhiko; Yamada, Manabu; Morioka, Kazuki; Kanno, Toru

    2016-06-01

    A full-length infectious cDNA clone of the genome of a foot-and-mouth disease virus isolated from the 2010 epidemic in Japan was constructed and designated pSVL-f02. Transfection of Cos-7 or IBRS-2 cells with this clone allowed the recovery of infectious virus. The recovered virus had the same in vitro characterization as the parental virus with regard to antigenicity in neutralization and indirect immunofluorescence tests, plaque size and one-step growth. Pigs were experimentally infected with the parental virus or the recombinant virus recovered from pSVL-f02 transfected cells. There were no significant differences in clinical signs or antibody responses between the two groups, and virus isolation and viral RNA detection from clinical samples were similar. Virus recovered from transfected cells therefore retained the in vitro characteristics and the in vivo pathogenicity of their parental strain. This cDNA clone should be a valuable tool to analyze determinants of pathogenicity and mechanisms of virus replication, and to develop genetically engineered vaccines against foot-and-mouth disease virus.

  8. Construction of a full-length cDNA Library from Chinese oak silkworm pupa and identification of a KK-42-binding protein gene in relation to pupa-diapause termination

    Directory of Open Access Journals (Sweden)

    Yu-Ping Li, Run-Xi Xia, Huan Wang, Xi-Sheng Li, Yan-Qun Liu, Zhao-Jun Wei, Cheng Lu, Zhong-Huai Xiang

    2009-01-01

    Full Text Available In this study we successfully constructed a full-length cDNA library from Chinese oak silkworm, Antheraea pernyi, the most well-known wild silkworm used for silk production and insect food. Total RNA was extracted from a single fresh female pupa at the diapause stage. The titer of the library was 5 × 105 cfu/ml and the proportion of recombinant clones was approximately 95%. Expressed sequence tag (EST analysis was used to characterize the library. A total of 175 clustered ESTs consisting of 24 contigs and 151 singlets were generated from 250 effective sequences. Of the 175 unigenes, 97 (55.4% were known genes but only five from A. pernyi, 37 (21.2% were known ESTs without function annotation, and 41 (23.4% were novel ESTs. By EST sequencing, a gene coding KK-42-binding protein in A. pernyi (named as ApKK42-BP; GenBank accession no. FJ744151 was identified and characterized. Protein sequence analysis showed that ApKK42-BP was not a membrane protein but an extracellular protein with a signal peptide at position 1-18, and contained two putative conserved domains, abhydro_lipase and abhydrolase_1, suggesting it may be a member of lipase superfamily. Expression analysis based on number of ESTs showed that ApKK42-BP was an abundant gene in the period of diapause stage, suggesting it may also be involved in pupa-diapause termination.

  9. Full-length genome analyses of two new simian immunodeficiency virus (SIV) strains from mustached monkeys (C. Cephus) in Gabon illustrate a complex evolutionary history among the SIVmus/mon/gsn lineage.

    Science.gov (United States)

    Liégeois, Florian; Schmidt, Fabian; Boué, Vanina; Butel, Christelle; Mouacha, Fatima; Ngari, Paul; Ondo, Bertrand Mve; Leroy, Eric; Heeney, Jonathan L; Delaporte, Eric; Peeters, Martine; Rouet, François

    2014-07-22

    The Simian Immunodeficiency Virus (SIV) mus/mon/gsn lineage is a descendant of one of the precursor viruses to the HIV-1/SIVcpz/gor viral lineage. SIVmus and SIVgsn were sequenced from mustached and greater spot nosed monkeys in Cameroon and SIVmon from mona monkeys in Cameroon and Nigeria. In order to further document the genetic diversity of SIVmus, we analyzed two full-length genomes of new strains identified in Gabon. The whole genomes obtained showed the expected reading frames for gag, pol, vif, vpr, tat, rev, env, nef, and also for a vpu gene. Analyses showed that the Gabonese SIVmus strains were closely related and formed a monophyletic clade within the SIVmus/mon/gsn lineage. Nonetheless, within this lineage, the position of both new SIVmus differed according to the gene analyzed. In pol and nef gene, phylogenetic topologies suggested different evolutions for each of the two new SIVmus strains whereas in the other nucleic fragments studied, their positions fluctuated between SIVmon, SIVmus-1, and SIVgsn. In addition, in C1 domain of env, we identified an insertion of seven amino acids characteristic for the SIVmus/mon/gsn and HIV‑1/SIVcpz/SIVgor lineages. Our results show a high genetic diversity of SIVmus in mustached monkeys and suggest cross-species transmission events and recombination within SIVmus/mon/gsn lineage. Additionally, in Central Africa, hunters continue to be exposed to these simian viruses, and this represents a potential threat to humans.

  10. Recombination analysis of Soybean mosaic virus sequences reveals evidence of RNA recombination between distinct pathotypes

    Directory of Open Access Journals (Sweden)

    Babu Mohan

    2008-11-01

    Full Text Available Abstract RNA recombination is one of the two major factors that create RNA genome variability. Assessing its incidence in plant RNA viruses helps understand the formation of new isolates and evaluate the effectiveness of crop protection strategies. To search for recombination in Soybean mosaic virus (SMV, the causal agent of a worldwide seed-borne, aphid-transmitted viral soybean disease, we obtained all full-length genome sequences of SMV as well as partial sequences encoding the N-terminal most (P1 protease and the C-terminal most (capsid protein; CP viral protein. The sequences were analyzed for possible recombination events using a variety of automatic and manual recombination detection and verification approaches. Automatic scanning identified 3, 10, and 17 recombination sites in the P1, CP, and full-length sequences, respectively. Manual analyses confirmed 10 recombination sites in three full-length SMV sequences. To our knowledge, this is the first report of recombination between distinct SMV pathotypes. These data imply that different SMV pathotypes can simultaneously infect a host cell and exchange genetic materials through recombination. The high incidence of SMV recombination suggests that recombination plays an important role in SMV evolution. Obtaining additional full-length sequences will help elucidate this role.

  11. An Acidic Thermostable Recombinant Aspergillus nidulans Endoglucanase Is Active towards Distinct Agriculture Residues

    Directory of Open Access Journals (Sweden)

    Eveline Queiroz de Pinho Tavares

    2013-01-01

    Full Text Available Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as Km=27.5±4.33 mg/mL, Vmax=1.185±0.11 mmol/min, and 55.8 IU (international units/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol.

  12. Cloning and identification of full-length DCC cDNA and construction of its eukaryotic expression vector%人类DCC基因克隆及真核表达载体构建与鉴定

    Institute of Scientific and Technical Information of China (English)

    翟保平; 李文涛; 张斌; 于洋; 李育红

    2011-01-01

    目的 克隆人类DCC基因并构建其真核表达载体pIRES2-AcGFPI/DCC.方法 从正常皮肤组织中提取总RNA,采用逆转录-聚合酶链反应(RT-PCR)方法扩增DCC基因全长cDNA(4351bp),克隆人pMD18-T载体并转化大肠杆菌JM109,经PCR、酶切鉴定均为阳性的克隆,进行核苷酸测序分析,再将DCC基因定向克隆人pIRES2-AcGFP1载体中构建表达载体pIRES2-AcGFP1/DCC.结果 RT-PCR扩增后的产物在约4351 bp处出现明显的特异性条带,DCC基因的cDNA片段被成功插入真核表达载体pIRES2-AcGFP1质粒的多克隆位点,经鉴定与GenBank收录的DCC cDNA序列一致.结论 DCC基因的cDNA片段被成功克隆.%Objective To clone the full-length cDNA of human tumor suppressor DCC gene and construct its eukaryotic expression vector. Methods Total RNA was isolated from human foreskin tissue.Full-length DCC cDNA fragment (4351 bp) was amplified by reverse-transcription polymerase chain reaction (RT-PCR) and inserted into pMD18-T vector. The recombinant pMD18-T/DCC cDNA was transformed into E. coli JM109 host bacteria. The positive clones were confirmed by RT-PCR and doule-enzyme digestion assay. Orientation-based sub-cloning into pIRES2-AcGFP1 was performed as above followed by sequencing. Results Product of RT-PCR showed a clear specific band at 4341bp. pIRES2-AcGFP1/DCC was successfully constructed and transformed into E. coli JM109 host bacteria. Conclusion DCC gene cDNA has been inserted into eukaryotic expression vector pIRES2-AcGFP1 and successfully expressed.

  13. Purification and characterization of a DNA-binding recombinant PREP1:PBX1 complex.

    Science.gov (United States)

    Mathiasen, Lisa; Bruckmann, Chiara; Pasqualato, Sebastiano; Blasi, Francesco

    2015-01-01

    Human PREP1 and PBX1 are homeodomain transcriptional factors, whose biochemical and structural characterization has not yet been fully described. Expression of full-length recombinant PREP1 (47.6 kDa) and PBX1 (46.6 kDa) in E. coli is difficult because of poor yield, high instability and insufficient purity, in particular for structural studies. We cloned the cDNA of both proteins into a dicistronic vector containing an N-terminal glutathione S-transferase (GST) tag and co-expressed and co-purified a stable PBX1:PREP1 complex. For structural studies, we produced two C-terminally truncated complexes that retain their ability to bind DNA and are more stable than the full-length proteins through various purification steps. Here we report the production of large amounts of soluble and pure recombinant human PBX1:PREP1 complex in an active form capable of binding DNA.

  14. Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds

    Directory of Open Access Journals (Sweden)

    Sugantham Priyanka Annabel

    2010-10-01

    Full Text Available Abstract Background Jatropha curcas L. is promoted as an important non-edible biodiesel crop worldwide. Jatropha oil, which is a triacylglycerol, can be directly blended with petro-diesel or transesterified with methanol and used as biodiesel. Genetic improvement in jatropha is needed to increase the seed yield, oil content, drought and pest resistance, and to modify oil composition so that it becomes a technically and economically preferred source for biodiesel production. However, genetic improvement efforts in jatropha could not take advantage of genetic engineering methods due to lack of cloned genes from this species. To overcome this hurdle, the current gene discovery project was initiated with an objective of isolating as many functional genes as possible from J. curcas by large scale sequencing of expressed sequence tags (ESTs. Results A normalized and full-length enriched cDNA library was constructed from developing seeds of J. curcas. The cDNA library contained about 1 × 106 clones and average insert size of the clones was 2.1 kb. Totally 12,084 ESTs were sequenced to average high quality read length of 576 bp. Contig analysis revealed 2258 contigs and 4751 singletons. Contig size ranged from 2-23 and there were 7333 ESTs in the contigs. This resulted in 7009 unigenes which were annotated by BLASTX. It showed 3982 unigenes with significant similarity to known genes and 2836 unigenes with significant similarity to genes of unknown, hypothetical and putative proteins. The remaining 191 unigenes which did not show similarity with any genes in the public database may encode for unique genes. Functional classification revealed unigenes related to broad range of cellular, molecular and biological functions. Among the 7009 unigenes, 6233 unigenes were identified to be potential full-length genes. Conclusions The high quality normalized cDNA library was constructed from developing seeds of J. curcas for the first time and 7009 unigenes coding

  15. Intein-mediated Rapid Purification of Recombinant Human Pituitary Adenylate Cyclase Activating Polypeptide

    Institute of Scientific and Technical Information of China (English)

    Rong-jie YU; An HONG; Yun DAI; Yuan GAO

    2004-01-01

    In order to obtain the recombinant human PACAP efficiently by intein-mediated single column purification, a gene encoding human PACAP was synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-PAC was transferred into E. coli ER2566 cells and the target protein was over-expressed as a fusion to the N-terminus of a self-cleavable affinity tag. After the PACAPintein-CBD fusion protein was purified by chitin-affinity chromatography, the self-cleavage activity of the intein was induced by DTT and the rhPACAP was released from the chitin-bound intein tag. The activity of the rhPACAP to stimulate cyclic AMP accumulation was detected using the human pancreas carcinoma cells SW1990. Twenty-two milligrams of rhPACAP with the purity over 98% was obtained by single column purification from 1 liter of induced culture. The preliminary biological assay indicated that the rhPACAP, which has an extra Met at its N-terminus compared with the native human PACAP, had the similar activity of stimulating cAMP accumulation with the standard PACAP38 in the SW1990 cells. A new efficient production procedure of the active recombinant human PACAP was established.

  16. Detection of contaminating enzymatic activity in plant-derived recombinant biotechnology products.

    Science.gov (United States)

    Brinson, Robert G; Giulian, Gary G; Kelman, Zvi; Marino, John P

    2014-12-02

    Residual impurities in recombinantly produced protein biologics, such as host cell proteins (HCP), can potentially cause unwanted toxic or immunogenic responses in patients. Additionally, undetected impurities found in recombinant proteins used in cell culture may adversely impact basic research and biotechnology applications. Currently, the enzyme-linked immunosorbent assay (ELISA) is the standard for detection of residual HCP contamination in recombinantly produced biologics. Alternatively, two-dimensional liquid chromatography coupled to mass spectrometry is being developed as a tool for assessing this critical quality attribute. Both of these methods rely on the direct detection of HCPs and some previous knowledge of the contaminant. For contaminating enzymes, the mass level of the impurity may fall below the threshold of detection of these methods and underestimate the true impact. To address this point, here we demonstrate facile detection and characterization of contaminating phytase activity in rice-derived recombinant human serum albumin (rHSA) using a sensitive, label-free nuclear magnetic resonance (NMR) spectroscopy assay. We observed varying degrees of phytase contamination in biotechnology-grade rHSA from various manufacturers by monitoring the degradation of adenosine-5'-triphosphate and myo-inositol-1,2,3,4,5,6-hexakisphosphate by (31)P NMR. The observed lot-to-lot variability may result in irreproducible cell culture results and should be evaluated as a possible critical quality attribute in plant-derived biotherapeutics.

  17. Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses

    Directory of Open Access Journals (Sweden)

    Nagata Tatsuya

    2010-06-01

    Full Text Available Abstract Background Baculovirus comprise the largest group of insect viruses most studied worldwide, mainly because they efficiently kill agricutural insect pests. In this study, two recombinant baculoviruses containing the ScathL gene from Sarcophaga peregrina (vSynScathL, and the Keratinase gene from the fungus Aspergillus fumigatus (vSynKerat, were constructed. and their insecticidal properties analysed against Spodoptera frugiperda larvae. Results Bioassays of third-instar and neonate S. frugiperda larvae with vSynScathL and vSynKerat showed a decrease in the time needed to kill the infected insects when compared to the wild type virus. We have also shown that both recombinants were able to increase phenoloxidase activity in the hemolymph of S. frugiperda larvae. The expression of proteases in infected larvae resulted in destruction of internal tissues late in infection, which could be the reason for the increased viral speed of kill. Conclusions Baculoviruses and their recombinant forms constitute viable alternatives to chemical insecticides. Recombinant baculoviruses containing protease genes can be added to the list of engineered baculoviruses with great potential to be used in integrated pest management programs.

  18. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs.

    Directory of Open Access Journals (Sweden)

    Ru Huang

    Full Text Available Imprinted macro non-protein-coding (nc RNAs are cis-repressor transcripts that silence multiple genes in at least three imprinted gene clusters in the mouse genome. Similar macro or long ncRNAs are abundant in the mammalian genome. Here we present the full coding and non-coding transcriptome of two mouse tissues: differentiated ES cells and fetal head using an optimized RNA-Seq strategy. The data produced is highly reproducible in different sequencing locations and is able to detect the full length of imprinted macro ncRNAs such as Airn and Kcnq1ot1, whose length ranges between 80-118 kb. Transcripts show a more uniform read coverage when RNA is fragmented with RNA hydrolysis compared with cDNA fragmentation by shearing. Irrespective of the fragmentation method, all coding and non-coding transcripts longer than 8 kb show a gradual loss of sequencing tags towards the 3' end. Comparisons to published RNA-Seq datasets show that the strategy presented here is more efficient in detecting known functional imprinted macro ncRNAs and also indicate that standardization of RNA preparation protocols would increase the comparability of the transcriptome between different RNA-Seq datasets.

  19. DNA display selection of peptide ligands for a full-length human G protein-coupled receptor on CHO-K1 cells.

    Directory of Open Access Journals (Sweden)

    Nobuhide Doi

    Full Text Available The G protein-coupled receptors (GPCRs, which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II type-1 receptor (hAT1R as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells.

  20. Cloning and Sequencing of a Full-Length cDNA Encoding the RuBPCase Small Subunit (RbcS)in Tea (Camellia sinensis)

    Institute of Scientific and Technical Information of China (English)

    YE Ai-hua; JIANG Chang-jun; ZHU Lin; YU Mei; WANG Zhao-xia; DENG Wei-wei; WEI Chao-lin

    2009-01-01

    This study was aimed to isolate ribulose-l,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) from tea plant [Camellia sinensis (L.) O. Kuntze]. In the study of transcriptional profiling of gene expression from tea flower bud development stage by cDNA-AFLP (cDNA amplified fragment length polymorphism), we have isolated some transcript-derived fragments (TDFs) occurring in both the young and mature flower bud. One of them showed a high degree of similarity to RbcS. Based on the fragment, the full length of RbcS with 769-bp (EF011075) cDNA was obtained via rapid amplification of cDNA ends (RACE). It contained an open reading frame of 176 amino acids consisting of a chloroplast transit peptide with 52 amino acids and a mature protein of 124 amino acids. The amino acids sequence presented a high identity to those of other plant RbcS genes. It also contains three conserved domains and a protein kinase C phosphorylation site, one tyrosine kinase phosphorylation site and two N-myristoylation sites. Analysis by RT-PCR showed that the expression of RbcS in tea from high to low was leaf, young stem, young flower bud and mature flower bud, respectively. The isolation of the tea Rubisco small subunit gene establishes a good foundation for further study on the photosynthesis of tea plant.

  1. Cloning of the Full-length cDNA of the Wheat Involved in Salt Stress: Root Hair Defective 3 Gene (RHD3)

    Institute of Scientific and Technical Information of China (English)

    Lei SHAN; Shuang-Yi ZHAO; Guang-Min XIA

    2005-01-01

    The full-length cDNA of the wheat (Triticum aestivum L.) root hair defective 3 gene (RHD3) has been cloned from the salt-tolerant hybrid wheat variety Shanrong No. 3 (Za3) using the mRNA differential display and 5′ rapid amplification of cDNA ends (RACE) methods. Analysis of the amino acid sequence deduced from the wheat RHD3 gene shows that two conservative GTP-binding motifs, namely GXXXXGKS and DXXG, in eukaryotes also exist at the N-terminal of wheat RHD3. In addition, an 18 amino acid residue transmembrane domain, namely FYLAVMFVVFLVGKAIWV, exists at positions 701-718 of the C-terminal of the deduced protein of wheat RHD3 obtained, but this domain is absent in another three proteins aligned,including rice RHD3, Arabidopsis RHD3, and yeast homologue SEY1. Northern blot revealed that transcription of the wheat RHD3 gene is down-regulated in both the salt-tolerant line and in JN177 under saline stress. A possible stress-responsive mechanism for this gene is discussed.

  2. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells.

    Science.gov (United States)

    Gough, Mallory; Blanthorn-Hazell, Sophee; Delury, Craig; Parkin, Edward

    2014-10-31

    Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  3. Characterization of tissue expression and full-length coding sequence of a novel human gene mapping at 3q12.1 and transcribed in oligodendrocytes.

    Science.gov (United States)

    Fayein, Nicole-Adeline; Stankoff, Bruno; Auffray, Charles; Devignes, Marie-Dominique

    2002-05-01

    Macro-array differential hybridization of a collection of 5058 human gene transcripts represented in an IMAGE infant brain cDNA library has led to the identification of transcripts displaying preferential or specific expression in brain (Genome Res. 9 (1999) 195; http://idefix.upr420.vjf.cnrs.fr/IMAGE). Most of these genes correspond to as yet undescribed functions. Detailed characterization of the expression, sequence, and genome assignment of one of these genes named C3orf4, is reported here. The full-length sequence of the transcript was obtained by 5' extension RT-PCR. The gene transcript (2.8 kb) encodes a 253 amino acid long protein, with four transmembrane domains. The position of the C3orf4 gene was determined at 3q12.1 thanks to the draft sequence of the human genome. It is composed of five exons spanning more than 7 kb. No TATAA box but a CpG island was found upstream of the beginning of the gene. Northern blot analysis and in situ hybridization revealed a predominant expression in myelinated structures such as corpus callosum and spinal cord. RT-PCR showed expression of the C3orf4 gene in rat optic nerve and cultured oligodendrocytes, the myelinating cells of the central nervous system, but not in astrocytes. This work supports further investigations aimed at determining the role of the C3orf4 gene in myelinating cells.

  4. Proteome analysis of liver cells expressing a full-length hepatitis C virus (HCV) replicon and biopsy specimens of posttransplantation liver from HCV-infected patients.

    Science.gov (United States)

    Jacobs, Jon M; Diamond, Deborah L; Chan, Eric Y; Gritsenko, Marina A; Qian, Weijun; Stastna, Miroslava; Baas, Tracey; Camp, David G; Carithers, Robert L; Smith, Richard D; Katze, Michael G

    2005-06-01

    The development of a reproducible model system for the study of hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large-scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full-length HCV replicon. We detected >4,200 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled to mass spectrometry. Consistent with the literature, a comparison of HCV replicon-positive and -negative Huh-7.5 cells identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where a total of >1,500 proteins were detected from only 2 mug of liver biopsy protein digest using the Huh-7.5 protein database and the accurate mass and time tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting in the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.

  5. Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome.

    Science.gov (United States)

    Chen, Meili; Hu, Yibo; Liu, Jingxing; Wu, Qi; Zhang, Chenglin; Yu, Jun; Xiao, Jingfa; Wei, Fuwen; Wu, Jiayan

    2015-12-11

    High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.

  6. The Analysis of Near Full-Length Genome Sequences of HIV Type 1 Subtype A Viruses from Russia Supports the Monophyly of Major Intrasubtype Clusters

    Science.gov (United States)

    Fernández-García, Aurora; Revilla, Ana; Vázquez-de Parga, Elena; Vinogradova, Anna; Rakhmanova, Aza; Karamov, Eduard; Carrera, Cristina; Delgado, Elena; Pérez-Álvarez, Lucía; Nájera, Rafael; Osmanov, Saladin

    2012-01-01

    Abstract The HIV-1 epidemic in Russia has been insufficiently studied, with only 11 complete genome sequences from this country currently available, only three of which are of the locally predominant genetic form, the former Soviet Union (FSU) subtype A variant (AFSU). Here we analyze 10 newly derived AFSU near full-length genome sequences from Russia. Samples were selected based on phylogenetic clustering in protease-reverse transcriptase in two of the major AFSU clusters, V77IPR (n=6), widely circulating in Russia and other FSU countries, and ASP1 (n=4), predominant in St. Petersburg. The phylogenetic analysis shows that the V77IPR genomes group in a monophyletic cluster together with 10 previously obtained AFSU genome sequences from Uzbekistan, Kazakhstan, Russia, and Cyprus, all bearing the V77I substitution in protease. Similarly, the four ASP1 genomes group in a monophyletic cluster. These results therefore show that the monophyly of V77IPR and ASP1 AFSU clusters is supported in near complete genomes. PMID:22251084

  7. Avocado cellulase: nucleotide sequence of a putative full-length cDNA clone and evidence for a small gene family.

    Science.gov (United States)

    Tucker, M L; Durbin, M L; Clegg, M T; Lewis, L N

    1987-05-01

    A cDNA library was prepared from ripe avocado fruit (Persea americana Mill. cv. Hass) and screened for clones hybridizing to a 600 bp cDNA clone (pAV5) coding for avocado fruit cellulase. This screening led to the isolation of a clone (pAV363) containing a 2021 nucleotide transcribed sequence and an approximately 150 nucleotide poly(A) tail. Hybridization of pAV363 to a northern blot shows that the length of the homologous message is approximately 2.2 kb. The nucleotide sequence of this putative full-length mRNA clone contains an open reading frame of 1482 nucleotides which codes for a polypeptide of 54.1 kD. The deduced amino acid composition compares favorably with the amino acid composition of native avocado cellulase determined by amino acid analysis. Southern blot analysis of Hind III and Eco RI endonuclease digested genomic DNA indicates a small family of cellulase genes.

  8. Establishment of Stably Transfected Cells Constitutively Expressing the Full-Length and Truncated Antigenic Proteins of Two Genetically Distinct Mink Astroviruses

    DEFF Research Database (Denmark)

    Bidokhti, Mehdi R. M.; Ullman, Karin; Jensen, Trine Hammer

    2013-01-01

    Astroviruses are becoming a growing concern in veterinary and public health. To date there are no registered vaccines against astrovirus-induced disease, mostly due to the difficulty to cultivate astroviruses to high titer for vaccine development using conventional techniques. As means to circumv......Astroviruses are becoming a growing concern in veterinary and public health. To date there are no registered vaccines against astrovirus-induced disease, mostly due to the difficulty to cultivate astroviruses to high titer for vaccine development using conventional techniques. As means...... to circumvent this drawback, we have developed stably transfected mink fetal cells and BHK21 cells constitutively expressing the full-length and truncated capsid proteins of two distinct genotypes of mink astrovirus. Protein expression in these stably transfected cells was demonstrated by strong signals...... shedding was observed in mink kits born from immunized females. The gene integration and protein expression were sustained through cell passage, showing that the used approach is robust and reliable for expression of functional capsid proteins for vaccine and diagnostic applications....

  9. Superiority of intramuscular route and full length glycoprotein D for DNA vaccination against herpes simplex 2. Enhancement of protection by the co-delivery of the GM-CSF gene.

    Science.gov (United States)

    Fló, J; Beatriz Perez, A; Tisminetzky, S; Baralle, F

    2000-08-01

    Immunization with naked DNA has been analyzed in two critical variables: the site of injection and the cellular compartment to which the coded protein is directed. The gene for the full length of the glycoprotein D (gD) of HSV-2 under the control of the citomegalovirus (CMV) promoter was injected via the intradermal (i.d.) or the intramuscular (i.m.) routes in mice. Immunization in the quadricep muscle was superior to the intradermal immunization in the footpads. A stronger activation of IFN-gamma-secreting cells in the spleen and draining lymph nodes (DLN) was induced, resulting in a more efficient protection against an intravaginal challenge. In order to analyze the effect of the cellular localizations of the coded protein, the DNA for the truncated form of the gD (DeltagD) was injected via the i.m. route. Immunization with a vector encoding for DeltagD resulted in higher antibody levels in serum and vaginal washes than immunization with the gene for the full length gD. However, immunization with the DeltagD DNA elicited a much weaker cell-mediated immune response and was inferior to gD DNA in providing protection against a lethal intravaginal challenge with HSV. Co-injection of an expression cassette for the granulocyte-macrophage colony-stimulating factor (GM-CSF) increased both the humoral and cell-mediated immune response with both gD and DeltagD. A strong activation of IL-4-secreting cells was observed in the spleen and DLN together with an increase in the number of IFN-gamma-secreting cells. In addition, a reduction in the vaginal virus titers after an intravaginal challenge was observed in mice co-injected with the GM-CSF gene as compared to those immunized with pCDNAgD only.

  10. 凡纳滨对虾肌肉组织cDNA全长文库的构建%Construction of the full length cDNA library from muscular tissue of Litopenaeus vannamei

    Institute of Scientific and Technical Information of China (English)

    熊建华; 高永华; 马宁; 盛小伟; 陈晓汉

    2011-01-01

    [目的]为了在短期内获得大量凡纳滨对虾肌肉组织的功能基因表达信息,为深入了解功能基因在凡纳滨对虾肌肉组织中的表达提供分子生物学依据.[方法]通过构建凡纳滨对虾肌肉组织的全长cDNA文库,并进行EST测序分析.[结果]文库质量分析表明,初始文库库容约8.50×106 CFU,重组率在95%左右,插入片断大小为0.54~4.0 kb,多数在1.0 kb以上.随机测序72条cDNA,可得到有功能注释的37条全长cDNA和18条编码未知蛋白的基因序列.通过Gene Ontology功能分类可将有功能注释的37个基因分为蛋白质合成、细胞骨架、细胞信号传导、代谢、转运、能量、转录、抗病及防御、生殖发育和未知功能基因等10类,其中蛋白质合成类基因最多(27.03%).与细胞骨架(13.51%)、细胞信号传导(13.51%)及代谢类基因(13.51%)共占67.56%.[结论]构建凡纳滨对虾肌肉组织的全长cDNA文库,可实现短期内获得大量凡纳滨对虾肌肉组织的功能基因表达信息.%[Objective]The studies had been undertaken in order to understand the biological basis of expression of functional genes in muscular tissue of Litopenaeus vannamei. [Method]The full length cDNA library from muscular tissue of Litopenaeus vannmei was constructed and expressed Sequence Tags (ESTs) were sequenced. [Result]The constructed library was 8.50×106 CFU in capacity with 95% recombinant coefficient. The PCR results showed that the inserts ranged from 0.5 to 4.0 kb and most of them were larger than 1.0 kb. 72 clones were randomly selected and sequenced for full length. Of which, 37 cDNA sequences were identified with known functions, and 18 cDNA sequences remained as unidentiffed. Using gene ontology function classification, 37 cDNA sequences with known function were classified into groups of protein synthesis, cytoskeleton, signal transduction, metabolism, transporter, energy, transcription factors, response to disease

  11. Effect of recombinant erythropoietin on functional activity of cultured human cells.

    Science.gov (United States)

    Emel'yanova, E A; Kosykh, A V; Sukhanov, Yu V; Vorotelyak, E A; Vasil'ev, A V

    2012-08-01

    We studied the effect of recombinant human erythropoietin on functional activity of skin cells in vitro. It was found that erythropoietin stimulated proliferation of mesenchymal and epithelial cells and effectively protected epidermal HaCaT cells from apoptosis. Insignificant effect of erythropoietin on contraction of collagen gel by mesenchymal cells was revealed. These findings suggest that erythropoietin can be a promising component of wound-healing preparations.

  12. 5'-end sequences of budding yeast full-length cDNA clones and quality scores - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Budding yeast cDNA sequencing project 5'-end sequences of budding yeast full-length cDNA clones and quality ...scores Data detail Data name 5'-end sequences of budding yeast full-length cDNA clones and quality scores De...from the budding yeast full-length cDNA library by the vector-capping method, the sequence quality score gen...s accession only. Sequence 5'-end sequence data of budding yeast full-length cDNA clones. FASTA format. Quality Phred's quality... Update History of This Database Site Policy | Contact Us 5'-end sequences of budding yeast full-length cDNA clones and quality

  13. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    Science.gov (United States)

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-04-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  14. 我国登革2型病毒43株基因组全长cDNA的构建%Construction of the full-length cDNA of dengue type 2 virus isolated in China

    Institute of Scientific and Technical Information of China (English)

    欧武; 秦鄂德; 杨翠红; 杨佩英; 于曼

    2001-01-01

    enzyme digestion. The sequences of inserted fragments were determined by PRISMTM ABI 377 automated sequencer. Then the inserted cDNA fragments were cleaved down from the positive recombinants using unique endonuclease, ligated into the 5′ and 3′ halves of the genome cDNA in vitro, respectively, and then constructed a full-length cDNA by ligation. The constructed full-length cDNA was identified by PCR,which amplified the fragments spanning the ligation sites about 457-691bp, and the nucleotide sequence of the amplified fragments was determined by automated sequencer. Results  Using RT-PCR, six cDNA fragments, covering the whole genome of Chinese strain dengue virus 2, were amplified and ligated into the full-length cDNA, which was proved by their nucleotide sequences. Conclusion The sequencing demonstrates that the full-length of genome cDNA molecule of Chinese strain 43 of dengue 2 virus has been constructed successfully. The results obtained from this tesearch have set up the basis for illustrating the mechanisms of pathogenicity and virulence of Chinese strain 43 of dengue 2 virus.

  15. Immunoadjuvant activities of a recombinant chicken IL-12 in chickens vaccinated with Newcastle disease virus recombinant HN protein.

    Science.gov (United States)

    Su, Bor Sheu; Yin, Hsien Sheng; Chiu, Hua Hsien; Hung, Li Hsiang; Huang, Ji Ping; Shien, Jui Hung; Lee, Long Huw

    2011-08-05

    Recombinant fowlpox virus (rFPV/HN) expressing Newcastle disease virus (NDV) HN gene and rFPV/HN/chIL-12 co-expressing chicken IL-12 (chIL-12) and HN (rHN/chIL-12) genes have been characterized. rHN/chIL-12 or rchIL-12, expressed by our previous construct rFPV/chIL-12, co-administered with rHN was assessed for adjuvant activities of chIL-12. Chickens were vaccinated with various amounts of rHN/chIL-12 mixed with mineral oil (MO), intramuscularly. Levels of hemagglutination-inhibition (HI) antibody production depended on the concentration of the injected rHN or rHN/chIL-12. The lower HI antibody titers were obtained in chicken groups rHN/chIL-12/7-rHN/chIL-12/9, receiving 60ng rHN/8ng chIL-12 with MO, 30ng rHN/4ng chIL-12 with MO or 15ng rHN/2ng chIL-12 with MO, respectively, compared to those in chicken groups rHN/7-rHN/9, receiving rHN with MO alone. However, chickens in group rHN/chIL-12/7 or rHN/chIL-12/8 and rHN with MO alone showed the same effective protection. Chicken group rHN/chIL-12/9 was even more protective than that in group rHN/9. When rchIL-12 was co-injected with 15ng rHN plus MO, chickens produced low levels of HI antibody titers; while higher levels of IFN-γ production and an effective protection rate (83%) were obtained. On the other hand, low levels of IFN-γ production and low protection response (50%) were obtained in chickens injected with rHN with MO alone. Taken together, when the concentration of rHN decreased to certain levels, rchIL-12 reduced HI antibody production. The increase in the induction of IFN-γ production might suggest the enhancement of the cell-mediated immunity which conferred the protection from the NDV challenge.

  16. Recombinant production of Epstein-Barr virus BZLF1 trans-activator and characterization of its DNA-binding specificity.

    Science.gov (United States)

    Lim, Chun Shen; Goh, Siang Ling; Krishnan, Gopala; Ng, Ching Ching

    2014-03-01

    This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.

  17. TALENs-directed knockout of the full-length transcription factor Nrf1α that represses malignant behaviour of human hepatocellular carcinoma (HepG2) cells.

    Science.gov (United States)

    Ren, Yonggang; Qiu, Lu; Lü, Fenglin; Ru, Xufang; Li, Shaojun; Xiang, Yuancai; Yu, Siwang; Zhang, Yiguo

    2016-04-11

    The full-length Nrf1α is processed into distinct isoforms, which together regulate genes essential for maintaining cellular homeostasis and organ integrity, and liver-specific loss of Nrf1 in mice results in spontaneous hepatoma. Herein, we report that the human constitutive Nrf1α, rather than smaller Nrf1β/γ, expression is attenuated or abolished in the case of low-differentiated high-metastatic hepatocellular carcinomas. Therefore, Nrf1α is of importance in the physio-pathological origin and development, but its specific pathobiological function(s) remains elusive. To address this, TALENs-directed knockout of Nrf1α, but not Nrf1β/γ, is created in the human hepatocellular carcinoma (HepG2) cells. The resulting Nrf1α(-/-) cells are elongated, with slender spindle-shapes and enlarged gaps between cells observed under scanning electron microscope. When compared with wild-type controls, the invasive and migratory abilities of Nrf1α(-/-) cells are increased significantly, along with the cell-cycle G2-M arrest and S-phase reduction, as accompanied by suppressed apoptosis. Despite a modest increase in the soft-agar colony formation of Nrf1α(-/-) cells, its loss-of-function markedly promotes malgrowth of the subcutaneous carcinoma xenograft in nude mice with hepatic metastasis. Together with molecular expression results, we thus suppose requirement of Nrf1α (and major derivates) for gene regulatory mechanisms repressing cancer cell process (e.g. EMT) and malignant behaviour (e.g. migration).

  18. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk; Parkin, Edward, E-mail: e.parkin@lancaster.ac.uk

    2014-10-31

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  19. Characterization of a Full-Length Endogenous Beta-Retrovirus, EqERV-Beta1, in the Genome of the Horse (Equus caballus

    Directory of Open Access Journals (Sweden)

    Antoinette C. van der Kuyl

    2011-06-01

    Full Text Available Information on endogenous retroviruses fixed in the horse (Equus caballus genome is scarce. The recent availability of a draft sequence of the horse genome enables the detection of such integrated viruses by similarity search. Using translated nucleotide fragments from gamma-, beta-, and delta-retroviral genera for initial searches, a full-length beta-retrovirus genome was retrieved from a horse chromosome 5 contig. The provirus, tentatively named EqERV-beta1 (for the first equine endogenous beta-retrovirus, was 10434 nucleotide (nt in length with the usual retroviral genome structure of 5’LTR-gag-pro-pol-env-3’LTR. The LTRs were 1361 nt long, and differed approximately 1% from each other, suggestive of a relatively recent integration. Coding sequences for gag, pro and pol were present in three different reading-frames, as common for beta-retroviruses, and the reading frames were completely open, except that the env gene was interrupted by a single stopcodon. No reading frame was apparent downstream of the env gene, suggesting that EqERV-beta1 does not encode a superantigen like mouse mammary tumor virus (MMTV. A second proviral genome of EqERV-beta1, with no stopcodon in env, is additionally integrated on chromosome 5 downstream of the first virus. Single EqERV-beta1 LTRs were abundantly present on all chromosomes except chromosome 24. Phylogenetically, EqERV-beta1 most closely resembles an unclassified retroviral sequence from cattle (Bos taurus, and the murine beta-retrovirus MMTV.

  20. Subtype-independent near full-length HIV-1 genome sequencing and assembly to be used in large molecular epidemiological studies and clinical management

    Directory of Open Access Journals (Sweden)

    Sebastian Grossmann

    2015-06-01

    Full Text Available Introduction: HIV-1 near full-length genome (HIV-NFLG sequencing from plasma is an attractive multidimensional tool to apply in large-scale population-based molecular epidemiological studies. It also enables genotypic resistance testing (GRT for all drug target sites allowing effective intervention strategies for control and prevention in high-risk population groups. Thus, the main objective of this study was to develop a simplified subtype-independent, cost- and labour-efficient HIV-NFLG protocol that can be used in clinical management as well as in molecular epidemiological studies. Methods: Plasma samples (n=30 were obtained from HIV-1B (n=10, HIV-1C (n=10, CRF01_AE (n=5 and CRF01_AG (n=5 infected individuals with minimum viral load >1120 copies/ml. The amplification was performed with two large amplicons of 5.5 kb and 3.7 kb, sequenced with 17 primers to obtain HIV-NFLG. GRT was validated against ViroSeqTM HIV-1 Genotyping System. Results: After excluding four plasma samples with low-quality RNA, a total of 26 samples were attempted. Among them, NFLG was obtained from 24 (92% samples with the lowest viral load being 3000 copies/ml. High (>99% concordance was observed between HIV-NFLG and ViroSeqTM when determining the drug resistance mutations (DRMs. The N384I connection mutation was additionally detected by NFLG in two samples. Conclusions: Our high efficiency subtype-independent HIV-NFLG is a simple and promising approach to be used in large-scale molecular epidemiological studies. It will facilitate the understanding of the HIV-1 pandemic population dynamics and outline effective intervention strategies. Furthermore, it can potentially be applicable in clinical management of drug resistance by evaluating DRMs against all available antiretrovirals in a single assay.

  1. High level of full-length cereblon mRNA in lower risk myelodysplastic syndrome with isolated 5q deletion is implicated in the efficacy of lenalidomide.

    Science.gov (United States)

    Jonasova, Anna; Bokorova, Radka; Polak, Jaroslav; Vostry, Martin; Kostecka, Arnost; Hajkova, Hana; Neuwirtova, Radana; Siskova, Magda; Sponerova, Dana; Cermak, Jaroslav; Mikulenkova, Dana; Cervinek, Libor; Brezinova, Jana; Michalova, Kyra; Fuchs, Ota

    2015-07-01

    Downregulation of cereblon (CRBN) gene expression is associated with resistance to the immunomodulatory drug lenalidomide and poor survival outcomes in multiple myeloma (MM) patients. However, the importance of CRBN gene expression in patients with myelodysplastic syndrome (MDS) and its impact on lenalidomide therapy are not clear. In this study, we evaluate cereblon expression in mononuclear cells isolated from bone marrow [23 lower risk MDS patients with isolated 5q deletion (5q-), 37 lower risk MDS patients with chromosome 5 without the deletion of long arms (non-5q-), and 24 healthy controls] and from peripheral blood (38 patients with 5q-, 52 non-5q- patients and 25 healthy controls) to gain insight into, firstly, the role of cereblon in lower risk MDS patients with or without 5q deletion and, secondly, into the mechanisms of lenalidomide action. Patients with 5q- lower risk MDS have the highest levels of CRBN mRNA in comparison with both lower risk MDS without the deletion of long arms of chromosome 5 and healthy controls. CRBN gene expression was measured using the quantitative TaqMan real-time PCR. High levels of CRBN mRNA were detected in all lenalidomide responders during the course of therapy. A significant decrease of the CRBN mRNA level during lenalidomide treatment is associated with loss of response to treatment and disease progression. These results suggest that, similar to the treatment of MM, high levels of full-length CRBN mRNA in lower risk 5q- patients are necessary for the efficacy of lenalidomide.

  2. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    Science.gov (United States)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  3. 兔骨保护素全长基因的获取%Acqusition of Full-length Gene for Rabbit Osteoprotegerin

    Institute of Scientific and Technical Information of China (English)

    孙传秀; 赵文志; 何盛为; 方旭

    2012-01-01

    获得兔骨保护素(OPG)基因并分析序列.从兔肱骨中提取总RNA,逆转录形成cDNA,用5'RACE策略扩增OPG基因,经琼脂糖凝胶电泳鉴定,并测序及进行序列分析.兔OPG基因全长1 540 bp,编码400个氨基酸,与人OPG氨基酸序列相比,同源性为89%,而与大鼠等其它动物的同源性则在85%左右.5'RACE法成功获得了兔OPG基因的真实序列,为OPG基因的功能研究奠定了良好基础.%This paper is to show a way of acqusition of the variable region gene of rabbit osteoprotegerin (OPG) and to analyse series. Total RNA was extracted from rabbit tibia itranscripted reversely into cDNA with random primers. The variable region of the OPG gene ampliflied using 5'RACE. Sequencing was confirmed by agarose gel electropho-resis and sequencing analysis. Full length of OPG gene was 1540bp that encoding 400 amino acids. It shared 89% I-dentity with human OPG in whole amino acid sequence and about 85% with rattus norvegicus and other mammal. The OPG sequence of rabbit was obtained by 5'RACE, which could provide a good basis for OPG functional study.

  4. Recurrence of occult hepatitis B virus infection in a recipient of a liver transplant for HCV-related cirrhosis: full length genome, mutations analysis and literature review

    Directory of Open Access Journals (Sweden)

    Tahar Bajjou

    2014-08-01

    Full Text Available The outcome of liver transplant recipients in HCV chronic carriers with Anti-HBc only concerning occult HBV infection is unknown. We report here the case of a patient who underwent liver transplantation (LT for cirrhosis post chronic hepatitis C who received an allograft from a donor with no marker of hepatitis B infection. After LT, HBV DNA was detected in the serum in the absence of HBsAg while HCV RNA remained negative. To determine the origin of this occult HBV infection, we retrospectively examined stored serum and liver tissue, pre and post-transplantation, for HBV DNA by PCR. A stored liver biopsy of the donor before transplantation was also tested. HBV DNA was detected in the pre-transplant liver but not in the donor liver. HBV viral load quantified by real time PCR after LT ranged from about 102 to 5x103 HBV DNA copies/mg of liver, while in sera, concentrations ranged from 102 to 3x103 HBV DNA copies/ml. All PCR products in the S gene from liver and sera were sequenced. Analysis of sequences showed the presence of an HBV strain genotype D. The nucleotide homology between the patient's HBV strains before and after LT was 96 % across the analyzed regions. Full length HBV genomes were amplified from the sera using Rolling Circle Amplification and then sequenced. Analysis of sequences confirmed the genotype D, but did not show obvious mutations that could contribute to HBsAg seronegativity and low HBV viral replication. Factors leading to occult HBV infection are still unclear, but it is well establish that occult HBV infection is frequent in HCV patients. This underlines the role of extra hepatic sites for HBV replication, potentially lymphocytes acting as and ldquo;reservoirs and rdquo;. [Int J Res Med Sci 2014; 2(4.000: 1294-1301

  5. Proteome Analysis of Liver Cells Expressing a Full- Length Hepatitis C Virus (HCV) Replicon and Biopsy Specimens of Posttransplantation Liver from HCV-Infected Patients

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Diamond, Deborah L.; Chan, Eric Y.; Gritsenko, Marina A.; Qian, Weijun; Stastna, Miroslava; Baas, Tracey; Camp, David G.; Carithers, Jr., Robert L.; Smith, Richard D.; Katze, Michael G.

    2005-06-01

    The development of a reproducible model system for the study of Hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full length HCV replicon. We detected > 4,400 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled to mass spectrometry (MS). The set of Huh-7.5 proteins confidently identified is, to our knowledge, the most comprehensive yet reported for a human cell line. Consistent with the literature, a comparison of Huh-7.5 cells (+) and (-) the HCV replicon identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where > 1,500 proteins were detected from 2 {micro}g protein lysate using the Huh-7.5 protein database and the accurate mass and time (AMT) tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.

  6. Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan

    Directory of Open Access Journals (Sweden)

    Shotland Lawrence I

    2004-09-01

    Full Text Available Abstract Background Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10. TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3. Methods We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3. Results We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues. Conclusion Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449 of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.

  7. Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli.

    Science.gov (United States)

    Svensson, Johan; Andersson, Christer; Reseland, Janne E; Lyngstadaas, Petter; Bülow, Leif

    2006-07-01

    Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.

  8. Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID.

    Science.gov (United States)

    Wakae, Koshou; Magor, Brad G; Saunders, Holly; Nagaoka, Hitoshi; Kawamura, Akemi; Kinoshita, Kazuo; Honjo, Tasuku; Muramatsu, Masamichi

    2006-01-01

    Following activation of mammalian B cells, class switch recombination (CSR) and somatic hypermutation (SHM) of the Ig heavy chain (IgH) gene can improve the functions of the expressed antibodies. Activation-induced cytidine deaminase (AID) is the only known B cell-specific protein required for inducing CSR and SHM in mammals. Lower vertebrates have an AID homologue, and there is some evidence of SHM in vivo. However there is no evidence of CSR in the cartilaginous or bony fishes, and this may be due in part to a lack of cis-elements in the IgH gene that are the normal targets of AID-mediated recombination. We have tested whether bony fish (zebrafish and catfish) AID can mediate CSR and SHM in mammalian cells. As expected, ectopic expression of fish AID in mouse fibroblasts resulted in mutations in an introduced SHM reporter gene, indicating that fish AID can mediate SHM. Unexpectedly, expression of fish AID in mouse AID-/- B cells induced surface IgG expression as well as switched transcripts from Ig gene loci, clearly indicating that the fish AID protein can mediate CSR, at least in mouse cells. These results suggest that the AID protein acquired the ability to mediate CSR before the IgH locus evolved the additional exon clusters and switch regions that are the targets of recombination. We discuss how pleiotropic functions of specific domains within the AID protein may have facilitated the early evolution of CSR in lower vertebrates.

  9. Specific activities of poetam preparation (superlow-doses of antibodies to erythropoietin) and recombinant erythropoietin.

    Science.gov (United States)

    Dygai, A M; Zhdanov, V V; Udut, E V; Simanina, E V; Gur'yantseva, L A; Khrichkova, T Yu; Epshtein, O I; Sergeeva, S A

    2006-09-01

    We compared the capacity of superlow-dose of antibodies to erythropoietin (Poetam) and recombinant erythropoietin (Recormon) to stimulate the recovery of adriamycin-suppressed erythropoiesis in mice. Both preparations exhibited high erythron activation capacity and considerably increased the content of erythrocytes and reticulocytes in the peripheral blood and content of erythrokaryocytes and erythroid precursors in the hemopoietic tissue of experimental animals. The effect of Recormon manifested immediately after injection, while the effect of Poetam was somewhat delayed, but more lasting (due to activation of host erythropoietin system).

  10. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    Science.gov (United States)

    Tomilina, O. A.; Berzhansky, V. N.; Tomilin, S. V.; Shaposhnikov, A. N.

    2016-08-01

    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate.

  11. Highly efficient recombinant production and purification of streptococcal cysteine protease streptopain with increased enzymatic activity.

    Science.gov (United States)

    Lane, Michael D; Seelig, Burckhard

    2016-05-01

    Streptococcus pyogenes produces the cysteine protease streptopain (SpeB) as a critical virulence factor for pathogenesis. Despite having first been described seventy years ago, this protease still holds mysteries which are being investigated today. Streptopain can cleave a wide range of human proteins, including immunoglobulins, the complement activation system, chemokines, and structural proteins. Due to the broad activity of streptopain, it has been challenging to elucidate the functional results of its action and precise mechanisms for its contribution to S. pyogenes pathogenesis. To better study streptopain, several expression and purification schemes have been developed. These methods originally involved isolation from S. pyogenes culture but were more recently expanded to include recombinant Escherichia coli expression systems. While substantially easier to implement, the latter recombinant approach can prove challenging to reproduce, often resulting in mostly insoluble protein and poor purification yields. After extensive optimization of a wide range of expression and purification conditions, we applied the autoinduction method of protein expression and developed a two-step column purification scheme that reliably produces large amounts of purified soluble and highly active streptopain. This method reproducibly yielded 3 mg of streptopain from 50 mL of expression culture at >95% purity, with an activity of 5306 ± 315 U/mg, and no remaining affinity tags or artifacts from recombinant expression. This improved method therefore enables the facile production of the important virulence factor streptopain at higher yields, with no purification scars that might bias functional studies, and with an 8.1-fold increased enzymatic activity compared to previously described procedures.

  12. Biological Activity of Recombinant Accessory Cholerae Enterotoxin (Ace on Rabbit Ileal Loops and Antibacterial Assay

    Directory of Open Access Journals (Sweden)

    Shaghayegh Anvari

    2012-01-01

    Full Text Available Objective: Vibrio cholerae (V. cholerae causes a potentially lethal disease named cholera. The cholera enterotoxin (CT is a major virulence factor of V. cholerae. In addition to CT, V. cholerae produces other putative toxins, such as the zonula occludens toxin (Zot and accessory cholera enterotoxin (Ace. The ace gene is the third gene of the V. cholerae virulence cassette. The Ace toxin alters ion transport, causes fluid accumulation in ligated rabbit ileal loops, and is a cause of mild diarrhea. The aim of this study is the cloning and overexpression of the ace gene into Escherichia coli (E. coli and determination of some characteristics of the recombinant Ace protein.Materials and Methods: In this experimental study, the ace gene was amplified from V. cholerae strain 62013, then cloned in a pET28a expression vector and transformed into an E. coli (DH5 α host strain. Subsequently, the recombinant vector was retransformed into E. coli BL21 for expression, induced by isopropythio-β-D-galctoside (IPTG at a different concentration, and examined by SDS-PAGE and Western blot. A rabbit ileal loop experiment was conducted. Antibacterial activity of the Ace protein was assessed for E. coli, Stapylococcus aureus (S. aureus, and Pseudomonas aeruginosa (P. aeruginosa.Results: The recombinant Ace protein with a molecular weight of 18 kDa (dimeric form was expressed in E. coli BL21. The Ace protein showed poor staining with Coomassie blue stain, but stained efficiently with silver stain. Western blot analysis showed that the recombinant Ace protein reacted with rabbit anti-V. cholerae polyclonal antibody. The Ace protein had antibacterial activity at a concentration of ≥200 μg/ml and caused significant fluid accumulation in the ligated rabbit ileal loop test.Conclusion: This study described an E. coli cloning and expression system (E. coli BL21- pET-28a-ace for the Ace protein of V. cholerae. We confirmed the antibacterial properties and enterotoxin

  13. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamaguchi

    2014-02-01

    Full Text Available Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  14. The imprinted retrotransposon-like gene PEG11 (RTL1 is expressed as a full-length protein in skeletal muscle from Callipyge sheep.

    Directory of Open Access Journals (Sweden)

    Keren Byrne

    Full Text Available Members of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1 is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3, PEG11 (RTL1, PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural

  15. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    Institute of Scientific and Technical Information of China (English)

    QI Fei; GUO Huarong; WANG Jian

    2008-01-01

    Reversible protein phosphorylation,catalyzed by protein kinases and phosphatases,is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes.Protein phosphatase 1(PP1) is the first and well-characterized member of the protein serine/threoninephosphatase family.In the present study.a full-length cDNA encoding the beta isolorm of the catalytic subunit of protein phosphatase 1(PP1cb).was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus,designated SmPP1cb,by the rapid amplification of cDNA ends (RACE) technique.The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame(ORF),flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region.The ORF encodes a putative 327 amino acid protein.and the N-terminal section of this protein iS highly acidic,Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp.a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B(PP2B).And its calculated molecular mass is 37 193 Da and pI 5.8.Sequence analysis indicated that,SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates.and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXXATGG,which is different from mammalian in two positions A-6 and G-3,indicating the possibility of different initiation of translation in turbot,and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals.especially zebrafish.The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  16. Alteration in BDNF and its receptors, full-length and truncated TrkB and p75(NTR) following penetrating traumatic brain injury.

    Science.gov (United States)

    Rostami, Elham; Krueger, Frank; Plantman, Stefan; Davidsson, Johan; Agoston, Denes; Grafman, Jordan; Risling, Mårten

    2014-01-13

    The evidence that BDNF is involved in neuroprotection, neuronal repair and recovery after traumatic brain injury (TBI) is substantial. We have previously shown that the polymorphism of the human BDNF gene predicts cognitive recovery and outcome following penetrating TBI. The distribution of expression of BDNF and its receptors after penetrating TBI has not been investigated. In this study we examined the expression of these genes in a rat model of penetrating TBI. The injury is produced by a controlled penetration of a 2mm thick needle-shaped object, which is accelerated with a pellet from an air gun. We used in situ hybridization and investigated the mRNA expression of BDNF and its receptors: the full-length and the truncated TrkB and p75(NTR), from 1 day to 8 weeks following penetrating TBI. In addition, the protein level of BDNF in frontal cortex and hippocampus was measured by reverse phase protein microarray (RPPM). The mRNA expression of BDNF and its receptors decreased in the hippocampus in the border zone ipsilateral to the injury while there was an increase in mRNA expression at the contralateral side. The increase in BDNF mRNA expression in the hippocampus was sustained for 2 weeks following injury, with the highest expression noted in the CA3 cell layer. Furthermore, the protein analysis by RPPM showed increased levels of BDNF in the frontal cortex and the hippocampus up to 2 weeks after TBI. At 8 weeks following injury there was an intense labeling of the truncated TrkB receptor and the p75(NTR) in the area surrounding the cavity. Our study is the first report on the expression of BDNF and its receptors following penetrating TBI and suggests that their expression is altered long after the acute phase of injury. Further studies are needed to investigate if the late expressions of these receptors are beneficial or deleterious. In either case it indicates the possibility to influence the recovery after brain injury during the chronic phase and the

  17. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity

    Institute of Scientific and Technical Information of China (English)

    Bo Sun; Zhao-Shen Li; Zhen-Xing Tu; Guo-Ming Xu; Yi-Qi Du

    2006-01-01

    AIM: To construct a live attenuated Salmonella typhimurium (S.typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity.METHODS: By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments.RESULTS: A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recompinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylor(i) whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response.CONCLUSION: The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.

  18. Production of recombinant peanut allergen Ara h 2 using Lactococcus lactis

    DEFF Research Database (Denmark)

    Glenting, J.; Poulsen, Lars K.; Kato, K.;

    2007-01-01

    of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis. Results: A synthetic ara h 2 gene was cloned into an L....... lactis expression plasmid containing the P170 promoter and the SP310mut2 signal sequence. Flask cultures grown overnight showed secretion of the 17 kDa Ara h 2 protein. A batch fermentation resulted in 40 mg/ L recombinant Ara h 2. Purification of Ara h 2 from the culture supernatant was done...... by hydrophobic exclusion and size separation. Mass spectrometry and N- terminal analysis showed a recombinant Ara h 2 of full length and correctly processed by the signal peptidase. The immunological activity of recombinant Ara h 2 was analysed by ELISA using antibodies specific for native Ara h 2...

  19. Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis.

    Science.gov (United States)

    Souza, Géssika Silva; do Nascimento, Viviane Veiga; de Carvalho, Laís Pessanha; de Melo, Edésio José Tenório; Fernandes, Keysson Vieira; Machado, Olga Lima Tavares; Retamal, Claudio Andres; Gomes, Valdirene Moreira; Carvalho, André de Oliveira

    2013-09-01

    Antimicrobial peptides (AMPs), which are differentiated from other antibiotic peptides, such as gramicidins and polymyxins, because they are synthesized by large enzymatic complex and bear modified amino acids including d-amino acids, are short polymers of l-amino acids synthesized by ribosomes upon which all living organisms rely to defend themselves from invaders or competitor microorganisms. AMPs have received a great deal of attention from the scientific community as potential new drugs for neglected diseases such as Leishmaniasis. In plants, they include several families of compounds, including the plant defensins. The aim of the present study was to improve the expression of recombinant defensin from Vigna unguiculata seeds (Vu-Defr) and to test its activity against Leishmania amazonensis promatigotes. Recombinant expression was performed in LB and TB media and under different conditions. The purification of Vu-Defr was achieved by immobilized metal ion affinity and reversed-phase chromatography. The purified Vu-Defr was analyzed by circular dichroism (CD), and its biological activity was tested against L. amazonenis promastigotes. To demonstrate that the recombinant production of Vu-Defr did not interfere with its fold and biological activity, the results of all experiments were compared with the results from the natural defensin (Vu-Def). The CD spectra of both peptides presented good superimposition indicating that both peptides present very similar secondary structure and that the Vu-Defr was correctly folded. L. amazonensis treated with Vu-Defr led to the elimination of 54.3% and 46.9% of the parasites at 24 and 48h of incubation time, respectively. Vu-Def eliminated 50% and 54.8% of the parasites at 24 and 48 h, respectively. Both were used at a concentration of 100 μg/mL. These results suggested the potential for plant defensins to be used as new antiparasitic substances.

  20. Does intravenous administration of recombinant tissue plasminogen activator for ischemic stroke can cause inferior myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Mostafa Almasi

    2016-06-01

    Full Text Available Recombinant tissue plasminogen activator (rTPA is one of the main portions of acute ischemic stroke management, but unfortunately has some complications. Myocardial infarction (MI is a hazardous complication of administration of intravenous rTPA that has been reported recently. A 78-year-old lady was admitted for elective coronary artery bypass graft surgery. On the second day of admission, she developed acute left hemiparesis and intravenous rTPA was administered within 120 minutes. Three hours later, she has had chest pain. Rescue percutaneous coronary intervention was performed on right coronary artery due to diagnosis of inferior MI, and the symptoms were resolved.

  1. Expression, Purification and Activity Assay of Two New Recombinant Antagonists of Fibrinogen Receptor

    Directory of Open Access Journals (Sweden)

    Jianbo Yang

    2005-01-01

    Full Text Available The gene sequence of Decorsin which is extracted from a kind of North American leeches was synthesized. Two recombinant proteins, Annexin V plus Decorsin (AnnV-D39 and Annexin V plus the carboxyl terminal 27 amino acid residues of Decorsin(AnnV-D27, were constructed. And a 10 amino acids linker peptide of GGGGSGGGGS was inserted between Annexin V and Decorsin in AnnV-D39. Using pET-28(a+ as an expressing vector, both two recombinant proteins were expressed in E. Coli BL21(DE3 with high efficiency as inclusion bodies. The expression products were purified by DEAE-Cellulose 52 and Sepharose CL-4B chromatography under denaturing condition. Platelet Aggregation Assay (PAA shows that AnnV-D39 has good anti-platelet aggregation activity. However, AnnV-D27 shows no such activities in any PAA test. AnnV-D39 shows good anti-platelet aggregation activity as a new antagonist of fibrinogen receptor, while Annv-D27 needs re-modification

  2. A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors.

    Science.gov (United States)

    Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar

    2015-11-01

    With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.

  3. Refolded Recombinant Human Paraoxonase 1 Variant Exhibits Prophylactic Activity Against Organophosphate Poisoning.

    Science.gov (United States)

    Bajaj, Priyanka; Tripathy, Rajan K; Aggarwal, Geetika; Datusalia, Ashok K; Sharma, Shyam S; Pande, Abhay H

    2016-09-01

    Organophosphate (OP) compounds are neurotoxic chemicals, and current treatments available for OP-poisoning are considered as unsatisfactory and inadequate. There is an urgent need for the development of more effective treatment(s) for OP-poisoning. Human paraoxonase 1 (h-PON1) is known to hydrolyze a variety of OP-compounds and is a leading candidate for the development of prophylactic and therapeutic agent against OP-poisoning in humans. Non-availability of effective system(s) for the production of recombinant h-PON1 (rh-PON1) makes it hard to produce improved variant(s) of this enzyme and analyze their in vivo efficacy in animal models. Production of recombinant h-PON1 (rh-PON1) using an Escherichia coli expression system is a key to develop variant(s) of h-PON1. Recently, we have developed a procedure to produce active rh-PON1 enzymes by using E. coli expression system. In this study, we have characterized the OP-hydrolyzing properties of refolded rh-PON1(wt) and rh-PON1(H115W;R192K) variant. Our results show that refolded rh-PON1(H115W;R192K) variant exhibit enhanced OP-hydrolyzing activity in in vitro and ex vivo assays and exhibited prophylactic activity in mouse model of OP-poisoning, suggesting that refolded rh-PON1 can be developed as a therapeutic candidate.

  4. Construction of Full-length cDNA Library for Antler Tip Tissue of Sika Deer%东北梅花鹿鹿茸尖端组织全长cDNA文库的构建

    Institute of Scientific and Technical Information of China (English)

    郝丽; 李和平; 严厉

    2009-01-01

    为克隆出与鹿茸生长发育相关基因的全长序列,采用SMART技术构建了东北梅花鹿鹿茸尖端组织的全长cDNA文库.用SV Total RNA Isolation System试剂盒提取总RNA,以逆转录酶PowerScriptTM 反转录合成第一链cDNA,然后通过LD-PCR合成并扩增ds cDNA.扩增产物经纯化、SfiⅠ酶切、过CHROMA SPIN-400柱去除小片段后,连接到SfiⅠ消化过的pDNR-LIB质粒载体中,最后用电转化法将重组质粒转化到E. coli DH5α内得到原始文库.经测定,构建的原始文库约含有2.56×10~6个重组子,插入片段多在0.5~2kb之间,平均插入片段长度约1.1kb,重组效率接近100%.结果表明,东北梅花鹿鹿茸尖端组织的全长cDNA文库已构建成功.%A study was conducted to construct full-length cDNA library from antler tip tissues of Sika Deer (Cenna nippon hortu-lonun) by SMART technique in order to clone new special genes for development of antler. The total RNA was extracted u-sing SV Total RNA Isolation System. Single-stranded cDNA was synthesized using PowerScripiTM reverse transcriptase,and double-stranded cDNA was synthesized and amplified by long-distance PCR. The PCR products were digested by pro-teinase K and purified. After digestion with Sfi I and size fractionation using CHROMA SPIN -400TM Columns, SMART cDNA was ligated to the Sfi I-digested, dephosphorylated pDNR-LIB vector, and the ligation mixture was transformed into E. call DH5a by electroporation. The primary cDNA library contained 2.56×10~6 independent clones with DNA inserts of 0.5~2. 0 kb, the average size of inserted cDNAs was 1.1 kb, and the recombination percentage was about 100%. Results showed that the full-length cDNA library from antler tip tissues of Sika Deer was successfully constructed.

  5. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available BACKGROUND: Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. METHODOLOGY/PRINCIPAL FINDINGS: The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. CONCLUSIONS/SIGNIFICANCE: The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  6. Expression and purification of an active cecropin-like recombinant protein against multidrug resistance Escherichia coli.

    Science.gov (United States)

    Téllez, Germán Alberto; Castaño-Osorio, Jhon Carlos

    2014-08-01

    Lucilin is a 36 residue cecropin antimicrobial peptide identified as a partial genetic sequence in Lucilia sericata maggots. The antimicrobial spectrum and toxicity profile of Lucilin is unknown. We first report the expression of Lucilin as an active recombinant fusion protein with a cysteine protease domain (CPD) tag. The fusion protein, GWLK-Lucilin-CPD-His8, showed maximum overexpression in Escherichia coli BL21 cells after 12h induction with 0.5mM IPTG (isopropyl beta-d-thiogalactoside) and growth conditions were 37 °C and 150 rpm shaking. The fusion protein was expressed as a soluble form and was purified by Ni-IMAC. The purified protein was active against E. coli ATCC 35218 with a MIC of 0.68 μM, and a clinical isolate of E. coli with extended spectrum beta-lactamase (ESBL) with a MIC of 0.8 μM. The recombinant GWLK-Lucilin-CPD-His8 was not toxic against human erythrocytes or Vero cells with a therapeutic index >63. The results suggest that GWLK-Lucilin-CPD-His8 represents a potential candidate for therapy against multidrug resistant Gram-negative bacteria.

  7. Expression, Purification and Activity Assay of the Recombinant Protein of Catechol-O-Methyltransferase from Chinese White Shrimp (Fenneropenaeus chinensis

    Directory of Open Access Journals (Sweden)

    Dian-Xiang Li

    2010-01-01

    Full Text Available Problem statement: We have previously cloned a gene of Chinese white shrimp Catechol O-Methyltransferase (designated Fc-COMT and characterized the gene expression pattern. In this study, expression and purification as well as activity assay of the recombinant Fc-COMT was further conducted. Approach: Using pET-30a (+ as a prokaryotic expression vector, the recombinant Fc- COMT was expressed in the supernatant of Escherichia coli lysate and easily purified by His-Bind resin chromatography. SDS-PAGE analysis showed that the molecular mass of recombinant Fc-COMT was approximately 30,000 Da, in good agreement with the software-predicted molecular weight. The enzymatic activity of recombinant Fc-COMT was tested using Dihydroxybenzoic Acid (DHBAc as a substrate. Results: The methyl products of DHBAc, Vanillic Acid (VA and Isovanillic Acid (IVA, were detected in the enzymatic reaction mixture with recombinant Fc-COMT by High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS. Conclusion: The recombinant Fc-COMT has catalytic activity of transferring methyl group from S-Adenosyl-L-Methionine (SAM to the 3’ hydroxyl or 4’ hydroxyl group of benzyl ring of DHBAc.

  8. In Vivo Dopamine Efflux is Decreased in Striatum of both Fragment (R6/2 and Full-length (YAC128 Transgenic Mouse Models of Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Joshua W Callahan

    2011-07-01

    Full Text Available Huntington’s disease (HD is characterized by alterations within the corticostriatal circuitry. The striatum is innervated by a dense array of dopaminergic (DA terminals and these DA synapses are critical to the proper execution of motor functions. As motor disturbances are prevalent in HD we examined DA neurotransmission in the striatum in transgenic (tg murine models of HD. We used in vivo microdialysis to compare extracellular concentrations of striatal DA in both a fragment (R6/2 model, which displays a rapid and severe phenotype, and a full-length (YAC128 model that expresses a more progressive phenotype. Extracellular striatal DA concentrations were significantly reduced in R6/2 mice and decreased concomitantly with age-dependent increasing motor impairments on the rotarod task (7, 9, and 11 weeks. In a sample of 11-week-old R6/2 mice, we also measured tissue concentrations of striatal DA and found that total levels of DA were significantly depleted. However, the loss of total DA content (<50% was insufficient to account for the full extent of DA depletion in the extracellular fluid (ECF (~75%. We also observed a significant reduction in extracellular DA concentrations in the striatum of 7-month-old YAC128 mice. In a separate set of experiments, we applied d-amphetamine (AMPH (10 μm locally into the striatum to stimulate the release of intracellular DA into the ECF. The AMPH-induced increase in extracellular DA levels was significantly blunted in 9-week-old R6/2 mice. There also was a decrease in AMPH-stimulated DA efflux in 7-month-old YAC128 mice in comparison to WT controls, although the effect was milder. In the same cohort of 7-month-old YAC128 mice we observed a significant reduction in the total locomotor activity in response to systemic AMPH (2 mg/kg. Our data demonstrate that extracellular DA release is attenuated in both a fragment and full-length tg mouse model of HD and support the concept of DA involvement in aspects of the

  9. Hydrolysis and transglycosylation activity of a thermostable recombinant beta-glycosidase from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Park, Ah-Reum; Kim, Hye-Jung; Lee, Jung-Kul; Oh, Deok-Kun

    2010-04-01

    We expressed a putative beta-galactosidase from Sulfolobus acidocaldarius in Escherichia coli and purified the recombinant enzyme using heat treatment and Hi-Trap ion-exchange chromatography. The resultant protein gave a single 57-kDa band by SDS-PAGE and had a specific activity of 58 U/mg. The native enzyme existed as a dimer with a molecular mass of 114 kDa by gel filtration. The maximum activity of this enzyme was observed at pH 5.5 and 90 degrees C. The half-lives of the enzyme at 70, 80, and 90 degrees C were 494, 60, and 0.2 h, respectively. The hydrolytic activity with p-nitrophenyl(pNP) substrates followed the order p-nitrophenyl-beta-D-fucopyranoside > pNP-beta-D-glucopyranoside > pNP-beta-D-galactopyranoside > pNP-beta-D-mannopyranoside > pNP-beta-D-xylopyranoside, but not toward aryl-alpha-glycosides or pNP-beta-L-arabinofuranoside. Thus, the enzyme was actually a beta-glycosidase. The beta-glycosidase exhibited transglycosylation activity with pNP-beta-D-galactopyranoside, pNP-beta-D-glucopyranoside, and pNP-beta-D-fucopyranoside in decreasing order of activity, in the reverse order of its hydrolytic activity. The hydrolytic activity was higher toward cellobiose than toward lactose, but the transglycosylation activity was lower with cellobiose than with lactose.

  10. Analysis of a cDNA clone expressing a human autoimmune antigen: full-length sequence of the U2 small nuclear RNA-associated B antigen

    Energy Technology Data Exchange (ETDEWEB)

    Habets, W.J.; Sillekens, P.T.G.; Hoet, M.H.; Schalken, J.A.; Roebroek, A.J.M.; Leunissen, J.A.M.; Van de Ven, W.J.M.; Van Venrooij, W.J.

    1987-04-01

    A U2 small nuclear RNA-associated protein, designated B'', was recently identified as the target antigen for autoimmune sera from certain patients with systemic lupus erythematosus and other rheumatic diseases. Such antibodies enabled them to isolate cDNA clone lambdaHB''-1 from a phage lambdagt11 expression library. This clone appeared to code for the B'' protein as established by in vitro translation of hybrid-selected mRNA. The identity of clone lambdaHB''-1 was further confirmed by partial peptide mapping and analysis of the reactivity of the recombinant antigen with monospecific and monoclonal antibodies. Analysis of the nucleotide sequence of the 1015-base-pair cDNA insert of clone lambdaHB''-1 revealed a large open reading frame of 800 nucleotides containing the coding sequence for a polypeptide of 25,457 daltons. In vitro transcription of the lambdaHB''-1 cDNA insert and subsequent translation resulted in a protein product with the molecular size of the B'' protein. These data demonstrate that clone lambdaHB''-1 contains the complete coding sequence of this antigen. The deduced polypeptide sequence contains three very hydrophilic regions that might constitute RNA binding sites and/or antigenic determinants. These findings might have implications both for the understanding of the pathogenesis of rheumatic diseases as well as for the elucidation of the biological function of autoimmune antigens.

  11. Intermolecular DNA ligation activity of eukaryotic toposiomerase II: Potential roles in nucleic acid recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gale, K.C.R.

    1992-01-01

    Single-stranded [phi]X174 (+) strand DNA was used as a model substrate for topoisomerase II to determine whether double-stranded DNA cleavage observed in vitro reflects the in vivo intermediate in the enzyme's catalytic cycle and to investigate potential mechanisms for topoisomerase II-mediated DNA recombination. As found previously for topoisomerase II-mediated cleavage of double-stranded DNA, the enzyme was covalently linked to the 5[prime]-termini of cleaved [phi]X174 molecules. Optimal reaction conditions were similar for the two substrates. In contrast to results with double-stranded molecules, single-stranded DNA cleavage increased with time, was not reversible, and did not require the presence of SDS. Cleavage products generated in the absence of protein denaturant contained free 3[prime]-OH DNA termini. These results strongly suggest that the covalent topoisomerase II-cleaved DNA complex observed in vitro is the active intermediate in the enzyme's catalytic code. Topoisomerase II is capable of joining cleaved [phi]X174 (+) strand DNA to duplex oligonucleotide acceptor molecules by an intermolecular ligation reaction. Intermolecular DNA ligation proceeded in a time and oligonucleotide concentration dependent fashion. The covalent linkage is between the 5[prime]-phosphate of [phi]X174 (+) strand DNA and the 3[prime]-OH of oligonucleotide acceptor molecules. The reaction was dependent on the presence of a divalent cation, was inhibited by salt, and was not affected by the presence of ATP. The enzyme was capable of ligating [phi]X174 (+) strand DNA to double-stranded oligonucleotides that contained 5[prime]-overhang, 3[prime]-overhang, or blunt ends. Single-stranded, nicked, or gapped oligonucleotides could also be used as acceptor molecules. These results demonstrate that the type II enzyme has an intrinsic ability to mediate illegitimate DNA recombination in vitro and suggests possible roles for topoisomerase II in nucleic acid recombination in vivo.

  12. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks.

    Science.gov (United States)

    Aymard, François; Bugler, Beatrix; Schmidt, Christine K; Guillou, Emmanuelle; Caron, Pierre; Briois, Sébastien; Iacovoni, Jason S; Daburon, Virginie; Miller, Kyle M; Jackson, Stephen P; Legube, Gaëlle

    2014-04-01

    Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation-associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.

  13. Activity and stability of recombinant human superoxide dismutase in buffer solutions and hypothermic perfusates.

    Directory of Open Access Journals (Sweden)

    Senoo,Yoshimasa

    1988-06-01

    Full Text Available The stability of recombinant human superoxide dismutase (r-hSOD in buffer solutions was studied in solutions at various pH and temperatures. Additionally, we studied the effects of incubation with proteases, serum and two types of hypothermic perfusates. R-hSOD was stable in the pH range of 6-11 and at temperatures up to 80 degrees C for 30 min. R-hSOD activity was not affected by incubation with trypsin, aminopeptidase M or serum for 2 h. R-hSOD activity determined at various temperatures (4-37 degrees C did not vary remarkably. R-hSOD in hypothermic perfusates was stable at 4-37 degrees C for 24 h.

  14. Recombinant human diamine oxidase activity is not inhibited by ethanol, acetaldehyde, disulfiram, diethyldithiocarbamate or cyanamide.

    Science.gov (United States)

    Bartko, Johann; Gludovacz, Elisabeth; Petroczi, Karin; Borth, Nicole; Jilma, Bernd; Boehm, Thomas

    2016-08-01

    Human diamine oxidase (hDAO, EC 1.4.3.22) is the key enzyme in the degradation of extracellular histamine. Consumption of alcohol is a known trigger of mast cell degranulation in patients with mast cell activation syndrome. Ethanol may also interfere with enzymatic histamine degradation, but reports on the effects on DAO activity are controversial. There are also conflicting reports whether disulfiram, an FDA-approved agent in the treatment of alcohol dependence, inhibits DAO. We therefore investigated the inhibitory potential of ethanol and disulfiram and their metabolites on recombinant human DAO (rhDAO) in three different assay systems. Relevant concentrations of ethanol, acetaldehyde, and acetate did not inhibit rhDAO activity in an in vitro assay system using horseradish peroxidase (HRP) -mediated luminol oxidation. The aldehyde dehydrogenase (ALDH; EC 1.2.1.3) inhibitors cyanamide and its dimer dicyanamide also had no effect on DAO activity. In one assay system, the irreversible ALDH inhibitor disulfiram and its main metabolite diethyldithiocarbamate seemed to inhibit DAO activity. However, the decreased product formation was not due to a direct block of DAO activity but resulted from inhibition of peroxidase employed in the coupled system. Our in vitro data do not support a direct blocking effect of ethanol, disulfiram, and their metabolites on DAO activity in vivo.

  15. Correlation between the glycan variations and defibrinogenating activities of acutobin and its recombinant glycoforms.

    Directory of Open Access Journals (Sweden)

    Ying-Ming Wang

    Full Text Available Acutobin isolated from Deinagkistrodon acutus venom has been used to prevent or treat stroke in patients. This defibrinogenating serine protease is a 39 kDa glycoprotein containing terminal disialyl-capped N-glycans. After sialidase treatment, the enzyme showed similar catalytic activities toward chromogenic substrate, and cleaved the Aα chain of fibrinogen as efficiently as the native acutobin did. However, the level of fibrinogen degradation products in mice after i.p.-injection of desialylated-acutobin was significantly lower than the level after acutobin injection, suggesting that the disialyl moieties may improve or prolong the half-life of acutobin. Two recombinant enzymes with identical protein structures and similar amidolytic activities to those of native acutobin were expressed from HEK293T and SW1353 cells and designated as HKATB and SWATB, respectively. Mass spectrometric profiling showed that their glycans differed from those of acutobin. In contrast to acutobin, HKATB cleaved not only the Aα chain but also the Bβ and γ chains of human fibrinogens, while SWATB showed a reduced α-fibrinogenase activity. Non-denaturing deglycosylation of these proteases by peptide N-glycosidase F significantly reduced their fibrinogenolytic activities and thermal stabilities. The in vivo defibrinogenating effect of HKATB was inferior to that of acutobin in mice. Taken together, our results suggest that the conjugated glycans of acutobin are involved in its interaction with fibrinogen, and that the selection of cells optimally expressing efficient glycoforms and further glycosylation engineering are desirable before a recombinant product can replace the native enzyme for clinical use.

  16. Drosophila brca2 is required for mitotic and meiotic DNA repair and efficient activation of the meiotic recombination checkpoint.

    Directory of Open Access Journals (Sweden)

    Martha Klovstad

    2008-02-01

    Full Text Available Heterozygous mutations in the tumor suppressor BRCA2 confer a high risk of breast and other cancers in humans. BRCA2 maintains genome stability in part through the regulation of Rad51-dependent homologous recombination. Much about its precise function in the DNA damage responses is, however, not yet known. We have made null mutations in the Drosophila homolog of BRCA2 and measured the levels of homologous recombination, non-homologous end-joining, and single-strand annealing in the pre-meiotic germline of Drosophila males. We show that repair by homologous recombination is dramatically decreased in Drosophila brca2 mutants. Instead, large flanking deletions are formed, and repair by the non-conservative single-strand annealing pathway predominates. We further show that during meiosis, Drosophila Brca2 has a dual role in the repair of meiotic double-stranded breaks and the efficient activation of the meiotic recombination checkpoint. The eggshell patterning defects that result from activation of the meiotic recombination checkpoint in other meiotic DNA repair mutants can be strongly suppressed by mutations in brca2. In addition, Brca2 co-immunoprecipitates with the checkpoint protein Rad9, suggesting a direct role for Brca2 in the transduction of the meiotic recombination checkpoint signal.

  17. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A

    2012-09-01

    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  18. Generation of biologically active multi-sialylated recombinant human EPOFc in plants.

    Directory of Open Access Journals (Sweden)

    Alexandra Castilho

    Full Text Available Hyperglycosylated proteins are more stable, show increased serum half-life and less sensitivity to proteolysis compared to non-sialylated forms. This applies particularly to recombinant human erythropoietin (rhEPO. Recent progress in N-glycoengineering of non-mammalian expression hosts resulted in in vivo protein sialylation at great homogeneity. However the synthesis of multi-sialylated N-glycans is so far restricted to mammalian cells. Here we used a plant based expression system to accomplish multi-antennary protein sialylation. A human erythropoietin fusion protein (EPOFc was transiently expressed in Nicotiana benthamiana ΔXTFT, a glycosylation mutant that lacks plant specific N-glycan residues. cDNA of the hormone was co-delivered into plants with the necessary genes for (i branching (ii β1,4-galactosylation as well as for the (iii synthesis, transport and transfer of sialic acid. This resulted in the production of recombinant EPOFc carrying bi- tri- and tetra-sialylated complex N-glycans. The formation of this highly complex oligosaccharide structure required the coordinated expression of 11 human proteins acting in different subcellular compartments at different stages of the glycosylation pathway. In vitro receptor binding assays demonstrate the generation of biologically active molecules. We demonstrate the in planta synthesis of one of the most complex mammalian glycoforms pointing to an outstanding high degree of tolerance to changes in the glycosylation pathway in plants.

  19. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells.

    Science.gov (United States)

    Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta

    2014-01-01

    Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002-2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.

  20. Optimisation of recombinant production of active human cardiac SERCA2a ATPase.

    Science.gov (United States)

    Antaloae, Ana V; Montigny, Cédric; le Maire, Marc; Watson, Kimberly A; Sørensen, Thomas L-M

    2013-01-01

    Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca(2+) translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.

  1. Expression of soluble, biologically active recombinant human endostatin in Escherichia coli.

    Science.gov (United States)

    Xu, Han-Mei; Zhang, Guo-Yuan; Ji, Xiao-Dan; Cao, Lin; Shu, Luan; Hua, Zi-Chun

    2005-06-01

    Endostatin, a 20kDa C-terminal fragment of collagen XVIII, is a potent anti-angiogenic protein and inhibitor of tumor growth. Recombinant endostatin was prepared from Escherichia coli deposited as insoluble, inactive inclusion bodies. In the present study, we produced soluble and biologically active recombinant human endostatin (rhEndostatin) in E. coli by employing both co-expression of the molecular chaperones and lower temperature fermentation. Two groups of chaperones Trigger factor and GroEL-GroES (GroEL/ES), DnaK-DnaJ-GrpE and GroEL/ES, were co-expressed, respectively, with rhEndostatin at different temperatures (37, 25, and 16 degrees C). It revealed that low temperature or molecular chaperones alone could enhance the production of active rhEndostatin; meanwhile, combinational employment of low temperature cultivation (16 degrees C) together with co-expression of DnaK-DnaJ-GrpE and GroEL/ES was more effective to prevent aggregation of rhEndostatin. The production of soluble rhEndostatin was about 36 mg/L, and at least 16 mg of rhEndostatin was purified from 1L flask culture. The purified rhEndostatin specifically inhibited the proliferation of endothelial cell-bovine capillary endothelial cell in a dose-dependent manner, and it showed potent anti-angiogenic capability on the chorioallantoic membrane of chick embryo in vivo. Our study provides a feasible and convenient approach to produce soluble and biologically active rhEndostatin.

  2. Structurally unique recombinant Kazal-type proteinase inhibitor retains activity when terminally extended and glycosylated.

    Science.gov (United States)

    Kludkiewicz, Barbara; Kodrík, Dalibor; Grzelak, Krystyna; Nirmala, Xavier; Sehnal, Frantisek

    2005-10-01

    Recombinant derivatives of the Kazal-type serine proteinase inhibitor GmSPI2 (36 amino acid residues), which is a component of insect silk, were prepared in the expression vector Pichia pastoris. The rhSPI2 had a C-terminal hexahistidine tag attached to the GmSPI2 sequence, rtSPI2 was extended with GluAlaAla at the N-terminus, and rfSPI2 included this N-terminal extension and a C-terminal tail of 22 residues (myc epitope and hexahistidine). A portion of the secreted rfSI2 was O-glycosylated with a trimannosyl or hexamannosyl. The native inhibitor was active slightly on trypsin and highly on subtilisin and proteinase K. The extended C-terminus in rhSPI2 and rfSPI2 enhanced activity on the two latter enzymes and rendered rfSPI2 active on elastase and pronase, but abolished the inhibition of trypsin. The glycosylation of rfSPI2 reduced its inhibitory activity to a level comparable with the native inhibitor. The rtSPI2 with tripeptide extension at the N-terminus and no C-terminal modification was clearly less active than the native inhibitor. None of the tested compounds inhibited alpha-chymotrypsin and the non-serine proteinases.

  3. Failure of Recombinant Activated Factor VII in Treatment of Diffuse Alveolar Hemorrhage due to Cryoglobulinemic Vasculitis

    Directory of Open Access Journals (Sweden)

    Dania Khoulani

    2014-01-01

    Full Text Available Diffuse alveolar hemorrhage (DAH is a serious complication of the small vessel vasculitis syndromes and carries a high mortality. Recombinant activated factor VII (rFVIIa is used to treat bleeding in patients with hemophilia and antibodies to factor VIII or IX. It is increasingly being used in life-threatening hemorrhage in a variety of other settings in which conventional therapy is unsuccessful. Randomized controlled trials of rFVIIa in DAH are lacking. However, several case reports have described a complete or sustained control of DAH using rFVIIa after patients failed to respond to medical treatment. There are no case reports in the literature describing the use or the failure of rFVIIa in DAH associated with cryoglobulinemic vasculitis. We here report the failure of rFVIIa to control DAH in a patient with CD5+ B-cell non-Hodgkin’s lymphoma and cryoglobulinemic vasculitis.

  4. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs

    Science.gov (United States)

    Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-01-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  5. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs.

    Directory of Open Access Journals (Sweden)

    Zita Nagy

    2016-02-01

    Full Text Available DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR, a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1 is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ and Homologous Recombination (HR repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose Polymerases (PARPs TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation.

  6. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuto, E-mail: tkojima@toyota-ti.ac.jp; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511 (Japan)

    2015-09-15

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi{sub 2}.

  7. Characterization of the peptidase activity of recombinant porcine pregnancy-associated glycoprotein-2.

    Science.gov (United States)

    Telugu, Bhanu Prakash V L; Green, Jonathan A

    2008-12-01

    The pregnancy-associated glycoproteins (PAGs) belong to the aspartic peptidase family. They are expressed exclusively in trophoblasts of even-toed ungulates such as swine, cattle, sheep, etc. In pigs, two distinct PAG transcripts (and some variants) have been described. One of the transcripts, porcine PAG-1 (poPAG-1) may not be capable of acting as a peptidase. The second transcript, poPAG-2, possesses a conserved catalytic centre and has been predicted, but not shown, to have proteolytic activity. The thrust of this work was to test such a possibility. PoPAG-2 was expressed as a recombinant protein with an amino-terminal 'FLAG-tag' in a Baculoviral expression system. The expressed proteins were affinity purified by using an anti-FLAG antibody. The purified preparations were then analysed for proteolytic activity against a fluorescent substrate. Porcine PAG-2 had optimal proteolytic activity around pH 3.5. Against this substrate, it had a k(cat)/K(m) of 1.2 microM(-1) s(-1) and was inhibited by the aspartic peptidase inhibitor, pepstatin A, with a K(i) of 12.5 nM. Since the proteolytic activity of PAGs in the pig has now been established, the search for putative substrates to gain insight into the physiological role of PAGs will likely be the focus of future investigations.

  8. Bimolecular recombination reactions: K-adiabatic and K-active forms of the bimolecular master equations and analytic solutions

    Science.gov (United States)

    Ghaderi, Nima

    2016-03-01

    Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ˜0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.

  9. Bimolecular recombination reactions: K-adiabatic and K-active forms of the bimolecular master equations and analytic solutions.

    Science.gov (United States)

    Ghaderi, Nima

    2016-03-28

    Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ∼0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.

  10. Vaccinia virus recombinants expressing an 11-kilodalton beta-galactosidase fusion protein incorporate active beta-galactosidase in virus particles.

    Science.gov (United States)

    Huang, C; Samsonoff, W A; Grzelecki, A

    1988-10-01

    Recombinant plasmids in which vaccinia virus transcriptional regulatory sequences were fused to the Escherichia coli lacZ gene were constructed for insertion of the lacZ gene into the vaccinia virus genome. beta-Galactosidase (beta-gal) was found in some purified recombinant vaccinia virions. By enzyme activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and microscopic techniques, the evidence suggested that beta-gal accounted for 5% of the total protein in the virion. These recombinant viruses were constructed so that a portion of the coding sequences of a late vaccinia virus structural polypeptide was fused to the amino terminus of beta-gal to produce the fusion protein. Removal of the coding sequences resulted in the complete loss of beta-gal activity. This demonstrated that a vaccinia virus DNA segment from a late structural gene is responsible for the incorporation of beta-gal into the virion.

  11. Expression, purification, and functional characterization of recombinant PTD-SARA

    Institute of Scientific and Technical Information of China (English)

    Chen Huang; Rui Du; Peng Zhang; Hua Meng; Huiwei Jia; Yang Song; Man Li; Yingqi Zhang; Shiren Sun

    2011-01-01

    The Smad anchor for receptor activation (SARA) protein is a binding partner for Smad2/3 that plays an important role in the fibrotic promoting signaling pathway initiated by transforming growth factor-β1 (TGF-β1). The C-terminal 665-750 aa of SARA comprises the Smad-binding domain (SBD). By direct interaction through the SBD, SARA inhibits Smad2/3 phosphorylation and blocks the interaction between Smad2/3 and Smad4, thereby restrains the process of fibrosis.In this study, we constructed a SARA peptide aptamer based on the SBD sequence. The recombinant SARA aptamer,fused with a protein transduction domain (PTD-SARA), was cloned, purified from E. coli, and characterized for the first time. The full-length PTD-SARA coding sequence, created with E. coli favored codons, was cloned into a pQE-30 vector,and the recombinant plasmid was transformed into an M15 strain. After Isopropyl β-D-1-Thiogalactopyranoside (IPTG) induction and Ni2+ affinity purification, recombinant PTD-SARA was further identified by immunobiotting and protein N-terminal sequencing. Epifluorescence microscopy revealed that the recombinant PTD-SARA was transferred into the cytoplasm and nucleus more efficiently than SARA.Moreover, the recombinant PTD-SARA was found to up-regulate the level of E-cadherin and down-regulate the levels of α-SMA and phospho-Smad3 more efficiently than SARA (P< 0.05). Our work explored a method to obtain recombinant PTD-SARA protein. The recombinant PTDSARA fusion protein could enter HK2 cells (an immortalized proximal tubule epithelial cell line) more efficiently than the SARA protein and reverse the renal epithelial-to-mesenchymal transdifferentiation process that was induced by TGF-β1 more effectively than the SARA protein. Recombinant PDT-SARA is likely to be a potential candidate for clinical prevention and treatment of renal fibrosis.

  12. A macroporous bioreactor super activated by the recombinant human transforming growth factor-beta 3

    Directory of Open Access Journals (Sweden)

    Ugo eRipamonti

    2012-06-01

    Full Text Available Macroporous single-phase hydroxyapatite (HA and biphasic HA/β-tricalcium phosphate with 33% post-sinter hydroxyapatite (HA/β-TCP were combined with 25 or 125 µg recombinant human transforming growth factor-β3 (hTGF-β3 to engineer a super activated bioreactor implanted in orthotopic calvarial and heterotopic rectus abdominis muscle sites and harvested on day 30 and 90. Coral-derived calcium carbonate fully converted (100% and partially converted to 5% and 13% hydroxyapatite/calcium carbonate (HA/CC preloaded with 125 and 250 µg hTGF-β3, and 1:5 and 5:1 binary applications of hTGF-β3: hOP-1 by weight, were implanted in the rectus abdominis and harvested on day 20 and 30, respectively, to monitor spatial/temporal morphogenesis by high doses of hTGF-β3. Bone formation was assessed on decalcified paraffin-embedded sections by measuring the fractional volume of newly-formed bone. On day 30 and 90, single phase HA implants showed greater amounts of bone when compared to biphasic specimens; 5 % and 13 % HA/CC pre-loaded with 125 and 250 µg hTGF-β3 showed substantial induction of bone formation; 250 µg hTGF-β3 induced as yet unreported massive induction of bone formation as early as 20 days prominently outside the profile of the macroporous constructs. The induction of bone formation is controlled by the implanted ratio of the recombinant morphogens, i.e. the 1:5 hTGF-β3:hOP-1 ratio by weight was greater than the inverse ratio. The unprecedented tissue induction by single doses of 250 µg hTGF-β3 resulting in rapid bone morphogenesis of vast mineralized ossicles with multiple trabeculations surfaced by contiguous secreting osteoblasts is the novel molecular and morphological frontier for the induction of bone formation in clinical contexts.

  13. The Helper Activities of Different Avian Viruses for Propagation of Recombinant Avian Adeno-Associated Virus

    Institute of Scientific and Technical Information of China (English)

    WANG An-ping; SUN Huai-chang; WANG Jian-ye; WANG Yong-juan; YUAN Wei-feng

    2007-01-01

    To compare the helper activities of different avian viruses for propagation of recombinant avian adeno-associated virus (rAAAV), AAV-293 cells were cotransfected with the AAAV vector pAITR-GFP containing green fluorescent protein (GFP) gene, the AAAV helper vector pcDNA-ARC expressing the rep and cap genes, and the adenovirus helper vector pHelper expressing Ad5 E2A, E4, and VA-RNA genes. Chicken embryonic fibroblast (CEF) or chicken embryonic liver (CEL) cells were cotransfected with the AAAV vector and the AAAV helper vector, followed by infection with Marek's disease virus (MDV), avian adenovirus, chicken embryo lethal orphan (CELO) virus or infectious bursal disease virus (IBDV). Infectious rAAAV particles generated by the two strategies were harvested and titrated on CEF and CEL cells. A significantly higher viral titer was obtained with the helper activity provided by the pHelper vector than by MDV or CELO virus. Further experiments showed that rAAAV-mediated green fluorescent protein (gfp) expression was overtly enhanced by MDV or CELO virus super infection or treatment with sodium butyric acid, but not by IBDV super infection. These data demonstrated that MDV and CELO viruses could provide weak helper activity for propagation of rAAAV, and rAAAV-mediated transgene expression could be enhanced by super infection with the helper viruses.

  14. ATPase activity tightly regulates RecA nucleofilaments to promote homologous recombination

    Science.gov (United States)

    Zhao, Bailin; Zhang, Dapeng; Li, Chengmin; Yuan, Zheng; Yu, Fangzhi; Zhong, Shangwei; Jiang, Guibin; Yang, Yun-Gui; Le, X Chris; Weinfeld, Michael; Zhu, Ping; Wang, Hailin

    2017-01-01

    Homologous recombination (HR), catalyzed in an evolutionarily conserved manner by active RecA/Rad51 nucleofilaments, maintains genomic integrity and promotes biological evolution and diversity. The structures of RecA/Rad51 nucleofilaments provide information critical for the entire HR process. By exploiting a unique capillary electrophoresis-laser-induced fluorescence polarization assay, we have discovered an active form of RecA nucleofilament, stimulated by ATP hydrolysis, that contains mainly unbound nucleotide sites. This finding was confirmed by a nuclease protection assay and electron microscopy (EM) imaging. We further found that these RecA-unsaturated filaments promote strand exchange in vitro and HR in vivo. RecA mutants (P67D and P67E), which only form RecA-unsaturated nucleofilaments, were able to mediate HR in vitro and in vivo, but mutants favoring the formation of the saturated nucleofilaments failed to support HR. We thus present a new model for RecA-mediated HR in which RecA utilizes its intrinsic DNA binding-dependent ATPase activity to remodel the nucleofilaments to a less saturated form and thereby promote HR. PMID:28101376

  15. Expression and purification of biologically active recombinant human paraoxonase 1 from inclusion bodies of Escherichia coli.

    Science.gov (United States)

    Bajaj, Priyanka; Tripathy, Rajan K; Aggarwal, Geetika; Pande, Abhay H

    2015-11-01

    Human PON1 (h-PON1) is a Ca(2+)-dependent serum enzyme and can hydrolyze (and inactivate) a wide range of substrates. It is a multifaceted enzyme and exhibit anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial, and organophosphate (OP)-detoxifying properties. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against these conditions in humans. Insufficient hydrolyzing activity of native h-PON1 against desirable substrate affirms the urgent need to develop improved variant(s) of h-PON1 having enhanced activity. Production of recombinant h-PON1 (rh-PON1) using an Escherichia coli expression system is a key to develop such variant(s). However, generation of rh-PON1 using E. coli expression system has been elusive until now because of the aggregation of over-expressed rh-PON1 protein in inactive form as inclusion bodies (IBs) in the bacterial cells. In this study, we have over-expressed rh-PON1(wt) and rh-PON1(H115W;R192K) proteins as IBs in E. coli, and refolded the inactive enzymes present in the IBs to their active form using in vitro refolding. The active enzymes were isolated from the refolding mixture by ion-exchange chromatography. The catalytic properties of the refolded enzymes were similar to their soluble counterparts. Our results show that the pure and the active variant of rh-PON1 enzyme having enhanced hydrolyzing activity can be produced in large quantities using E. coli expression system. This method can be used for the industrial scale production of rh-PON1 enzymes and will aid in developing h-PON1 as a therapeutic candidate.

  16. Tumour necrosis factor production and natural killer cell activity in peripheral blood during treatment with recombinant tumour necrosis factor

    OpenAIRE

    Männel, Daniela N.; Kist, A.; Ho, A D; Räth, U.; Reichardt, P; Wiedenmann, B; Schlick, E.; Kirchner, H.

    1989-01-01

    Tumour necrosis factor (TNF) has been found to be an important immunomodulator. Among other functions TNF activates natural killer (NK) cells and stimulates monocytes/macrophages in an autocrine fashion. TNF production and NK activity in peripheral blood mononuclear cells were determined in a clinical phase I study in which recombinant human (rh) TNF was administered as a continuous infusion weekly for a period of 8 weeks. Even though TNF production and NK activity were significantly reduced ...

  17. Pharmacokinetics of human recombinant tissue-type plasminogen activator, administered intra-abdominally, in a rat peritonitis model

    NARCIS (Netherlands)

    van Goor, Harry; Bom, VJJ; van der Meer, J; Sluiter, WJ; Geerards, S; de Graaf, JS; Bleichrodt, RP; van der Schaaf, W

    1996-01-01

    Human recombinant tissue-type plasminogen activator (rtPA), administered intraperitoneally, may promote intraabdominal fibrinolysis in peritonitis, thereby preventing adhesion and abscess formation. The pharmacokinetics of a single intraperitoneal dose of 0.5 or 2.0 mg/ml human rtPA were assessed in

  18. Recombinant goose-type lysozyme in channel catfish: Lysozyme activity and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection

    Science.gov (United States)

    The objectives of this study were: 1) to investigate whether recombinant channel catfish lysozyme g (CC-Lys-g) produced in E. coli expression system possesses any lysozyme activity; and 2) to evaluate whether channel catfish lysozyme g plasmid DNA could be used as an immunostimulant to protect chann...

  19. Active immunotherapy of allergic asthma with a recombinant human interleukin-5 protein as vaccine in a murine model

    Institute of Scientific and Technical Information of China (English)

    TAN Guang-hong; WANG Cai-chun; HUANG Feng-ying; WANG Hua; HUANG Yong-hao; LIN Ying-ying

    2007-01-01

    Background Eosinophils are highly related to allergic asthma inflammation. Interleukin (IL)-5 is the major chemokine of eosinophils, inhibition of the activity of IL-5 thus seems to be a potential approach to asthma therapy. The current study was performed to determine whether a recombinant human IL-5 protein as a xenogeneic vaccine has the capability of inducing anti-asthma activities.Methods Recombinant human IL-5 was used as a protein vaccine. Mouse asthma model was established to observe the anti-asthma activities. Lung histology was observed; eosinophils in blood and bronchoalveolar lavage were stained and counted. Airway hyperresponsiveness was determined by whole body plethysmograph. Antibody characters and cytokines were detected with enzyme linked immunosorbent assay (ELISA) and Western blot assay.Results Vaccination with recombinant human IL-5 protein as vaccine significantly reduced airway inflammation and airway hyperresponsiveness, and shifted the cytokine production from Th2 (IL-4) to Th1 (INF-γ) in mice allergic-asthma model. Immunization with recombinant human IL-5 protein vaccine bypassed the immunological tolerance and induced production of polyclonal antibodies that were cross-reactive with murine IL-5.Conclusions Active immunization with xenogeneic homologous IL-5 may be a possible therapeutic approach to the treatment of asthma and potentially of other eosinophilic disorders.

  20. Prolonged binding of radiolabeled recombinant tissue-type plasminogen activator after angioplasty and enclosed thrombolysis of the femoropopliteal arteries

    DEFF Research Database (Denmark)

    Tønnesen, K H; Vinberg, N; Folkenborg, O

    1992-01-01

    The authors measured the binding of indium-111-labeled recombinant tissue-type plasminogen activator (rt-PA) within the recanalized femoropopliteal segment after percutaneous transluminal angioplasty (PTA) and enclosed thrombolysis. In patients with long occlusions (n = 3), 91 micrograms of rt...

  1. Recombinant tissue plasminogen activator as a novel treatment option for infective endocarditis: a retrospective clinical study in 32 children.

    Science.gov (United States)

    Levitas, Aviva; Krymko, Hanna; Richardson, Justin; Zalzstein, Eli; Ioffe, Viktoriya

    2016-01-01

    Infective endocarditis is a life-threatening infectious syndrome, with high morbidity and mortality. Current treatments for infective endocarditis include intravenous antibiotics, surgery, and involve a lengthy hospital stay. We hypothesised that adjunctive recombinant tissue plasminogen activator treatment for infective endocarditis may facilitate faster resolution of vegetations and clearance of positive blood cultures, and therefore decrease morbidity and mortality. This retrospective study included follow-up of patients, from 1997 through 2014, including clinical presentation, causative organism, length of treatment, morbidity, and mortality. We identified 32 patients, all of whom were diagnosed with endocarditis and were treated by recombinant tissue plasminogen activator. Among all, 27 patients (93%) had positive blood cultures, with the most frequent organisms being Staphylococcus epidermis (nine patients), Staphylococcus aureus (six patients), and Candida (nine patients). Upon treatment, in 31 patients (97%), resolution of vegetations and clearance of blood cultures occurred within hours to few days. Out of 32 patients, one patient (3%) died and three patients (9%) suffered embolic or haemorrhagic events, possibly related to the recombinant tissue plasminogen activator. None of the patients required surgical intervention to assist vegetation resolution. In conclusion, it appears that recombinant tissue plasminogen activator may become an adjunctive treatment for infective endocarditis and may decrease morbidity as compared with current guidelines. Prospective multi-centre studies are required to validate our findings.

  2. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis

    Directory of Open Access Journals (Sweden)

    Yang HW

    2012-10-01

    Full Text Available Hung-Wei Yang,1,* Mu-Yi Hua,1,* Kun-Ju Lin,2,* Shiaw-Pyng Wey,3 Rung-Ywan Tsai,4 Siao-Yun Wu,5 Yi-Ching Lu,5 Hao-Li Liu,6 Tony Wu,7 Yunn-Hwa Ma5 1Chang Gung Molecular Medicine Research Center, Department of Chemical and Materials Engineering, 2Molecular Imaging Center, Department of Nuclear Medicine, Chang Gung Memorial Hospital, Kuei-Shan, Tao-Yuan, Taiwan, Republic of China; 3Department of Medical Imaging and Radiological Sciences, 4Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsin-chu, Taiwan, Republic of China; 5Department of Physiology and Pharmacology and Healthy Aging Research Center, 6Department of Electrical Engineering, Chang Gung University, Kuei-Shan, Tao-Yuan, Taiwan, Republic of China; 7Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, Tao-Yuan, Taiwan, Republic of China*These authors contributed equally to this workAbstract: Low-toxicity magnetic nanocarriers (MNCs composed of a shell of poly [aniline-co-N-(1-one-butyric acid aniline] over a Fe3O4 magnetic nanoparticle core were developed to carry recombinant tissue plasminogen activator (rtPA in MNC-rtPA for targeted thrombolysis. With an average diameter of 14.8 nm, the MNCs exerted superparamagnetic properties. Up to 276 µg of active rtPA was immobilized per mg of MNCs, and the stability of the immobilized rtPA was greatly improved during storage at 4°C and 25°C. In vitro thrombolysis testing with a tubing system demonstrated that magnet-guided MNC-rtPA showed significantly improved thrombolysis compared with free rtPA and reduced the clot lysis time from 39.2 ± 3.2 minutes to 10.8 ± 4.2 minutes. In addition, magnet-guided MNC-rtPA at 20% of the regular rtPA dose restored blood flow within 15–25 minutes of treatment in a rat embolism model without triggering hematological toxicity. In conclusion, this improved system is based on magnetic targeting accelerated thrombolysis and is

  3. Using recombinant CD74 protein to inhibit the activity of macrophage migration inhibitory factor (MIF) in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhi-xinSHAN; Xi-yongYU; Qiu-xiongLIN; Yong-hengFU

    2005-01-01

    AIM Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in the pathogenesis of a variety of autoimmune and inflammatory diseases, including arthritis, glomerulonephritis, Gram-positive and Gram-negative sepsis, and atherogenesis. Recent studies showed that CD74(antigen-associated invariant chain Ⅱ) is a high-affinity membrane-binding protein for MIF. The purpose of the present study was to express the recombinant human CD74 in E. coli and inhibit the activity of MIF by using recombinant CD74 in vitro.

  4. Restricted expression of recombination activating gene (RAG-1) in mouse lymphoid tissues

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akihito; Fujinaga, Hiroyuki; Hamatani, Kiyohiro [Radiation Effects Research Foundation, Nagasaki (Japan). Nagasaki Branch; Atsuta, Mitsuru

    1993-03-01

    In an attempt to determine the distribution of recombinase activity in the mouse thymus, spleen, and lymph nodes, we used the in situ hybridization method to examine the expression of the recombination activating genes RAG-1 and RAG-2. Expression of RAG-1 was found in most cortical thymocytes but not in the majority of medullary thymocytes. Although hybridization signals of RAG-2 were not as intense as those of RAG-1, the localization of RAG-2 transcripts was similar to that of RAG-1. In the spleen, expression of RAG-1 was found only in limited cells near the splenic sinus, and the majority of the cells within the follicle were negative for RAG-1 transcript. In nude mice, RAG-1-expressing cells were detected in the same regions, which suggests that in situ hybridization signals of RAG-1 in the spleen are due to the cells of B-cell origin. In the lymph nodes, expression of RAG-1 was found only in the medullary region. Expression of RAG-2 transcript in the spleen and the lymph nodes, if any, was too faint to allow determination of the specific localization. These results suggest that most of the cortical thymocytes and some cells in the spleen are capable of rearranging T-cell receptor genes and immunoglobulin genes, respectively, but the possible involvement of the RAG-1 transcript in RAG-1-positive cells of the spleen and the lymph nodes in functions other than the rearrangement of genes could not be ruled out. (author).

  5. Growth hormone from striped catfish (Pangasianodon hypophthalmus): genomic organization, recombinant expression and biological activity.

    Science.gov (United States)

    Poen, Sinothai; Pornbanlualap, Somchai

    2013-04-15

    Growth hormone is an essential polypeptide required for normal growth and development of vertebrates. In this report, striped catfish (Pangasianodon hypophthalmus) growth hormone gene and cDNA were isolated by reverse transcriptase-polymerase chain reaction. The striped catfish growth hormone (scGH) encoding gene contains 5 exons and 4 introns. The cDNA sequence of the scGH gene contains a 603bp open reading frame and encodes for a 200-aa protein consisting of a putative 22-aa signal peptide and the mature 178-aa protein. The recombinant histidine-tagged scGH protein which expressed in Escherichia coli as inclusion bodies was unfolded, refolded and purified to near-homogeneity by Ni(2+)-NTA chromatography. Analysis of the secondary structure content by CD spectroscopy showed that the α-helical content of the refolded scGH is 55%. Elucidation of the folding pathway of scGH by fluorescence spectroscopy showed that denaturation transition of scGH is coincident and cooperative, consistent with the two-state denaturation mechanism. The purified scGH was biologically active and exhibited growth-promoting activity in striped catfish, but not tilapia.

  6. Recombinant goose-type lysozyme in channel catfish: lysozyme activity and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection.

    Science.gov (United States)

    Pridgeon, Julia W; Klesius, Phillip H; Dominowski, Paul J; Yancey, Robert J; Kievit, Michele S

    2013-10-01

    The objectives of this study were: 1) to investigate whether recombinant channel catfish lysozyme-g (CC-Lys-g) produced in Escherichia coli expression system possesses any lysozyme activity; and 2) to evaluate whether channel catfish lysozyme-g plasmid DNA could be used as an immunostimulant to protect channel catfish against Aeromonas hydrophila infection. Recombinant CC-Lys-g produced in E. coli expression system exhibited significant (P recombinant channel catfish lysozyme-g (pcDNA-Lys-g) was transfected in channel catfish gill cells G1B, the over-expression of pcDNA-Lys-g offered significant (P DNA injection. Macrophages of fish injected with pcDNA-Lys-g produced significantly (P DNA injection. Taken together, our results suggest that pcDNA-Lys-g could be used as a novel immunostimulant to offer immediate protection to channel catfish against A. hydrophila infection.

  7. Development and characterization of recombinant ovine coagulation factor VIII.

    Science.gov (United States)

    Zakas, Philip M; Gangadharan, Bagirath; Almeida-Porada, Graca; Porada, Christopher D; Spencer, H Trent; Doering, Christopher B

    2012-01-01

    Animal models of the bleeding disorder, hemophilia A, have been an integral component of the biopharmaceutical development process and have facilitated the development of recombinant coagulation factor VIII (fVIII) products capable of restoring median survival of persons with hemophilia A to that of the general population. However, there remain several limitations to recombinant fVIII as a biotherapeutic, including invasiveness of intravenous infusion, short half-life, immunogenicity, and lack of availability to the majority of the world's population. The recently described ovine model of hemophilia A is the largest and most accurate phenocopy. Affected sheep die prematurely due to bleeding-related pathogenesis and display robust adaptive humoral immunity to non-ovine fVIII. Herein, we describe the development and characterization of recombinant ovine fVIII (ofVIII) to support further the utility of the ovine hemophilia A model. Full-length and B-domain deleted (BDD) ofVIII cDNAs were generated and demonstrated to facilitate greater biosynthetic rates than their human fVIII counterparts while both BDD constructs showed greater expression rates than the same-species full-length versions. A top recombinant BDD ofVIII producing baby hamster kidney clone was identified and used to biosynthesize raw material for purification and biochemical characterization. Highly purified recombinant BDD ofVIII preparations possess a specific activity nearly 2-fold higher than recombinant BDD human fVIII and display a differential glycosylation pattern. However, binding to the carrier protein, von Willebrand factor, which is critical for stability of fVIII in circulation, is indistinguishable. Decay of thrombin-activated ofVIIIa is 2-fold slower than human fVIII indicating greater intrinsic stability. Furthermore, intravenous administration of ofVIII effectively reverses the bleeding phenotype in the murine model of hemophilia A. Recombinant ofVIII should facilitate the maintenance of

  8. Development and characterization of recombinant ovine coagulation factor VIII.

    Directory of Open Access Journals (Sweden)

    Philip M Zakas

    Full Text Available Animal models of the bleeding disorder, hemophilia A, have been an integral component of the biopharmaceutical development process and have facilitated the development of recombinant coagulation factor VIII (fVIII products capable of restoring median survival of persons with hemophilia A to that of the general population. However, there remain several limitations to recombinant fVIII as a biotherapeutic, including invasiveness of intravenous infusion, short half-life, immunogenicity, and lack of availability to the majority of the world's population. The recently described ovine model of hemophilia A is the largest and most accurate phenocopy. Affected sheep die prematurely due to bleeding-related pathogenesis and display robust adaptive humoral immunity to non-ovine fVIII. Herein, we describe the development and characterization of recombinant ovine fVIII (ofVIII to support further the utility of the ovine hemophilia A model. Full-length and B-domain deleted (BDD ofVIII cDNAs were generated and demonstrated to facilitate greater biosynthetic rates than their human fVIII counterparts while both BDD constructs showed greater expression rates than the same-species full-length versions. A top recombinant BDD ofVIII producing baby hamster kidney clone was identified and used to biosynthesize raw material for purification and biochemical characterization. Highly purified recombinant BDD ofVIII preparations possess a specific activity nearly 2-fold higher than recombinant BDD human fVIII and display a differential glycosylation pattern. However, binding to the carrier protein, von Willebrand factor, which is critical for stability of fVIII in circulation, is indistinguishable. Decay of thrombin-activated ofVIIIa is 2-fold slower than human fVIII indicating greater intrinsic stability. Furthermore, intravenous administration of ofVIII effectively reverses the bleeding phenotype in the murine model of hemophilia A. Recombinant ofVIII should facilitate

  9. Evaluation of Aryoseven Safety (Recombinant Activated Factor VII) in Patients with Bleeding Disorders (An Observational Post-Marketing Surveillance Study)

    Science.gov (United States)

    Toogeh, Gholamreza; Abolghasemi, Hassan; Eshghi, Peyman; Managhchi, Mohammadreza; Shaverdi-niasari, Mohammadreza; Karimi, Katayoon; Roostaei, Samin; Emran, Neda; Abdollahi, Alireza

    2016-01-01

    Background: Recombinant activated factor VII induces hemostasis in patients with coagulopathy disorders. AryoSeven™ as a safe Iranian Recombinant activated factor VII has been available on our market. This study was performed to establish the safety of AryoSeven on patients with coagulopathy disorder. Methods: This single-center, descriptive, cross sectional study was carried out in Thrombus and Homeostasis Research Center ValiAsr Hospital during 2013-2014. Fifty one patients with bleeding disorders who received at least one dose of Aryoseven were enrolled. Patients’ demographic data and adverse effect of drug and reaction related to Aryoseven or previous usage of Recombinant activated FVII were recorded in questionnaires. Finally data were analyzed to compare side effects of Aryoseven and other Recombinant activated FVII brands. Results: Aryoseven was prescribed for 51 Patients. Of all participants with mean age 57.18+21.38 yr, 31 cases were male and 26 subjects had past history of recombinant activated FVII usage. Glanzman was the most frequent disorder followed by congenital FVII deficiency, hemophilia with inhibitors, factor 5 deficiency, acquired hemophilia, hemophilia A with inhibitor, and hemophilia A or B with inhibitor. The majority of bleeding episodes had occurred in joints. Three patients (5.9%) complained about adverse effects of Aryoseven vs. 11.5 % about adverse effects of other brands. However this difference was not significant, statistically. Conclusion: Based on monitor patients closely for any adverse events, we concluded that Aryoseven administration under careful weighing of benefit versus potential harm may comparable with other counterpart drugs. PMID:27799968

  10. Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants.

    Science.gov (United States)

    Dugdale, Benjamin; Mortimer, Cara L; Kato, Maiko; James, Tess A; Harding, Robert M; Dale, James L

    2014-05-01

    Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.

  11. Recombinant-activated factor Ⅶ and neuronal apoptosis in a rat model of intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Qiang Li; Wei Li; Suju Ding; Jianping Tang; Jing Fang; Benqiang Deng; Tao Wu

    2009-01-01

    BACKGROUND:Activated clotting factor Ⅶ has been demonstrated to exhibit obvious anti-apoptosis effects.OBJECTIVE:To observe the effect of activated clotting factor Ⅶ on neuronal apoptosis at different time points following rat intracerebral hemorrhage (ICH).DESIGN,TIME AND SETTING:A randomized,controlled,animal experiment was performed at the Neurobiological Laboratory of Second Military Medical University from October 2005 to April 2006.MATERIALS:Recombinant-activated clotting factor Vlla (rFⅧa) was purchased from Danish Novo Nordisk,Denmark.In situ cell death detection kit-POD kit was purchased from Roche,Switzerland.Caspase-3 activity determination kit from Biovision,USA.METHODS:A total of 72 healthy,male,Sprague Dawley rats,aged 5-8 months,were randomly assigned to three groups (n=24):sham-operated,ICH model,and rFⅧa.In the ICH model and rFⅧa groups,80.0 μL autologous non-clotting blood from rat tails was injected into the right caudate putamen to establish the ICH.The empty microinjector was inserted into the caudate putamen in the sham-operated group.The ICH model and rFⅧa groups were subdivided into four subsets separately:6,24,72 hours and 7 clays following ICH.The rats in the rFⅧa group were injected with 160 μg/kg rFⅧa via the dorsal vein of the penis.MAIN OUTCOME MEASURES:Apoptotic cells were detected in the right caudate putamen by TUNEL;caspase-3 activity by spectrophotometry;and rat neurological function was evaluated by neurological functional impairment scales.RESULTS:Rat neurological function was deteriorated at 24,72 hours,and 7 days following ICH.The TUNEL-positive cells and caspase-3 activity in the right caudate putamen was significantly increased in the ICH rats (P<0.05);rFVlla treatment reduced the number of TUNEL-positive cells and caspase-3 activity in the right caudate putamen (P<0.05),and neurological function was significantly improved (P<0.05).CONCLUSION:rFⅧa was applied within 72 hours after ICH,which reduced

  12. Structure of full-length Drosophila cryptochrome

    Energy Technology Data Exchange (ETDEWEB)

    Zoltowski, Brian D.; Vaidya, Anand T.; Top, Deniz; Widom, Joanne; Young, Michael W.; Crane, Brian R. (Cornell); (Rockefeller)

    2011-12-15

    The cryptochrome/photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to ultraviolet and blue light exposure in all kingdoms of life. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs) and 6-4 photolesions caused by ultraviolet radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalysed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable carboxy-terminal tail that appends the conserved PL homology domain (PHD) and is important for function. Here, we report a 2.3-{angstrom} resolution crystal structure of Drosophila CRY with an intact C terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp536 juts into the CRY catalytic centre to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture and photochemistry can be elaborated into a range of light-driven functions.

  13. Homologous recombination in Leishmania enriettii.

    Science.gov (United States)

    Tobin, J F; Laban, A; Wirth, D F

    1991-02-01

    We have used derivatives of the recently developed stable transfection vector pALT-Neo to formally demonstrate that Leishmania enriettii contains the enzymatic machinery necessary for homologous recombination. This observation has implications for gene regulation, gene amplification, genetic diversity, and the maintenance of tandemly repeated gene families in the Leishmania genome as well as in closely related organisms, including Trypanosoma brucei. Two plasmids containing nonoverlapping deletions of the chloramphenicol acetyltransferase (CAT) gene, as well as the neomycin-resistance gene, were cotransfected into L. enriettii. Analysis of the DNA from these cells by Southern blotting and plasmid rescue revealed that a full-length or doubly deleted CAT gene could be reconstructed by homologous crossing-over and/or gene conversion between the two deletion plasmids. Additionally, parasites cotransfected with pALT-Neo and pALT-CAT-S, a plasmid containing two copies of the chimeric alpha-tubulin-CAT gene, resulted in G418-resistant parasites expressing high levels of CAT activity. The structure of the DNA within these cells, as shown by Southern blot analysis and the polymerase chain reaction, is that which would be expected from a homologous exchange event occurring between the two plasmids.

  14. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    OpenAIRE

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally ...

  15. 中国荷斯坦奶牛STAT1全长基因的克隆与序列分析%Cloning and analysis of full length sequence of STAT1 gene in Chinese Holstein dairy cow

    Institute of Scientific and Technical Information of China (English)

    宋雪梅; 张磊; 姜俊芳; 石放雄; 蒋永清

    2011-01-01

    The full length sequence of STA71 (signal transducers and activators of transcription 1) gene in Chinese Holstein dairy cow was cloned by SMART technology. The primers used for RACE were designed from the sequence of mammalian orthologs of STAT1 genes deposited in GenBank. Sequence analysis revealed that STATX gene was selectively spliced in the 5'and 3'untranslated regions. The Chinese Holstein dairy cow STATX gene contains the 2250 bp open reading frame, encoding a putative protein with 749 amino acids. Phylogenetic tree analysis showed that the protein exhibits a high homology with that from sheep (99. 6% ) , rhesus monkey (96. 4% ), human (95. 87% ) , pongo (95. 73% ) and pig (95. 64% ). The results have laid a foundation for further analysis of structure, expression and regulation of STATX gene in cow.%根据GenBank中收录哺乳动物STAT1(signal transducers and activators of transcription 1)的直系同源基因序列设计了用于中国荷斯坦奶牛STAT1 cDNA末端快速扩增的引物,并通过SMART法克隆了STAT1全长基因.序列分析发现,STAT1基因在5′和3′非翻译区均存在mRNA的选择性剪接.获得的STAT1基因编码序列长为2 250 bp,编码749个氨基酸.蛋白氨基酸同源性分析表明,STAT1在进化上相对保守,牛STAT1基因与羊、恒河猴、人、猩猩、猪等基因相应序列的同源性分别为99.6%,96.4%,95.87%,95.73%和95.64%.中国荷斯坦奶牛STAT1全长基因的成功克隆,为进一步研究牛STAT1的基因结构、基因表达与调控奠定了基础.

  16. Depletion of arginine by recombinant arginine deiminase induces nNOS-activated neurotoxicity in neuroblastoma cells.

    Science.gov (United States)

    Lin, Shan-Erh; Wu, Fe-Lin Lin; Wei, Ming-Feng; Shen, Li-Jiuan

    2014-01-01

    The abnormal regulation of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI) is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown. Addressing this issue is important for evaluating the potential application of rADI in neurodegenerative diseases. SH-SY5Y cells were treated with N-methyl-D-aspartic acid (NMDA) to activate nNOS. NMDA increased NO production by 39.7 ± 3.9% via nNOS under arginine-containing conditions, but there was no significant increase in both arginine-free and rADI pretreated arginine-containing (citrulline) buffer. Subsequently, neither NMDA nor rADI alone caused cytotoxicity, whereas cotreatment with NMDA and rADI resulted in dissipation of the cell mitochondrial membrane potential and decreased cell viability. The mechanism of rADI cytotoxicity in the presence of NMDA is caused by the inhibition of NO production via nNOS mediated by the NMDA receptor, which was abolished when extracellular arginine was absent, even in the presence of citrulline. rADI not only reduced NO production but also caused cellular toxicity in nNOS-activated SH-SY5Y cells, suggesting a dual role for rADI in NOS-mediated neurotoxicity.

  17. Depletion of Arginine by Recombinant Arginine Deiminase Induces nNOS-Activated Neurotoxicity in Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Shan-Erh Lin

    2014-01-01

    Full Text Available The abnormal regulation of inducible nitric oxide synthase (iNOS and neuronal nitric oxide synthase (nNOS is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown. Addressing this issue is important for evaluating the potential application of rADI in neurodegenerative diseases. SH-SY5Y cells were treated with N-methyl-D-aspartic acid (NMDA to activate nNOS. NMDA increased NO production by 39.7 ± 3.9% via nNOS under arginine-containing conditions, but there was no significant increase in both arginine-free and rADI pretreated arginine-containing (citrulline buffer. Subsequently, neither NMDA nor rADI alone caused cytotoxicity, whereas cotreatment with NMDA and rADI resulted in dissipation of the cell mitochondrial membrane potential and decreased cell viability. The mechanism of rADI cytotoxicity in the presence of NMDA is caused by the inhibition of NO production via nNOS mediated by the NMDA receptor, which was abolished when extracellular arginine was absent, even in the presence of citrulline. rADI not only reduced NO production but also caused cellular toxicity in nNOS-activated SH-SY5Y cells, suggesting a dual role for rADI in NOS-mediated neurotoxicity.

  18. Recombinant N-Terminal Slit2 Inhibits TGF-β-Induced Fibroblast Activation and Renal Fibrosis.

    Science.gov (United States)

    Yuen, Darren A; Huang, Yi-Wei; Liu, Guang-Ying; Patel, Sajedabanu; Fang, Fei; Zhou, Joyce; Thai, Kerri; Sidiqi, Ahmad; Szeto, Stephen G; Chan, Lauren; Lu, Mingliang; He, Xiaolin; John, Rohan; Gilbert, Richard E; Scholey, James W; Robinson, Lisa A

    2016-09-01

    Fibrosis and inflammation are closely intertwined injury pathways present in nearly all forms of CKD for which few safe and effective therapies exist. Slit glycoproteins signaling through Roundabout (Robo) receptors have been described to have anti-inflammatory effects through regulation of leukocyte cytoskeletal organization. Notably, cytoskeletal reorganization is also required for fibroblast responses to TGF-β Here, we examined whether Slit2 also controls TGF-β-induced renal fibrosis. In cultured renal fibroblasts, which we found to express Slit2 and Robo-1, the bioactive N-terminal fragment of Slit2 inhibited TGF-β-induced collagen synthesis, actin cytoskeletal reorganization, and Smad2/3 transcriptional activity, but the inactive C-terminal fragment of Slit2 did not. In mouse models of postischemic renal fibrosis and obstructive uropathy, treatment with N-terminal Slit2 before or after injury inhibited the development of renal fibrosis and preserved renal function, whereas the C-terminal Slit2 had no effect. Our data suggest that administration of recombinant Slit2 may be a new treatment strategy to arrest chronic injury progression after ischemic and obstructive renal insults by not only attenuating inflammation but also, directly inhibiting renal fibrosis.

  19. Early intracardiac thrombosis in preterm infants and thrombolysis with recombinant tissue type plasminogen activator

    Science.gov (United States)

    Ferrari, F; Vagnarelli, F; Gargano, G; Roversi, M; Biagioni, O; Ranzi, A; Cavazzuti, G

    2001-01-01

    OBJECTIVES—To determine the incidence of catheter related thrombosis and to test the efficacy of recombinant tissue type plasminogen activator (rt-PA) in preterm infants.
STUDY DESIGN—From January 1995 to December 1998, echocardiography was performed in the first few days of life in 76 very low birthweight (⩽ 1500 g) infants out of a total of 147 having an umbilical catheter placed. When intracardiac thrombosis was diagnosed, rt-PA infusion was performed.
RESULTS—Four infants (5%) developed an intracardiac thrombosis during the first few days of life. In three of them, rt-PA at a dose of 0.4-0.5 mg/kg in a 20-30 minute bolus led to dissolution of the clot. One patient received a three hour infusion after the bolus, at a dose of 0.1 mg/kg/h, with resolution of the thrombus. No systemic effects were observed after rt-PA infusion.
CONCLUSIONS—Early thrombosis may occur as a complication of umbilical catheterisation in preterm infants; early echocardiographic detection of this disorder allows complete, safe, and rapid lysis with rt-PA.

 PMID:11420328

  20. Evidence supporting the use of recombinant activated factor VII in congenital bleeding disorders

    Directory of Open Access Journals (Sweden)

    Pär I Johansson

    2010-06-01

    Full Text Available Pär I Johansson, Sisse R OstrowskiCapital Region Blood Bank, Section for Transfusion Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, DenmarkBackground: Recombinant activated factor VII (rFVIIa, NovoSeven® was introduced in 1996 for the treatment of hemophilic patients with antibodies against coagulation factor VIII or IX.Objective: To review the evidence supporting the use of rFVIIa for the treatment of patients with congenital bleeding disorders.Patients and methods: English-language databases were searched in September 2009 for reports of randomized controlled trials (RCTs evaluating the ability of rFVIIa to restore hemostasis in patients with congenital bleeding disorders.Results: Eight RCTs involving 256 hemophilic patients with antibodies against coagulation factors, also known as inhibitors, were identified. The evidence supporting the use of rFVIIa in these patients was weak with regard to dose, clinical setting, mode of administration, efficacy, and adverse events, given the limited sample size of each RCT and the heterogeneity of the studies.Conclusion: The authors suggest that rFVIIa therapy in hemophilic patients with inhibitors should be based on the individual’s ability to generate thrombin and form a clot, and not on the patient’s weight alone. Therefore, assays for thrombin generation, such as whole-blood thromboelastography, have the potential to significantly improve the treatment of these patients.Keywords: hemophilia, inhibitors, coagulation factor VIII, coagulation factor IX, rFVIIa, NovoSeven, FEIBA, hemostasis, RCT

  1. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis

    Science.gov (United States)

    Hsu, Hao-Lung; Chen, Jyh-Ping

    2017-04-01

    Recombinant tissue plasminogen activator (rtPA) was encapsulated in thermosensitive magnetic liposome (TML) prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, distearolyphosphatidyl ethanolamine-N-poly(ethylene glycol) 2000, cholesterol and Fe3O4 magnetic nanoparticles by solvent evaporation/sonication and freeze-thaw cycles method. Response surface methodology was proved to be a powerful tool to predict the drug encapsulation efficiency and temperature-sensitive drug release. Validation experiments verified the accuracy of the model that provides a simple and effective method for fabricating TML with controllable encapsulation efficiency and predictable temperature-sensitive drug release behavior. The prepared samples were characterized for physico-chemical properties by dynamic light scattering, transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Temperature-sensitive release of rtPA could be confirmed from in vitro thrombolysis experiments. A thrombolytic drug delivery system using TML could be proposed for magnetic targeted delivery of rtPA to the site of thrombus followed by temperature-triggered controlled drug release in an alternating magnetic field.

  2. Purification and characterization of biologically active recombinant human Eppin expressed in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    ZHU Qing-yi; GU Xiao-jian; YANG Jin; WANG Jun-hong; TANG Bo; WU Hong-fei

    2008-01-01

    Background Eppin(epididymis protease inhibitor)appears to play an important role in primate fertility.However,the function of Eppin and its antibody in men and its relationship with men's infertility are poorly studied.To reveal the significance and possibility of detection of anti-Eppin antibody in clinical infertilty cases,we developed an Escherichia coli expression system for the expression of biologically actire human Eppin.Methods The human Eppin gene was cloned into PET-28a(+)vector after induction with 0.5 mmol/L isopropy-β-D-thiogalactoside(IPTG)at 26℃ for 4 hours,and the expressed fusion protein His6-Eppin was purified by Ni2+ affinity chromatography.Afterwards,six female 8-week-old Balb/c mice were immunized with purified His6-Eppin for three weeks.Their sera were collected and polyclonal antibodies against His6-Eppin were purified,all of which were further verified by Western-blot and immunofluorescence analysis.Results About 18.33 mg His6-Eppin was obtained from 1-L flask culture.The produced polyclonal antibodies against His6-Eppin recognized the Eppin protein both in human epididymis and in HEK293T cells by over-expression of the recombinant human Eppin.Conclusion The purified His6-Eppin protein has biological activity,which might be a candidate for clinical diagnosis of infertility and development of male immuno-contraceptive agents.

  3. High cytokine production and effective antitumor activity of a recombinant vaccinia virus encoding murine interleukin 12.

    Science.gov (United States)

    Meko, J B; Yim, J H; Tsung, K; Norton, J A

    1995-11-01

    We have constructed a recombinant vaccinia virus (recVV), vKT0334 mIL-12, containing the genes encoding the p35 and p40 subunits of murine interleukin-12 (mIL-12). In vitro experiments demonstrated that vKT0334 mIL-12 efficiently infected a variety of murine and human tumor cell lines and produced very high amounts (1.5 micrograms/10(6) cells/24 h) of biologically active mIL-12. Mice injected s.c. with 10(6) MCA 105 sarcoma cells, followed by injection at the same site with saline or a control recVV, vKT033, containing no mIL-12 genes, all developed progressively growing tumor, whereas 60% of animals injected with vKT0334 mIL-12 remained tumor free (P < 0.0005). Furthermore, tumor growth was significantly reduced in the remaining mice treated with vKT0334 mIL-12 that did develop tumor compared with mice treated with vKT033 (P < 0.03) or saline (P < 0.0001). We conclude that recVV expressing high levels of mIL-12 offers an effective in vivo method of cytokine gene delivery and expression in tumors with subsequent antitumor effect.

  4. Recombinant human leptin attenuates stress axis activity in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Gorissen, Marnix; Bernier, Nicholas J; Manuel, Remy; de Gelder, Stefan; Metz, Juriaan R; Huising, Mark O; Flik, Gert

    2012-08-01

    Proper functioning of the endocrine stress axis requires communication between the stress axis and other regulatory mechanisms. We here describe an intimate interplay between the stress axis and recombinant human leptin (rhLeptin) in a teleostean fish, the common carp Cyprinus carpio. Restraint stress (by netting up to 96h) increased plasma cortisol but did not affect hepatic leptin expression. Perifusion of pituitary glands or head kidneys with rhLeptin revealed direct effects of rhLeptin on both tissues. RhLeptin suppresses basal and CRF-induced ACTH-secretion in a rapid and concentration-dependent manner. The rhLeptin effect persisted for over an hour after administration had been terminated. RhLeptin decreases basal interrenal cortisol secretion in vitro, and by doing so attenuates ACTH-stimulated cortisol production; rhLeptin does not affect interrenal ACTH-sensitivity. Our findings show that the endocrine stress axis activity and leptin are inseparably linked in a teleostean fish, a notion relevant to further our insights in the evolution of leptin physiology in vertebrates.

  5. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Directory of Open Access Journals (Sweden)

    Arpiar eSaunders

    2012-07-01

    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  6. Recombinant expression and in vitro characterisation of active Huwentoxin-IV.

    Directory of Open Access Journals (Sweden)

    Isabelle Sermadiras

    Full Text Available Huwentoxin-IV (HwTx-IV is a 35-residue neurotoxin peptide with potential application as a novel analgesic. It is a member of the inhibitory cystine knot (ICK peptide family, characterised by a compact globular structure maintained by three intramolecular disulfide bonds. Here we describe a novel strategy for producing non-tagged, fully folded ICK-toxin in a bacterial system. HwTx-IV was expressed as a cleavable fusion to small ubiquitin-related modifier (SUMO in the cytoplasm of the SHuffle T7 Express lysY Escherichia coli strain, which allows cytosolic disulfide bond formation. Purification by IMAC with selective elution of monomeric SUMO fusion followed by proteolytic cleavage and polishing chromatographic steps yielded pure homogeneous toxin. Recombinant HwTx-IV is produced with a C-terminal acid, whereas the native peptide is C-terminally amidated. HwTx-IV(acid inhibited Nav1.7 in a dose dependent manner (IC50 = 463-727 nM. In comparison to HwTx-IV(amide (IC50 = 11 ± 3 nM, the carboxylate was ~50 fold less potent on Nav1.7, which highlights the impact of the C-terminus. As the amide bond of an additional amino acid may mimic the carboxamide, we expressed the glycine-extended analogue HwTx-IV(G36(acid in the SUMO/SHuffle system. The peptide was approximately three fold more potent on Nav1.7 in comparison to HwTx-IV(acid (IC50 = 190 nM. In conclusion, we have established a novel system for expression and purification of fully folded and active HwTx-IV(acid in bacteria, which could be applicable to other structurally complex and cysteine rich peptides. Furthermore, we discovered that glycine extension of HwTx-IV(acid restores some of the potency of the native carboxamide. This finding may also apply to other C-terminally amidated peptides produced recombinantly.

  7. Construction and Evaluation of Normalized cDNA Libraries Enriched with Full-Length Sequences for Rapid Discovery of New Genes from Sisal (Agave sisalana Perr.) Different Developmental Stages

    Science.gov (United States)

    Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng

    2012-01-01

    To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing. PMID:23202944

  8. Construction and evaluation of normalized cDNA libraries enriched with full-length sequences for rapid discovery of new genes from Sisal (Agave sisalana Perr.) different developmental stages.

    Science.gov (United States)

    Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng

    2012-10-12

    To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing.

  9. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    Science.gov (United States)

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants.

  10. Purification and characterisation of recombinant human eukaryotic elongation factor 1 gamma.

    Science.gov (United States)

    Achilonu, Ikechukwu; Siganunu, Thendo P; Dirr, Heini W

    2014-07-01

    The eukaryotic elongation factor 1 gamma (eEF1γ) is a multi-domain protein, which consist of a glutathione transferase (GST)-like N-terminus domain. In association with α, β and δ subunits, eEF1γ forms part of the eukaryotic elongation factor complex, which is mainly involved in protein biosynthesis. The N-terminus GST domain of eEF1γ interacts with the β subunit. eEF1γ subunit is over-expressed in human carcinoma. The role of human eEF1γ (heEF1γ) is poorly understood. A successful purification of recombinant heEF1γ is the first step towards determining unknown properties of the protein, including putative GST-like activities and the structure of the protein. This paper describes the over-expression, purification and characterisation of recombinant full-length, and the N- and C-terminus domains of heEF1γ. All three recombinant heEF1γ constructs over-expressed in the soluble Escherichia coli cell fraction and were purified to homogeneity. Secondary structure analysis indicates that the heEF1γ constructs have high α-helical structural character. The full-length and N-terminus domain are dimeric, while the C-terminus is monomeric. Both full-length and N-terminus domain interact with 8-anilino-1-naphthalene sulfonate (ANS) with KD=70.0 (±5.7) μM and with reduced glutathione (GSH). Glutathione sulfonate displaced ANS bound to hydrophobic binding sites in the recombinant N-terminus domain. Using the standard GSH-1-chloro-2,4-dinitrobenzene conjugation assay, the N-domain showed some enzyme activity (0.03μmolmin(-1) mg(-1) protein), while the full-length heEF1γ did not catalyse the GSH-CDNB conjugation. Consequently, we hypothesize the presence of a presumed GST-like active site structure in the heEF1γ, which comprises a glutathione binding site and a hydrophobic substrate binding site.

  11. The truncated form of glycoprotein gp2 of equine herpesvirus 1 (EHV-1) vaccine strain KyA is not functionally equivalent to full-length gp2 encoded by EHV-1 wild-type strain RacL11.

    Science.gov (United States)

    von Einem, Jens; Wellington, Janet; Whalley, J Millar; Osterrieder, Kerstin; O'Callaghan, Dennis J; Osterrieder, Nikolaus

    2004-03-01

    Most equine herpesvirus 1 (EHV-1) strains, including the naturally occurring virulent RacL11 isolate, encode a large glycoprotein, gp2 (250 kDa), which is expressed from gene 71. Besides other alterations in the viral genome, the avirulent strain KyA harbors an in-frame deletion of 1,242 nucleotides in gene 71. To examine the contributions of gp2 variation to virus growth and virulence, mutant RacL11 and KyA viruses expressing full-length or truncated gp2 were generated. Western blot analyses demonstrated expression of a 250-kDa gp2 in cells infected with RacL11 virus or a mutant KyA virus harboring full-length gene 71, whereas a 75- to 80-kDa gp2 was detected in cells infected with KyA or mutant RacL11 virus expressing KyA gp2. The RacL11 gp2 precursor of 250 kDa in size and its truncated KyA counterpart of 80 kDa, as well as the 42-kDa carboxy-terminal gp2 subunit, were incorporated into virus particles. Absence of gp2 in RacL11 resulted in a 6-fold reduction of extracellular virus titers and a 13% reduction of plaque diameters, whereas gp2-negative KyA exhibited a 55% reduction in plaque diameter and a 51-fold decrease in extracellular virus titers. The massive growth defects of gp2-negative KyA could be restored by reinsertion of the truncated but not the full-length gp2 gene. The virulence of the generated gp2 mutant viruses was compared to the virulence of KyA and RacL11 in a murine infection model. RacL11 lacking gp2 was apathogenic for BALB/c mice, and insertion of the truncated KyA gp2 gene into RacL11 was unable to restore virulence. Similarly, replacement in the KyA genome of the truncated with the full-length RacL11 gene 71 did not result in the generation of virulent virus. From the results we conclude that full-length and truncated EHV-1 gp2 are not functionally equivalent and cannot compensate for the action of their homologues in allogeneic virus backgrounds.

  12. Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases.

    Science.gov (United States)

    Sommer, Daniel; Peters, Annika; Wirtz, Tristan; Mai, Maren; Ackermann, Justus; Thabet, Yasser; Schmidt, Jürgen; Weighardt, Heike; Wunderlich, F Thomas; Degen, Joachim; Schultze, Joachim L; Beyer, Marc

    2014-01-01

    Generation of mouse models by introducing transgenes using homologous recombination is critical for understanding fundamental biology and pathology of human diseases. Here we investigate whether artificial transcription activator-like effector nucleases (TALENs)-powerful tools that induce DNA double-strand breaks at specific genomic locations-can be combined with a targeting vector to induce homologous recombination for the introduction of a transgene in embryonic stem cells and fertilized murine oocytes. We describe the generation of a conditional mouse model using TALENs, which introduce double-strand breaks at the genomic locus of the special AT-rich sequence-binding protein-1 in combination with a large 14.4 kb targeting template vector. We report successful germline transmission of this allele and demonstrate its recombination in primary cells in the presence of Cre-recombinase. These results suggest that TALEN-assisted induction of DNA double-strand breaks can facilitate homologous recombination of complex targeting constructs directly in oocytes.

  13. 虹鳟 Ndufb2基因全长 cDNA 序列的克隆与分析%Cloning and sequence analysis of Ndufb2 full-length cDNA derived from Oncorhynchus mykiss

    Institute of Scientific and Technical Information of China (English)

    王家庆; 边佳; 李代宗; 马爽; 王亮; 那广宁

    2013-01-01

    Summary Rainbow trout belongs to Salmonidae aerobic fish,and it is necessary for high dissolved oxygen content of living water environment.If the dissolved oxygen content of living water is less than 5 mg/L,it will cause the increase of respiratory rate,which is the so-called“aquaculture floating head”phenomenon.Because the fish lives in hypoxia environment and the 90% oxygen consumption is in the mitochondria,the transmission mechanism in composition and electronic respiratory chain may be different from the terrestrial animal.At the mitochondrial inner membrane,electrons from NADH and succinate pass through the electron transport chain to oxygen,which is reduced to water.Complex I is one of the main sites at which premature electron leakage to oxygen occurs,thus being one of the main sites of production of harmful superoxide.The first isolation of mitochondrial complex I since 1 961,its composition and structure have had a primary understanding,but the specific mechanism of its participation in respiration,especially the function of each subunit is not clear.The protein encoded by Ndufb2 gene is a subunit of the multisubunit NADH:ubiquinone oxidoreductase(complex I). Mammalian complex I is composed of 45 different subunits.This protein has NADH dehydrogenase activity and oxidoreductase activity.It plays an important role in transferring electrons from NADH to the respiratory chain. Reverse transcription PCR(RT-PCR) and rapid amplification of cDNA ends(RACE)methods were used for the isolation of the whole cDNA of Ndufb2 gene from brain of Oncorhynchus mykiss .The assembly taskes of 3' and 5'-RACE sequence were completed by DNAman program.A pair of gene specific primers were designed to amplify the full-length cDNA sequence.ClustalX 1.81 and MEGA 3.0 software were used to calculate the amino acid sequence differences,and then the phylogenetic relationships of rainbow trout Ndufb2 gene sequence with other species were analyzed.Protein phosphorylation sites and

  14. Recombinant interferon alfa-2a, an active agent in advanced cutaneous T-cell lymphomas.

    Science.gov (United States)

    Bunn, P A; Ihde, D C; Foon, K A

    1987-01-01

    The cutaneous T-cell lymphomas including mycosis fungoides and the Sézary syndrome, are indolent lymphomas with early systemic dissemination. Like the indolent B-cell lymphomas, they cannot be cured by currently available systemic chemotherapy so new systemic therapies need to be developed. A study of very high-dose recombinant interferon alfa-2a was, therefore, initiated in 20 patients with advanced cutaneous T-cell lymphoma (5 in stage II, 2 in stage III and 13 in stage IV). All patients were refractory to at least 2 standard therapies, including topical nitrogen mustard (18 patients), psoralens and ultraviolet A light (12 patients), total skin electron irradiation (14 patients) and systemic chemotherapy (16 patients). Nine out of 20 patients (45%; 95% confidence interval 25-69%) had either objective partial or complete responses within 3 months of starting treatment. Maximal response, however, often did not occur for at least one year. The median duration of response was 5.5 months and all complete responses lasted more than 2 years. Response frequencies were equal at both cutaneous and extracutaneous sites and in patients with or without prior chemotherapy. Toxicity was exhibited primarily as a flu-like syndrome consisting of fever, malaise, fatigue, anorexia and weight loss which necessitated dose reductions in all patients. Transient elevations in liver function and decreases in renal function and granulocyte counts occurred in some patients. It is concluded that interferon alfa-2a is highly active against advanced cutaneous T-cell lymphomas and that it should be studied in its early stages. It should also be evaluated in combination with other biological agents and with chemotherapy.

  15. Influence of Different Types of Recombination Active Defects on the Integral Electrical Properties of Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Dominik Lausch

    2015-01-01

    Full Text Available In this contribution the influence of different types of recombination-active defects on the integral electrical properties of multicrystalline Si solar cells is investigated. Based on a previous classification scheme related to the luminescence behavior of crystal defects, Type-A and Type-B defects are locally distinguished. It is shown that Type-A defects, correlated to iron contaminations, are dominating the efficiency by more than 20% relative through their impact on the short circuit current ISC and open circuit voltage VOC in standard Si material (only limited by recombination active crystal defects. Contrarily, Type-B defects show low influence on the efficiency of 3% relative. The impact of the detrimental Type-A defects on the electrical parameters is studied as a function of the block height. A clear correlation between the area fraction of Type-A defects and both the global Isc and the prebreakdown behavior (reverse current in voltage regime-2 (−11 V is observed. An outlier having an increased full-area recombination activity is traced back to dense inter- and intragrain nucleation of Fe precipitates. Based on these results it is concluded that Type-A defects are the most detrimental defects in Si solar cells (having efficiencies > 15% and have to be prevented by optimized Si material quality and solar cell process conditions.

  16. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    Science.gov (United States)

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-03

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  17. The ATPase activity of Fml1 is essential for its roles in homologous recombination and DNA repair

    Science.gov (United States)

    Nandi, Saikat; Whitby, Matthew C.

    2012-01-01

    In fission yeast, the DNA helicase Fml1, which is an orthologue of human FANCM, is a key component of the machinery that drives and governs homologous recombination (HR). During the repair of DNA double-strand breaks by HR, it limits the occurrence of potentially deleterious crossover recombinants, whereas at stalled replication forks, it promotes HR to aid their recovery. Here, we have mutated conserved residues in Fml1’s Walker A (K99R) and Walker B (D196N) motifs to determine whether its activities are dependent on its ability to hydrolyse ATP. Both Fml1K99R and Fml1D196N are proficient for DNA binding but totally deficient in DNA unwinding and ATP hydrolysis. In vivo both mutants exhibit a similar reduction in recombination at blocked replication forks as a fml1Δ mutant indicating that Fml1’s motor activity, fuelled by ATP hydrolysis, is essential for its pro-recombinogenic role. Intriguingly, both fml1K99R and fml1D196N mutants exhibit greater sensitivity to genotoxins and higher levels of crossing over during DSB repair than a fml1Δ strain. These data suggest that without its motor activity, the binding of Fml1 to its DNA substrate can impede alternative mechanisms of repair and crossover avoidance. PMID:22844101

  18. A meta-analysis of controlled trials of recombinant human activated protein C therapy in patients with sepsis

    Directory of Open Access Journals (Sweden)

    Wiedermann Christian J

    2005-10-01

    Full Text Available Abstract Background Meta-analysis of two randomised controlled trials in severe sepsis performed with recombinant human activated protein C may provide further insight as to the therapeutic utility of targeting the clotting cascade in this syndrome. Methods In search for relevant studies published, two randomized clinical trials were found eligible. Results The studies, PROWESS and ADDRESS, enrolled a total of 4329 patients with risk ratio (RR and 95% confidence interval (CI data for effect on 28-day mortality relative to control treatment of 0.92 (0.83–1.02 suggesting that recombinant human activated protein C is not beneficial in severe sepsis. In PROWESS, 873 of 1690 patients presented with low risk, and 2315 of 2639 patients in ADDRESS as defined by APACHE II score Conclusion This meta-analysis, therefore, raises doubts about the clinical usefulness of recombinant activated protein C in patients with severe sepsis and an APACHE II score ≥ 25 which can only be resolved by another properly designed clinical trial.

  19. The OECD Blue Book on Recombinant DNA Safety Considerations: it's influence on ISBR and EFSA activities.

    Science.gov (United States)

    Schiemann, Joachim

    2006-01-01

    Biosafety regulatory frameworks are intended to serve as mechanisms for ensuring the safe use of biotechnology products without imposing unacceptable risk to human health or the environment, or unintended constraints to technology transfer. The OECD Blue Book on "Recombinant DNA Safety Considerations", setting out principles and concepts for handling genetically modified organisms safely outside of contained laboratory conditions, was a milestone in the history of biotechnology. The "Recombinant DNA Safety Considerations" definitively became the major resource for the formulation of national regulatory frameworks and international regulations, including the Cartagena Protocol.

  20. Evaluation of recombinant activated protein C for severe sepsis at a tertiary academic medical center

    Directory of Open Access Journals (Sweden)

    Anger KE

    2013-06-01

    Full Text Available Kevin E Anger,1 Jeremy R DeGrado,1 Bonnie C Greenwood,1 Steven A Cohen,2 Paul M Szumita1 1Department of Pharmacy, Brigham and Women’s Hospital, Boston, MA, USA; 2Department of Family Medicine and Population Health, Division of Epidemiology, Virginia Commonwealth University, Richmond, VA, USA Purpose: Early clinical trials of recombinant human activated protein C (rhAPC for severe sepsis excluded patients at high risk of bleeding. Recent literature suggests bleeding rates are higher in clinical practice and may be associated with worsened outcomes. Our objective was to evaluate baseline demographics; incidence, and risk factors for major bleeding; and mortality of patients receiving rhAPC for severe sepsis at our institution. Methods: A retrospective study was performed for all patients receiving rhAPC for treatment of severe sepsis at a tertiary academic medical center from January 2002 to June 2009. Demographic information, clinical variables, intensive care unit, and hospital outcomes were recorded. Results: Of the 156 patients that received rhAPC, 54 (34.6% did not meet institutional criteria for safe use at baseline due to bleeding precaution or contraindication. Twenty-three (14.7% patients experienced a major bleeding event. Multivariate analysis demonstrated baseline International Normalized Ratio ≥2.5 (odds ratio [OR] 3.68, 95% confidence interval [CI]: 1.28–10.56; P = 0.03 and platelet count ≤100 × 103/mm3 (OR 2.86, 95% CI: 1.07–7.67; P = 0.01 as significant predictors of a major bleed. Overall hospital mortality was 57.7%. Multivariate analysis demonstrated the presence of ≥3 organ dysfunctions (OR 2.46, 95% CI: 1.19–5.09; P < 0.05 and medical intensive care unit admission (OR 1.99, 95% CI: 1.00–3.98; P = 0.05 were independent variables associated with hospital mortality. Conclusion: Patients receiving rhAPC at our institution had higher APACHE II scores, mortality, and major bleeding events than published

  1. 人UCA1基因新剪接变异体全长cDNA序列的克隆%Cloning of the full-length cDNA sequence of a novel human UCA1 spliced variant

    Institute of Scientific and Technical Information of China (English)

    王宇; 陈葳; 李旭

    2012-01-01

    Objective To clone the full-length cDNA sequence of novel UCA1 spliced isoforms for understanding the exact mechanism of this type of alternative splicing. Methods The full-length cDNA was amplified from BLZ-211 cells by using the in silicon sequence elongation technique, 5'-RACE and 3'-RACE techniques. Products of RT-PCR were sequenced and further assembled. Results The new UCA1 spliced isoform sequence was 2 202 bp. Conclusion A combination of the in silicon sequence elongation, 5'-RACE and 3'-RACE techniques is an effective way to obtain the full-length cDNA, which will guide further research on the mechanism of this type of alternative splicing.%目的 克隆新的UCA1剪接变异体全长cDNA序列,为研究其可变剪接机制奠定基础.方法 用电子克隆技术和cDNA序列末端快速扩增技术(rapid amplification of cDNA ends,RACE)扩增细胞系BLZ-211 cDNA并进行产物测序和序列拼接.结果 新克隆的UCA1剪接变异体全长cDNA序列为2 202 bp.结论 综合采用电子克隆技术与RACE技术是获得全长cDNA序列的有效方法,为该基因的后续可变剪接机制的研究奠定了基础.

  2. A Truncated P2X7 Receptor Variant (P2X7-j) Endogenously Expressed in Cervical Cancer Cells Antagonizes the Full-length P2X7 Receptor through Hetero-oligomerization*

    OpenAIRE

    Feng, Ying-Hong; LI Xin; Wang, Liqin; Zhou, Lingying; Gorodeski, George I.

    2006-01-01

    A truncated naturally occurring variant of the human receptor P2X7 was identified in cancer cervical cells. The novel protein (P2X7-j), a polypeptide of 258 amino acids, lacks the entire intracellular carboxyl terminus, the second transmembrane domain, and the distal third of the extracellular loop of the full-length P2X7 receptor. The P2X7-j was expressed in the plasma membrane; it showed diminished ligand-binding and channel function capacities and failed to form pores and mediate apoptosis...

  3. MDBK cells which survived infection with a mutant of influenza virus A/WSN and subsequently received many passages contained viral M and NS genes in full length in the absence of virus production.

    Science.gov (United States)

    Urabe, M; Tanaka, T; Tobita, K

    1993-01-01

    From a variant of MDBK cell line carrying the nucleotide sequences specific to a mutant of influenza virus A/WSN, we obtained cDNA clones representing viral M and NS genes in full length by polymerase chain reaction (PCR). The sequence analysis of five cDNA clones each for the respective genes revealed 4 to 10 base changes with M and 2 to 6 with NS compared with the corresponding genes of the original virus, although it was possible that at least some of them were ascribed to the artifacts during reverse transcription or Taq polymerase reaction.

  4. Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets.

    Science.gov (United States)

    Bengtsson, Johan; Hartmann, Martin; Unterseher, Martin; Vaishampayan, Parag; Abarenkov, Kessy; Durso, Lisa; Bik, Elisabeth M; Garey, James R; Eriksson, K Martin; Nilsson, R Henrik

    2012-07-01

    Metagenomic libraries represent subsamples of the total DNA found at a study site and offer unprecedented opportunities to study ecological and functional aspects of microbial communities. To examine the depth of a community sequencing effort, rarefaction analysis of the ribosomal small subunit (SSU/16S/18S) gene in the metagenome is usually performed. The fragmentary, non-overlapping nature of SSU sequences in metagenomic libraries poses a problem for this analysis, however. We introduce a software package - Megraft - that grafts SSU fragments onto full-length SSU sequences, accounting for observed and unobserved variability, for accurate assessment of species richness and sequencing depth in metagenomics endeavors.

  5. Expression of a functional recombinant Phoneutria nigriventer toxin active on K+ channels.

    Science.gov (United States)

    Carneiro, A M D; Kushmerick, C; Koenen, J; Arndt, M H L; Cordeiro, M N; Chavez-Olortegui, C; Diniz, C R; Gomez, M V; Kalapothakis, E; Prado, M A M; Prado, V F

    2003-03-01

    PnTx3-1 is a peptide isolated from the venom of the spider Phoneutria nigriventer that specifically inhibits A-type K(+) currents (I(A)) in GH(3) cells. Here we used a bacterial expression system to produce an NH(2)-extended mutant of PnTx3-1 (ISEF-PnTx3-1) and tested whether the toxin is functional. The recombinant toxin was purified from bacterial extracts by a combination of affinity and ion-exchange chromatography. The recombinant toxin blocked A-type K(+) currents in GH(3) cells in a fashion similar to that observed with the wild-type toxin purified from the spider venom. These results suggest that recombinant cDNA methods provide a novel source for the production of functional Phoneutria toxins. The recombinant ISEF-PnTx3-1 should be useful for further understanding of the role of A-type K(+) currents in biological processes.

  6. Comparison of real time RT-PCR and flow cytometry methods for evaluation of biological activity of recombinant human erythropoietin

    Directory of Open Access Journals (Sweden)

    Sepehrizadeh Z

    2008-05-01

    Full Text Available Background: Evaluation of bioactivity of recombinant erythropoietin is essential for pharmaceutical industry, quality control authorities and researchers. The purpose of this study was to compare real time RT-PCR and flow cytometry for the assay of biological activity of recombinant erythropoietin. Methods: Three concentrations of recombinant erythropoietin BRP (80, 40 and 20 IU/ml were injected subcutaneously to mice. After 4 days the blood was collected and used for reticulocyte counts by flow cytometry and also for the RNA extraction. Real time RT-PCR amplification was carried out for β-globin. Results and conclusion: There was a significant correlation between the total RNA amounts (R2= 0.9995, relative quantity of β-globin mRNA (R2= 0.984 and reticulocyte counts (R2= 0.9742 with rhEpo concentrations. Total RNA and quantitative RT-PCR showed significant dose dependent results as well the reticulocyte counts by flow cytometry for the biological activity assay of rhEpo and so these methods could be considered as alternatives for flow cytometry.

  7. Recombinant Saccharomyces cerevisiae strain expressing a model cytochrome P450 in the rat digestive environment: viability and bioconversion activity.

    Science.gov (United States)

    Garrait, G; Jarrige, J F; Blanquet, S; Beyssac, E; Alric, M

    2007-06-01

    An innovative "biodrug" concept, based on the oral administration of living recombinant microorganisms, has recently emerged for the prevention or treatment of various diseases. An engineered Saccharomyces cerevisiae strain expressing plant P450 73A1 (cinnamate-4-hydroxylase [CA4H] activity) was used, and its survival and ability to convert trans-cinnamic acid (CIN) into p-coumaric acid (COU) were investigated in vivo. In rats, the recombinant yeast was resistant to gastric and small intestinal secretions but was more sensitive to the conditions found in the large intestine. After oral administration of yeast and CIN, the CA4H activity was shown in vivo, with COU being found throughout the rat's digestive tract and in its urine. The bioconversion reaction occurred very fast, with most of the COU being produced within the first 5 min. The gastrointestinal sac technique demonstrated that the recombinant yeast was able to convert CIN into COU (conversion rate ranging from 2 to 5%) in all the organs of the rat's digestive tract: stomach, duodenum, jejunum, ileum, cecum, and colon. These results promise new opportunities for the development of drug delivery systems based on engineered yeasts catalyzing a bioconversion reaction directly in the digestive tract.

  8. FY 1999 report on the survey of Research Association for biotechnology development. Trend survey on the structural analysis of full length cDNA; 1999 nendo biotechnology kaihatsu gijutsu kenkyu kumiai chosa hokokusho. Kanzen cho cDNA no kozo kaiseki ni kansuru doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Recognizing that the acquisition and structural analysis of full length cDNA clones are important subjects for connecting genome study and proteomics, survey was made of projects and technical trends in each country. The results of the survey were divided into the following four items: 1) trend of full length cDNA projects overseas; 2) study of full length cDNA in Japan; 3) full length cDNA project in Japan; 4) survey on technical trends of the structural analysis of full length cDNA. In 4), studies were made on the following: trend of technical development on the structural analysis of full length cDNA, trend of patents on the making of full length cDNA library, outline of the technology for the making of full length cDNA library. Countries for survey were the U.S., Japan, Germany, France and the U.K., and patents for survey were Japan open patents, U.S. open patents and WPI patents. For reference, included were seven data on full length cDNA related general remarks in Japanese, full length cDNA library related papers in English, full length cDNA related trend in Japan, etc. (NEDO)

  9. Recombinant receptor/reporter gene bioassays for assessing the estrogenic and dioxin-like activities of xenobiotics and complex mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zacharewski, T. [Univ. of Western Ontario, London, Ontario (Canada). Dept. of Pharmacology and Toxicology

    1995-12-31

    Exposure to naturally occurring or synthetic substances that possess sex steroid and/or dioxin-like activity may have long range effects on human health, reproductive fitness and environmental quality. Results from recent epidemiological studies have suggested that xenobiotics with sex steroid activity may contribute to the development of hormone-dependent cancers and disorders in the male reproductive tract as well as attenuate sperm production. However, most of these compounds, which are referred to as endocrine disruptors, are structurally dissimilar to sex steroids. Yet, based upon ambiguous assays, it has been conceded that the effects of these compounds are mediated by receptors. The authors have taken advantage of the mechanism of action of these compounds to develop recombinant receptor/reporter gene bioassays for environmental estrogens and dioxin-like compounds. The assays use an easily measurable enzyme activity (i.e. firefly luciferase), exhibit improved sensitivity and selectivity and are amenable to automation. Data will be presented demonstrating that phytoestrogens (e.g. genistein) and xenobiotics such as pesticides (e.g. DDT, Kepone), nonionic surfactants (e.g. p-nonylphenol), and precursors used in the manufacture of plastics (e.g. Bisphenol A) exhibit estrogenic activity. In addition, the assays have been used to detect estrogenic and dioxin-like activity in complex mixtures such as pulp and paper mill black liquor and effluent. These results demonstrate the utility of recombinant receptor/reporter gene bioassays for identifying substances or complex mixtures with estrogenic and/or dioxin-like activity.

  10. Base composition, selection, and phylogenetic significance of indels in the recombination activating gene-1 in vertebrates

    Directory of Open Access Journals (Sweden)

    Vences Miguel

    2009-12-01

    Full Text Available Abstract Background The Recombination Activating Proteins, RAG1 and RAG2, play a crucial role in the immune response in vertebrates. Among the nuclear markers currently used for phylogenetic purposes, Rag1 has especially enjoyed enormous popularity, since it successfully contributed to elucidating the relationships among and within a large variety of vertebrate lineages. We here report on a comparative investigation of the genetic variation, base composition, presence of indels, and selection in Rag1 in different vertebrate lineages (Actinopterygii, Amphibia, Aves, Chondrichthyes, Crocodylia, Lepidosauria, Mammalia, and Testudines through the analysis of 582 sequences obtained from Genbank. We also analyze possible differences between distinct parts of the gene with different type of protein functions. Results In the vertebrate lineages studied, Rag1 is over 3 kb long. We observed a high level of heterogeneity in base composition at the 3rd codon position in some of the studied vertebrate lineages and in some specific taxa. This result is also paralleled by taxonomic differences in the GC content at the same codon position. Moreover, positive selection occurs at some sites in Aves, Lepidosauria and Testudines. Indels, which are often used as phylogenetic characters, are more informative across vertebrates in the 5' than in the 3'-end of the gene. When the entire gene is considered, the use of indels as phylogenetic character only recovers one major vertebrate clade, the Actinopterygii. However, in numerous cases insertions or deletions are specific to a monophyletic group. Conclusions Rag1 is a phylogenetic marker of undoubted quality. Our study points to the need of carrying out a preliminary investigation on the base composition and the possible existence of sites under selection of this gene within the groups studied to avoid misleading resolution. The gene shows highly heterogeneous base composition, which affects some taxa in particular and

  11. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ayako Chino

    Full Text Available BACKGROUND: Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC, is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. METHODOLOGY/PRINCIPAL FINDINGS: We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp. No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. CONCLUSIONS/SIGNIFICANCE: We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different

  12. 茶树泛素活化酶基因全长cDNA克隆及序列分析%Cloning and Sequencing of UBA1 Gene Full-length cDNA from Tea Plant

    Institute of Scientific and Technical Information of China (English)

    邓婷婷; 吴扬; 李娟; 李银花; 黄建安; 刘仲华

    2012-01-01

    The cDNA-AFLP technology was applied to analyze gene expression during periodic albinism process of Anji Baicha. Some transcript-derived fragments (TDFs) were isolated occurring in both the albinistic and re-greening stage leaves. One of them showed a high similarity to ubiquitin-activating enzyme 1 (UBA\\) gene. Based on the fragment, the full length of UBAl gene with 3 764 bp (GenBank Accession No. JN180299) cDNA was obtained via rapid amplification of cDNA ends (RACE), named Camellia Sinensis UBA1 gene. It contained an open reading frame (ORF) encoding a polypeptide of 1 094 amino acid residues with a predicable molecular mass of 121 kD. Analysis of the nucleotide sequence and deduced amino acid sequence showed 82%, 81%, 79%, 79%, 77% homology with UBAl genes from Nicotiana tabacum, Ricinus communis, Oryza saliva subsp. Japonica, Triticum aestivum, Arabidopsis thaliana, respectively. Analysis by qRT-PCR showed that the transcript of UBAl was significantly up-regulated at the albinistic stage to 2.49-fold higher than that at the re-greening stage. This is a key enzyme in the ubiquitin-proteasome mediated protein degradation system. The clone and analysis of the tea plant UBAl gene establishes a good foundation for further study on the molecular mechanism of periodic albinism in Anji Baicha.%应用cDNA-AFLP技术分离安吉白茶阶段性返白过程中的差异表达基因,获得一白期表达上调片断TDF (transcript derived fragment,TDF).BLAST比对结果显示,该片段与其他物种的泛素活化酶基因有很高的相似性.通过SMART-RACE技术分别扩增出其3’和5’末端序列,成功获得该基因全长cDNA序列(GenBank登录号JN180299).所得序列全长3 764 bp,其开放阅读框编码1 094个氨基酸,蛋白分子量约为121 kD.该基因的氨基酸序列与烟草、蓖麻、水稻、小麦、拟南芥中的UBA1基因编码的氨基酸序列分别有82%、81%、79%、79%、77%的同源性.qRT-PCR分析表明,安吉白茶UBA1

  13. Analysis of full-length cDNA sequence of FAD2 gene in Vernicia fordii seeds%油桐种子FAD2基因全长cDNA序列分析

    Institute of Scientific and Technical Information of China (English)

    谢禄山; 谭晓风; 张琳; 龙洪旭

    2012-01-01

    Linoleic acid produced in seeds of Verniciafordii is the direct material for synthesize eleostearic acid through catalysis of FAD2, the researches on FAD2 gene in seed from V. fordii has practical significance on improving yield of eleostearic acid. Taking 16 FAD2 clones in cDNA library of nearly mature V. fordii 'Duinian tung' seeds as materials, CAP3 splicing, BLAST alignment and DNAMAN analysis were carried on. The results showed that the cloned gene sequence was FAD2 full-length cDNA sequence, its length was 1 537 bp. The sequence contained a complete coding sequence, length of 1 146 bp (106-1 255 bp), encoding 383 amino acids. The relative molecular mass of the enzyme protein was 44 144.4 u, jsoelectric point was 8.57. The N end of amino acid sequence had a signal peptide sequence of 6 residues, 5 transmembrane domains, 3 strong hydrophilic sequences existed at the N end, C end and intermediate part, respectively, and the activity center of enzyme was 3 conserved histidine clusters. In system evolution, FAD2 gene in V. fordii had a nearest phylogenetic relationship with V. montana, nearer relationship with Euphorbiaceae plants such as Ricinus communis, Triadica sebifrea, Hevea brasiliensis, Jatropha curcas, and far relationship with Olea europaea, Arachis hypogaea, Sesamum indicum, further relationship with Camelia oleifera.%油桐种子中FAD2催化形成的亚油酸是合成桐油酸的直接原料,研究油桐种子中的FAD2基因对提高桐油酸的产量具有实际意义.将油桐对年桐近成熟种子cDNA文库中的16个FAD2克隆子进行CAP3拼接,再进行BLAST比对,并进行DNAMAN分析,结果表明所克隆的基因序列为FAD2全长cDNA序列,其长度为1 537 bp,含有1个完整的编码序列,长度为1 146 bp( 106~1 255 bp),编码383个氨基酸.酶蛋白相对分子质量44 144.4 u,等电点为8.57,氨基酸序列N端有6个残基的信号肽序列,有5个跨膜结构域,N端、C端及中间各有一段表现为强

  14. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  15. ISOLATION AND IDENTIFICATION OF cDNA FRAGMENTS AND FULL-LENGTH cDNA DIFFERENTIALLY EXPRESSED IN HUMAN GLIOBLASTOMA CELL LINE BT-325 VERSUS ALL-TRANS RETINOIC ACID INDUCTION

    Institute of Scientific and Technical Information of China (English)

    金虎林; 胡松年; 李光涛; 涂纯; 袁建刚; 强伯勤

    2000-01-01

    Objective. To investigate the differentiation process of the human glioblastoma cells. Methods. Differential display reverse transcribed-PCR(DDRT-PCR) was used to isolate the genes differentially expressed in control and all-trans retinoic acid treated human glioblastoma cell line BT-325. Routine method of cDNA library screening was performed to clone full-length cDNA. Results. Thirty-six RT-PCR reactions were performed and 64 differentially expressed fragments were recovered, amplified and cloned. Of them,46 ESTs were sequenced and delivered into the GenBank. The homology comparison us ing BLAST algorithm revealed that 22ESTs are highly homologous with the known genes and many of them play impor tant roles in the cell differentiation progress. A dot-blot hybridization was conducted to certify the differentiation expres sion. The result showed that 27 EST clones are expressed at different level in control and all-trans retinoi c acid treated BT-325 cells. A full-length cDNA was cloned using the ES T-HGBB098. Conclusion. DDRT-PCR was a simple and effective method to serially analyze the differentially expressed genes.

  16. Robust expression of the human neonatal Fc receptor in a truncated soluble form and as a full-length membrane-bound protein in fusion with eGFP.

    Directory of Open Access Journals (Sweden)

    Johan Seijsing

    Full Text Available Studies on the neonatal Fc receptor (FcRn have revealed a multitude of important functions in mammals, including protection of IgG and serum albumin (SA from lysosomal degradation. The pharmacokinetic behavior of therapeutic antibodies, IgG-Fc- and SA-containing drugs is therefore influenced by their interaction with FcRn. Pre-clinical development of such drugs is facilitated if their interaction with FcRn can be studied in vitro. For this reason we have developed a robust system for production of the soluble extracellular domain of human FcRn as well as the full-length receptor as fusion to green fluorescent protein, taking advantage of a lentivirus-based gene delivery system where stable over-expressing cells are easily and rapidly generated. Production of the extracellular domain in multiple-layered culture flasks, followed by affinity purification using immobilized IgG, resulted in capture of milligram amounts of soluble receptor per liter cell culture with retained IgG binding. The receptor was further characterized by SDS-PAGE, western blotting, circular dichroism spectroscopy, ELISA, surface plasmon resonance and a temperature stability assay showing a functional and stable protein of high purity. The full-length receptor was found to be successfully over-expressed in a membrane-bound form with retained pH-dependent IgG- and SA-binding.

  17. ISOLATION AND IDENTIFICATION OF cDNA FRAGMENTS AND FULL-LENGTH cDNA DIFFERENTIALLY EXPRESSEDIN HUMAN GLIOBLASTOMA CELL LINE BT-325 VERSUS ALL-TRANS RETINOIC ACID INDUCTION

    Institute of Scientific and Technical Information of China (English)

    金虎林; 胡松年; 李光涛; 涂纯; 袁建刚; 强伯勤

    2000-01-01

    Objective. To investigate the differentiation process of the human glioblastoma cells. Methods. Differential display reverse transcribed-PCR(DDRT-PCR) was used to isolate the genes differentially expressed in control and all-trans retinoic acid treated human glioblastoma cell line BT-325. Routine method of cDNA library screening was performed to clone full-length cDNA. Results. Thirty-six RT-PCR reactions were performed and 64 differentially expressed fragments were recovered, amplified and cloned. Of them,46 ESTs were sequenced and delivered into the GenBank. The homology comparison us-ing BLAST algorithm revealed that 22ESFs are highly homologous with the known genes and many of them play impor-tant roles in the cell differentiation progress. A dot-blot hybridization was conducted to certify the differemiation expres-sion. The result showed that 27 EST clones are expressed at different level in control and all-traus retinoic acid treated BT-325 cells. A full-length cDNA was cloned using the EST-HGBB098.Conclusion. DDRT-PCR was a simple and effective method to segally analyze the differentially expressed genes.

  18. 家蝇防御素基因的cDNA克隆及序列分析%Cloning and sequence analysis of the full-length cDNA encoding defensin, an antimicrobial peptide from the housefly (Musca domestica)

    Institute of Scientific and Technical Information of China (English)

    王来城; 王金星; 王来元; 赵小凡

    2003-01-01

    Defensin is a kind of cationic.inducible antimicrobial peptide found in a large range of living organisms that contributes to host defense by disrupting the cytoplasmic membrane of microorganisms.with their broad antimicrobial spectrum and strong pharmaceutical effects.antimicrobial peptides,including defensins,represent a source of novel antibiotic agents.A novel full-length 430 base pairs cDNA of an insect defensin was cloned using polymerase chain reaction (PCR) from the cDnA library of houseflies(Musca domestica) that had been challenged by E.coli and staphylococcus taincd an NH2-terminal signal sequence(1-22)followed by a propeptide and the mature peptide(53-92),The sequence identity with other insect defensin is between 51% and 73%.The mature peptide,with a predicted molecular weight of 4.0kDa,and pI of 8.69,has 1 negative charged amino acid and 4 positice ones,the putative housefly defensin is characterized by 6 invariant cysteine residues forming 3 disulfide bonds,Cys1-Cys4,Cys2-Cys5 and Cys3-Cys6,These results suggest that the novel full-length cDNA of the defensin gene.Denominated Mdde,has been successfully cloned from houseflies.

  19. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8.

    Science.gov (United States)

    Castellanos, Erick R; Ciferri, Claudio; Phung, Wilson; Sandoval, Wendy; Matsumoto, Marissa L

    2016-08-01

    Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8.

  20. Inhibition on the production of collagen type Ⅰ, Ⅲ of activated hepatic stellate cells by antisense TIMP-1 recombinant plasmid

    Institute of Scientific and Technical Information of China (English)

    Wen-Bin Liu; Chang-Qing Yang; Wei Jiang; Yi-Qing Wang; Jing-Sheng Guo; Bo-Ming He; Ji-Yao Wang

    2003-01-01

    AIM: To investigate the inhibition effects on the productionof collagen type I, Ⅲ secreted by activated rat hepatic stellatecells (rHSCs) by antisense tissue inhibitors of metalloproteinase1 (TIMP-1) recombinant plasmid through elevating interstitialcollagenase activity.METHODS: rHSCs were extracted from normal rat liverby pronase and collagenase digestion and purified bycentrifugal elutriation, and were cultured on plastic dishesuntil they were activated to a myofibroblastic phenotypeafter 7-10 days. RT-Nest-PCR and gene recombinanttechniques were used to construct the rat antisense TIMP-1 recombinant plasmids which can express in eucaryoticcells. The recombinant plasmid and the pcDNA3 emptyplasmid were transfected in rHSCs by Effectene (QIAGEN)separately. Cells were selected after growing in DMEMcontaining 400 μg/ml G418 for 2-3 weeks. Expression ofexogenous gene was assessed by Northern blot, andexpression oflIMP-1 in rHSCs was determined by Northernblot and Western blot. We tested the interstitial collagenaseactivity with FITC-labled type I collagen as substrate.Ultimately, we quantified the type Ⅰ, Ⅲ collagen byWestern blot.RESULTS: The exogenous antisense TIMP-1 recombinantplasmid could be expressed in rHSCs well, which couldblock the expression of TIMP-1 greatly, the ratio of TIMP-1/GAPDH was 0.67, 2.41, and 2.97 separately at mRNAlevel (P<0.05); the ratio of TIMP-1/β-actin was 0.31, 0.98and 1.32 separately at protein level (P<0.05); It mightelevate active and latent interstitial collagenase activity,the collagenase activity was 0.3049, 0.1411 and 0.1196respectively. (P<0.05), which led to promotion thedegradation of type Ⅰ, Ⅲ collagen, the ratio of collagen I/β-actin was 0.63, 1.78 and 1.92 separately (P<0.05); andthe ratio of collagen Ⅲ/β-actin was 0.59, 1.81 and 1.98separately (P<0.05).CONCLUSION: These data shows that the antisense TIMP-1 recombinant plasmid has the inhibitory effects on theproduction of type Ⅰ, Ⅲ collagens

  1. Influence of Cardiopulmonary Bypass on the Interaction of Recombinant Factor VIIa with Activated Platelets

    OpenAIRE

    Kjalke, Marianne; Runge, Marx; Rojkjaer, Rasmus; Steinbruchel, Daniel; Johansson, Pär I

    2009-01-01

    Recombinant factor VIIa (rFVIIa) interacts preferentially with coated platelets characterized by a high exposure of phosphatidyl serine (PS), FV, FVIII, FIX, and FX binding, and fibrinogen. Cardiopulmonary bypass (CPB) is known to impair platelet function. In this study, the influence of CPB on formation of coated platelets and the interaction of rFVIIa with the platelets were studied. Blood was either exposed to a closed CPB circuit or obtained from patients undergoing CPB-assisted cardiac s...

  2. DISCOVERY OF THE RECOMBINING PLASMA IN THE SOUTH OF THE GALACTIC CENTER: A RELIC OF THE PAST GALACTIC CENTER ACTIVITY?

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, S.; Nobukawa, M.; Uchida, H.; Tanaka, T.; Tsuru, T. G.; Koyama, K. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Murakami, H. [Department of Information Science, Faculty of Liberal Arts, Tohoku Gakuin University 2-1-1 Tenjinzawa, Izumi-ku, Sendai, Miyagi 981-3193 (Japan); Uchiyama, H., E-mail: shinya@cr.scphys.kyoto-u.ac.jp [Science Education, Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)

    2013-08-10

    We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter {sup G}C South{sup )} has an angular size of {approx}42' Multiplication-Sign 16' centered at (l, b) {approx} (0. Degree-Sign 0, - 1. Degree-Sign 4) and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at {approx}2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density Multiplication-Sign elapsed time) of 5.3 Multiplication-Sign 10{sup 11} s cm{sup -3}. The absorption column density of GC South is consistent with that toward the GC region. Thus, GC South is likely to be located in the GC region ({approx}8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be {approx}97 pc Multiplication-Sign 37 pc, 0.16 cm{sup -3}, and 1.6 Multiplication-Sign 10{sup 51} erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.

  3. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme.

    Science.gov (United States)

    Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2006-08-09

    Candida rugosa lipase (CRL), an important industrial enzyme, possesses several different isoforms encoded by the high-identity lip gene family (lip1 to lip7). In this study, an additional N-terminal peptide in front of the lip3 gene was removed by PCR, and the 18 nonuniversal serine codons (CTG) of the lip3 gene were converted into universal serine codons (TCT) by means of an overlap extension PCR-based multiple-site-directed mutagenesis to express an active recombinant LIP3 in the yeast Pichia pastoris. The regional synthetic DNA fragment (339 bp) is first recombined by primer assembly with 20 overlapping nucleotides, followed by specific overlap extension PCR with outside primers containing restriction enzyme sites for directional cloning into the pGAPZalphaC vector. The results show that the production yield (0.687 unit/mL) of N-fused lip3 (nflip3) has an overall improvement of 69-fold relative to that (0.01 unit/mL) of lip3 and of 52-fold (0.47 unit/mL) of codon-optimized lip3 (colip3) relative to that (0.01 unit/mL) of non-codon-optimized lip3 (lip3), with the cultivation time set at 5 days. This finding demonstrates that the reservation of the N terminus and the regional codon optimization of the lip3 gene fragment at the 5' end can greatly increase the expression level of recombinant LIP3 in the P. pastoris system. The purified recombinant LIP3 shows distinct biochemical properties compared with other isoforms.

  4. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    Science.gov (United States)

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  5. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Raheem Ullah

    Full Text Available Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  6. Characterisation of aroma profiles of commercial sufus by odour activity value, gas chromatography-olfactometry, aroma recombination and omission studies.

    Science.gov (United States)

    Xiao, Zuobing; Shang, Yi; Chen, Feng; Niu, Yunwei; Gu, Yongbo; Liu, Shengjiang; Zhu, Jiancai

    2015-01-01

    Sufu is a solid-state fermented product made from soya beans. For the sake of quality control and regulation purposes, it is essential to be able to identify key odorants of various commercial sufus. To identify the aroma-active compounds in sufus, gas chromatography-olfactometry/aroma extract dilution analysis (GC-O/AEDA) was performed, and odour activity value (OAV) was estimated. The correlations between aroma profiles and identified aroma-active compounds were also investigated by principal component analysis. Results showed that 35 aroma-active compounds were detected through OAV calculation, while 28 compounds were identified by using GC-O/AEDA. Quantitative descriptive analysis revealed that aroma recombination model based on OAV calculation was more similar to original sufu in terms of aroma comparing to aroma recombination model based on GC-O/AEDA. Omission experiments further confirmed that the aroma compounds, such as ethyl butanoate, ethyl 2-methylbutanoate, ethyl hexanoate, (E,E)-2,4-decadienal and 2,6-dimethylpyrazine, contributed most significantly to the characteristic aroma of a commercial sufu.

  7. Amplification of full-length hepatitis C virus genome based on plasmid pJFH-1%基于pJFH-1的HCV全基因组扩增方法的建立

    Institute of Scientific and Technical Information of China (English)

    郭艳; 兰林; 何长龙; 洪国祜; 程玲; 毛青

    2011-01-01

    目的 基于pJFH-1建立能稳定扩增HCV全基因组的长链PCR方法.方法 以pJFH-1为测试模板,通过优化PCR扩增中各个重要环节,包括引物的选择、甘油和/或DMSO最适浓度的筛选、循环条件的摸索等,建立能稳定扩增HCV全基因组的长链PCR方案.结果 高Tm值(>65 ℃)的引物更有利于HCV全基因组的扩增;5%、10%甘油或5% DMSO可显著提高PCR扩增的特异性和扩增效率,且甘油的促进作用优于DMSO;双温法较三温法能获得更高产量的PCR产物.结论 通过优化长链PCR反应体系及条件,成功实现HCV基因全长的扩增.%Objective To optimize the protocols of long-PCR for amplifying full-length HCV genome based on plasmid pJFH-1. Methods Optimization of long-PCR strategies was performed by testing a series of primers, adding various concentrations of glycerol, DMSO or both, using different cycle systems to select the optimal long PCR conditions. Results Primers that have higher melting temperatures ( > 65 C )could improve the efficiency of amplification. Glycerol of 5% and 10% or DMSO of 5% improved the specificity and efficiency of PCR amplification of full-length HCV genome. The promoting effect of glycerol was better than that of DMSO. Compared to three-stage temperature method, two-step temperature produced more PCR product. Conclusion Through the optimization of long-PCR protocol, full-length HCV genome is successfully achieved.

  8. Expression and Purification of Active Recombinant Cathepsin C (Dipeptidyl Aminopeptidase I of Kuruma Prawn Marsupenaeus japonicus in Insect Cells

    Directory of Open Access Journals (Sweden)

    Gao-Feng Qiu

    2009-01-01

    Full Text Available Cathepsin C (CTSC is a lysosomal cysteine protease belonging to the papain superfamily. Our previous study showed that CTSC precursor (zymogen is localized exclusively in cortical rods (CRs of mature oocyte in the kuruma prawn Marsupenaeus japonicus, suggesting that CTSC might have roles on regulating release and/or formation of a jelly layer. In this study, enzymically active CTSC of the kuruma prawn was prepared by recombinant expression in the High Five insect cell line. The recombinant enzyme with a polyhistidine tag at its C-terminus was considered to be initially secreted into the culture medium as an inactive form of zymogen, because Western blot with anti-CTSC antibody detected a 51 kDa protein corresponding to CTSC precursor. After purification by affinity chromato