WorldWideScience

Sample records for active recombinant cathepsin

  1. Expression and Purification of Active Recombinant Cathepsin C (Dipeptidyl Aminopeptidase I of Kuruma Prawn Marsupenaeus japonicus in Insect Cells

    Directory of Open Access Journals (Sweden)

    Gao-Feng Qiu

    2009-01-01

    Full Text Available Cathepsin C (CTSC is a lysosomal cysteine protease belonging to the papain superfamily. Our previous study showed that CTSC precursor (zymogen is localized exclusively in cortical rods (CRs of mature oocyte in the kuruma prawn Marsupenaeus japonicus, suggesting that CTSC might have roles on regulating release and/or formation of a jelly layer. In this study, enzymically active CTSC of the kuruma prawn was prepared by recombinant expression in the High Five insect cell line. The recombinant enzyme with a polyhistidine tag at its C-terminus was considered to be initially secreted into the culture medium as an inactive form of zymogen, because Western blot with anti-CTSC antibody detected a 51 kDa protein corresponding to CTSC precursor. After purification by affinity chromatography on nickel-iminodiacetic acid resin, the enzyme displayed three forms of 51, 31, and 30 kDa polypeptides. All of the forms can be recognized by antiserum raised against C-terminal polyhistidine tag, indicating that the 31 and 30 kDa forms were generated from 51 kDa polypeptide by removal of a portion of the N-terminus of propeptide. Following activation at pH 5.5 and 37∘C for 40 hours under native conditions, the recombinant CTSC (rCTSC exhibited increased activity against the synthetic substrate Gly-Phe-β-naphthylamide and optimal pH at around 5. The purified rCTSC will be useful for further characterization of its exact physiological role on CRs release and/or formation of a jelly layer in kuruma prawn.

  2. Multiplex Cathepsin Zymography to Detect Amounts of Active Cathepsins K, L, S, and V.

    Science.gov (United States)

    Platt, Manu O

    2017-01-01

    Cysteine cathepsins are powerful proteases that can degrade other proteins, among which are the extracellular matrix proteins collagen and elastin. Multiplex cathepsin zymography is an assay that can quantify the amount of active cathepsins in a cell or tissue preparation. This method works for measuring the amounts of active cathepsins K, L, S, and V in a cell or tissue preparation without requiring the use of antibodies for specific identification which tremendously reduces cost. This chapter will demonstrate the utility and interpretation of this method with mammalian cells and tissue to quantify amounts of active cathepsins K, L, S, and V without complicating signals of the procathepsin. Multiplex cathepsin zymography has many advantages: (1) it separates cathepsins K, L, S, and V by electrophoretic migration distance, (2) allows visual confirmation of cathepsin identity, (3) does not detect procathepsins, and (4) can be quantified with densitometry.

  3. Role of cathepsin A and cathepsin C in the regulation of glycosidase activity

    Directory of Open Access Journals (Sweden)

    Anna Justyna Milewska

    2012-04-01

    Full Text Available Increased tissue activity of cathepsin A and cathepsin C can be observed in many pathological conditions. It is associated with an enhanced degradation of glycosaminoglycans, proteoglycans, and glycoproteins, and results in their decreased tissue content. Cathepsin C releases the glycosidases from complexes formed with cathepsin A, and reinstates their activity. In this review a current state of knowledge is presented concerning the regulation of selected glycosidases activity by cathepsin A (EC 3.4.16.1 and C (EC 3.4.14.1.

  4. Optimisation of the production of cathepsin L1 from a recombinant saccharomyces cerevisiae

    OpenAIRE

    O'Donovan, Eimear C

    2002-01-01

    Cathepsin L1 is a cysteine protease that has been previously isolated and functionally expressed in Saccharomyces cerevisiae. It has the potential to be employed as a vaccine for liver-fluke disease in cattle and other ruminants. Production of this recombinant enzyme, which is secreted into the media from recombinant yeast, was studied initially in shake flask cultures and subsequently in 5L and 15L fermenters. In early studies, low productivity and especially variations in Cathepsin L1 p...

  5. Differential cathepsin responses to inhibitor-induced feedback: E-64 and cystatin C elevate active cathepsin S and suppress active cathepsin L in breast cancer cells.

    Science.gov (United States)

    Wilder, Catera L; Walton, Charlene; Watson, Valencia; Stewart, Fermin A A; Johnson, Jade; Peyton, Shelly R; Payne, Christine K; Odero-Marah, Valerie; Platt, Manu O

    2016-10-01

    Cathepsins are powerful proteases, once referred to as the lysosomal cysteine proteases, that have been implicated in breast cancer invasion and metastasis, but pharmaceutical inhibitors have suffered failures in clinical trials due to adverse side effects. Scientific advancement from lysosomotropic to cell impermeable cathepsin inhibitors have improved efficacy in treating disease, but off-target effects have still been problematic, motivating a need to better understand cellular feedback and responses to treatment with cathepsin inhibitors. To address this need, we investigated effects of E-64 and cystatin C, two broad spectrum cathepsin inhibitors, on cathepsin levels intra- and extracellularly in MDA-MB-231 breast cancer cells. Cathepsins S and L had opposing responses to both E-64 and cystatin C inhibitor treatments with paradoxically elevated amounts of active cathepsin S, but decreased amounts of active cathepsin L, as determined by multiplex cathepsin zymography. This indicated cellular feedback to selectively sustain the amounts of active cathepsin S even in the presence of inhibitors with subnanomolar inhibitory constant values. These differences were identified in cellular locations of cathepsins L and S, trafficking for secretion, co-localization with endocytosed inhibitors, and longer protein turnover time for cathepsin S compared to cathepsin L. Together, this work demonstrates that previously underappreciated cellular compensation and compartmentalization mechanisms may sustain elevated amounts of some active cathepsins while diminishing others after inhibitor treatment. This can confound predictions based solely on inhibitor kinetics, and must be better understood to effectively deploy therapies and dosing strategies that target cathepsins to prevent cancer progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Monoclonal antibody against recombinant Fasciola gigantica cathepsin L1H could detect juvenile and adult cathepsin Ls of Fasciola gigantica.

    Science.gov (United States)

    Wongwairot, Sirima; Kueakhai, Pornanan; Changklungmoa, Narin; Jaikua, Wipaphorn; Sansri, Veerawat; Meemon, Krai; Songkoomkrong, Sineenart; Riengrojpitak, Suda; Sobhon, Prasert

    2015-01-01

    Cathepsin Ls (CatLs), the major cysteine protease secreted by Fasciola spp., are important for parasite digestion and tissue invasion. Fasciola gigantica cathepsin L1H (FgCatL1H) is the isotype expressed in the early stages for migration and invasion. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1H (rFgCatL1H) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with recombinant proFgCatL1H (rproFgCatL1H). This MoAb is an immunoglobulin (Ig)G1 with κ light chain isotype. The MoAb reacted specifically with rproFgCatL1H, the native FgCatL1H at a molecular weight (MW) 38 to 48 kDa in the extract of whole body (WB) of metacercariae and newly excysted juvenile (NEJ) and cross-reacted with rFgCatL1 and native FgCatLs at MW 25 to 28 kDa in WB of 2- and 4-week-old juveniles, adult, and adult excretory-secretory (ES) fractions by immunoblotting and indirect ELISA. It did not cross-react with antigens in WB fractions from other parasites, including Gigantocotyle explanatum, Paramphistomum cervi, Gastrothylax crumenifer, Eurytrema pancreaticum, Setaria labiato-papillosa, and Fischoederius cobboldi. By immunolocalization, MoAb against rFgCatL1H reacted with the native protein in the gut of metacercariae and NEJ and also cross-reacted with CatL1 in 2- and 4-week-old juveniles and adult F. gigantica. Therefore, FgCatL1H and its MoAb may be used for immunodiagnosis of both early and late fasciolosis in ruminants and humans.

  7. Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L.

    Science.gov (United States)

    Sansri, Veerawat; Meemon, Krai; Changklungmoa, Narin; Kueakhai, Pornanan; Chantree, Pathanin; Chaichanasak, Pannigan; Lorsuwannarat, Natcha; Itagaki, Tadashi; Sobhon, Prasert

    2015-03-24

    Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of host's tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freund's adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its

  8. Silver and Gold Nanoparticles Alter Cathepsin Activity In vitro

    Science.gov (United States)

    Speshock, Janice L.; Braydich-Stolle, Laura K.; Szymanski, Eric R.; Hussain, Saber M.

    2011-12-01

    Nanomaterials are being incorporated into many biological applications for use as therapeutics, sensors, or labels. Silver nanomaterials are being utilized for biological implants and wound dressings as an antiviral material, whereas gold nanomaterials are being used as biological labels or sensors due to their surface properties and biocompatibility. Cytotoxicity data of these materials are becoming more prevalent; however, little research has been performed to understand how the introduction of these materials into cells affects cellular processes. Here, we demonstrate the impact that silver and gold nanoparticles have on cathepsin activity in vitro. Cathepsins are important cellular proteases that are imperative for proper immune system function. We have selected to examine gold and silver nanoparticles due to the increased use of these materials in biological applications. This manuscript depicts how both of these types of nanomaterials affect cathepsin activity, which could impact the host's immune system and its ability to respond to pathogens. Cathepsin B activity decreases in a dose-dependent manner with all nanoparticles tested. Alternatively, the impact of nanoparticles on cathepsin L activity depends greatly on the type and size of the material.

  9. Complex modulation of peptidolytic activity of cathepsin D by sphingolipids

    Czech Academy of Sciences Publication Activity Database

    Žebrakovská, Iva; Máša, Martin; Srp, Jaroslav; Horn, Martin; Vávrová, K.; Mareš, Michael

    2011-01-01

    Roč. 1811, č. 12 (2011), s. 1097-1104 ISSN 1388-1981 R&D Projects: GA AV ČR IAA400550705 Institutional research plan: CEZ:AV0Z40550506 Keywords : sphingolipid * phospholipid * inhibition * activation * cathepsin D * enzyme regulation Subject RIV: CE - Biochemistry Impact factor: 5.269, year: 2011

  10. The development and characterization of an ELISA specifically detecting the active form of cathepsin K

    DEFF Research Database (Denmark)

    Sun, S; Karsdal, M A; Bay-Jensen, A C

    2013-01-01

    , such as osteoporosis or ankylosing spondylitis. METHODS: Presently there are no robust assays for the assessment of active cathepsin K in serum, and therefore an ELISA specifically detecting the N-terminal of the active form of cathepsin K was developed. RESULTS: The assay was technically robust, with a lowest limit...

  11. Fasciola gigantica: production and characterization of a monoclonal antibody against recombinant cathepsin B3.

    Science.gov (United States)

    Anuracpreeda, Panat; Songkoomkrong, Sineenart; Sethadavit, Manussabhorn; Chotwiwatthanakun, Charoonroj; Tinikul, Yotsawan; Sobhon, Prasert

    2011-02-01

    A number of monoclonal antibodies (MoAbs) against a recombinant cathepsin B3 (rCatB3) of Fasciola gigantica were produced in BALB/c mice. Reactivity and specificity of these MoAbs were assessed by indirect ELISA and immunoblotting techniques. Six stable clones, namely 1C4, 1E9, 2E5, 2F9, 5B4, 5D7 were obtained. All MoAbs reacted with rCatB3 at molecular weight (MW) 37 kDa as well as the glycosylated peptide at 55-75 kDa and with the native CatB3 at MW 37 kDa in WB extracts of metacercariae (Met) and newly excysted juveniles (NEJ). It was found to be IgG(1) and λ light chain isotypes. Immunolocalization of CatB3 in metacercariae, NEJ, 4-week-old juvenile and adult F. gigantica performed by immunoperoxidase technique by using these MoAbs as probes indicated that CatB3 was present in high concentration in the caecal epithelium and caecal lumen of the Met and NEJ, but not in the 4-week-old juvenile and adult fluke. The MoAbs show no cross-reactions with antigens of other parasites including Gigantocotyl explanatum, Eurytrema pancreaticum, Paramphistomum cervi, Schistosoma spindale, S. mansoni, Haemonchus placei and Setaria labiato-papillosa. Thus, it is possible that these MoAbs could be a good candidate for immunodiagnosis of fasciolosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Cathepsin Activity-Based Probes and Inhibitor for Preclinical Atherosclerosis Imaging and Macrophage Depletion.

    Directory of Open Access Journals (Sweden)

    Ihab Abd-Elrahman

    Full Text Available Cardiovascular disease is the leading cause of death worldwide, mainly due to an increasing prevalence of atherosclerosis characterized by inflammatory plaques. Plaques with high levels of macrophage infiltration are considered "vulnerable" while those that do not have significant inflammation are considered stable; cathepsin protease activity is highly elevated in macrophages of vulnerable plaques and contributes to plaque instability. Establishing novel tools for non-invasive molecular imaging of macrophages in plaques could aid in preclinical studies and evaluation of therapeutics. Furthermore, compounds that reduce the macrophage content within plaques should ultimately impact care for this disease.We have applied quenched fluorescent cathepsin activity-based probes (ABPs to a murine atherosclerosis model and evaluated their use for in vivo imaging using fluorescent molecular tomography (FMT, as well as ex vivo fluorescence imaging and fluorescent microscopy. Additionally, freshly dissected human carotid plaques were treated with our potent cathepsin inhibitor and macrophage apoptosis was evaluated by fluorescent microscopy.We demonstrate that our ABPs accurately detect murine atherosclerotic plaques non-invasively, identifying cathepsin activity within plaque macrophages. In addition, our cathepsin inhibitor selectively induced cell apoptosis of 55%±10% of the macrophage within excised human atherosclerotic plaques.Cathepsin ABPs present a rapid diagnostic tool for macrophage detection in atherosclerotic plaque. Our inhibitor confirms cathepsin-targeting as a promising approach to treat atherosclerotic plaque inflammation.

  13. Cystatin C as a p53?inducible apoptotic mediator that regulates cathepsin L activity

    OpenAIRE

    Mori, Jinichi; Tanikawa, Chizu; Funauchi, Yuki; Lo, Paulisally Hau Yi; Nakamura, Yusuke; Matsuda, Koichi

    2016-01-01

    In response to various cellular stresses, p53 is activated and inhibits malignant transformation through the transcriptional regulation of its target genes. However, the full picture of the p53 downstream pathway still remains to be elucidated. Here we identified cystatin C, a major inhibitor of cathepsins, as a novel p53 target. In response to DNA damage, activated p53 induced cystatin C expression through p53 binding sequence in the first intron. We showed that cathepsin L activity was decr...

  14. Production and characterization of a monoclonal antibody against recombinant cathepsin L1 of Fasciola gigantica.

    Science.gov (United States)

    Anuracpreeda, Panat; Srirakam, Thippawan; Pandonlan, Sudarat; Changklungmoa, Narin; Chotwiwatthanakun, Charoonroj; Tinikul, Yotsawan; Poljaroen, Jaruwan; Meemon, Krai; Sobhon, Prasert

    2014-08-01

    Monoclonal antibodies (MoAbs) against a recombinant cathepsin L1 of Fasciola gigantica (rFgCatL1) were produced in vitro by fusion of BALB/c mice spleen cells immunized with rFgCatL1 and mouse myeloma cells. Reactivity and specificity of these MoAbs were evaluated by indirect ELISA and immunoblotting techniques. Seven MoAb clones were selected from the stable hybridoma clones, namely 1E10, 1F5, 3D11, 4B10, 4D3, 4E3 and 5E7. Clones 1E10, 1F5 and 3D11 were IgM, whereas clones 4B10, 4D3, 4E3 and 5E7 were IgG1. All MoAbs had kappa light chain isotypes. All MoAbs reacted with rCatL1 at molecular weight (MW) 30kDa and with the native CatL1 at MW 27kDa in whole body (WB) extracts of metacercariae (Met), newly excysted juveniles (NEJ), 1, 3, 5-week-old juveniles (Ju), adult WB and adult excretory-secretory (ES) fractions, but not with adult tegumental antigens (TA). All of these MoAbs showed no cross-reactions with antigens of other parasites commonly found in ruminants and human, including Paramphistomum cervi, Eurytrema pancreaticum, Gigantocotyle explanatum, Schistosoma spindale, Schistosoma mansoni, Moniezia benedeni, Avitellina centripunctata, Trichuris sp., Haemonchus placei and Setaria labiato-papillosa. Localization of CatL1 in each developmental stages of F. gigantica by immunoperoxidase technique, using these MoAbs as probes, indicated that CatL1 was present at high concentration in the caecal epithelium and caecal lumen of metacercariae, NEJ, 1, 3, 5-week-old juveniles and adult fluke. This finding indicated that CatL1 is a copiously expressed parasite protein that is released into the ES, thus CatL1 and its MoAb could be a good candidate for immunodiagnosis of fasciolosis in ruminant and human. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Active subsite properties, subsite residues and targeting to lysosomes or midgut lumen of cathepsins L from the beetle Tenebrio molitor.

    Science.gov (United States)

    Damasceno, Ticiane F; Dias, Renata O; de Oliveira, Juliana R; Salinas, Roberto K; Juliano, Maria A; Ferreira, Clelia; Terra, Walter R

    2017-10-01

    Cathepsins L are the major digestive peptidases in the beetle Tenebrio molitor. Two digestive cathepsins L (TmCAL2 and TmCAL3) from it had their 3D structures solved. The aim of this paper was to study in details TmCAL3 specificity and properties and relate them to its 3D structure. Recombinant TmCAL3 was assayed with 64 oligopeptides with different amino acid replacements in positions P2, P1, P1' and P2'. Results showed that TmCAL3 S2 specificity differs from the human enzyme and that its specificities also explain why on autoactivation two propeptide residues remain in the enzyme. Data on free energy of binding and of activation showed that S1 and S2' are mainly involved in substrate binding, S1' acts in substrate binding and catalysis, whereas S2 is implied mainly in catalysis. Enzyme subsite residues were identified by docking with the same oligopeptide used for kinetics. The subsite hydrophobicities were calculated from the efficiency of hydrolysis of different amino acid replacements in the peptide and from docking data. The results were closer for S1 and S2' than for S1' and S2, indicating that the residue subsites that were more involved in transition state binding are different from those binding the substrate seen in docking. Besides TmCAL1-3, there are nine other cathepsins L, most of them more expressed at midgut. They are supposed to be directed to lysosomes by a Drosophila-like Lerp receptor and/or motifs in their prodomains. The mannose 6-phosphate lysosomal sorting machinery is absent from T. molitor transcriptome. Cathepsin L direction to midgut contents seems to depend on overexpression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pathological and parasitological protection in goats immunised with recombinant cathepsin L1 and challenged with Fasciola hepatica.

    Science.gov (United States)

    Pérez-Ecija, Rafael A; Mendes, Ricardo E; Zafra, Rafael; Buffonni, Leandro; Martínez-Moreno, Alvaro; Pérez, José

    2010-09-01

    Fluke burdens, faecal egg output and hepatic damage were assessed in goats immunised with recombinant cathepsin L1 (rCL1) plus Quil A (n=7) or Quil A alone (control; n=7) and challenged with Fasciola hepatica. There were no significant differences in fluke burdens (56+/-26 vs. 92+/-53), average fluke length (20.9+/-3.0 vs. 21.0+/-3.4mm) or faecal egg output (525+/-533 vs. 758+/-677.8 eggs per gram at 17 weeks post-infection) between vaccinated and infected control groups, respectively, but high individual variability was evident. Morphometric and histopathological studies showed reduced hepatic damage in the vaccinated group compared to the infected control, but high individual variability was also recorded. Further vaccine trials in goats should be carried out using a larger number of animals to evaluate rCL1 as a vaccine for fasciolosis in goats. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Bifunctional Probes of Cathepsin Protease Activity and pH Reveal Alterations in Endolysosomal pH during Bacterial Infection

    NARCIS (Netherlands)

    Sanman, L.E.; Linden, W.A. van der; Verdoes, M.; Bogyo, M.

    2016-01-01

    Cysteine cathepsins are lysosomal proteases involved in regulation of both normal cellular processes and disease. Biochemical studies with peptide substrates indicate that cathepsins have optimal activity at acidic pH and highly attenuated activity at neutral pH. In contrast, there is mounting

  18. Proteolytic activity in Fasciola hepatica is reduced by the administration of cathepsin L mimotopes.

    Science.gov (United States)

    Villa-Mancera, A; Quiroz-Romero, H; Correa, D; Alonso, R A

    2011-03-01

    The objective of this study was to assess the proteolytic activity of Fasciola hepatica cathepsins in liver sections from mice vaccinated with phage clones of cathepsin L mimotopes, using the film in situ zymography technique. Female BALB/c mice were immunized three times with 2.5 x 10¹¹ phage particles without adjuvant. Animals vaccinated with phage clones produced high titres of anti-mimotope antibodies and a significant reduction in fluke burden was observed following challenge with metacercariae of F. hepatica. The proteolytic activity in hepatic tissue was reduced after the immunization with phage clones.

  19. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities

    DEFF Research Database (Denmark)

    Delaissé, Jean-Marie; Andersen, Thomas L; Engsig, Michael T

    2003-01-01

    The best established proteolytic event of osteoclasts is bone matrix solubilization by the cysteine proteinase cathepsin K. Here, however, we draw the attention on osteoclastic activities depending on matrix metalloproteinases (MMPs). We discuss the observations supporting that MMPs contribute...... significantly to bone matrix solubilization in specific areas of the skeleton and in some developmental and pathological situations. Our discussion takes into account (1) the characteristics of the bone remodeling persisting in the absence of cathepsin K, (2) the ultrastructure of the resorption zone...... in response to inactivation of MMPs and of cathepsin K in different bone types, (3) bone resorption levels in MMP knockout mice compared to wild-type mice, (4) the identification of MMPs in osteoclasts and surrounding cells, and (5) the effect of different bone pathologies on the serum concentrations...

  20. Sero-detection of Toxocara canis infection in human with T.canis recombinant arginine kinase, cathepsin L-1 and TES-26 antigens.

    Science.gov (United States)

    Varghese, Anju; Raina, Opinder K; Chandra, Dinesh; Mirdha, Bijay R; Kelawala, Naresh H; Solanki, Jayesh B; Kumar, Niranjan; Ravindran, Reghu; Arun, Anandanarayanan; Rialch, Ajayta; Lalrinkima, Hniang; Kelawala, Rohan N; Samanta, Subhamoy

    2017-12-20

    Three recombinant antigens viz. arginine kinase, cathepsin L-1 and TES-26 of Toxocara canis were expressed in Escherichia coli and evaluated for their potential in the detection of T. canis larval infection in human in immunoglobulin G-enzyme linked immunosorbent assay (IgG-ELISA). Results of the IgG-ELISA with the above recombinant antigens were confirmed with commercially available IgG detection kit for T. canis infection used as a standard test. All three recombinant antigens were 100% sensitive in the detection of positive cases (n = 6) of T. canis infection in human and were screened for their cross-reactivity in human patients with history of Toxoplasma gondii, Plasmodium vivax, Entamoeba histolytica, hydatid and hookworm infections. The recombinant TES-26 antigen showed higher specificity and cross-reacted with T. gondii infection sera only. However, arginine kinase and cathepsin L-1 recombinant antigens showed cross-reactions with sera of patients infected with T. gondii, P. vivax and E. histolytica but not with the patient sera infected with hydatid and hookworm. These results show that recombinant TES-26 is a potential diagnostic candidate antigen for human toxocarosis caused by migrating T. canis larvae.

  1. Comparative assessment of ELISAs using recombinant saposin-like protein 2 and recombinant cathepsin L-1 from Fasciola hepatica for the serodiagnosis of human Fasciolosis.

    Directory of Open Access Journals (Sweden)

    Bruno Gottstein

    2014-06-01

    Full Text Available Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2 and cathepsin L-1 (recCL1, were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES from adult stage liver flukes was assessed by receiver operator characteristic (ROC analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20, patients with other parasitic infections (n=87 and patients with malignancies (n=121. The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy employing the threshold (cut-off to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.

  2. Comparative Assessment of ELISAs Using Recombinant Saposin-Like Protein 2 and recombinant Cathepsin L-1 from Fasciola hepatica for the Serodiagnosis of Human Fasciolosis

    Science.gov (United States)

    Gottstein, Bruno; Schneeberger, Marianne; Boubaker, Ghalia; Merkle, Bernadette; Huber, Cristina; Spiliotis, Markus; Müller, Norbert; Garate, Teresa; Doherr, Marcus G.

    2014-01-01

    Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2) and cathepsin L-1 (recCL1), were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA) for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG) conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory–secretory products (FhES) from adult stage liver flukes was assessed by receiver operator characteristic (ROC) analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n = 20), patients with other parasitic infections (n = 87) and patients with malignancies (n = 121). The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy) employing the threshold (cut-off) to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls. PMID:24922050

  3. Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth.

    Directory of Open Access Journals (Sweden)

    Elias Gounaris

    2008-08-01

    Full Text Available It has been estimated that up to 30% of detectable polyps in patients regress spontaneously. One major challenge in the evaluation of effective therapy of cancer is the readout for tumor regression and favorable biological response to therapy. Inducible near infra-red (NIR fluorescent probes were utilized to visualize intestinal polyps of mice hemizygous for a novel truncation of the Adenomatous Polyposis coli (APC gene. Laser Scanning Confocal Microscopy in live mice allowed visualization of cathepsin activity in richly vascularized benign dysplastic lesions. Using biotinylated suicide inhibitors we quantified increased activities of the Cathepsin B & Z in the polyps. More than (3/4 of the probe signal was localized in CD11b(+Gr1(+ myeloid derived suppressor cells (MDSC and CD11b(+F4/80(+ macrophages infiltrating the lesions. Polyposis was attenuated through genetic ablation of cathepsin B, and suppressed by neutralization of TNFalpha in mice. In both cases, diminished probe signal was accounted for by loss of MDSC. Thus, in vivo NIR imaging of focal cathepsin activity reveals inflammatory reactions etiologically linked with cancer progression and is a suitable approach for monitoring response to therapy.

  4. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion

    Directory of Open Access Journals (Sweden)

    Álvaro de Mingo Pulido

    2018-02-01

    Full Text Available Natural killer T (NKT cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ, and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB and cathepsin S (CTSS, regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs, probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro.

  5. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion.

    Science.gov (United States)

    de Mingo Pulido, Álvaro; de Gregorio, Estefanía; Chandra, Shilpi; Colell, Anna; Morales, Albert; Kronenberg, Mitchell; Marí, Montserrat

    2018-01-01

    Natural killer T (NKT) cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ), and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB) and cathepsin S (CTSS), regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs), probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro .

  6. Cathepsin L gene expression and promoter activation in rodent granulosa cells.

    Science.gov (United States)

    Sriraman, Venkataraman; Richards, JoAnne S

    2004-02-01

    The cysteine protease cathepsin L exhibits hormone-regulated expression during ovulation. In situ hybridization analyses of immature and pregnant mare serum gonadotropin-treated mouse and rat ovaries showed that cathepsin L expression in granulosa cells of small, growing follicles increased in periovulatory follicles after human chorionic gonadotropin stimulation. In the rat ovary, cathepsin L was also expressed in follicles with signs of atresia. To determine the molecular mechanisms that mediate the diverse regulation of this gene in granulosa cells, rat cathepsin L promoter-reporter constructs were analyzed by transient transfection assays in rat granulosa cells and EMSAs. A construct containing the transcriptional start site and -244 bp of upstream promoter sequence (-244/+33 bp) exhibited inducibility by forskolin, the phorbol ester phorbol myristate acetate, and an additive effect of both. Within this region, three functional specificity protein 1 (Sp1) sites, an overlapping early growth response protein-1 site, and a cAMP regulatory element-binding protein site were identified. Single or double mutants of the above-mentioned sites did not alter forskolin/phorbol myristate acetate inducibility of the promoter. Mutation of all three Sp1/specificity protein 3 (Sp3) sites, which also mutated the early growth response protein-1 site, reduced the promoter activation. Mutation of the cAMP regulatory element-binding protein site in the triple Sp1 mutant construct completely blocked the inducibility of the promoter. When these same constructs were transfected into MCF-7 human breast cancer cells or were cotransfected with an Sp1 expression vector in Drosophila SL2 cells, similar results were obtained. Collectively, the data document that three Sp1/specificity protein 3 binding GC-rich regions and a functional cAMP regulatory element constitute an important transcriptional regulatory complex for expression of the cathepsin L gene in rat granulosa cells.

  7. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  8. Photodynamic quenched cathepsin activity based probes for cancer detection and macrophage targeted therapy.

    Science.gov (United States)

    Ben-Nun, Yael; Merquiol, Emmanuelle; Brandis, Alexander; Turk, Boris; Scherz, Avigdor; Blum, Galia

    2015-01-01

    Elevated cathepsins levels and activities are found in several types of human cancer, making them valuable biomarkers for detection and targeting therapeutics. We designed small molecule quenched activity-based probes (qABPs) that fluoresce upon activity-dependent covalent modification, yielding cell killing by Photodynamic Therapy (PDT). These novel molecules are highly selective theranostic probes that enable both detection and treatment of cancer with minimal side effects. Our qABPs carry a photosensitizer (PS), which is activated by light, resulting in oxidative stress and subsequent cell ablation, and a quencher that when removed by active cathepsins allow the PS to fluoresce and demonstrate PD properties. Our most powerful and stable PS-qABP, YBN14, consists of a selective cathepsin recognition sequence, a QC-1 quencher and a new bacteriochlorin derivative as a PS. YBN14 allowed rapid and selective non-invasive in vivo imaging of subcutaneous tumors and induced specific tumor macrophage apoptosis by light treatment, resulting in a substantial tumor shrinkage in an aggressive breast cancer mouse model. These results demonstrate for the first time that the PS-qABPs technology offers a functional theranostic tool, which can be applied to numerous tumor types and other inflammation-associated diseases.

  9. Application of a novel highly sensitive activity-based probe for detection of cathepsin G.

    Science.gov (United States)

    Zou, Fang; Schmon, Michael; Sienczyk, Marcin; Grzywa, Renata; Palesch, David; Boehm, Bernhard O; Sun, Zi Lin; Watts, Colin; Schirmbeck, Reinhold; Burster, Timo

    2012-02-15

    Cathepsins are crucial in antigen processing in the major histocompatibility complex class II (MHC II) pathway. Within the proteolytic machinery, three classes of proteases (i.e., cysteine, aspartic, and serine proteases) are present in the endocytic compartments. The combined action of these proteases generates antigenic peptides from antigens, which are loaded to MHC II molecules for CD4+ T cell presentation. Detection of active serine proteases in primary human antigen-presenting cells (APCs) is restricted because of the small numbers of cells isolated from the peripheral blood. For this purpose, we developed a novel highly sensitive α-aminoalkylphosphonate diphenyl ester (DAP) activity-based probe to detect the serine protease cathepsin G (CatG) in primary APCs and after Epstein-Barr virus (EBV) exposure. Although CatG activity was not altered after short-term exposure of EBV in primary myeloid dendritic cells 1 (mDC1s), the aspartic protease cathepsin D (CatD) was reduced, suggesting that EBV is responsible for mitigating the presentation of a model antigen tetanus toxoid C-fragment (TTCF) by reduction of CatD. In addition, CatG activity was reduced to background levels in B cells during cell culture; however, these findings were independent of EBV transformation. In conclusion, our activity-based probe can be used for both Western blot and 96-well-based high-throughput CatG detection when cell numbers are limited. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Early and late peritoneal and hepatic changes in goats immunized with recombinant cathepsin L1 and infected with Fasciola hepatica.

    Science.gov (United States)

    Zafra, R; Pérez-Écija, R A; Buffoni, L; Moreno, P; Bautista, M J; Martínez-Moreno, A; Mulcahy, G; Dalton, J P; Pérez, J

    2013-05-01

    The aim of the present study was to study peritoneal and hepatic changes during early [7-9 days postinfection (dpi)] and late [15 weeks postinfection (wpi)] infection of goats immunized with recombinant F. hepatica pro cathepsin L1 (rCL1) in Quil A and challenged with Fasciola hepatica. Despite finding no significant reduction in fluke burdens between the control and immunized group, at 15 dpi the rCL1-vaccinated group showed significantly higher weight gain and reduced severity of hepatic lesions compared with the control group that received only Quil A. In the rCL1-vaccinated group, two of three goats sacrificed at 7-9 dpi had little hepatic damage and had a higher percentage of peritoneal eosinophils and elevated induced nitric oxide synthase (iNOS) expression in peritoneal cells than the goats from the control group. Moreover, while these two goats showed a heavy infiltration of eosinophils surrounding migrating flukes, the remaining animals examined at 7-9 dpi had no inflammatory infiltration surrounding migrating flukes. Two out of seven goats in the rCL1-vaccinated group had low fluke burdens and little hepatic damage at 15 wpi, suggesting an effective protective response in some of the vaccinated goats. This protective response did not correlate with peripheral eosinophilia or with serum titres of anti-rCL1 immunoglobulin (Ig) G. The results of the present work suggest that an eosinophil-mediated immune response plays a crucial role in the early effective host response against F. hepatica in goats. Adjuvants designed to increase cell-mediated immunity should be tested in future vaccine trials against F. hepatica. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity

    OpenAIRE

    Phipps-Yonas, Hannah; Semik, Vikki; Hastings, Karen Taraszka

    2012-01-01

    MHC class II-restricted Ag processing requires protein degradation in the endocytic pathway for the activation of CD4+ T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) facilitates Ag processing by reducing protein disulfide bonds in this compartment. Lysosomal cysteine protease cathepsin S (CatS) contains disulfide bonds and mediates essential steps in MHC class II-restricted processing, including proteolysis of large polypeptides and cleavage of the invariant chain. We so...

  12. Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer.

    Science.gov (United States)

    Chen, Binbin; Platt, Manu O

    2011-07-14

    Cathepsins K, L, and S are cysteine proteases upregulated in cancer and proteolyze extracellular matrix to facilitate metastasis, but difficulty distinguishing specific cathepsin activity in complex tissue extracts confounds scientific studies and employing them for use in clinical diagnoses. Here, we have developed multiplex cathepsin zymography to profile cathepsins K, L, and S activity in 10 μg human breast, lung, and cervical tumors by exploiting unique electrophoretic mobility and renaturation properties. Frozen breast, lung, and cervix cancer tissue lysates and normal organ tissue lysates from the same human patients were obtained (28 breast tissues, 23 lung tissues, and 23 cervix tissues), minced and homogenized prior to loading for cathepsin gelatin zymography to determine enzymatic activity. Cleared bands of cathepsin activity were identified and validated in tumor extracts and detected organ- and stage-specific differences in activity. Cathepsin K was unique compared to cathepsins L and S. It was significantly higher for all cancers even at the earliest stage tested (stage I for lung and cervix (n = 6, p zymography, yielded 100% sensitivity and specificity for 20 breast tissue samples tested (10 normal; 10 tumor) in part due to the consistent absence of cathepsin K in normal breast tissue across all patients. To summarize, this sensitive assay provides quantitative outputs of cathepsins K, L, and S activities from mere micrograms of tissue and has potential use as a supplement to histological methods of clinical diagnoses of biopsied human tissue.

  13. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope.

    Science.gov (United States)

    Menezes-Souza, Daniel; Mendes, Tiago Antônio de Oliveira; Gomes, Matheus de Souza; Bartholomeu, Daniella Castanheira; Fujiwara, Ricardo Toshio

    2015-01-01

    The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis. We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis. The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions.

  14. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope.

    Directory of Open Access Journals (Sweden)

    Daniel Menezes-Souza

    2015-01-01

    Full Text Available The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis.We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis.The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions.

  15. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  16. Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues.

    Science.gov (United States)

    Wilder, Catera L; Park, Keon-Young; Keegan, Philip M; Platt, Manu O

    2011-12-01

    Cathepsins K, L, S, and V are cysteine proteases that have been implicated in tissue-destructive diseases such as atherosclerosis, tumor metastasis, and osteoporosis. Among these four cathepsins are the most powerful human collagenases and elastases, and they share 60% sequence homology. Proper quantification of mature, active cathepsins has been confounded by inhibitor and reporter substrate cross-reactivity, but is necessary to develop properly dosed therapeutic applications. Here, we detail a method of multiplex cathepsin zymography to detect and distinguish the activity of mature cathepsins K, L, S, and V by exploiting differences in individual cathepsin substrate preferences, pH effects, and electrophoretic mobility under non-reducing conditions. Specific identification of cathepsins K, L, S, and V in one cell/tissue extract was obtained with cathepsin K (37 kDa), V (35 kDa), S (25 kDa), and L (20 kDa) under non-reducing conditions. Cathepsin K activity disappeared and V remained when incubated at pH 4 instead of 6. Application of this antibody free, species independent, and medium-throughput method was demonstrated with primary human monocyte-derived macrophages and osteoclasts, endothelial cells stimulated with inflammatory cytokines, and normal and cancer lung tissues, which identified elevated cathepsin V in lung cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae: A Putative Target for Control of Citrus Huanglongbing.

    Directory of Open Access Journals (Sweden)

    Taíse Fernanda da Silva Ferrara

    Full Text Available Huanglonbing (HLB is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB. DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM. The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM and CaneCPI-4 (Ki = 0.05 nM and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM. RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  18. Cathepsin B- and L-like cysteine protease activities during the in vitro development of Hysterothylacium aduncum (Nematoda: Anisakidae), a worldwide fish parasite.

    Science.gov (United States)

    Malagón, David; Díaz-López, Manuel; Benítez, Rocío; Adroher, Francisco Javier

    2010-03-01

    Proteinases play an important role as virulence factors both in the life-cycle of parasites and in the pathogen-host relationship. Hysterothylacium aduncum is a worldwide fish parasite nematode which has been associated with non-invasive anisakidosis and allergic responses to fish consumption in humans. Cysteine proteinases have been associated with allergy to plant pollens, detergents and dust mites. In this study the presence of two types of cysteine proteinases (cathepsin B and cathepsin L) during in vitro development of H. aduncum is investigated. Specific fluorescent substrates were used to determine cathepsin activities. The activity detected with substrate Z-FR-AMC was identified as cathepsin L (optimum pH=5.5; range 3.5-6.5). Cathepsin B activity was only identified with Z-RR-AMC (optimum pH=7.0-7.5; range 5.0-8.0). The start of cultivation led to increased activity of both cathepsins (1.8-fold for cathepsin B and 6.3-fold for cathepsin L). These activities varied according to the developmental stage. Cathepsin B activity decreased after M4, returning to its initial level. Cathepsin L activity also decreased after M4, but still maintained a high level (4-6 times the initial level) in adult stages. Having considered these activity variations and the optimum pH values, we suggest that cathepsin L has a role in digestive processes while cathepsin B could be involved in cuticle renewal, among other possible functions. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Treatment with a human recombinant monoclonal IgG antibody against oxidized LDL in atherosclerosis-prone pigs reduces cathepsin S in coronary lesions

    DEFF Research Database (Denmark)

    Poulsen, Christian Bo; Al-Mashhadi, Ahmed Ludvigsen; Von Wachenfeldt, Karin

    2016-01-01

    Background Immunization with oxidized LDL (oxLDL) reduces atherosclerosis in rodents. We tested the hypothesis that treatment with a human recombinant monoclonal antibody against oxLDL will reduce the burden or composition of atherosclerotic lesions in hypercholesterolemic minipigs. Methods...... and results Thirty-eight hypercholesterolemic minipigs with defective LDL receptors were injected with an oxLDL antibody or placebo weekly for 12 weeks. An 18F-fluorodeoxyglucose positron emission tomography (FDG PET) scan (n = 9) was performed before inclusion and after 3 months of treatment. Blood samples.......03) with no difference in CD68 or CD163 positivity. Conclusions In hypercholesterolemic minipigs, treatment with a human recombinant monoclonal antibody against oxLDL reduced cathepsin S in coronary lesions without any effect on the burden of atherosclerosis or aortic FDG-PET signal....

  20. Cathepsin activities and thermal properties of Nile tilapia (Oreochromis niloticus meat during ambient storage

    Directory of Open Access Journals (Sweden)

    Tulakhun Nonthaput

    2017-06-01

    Full Text Available Understanding the postmortem changes at ambient aquatic temperature can be useful for estimating the time of death in environmental forensic studies when little information is available. Muscle degradation was investigated in Nile tilapia (Oreochromis niloticus in terms of the specific activities of cathepsins (B, H and L and the scavenging activities and thermal transition properties of myosin and actin, to assess postmortem changes with time (0, 1, 2, 4, 8, 12, 24 and 48 h after death. The study results are relevant to ambient temperatures in Thailand, (about 30 °C. The specific activities of the three cathepsin enzymes increased significantly with postmortem time (p < 0.05 and had a highly significant positive relationship (r = 0.987−0.997, p < 0.01, n = 32. Cathepsin H had the lowest specific activity and exhibited a different type of time profile. Its lowest specific activity was observed at 8 h, which indicated a significant role at this point in time after death. The radical scavenging activities substantially decreased with the time since death, especially within the first 1 h, while no changes occurred from 2 to 8 h, or from 12 to 24 h. The thermal properties of myosin and actin were observed up to a 24 h delay. The degradation of each protein fluctuated with the delay time; actin was more sensitive to postmortem delay than myosin. Overall, the findings from the current study might be used as primary data to estimate the time of death of an aquatic animal. A potential application is for environmental forensics in relation to fish kill events associated with pollution crimes or the mass death of exported fish under transportation insurance, as well as in animal cruelty investigations.

  1. In Vivo Molecular Imaging of Cathepsin and Matrix Metalloproteinase Activity Discriminates between Arthritic and Osteoarthritic Processes in Mice

    Directory of Open Access Journals (Sweden)

    Eline A. Vermeij

    2014-01-01

    Full Text Available Rheumatoid arthritis (RA and osteoarthritis (OA are serologically and clinically distinctive, but at the local level, both diseases have many molecular pathways in common. In vivo molecular imaging can unravel the local pathologic processes involved in both diseases. In this study, we investigated matrix metalloproteinase (MMP and cathepsin activity during cartilage destruction, in an RA and an OA mouse model, using biophotonic imaging of substrate-based probes. Mice with collagen-induced arthritis (CIA or destabilization of the medial meniscus (DMM were imaged using near-infrared fluorescent probes, activated by several cathepsins or MMPs. Fluorescence signal intensity was compared to synovial gene expression, histology, and cartilage staining of a neoepitope of aggrecan cleaved by MMPs with the amino acids DIPEN. Increased cathepsin and MMP activity was seen during CIA, whereas the DMM model only showed increased MMP activity. DIPEN expression was seen only during CIA. A possible explanation can be differences in gene expressions; MMP3 and -13, known to produce DIPEN neoepitopes, were upregulated in the CIA model, whereas MMP12, known to be involved in elastin degradation and chemokine inhibition, was upregulated in the DMM model. Thus, molecular imaging showed no cathepsin activity at the time of cartilage damage in the DMM model, whereas both cathepsins and MMPs are active in the CIA model during disease progression.

  2. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi.

    Science.gov (United States)

    Palomino, Jaime; Herrera, Giannina; Torres-Fuentes, Jorge; Dettleff, Phillip; Patel, Alok; Martínez, Víctor

    2017-05-01

    In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Relationship between cathepsin B activity and compositional parameters in dry-cured hams of normal and defective texture.

    Science.gov (United States)

    Parolari, G; Virgili, R; Schivazappa, C

    1994-01-01

    Thirty-eight Italian dry-cured hams were analysed for cathepsin B activity, proximate composition and proteolysis index and results were related to lean tissue texture, as assessed by an expert panel, in order to search for relationships between excessive softness, a major problem in the raw ham industry, and chemical parameters. Softness was found to be related to protein breakdown which, in turn, was linked with higher residual cathepsin B activity and, to a lesser extent, to lower salt content. Results suggest that the use of raw ham of controlled enzyme activity would improve the texture quality of the end product. Copyright © 1994. Published by Elsevier Ltd.

  4. Cystatin SN neutralizes the inhibitory effect of cystatin C on cathepsin B activity.

    Science.gov (United States)

    Kim, J-T; Lee, S-J; Kang, M A; Park, J E; Kim, B-Y; Yoon, D-Y; Yang, Y; Lee, C-H; Yeom, Y I; Choe, Y-K; Lee, H G

    2013-12-19

    Cystatin SN (CST1) is one of the several salivary cystatins that form tight equimolar complexes with cysteine proteases, such as the cathepsins. High expression of CST1 is correlated with advanced pTNM stage in gastric cancer. However, the functional role of CST1 in tumorigenesis has not been elucidated. In this study, we showed that CST1 was highly expressed in colon tumor tissues, compared with nontumor regions. Increased cell proliferation and invasiveness were observed in HCT116 cell lines stably transfected with CST1 cDNA (HCT116-CST1) but not in CST3-transfected cells. We also demonstrated that CST1-overexpressing cell lines exhibited increased tumor growth as well as metastasis in a xenograft nude mouse model. Interestingly, CST1 interacted with cystatin C (CST3), a potent cathepsin B (CTSB) inhibitor, with a higher affinity than the interaction between CST3 and CTSB in the extracellular space of HCT116 cells. CTSB-mediated cellular invasiveness and proteolytic activities were strongly inhibited by CST3, but in the presence of CST1 CTSB activities recovered significantly. Furthermore, domain mapping of CST1 showed that the disulfide-bonded conformation, or conserved folding, of CST1 is important for its secretion and for the neutralization of CST3 activity. These results suggest that CST1 upregulation might be involved in colorectal tumorigenesis and acts by neutralizing the inhibition of CTSB proteolytic activity by CST3.

  5. Cystatin C as a p53-inducible apoptotic mediator that regulates cathepsin L activity.

    Science.gov (United States)

    Mori, Jinichi; Tanikawa, Chizu; Funauchi, Yuki; Lo, Paulisally Hau Yi; Nakamura, Yusuke; Matsuda, Koichi

    2016-03-01

    In response to various cellular stresses, p53 is activated and inhibits malignant transformation through the transcriptional regulation of its target genes. However, the full picture of the p53 downstream pathway still remains to be elucidated. Here we identified cystatin C, a major inhibitor of cathepsins, as a novel p53 target. In response to DNA damage, activated p53 induced cystatin C expression through p53 binding sequence in the first intron. We showed that cathepsin L activity was decreased in HCT116 p53(+/+) cells after adriamycin treatment, but not in HCT116 p53(-/-) cells. We also found that knockdown of cystatin C reduced adriamycin-induced caspase-3 activation. Cystatin C expression was significantly downregulated in breast cancer cells with p53 mutations, and decreased cystatin C expression was associated with poor prognosis of breast cancer. Our findings revealed an important role of the p53-cystatin C pathway in human carcinogenesis. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Neutrophil Cathepsin G, but Not Elastase, Induces Aggregation of MCF-7 Mammary Carcinoma Cells by a Protease Activity-Dependent Cell-Oriented Mechanism

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2014-01-01

    Full Text Available We previously found that a neutrophil serine protease, cathepsin G, weakens adherence to culture substrates and induces E-cadherin-dependent aggregation of MCF-7 human breast cancer cells through its protease activity. In this study, we examined whether aggregation is caused by degradation of adhesion molecules on the culture substrates or through an unidentified mechanism. We compared the effect of treatment with cathepsin G and other proteases, including neutrophil elastase against fibronectin- (FN- coated substrates. Cathepsin G and elastase potently degraded FN on the substrates and induced aggregation of MCF-7 cells that had been subsequently seeded onto the substrate. However, substrate-bound cathepsin G and elastase may have caused cell aggregation. After inhibiting the proteases on the culture substrates using the irreversible inhibitor phenylmethylsulfonyl fluoride (PMSF, we examined whether aggregation of MCF-7 cells was suppressed. PMSF attenuated cell aggregation on cathepsin G-treated substrates, but the effect was weak in cells pretreated with high concentrations of cathepsin G. In contrast, PMSF did not suppress cell aggregation on elastase-treated FN. Moreover, cathepsin G, but not elastase, induced aggregation on poly-L-lysine substrates which are not decomposed by these enzymes, and the action of cathepsin G was nearly completely attenuated by PMSF. These results suggest that cathepsin G induces MCF-7 aggregation through a cell-oriented mechanism.

  7. Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion Protein Activation in Cells of the Bat Reservoir Host

    Science.gov (United States)

    El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis

    2015-01-01

    Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132

  8. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    Directory of Open Access Journals (Sweden)

    Farah El Najjar

    Full Text Available Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.

  9. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    Science.gov (United States)

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  10. Single- and Double-Headed Chemical Probes for Detection of Active Cathepsin D in a Cancer Cell Proteome

    Czech Academy of Sciences Publication Activity Database

    Nussbaumerová, Martina; Srp, Jaroslav; Máša, Martin; Hradilek, Martin; Šanda, Miloslav; Reiniš, Milan; Horn, Martin; Mareš, Michael

    2010-01-01

    Roč. 11, č. 11 (2010), s. 1538-1541 ISSN 1439-4227 R&D Projects: GA AV ČR IAA400550705 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : cathepsin D * cancer * activity-based probes Subject RIV: CE - Biochemistry Impact factor: 3.945, year: 2010

  11. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    Science.gov (United States)

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  12. Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II

    Directory of Open Access Journals (Sweden)

    Aaron C. Petrey

    2012-03-01

    The severe pediatric disorder mucolipidosis II (ML-II; also known as I-cell disease is caused by defects in mannose 6-phosphate (Man-6-P biosynthesis. Patients with ML-II exhibit multiple developmental defects, including skeletal, craniofacial and joint abnormalities. To date, the molecular mechanisms that underlie these clinical manifestations are poorly understood. Taking advantage of a zebrafish model of ML-II, we previously showed that the cartilage morphogenesis defects in this model are associated with altered chondrocyte differentiation and excessive deposition of type II collagen, indicating that aspects of development that rely on proper extracellular matrix homeostasis are sensitive to decreases in Man-6-P biosynthesis. To further investigate the molecular bases for the cartilage phenotypes, we analyzed the transcript abundance of several genes in chondrocyte-enriched cell populations isolated from wild-type and ML-II zebrafish embryos. Increased levels of cathepsin and matrix metalloproteinase (MMP transcripts were noted in ML-II cell populations. This increase in transcript abundance corresponded with elevated and sustained activity of several cathepsins (K, L and S and MMP-13 during early development. Unlike MMP-13, for which higher levels of protein were detected, the sustained activity of cathepsin K at later stages seemed to result from its abnormal processing and activation. Inhibition of cathepsin K activity by pharmacological or genetic means not only reduced the activity of this enzyme but led to a broad reduction in additional protease activity, significant correction of the cartilage morphogenesis phenotype and reduced type II collagen staining in ML-II embryos. Our findings suggest a central role for excessive cathepsin K activity in the developmental aspects of ML-II cartilage pathogenesis and highlight the utility of the zebrafish system to address the biochemical underpinnings of metabolic disease.

  13. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  14. Cathepsin D inhibits oxidative stress-induced cell death via activation of autophagy in cancer cells.

    Science.gov (United States)

    Hah, Young-Sool; Noh, Hae Sook; Ha, Ji Hye; Ahn, Jin Sook; Hahm, Jong Ryeal; Cho, Hee Young; Kim, Deok Ryong

    2012-10-28

    Cathepsin D (CatD), a lysosomal aspartic protease, plays an essential role in tumor progression and apoptosis. However, the function of CatD in cell death is not yet fully understood. In this study, we identified CatD as one of up-regulated proteins in human malignant glioblastoma M059J cells that lack the catalytic subunit of DNA-PK compared with its isogenic M059K cells with normal DNA-PK activity. M059J cells were relatively more resistant to genotoxic stress than M059K cells. Overexpression of wild-type CatD but not catalytically inactive mutant CatD (D295N) inhibited H(2)O(2)-induced cell death in HeLa cells. Furthermore, knockdown of CatD expression abolished anti-apoptotic effect by CatD in the presence of H(2)O(2). Interestingly, high expression of CatD in HeLa cells significantly activated autophagy: increase of acidic autophagic vacuoles, LC3-II formation, and GFP-LC3 puncta. These results suggest that CatD can function as an anti-apoptotic mediator by inducing autophagy under cellular stress. In conclusion, inhibition of autophagy could be a novel strategy for the adjuvant chemotherapy of CatD-expressing cancers. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Biotinylated fluorescent peptide substrates for the sensitive and specific determination of cathepsin D activity.

    Science.gov (United States)

    Baechle, D; Cansier, A; Fischer, R; Brandenburg, J; Burster, T; Driessen, C; Kalbacher, H

    2005-03-01

    Cathepsin D (CatD) is a member of the mammalian aspartic protease family and is involved in cellular protein degradation and in several pathological processes. A sensitive and specific assay for the determination of CatD activity in biological samples was developed. The peptide amide substrates Amca-EDKPILF downward arrowFRLGK(biotin)-CONH2 (I), Amca-EEKPIC(Acm)F downward arrowFRLGK(biotin)-CONH2 (II) and Amca-EEKPISF downward arrowFRLGK(biotin)-CONH2 (III) contain a CatD cleavage site (F downward arrowF) flanked by a N-terminal Amca-fluorophore (7-amino-4-methylcoumarin-3-acetic acid) and a C-terminal biotin moiety. Substrates II and III proved to be specific substrates containing only one cleavage site for CatD. After cleavage of the Phe-Phe bond by CatD all biotin conjugated peptides were removed with streptavidin-coated magnetic beads. The remaining fluorescent peptides in solution represent the amount of digested substrate. The versatility of this CatD digest and pull down assay was demonstrated by measuring the activity of CatD in different subcellular fractions of human EBV-transformed B cells and human monocytes. The described method based on the designed CatD substrates represents a valuable tool for routine assays. Copyright (c) 2004 European Peptide Society and John Wiley & Sons, Ltd.

  16. Evaluation of matrix metalloproteinase and cysteine cathepsin activity in dentin hybrid layer by gelatin zymography.

    Science.gov (United States)

    Mahalaxmi, Sekar; Madhubala, Manavalan Madhana; Jayaraman, Mahendran; Sathyakumar, Shanmugasundaram

    2016-01-01

    The aim of this study was to comparatively assess the gelatinolytic activity of matrix metalloproteinases(MMPs) and Cysteine Cathepsins (CCs) in the adhesive interface using etch and rinse adhesive at different time intervals using zymographic technique. Twenty freshly extracted non-carious human third molars were used in this study. Occlusal surfaces were ground flat and 1mm thick horizontal dentin slabs were obtained from each tooth using a diamond disc. The dentin surface was polished with 600-grit silicon-carbide paper. Five out of 20 samples were directly pulverized. In the remaining fifteen samples, the dentin was etched and adhesive was applied and light cured according to the manufacturer's instructions. A 1mm thick flowable composite was build up and light cured. Bonded specimens were cut vertically into 3 to 4 dentin slabs by means of diamond disc to expose the adhesive/dentin interfaces. These were then ground down to 500 µm thick resin-dentin interface using a hard tissue microtome. These sections were then pulverised into powder. Following this, every five samples were subjected to zymographic analysis after 1 day, 7 days and 21 days. Zymograms showed clear, thicker bands on all three isoforms in the etched samples compared to control samples at 1st and 7th day intervals and became inactive at 21st day for all three isoforms. MMP 9 activity was relatively higher when compared to CCs and MMP 2. Etch and rinse adhesive activated MMPs and CCs within the hybrid layer that remained active till 7th day and no gelatinolytic activity was found on 21st day and MMPs are more active compared to CCs and MMP-2.

  17. Stimulatory effect of interleukin-6 on both cathepsins B and L activities from human periodontal ligament cells

    OpenAIRE

    Yamaguchi, Masaru; Ueda, Yuji; Kasai, Kazutaka; Departments of Orthodontics, Nihon University School of Dentistry at Matsudo; Departments of Orthodontics, Nihon University School of Dentistry at Matsudo; Departments of Orthodontics, Nihon University School of Dentistry at Matsudo

    2001-01-01

    Cathepsin is typical and well-characterized lysosomal cystein protease and in pathological conditions is involved in tissue destruction. Recent studies have reported that the mRNA expression of cathepsin K, a family of cystein proteases such as cathepsin B (CAB) and cathepsin L (CAL), is detected in the osteoclasts on the pressure side of the alveolar bone during experimental tooth movement. Interleukin (IL)-6 is a multifunctional cytokine that induces osteoclastic bone resorption through an ...

  18. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  19. New method to discriminate between cathepsin B and cathepsin L in crude extracts from fish muscle based on a simple acidification procedure

    DEFF Research Database (Denmark)

    Godiksen, Helene; Nielsen, Henrik Hauch

    2007-01-01

    A new and simple method to distinguish between cathepsin B and cathepsin L in crude extracts of herring (Clupea harengus) muscle has been established. An acid treatment of crude extracts (exposed to pH 3 for 5 min) activated a latent form of cathepsin L and inactivated cathepsin B. Furthermore......, in neutral crude extract, the hydrolysis of benzyloxycarbonyl-L-phenylalanyl-L-arginyl-4-methylcoumarine (Z-Phe-Arg-MCA) (cathepsin B and cathepsin L substrates) was between 0% and 15% of the hydrolysis of benzyloxycarbonyl-L-arginyl-L-arginyl-7-amino-4-methylcoumarine (Z-Arg-Arg-MCA; cathepsin B substrate......). Cathepsin B activity is measured in neutral extract using the specific cathepsin B substrate Z-Arg-Arg-MCA and cathepsin L activity is measured in acid-treated extract with Z-Phe-Arg-MCA as substrate. The specific cathepsin B inhibitor, CA-074, did not inhibit the Z-Arg-Arg-MCA significantly without...

  20. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by alternating artificial intelligence and molecular simulation

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2017-08-01

    Eighteen tripeptides that fit into the thermally vibrating active site of cathepsin K were discovered by alternating artificial intelligence and molecular simulation. The 18 tripeptides fit the active site better than the cysteine protease inhibitor E64, and a better inhibitor of cathepsin K could be designed considering these tripeptides. Among the 18 tripeptides, Phe-Arg-Asp and Tyr-Arg-Asp fit the active site the best and their structural similarity should be considered in the design process. Interesting factors emerged from the structure of the decision tree, and its structural information will guide exploration of potential inhibitor molecules for proteases.

  1. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of ?-secretase inhibitors

    OpenAIRE

    Zuhl, Andrea M.; Nolan, Charles E.; Brodney, Michael A.; Niessen, Sherry; Atchison, Kevin; Houle, Christopher; Karanian, David A.; Ambroise, Claude; Brulet, Jeffrey W.; Beck, Elizabeth M.; Doran, Shawn D.; O'Neill, Brian T.; am Ende, Christopher W.; Chang, Cheng; Geoghegan, Kieran F.

    2016-01-01

    Inhibition of ?-secretase BACE1 is considered one of the most promising approaches for treating Alzheimer's disease. Several structurally distinct BACE1 inhibitors have been withdrawn from development after inducing ocular toxicity in animal models, but the target mediating this toxicity has not been identified. Here we use a clickable photoaffinity probe to identify cathepsin D (CatD) as a principal off-target of BACE1 inhibitors in human cells. We find that several BACE1 inhibitors blocked ...

  2. Regulation of Cathepsin G Reduces the Activation of Proinsulin-Reactive T Cells from Type 1 Diabetes Patients

    Science.gov (United States)

    Zou, Fang; Schäfer, Nadja; Palesch, David; Brücken, Ruth; Beck, Alexander; Sienczyk, Marcin; Kalbacher, Hubert; Sun, ZiLin; Boehm, Bernhard O.; Burster, Timo

    2011-01-01

    Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to major histocompatibility complex (MHC) class II molecules for CD4+ T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells. PMID:21850236

  3. Regulation of cathepsin G reduces the activation of proinsulin-reactive T cells from type 1 diabetes patients.

    Directory of Open Access Journals (Sweden)

    Fang Zou

    Full Text Available Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D. Self-proteins can be processed by cathepsins (Cats within endocytic compartments and loaded to major histocompatibility complex (MHC class II molecules for CD4(+ T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells.

  4. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    International Nuclear Information System (INIS)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid; Gjerloev, Simon; Birk, Jesper; Roepke, Carsten; Norrild, Bodil

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induction of cell death. We have used the osteosarcoma cell line U2OS cells provided with E7 and the cdk2 inhibitor p21 (cip1/waf1) under inducible control, as a model system for the analysis of E7-mediated apoptosis. Our data shows that simultaneous expression of E7 and p21 proteins induces cell death, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge, this is the first time a role for cathepsin B is reported in HPV-induced apoptotic signalling

  5. A major cathepsin B protease from the liver fluke Fasciola hepatica has atypical active site features and a potential role in the digestive tract of newly excysted juvenile parasites

    Science.gov (United States)

    Beckham, Simone A.; Piedrafita, David; Phillips, Carolyn I.; Samarawickrema, Nirma; Law, Ruby H.P.; Smooker, Peter M.; Quinsey, Noelene S.; Irving, James A.; Greenwood, Deanne; Verhelst, Steven H. L.; Bogyo, Matthew; Turk, Boris; Coetzer, Theresa H.; Wijeyewickrema, Lakshmi C.; Spithill, Terry W.; Pike, Robert N.

    2012-01-01

    The newly excysted juvenile (NEJ) stage of the Fasciola hepatica lifecycle occurs just prior to invasion into the wall of the gut of the host, rendering it an important target for drug development. The cathepsin B enzymes from NEJ flukes have recently been demonstrated to be crucial to invasion and migration by the parasite. Here we characterize one of the cathepsin B enzymes (recombinant FhcatB1) from NEJ flukes. FhcatB1 has biochemical properties distinct from mammalian cathepsin B enzymes, with an atypical preference for Ile over Leu or Arg residues at the P2 substrate position and an inability to act as an exopeptidase. FhcatB1 was active across a broad pH range (optimal activity at pH 5.5–7.0) and resistant to inhibition by cystatin family inhibitors from sheep and humans, suggesting that this enzyme would be able to function in extracellular environments in its mammalian hosts. It appears, however, that the FhcatB1 protease functions largely as a digestive enzyme in the gut of the parasite, due to the localization of a specific, fluorescently labeled inhibitor with an Ile at the P2 position. Molecular modelling and dynamics were used to predict the basis for the unusual substrate specificity: a P2 Ile residue positions the substrate optimally for interaction with catalytic residues of the enzyme, and the enzyme lacks an occluding loop His residue crucial for exopeptidase activity. The unique features of the enzyme, particularly with regard to its specificity and likely importance to a vital stage of the parasite’s life cycle, make it an excellent target for therapeutic inhibitors or vaccination. PMID:19401154

  6. ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression

    DEFF Research Database (Denmark)

    Rafn, Bo; Nielsen, Christian Thomas Friberg; Andersen, Sofie Hagel

    2012-01-01

    signaling network activates the transcription of cathepsin B gene (CTSB) via myeloid zinc finger-1 transcription factor that binds to an ErbB2-responsive enhancer element in the first intron of CTSB. This work provides a model system for ErbB2-induced breast cancer cell invasiveness, reveals a signaling...

  7. Peroxisome proliferator-activated receptor γ-regulated cathepsin D is required for lipid antigen presentation by dendritic cells.

    Science.gov (United States)

    Nakken, Britt; Varga, Tamas; Szatmari, Istvan; Szeles, Lajos; Gyongyosi, Adrienn; Illarionov, Petr A; Dezso, Balazs; Gogolak, Peter; Rajnavolgyi, Eva; Nagy, Laszlo

    2011-07-01

    It is well established that dendritic cells (DCs) take up, process, and present lipid Ags in complex with CD1d molecules to invariant NKT cells. The lipid-activated transcription factor, peroxisome proliferator-activated receptor γ (PPARγ), has previously been shown to regulate CD1d expression in human monocyte-derived DCs, providing a link between lipid metabolism and lipid Ag presentation. We report that PPARγ regulates the expression of a lysosomal protease, cathepsin D (CatD), in human monocyte-derived DCs. Inhibition of CatD specifically reduced the expansion of invariant NKT cells and furthermore resulted in decreased maturation of saposins, a group of lipid transfer proteins required for lysosomal lipid Ag processing and loading. These results reveal a novel mechanism of lipid Ag presentation and identify CatD as a key component of this machinery and firmly place PPARγ as the transcriptional regulator linking lipid metabolism and lipid Ag processing.

  8. Cathepsin L increases invasion and migration of B16 melanoma

    Directory of Open Access Journals (Sweden)

    Cox James L

    2007-05-01

    Full Text Available Abstract Background Most cancers express elevated protease levels which contribute to certain aspects of tumor behavior such as growth, metastatic spread, and angiogenesis. Elevation of the cathepsins of the cysteine protease family correlates with increased invasion of tumor cells. Cysteine proteases such as cathepsins B, H and L type participate in tumor cell invasion as extracellular proteases, yet are enzymes whose exact roles in metastasis are still being elucidated. Methods We have examined the role of cathepsin L in highly metastatic B16F10 murine melanoma cells through genetic antisense constructs of cathepsin L. The effects of cathepsin L antisense were examined for melanoma cell proliferation, invasion, migration and adhesion. Results Antisense expression of cathepsin L, while decreasing enzyme activity in cell lysates, did not influence cell proliferation. Cathepsin L contributed to melanoma cell invasion and also augmented melanoma cell migration. Further, we demonstrated the adhesion of cathepsin L down-regulated clones was unaltered to fibronectin, laminin, and collagen. Finally, the inhibition of melanoma cell migration via down-regulation of cathepsin L appears to be independent of cystatin C expression. Conclusion This study shows that cathepsin L facilitates high metastatic B16 melanoma cell invasion and migration. The mechanism of migration inhibition by decreased cathepsin L is independent of cystatin C levels. Since metastasis depends upon both the invasiveness and migration of tumor cells, cathepsin L may be a therapeutic target of strong clinical interest.

  9. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Purpose: To develop processes for effective isolation and purification of recombinant human plasminogen activator (rhPA) from transgenic rabbit milk. Methods: Immunoaffinity chromatography was selected and improved by a special polyol-responsive monoclonal antibody (PR-mAb). Alteplase was used as immunogen ...

  10. Recombinant human activated protein C (Xigris)

    NARCIS (Netherlands)

    Levi, M. [=Marcel M.; de Jonge, E.; van der Poll, T.

    2002-01-01

    An impaired function of the protein C pathway plays a central role in the pathogenesis of sepsis. Administration of human recombinant activated protein C (Xigris) may restore the dysfunctional anticoagulant mechanism and prevent amplification and propagation of thrombin generation and formation of

  11. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini.

    Directory of Open Access Journals (Sweden)

    Porntip Pinlaor

    Full Text Available The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.Here, we describe the cDNA, gene organization, phylogenetic relationships, immunolocalization, and functional characterization of the cathepsin F cysteine protease gene, here termed Ov-cf-1, from O. viverrini. The full length mRNA of 1020 nucleotides (nt encoded a 326 amino acid zymogen consisting of a predicted signal peptide (18 amino acids, aa, prosegment (95 aa, and mature protease (213 aa. BLAST analysis using the Ov-CF-1 protein as the query revealed that the protease shared identity with cathepsin F-like cysteine proteases of other trematodes, including Clonorchis sinensis (81%, Paragonimus westermani (58%, Schistosoma mansoni and S. japonicum (52%, and with vertebrate cathepsin F (51%. Transcripts encoding the protease were detected in all developmental stages that parasitize the mammalian host. The Ov-cf-1 gene, of approximately 3 kb in length, included seven exons interrupted by six introns; the exons ranged from 69 to 267 bp in length, the introns from 43 to 1,060 bp. The six intron/exon boundaries of Ov-cf-1 were conserved with intron/exon boundaries in the human cathepsin F gene, although the gene structure of human cathepsin F is more complex. Unlike Ov-CF-1, human cathepsin F zymogen includes a cystatin domain in the prosegment region. Phylogenetic analysis revealed that the fluke, human, and other cathepsin Fs branched together in a clade discrete from the cathepsin L cysteine proteases. A recombinant Ov-CF-1 zymogen that displayed low-level activity was expressed in the yeast Pichia pastoris. Although the recombinant protease did not autocatalytically process and

  12. Extraction and Characterization of Cathepsin Inhibitor from Milkfish

    Directory of Open Access Journals (Sweden)

    Tati Nurhayati

    2015-06-01

    Full Text Available Proteolytic enzyme is distributed acros all organism including fish. Cysteine proteases are the largest group of proteolytic enzyme. Lysosomal cathepsin, one of cysteine protease enzyme, cause softening and degradation of myofibril protein and it’s activity is regulated by endogenous inhibitors. The purposes of this study were to optimize the extraction cathepsin inhibitors from the skin, muscles, and viscera of fish, to partially purify the cathepsin inhibitors of selected sources, and to study the characteristics of the cathepsin inhibitor. The cathepsin inhibitor could be extracted from muscle fish and partially purified using ammonium sulfate of 70%. The purified cathepsin inhibitor had optimum temperature at 40°C and the optimum at pH 8. Metal ions decreased the activity of the protease inhibitor, except 1 mM of metal ion Mn2+ and Na+. Keywords: Cathepsin, characterization, partial purification, protease inhibitor

  13. Effect of mefenamic acid on the immunity and hemostatic system of cancer patients and on the activity of cathepsin D-like protease in colonic cancer tissue

    International Nuclear Information System (INIS)

    Klyachkin, B.M.; Basargin, S.T.; Timofeev, I.V.; Khaliulin, Yu.G.; Dorofeev, S.A.; Alekseenko, L.D.; Gumenyuk, M.L.

    1992-01-01

    The study of the effect of sodium mefenaminate on radiation resistance of mice yielded positive results. Clinical investigations showed mefenamic acid to decrease the activity of cathepsin D-like protease in colonic cancer tissue. The acid field to affect the proteolytic activity of the normal mucosa. It revealed an immunomodulating activity and influenced the hemostatic system which usually manifested itself in amelioration of hypercoagulation

  14. Synthetic cyclohexenyl chalcone natural products possess cytotoxic activities against prostate cancer cells and inhibit cysteine cathepsins in vitro.

    Science.gov (United States)

    Deb Majumdar, Ishita; Devanabanda, Arvind; Fox, Benjamin; Schwartzman, Jacob; Cong, Huan; Porco, John A; Weber, Horst C

    2011-12-16

    A number of cyclohexenyl chalcone Diels-Alder natural products possess promising biological properties including strong cytotoxicity in various human cancer cells. Herein, we show that natural products in this class including panduratin A and nicolaioidesin C inhibit cysteine cathepsins as indicated by protease profiling assays and cell-free cathepsin L enzyme assays. Owing to the critical roles of cathepsins in the biology of human tumor progression, invasion, and metastasis, these findings should pave the way for development of novel antitumor agents for use in clinical settings. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Hybrid 2D/3D-quantitative structure-activity relationship and modeling studies perspectives of pepstatin A analogs as cathepsin D inhibitors.

    Science.gov (United States)

    Arodola, Olayide A; Soliman, Mahmoud Es

    2018-01-01

    Cathepsin D, one of the attractive targets in the treatment of breast cancer, has been implicated in HIV neuropathogenesis with potential proteolytic effects on chemokines. Methodology/result: Diverse modeling tools were used to reveal the key structural features affecting the inhibitory activities of 78 pepstatin A analogs. Analyses were performed to investigate the stability, rationality and fluctuation of the analogs. Results showed a clear correlation between the experimental and predicted activities of the analogs as well as the variation in their activities relative to structural modifications. The insight gained from this study offers theoretical references for understanding the mechanism of action of cathepsin D and will aid in the design of more potent and clinically-relevant drugs. Graphical abstract [Formula: see text].

  16. Activated cathepsin L is associated with the switch from autophagy to apoptotic death of SH-SY5Y cells exposed to 6-hydroxydopamine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingyun, E-mail: lingyunlee@126.com [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China); Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Gao, Luyan [Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Song, Yunzhen; Qin, Zheng-Hong [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China); Liang, Zhongqin, E-mail: liangzhongqin@suda.edu.cn [Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 (China)

    2016-02-12

    Autophagy and apoptosis are common responses to pathological damage in the process of Parkinson's disease (PD), and lysosome dysfunction may contribute to the etiology of PD's neurodegenerative process. In this study, we demonstrated that the neurotoxin 6-hydroxydopamine (6-OHDA) increased autophagy in SH-SY5Y cells, as determined by detection of the lysosome marker lysosomal-associated membrane protein1, the autophagy protein light chain 3 (LC3)-II and the autophagy substrate P62 protein. Meanwhile, autophagy repression with 3-methyladenine accelerated the activation of caspase-3 and PARP and aggravated the cell apoptotic death induced by 6-OHDA. Furthermore, we found that 6-OHDA treatment resulted in a transient increase in the intracellular and nuclear expression of cathepsin L (CTSL). The CTSL inhibitor, Z-FY-CHO, could promote autophagy, decrease accumulation of P62, and block activation of caspase-3 and PARP. Taken together, these results suggest that activation of autophagy may primarily be a protective process in SH-SY5Y cell death induced by 6-OHDA, and the nuclear translocation of CTSL could enhance the cell apoptotic cascade via disturbing autophagy-apoptotic systems in SH-SY5Y cells. Our findings highlight the potential role of CTSL in the cross talk between autophagy and apoptosis, which might be considered a therapeutic strategy for treatment of pathologic conditions associated with neurodegeneration. - Highlights: • Inhibition of autophagy aggravated the cell apoptotic death in SH-SY5Y cells. • Activation of cathepsin L impaired the autophagy pathway. • Activation of cathepsin L enhanced the cell apoptotic cascade. • Cathepsin L involves in the cross talk between autophagy and apoptosis.

  17. Collagenolytic activities of the major secreted cathepsin L peptidases involved in the virulence of the helminth pathogen, Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Mark W Robinson

    Full Text Available BACKGROUND: The temporal expression and secretion of distinct members of a family of virulence-associated cathepsin L cysteine peptidases (FhCL correlates with the entry and migration of the helminth pathogen Fasciola hepatica in the host. Thus, infective larvae traversing the gut wall secrete cathepsin L3 (FhCL3, liver migrating juvenile parasites secrete both FhCL1 and FhCL2 while the mature bile duct parasites, which are obligate blood feeders, secrete predominantly FhCL1 but also FhCL2. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that FhCL1, FhCL2 and FhCL3 exhibit differences in their kinetic parameters towards a range of peptide substrates. Uniquely, FhCL2 and FhCL3 readily cleave substrates with Pro in the P2 position and peptide substrates mimicking the repeating Gly-Pro-Xaa motifs that occur within the primary sequence of collagen. FhCL1, FhCL2 and FhCL3 hydrolysed native type I and II collagen at neutral pH but while FhCL1 cleaved only non-collagenous (NC, non-Gly-X-Y domains FhCL2 and FhCL3 exhibited collagenase activity by cleaving at multiple sites within the α1 and α2 triple helix regions (Col domains. Molecular simulations created for FhCL1, FhCL2 and FhCL3 complexed to various seven-residue peptides supports the idea that Trp67 and Tyr67 in the S2 subsite of the active sites of FhCL3 and FhCL2, respectively, are critical to conferring the unique collagenase-like activity to these enzymes by accommodating either Gly or Pro residues at P2 in the substrate. The data also suggests that FhCL3 accommodates hydroxyproline (Hyp-Gly at P3-P2 better than FhCL2 explaining the observed greater ability of FhCL3 to digest type I and II collagens compared to FhCL2 and why these enzymes cleave at different positions within the Col domains. CONCLUSIONS/SIGNIFICANCE: These studies further our understanding of how this helminth parasite regulates peptidase expression to ensure infection, migration and establishment in host tissues.

  18. Chemical constituents of the stem bark of Vochysia thyrsoidea Pohl. (Vochysiaceae) and evaluation of their cytotoxicity and inhibitory activity against cathepsins B and K

    International Nuclear Information System (INIS)

    Sousa, Lorena Ramos Freitas de; Silva, Jame's A. da; Vieira, Paulo Cezar; Costa, Maisa Borges; Santos, Mirley Luciene dos; Menezes, Antonio Carlos Severo; Sbardelotto, Aline Borba; Pessoa, Claudia do O; Moraes, Manoel Odorico de

    2014-01-01

    A new flavonoid, catechin-3-O-(3 - O-trans-cinnamoyl)-α-rhamnopyranoside, along with known compounds, catechin-3-O-α-rhamnopyranoside, 3-oxo-urs-12-en-28-oic acid, 2,4,6-trimethoxybenzoic acid, 2-butyl-D-fructofuranoside and 1-butyl-D-fructofuranoside, has been isolated from the stem bark of V. thyrsoidea. These compounds were assayed for inhibition of protease activity (cathepsins B and K) and against cancer cell lines. Catechin-3-O-(3 - O-trans-cinnamoyl)-α-rhamnopyranoside showed moderate inhibitory activity (IC 50 = 62.02 µM) against cathepsin B while 2-butyl-D-fructofuranoside was the most potent against a strain of CNS (SF-295) and human leukemia (HL-60) with IC 50 = 36.80 μM and IC 50 = 25.37 μM, respectively (author)

  19. Cathepsin D protects renal tubular cells from damage induced by high glucose independent of its enzymatic activity.

    Science.gov (United States)

    Du, Feng; Wang, Tian; Li, Si; Meng, Xin; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin

    2017-01-01

    Although glomerular and vascular damage have been considered the main characteristics of diabetic kidney disease (DKD), accumulating data now indicate that tubular atrophy also plays a major role. Cathepsin D (CatD) is the major aspartate protease within lysosomes. The current study demonstrated that CatD expression was altered in the renal tubular epithelium in patients with diabetes mellitus (DM). In contrast to its low and uniform distribution in the tubular epithelium in normal kidney tissues, CatD demonstrated flecked and increased expression in tubules with relatively integral structures, and disappeared in disordered tubules in DM kidney tissues. In vitro studies demonstrated that CatD protected HK2 cells from the damage induced by high glucose and advanced glycation end-products (AGEs), independent of its enzymatic activity. In addition, the current study demonstrated that AGEs induced lysosome membrane permeabilization (LMP) and loss of mitochondrial membrane potential (MMP). Overexpression of CatD prevented LMP and maintained the MMP in HK2 cells exposed to AGEs. In addition, the catalytic activity of CatD was not required for its role in LMP prevention and MMP maintenance. These results indicate, for the first time that CatD may improve the viability of renal tubular cells in the presence of diabetic mediators independent of its enzymatic activity by preventing LMP and stabilizing the MMP.

  20. Cathepsin B trafficking in thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Tedelind Sofia

    2011-08-01

    Full Text Available Abstract Background The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in prohormone processing initiated in the follicle lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space in thyroid cancer tissue, and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through e.g. extracellular matrix degradation. Methods Transport of cathepsin B in normal thyroid epithelial and carcinoma cells was investigated through immunolocalization of endogenous cathepsin B in combination with probing protease activity. Transport analyses of cathepsin B-eGFP and its active-site mutant counterpart cathepsin B-C29A-eGFP were used to test whether intrinsic sequences of a protease influence its trafficking. Results Our approach employing activity based probes, which distinguish between active and inactive cysteine proteases, demonstrated that both eGFP-tagged normal and active-site mutated cathepsin B chimeras reached the endo-lysosomal compartments of thyroid epithelial cells, thereby ruling out alterations of sorting signals by mutagenesis of the active-site cysteine. Analysis of chimeric protein trafficking further showed that GFP-tagged cathepsin B was transported to the expected compartments, i.e. endoplasmic reticulum, Golgi apparatus and endo-lysosomes of normal and thyroid carcinoma cell lines. However, the active-site mutated cathepsin B chimera was mostly retained in the endoplasmic reticulum and Golgi of KTC-1 and HTh7 cells. Hence the latter, as the least polarized of the three carcinoma cell lines analyzed, exhibited severe transport defects in that it retained chimeras in pre-endolysosomal compartments. Furthermore, secretion of endogenous cathepsin B and of other cysteine peptidases, which occurs at the apical pole of normal thyroid epithelial cells, was most prominent and occurred in a non-directed fashion in thyroid

  1. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    Recombinant melittin was then successfully expressed in Escherichia coli. The activity of affinity-purified recombinant melittin was determined in human leukemic U937 cells. Results show that the recombinant melittin had the same anti-proliferative activity in human leukemic U937 cells in vitro as natural one. This shows the ...

  2. Systematic optimization of multiplex zymography protocol to detect active cathepsins K, L, S, and V in healthy and diseased tissue: compromise among limits of detection, reduced time, and resources.

    Science.gov (United States)

    Dumas, Jerald E; Platt, Manu O

    2013-07-01

    Cysteine cathepsins are a family of proteases identified in cancer, atherosclerosis, osteoporosis, arthritis, and a number of other diseases. As this number continues to rise, so does the need for low cost, broad use quantitative assays to detect their activity and can be translated to the clinic in the hospital or in low resource settings. Multiplex cathepsin zymography is one such assay that detects subnanomolar levels of active cathepsins K, L, S, and V in cell or tissue preparations observed as clear bands of proteolytic activity after gelatin substrate SDS-PAGE with conditions optimal for cathepsin renaturing and activity. Densitometric analysis of the zymogram provides quantitative information from this low cost assay. After systematic modifications to optimize cathepsin zymography, we describe reduced electrophoresis time from 2 h to 10 min, incubation assay time from overnight to 4 h, and reduced minimal tissue protein necessary while maintaining sensitive detection limits; an evaluation of the pros and cons of each modification is also included. We further describe image acquisition by Smartphone camera, export to Matlab, and densitometric analysis code to quantify and report cathepsin activity, adding portability and replacing large scale, darkbox imaging equipment that could be cost prohibitive in limited resource settings.

  3. Systematic optimization of multiplex zymography protocol to detect active cathepsins K, L, S, and V in healthy and diseased tissue: compromise between limits of detection, reduced time, and resources

    Science.gov (United States)

    Dumas, Jerald E.; Platt, Manu O.

    2013-01-01

    Cysteine cathepsins are a family of proteases identified in cancer, atherosclerosis, osteoporosis, arthritis and a number of other diseases. As this number continues to rise, so does the need for low cost, broad use quantitative assays to detect their activity and can be translated to the clinic in the hospital or in low resource settings. Multiplex cathepsin zymography is one such assay that detects subnanomolar levels of active cathepsins K, L, S, and V in cell or tissue preparations observed as cleared bands of proteolytic activity after gelatin substrate SDS-PAGE with conditions optimal for cathepsin renaturing and activity. Densitometric analysis of the zymogram provides quantitative information from this low cost assay. After systematic modifications to optimize cathepsin zymography, we describe reduced electrophoresis time from 2 hours to 10 minutes, incubation assay time from overnight to 4 hours, and reduced minimal tissue protein necessary while maintaining sensitive detection limits; an evaluation of the pros and cons of each modification is also included. We further describe image acquisition by smartphone camera, export to Matlab, and densitometric analysis code to quantify and report cathepsin activity, adding portability and replacing large scale, darkbox imaging equipment that could be cost prohibitive in limited resource settings. PMID:23532386

  4. Camalexin-induced apoptosis in prostate cancer cells involves alterations of expression and activity of lysosomal protease cathepsin D.

    Science.gov (United States)

    Smith, Basil; Randle, Diandra; Mezencev, Roman; Thomas, LeeShawn; Hinton, Cimona; Odero-Marah, Valerie

    2014-04-02

    Camalexin, the phytoalexin produced in the model plant Arabidopsis thaliana, possesses antiproliferative and cancer chemopreventive effects. We have demonstrated that the cytostatic/cytotoxic effects of camalexin on several prostate cancer (PCa) cells are due to oxidative stress. Lysosomes are vulnerable organelles to Reactive Oxygen Species (ROS)-induced injuries, with the potential to initiate and or facilitate apoptosis subsequent to release of proteases such as cathepsin D (CD) into the cytosol. We therefore hypothesized that camalexin reduces cell viability in PCa cells via alterations in expression and activity of CD. Cell viability was evaluated by MTS cell proliferation assay in LNCaP and ARCaP Epithelial (E) cells, and their respective aggressive sublines C4-2 and ARCaP Mesenchymal (M) cells, whereby the more aggressive PCa cells (C4-2 and ARCaPM) displayed greater sensitivity to camalexin treatments than the lesser aggressive cells (LNCaP and ARCaPE). Immunocytochemical analysis revealed CD relocalization from the lysosome to the cytosol subsequent to camalexin treatments, which was associated with increased protein expression of mature CD; p53, a transcriptional activator of CD; BAX, a downstream effector of CD, and cleaved PARP, a hallmark for apoptosis. Therefore, camalexin reduces cell viability via CD and may present as a novel therapeutic agent for treatment of metastatic prostate cancer cells.

  5. Camalexin-Induced Apoptosis in Prostate Cancer Cells Involves Alterations of Expression and Activity of Lysosomal Protease Cathepsin D

    Directory of Open Access Journals (Sweden)

    Basil Smith

    2014-04-01

    Full Text Available Camalexin, the phytoalexin produced in the model plant Arabidopsis thaliana, possesses antiproliferative and cancer chemopreventive effects. We have demonstrated that the cytostatic/cytotoxic effects of camalexin on several prostate cancer (PCa cells are due to oxidative stress. Lysosomes are vulnerable organelles to Reactive Oxygen Species (ROS-induced injuries, with the potential to initiate and or facilitate apoptosis subsequent to release of proteases such as cathepsin D (CD into the cytosol. We therefore hypothesized that camalexin reduces cell viability in PCa cells via alterations in expression and activity of CD. Cell viability was evaluated by MTS cell proliferation assay in LNCaP and ARCaP Epithelial (E cells, and their respective aggressive sublines C4-2 and ARCaP Mesenchymal (M cells, whereby the more aggressive PCa cells (C4-2 and ARCaPM displayed greater sensitivity to camalexin treatments than the lesser aggressive cells (LNCaP and ARCaPE. Immunocytochemical analysis revealed CD relocalization from the lysosome to the cytosol subsequent to camalexin treatments, which was associated with increased protein expression of mature CD; p53, a transcriptional activator of CD; BAX, a downstream effector of CD, and cleaved PARP, a hallmark for apoptosis. Therefore, camalexin reduces cell viability via CD and may present as a novel therapeutic agent for treatment of metastatic prostate cancer cells.

  6. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors.

    Science.gov (United States)

    Zuhl, Andrea M; Nolan, Charles E; Brodney, Michael A; Niessen, Sherry; Atchison, Kevin; Houle, Christopher; Karanian, David A; Ambroise, Claude; Brulet, Jeffrey W; Beck, Elizabeth M; Doran, Shawn D; O'Neill, Brian T; Am Ende, Christopher W; Chang, Cheng; Geoghegan, Kieran F; West, Graham M; Judkins, Joshua C; Hou, Xinjun; Riddell, David R; Johnson, Douglas S

    2016-10-11

    Inhibition of β-secretase BACE1 is considered one of the most promising approaches for treating Alzheimer's disease. Several structurally distinct BACE1 inhibitors have been withdrawn from development after inducing ocular toxicity in animal models, but the target mediating this toxicity has not been identified. Here we use a clickable photoaffinity probe to identify cathepsin D (CatD) as a principal off-target of BACE1 inhibitors in human cells. We find that several BACE1 inhibitors blocked CatD activity in cells with much greater potency than that displayed in cell-free assays with purified protein. Through a series of exploratory toxicology studies, we show that quantifying CatD target engagement in cells with the probe is predictive of ocular toxicity in vivo. Taken together, our findings designate off-target inhibition of CatD as a principal driver of ocular toxicity for BACE1 inhibitors and more generally underscore the power of chemical proteomics for discerning mechanisms of drug action.

  7. xtraction and Characterization of Cathepsin Inhibitor from Milkfish

    Directory of Open Access Journals (Sweden)

    Tati Nurhayati

    2015-06-01

    Full Text Available Abstract Proteolytic enzyme is distributed acros all organism including fish. Cysteine proteases are the largest group of proteolytic enzyme. Lysosomal cathepsin, one of cysteine protease enzyme, cause softening and degradation of myofibril protein and it’s activity is regulated by endogenous inhibitors. The purposes of this study were to optimize the extraction cathepsin inhibitors from the skin, muscles, and viscera of fish, to partially purify the cathepsin inhibitors of selected sources, and to study the characteristics of the cathepsin inhibitor. The cathepsin inhibitor could be extracted from muscle fish and partially purified using ammonium sulfate of 70%. The purified cathepsin inhibitor had optimum temperature at 40°C and the optimum at pH 8. Metal ions decreased the activity of the protease inhibitor, except 1 mM of metal ion Mn2+ and Na+.

  8. Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells.

    Science.gov (United States)

    Hira, Vashendriya V V; Verbovšek, Urška; Breznik, Barbara; Srdič, Matic; Novinec, Marko; Kakar, Hala; Wormer, Jill; der Swaan, Britt Van; Lenarčič, Brigita; Juliano, Luiz; Mehta, Shwetal; Van Noorden, Cornelis J F; Lah, Tamara T

    2017-03-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tumor marker utility and prognostic relevance of cathepsin B, cathepsin L, urokinase-type plasminogen activator, plasminogen activator inhibitor type-1, CEA and CA 19-9 in colorectal cancer

    International Nuclear Information System (INIS)

    Herszényi, László; Farinati, Fabio; Cardin, Romilda; István, Gábor; Molnár, László D; Hritz, István; De Paoli, Massimo; Plebani, Mario; Tulassay, Zsolt

    2008-01-01

    Cathepsin B and L (CATB, CATL), urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 play an important role in colorectal cancer invasion. The tumor marker utility and prognostic relevance of these proteases have not been evaluated in the same experimental setting and compared with that of CEA and CA-19-9. Protease, CEA and CA 19-9 serum or plasma levels were determined in 56 patients with colorectal cancer, 25 patients with ulcerative colitis, 26 patients with colorectal adenomas and 35 tumor-free control patients. Protease, CEA, CA 19-9 levels have been determined by ELISA and electrochemiluminescence immunoassay, respectively; their sensitivity, specificity, diagnostic accuracy have been calculated and correlated with clinicopathological staging. The protease antigen levels were significantly higher in colorectal cancer compared with other groups. Sensitivity of PAI-1 (94%), CATB (82%), uPA (69%), CATL (41%) were higher than those of CEA or CA 19-9 (30% and 18%, respectively). PAI-1, CATB and uPA demonstrated a better accuracy than CEA or CA 19-9. A combination of PAI-1 with CATB or uPA exhibited the highest sensitivity value (98%). High CATB, PAI-1, CEA and CA 19-9 levels correlated with advanced Dukes stages. CATB (P = 0.0004), CATL (P = 0.02), PAI-1 (P = 0.01) and CA 19-9 (P = 0.004) had a significant prognostic impact. PAI-1 (P = 0.001), CATB (P = 0.04) and CA 19-9 (P = 0.02) proved as independent prognostic variables. At the time of clinical detection proteases are more sensitive indicators for colorectal cancer than the commonly used tumor markers. Determinations of CATB, CATL and PAI-1 have a major prognostic impact in patients with colorectal cancer

  10. Control of active B and L cathepsins in tissues of colorectal cancer using cystatins isolated from chicken egg proteins: in vitro studies.

    Science.gov (United States)

    Hap, Andrzej; Kielan, Wojciech; Grzebieniak, Zygmunt; Siewinski, Maciej; Rudnicki, Jerzy; Tarnawa, Robert; Rudno-Rudzinska, Julia; Agrawal, Anil Kumar

    2011-01-01

    The activity of cysteine peptidases (cathepsins B and L) was estimated in homogenates of tissues sampled during surgery from 60 patients operated due to colorectal tumors. The results were compared to those obtained using tissues in which histopathology disclosed no tumorous cells, obtained from 20 patients of the same group, treated as a control. Activity of the enzymes was inhibited using cysteine peptidase inhibitors isolated from chicken egg proteins. Application of the inhibitors was found to inhibit activity of the enzymes which play a key role in tumor development. It is suggested that in future the inhibitors may provide a component of new generation drugs in the so-called inhibitor therapy.

  11. Cathepsin D, a Marker for the Metastatic Potential of Breast Cancer, May Regulate the Mitogenic Activity of Fibroblast Growth Factor 1

    National Research Council Canada - National Science Library

    Grieb, Teri

    1998-01-01

    .... Over the years, the data substantiating such a role for cathepsin D has been quite conflicting However, there is strong evidence that cathepsin D plays a role in the degradation of the extracellular matrix (ECM...

  12. Dissecting the active site of the collagenolytic cathepsin L3 protease of the invasive stage of Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Ileana Corvo

    Full Text Available A family of secreted cathepsin L proteases with differential activities is essential for host colonization and survival in the parasitic flatworm Fasciola hepatica. While the blood feeding adult secretes predominantly FheCL1, an enzyme with a strong preference for Leu at the S2 pocket of the active site, the infective stage produces FheCL3, a unique enzyme with collagenolytic activity that favours Pro at P2.Using a novel unbiased multiplex substrate profiling and mass spectrometry methodology (MSP-MS, we compared the preferences of FheCL1 and FheCL3 along the complete active site cleft and confirm that while the S2 imposes the greatest influence on substrate selectivity, preferences can be indicated on other active site subsites. Notably, we discovered that the activity of FheCL1 and FheCL3 enzymes is very different, sharing only 50% of the cleavage sites, supporting the idea of functional specialization. We generated variants of FheCL1 and FheCL3 with S2 and S3 residues by mutagenesis and evaluated their substrate specificity using positional scanning synthetic combinatorial libraries (PS-SCL. Besides the rare P2 Pro preference, FheCL3 showed a distinctive specificity at the S3 pocket, accommodating preferentially the small Gly residue. Both P2 Pro and P3 Gly preferences were strongly reduced when Trp67 of FheCL3 was replaced by Leu, rendering the enzyme incapable of digesting collagen. In contrast, the inverse Leu67Trp substitution in FheCL1 only slightly reduced its Leu preference and improved Pro acceptance in P2, but greatly increased accommodation of Gly at S3.These data reveal the significance of S2 and S3 interactions in substrate binding emphasizing the role for residue 67 in modulating both sites, providing a plausible explanation for the FheCL3 collagenolytic activity essential to host invasion. The unique specificity of FheCL3 could be exploited in the design of specific inhibitors selectively directed to specific infective stage

  13. Role of cathepsin D activation in major adverse cardiovascular events and new-onset heart failure after STEMI.

    Science.gov (United States)

    Yamac, Aylin Hatice; Sevgili, Emrah; Kucukbuzcu, Sitki; Nasifov, Muharrem; Ismailoglu, Ziya; Kilic, Elif; Ercan, Cilem; Jafarov, Parviz; Uyarel, Hüseyin; Bacaksiz, Ahmet

    2015-09-01

    Increased serum levels of the activated aspartic lysosomal endopeptidase cathepsin D (CatD) have been found in patients with acute myocardial infarction (AMI). However, to date there have been no analyses of clinical follow-up data measuring the enzyme course and its role in the development of post-MI heart failure. This study aimed to evaluate the role of serum CatD activity in the development of heart failure in patients with ST-segment elevation acute myocardial infarction (STEMI). Eighty-eight consecutive patients (79.5 % men, mean age 57.4 ± 10.2 years) with STEMI were included in this study. Serum CatD activity was measured directly after primary percutaneous coronary intervention (PCI), before discharge, and at the 6-month follow-up. Patients were monitored for major adverse cardiovascular events (MACE), defined as hospitalization due to cardiovascular causes, recurrent nonfatal myocardial infarction, unplanned PCI, new-onset heart failure, and cardiovascular mortality. Serum CatD activity was significantly higher in patients with AMI after PCI and during follow-up (FU) than that in age-matched controls (16.2 ± 7.5 and 29.8 ± 8.9 vs. 8.5 ± 4.2 RFU; p CatD activity in these patients was inversely related to new-onset cardiac dysfunction compared with patients with preserved and improved LVEF after treatment (23.1 ± 3.2 vs. 28.8 ± 7.0 and 29.7 ± 5.0 RFU respectively, p CatD than those without any MACE (23.8 ± 4.6 vs 29.6 ± 6.9 RFU; p CatD activity as a marker of healthy endogenous phagocytosis and remodeling was impaired in patients with new-onset cardiac dysfunction, and lower levels of serum CatD were associated with MACE at the 6-month post-MI follow-up.

  14. Expression of Cathepsins B, D, and G in Isocitrate Dehydrogenase-Wildtype Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sabrina P. Koh

    2017-05-01

    Full Text Available AimTo investigate the expression of cathepsins B, D, and G, in relation to the cancer stem cell (CSC subpopulations, we have previously characterized within isocitrate dehydogenase (IDH-wildtype glioblastoma (IDHWGB.Methods3,3-Diaminobezidine (DAB immunohistochemical (IHC staining for cathepsins B, D, and G, was performed on 4μm-thick formalin-fixed paraffin-embedded IDHWGB samples obtained from six patients. Two representative DHWGB samples from the original cohort of patients were selected for immunofluorescent (IF IHC staining, to identify the localization of the cathepsins in relation to the CSC subpopulations. NanoString gene expression analysis and colorimetric in situ hybridization (CISH were conducted to investigate the transcriptional activation of genes encoding for cathepsins B, D, and G. Data obtained from cell counting of DAB IHC-stained slides and from NanoString analysis were subjected to statistical analyses to determine significance.ResultsCathepsin B and cathepsin D were detected in IDHWGB by DAB IHC staining. IF IHC staining demonstrated the expression of both cathepsin B and cathepsin D by the OCT4+ and SALL4+ CSC subpopulations. NanoString gene analysis and CISH confirmed the abundant transcript expression of these cathepsins. The transcriptional and translational expressions of cathepsin G were minimal and were confined to cells within the microvasculature.ConclusionThis study demonstrated the expression of cathepsin B and cathepsin D but not cathepsin G within the CSC subpopulations of IDHWGB at both the transcriptional and translational level. Cathepsin G was expressed at low levels and was not localized to the CSC population of IDHWGB. The novel finding of cathepsin B and cathepsin D in IDHWGB suggests the presence of bypass loops for the renin-angiotensin system, which may facilitate the production of angiotensin peptides. Elucidating the precise role of these cathepsins may lead to better understanding and more

  15. Activity of recombinant factor VIIa under different conditions in vitro

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Jespersen, Jørgen

    2008-01-01

    Recombinant activated factor VII (NovoSeven; Novo Nordisk A/S, Måløv, Denmark) is an effective drug for treatment of bleeding in patients with haemophilia A or B and inhibitors. Little is known about physiological conditions influencing the efficacy of recombinant activated factor VII. We...

  16. Recombinant-activated factor VII in the paediatric cardiac surgery ...

    African Journals Online (AJOL)

    Recombinant-activated factor VII in the paediatric cardiac surgery: Single unit experience. V Agarwal, KE Okonta, PS Lal. Abstract. Background: The control of excessive bleeding after paediatric cardiac surgery can be challenging. This may make the use of recombinant-activated factor VII (rFVIIa) in preventing this ...

  17. Cathepsin D protects renal tubular cells from damage induced by high glucose independent of its enzymatic activity

    OpenAIRE

    Du, Feng; Wang, Tian; Li, Si; Meng, Xin; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin

    2017-01-01

    Although glomerular and vascular damage have been considered the main characteristics of diabetic kidney disease (DKD), accumulating data now indicate that tubular atrophy also plays a major role. Cathepsin D (CatD) is the major aspartate protease within lysosomes. The current study demonstrated that CatD expression was altered in the renal tubular epithelium in patients with diabetes mellitus (DM). In contrast to its low and uniform distribution in the tubular epithelium in normal kidney tis...

  18. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  19. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  20. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    International Nuclear Information System (INIS)

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared; Dutch, Rebecca Ellis

    2006-01-01

    The Nipah virus fusion (F) protein is proteolytically processed to F 1 + F 2 subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsins can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form

  1. Molecular and immunological characterization of cathepsin L-like cysteine protease of Paragonimus pseudoheterotremus.

    Science.gov (United States)

    Yoonuan, Tippayarat; Nuamtanong, Supaporn; Dekumyoy, Paron; Phuphisut, Orawan; Adisakwattana, Poom

    2016-12-01

    Cathepsin L is a cysteine protease belonging to the papain family. In parasitic trematodes, cathepsin L plays essential roles in parasite survival and host-parasite interactions. In this study, cathepsin L of the lung fluke Paragonimus pseudoheterotremus (PpsCatL) was identified and its molecular biological and immunological features characterized. A sequence analysis of PpsCatL showed that the gene encodes a 325-amino-acid protein that is most similar to P. westermani cathepsin L. The in silico three-dimensional structure suggests that PpsCatL is a pro-enzyme that becomes active when the propeptide is cleaved. A recombinant pro-PpsCatL lacking the signal peptide (rPpsCatL), with a molecular weight of 35 kDa, was expressed in E. coli and reacted with P. pseudoheterotremus-infected rat sera. The native protein was detected in crude worm antigens and excretory-secretory products and was localized in the cecum and in the lamellae along the intestinal tract of the adult parasite. Enzymatic activity of rPpsCatL showed that the protein could cleave the fluorogenic substrate Z-Phe-Arg-AMC after autocatalysis but was inhibited with E64. The immunodiagnostic potential of the recombinant protein was evaluated with an enzyme-linked immunosorbent assay (ELISA) and suggested that rPpsCatL can detect paragonimiasis with high sensitivity and specificity (100 and 95.6 %, respectively). This supports the further development of an rPpsCatL-ELISA as an immunodiagnostic tool.

  2. Novel cathepsin B and cathepsin B-like cysteine protease of Naegleria fowleri excretory-secretory proteins and their biochemical properties.

    Science.gov (United States)

    Lee, Jinyoung; Kim, Jong-Hyun; Sohn, Hae-Jin; Yang, Hee-Jong; Na, Byoung-Kuk; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2014-08-01

    Naegleria fowleri causes a lethal primary amoebic meningoencephalitis (PAM) in humans and experimental animals, which leads to death within 7-14 days. Cysteine proteases of parasites play key roles in nutrient uptake, excystment/encystment, host tissue invasion, and immune evasion. In this study, we cloned N. fowleri cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes from our cDNA library of N. fowleri. The full-length sequences of genes were 1,038 and 939 bp (encoded 345 and 313 amino acids), and molecular weights were 38.4 and 34 kDa, respectively. Also, nfcpb and nfcpb-L showed a 56 and 46 % identity to Naegleria gruberi cathepsin B and cathepsin B-like enzyme, respectively. Recombinant NfCPB (rNfCPB) and NfCPB-L (rNfCPB-L) proteins were expressed by the pEX5-NT/TOPO vector that was transformed into Escherichia coli BL21, and they showed 38.4 and 34 kDa bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis using their respective antibodies. Proteolytic activity of refolded rNfCPB and rNfCPB-L was maximum at a pH of 4.5, and the most effective substrate was Z-LR-MCA. rNfCPB and rNfCPB-L showed proteolytic activity for several proteins such as IgA, IgG, IgM, collagen, fibronectin, hemoglobin, and albumin. These results suggested that NfCPB and NfCPB-L cysteine protease are important components of the N. fowleri ESP, and they may play important roles in host tissue invasion and immune evasion as pathogens that cause N. fowleri PAM.

  3. Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils.

    Directory of Open Access Journals (Sweden)

    Nauder Faraday

    Full Text Available Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.

  4. Detection of femtomole quantities of mature cathepsin K with zymography.

    Science.gov (United States)

    Li, Weiwei A; Barry, Zachary T; Cohen, Joshua D; Wilder, Catera L; Deeds, Rebecca J; Keegan, Philip M; Platt, Manu O

    2010-06-01

    Cathepsin K, the most potent mammalian collagenase, has been implicated in osteoporosis, cancer metastasis, atherosclerosis, and arthritis. Although procathepsin K is stable and readily detected, the active mature cathepsin K eludes detection by in vitro methods due to its shorter half-life and inactivation at neutral pH. We describe, for the first time, reliable detection, visualization, and quantification of mature cathepsin K to femtomole resolution using gelatin zymography. The specificity of the method was validated with cathepsin K knockdown using small interfering RNA (siRNA) transfection of human monocyte-derived macrophages, and enzymatic activity confirmed with benzyloxycarbonyl-glycine-proline-arginine-7-amino-4-methylcoumarin (Z-GPR-AMC) substrate hydrolysis was fit to a computational model of enzyme kinetics. Furthermore, cathepsin K zymography was used to show that murine osteoclasts secrete more cathepsin K than is stored intracellularly, and this was opposite to the behavior of the macrophages from which they were differentiated. In summary, this inexpensive, species-independent, antibody-free protocol describes a sensitive method with broad potential to elucidate previously undetectable cathepsin K activity. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Mycobacterium tuberculosis Modulates miR-106b-5p to Control Cathepsin S Expression Resulting in Higher Pathogen Survival and Poor T-Cell Activation

    Directory of Open Access Journals (Sweden)

    David Pires

    2017-12-01

    Full Text Available The success of tuberculosis (TB bacillus, Mycobacterium tuberculosis (Mtb, relies on the ability to survive in host cells and escape to immune surveillance and activation. We recently demonstrated that Mtb manipulation of host lysosomal cathepsins in macrophages leads to decreased enzymatic activity and pathogen survival. In addition, while searching for microRNAs (miRNAs involved in posttranscriptional gene regulation during mycobacteria infection of human macrophages, we found that selected miRNAs such as miR-106b-5p were specifically upregulated by pathogenic mycobacteria. Here, we show that miR-106b-5p is actively manipulated by Mtb to ensure its survival in macrophages. Using an in silico prediction approach, we identified miR-106b-5p with a potential binding to the 3′-untranslated region of cathepsin S (CtsS mRNA. We demonstrated by luminescence-based methods that miR-106b-5p indeed targets CTSS mRNA resulting in protein translation silencing. Moreover, miR-106b-5p gain-of-function experiments lead to a decreased CtsS expression favoring Mtb intracellular survival. By contrast, miR-106b-5p loss-of-function in infected cells was concomitant with increased CtsS expression, with significant intracellular killing of Mtb and T-cell activation. Modulation of miR-106b-5p did not impact necrosis, apoptosis or autophagy arguing that miR-106b-5p directly targeted CtsS expression as a way for Mtb to avoid exposure to degradative enzymes in the endocytic pathway. Altogether, our data suggest that manipulation of miR-106b-5p as a potential target for host-directed therapy for Mtb infection.

  6. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    , equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  7. The highly antigenic 53/25 kDa Taenia solium protein fraction with cathepsin-L like activity is present in the oncosphere/cysticercus and induces non-protective IgG antibodies in pigs.

    Science.gov (United States)

    Zimic, Mirko; Pajuelo, Mónica; Gilman, Robert H; Gutiérrez, Andrés H; Rueda, Luis D; Flores, Myra; Chile, Nancy; Verástegui, Manuela; Gonzalez, Armando; García, Héctor H; Sheen, Patricia

    2012-01-15

    Cathepsin L-like proteases are secreted by several parasites including Taenia solium. The mechanism used by T. solium oncospheres to degrade and penetrate the intestine and infect the host is incompletely understood. It is assumed that intestinal degradation is driven by the proteolytic activity of enzymes secreted by the oncosphere. Blocking the proteolytic activity by an antibody response would prevent the oncosphere penetration and further infection. Serine and cysteine proteases including chymotrypsin, trypsin, elastase, and cathepsin L, are secreted by T. solium and Taenia saginata oncospheres when cultured in vitro, being potential vaccine candidates. However, the purification of a sufficient quantity of proteases secreted by oncospheres to conduct a vaccine trial is costly and lengthy. A 53/25 kDa cathepsin L-like fraction partially purified from T. solium cyst fluid was described previously as an important antigen for immunodiagnostics. In this study we found that this antigen is present in the T. solium oncosphere and is also secreted by the cysticercus. This protein fraction was tested for its ability to protect pigs against an oral challenge with T. solium oncospheres in a vaccine trial. IgG antibodies against the 53/25 kDa cathepsin L-like protein fraction were elicited in the vaccinated animals but did not confer protection. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effect of electrohydraulic shockwave treatment on tenderness, muscle cathepsin and peptidase activities and microstructure of beef loin steaks from Holstein young bulls.

    Science.gov (United States)

    Bolumar, Tomas; Bindrich, Utte; Toepfl, Stefan; Toldrá, Fidel; Heinz, Volker

    2014-12-01

    Hydrodynamic pressure processing (HDP) or shockwave treatment improved tenderness (18% reduction in Warner-Bratzler shear force (WBSF) of beef loin steaks. Endogenous muscle proteolyic activities (cathepsins and peptidases) and protein fragmentation of sarcoplasmic and myofibrillar proteins detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were not influenced by HDP. However, microstructure changes were clearly detected using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Specifically a disruption of the structure at the muscle fiber bundles and an increased endomysium space were observed. The present paper supports the evidence of physical disruption of the muscle fibers as a cause behind the tenderness improvement. The paper discusses the possible mechanisms responsible for the meat tenderisation induced by HDP treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Human cysteine cathepsins are not reliable markers of infection by Pseudomonas aeruginosa in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Clément Naudin

    Full Text Available Cysteine cathepsins have emerged as new players in inflammatory lung disorders. Their activities are dramatically increased in the sputum of cystic fibrosis (CF patients, suggesting that they are involved in the pathophysiology of CF. We have characterized the cathepsins in CF expectorations and evaluated their use as markers of colonization by Pseudomonas aeruginosa. The concentrations of active cathepsins B, H, K, L and S were the same in P. aeruginosa-positive (19 Ps+ and P. aeruginosa-negative (6 Ps- samples, unlike those of human neutrophil elastase. Also the cathepsin inhibitory potential and the cathepsins/cathepsin inhibitors imbalance remained unchanged and similar (∼2-fold in the Ps+ and Ps- groups (p<0.001, which correlated with the breakdown of their circulating cystatin-like inhibitors (kininogens. Procathepsins, which may be activated autocatalytically, are a potential proteolytic reservoir. Immunoblotting and active-site labeling identified the double-chain cathepsin B, the major cathepsin in CF sputum, as the main molecular form in both Ps+ and Ps- samples, despite the possible release of the ∼31 kDa single-chain form from procathepsin B by sputum elastase. Thus, the hydrolytic activity of cysteine cathepsins was not correlated with bacterial colonization, indicating that cathepsins, unlike human neutrophil elastase, are not suitable markers of P. aeruginosa infection.

  10. Human cysteine cathepsins are not reliable markers of infection by Pseudomonas aeruginosa in cystic fibrosis.

    Science.gov (United States)

    Naudin, Clément; Joulin-Giet, Alix; Couetdic, Gérard; Plésiat, Patrick; Szymanska, Aneta; Gorna, Emilia; Gauthier, Francis; Kasprzykowski, Franciszek; Lecaille, Fabien; Lalmanach, Gilles

    2011-01-01

    Cysteine cathepsins have emerged as new players in inflammatory lung disorders. Their activities are dramatically increased in the sputum of cystic fibrosis (CF) patients, suggesting that they are involved in the pathophysiology of CF. We have characterized the cathepsins in CF expectorations and evaluated their use as markers of colonization by Pseudomonas aeruginosa. The concentrations of active cathepsins B, H, K, L and S were the same in P. aeruginosa-positive (19 Ps+) and P. aeruginosa-negative (6 Ps-) samples, unlike those of human neutrophil elastase. Also the cathepsin inhibitory potential and the cathepsins/cathepsin inhibitors imbalance remained unchanged and similar (∼2-fold) in the Ps+ and Ps- groups (p<0.001), which correlated with the breakdown of their circulating cystatin-like inhibitors (kininogens). Procathepsins, which may be activated autocatalytically, are a potential proteolytic reservoir. Immunoblotting and active-site labeling identified the double-chain cathepsin B, the major cathepsin in CF sputum, as the main molecular form in both Ps+ and Ps- samples, despite the possible release of the ∼31 kDa single-chain form from procathepsin B by sputum elastase. Thus, the hydrolytic activity of cysteine cathepsins was not correlated with bacterial colonization, indicating that cathepsins, unlike human neutrophil elastase, are not suitable markers of P. aeruginosa infection.

  11. Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment.

    Science.gov (United States)

    Laurent-Matha, Valérie; Huesgen, Pitter F; Masson, Olivier; Derocq, Danielle; Prébois, Christine; Gary-Bobo, Magali; Lecaille, Fabien; Rebière, Bertrand; Meurice, Guillaume; Oréar, Cédric; Hollingsworth, Robert E; Abrahamson, Magnus; Lalmanach, Gilles; Overall, Christopher M; Liaudet-Coopman, Emmanuelle

    2012-12-01

    The aspartic protease cathepsin D, a poor prognostic indicator of breast cancer, is abundantly secreted as procathepsin D by human breast cancer cells and self-activates at low pH in vitro, giving rise to catalytically active cathepsin D. Due to a lower extracellular pH in tumor microenvironments compared to normal tissues, cathepsin D may cleave pathophysiological substrates contributing to cancer progression. Here, we show by yeast 2-hybrid and degradomics analyses that cystatin C, the most potent natural secreted inhibitor of cysteine cathepsins, both binds to and is a substrate of extracellular procathepsin D. The amount of cystatin C in the extracellular environment is reduced in the secretome of mouse embryonic fibroblasts stably transfected with human cathepsin D. Cathepsin D extensively cleaved cystatin C in vitro at low pH. Cathepsin D secreted by breast cancer cells also processed cystatin C at the pericellular pH of tumors and so enhancing extracellular proteolytic activity of cysteine cathepsins. Thus, tumor derived cathepsin D assists breast cancer progression by reducing cystatin C activity, which, in turn, enhances cysteine cathepsin proteolytic activity, revealing a new link between protease classes in the protease web.

  12. The 3D structure and function of digestive cathepsin L-like proteinases of Tenebrio molitor larval midgut.

    Science.gov (United States)

    Beton, Daniela; Guzzo, Cristiane R; Ribeiro, Alberto F; Farah, Chuck S; Terra, Walter R

    2012-09-01

    Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coli, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAL3) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut. Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut. CAL3 hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C26S) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 Å, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency.

    Science.gov (United States)

    Lee, Yu Nee; Frugoni, Francesco; Dobbs, Kerry; Walter, Jolan E; Giliani, Silvia; Gennery, Andrew R; Al-Herz, Waleed; Haddad, Elie; LeDeist, Francoise; Bleesing, Jack H; Henderson, Lauren A; Pai, Sung-Yun; Nelson, Robert P; El-Ghoneimy, Dalia H; El-Feky, Reem A; Reda, Shereen M; Hossny, Elham; Soler-Palacin, Pere; Fuleihan, Ramsay L; Patel, Niraj C; Massaad, Michel J; Geha, Raif S; Puck, Jennifer M; Palma, Paolo; Cancrini, Caterina; Chen, Karin; Vihinen, Mauno; Alt, Frederick W; Notarangelo, Luigi D

    2014-04-01

    The recombination-activating gene (RAG) 1/2 proteins play a critical role in the development of T and B cells by initiating the VDJ recombination process that leads to generation of a broad T-cell receptor (TCR) and B-cell receptor repertoire. Pathogenic mutations in the RAG1/2 genes result in various forms of primary immunodeficiency, ranging from T(-)B(-) severe combined immune deficiency to delayed-onset disease with granuloma formation, autoimmunity, or both. It is not clear what contributes to such heterogeneity of phenotypes. We sought to investigate the molecular basis for phenotypic diversity presented in patients with various RAG1 mutations. We have developed a flow cytometry-based assay that allows analysis of RAG recombination activity based on green fluorescent protein expression and have assessed the induction of the Ighc locus rearrangements in mouse Rag1(-/-) pro-B cells reconstituted with wild-type or mutant human RAG1 (hRAG1) using deep sequencing technology. Here we demonstrate correlation between defective recombination activity of hRAG1 mutant proteins and severity of the clinical and immunologic phenotype and provide insights on the molecular mechanisms accounting for such phenotypic diversity. Using a sensitive assay to measure the RAG1 activity level of 79 mutations in a physiologic setting, we demonstrate correlation between recombination activity of RAG1 mutants and the severity of clinical presentation and show that RAG1 mutants can induce specific abnormalities of the VDJ recombination process. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  14. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    kesiena

    2012-02-09

    Feb 9, 2012 ... 44 amino acid residues mediated by dipeptidylpeptidase. IV (Vlasak et al., 1983). It has been reported that the melittin exhibits antimicrobial activity and pro- ... Construction of recombinant expression vector. A pair of complementary oligonucleotides named Mel-1 (5′-GAT. CCG GAA TTG GAG CAG TTC ...

  15. Homing of radiolabelled recombinant interleukin-2 activated natural ...

    Indian Academy of Sciences (India)

    Homing of radiolabelled recombinant interleukin-2 activated natural killer cells and their efficacy in adoptive immunotherapy against murine fibrosarcoma. Anuradha Rai Ashim ... Department of Zoology, St Joseph's College, Darjeeling 734 104, India; Centre for Life Sciences, North Bengal University, Siliguri 734 430, India ...

  16. Interactive effects of microbial transglutaminase and recombinant cystatin on the mackerel and hairtail muscle protein.

    Science.gov (United States)

    Jiang, Shann-Tzong; Hsieh, Jung-Feng; Tsai, Guo-Jane

    2004-06-02

    Interactive effects of microbial transglutaminase (MTGase) and recombinant cystatin on the mackerel and hairtail water soluble protein (WSP), salt soluble protein (SSP), and muscle protein (MP) were investigated. According to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and enzymic activity analyses, cross-linking of mackerel and hairtail myosin heavy chain and low molecular mass compounds and formation of epsilon-(gamma-glutamyl)lysine cross-links were observed on samples with MTGase, while the recombinant cystatin could effectively inhibit the cathepsins and subsequently prevent degradation of proteins during setting. The cathepsins and MTGase activities in WSP, SSP, and MP solutions decreased, but the recombinant cystatin activity increased during setting at 45 degrees C.

  17. Cytosol cathepsin-D content and proliferative activity of human breast cancer. The Comitato Italiano per il Controllo di Qualita del Laboratorio in Oncologia.

    Science.gov (United States)

    Paradiso, A; Mangia, A; Correale, M; Abbate, I; Ferri, G; Piffanelli, A; Catozzi, L; Amadori, D; Riccobon, A; De Lena, M

    1992-01-01

    Mitogenic properties have been demonstrated in vitro for the lysosomal acidic protease cathepsin-D (cath-D). We investigated possible relationships between cath-D cytosol cell content and tumor proliferative activity in a series of 129 operable breast cancer patients. For total cytosol cath-D evaluation, a solid phase two-site immunoradiometric assay was utilized on tumor cell cytosol obtained for hormone receptor assay (DCC method). The percentage of S-phase cells was analyzed by 3H-thymidine autoradiographic assay. Median 3H-thymidine Labeling Index (3H-Tdr-LI) of the series was 2.7%; median cath-D content resulted 57 pmol/mg of protein cytosol and was significantly higher in node-positive with respect to the node-negative subgroup (p < 0.03). When classified in low, intermediate or high tumor cath-D content and slow or fast proliferative activity (cut-off: median values of the series), no significant agreement was found between the two variables. Statistical analysis, however, showed that a significant inverse correlation existed in node positive tumors between cath-D and 3H-Tdr-LI values which was even more evident in N-positive high estrogen receptor-positive (ER+) cases (coefficient of correlation = 0.6828; p = 0.0001). Cytosol cath-D content cannot be generally proposed as a direct marker of proliferative activity for operable breast cancer.

  18. Expression characteristics and specific antibody reactivity of diverse cathepsin F members of Paragonimus westermani.

    Science.gov (United States)

    Ahn, Chun-Seob; Na, Byoung-Kuk; Chung, Dong-Ll; Kim, Jeong-Geun; Kim, Jin-Taek; Kong, Yoon

    2015-02-01

    Paragonimiasis, caused by the lung fluke Paragonimus, is a major food-borne helminthic disease. Differential diagnosis of paragonimiasis from tuberculosis and other infectious granulomas in the lung is a prerequisite to proper management of patients. Cysteine proteases of Paragonimus westermani (PwCPs) invoke specific antibody responses against patient sera, while antibody capturing activity of different PwCPs has not been comparatively analyzed. In this study, we observed the expressional regulation of 11 species of different PwCPs (PwCP1-11). We expressed recombinant PwCPs and assessed diagnostic reliability employing sera from patients with P. westermani (n=138), other trematodiases (n=80), cestodiases (n=60) and pulmonary tuberculosis (n=20), and those of normal controls (n=20). PwCPs formed a monophyletic clade into cathepsin F and showed differential expression patterns along with developmental stages of worm. Bacterially expressed recombinant PwCPs (rPwCPs) exhibited variable sensitivity of 38.4-84.5% and specificity of 87.2-100% in diagnosing homologous infection. rPwCPs recognized specific antibodies of experimental cat sera as early as 3 or 6weeks after infection. Patient sera of fascioliasis, Schistosomiasis japonicum and clonorchiasis demonstrated weak cross-reactions. Our results demonstrate that diverse PwCPs of the cathepsin F family participate in inducing specific antibody responses. Most P. westermani cathepsin F, except for PwCP2 (AAF21461), which showed negligible antibody responses, might be applicable for paragonimiasis serodiagnosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Transcriptome Reveals Cathepsin K in Periodontal Ligament Differentiation.

    Science.gov (United States)

    Yamada, S; Ozaki, N; Tsushima, K; Yamaba, S; Fujihara, C; Awata, T; Sakashita, H; Kajikawa, T; Kitagaki, J; Yamashita, M; Yanagita, M; Murakami, S

    2016-08-01

    Periodontal ligaments (PDLs) play an important role in remodeling the alveolar bond and cementum. Characterization of the periodontal tissue transcriptome remains incomplete, and an improved understanding of PDL features could aid in developing new regenerative therapies. Here, we aimed to generate and analyze a large human PDL transcriptome. We obtained PDLs from orthodontic treatment patients, isolated the RNA, and used a vector-capping method to make a complementary DNA library from >20,000 clones. Our results revealed that 58% of the sequences were full length. Furthermore, our analysis showed that genes expressed at the highest frequencies included those for collagen type I, collagen type III, and proteases. We also found 5 genes whose expressions have not been previously reported in human PDL. To access which of the highly expressed genes might be important for PDL cell differentiation, we used real-time polymerase chain reaction to measure their expression in differentiating cells. Among the genes tested, the cysteine protease cathepsin K had the highest upregulation, so we measured its relative expression in several tissues, as well as in osteoclasts, which are known to express high levels of cathepsin K. Our results revealed that PDL cells express cathepsin K at similar levels as osteoclasts, which are both expressed at higher levels than those of the other tissues tested. We also measured cathepsin K protein expression and enzyme activity during cell differentiation and found that both increased during this process. Immunocytochemistry experiments revealed that cathepsin K localizes to the interior of lysosomes. Last, we examined the effect of inhibiting cathepsin K during cell differentiation and found that cathepsin K inhibition stimulated calcified nodule formation and increased the levels of collagen type I and osteocalcin gene expression. Based on these results, cathepsin K seems to regulate collagen fiber accumulation during human PDL cell

  20. Recombination in Escherichia coli V. Genetic analysis of recombinants from crosses with recipients deficient in ATP-dependent exonuclease activity

    NARCIS (Netherlands)

    Haan, P.G. de; Hoekstra, W.P.M.; Verhoef, C.

    A genetic analysis of recombinants from crosses with recombination-deficient recipients, lacking the ATP-dependent exonuclease activity, demonstrated differences in the inheritance pattern of donor markers compared with a Rec+ recipient. In particular the donor markers proximal to the transfer

  1. Structural and Functional Relationships in the Virulence-associated Cathepsin L Proteases of the Parasitic Liver Fluke, Fasciola hepatica*

    Science.gov (United States)

    Stack, Colin M.; Caffrey, Conor R.; Donnelly, Sheila M.; Seshaadri, Amritha; Lowther, Jonathan; Tort, Jose F.; Collins, Peter R.; Robinson, Mark W.; Xu, Weibo; McKerrow, James H.; Craik, Charles S.; Geiger, Sebastian R.; Marion, Rachel; Brinen, Linda S.; Dalton, John P.

    2008-01-01

    The helminth parasite Fasciola hepatica secretes cysteine proteases to facilitate tissue invasion, migration, and development within the mammalian host. The major proteases cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) were recombinantly produced and biochemically characterized. By using site-directed mutagenesis, we show that residues at position 67 and 205, which lie within the S2 pocket of the active site, are critical in determining the substrate and inhibitor specificity. FheCL1 exhibits a broader specificity and a higher substrate turnover rate compared with FheCL2. However, FheCL2 can efficiently cleave substrates with a Pro in the P2 position and degrade collagen within the triple helices at physiological pH, an activity that among cysteine proteases has only been reported for human cathepsin K. The 1.4-Å three-dimensional structure of the FheCL1 was determined by x-ray crystallography, and the three-dimensional structure of FheCL2 was constructed via homology-based modeling. Analysis and comparison of these structures and our biochemical data with those of human cathepsins L and K provided an interpretation of the substrate-recognition mechanisms of these major parasite proteases. Furthermore, our studies suggest that a configuration involving residue 67 and the “gatekeeper” residues 157 and 158 situated at the entrance of the active site pocket create a topology that endows FheCL2 with its unusual collagenolytic activity. The emergence of a specialized collagenolytic function in Fasciola likely contributes to the success of this tissue-invasive parasite. PMID:18160404

  2. Sensitivity to anti-Fas is independent of increased cathepsin D activity and adrenodoxin reductase expression occurring in NOS-3 overexpressing HepG2 cells.

    Science.gov (United States)

    Linares, Clara I; Ferrín, Gustavo; Aguilar-Melero, Patricia; González-Rubio, Sandra; Rodríguez-Perálvarez, Manuel; Sánchez-Aragó, María; Chicano-Gálvez, Eduardo; Cuezva, José M; Montero-Álvarez, José L; Muntané, Jordi; de la Mata, Manuel

    2015-05-01

    Stable overexpression of endothelial nitric oxide synthase (NOS-3) in HepG2 cells (4TO-NOS) leads to increased nitro-oxidative stress and upregulation of the cell death mediators p53 and Fas. Thus, NOS-3 overexpression has been suggested as a useful antiproliferative mechanism in hepatocarcinoma cells. We aimed to identify the underlying mechanism of cell death induced by NOS-3 overexpression at basal conditions and with anti-Fas treatment. The intracellular localization of NOS-3, the nitro-oxidative stress and the mitochondrial activity were analysed. In addition, the protein expression profile in 4TO-NOS was screened for differentially expressed proteins potentially involved in the induction of apoptosis. NOS-3 localization in the mitochondrial outer membrane was not associated with changes in the respiratory cellular capacity, but was related to the mitochondrial biogenesis increase and with a higher protein expression of mitochondrial complex IV. Nitro-oxidative stress and cell death in NOS-3 overexpressing cells occurred with the expression increase of pro-apoptotic genes and a higher expression/activity of the enzymes adrenodoxin reductase mitochondrial (AR) and cathepsin D (CatD). CatD overexpression in 4TO-NOS was related to the apoptosis induction independently of its catalytic activity. In addition, CatD activity inhibition by pepstatin A was not effective in blocking apoptosis induced by anti-Fas. In summary, NOS-3 overexpression resulted in an increased sensitivity to anti-Fas induced cell death, independently of AR expression and CatD activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of Recombinant alpha1-Antitrypsin Fc-Fused (AAT-Fc)Protein on the Inhibition of Inflammatory Cytokine Production and Streptozotocin-Induced Diabetes

    NARCIS (Netherlands)

    Lee, S.; Lee, Y.; Hong, K.; Hong, J.; Bae, S.; Choi, J.; Jhun, H.; Kwak, A.; Kim, E.; Jo, S.; Dinarello, C.A.; Kim, S.

    2013-01-01

    alpha1-Antitrypsin (AAT) is a member of the serine proteinase inhibitor family that impedes the enzymatic activity of serine proteinases, including human neutrophil elastase, cathepsin G and neutrophil proteinase 3. Here, we expressed recombinant AAT by fusing the intact AAT gene to the constant

  4. The secreted cathepsin L-like proteinases of the trematode, Fasciola hepatica, contain 3-hydroxyproline residues.

    Science.gov (United States)

    Wijffels, G L; Panaccio, M; Salvatore, L; Wilson, L; Walker, I D; Spithill, T W

    1994-01-01

    The cysteine proteinases synthesized by the adult stage of the trematode Fasciola hepatica were found to be a very heterogeneous group of proteins as demonstrated by one- and two-dimensional gel analyses. N-terminal amino acid sequencing indicated the presence of at least two distinct gene products among the secreted cysteine proteinases. Enzymic studies and peptide sequence analysis of the excreted/secreted cysteine proteinases suggested a close relationship to the plant thiol cathepsins and the mammalian cathepsin L subfamily. The cloning of a representative cDNA for a putative Fasciola cathepsin confirmed similarities to the cathepsin L subfamily but revealed low identity with the cathepsin-like proteinases of the related trematode, Schistosoma, nematode cathepsins and the mammalian cathepsin B subfamily. Furthermore, peptide and protein sequencing revealed the modification of certain highly conserved prolines to unusual 3-hydroxyproline derivatives. This is the first report of modified prolines in any proteinase. This finding, as well as the high activities of these cathepsins at neutral to alkaline pH values, raises a number of questions as to the physiological function of these thiol cathepsins and their interaction with host tissues. Images Figure 1 Figure 2 Figure 3 Figure 6 PMID:8192668

  5. Role of Interactions between Autographa californica Multiple Nucleopolyhedrovirus Procathepsin and Chitinase Chitin-Binding or Active-Site Domains in Viral Cathepsin Processing

    Science.gov (United States)

    Hodgson, Jeffrey J.; Arif, Basil M.

    2013-01-01

    The binding of Autographa californica multiple nucleopolyhedrovirus chitinase (CHIA) to viral cathepsin protease progenitor (proV-CATH) governs cellular/endoplasmic reticulum (ER) coretention of CHIA and proV-CATH, thus coordinating simultaneous cellular release of both host tissue-degrading enzymes upon host cell death. CHIA is a proposed proV-CATH folding chaperone because insertional inactivation of chiA causes production of proV-CATH aggregates that are incompetent for proteolytic maturation into active V-CATH enzyme. We wanted to determine whether the N-terminal chitin-binding domain (CBD, 149 residues) and C-terminal CHIA active-site domain (ASD, 402 residues) of CHIA bind to proV-CATH independently of one another and whether either domain is dispensable for CHIA's putative proV-CATH folding chaperone activity. We demonstrate that N-terminally green fluorescent protein (GFP)-fused CHIA, ASD, and CBD each colocalize with proV-CATH-RFP in ER-like patterns and that both ASD and CBD independently associate with proV-CATH in vivo using bimolecular fluorescence complementation (BiFC) and in vitro using reciprocal nickel-histidine pulldown assays. Altogether, the data from colocalization, BiFC, and reciprocal copurification analyses suggest specific and independent interactions between proV-CATH and both domains of CHIA. These data also demonstrate that either CHIA domain is dispensable for normal proV-CATH processing. Furthermore, in contrast to prior evidence suggesting that a lack of chiA expression causes proV-CATH to become aggregated, insoluble, and unable to mature into V-CATH, a chiA deletion bacmid virus we engineered to express just v-cath produced soluble proV-CATH that was prematurely secreted from cells and proteolytically matured into active V-CATH enzyme. PMID:23302896

  6. Three faces of recombination activating gene 1 (RAG1) mutations.

    Science.gov (United States)

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation.

  7. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

    International Nuclear Information System (INIS)

    Samarel, A.M.; Ferguson, A.G.; Decker, R.S.; Lesch, M.

    1989-01-01

    To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed to media containing leupeptin, E 64, or chloroquine. Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D. Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate. Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation

  8. An active recombinant cocoonase from the silkworm Bombyx mori: bleaching, degumming and sericin degrading activities.

    Science.gov (United States)

    Unajak, Sasimanas; Aroonluke, Suradet; Promboon, Amornrat

    2015-04-01

    Cocoonase is a serine protease produced by silk moths and used for softening the cocoons so that they can escape. Degumming is one of the important steps in silk processing. This research aimed to produce an active recombinant Bombyx mori cocoonase (BmCoc) for the silk degumming process. A recombinant BmCoc was successfully expressed in a Pichia pastoris system. The purified enzyme showed specific activity of 227 U mg(-1) protein, 2.4-fold purification, 95% yield and a molecular weight of 26 kDa. The enzyme exhibited optimal temperature at 40 °C and optimal pH at 8, and showed thermal stability at 25-45 °C and pH stability at 5-9. The recombinant enzyme exhibited sericin degumming ability and color bleaching characteristics, and did not affect the fibroin fiber. The enzyme also degraded sericin substrate with a product size about 30-70 kDa. In this study, we successfully produced the active recombinant BmCoc in P. pastoris with promising functions for the Thai silk degumming process, which includes degumming, sericin degrading and color bleaching activities. Our data clearly indicated that the recombinant enzyme had proteolytic activity on sericin but not on fibroin proteins. The recombinant BmCoc has proven to be suitable for numerous applications in the silk industry. © 2014 Society of Chemical Industry.

  9. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    International Nuclear Information System (INIS)

    Golubnitchaya-Labudova, O.; Hoefer, M.; Portele, A.; Vacata, V.; Rink, H.; Lubec, G.

    1997-01-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer the question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the inserts of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9. (author)

  10. Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer.

    LENUS (Irish Health Repository)

    Sullivan, Shane

    2012-02-01

    Previous in vitro studies have identified a nuclear isoform of Cathepsin L. The aim of this study was to examine if nuclear Cathepsin L exists in vivo and examine its association with clinical, pathological and patient outcome data. Cellular localization (nuclear and cytoplasmic) and expression levels v of Cathespin L in 186 colorectal cancer cases using immunohistochemistry. The molecular weight and activity of nuclear and cytoplasmic Cathepsin L in vivo and in vitro were assessed by Western blotting and ELISA, respectively. Epithelial nuclear staining percentage (p = 0.04) and intensity (p = 0.006) increased with advancing tumor stage, whereas stromal cytoplasmic staining decreased (p = 0.02). Using multivariate statistical analysis, survival was inversely associated with staining intensity in the epithelial cytoplasm (p = 0.01) and stromal nuclei (p = 0.007). In different colorectal cell lines and in vivo tumors, pro- and active Cathepsin L isoforms were present in both the cytoplasm and nuclear samples, with pro-Cathepsin L at 50 kDa and active Cathepsin L at 25 kDa. Purified nuclear and cytoplasmic fractions from cell lines and tumors showed active Cathepsin L activity. The identification of nuclear Cathepsin L may play an important prognostic role in colorectal disease progression and patient outcome. Moreover, these findings suggest that altering active nuclear Cathepsin L may significantly influence disease progression.

  11. Production of biologically active recombinant human factor H in Physcomitrella.

    Science.gov (United States)

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L

    2011-04-01

    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  12. Cathepsin S Is Involved in Th17 Differentiation Through the Upregulation of IL-6 by Activating PAR-2 after Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Masato Dekita

    2017-07-01

    Full Text Available Positive links have been found between periodontitis and numerous diseases in humans via persistent inflammation throughout the body. However, the main factors responsible for maintaining this pro-inflammatory condition are poorly understood. The spleen, the largest secondary immune organ, is a central hub regulating the immune response/inflammation due to the dendritic cell (DC response to CD4+ T cell subtype differentiation, and lysosomal proteinase cathepsin S (CatS is known to be involved in DC functions. In the present study, we found that CatS-induced IL-6 production by splenic DCs subsequently promotes Th17 differentiation, in response to systemic exposure to lipopolysaccharide derived from Porphyromonas gingivalis (PgLPS. The population of CD11c+ DCs was significantly increased in the splenic marginal zone (MZ locally of wild-type (DBA/2 mice with splenomegaly but not in that of CatS deficient (CatS-/- mice after systemic exposure to PgLPS for 7 consecutive days (5 mg/kg/day, intraperitoneal. Similarly, the population of Th17+CD4+ T cells was also significantly increased in the splenic MZ of wild-type mice but not in that of CatS-/- mice after PgLPS exposure. Furthermore, the increase in the Th17+ CD4+ T cell population paralleled increases in the levels of CatS and IL-6 in CD11c+ cells in the splenic MZ. In isolated primary splenic CD11c+ cells, the mRNA expression and the production of IL-6 was dramatically increased in wild-type mice but not in CatS-/- mice after direct stimulation with PgLPS (1 μg/ml, and this PgLPS-induced increase in the IL-6 expression was completely abolished by pre-treatment with Z-Phe-Leu-COCHO (Z-FL, the specific inhibitor of CatS. The PgLPS activated protease-activated receptor (PAR 2 in the isolated splenic CD11c+ cells was also significantly inhibited by CatS deficiently. In addition, the PgLPS-induced increase in the IL-6 production by splenic CD11c+ cells was completely abolished by pre-treatment with

  13. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I)

    Czech Academy of Sciences Publication Activity Database

    Horn, Martin; Baudyš, M.; Voburka, Zdeněk; Kluh, Ivan; Vondrášek, Jiří; Mareš, Michael

    2002-01-01

    Roč. 11, - (2002), s. 933-943 ISSN 0961-8368 R&D Projects: GA AV ČR IAA4055006; GA ČR GA522/00/1553; GA MŠk LN00A032; GA ČR GP203/01/D008 Institutional research plan: CEZ:AV0Z4055905 Keywords : cathepsin C * cysteine protease Subject RIV: CE - Biochemistry Impact factor: 3.546, year: 2002

  14. Heparin modulates the endopeptidase activity of Leishmania mexicana cysteine protease cathepsin L-Like rCPB2.8.

    Directory of Open Access Journals (Sweden)

    Wagner A S Judice

    Full Text Available Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host. Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania mexicana cysteine protease rCPB2.8 activity.THE DATA ANALYSIS REVEALED THAT THE PRESENCE OF HEPARIN AFFECTS ALL STEPS OF THE ENZYME REACTION: (i it decreases 3.5-fold the k 1 and 4.0-fold the k -1, (ii it affects the acyl-enzyme accumulation with pronounced decrease in k 2 (2.7-fold, and also decrease in k 3 (3.5-fold. The large values of ΔG  =  12 kJ/mol for the association and dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8 active site. Binding to heparin also significantly decreases the α-helix content of the rCPB2.8 and perturbs the intrinsic fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys(25-S(-/(His(163-Im(+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8 significantly decreased its inhibitory activity against the mature enzyme.Taken together, depending on their concentration, heparin-like glycosaminoglycans can either stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this glycoconjugate can anchor parasite cysteine protease at host cell surface.

  15. Cathepsin G, a Neutrophil Protease, Induces Compact Cell-Cell Adhesion in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Kudo

    2009-01-01

    Full Text Available Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and Rap1 activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-cadherin/protein kinase D1 (PKD1 complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

  16. An endogenous inhibitor of cysteine cathepsin B from brain tissues

    Directory of Open Access Journals (Sweden)

    O.L. Lyanna

    2013-11-01

    Full Text Available Lysosomes are the key degradative compartments of the cell in which the processes of protein degradation take place. Lysosomal cathepsins, which are enclosed in the lysosomes, help to maintain the homeostasis of the cell’s metabolism by participating in the degradation of heterophagic and autophagic material. When breaking down the integrity of lysosomal membranes the cathepsins are released into the cytosol and initiate the development of numerous pathological states. Breakdown in the control of protease activity leads to undesired and unregulated proteolysis. This is a cause of many diseases, such as Alzheimer’s disease, cancer, viral infections, cataracts etc. For this reason inhibitors of proteases have the potential to provide successful treatment for a wide range of diseases. Cathepsin B is one of the most abundant and ubiquitously expressed cysteine peptidases of the papain family. It is implicated in a number of pathological states including: inflammatory diseases of the airways, bone and joint disorders, acute pancreatitis, tumour metastasis, Alzheimer’s disease and ischemic neuronal death. The study of specific inhibitors for cathepsin B is considered important for chemotherapy and treatments of other diseases. This article represents part of a complex study of the lysosomal proteolytic-antiproteolytic system and its breakdown in the process of illness. In this article we present a scheme for extraction, purification and characterization of endogenous inhibitors of lysosomal cysteine cathepsin B. The cathepsin inhibitor was purified to homogeneity from the human neocortex. The purification was carried out in several successive stages: ammonium sulfate precipitation, followed by gel-filtration on Sephadex G-150, and ion exchange chromatography using DEAE-Sephadex A-75, followed by gel filtration on Sephadex G-100. Throughout the purification procedure, cathepsin inhibitory activity was controlled against the substrate p

  17. Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography.

    Science.gov (United States)

    Waniek, Peter J; Pacheco Costa, Juliana E; Jansen, Ana M; Costa, Jane; Araújo, Catarina A C

    2012-01-01

    Triatoma brasiliensis is considered one of the main vectors of Chagas disease commonly found in semi-arid areas of northeastern Brazil. These insects use proteases, such as carboxypeptidase B, aminopeptidases and different cathepsins for blood digestion. In the present study, two genes encoding cathepsin L from the midgut of T. brasiliensis were identified and characterized. Mature T. brasiliensis cathepsin L-like proteinases (TBCATL-1, TBCATL-2) showed a high level of identity to the cathepsin L-like proteinases of other insects, with highest similarity to Rhodnius prolixus. Both cathepsin L transcripts were highly abundant in the posterior midgut region, the main region of the blood digestion. Determination of the pH in the whole intestine of unfed T. brasiliensis revealed alkaline conditions in the anterior midgut region (stomach) and acidic conditions in the posterior midgut region (small intestine). Gelatine in-gel zymography showed the activity of at least four distinct proteinases in the small intestine and the cysteine proteinase inhibitors transepoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64) and cathepsin B inhibitor and N-(l-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-l-isoleucyl-l-proline (CA-074) were employed to characterize enzymatic activity. E-64 fully inhibited cysteine proteinase activity, whereas in the samples treated with CA-074 residual proteinase activity was detectable. Thus, proteolytic activity could at least partially be ascribed to cathepsin L. Western blot analysis using specific anti cathepsin L antibodies confirmed the presence of cathepsin L in the lumen of the small intestine of the insects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Low-Cost Method to Monitor Patient Adherence to HIV Antiretroviral Therapy Using Multiplex Cathepsin Zymography.

    Science.gov (United States)

    Platt, Manu O; Evans, Denise; Keegan, Philip M; McNamara, Lynne; Parker, Ivana K; Roberts, LaDeidra M; Caulk, Alexander W; Gleason, Rudolph L; Seifu, Daniel; Amogne, Wondwossen; Penny, Clement

    2016-01-01

    Monitoring patient adherence to HIV antiretroviral therapy (ART) by patient survey is inherently error prone, justifying a need for objective, biological measures affordable in low-resource settings where HIV/AIDS epidemic is highest. In preliminary studies conducted in Ethiopia and South Africa, we observed loss of cysteine cathepsin activity in peripheral blood mononuclear cells of HIV-positive patients on ART. We optimized a rapid protocol for multiplex cathepsin zymography to quantify cysteine cathepsins, and prospectively enrolled 350 HIV-positive, ART-naïve adults attending the Themba Lethu Clinic, Johannesburg, South Africa, to test if suppressed cathepsin activity could be a biomarker of ART adherence (103 patients were included in final analysis). Poor adherence was defined as detectable viral load (>400 copies/ml) or simplified medication adherence questionnaire, 4-6 months after ART initiation. 86 % of patients with undetectable viral loads after 6 months were cathepsin negative, and cathepsin-positive patients were twice as likely to have detectable viral loads (RR 2.32 95 % CI 1.26-4.29). Together, this demonstrates proof of concept that multiplex cathepsin zymography may be an inexpensive, objective method to monitor patient adherence to ART. Low cost of this electrophoresis-based assay makes it a prime candidate for implementation in resource-limited settings.

  19. Low cost method to monitor patient adherence to HIV antiretroviral therapy using multiplex cathepsin zymography

    Science.gov (United States)

    Platt, Manu O.; Evans, Denise; Keegan, Philip M.; McNamara, Lynne; Parker, Ivana K.; Roberts, LaDeidra M.; Caulk, Alexander W.; Gleason, Rudolph L.; Seifu, Daniel; Amogne, Wondwossen; Penny, Clement

    2015-01-01

    Monitoring patient adherence to HIV antiretroviral therapy (ART) by patient survey is inherently error-prone, justifying a need for objective, biological measures affordable in low resource settings where HIV/AIDS epidemic is highest. In preliminary studies conducted in Ethiopia and South Africa, we observed loss of cysteine cathepsin activity in peripheral blood mononuclear cells (PBMCs) of HIV-positive patients on ART. We optimized a rapid protocol for multiplex cathepsin zymography to quantify cysteine cathepsins, and prospectively enrolled 350 HIV-positive, ART naïve adults attending the Themba Lethu Clinic, Johannesburg, South Africa, to test if suppressed cathepsin activity could be a biomarker of ART adherence (103 patients were included in final analysis). Poor adherence was defined as detectable viral load (>400 copies/ml) or simplified medication adherence questionnaire (SMAQ), 4–6 months after ART initiation. 86% of patients with undetectable viral loads after 6 months were cathepsin negative, and cathepsin positive patients were twice as likely to have detectable viral loads (RR 2.32 95% CI 1.26–4.29). Together, this demonstrates proof of concept that multiplex cathepsin zymography may be an inexpensive, objective method to monitor patient adherence to ART. Low cost of this electrophoresis based assay makes it a prime candidate for implementation in resource limited settings. PMID:26589706

  20. Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations

    OpenAIRE

    Guenthner, Casey J.; Miyamichi, Kazunari; Yang, Helen H.; Heller, H. Craig; Luo, Liqun

    2013-01-01

    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed a new approach, Targeted Recombination in Active Populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreERT2 is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that expr...

  1. Imaging Primary Mouse Sarcomas After Radiation Therapy Using Cathepsin-Activatable Fluorescent Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Kyle C. [Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Mito, Jeffrey K.; Javid, Melodi P. [Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States); Ferrer, Jorge M. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Kim, Yongbaek [Department of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul (Korea, Republic of); Lee, W. David [The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Bawendi, Moungi G. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Brigman, Brian E. [Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina (United States); Kirsch, David G., E-mail: david.kirsch@duke.edu [Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States)

    2013-05-01

    Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.

  2. Studying of the standardization principles of pharmacological activity of recombinant erythropoietin preparations

    OpenAIRE

    A. K. Yakovlev; L. A. Gayderova; N. A. Alpatova; T. N. Lobanova; E. L. Postnova; E. I. Yurchikova; T. A. Batuashvili; R. A. Volkova; V. N. Podkuiko; Yu. V. Olefir

    2016-01-01

    Analysis of the publications devoted to the structure, functions, mechanism of action of erythropoietin is given in the article. Erythropoietin preparations derived from recombinant DNA technology are a mixture of isoforms with different biological activity, which determine the biological properties pharmacological activity, pharmacokinetics, efficacy and safety of medicinal product. Erythropoietin preparations derived by using recombinant DNA technology are a mixture of isoforms with differe...

  3. Cathepsin L is an immune-related protein in Pacific abalone (Haliotis discus hannai)--Purification and characterization.

    Science.gov (United States)

    Shen, Jian-Dong; Cai, Qiu-Feng; Yan, Long-Jie; Du, Cui-Hong; Liu, Guang-Ming; Su, Wen-Jin; Ke, Caihuan; Cao, Min-Jie

    2015-12-01

    Cathepsin L, an immune-related protein, was purified from the hepatopancreas of Pacific abalone (Haliotis discus hannai) by ammonium sulfate precipitation and column chromatographies of SP-Sepharose and Sephacryl S-200 HR. Purified cathepsin L appeared as two bands with molecular masses of 28.0 and 28.5 kDa (namely cathepsin La and Lb) on SDS-PAGE under reducing conditions, suggesting that it is a glycoprotein. Peptide mass fingerprinting (PMF) analysis revealed that peptide fragments of 95 amino acid residues was high similarity to cathepsin L of pearl oyster (Pinctada fucata). The optimal temperature and pH of cathepsin L were 35 °C and pH 5.5. Cathepsin L was particularly inhibited by cysteine proteinase inhibitors of E-64 and leupeptin, while it was activated by metalloproteinase inhibitors EDTA and EGTA. The full-length cathepsin L cDNA was further cloned from the hepatopancreas by rapid PCR amplification of cDNA ends (RACE). The open reading frame of the enzyme was 981 bp, encoding 327 amino acid residues, with a conserved catalytic triad (Cys134, His273 and Asn293), a potential N-glycosylation site and conserved ERFNIN, GNYD, and GCGG motifs, which are characteristics of cathepsin L. Western blot and proteinase activity analysis revealed that the expression and enzyme activity of cathepsin L were significantly up-regulated in hepatopancreas at 8 h following Vibrio parahaemolyticus infection, demonstrating that cathepsin L is involved in the innate immune system of abalone. Our present study for the first time reported the purification, characterization, molecular cloning, and tissue expression of cathepsin L in abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. C2K77 ELISA detects cleavage of type II collagen by cathepsin K in equine articular cartilage.

    Science.gov (United States)

    Noé, B; Poole, A R; Mort, J S; Richard, H; Beauchamp, G; Laverty, S

    2017-12-01

    Develop a species-specific ELISA for a neo-epitope generated by cathepsin K cleavage of equine type II collagen to: (1) measure cartilage type II collagen degradation by cathepsin K in vitro, (2) identify cytokines that upregulate cathepsin K expression and (3) compare cathepsin K with matrix metalloproteinase (MMP) collagenase activity in stimulated cartilage explants and freshly isolated normal and osteoarthritic (OA) articular cartilages. A new ELISA (C2K77) was developed and tested by measuring the activity of exogenous cathepsin K on equine articular cartilage explants. The ELISA was then employed to measure endogenous cathepsin K activity in cultured cartilage explants with or without stimulation by interleukin-1 beta (IL-1β), tumour necrosis-alpha (TNF-α), oncostatin M (OSM) and lipopolysaccharide (LPS). Cathepsin K activity in cartilage explants (control and osteoarthritic-OA) and freshly harvested cartilage (control and OA) was compared to that of MMPs employing C2K77 and C1,2C immunoassays. The addition of Cathepsin K to normal cartilage caused a significant increase (P K77 epitope release. Whereas the content of C1,2C, that reflects MMP collagenase activity, was increased in media by the addition to cartilage explants of TNF-α and OSM (P K77 which also unchanged in OA cartilages compared to normal. The ELISA C2K77 measured the activity of cathepsin K in equine cartilage which was unchanged in OA cartilage. Cytokines that upregulate MMP collagenase activity had no effect on endogenous cathepsin K activity, suggesting a different activation mechanism that requires further study. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Myelostimulatory activity of recombinant human interleukin-2 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, J.E.; Schneider, M.; Keller, J.; Ruscetti, F.; Longo, D.; Pennington, R.; Bowersox, O.; Tribble, H.

    1989-05-01

    In a series of studies designed to extend our understanding of interleukin-2 (IL-2) and to study the effect of biologic response modifiers on bone marrow, we observed that administering recombinant human (rH) IL-2 to normal mice resulted in an increase in the frequency of colony-forming units-culture (CFU-C) in bone marrow. In addition, rH IL-2 was able to accelerate host recovery from cyclophosphamide (CTX)- or radiation-induced bone marrow depression and peripheral blood leukopenia. Not only can rH IL-2 accelerate, in a dose-dependent manner, the return of bone marrow, peripheral blood cellularity, and CFU-C frequency to normal levels following cytoreduction by CTX or irradiation, but it also significantly increases CFU-C frequency to greater than normal levels. Furthermore, rH IL-2 can significantly prolong survival of animals receiving a lethal dose of irradiation or CTX. Thus, multiple mechanisms are responsible for the synergistic therapeutic activity associated with rH IL-2 and CTX. rH IL-2 does not act only as an immunomodulatory agent in the presence or absence of suppressor T cells, but also accelerates host recovery from cytoreductive agents, resulting in decreased leukopenia and perhaps resistances to secondary infection. Thus, rH IL-2 plus chemotherapy may increase therapeutic activity against neoplastic disease, not only by adding immune stimulation to the direct antitumor effect of the drug but also by allowing delivery of higher, more effective doses of chemotherapy.

  6. Proteolytic activity of recombinant DegP from Chromohalobacter salexigens BKL5

    Directory of Open Access Journals (Sweden)

    Dewi Fitriani

    2017-09-01

    Conclusions: Recombinant DegP from C. salexigens BKL5 showed proteolytic activity when β-casein was used as a substrate. In silico analysis indicated that recombinant DegP had characteristics similar to those of halophilic proteins depending on its amino acid composition.

  7. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2013-05-13

    ... Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology Activities (NIH OBA) proposes to revise the NIH Guidelines for Research Involving Recombinant or Synthetic... smallpox and reports of skin pustules developing in some research participants receiving intravenous...

  8. Gelatin Zymography Using Leupeptin for the Detection of Various Cathepsin L Forms.

    Science.gov (United States)

    Hashimoto, Yoko

    2017-01-01

    Zymography is a highly sensitive method to assess the activities as well as molecular weights of enzymes in crude biological fluids and tissue extracts. Cathepsin L is a lysosomal cysteine proteinase that is optimally active at slightly acidic pH and is highly unstable in alkaline solutions such as electrode buffer (pH 8.3). Large amounts of cathepsin L are secreted by various cancer cells, where it promotes invasion and metastasis. Leupeptin is a tight-binding inhibitor of cysteine proteinases, and its complex with cathepsin L is stable in alkaline solutions. Moreover, leupeptin can be easily removed from the complex because it is a reversibly binding inhibitor. In addition, leupeptin is too small to influence the electrode migration distance of the complex with cathepsin L on a sodium dodecyl sulfate-polyacrylamide gel. Here, a novel gelatin zymography technique that employs leupeptin to detect pro-, intermediate, and mature cathepsin L forms on the basis of their gelatinolytic activities is described. Further, the differences in the glycosylation, phosphorylation, and processing statuses of lysosomal and secreted cathepsin L forms isolated from cultured HT 1080 cells are demonstrated using this method.

  9. The interaction of recombinant tissue type plasminogen activator and recombinant plasminogen activator (r-PA/BM 06.022) with human endothelial cells

    NARCIS (Netherlands)

    Mulder, M.; Kohnert, U.; Fischer, S.; Hinsbergh, V.W.M. van; Verheijen, J.H.

    1997-01-01

    The Escherichia coli-expressed recombinant plasminogen activator (r-PA) comprising the kringle 2 and protease domains of human tissue-type plasminogen activator (t-PA) has a four-fold longer half-life time in the circulation than t-PA, possibly resulting in an increased opportunity for r-PA to

  10. Activation of XerCD-dif recombination by the FtsK DNA translocase.

    Science.gov (United States)

    Grainge, Ian; Lesterlin, Christian; Sherratt, David J

    2011-07-01

    The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.

  11. (111)Indium Labelling of Recombinant Activated Coagulation Factor VII

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Buch, Inge; Sigvardt, Maibritt

    2012-01-01

    The aim of this study is to investigate whether (111)Indium-labelled recombinant FVIIa (rFVIIa) could be a potential radiopharmaceutical for localization of bleeding sources. DTPA-conjugated rFVIIa was radiolabelled with (111)In chloride. In vitro binding efficiency of (111)In-DTPA-rFVIIa to F1A2...

  12. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination.

    Science.gov (United States)

    Carmona, Lina Marcela; Schatz, David G

    2017-06-01

    The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented. © 2016 Federation of European Biochemical Societies.

  13. Antibody targeting of Cathepsin S induces antibody-dependent cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kwok Hang Fai

    2011-12-01

    Full Text Available Abstract Background Proteolytic enzymes have been implicated in driving tumor progression by means of their cancer cell microenvironment activity where they promote proliferation, differentiation, apoptosis, migration, and invasion. Therapeutic strategies have focused on attenuating their activity using small molecule inhibitors, but the association of proteases with the cell surface during cancer progression opens up the possibility of targeting these using antibody dependent cellular cytotoxicity (ADCC. Cathepsin S is a lysosomal cysteine protease that promotes the growth and invasion of tumour and endothelial cells during cancer progression. Our analysis of colorectal cancer patient biopsies shows that cathepsin S associates with the cell membrane indicating a potential for ADCC targeting. Results Here we report the cell surface characterization of cathepsin S and the development of a humanized antibody (Fsn0503h with immune effector function and a stable in vivo half-life of 274 hours. Cathepsin S is expressed on the surface of tumor cells representative of colorectal and pancreatic cancer (23%-79% positive expression. Furthermore the binding of Fsn0503h to surface associated cathepsin S results in natural killer (NK cell targeted tumor killing. In a colorectal cancer model Fsn0503h elicits a 22% cytotoxic effect. Conclusions This data highlights the potential to target cell surface associated enzymes, such as cathepsin S, as therapeutic targets using antibodies capable of elicitingADCC in tumor cells.

  14. 75 FR 31795 - Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting

    Science.gov (United States)

    2010-06-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting ACTION: Notice of cancellation of... information. Dated: May 26, 2010. Jacqueline Corrigan-Curay, Acting Director, Office of Biotechnology...

  15. Uncovering the cathepsin system in heart failure patients submitted to Left Ventricular Assist Device (LVAD) implantation.

    Science.gov (United States)

    D'Amico, Andrea; Ragusa, Rosetta; Caruso, Raffaele; Prescimone, Tommaso; Nonini, Sandra; Cabiati, Manuela; Del Ry, Silvia; Trivella, Maria Giovanna; Giannessi, Daniela; Caselli, Chiara

    2014-12-12

    In end-stage heart failure (HF), the implantation of a left ventricular assist device (LVAD) is able to induce reverse remodeling. Cellular proteases, such as cathepsins, are involved in the progression of HF. The aim of this study was to evaluate the role of cathepsin system in HF patients supported by LVAD, in order to determine their involvement in cardiac remodeling. The expression of cysteine (CatB, CatK, CatL, CatS) and serine cathepsin (CatG), and relative inhibitors (Cystatin B, C and SerpinA3, respectively) was determined in cardiac biopsies of 22 patients submitted to LVAD (pre-LVAD) and compared with: 1) control stable chronic HF patients on medical therapy at the moment of heart transplantation without prior LVAD (HT, n = 7); 2) patients supported by LVAD at the moment of transplantation (post-LVAD, n = 6). The expression of cathepsins and their inhibitors was significantly higher in pre-LVAD compared to the HT group and LVAD induced a further increase in the cathepsin system. Significant positive correlations were observed between cardiac expression of cathepsins and their inhibitors as well as inflammatory cytokines. In the pre-LVAD group, a relationship of cathepsins with dilatative etiology and length of hospitalization was found. A parallel activation of cathepsins and their inhibitors was observed after LVAD support. The possible clinical importance of these modifications is confirmed by their relation with patients' outcome. A better discovery of these pathways could add more insights into the cardiac remodeling during HF.

  16. Characterization and differential expression of cathepsin L3 alleles from Fasciola hepatica.

    Science.gov (United States)

    Zawistowska-Deniziak, A; Wasyl, K; Norbury, L J; Wesołowska, A; Bień, J; Grodzik, M; Wiśniewski, M; Bąska, P; Wędrychowicz, H

    2013-07-01

    Fasciola hepatica infections cause significant global problems in veterinary and human medicine, including causing huge losses in cattle and sheep production. F. hepatica host infection is a multistage process and flukes express papain-like cysteine proteases, termed cathepsins, which play pivotal roles in virulence through host entry, tissue migration and immune evasion. Expression of these proteases is developmentally regulated. Recent studies indicate that excystment of infective larvae is dependent on cysteine proteases and together FhCL3 and FhCB account for over 80% of total protease activity detectable in newly excysted juvenile (NEJ) fluke. This paper focuses on members of the cathepsin L gene family, specifically those belonging to the CL3 clade. The cDNA of two novel cathepsin L3 proteases--FhCL3-1 and FhCL3-2 were cloned. The mRNA transcript expression levels for these enzymes were significantly different at various time points in life development stages obtained in vitro, from dormant metacercariae to NEJ 24h after excystment. Maximum expression levels were observed in NEJ immediately after excystment. In all stages examined by Real Time PCR, FhCL3-2 was expressed at a higher level compared to FhCL3-1 which was expressed only at very low levels. Western blot and immunohistochemical analysis also indicated higher expression of the FhCL3-2 allele and its secretory nature. The ability of antibody responses from rats and sheep challenged with F. hepatica to recognize recombinant FhCL3-1 and FhCL3-2 was shown to differ. Differences were also confirmed through the use of anti-rFhCL3-1 and anti-rFhCL3-2 sera in Western blot analysis of juvenile excretory/secretory (ES) material separated by 2D electrophoresis. These results indicate analysis of relative expression of parasite virulence factors from different populations is required, as this will likely impact the effectiveness of vaccines based on these antigens. Copyright © 2013 Elsevier B.V. All rights

  17. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations.

    Science.gov (United States)

    Guenthner, Casey J; Miyamichi, Kazunari; Yang, Helen H; Heller, H Craig; Luo, Liqun

    2013-06-05

    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Expression and Localization of Cathepsins B, D, and G in Two Cancer Stem Cell Subpopulations in Moderately Differentiated Oral Tongue Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Therese Featherston

    2017-07-01

    Full Text Available AimWe have previously demonstrated the putative presence of two cancer stem cell (CSC subpopulations within moderately differentiated oral tongue squamous cell carcinoma (MDOTSCC, which express components of the renin–angiotensin system (RAS. In this study, we investigated the expression and localization of cathepsins B, D, and G in relation to these CSC subpopulations within MDOTSCC.Methods3,3-Diaminobenzidine (DAB and immunofluorescent (IF immunohistochemical (IHC staining was performed on MDOTSCC samples to determine the expression and localization of cathepsins B, D, and G in relation to the CSC subpopulations. NanoString mRNA analysis and colorimetric in situ hybridization (CISH were used to study their transcripts expression. Enzyme activity assays were performed to determine the activity of these cathepsins in MDOTSCC.ResultsIHC staining demonstrated expression of cathepsins B, D, and G in MDOTSCC. Cathepsins B and D were localized to CSCs within the tumor nests, while cathepsin B was localized to the CSCs within the peri-tumoral stroma, and cathepsin G was localized to the tryptase+ phenotypic mast cells within the peri-tumoral stroma. NanoString and CISH mRNA analyses confirmed transcription activation of cathepsins B, D, and G. Enzyme activity assays confirmed active cathepsins B and D, but not cathepsin G.ConclusionThe presence of cathepsins B and D on the CSCs and cathspsin G on the phenotypic mast cells suggest the presence of bypass loops for the RAS which may be a potential novel therapeutic target for MDOTSCC.

  19. Purification of recombinant tissue plasminogen activator (rtPA) protein from transplastomic tobacco plants.

    Science.gov (United States)

    Abdoli Nasab, Maryam; Jalali Javaran, Mokhtar; Cusido, Rosa M; Palazon, Javier

    2016-11-01

    Plants are low cost platforms for the production of recombinant proteins, but their complexity renders the purification of plant recombinant proteins more difficult than proteins expressed in yeast or bacteria. Plastid transformation enables high-level expression of foreign genes and the accumulation of recombinant proteins in plastid organelles. Histidine (His) tags are widely used for affinity purification of recombinant proteins in a nickel column. The human tissue-type plasminogen activator (tPA) is one of the most important pharmaceutical recombinant proteins involved in the breakdown of blood clots in different parts of the body. The truncated form of the tissue plasminogen activator (K2S) has a longer plasma half-life, better diffusion into the clot, and higher fibrinolytic activity. In a construct designed to insert the K2S gene in the tobacco chloroplast, the sequence of six histidines and a factor Xa protease site was fused to the C-terminus of the K2S protein. The presence and amount of tPA recombinant protein in transplastomic tobacco plants was estimated by ELISA analysis using a specific antibody. The protein was purified from total soluble protein, insoluble protein aggregates and the protein was extracted from the isolated chloroplast using nickel resin and a chromatography column. After digestion of the purified protein with factor Xa, the presence of the purified tPA protein was confirmed by western blot analysis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Chemical constituents of the stem bark of Vochysia thyrsoidea Pohl. (Vochysiaceae) and evaluation of their cytotoxicity and inhibitory activity against cathepsins B and K; Constituintes quimicos das cascas do caule de Vochysia thyrsoidea Pohl. (Vochysiaceae) e avaliacao das atividades citotoxica e inibitoria frente as catepsinas B e K

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Lorena Ramos Freitas de; Silva, Jame' s A. da; Vieira, Paulo Cezar [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica; Costa, Maisa Borges; Santos, Mirley Luciene dos; Menezes, Antonio Carlos Severo, E-mail: amenezes@ueg.br [Universidade Estadual de Goias (UEG), Anapolis, GO (Brazil). Unidade Universitaria de Ciencias Exatas e Tecnologicas; Sbardelotto, Aline Borba; Pessoa, Claudia do O; Moraes, Manoel Odorico de [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Fac. de Medicina. Dept. de Fisiologia e Farmacologia

    2014-04-15

    A new flavonoid, catechin-3-O-(3{sup -}O-trans-cinnamoyl)-α-rhamnopyranoside, along with known compounds, catechin-3-O-α-rhamnopyranoside, 3-oxo-urs-12-en-28-oic acid, 2,4,6-trimethoxybenzoic acid, 2-butyl-D-fructofuranoside and 1-butyl-D-fructofuranoside, has been isolated from the stem bark of V. thyrsoidea. These compounds were assayed for inhibition of protease activity (cathepsins B and K) and against cancer cell lines. Catechin-3-O-(3{sup -}O-trans-cinnamoyl)-α-rhamnopyranoside showed moderate inhibitory activity (IC{sub 50} = 62.02 µM) against cathepsin B while 2-butyl-D-fructofuranoside was the most potent against a strain of CNS (SF-295) and human leukemia (HL-60) with IC{sub 50} = 36.80 μM and IC{sub 50} = 25.37 μM, respectively (author)

  1. A recombinant Anticarsia gemmatalis MNPV harboring chiA and v-cath genes from Choristoneura fumiferana defective NPV induce host liquefaction and increased insecticidal activity.

    Science.gov (United States)

    Lima, Anabele Azevedo; Aragão, Clara Wandenkolck Silva; de Castro, Maria Elita Batista; Oliveira, Juliana Velasco de Castro; Sosa Gómez, Daniel Ricardo; Ribeiro, Bergmann Morais

    2013-01-01

    One of the interesting features of Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 2D (AgMNPV-2D) genome is the absence of chitinase (chiA) and cathepsin (v-cath) genes. This characteristic may be responsible for the lack of liquefaction and melanization in A. gemmatalis larvae killed by AgMNPV-2D infection. This study aimed to test the hypothesis that CHIA and V-CATH proteins from Choristonera fumiferana DEF multiple nucleopolyhedrovirus (CfDEFNPV) are able to liquefy and melanize the cuticle of A. gemmatalis larvae infected by a recombinant AgMNPV containing chiA and v-cath genes inserted in its genome. A fragment from the CfDefNPV genome containing chiA and v-cath genes was inserted into the genome of AgMNPV-2D. The recombinant virus (vAgp2100Cf.chiA/v-cath) was purified and used to infect insect cells and larvae. Transcripts of v-cath and chiA genes were detected along the infection of insect cells by qRT-PCR, from early to late phases of infection. The analysis of A. gemmatalis larvae killed by vAgp2100Cf.chiA/v-cath infection confirmed the hypothesis proposed. The vAgp2100Cf.chiA/v-cath showed higher insecticidal activity against third instar A. gemmatalis larvae when compared to AgMNPV-2D. The mean time to death was also lower for the vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D at 10 days post infection. Occlusion body production was higher in A. gemmatalis larvae infected with vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D. Enzyme assays showed higher chitinase and cysteine protease activities in insect cells and insects infected with vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D. The introduction of chiA and v-cath genes into the genome of AgMNPV improves its insecticidal activity against A. gemmatalis larvae and this recombinant virus could be used as an alternative to the wild type virus to control this important insect pest.

  2. Cathepsin B gene disruption induced Leishmania donovani proteome remodeling implies cathepsin B role in secretome regulation.

    Directory of Open Access Journals (Sweden)

    Teklu Kuru Gerbaba

    Full Text Available Leishmania cysteine proteases are potential vaccine candidates and drug targets. To study the role of cathepsin B cysteine protease, we have generated and characterized cathepsin B null mutant L. donovani parasites. L. donovani cathepsin B null mutants grow normally in culture, but they show significantly attenuated virulence inside macrophages. Quantitative proteome profiling of wild type and null mutant parasites indicates cathepsin B disruption induced remodeling of L. donovani proteome. We identified 83 modulated proteins, of which 65 are decreased and 18 are increased in the null mutant parasites, and 66% (55/83 of the modulated proteins are L. donovani secreted proteins. Proteins involved in oxidation-reduction (trypanothione reductase, peroxidoxins, tryparedoxin, cytochromes and translation (ribosomal proteins are among those decreased in the null mutant parasites, and most of these proteins belong to the same complex network of proteins. Our results imply virulence role of cathepsin B via regulation of Leishmania secreted proteins.

  3. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung epithelial cells.

    Science.gov (United States)

    Wille, Aline; Gerber, Annegret; Heimburg, Anke; Reisenauer, Anita; Peters, Christoph; Saftig, Paul; Reinheckel, Thomas; Welte, Tobias; Bühling, Frank

    2004-07-01

    Cathepsins are implicated in a multitude of physiological and pathophysiological processes. The aim of the present study was to investigate the function of cathepsin L (catL) in the proteolytic network of human lung epithelial cells and its role in the regulation of apoptosis. We found that catL-deficient A549 cells as well as lung tissue extracts of catL(-/-) mice express increased amounts of single-chain cathepsin D (catD). Degradation experiments indicate that catL specifically degrades the single-chain isoform of catD. Furthermore, we found that catL-deficient cells showed increased sensitivity to apoptosis. Finally, we demonstrate that the inhibition of catD activity by pepstatin A decreased the number of apoptotic cells in catL-deficient A549 cells after anti-Fas treatment. In conclusion, catL is involved in catD processing and the accumulation of catD isoforms in catL-deficient cells is associated with increased rates of spontaneous and anti-Fas-induced apoptosis.

  4. Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae.

    Science.gov (United States)

    Bewley, Martin A; Pham, Trong K; Marriott, Helen M; Noirel, Josselin; Chu, Hseuh-Ping; Ow, Saw Y; Ryazanov, Alexey G; Read, Robert C; Whyte, Moira K B; Chain, Benny; Wright, Phillip C; Dockrell, David H

    2011-06-01

    Macrophages are central effectors of innate immune responses to bacteria. We have investigated how activation of the abundant macrophage lysosomal protease, cathepsin D, regulates the macrophage proteome during killing of Streptococcus pneumoniae. Using the cathepsin D inhibitor pepstatin A, we demonstrate that cathepsin D differentially regulates multiple targets out of 679 proteins identified and quantified by eight-plex isobaric tag for relative and absolute quantitation. Our statistical analysis identified 18 differentially expressed proteins that passed all paired t-tests (α = 0.05). This dataset was enriched for proteins regulating the mitochondrial pathway of apoptosis or inhibiting competing death programs. Five proteins were selected for further analysis. Western blotting, followed by pharmacological inhibition or genetic manipulation of cathepsin D, verified cathepsin D-dependent regulation of these proteins, after exposure to S. pneumoniae. Superoxide dismutase-2 up-regulation was temporally related to increased reactive oxygen species generation. Gelsolin, a known regulator of mitochondrial outer membrane permeabilization, was down-regulated in association with cytochrome c release from mitochondria. Eukaryotic elongation factor (eEF2), a regulator of protein translation, was also down-regulated by cathepsin D. Using absence of the negative regulator of eEF2, eEF2 kinase, we confirm that eEF2 function is required to maintain expression of the anti-apoptotic protein Mcl-1, delaying macrophage apoptosis and confirm using a murine model that maintaining eEF2 function is associated with impaired macrophage apoptosis-associated killing of Streptococcus pneumoniae. These findings demonstrate that cathepsin D regulates multiple proteins controlling the mitochondrial pathway of macrophage apoptosis or competing death processes, facilitating intracellular bacterial killing.

  5. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins.

    Science.gov (United States)

    Cambra, Ines; Martinez, Manuel; Dáder, Beatriz; González-Melendi, Pablo; Gandullo, Jacinto; Santamaría, M Estrella; Diaz, Isabel

    2012-07-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described.

  6. EKSTRAKSI DAN KARAKTERISASI PARSIAL EKSTRAK KASAR ENZIM KATEPSIN DARI IKAN PATIN [Extraction and Partial Characterization of Crude Enzymes Cathepsin from Catfish

    Directory of Open Access Journals (Sweden)

    Muhammad Zakiyul Fikri*

    2014-06-01

    Full Text Available Decomposition of protein by enzymatic process will lead to changes in odor, texture, and appearance of fish. The enzymes that play a role in the enzymatic process is primarily proteolytic enzymes. Cathepsin is one of the proteolytic enzymes found in animal tissue that hydrolyzes peptide bonds of proteins. This study aims to extract the cathepsin, characterize the crude extract derived from catfish. The stages of this research consist of the extraction and characterization of the cathepsin from catfish. Result of the extraction was crude extract of cathepsin with activity of 0.278 U/mL. The enzyme had optimum temperature of 50°C, pH 6 and substrate concentration of 2%. The activity of the cathepsin was inhibited by metal ions of Fe3+, Cu2+, Ca2+, but increased by metal ions of Mg2+.

  7. Covalent-display of an active chimeric-recombinant tissue plasminogen activator on polyhydroxybutyrate granules surface.

    Science.gov (United States)

    Hafizi, Akram; Malboobi, Mohamad Ali; Jalali-Javaran, Mokhtar; Maliga, Pal; Alizadeh, Houshang

    2017-11-01

    To develop a deliberately engineered expression and purification system for an active chimeric-recombinant tissue plasminogen activator (crtPA) using co-expression with polyhydroxybutyrate (PHB) operon genes. Fusion of crtPA with PhaC-synthase simplified the purification steps through crtPA sedimentation with PHB particles. Moreover, the covalently immobilized crtPA was biologically active as shown in a chromogenic assay. Upon WELQut-protease activity, the released single-chain crtPA converted to the two-chain form which produced a pattern of bands with approx. MW of 32 and 11 kDa in addition to the full length crtPA. Fusion of crtPA with PhaC-synthase not only simplifies purification from the bacterial host lysate, but also co-expression of PHB operon genes creates an oxidative environment, thereby reducing the inclusion body formation possibility. The isolated crtPA-PHB granules exhibited crtPA serine protease activity. Thus, fusion with the PhaC protein could be used as a scaffold for covalent displaying of functional disulfide-rich proteins.

  8. Cathepsin B, cathepsin H, cathepsin X and cystatin C in sera of patients with early-stage and inflammatory breast cancer.

    Science.gov (United States)

    Decock, J; Obermajer, N; Vozelj, S; Hendrickx, W; Paridaens, R; Kos, J

    2008-01-01

    Numerous studies have linked cathepsins and their inhibitor cystatin C to tumor invasion and metastasis. We examined whether cathepsin B, cathepsin H, cathepsin X and cystatin C could be detected in sera from women with early stage or inflammatory breast cancer and whether they correlated with clinicopathological characteristics. Preoperative serum was obtained from 176 patients with early-stage breast cancer (tumor size cancer. Cathepsin and cystatin C levels were measured by ELISA. The patient and tumor characteristics under study were age at diagnosis, menopausal status, tumor size, tumor grade, and steroid hormone receptor status. Serum cathepsin B levels were significantly lower in patients with poorly differentiated tumors. High cystatin C levels were associated with tumor size, postmenopausal status and patient age. Interestingly, significantly lower levels of cathepsin X and H were found in patients with inflammatory breast cancer, a trend also observed for cathepsin B and cystatin C. In conclusion, our results show a limited association of cathepsins B, H, X and cystatin C with established prognostic parameters. These data are promising and encourage future analysis of the clinical outcome of our patients in order to examine the potential prognostic value of these biomarkers. Further, this study indicates a role for cathepsin X and H in inflammatory breast cancer.

  9. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping.

    Directory of Open Access Journals (Sweden)

    Timothy Billings

    2010-12-01

    Full Text Available The success of high resolution genetic mapping of disease predisposition and quantitative trait loci in humans and experimental animals depends on the positions of key crossover events around the gene of interest. In mammals, the majority of recombination occurs at highly delimited 1-2 kb long sites known as recombination hotspots, whose locations and activities are distributed unevenly along the chromosomes and are tightly regulated in a sex specific manner. The factors determining the location of hotspots started to emerge with the finding of PRDM9 as a major hotspot regulator in mammals, however, additional factors modulating hotspot activity and sex specificity are yet to be defined. To address this limitation, we have collected and mapped the locations of 4829 crossover events occurring on mouse chromosome 11 in 5858 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. This chromosome was chosen for its medium size and high gene density and provided a comparison with our previous analysis of recombination on the longest mouse chromosome 1. Crossovers were mapped to an average resolution of 127 kb, and thirteen hotspots were mapped to <8 kb. Most crossovers occurred in a small number of the most active hotspots. Females had higher recombination rate than males as a consequence of differences in crossover interference and regional variation of sex specific rates along the chromosome. Comparison with chromosome 1 showed that recombination events tend to be positioned in similar fashion along the centromere-telomere axis but independently of the local gene density. It appears that mammalian recombination is regulated on at least three levels, chromosome-wide, regional, and at individual hotspots, and these regulation levels are influenced by sex and genetic background but not by gene content.

  10. Recombinant activated protein C attenuates coagulopathy and inflammation when administered early in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    Schouten, Marcel; van 't Veer, Cornelis; Roelofs, Joris J. T. H.; Gerlitz, Bruce; Grinnell, Brian W.; Levi, Marcel; van der Poll, Tom

    2011-01-01

    Recombinant human activated protein C (APC), which has both anticoagulant and anti-inflammatory properties, improves survival of patients with severe sepsis. This beneficial effect is especially apparent in patients with pneumococcal pneumonia. Earlier treatment with APC in sepsis has been

  11. Central venous catheter associated thrombosis of major veins: thrombolytic treatment with recombinant tissue plasminogen activator

    NARCIS (Netherlands)

    Rodenhuis, S.; van't Hek, L. G.; Vlasveld, L. T.; Kröger, R.; Dubbelman, R.; van Tol, R. G.

    1993-01-01

    Major thromboses can occur in the venous system in association with central venous catheters. This usually necessitates removal of the catheter. The effectiveness of low dose recombinant tissue type plasminogen activator (rt-PA) in combination with heparin was assessed in patients with central

  12. Recombinant human activated protein C: current insights into its mechanism of action

    NARCIS (Netherlands)

    Levi, Marcel; van der Poll, Tom

    2007-01-01

    Impairment of the protein C pathway plays a central role in the pathogenesis of sepsis. Administration of recombinant human activated protein C (rhAPC) may correct the dysregulated anticoagulant mechanism and prevent propagation of thrombin generation and formation of microvascular thrombosis.

  13. Recombination-activating gene 1 and 2 (RAG1 and RAG2) in ...

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... Hansen JD 1997 Inspection of the 3' UTR genomic region for. RAG1 and RAG2 in rainbow trout (Oncorhynchus mykiss) reveals potential regulatory motifs. Dev. Immunol. 5 129–131. Hansen JD and Kaattari SL 1996 The recombination activating gene 2 (RAG2) of the rainbow trout (Oncorhynchus mykiss).

  14. [Highly active fractions of the medicinal leech recombinant destabilase-lysozyme].

    Science.gov (United States)

    Fadeeva, Iu I; Antipova, N V; Baskova, I P; Zavalova, L L

    2014-01-01

    From the highly purified but lowly active recombinant protein Destabilas-Lysozyme (Dest-Lys) by use cation-exchange column TSK CM 3-SW chromatography, it was separated non-active fraction IV, contained 90% of protein. Fractions I, II and III, represented proteins with lysozyme and isopeptidase activities. Their lysozyme activity correlates with the activity of natural Des-Lys. The ratio of the activities in fractions I - III is such, that maximal lysozyme activity is concentrated in fraction III, isopeptidase - in fraction I. It is discussed the possibility of Dest-Lys different functions regulation is depended on the formation of protein complex forms.

  15. Anti-angiogenesis and anti-tumor activity of recombinant anginex

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Dings, Ruud P.M.; Linden, Edith van der; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2006-01-01

    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment

  16. Submillimeter recombination lines in dust-obscured starbursts and active galactic nuclei

    International Nuclear Information System (INIS)

    Scoville, N.; Murchikova, L.

    2013-01-01

    We examine the use of submillimeter (submm) recombination lines of H, He, and He + to probe the extreme ultraviolet (EUV) luminosity of starbursts (SBs) and active galactic nuclei (AGNs). We find that the submm recombination lines of H, He, and He + are in fact extremely reliable and quantitative probes of the EUV continuum at 13.6 eV to above 54.6 eV. At submm wavelengths, the recombination lines originate from low energy levels (n = 20-50). The maser amplification, which poses significant problems for quantitative interpretation of the higher n, radio frequency recombination lines, is insignificant. Lastly, at submm wavelengths, the dust extinction is minimal. The submm line luminosities are therefore directly proportional to the emission measures (EM ION = n e × n ion × volume) of their ionized regions. We also find that the expected line fluxes are detectable with ALMA and can be imaged at ∼0.''1 resolution in low redshift ultraluminous infrared galaxies. Imaging of the H I lines will provide accurate spatial and kinematic mapping of the star formation distribution in low-z IR-luminous galaxies, and the relative fluxes of the H I and He II recombination lines will strongly constrain the relative contributions of SBs and AGNs to the luminosity. The H I lines should also provide an avenue to constraining the submm dust extinction curve.

  17. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  18. Homing of radiolabelled recombinant interleukin-2 activated natural ...

    Indian Academy of Sciences (India)

    SEARCHU

    A defined ascitic fibrosarcoma cell line obtained from the. Chittaranjan National Cancer Research Institute, Kolkata, was maintained in our laboratory by serial .... solid tumours by adoptive immunotherapy. Before NK cell adoptive immunotherapy was given, IL-2 therapy was carried out mainly to activate endogenous NK.

  19. Topical application of recombinant activated factor VII during cesarean delivery for placenta previa.

    Science.gov (United States)

    Schjoldager, Birgit T B G; Mikkelsen, Emmeli; Lykke, Malene R; Præst, Jørgen; Hvas, Anne-Mette; Heslet, Lars; Secher, Niels J; Salvig, Jannie D; Uldbjerg, Niels

    2017-06-01

    During cesarean delivery in patients with placenta previa, hemorrhaging after removal of the placenta is often challenging. In this condition, the extraordinarily high concentration of tissue factor at the placenta site may constitute a principle of treatment as it activates coagulation very effectively. The presumption, however, is that tissue factor is bound to activated factor VII. We hypothesized that topical application of recombinant activated factor VII at the placenta site reduces bleeding without affecting intravascular coagulation. We included 5 cases with planned cesarean delivery for placenta previa. After removal of the placenta, the surgeon applied a swab soaked in recombinant activated factor VII containing saline (1 mg in 246 mL) to the placenta site for 2 minutes; this treatment was repeated once if the bleeding did not decrease sufficiently. We documented the treatment on video recordings and measured blood loss. Furthermore, we determined hemoglobin concentration, platelet count, international normalized ratio, activated partial thrombin time, fibrinogen (functional), factor VII:clot, and thrombin generation in peripheral blood prior to and 15 minutes after removal of the placenta. We also tested these blood coagulation variables in 5 women with cesarean delivery planned for other reasons. Mann-Whitney test was used for unpaired data. In all 5 cases, the uterotomy was closed under practically dry conditions and the median blood loss was 490 (range 300-800) mL. There were no adverse effects of recombinant activated factor VII and we did not measure factor VII to enter the circulation. Neither did we observe changes in thrombin generation, fibrinogen, activated partial thrombin time, international normalized ratio, and platelet count in the peripheral circulation (all P values >.20). This study indicates that in patients with placenta previa, topical recombinant activated factor VII may diminish bleeding from the placenta site without initiation

  20. Circulating cathepsin K and cystatin C in patients with cancer related bone disease: clinical and therapeutic implications.

    Science.gov (United States)

    Tumminello, Francesca M; Flandina, Carla; Crescimanno, Marilena; Leto, Gaetano

    2008-02-01

    The clinical significance of serum cathepsin K and cystatin C was assessed in patients with breast cancer (BCa) or prostate cancer (PCa) with confined disease (M0) or bone metastasis (BM). Cathepsin K and cystatin C circulating levels were determined by ELISAs in 63 cancer patients, in 35 patients with nonmalignant diseases and in 42 healthy blood donors (control group). In BCa patients, cathepsin K serum levels were significantly lower than in sex matched control group (HS; p=0.0008) or in patients with primary osteoporosis (OP; p=0.0009). On the contrary, cystatin C levels were significantly higher in BCa patients than in HS (p=0.0001) or OP (p=0.017). In PCa patients, cathepsin K concentrations did not significantly differ from those measured in sex matched HS or in patients with benign prostatic hyperplasia (BPH). Conversely, cystatin C was more elevated in cancer patients than in controls (p=0.0001) or BPH patients (p=0.0078). Furthermore, in PCa patients, a positive correlation was observed between cystatin C and cathepsin K (r(S)=0.34; p=0.047). No further relationship was highlighted between these molecules and the clinicobiological parameters of BCa or PCa progression including the number of bone lesions. Moreover, ROC curve analysis showed a poor diagnostic performance of cathepsin K and cystatin C in the detection of BM patients. Interestingly, the administration of zoledronic acid (ZA), a bisphosphonate derivative endowed with a potent antiosteoclastic activity, induced in BM patients a marked increase of cathepsin K and cystatin C serum levels compared to baseline values. However, this phenomenon was statistically significant only in the PCa group. In conclusion Cystatin C and cathepsin K may be regarded as possible markers to monitor the therapeutic response to bisphosphonate treatments. Nevertheless, their clinical value as specific gauges of skeletal metastasis remains questionable.

  1. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  2. Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Schreuder, Herman A., E-mail: herman.schreuder@sanofi.com; Liesum, Alexander, E-mail: alexander.liesum@sanofi.com; Kroll, Katja, E-mail: katja.kroll@sanofi.com; Böhnisch, Britta, E-mail: britta.boehnisch@sanofi.com; Buning, Christian, E-mail: christian.buning@sanofi.com; Ruf, Sven, E-mail: sven.ruf@sanofi.com; Sadowski, Thorsten, E-mail: thorsten.sadowski@sanofi.com

    2014-03-07

    Graphical abstract: - Highlights: • The structures of active cathepsin A and the inactive precursor are very similar. • The only major difference is the absence of a 40 residue activation domain. • The termini of the active catalytic core are held together by a disulfide bond. • Compound 1 reacts with the catalytic Ser150, building a tetrahedral intermediate. • Compound 2 is cleaved by the enzyme and a fragment remained bound. - Abstract: The lysosomal serine carboxypeptidase cathepsin A is involved in the breakdown of peptide hormones like endothelin and bradykinin. Recent pharmacological studies with cathepsin A inhibitors in rodents showed a remarkable reduction in cardiac hypertrophy and atrial fibrillation, making cathepsin A a promising target for the treatment of heart failure. Here we describe the crystal structures of activated cathepsin A without inhibitor and with two compounds that mimic the tetrahedral intermediate and the reaction product, respectively. The structure of activated cathepsin A turned out to be very similar to the structure of the inactive precursor. The only difference was the removal of a 40 residue activation domain, partially due to proteolytic removal of the activation peptide, and partially by an order–disorder transition of the peptides flanking the removed activation peptide. The termini of the catalytic core are held together by the Cys253–Cys303 disulfide bond, just before and after the activation domain. One of the compounds we soaked in our crystals reacted covalently with the catalytic Ser150 and formed a tetrahedral intermediate. The other compound got cleaved by the enzyme and a fragment, resembling one of the natural reaction products, was found in the active site. These studies establish cathepsin A as a classical serine proteinase with a well-defined oxyanion hole. The carboxylate group of the cleavage product is bound by a hydrogen-bonding network involving one aspartate and two glutamate side chains

  3. Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing

    Science.gov (United States)

    Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa

    2018-02-01

    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

  4. An Acidic Thermostable Recombinant Aspergillus nidulans Endoglucanase Is Active towards Distinct Agriculture Residues

    Directory of Open Access Journals (Sweden)

    Eveline Queiroz de Pinho Tavares

    2013-01-01

    Full Text Available Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as Km=27.5±4.33 mg/mL, Vmax=1.185±0.11 mmol/min, and 55.8 IU (international units/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol.

  5. Recombinant cold-adapted attenuated influenza A vaccines for use in children: reactogenicity and antigenic activity of cold-adapted recombinants and analysis of isolates from the vaccinees.

    OpenAIRE

    Alexandrova, G I; Polezhaev, F I; Budilovsky, G N; Garmashova, L M; Topuria, N A; Egorov, A Y; Romejko-Gurko, Y R; Koval, T A; Lisovskaya, K V; Klimov, A I

    1984-01-01

    Reactogenicity and antigenic activity of recombinants obtained by crossing cold-adapted donor of attenuation A/Leningrad/134/47/57 with wild-type influenza virus strains A/Leningrad/322/79(H1N1) and A/Bangkok/1/79(H3N2) were studied. The recombinants were areactogenic when administered as an intranasal spray to children aged 3 to 15, including those who lacked or had only low titers of pre-existing anti-hemagglutinin and anti-neuraminidase antibody in their blood. After two administrations of...

  6. Molecular determinants of improved cathepsin B inhibition by new cystatins obtained by DNA shuffling

    Directory of Open Access Journals (Sweden)

    Garratt Richard C

    2010-09-01

    Full Text Available Abstract Background Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.

  7. The role of p53 in radiation activated recombination in human teratocarcinoma cells

    International Nuclear Information System (INIS)

    Ming Zeng; Hahn, Laura; Cerniglia, George; Lee, Jerry; EI-Deiry, Wafik; Stevens, Craig W.

    1997-01-01

    Purpose/Objective: We have previously demonstrated that ionizing radiation can activate a DNA recombination pathway in mammalian cells. In this project, we investigated the role of p53 in radiation activated recombination in ovarian tumor cell lines, and also the effect of p53 status on radiation sensitivity in this cell system. Materials and Methods: PA-1 teratocarcinoma cells, which express wild type p53, were transfected with an HPV16 E6 expression vector (PA-1/E6) which promotes p53 degradation, or transfected with a similar vector coding only for the neomycin phosphotransferase gene (PA-1/Neo). Approximately 3 weeks after this transfection, surviving cells were pooled and expanded. Nuclear extracts were made from each cell line three hours after cells were irradiated with doses ranging from 0 Gy to 10 Gy. Briefly, cells were lysed in sucrose buffer, and the nuclei and cytoplasm separated by centrifugation. Nuclei were lysed in low salt buffer followed by high salt buffer and centrifugation (as described by Johnson et al., Biotechniques 19:193-5, 1995). The ability of these nuclear extracts to rejoin or recombine EcoRI linearized pSV2neo was then determined. The effect of irradiation and P53 on stable transfection determined by assessing transfection of a Hygromycin marker vector (pSV2HPH). Radiation sensitivity was also determined. Results: Nuclear extracts from unirradiated cells had demonstrated end joining activity. PA-1/Neo had little end joining activity as measured by dimerization of linearized pSV2neo. Recutting of these dimers with EcoRI almost completely removed the dimer. PA-1/E6 demonstrated significantly more dimer formation (∼10 fold more) than PA-1/Neo. These dimers could only be reduced to ∼50% of PA-1/E6 control by redigestion with EcoRI. Nuclear extracts generated 3 hours after irradiation also had end joining activity. After 10Gy, PA-1/Neo demonstrated markedly elevated end joining activity to the level seen in unirradiated PA-1/E6. This

  8. Acute ischemic stroke after cardiac catheterization: the protamine low-dose recombinant tissue plasminogen activator pathway.

    Science.gov (United States)

    Guevara, Carlos; Quijada, Alonso; Rosas, Carolina; Bulatova, Katya; Lara, Hugo; Nieto, Elena; Morales, Marcelo

    2017-04-01

    : Intravenous thrombolysis is the preferred treatment for acute ischemic stroke; however, it remains unestablished in the area of cardiac catheterization. We report three patients with acute ischemic stroke after cardiac catheterization. After reversing the anticoagulant effect of unfractionated heparin with protamine, all of the patients were successfully off-label thrombolyzed with reduced doses of intravenous recombinant tissue plasminogen activator (0.6 mg/kg). This dose was preferred to reduce the risk of symptomatic cerebral or systemic bleeding. The sequential pathway of protamine recombinant tissue plasminogen activator at reduced doses may be safer for reducing intracranial or systemic bleeding events, whereas remaining efficacious for the treatment of acute ischemic stroke after cardiac catheterization.

  9. Analysis of heparanase isoforms and cathepsin B in the plasma of patients with gastrointestinal carcinomas: analytical cross-sectional study.

    Science.gov (United States)

    Melo, Carina Mucciolo; Origassa, Clarice Silvia Taemi; Theodoro, Thérèse Rachell; Matos, Leandro Luongo; Miranda, Thaís Aguilar; Accardo, Camila Melo; Bouças, Rodrigo Ippolito; Suarez, Eloah Rabello; Pares, Madalena Maria Nunes Silva; Waisberg, Daniel Reis; Toloi, Giovanna Canato; Nader, Helena Bonciani; Waisberg, Jaques; Pinhal, Maria Aparecida Silva

    2015-02-01

    Heparanase-1 degrades heparan sulfate and has been correlated with tumor progression. Although the isoform heparanase-2 has no catalytic activity, it seems to be important for modulating heparanase-1 activity. Cathepsin B is a proteinase involved in tumor metastasis. The aim of this study was to analyze heparanase isoform expression and cathepsin B activity in plasma samples from patients with gastrointestinal carcinomas, compared with healthy individuals (control group). This was an analytical cross-sectional study. Peripheral blood samples were collected at a Brazilian public hospital, from 21 patients with histopathological diagnoses of gastrointestinal carcinomas and from 43 healthy individuals. The analyses were performed in two Brazilian medical schools. Heparanase isoforms were identified and quantified in plasma samples by means of Western blot. The enzymatic activities of heparanase-1 and cathepsin B were also measured. The results demonstrated that the expression of both heparanase isoforms was significantly greater in plasma samples from gastrointestinal carcinoma patients, compared with the control group. Logistic regression analysis showed that increased heparanase-1 and heparanase-2 expression was exclusively dependent on the tumor. There was a significant increase in heparanase-1 and cathepsin B activity in the patients' plasma. Overexpression of heparanase-1 and heparanase-2, along with increased heparanase-1 and cathepsin B activity in plasma, is associated with the diagnosis of gastrointestinal carcinoma. These findings provide support for using non-invasive assays (plasma samples) as an auxiliary method for diagnosing gastrointestinal tumors.

  10. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  11. Agroinfiltration contributes to VP1 recombinant protein degradation.

    Science.gov (United States)

    Pillay, Priyen; Kunert, Karl J; van Wyk, Stefan; Makgopa, Matome Eugene; Cullis, Christopher A; Vorster, Barend J

    2016-11-01

    There is a growing interest in applying tobacco agroinfiltration for recombinant protein production in a plant based system. However, in such a system, the action of proteases might compromise recombinant protein production. Protease sensitivity of model recombinant foot-and-mouth disease (FMD) virus P1-polyprotein (P1) and VP1 (viral capsid protein 1) as well as E. coli glutathione reductase (GOR) were investigated. Recombinant VP1 was more severely degraded when treated with the serine protease trypsin than when treated with the cysteine protease papain. Cathepsin L- and B-like as well as legumain proteolytic activities were elevated in agroinfiltrated tobacco tissues and recombinant VP1 was degraded when incubated with such a protease-containing tobacco extract. In silico analysis revealed potential protease cleavage sites within the P1, VP1 and GOR sequences. The interaction modeling of the single VP1 protein with the proteases papain and trypsin showed greater proximity to proteolytic active sites compared to modeling with the entire P1-polyprotein fusion complex. Several plant transcripts with differential expression were detected 24 hr post-agroinfiltration when the RNA-seq technology was applied to identify changed protease transcripts using the recently available tobacco draft genome. Three candidate genes were identified coding for proteases which included the Responsive-to-Desiccation-21 (RD21) gene and genes for coding vacuolar processing enzymes 1a (NbVPE1a) and 1b (NbVPE1b). The data demonstrates that the tested recombinant proteins are sensitive to protease action and agroinfiltration induces the expression of potential proteases that can compromise recombinant protein production.

  12. Expression and purification of biologically active recombinant human paraoxonase 1 from a Drosophila S2 stable cell line.

    Science.gov (United States)

    Yun, Hyeongseok; Yu, Jiyeon; Kim, Sumi; Lee, Nari; Lee, Jinhee; Lee, Sungrae; Kim, Nam Doo; Yu, Chiho; Rho, Jaerang

    2017-03-01

    Many pesticides and chemical warfare nerve agents are highly toxic organophosphorus compounds (OPs), which inhibit acetylcholinesterase activity. Human paraoxonase 1 (PON1) has demonstrated significant potential for use as a catalytic bioscavenger capable of hydrolyzing a broad range of OPs. However, there are several limitations to the use of human PON1 as a catalytic bioscavenger, including the relatively difficult purification of PON1 from human plasma and its dependence on the presence of hydrophobic binding partners to maintain stability. Therefore, research efforts to efficiently produce recombinant human PON1 are necessary. In this study, we developed a Drosophila S2 stable cell line expressing recombinant human PON1. The recombinant human PON1 was fused with the human immunoglobulin Fc domain (PON1-hFc) to improve protein stability and purification efficiency. We purified the recombinant human PON1-hFc from the S2 stable cell line and characterized its enzymatic properties for OP hydrolysis. We purified the recombinant human PON1-hFc from the S2 stable cell line and characterized its enzymatic properties for OP hydrolysis compared with those of the recombinant human PON1 derived from E. coli. We observed that the recombinant human PON1-hFc is functionally more stable for OP hydrolyzing activities compared to the recombinant human PON1. The catalytic efficiency of the recombinant PON1-hFc towards diisopropyl fluorophosphate (DFP, 0.26 × 10 6  M -1  min -1 ) and paraoxon hydrolysis (0.015 × 10 6  M -1  min -1 ) was 1.63- and 1.24-fold higher, respectively, than the recombinant human PON1. Thus, we report that the recombinant PON1-hFc exerts hydrolytic activity against paraoxon and DFP. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity.

    Science.gov (United States)

    Sun, Bo; Li, Zhao-Shen; Tu, Zhen-Xing; Xu, Guo-Ming; Du, Yi-Qi

    2006-11-21

    To construct a live attenuated Salmonella typhimurium (S. typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity. By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments. A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recombinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylorii whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response. The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.

  14. Immunoadjuvant activities of a recombinant chicken IL-12 in chickens vaccinated with Newcastle disease virus recombinant HN protein.

    Science.gov (United States)

    Su, Bor Sheu; Yin, Hsien Sheng; Chiu, Hua Hsien; Hung, Li Hsiang; Huang, Ji Ping; Shien, Jui Hung; Lee, Long Huw

    2011-08-05

    Recombinant fowlpox virus (rFPV/HN) expressing Newcastle disease virus (NDV) HN gene and rFPV/HN/chIL-12 co-expressing chicken IL-12 (chIL-12) and HN (rHN/chIL-12) genes have been characterized. rHN/chIL-12 or rchIL-12, expressed by our previous construct rFPV/chIL-12, co-administered with rHN was assessed for adjuvant activities of chIL-12. Chickens were vaccinated with various amounts of rHN/chIL-12 mixed with mineral oil (MO), intramuscularly. Levels of hemagglutination-inhibition (HI) antibody production depended on the concentration of the injected rHN or rHN/chIL-12. The lower HI antibody titers were obtained in chicken groups rHN/chIL-12/7-rHN/chIL-12/9, receiving 60ng rHN/8ng chIL-12 with MO, 30ng rHN/4ng chIL-12 with MO or 15ng rHN/2ng chIL-12 with MO, respectively, compared to those in chicken groups rHN/7-rHN/9, receiving rHN with MO alone. However, chickens in group rHN/chIL-12/7 or rHN/chIL-12/8 and rHN with MO alone showed the same effective protection. Chicken group rHN/chIL-12/9 was even more protective than that in group rHN/9. When rchIL-12 was co-injected with 15ng rHN plus MO, chickens produced low levels of HI antibody titers; while higher levels of IFN-γ production and an effective protection rate (83%) were obtained. On the other hand, low levels of IFN-γ production and low protection response (50%) were obtained in chickens injected with rHN with MO alone. Taken together, when the concentration of rHN decreased to certain levels, rchIL-12 reduced HI antibody production. The increase in the induction of IFN-γ production might suggest the enhancement of the cell-mediated immunity which conferred the protection from the NDV challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Cysteine and aspartic proteases cathepsins B and D determine the invasiveness of MCF10A neoT cells

    International Nuclear Information System (INIS)

    Premzl, J.; Kos, J.

    2003-01-01

    Background. Lysosomal cathepsins B and D have been reported to play a role in various processes leading to progression of malignant disease. In ras-transformed MCF10A neoT cells both enzymes show similar vesicular distribution in perinuclear and peripheral cytoplasmic regions. Results. The co-localization of cathepsins B and D in some vesicles as defined by confocal microscopy supports their co-ordinate activity in the proteolytic cascade. On the other hand, we showed that stefin A, an endogenous intracellular inhibitor of cysteine proteases, did not co-localize with cathepsin B and is presumably not involved in regulation of its enzymatic activity within the vesicles. Intracellular localization of both enzymes was confined to similar vesicles as the fluorescent degradation products of DQ-collagen IV either in individual cells or cell spheroids. The capability of these two enzymes to degrade collagen and other components of extracellular matrix is further supported by the results of Matrigel invasion assay. We showed that specific intracellular (CA-074 Me) and extracellular (CA-074) inhibitors of cathepsin B and pepstatin A, an inhibitor of cathepsin D, significantly reduced invasion of MCF10A neoT cells. Our results also show that in contrast to some other studies the activation peptide of pro-cathepsin D exhibited no mitogenic effect on MCF10A neoT, MCF-7 or HEK-293 cells. Conclusion. We conclude that lysosomal cysteine proteases cathepsins B and D predominantly participate in degradation of extracellular matrix and facilitate invasion of tumour cells. (author)

  16. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Shruti; Amar, Saroj Kumar [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow (India); Dubey, Divya; Pal, Manish Kumar [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Singh, Jyoti [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow (India); Verma, Ankit; Kushwaha, Hari Narayan [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Ray, Ratan Singh, E-mail: ratanray.2011@rediffmail.com [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India)

    2015-12-30

    Highlights: • Photodegradation and formation of photoproduct. • Involvement of ROS in PPD phototoxicity. • Role of ROS in DNA damage, CPD and micronuclei formation. • PPD induced lysosomal destabilization and release of cathepsin B. • Cleavage of Bid and activation of mitochondrial apoptosis. - Abstract: Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings.

  17. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation

    International Nuclear Information System (INIS)

    Goyal, Shruti; Amar, Saroj Kumar; Dubey, Divya; Pal, Manish Kumar; Singh, Jyoti; Verma, Ankit; Kushwaha, Hari Narayan; Ray, Ratan Singh

    2015-01-01

    Highlights: • Photodegradation and formation of photoproduct. • Involvement of ROS in PPD phototoxicity. • Role of ROS in DNA damage, CPD and micronuclei formation. • PPD induced lysosomal destabilization and release of cathepsin B. • Cleavage of Bid and activation of mitochondrial apoptosis. - Abstract: Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings.

  18. Recombinant human nerve growth factor with a marked activity in vitro and in vivo

    Science.gov (United States)

    Colangelo, Anna M.; Finotti, Nicoletta; Ceriani, Michela; Alberghina, Lilia; Martegani, Enzo; Aloe, Luigi; Lenzi, Laura; Levi-Montalcini, Rita

    2005-01-01

    Recombinant human nerve growth factor (rhNGF) is regarded as the most promising therapy for neurodegeneration of the central and peripheral nervous systems as well as for several other pathological conditions involving the immune system. However, rhNGF is not commercially available as a drug. In this work, we provide data about the production on a laboratory scale of large amounts of a rhNGF that was shown to possess in vivo biochemical, morphological, and pharmacological effects that are comparable with the murine NGF (mNGF), with no apparent side effects, such as allodynia. Our rhNGF was produced by using conventional recombinant DNA technologies combined with a biotechnological approach for high-density culture of mammalian cells, which yielded a production of ≈21.5 ± 2.9 mg/liter recombinant protein. The rhNGF-producing cells were thoroughly characterized, and the purified rhNGF was shown to possess a specific activity comparable with that of the 2.5S mNGF by means of biochemical, immunological, and morphological in vitro studies. This work describes the production on a laboratory scale of high levels of a rhNGF with in vitro and, more important, in vivo biological activity equivalent to the native murine protein. PMID:16339317

  19. Neutrophil elastase and cathepsin G protein and messenger RNA expression in bone marrow from a patient with Chediak-Higashi syndrome

    Science.gov (United States)

    Burnett, D; Ward, C J; Stockley, R A; Dalton, R G; Cant, A J; Hoare, S; Crocker, J

    1995-01-01

    Aims—To determine whether neutrophil elastase and cathepsin G are expressed, at transcriptional or translational levels, in the bone marrow from a patient with Chediak-Higashi syndrome. Methods—Blood neutrophils were isolated from three patients with Chediak-Higashi disease and bone marrow was collected from one. Cell lysates were analysed for neutrophil elastase and cathepsin G activity by enzyme linked immunosorbent assay and western immunoblotting. Northern blotting was used to detect messenger RNA (mRNA) for cathepsin G, elastase and β-actin in bone marrow extracts, and immunohistochemistry was used to localise the enzymes in marrow myeloid cells. Results—Elastase and cathepsin G were not detected in blood neutrophils from the patients with Chediak-Higashi disease, but were present in bone marrow cells, although immunohistochemistry showed they were not within cytoplasmic granules. The concentrations of elastase and cathepsin G in Chediak-Higashi bone marrow were about 25 and 15%, respectively, of those in normal marrow. Quantitative scanning of northern blots showed that elastase and cathepsin G mRNA, corrected for β-actin mRNA, were expressed equally in normal marrow. Conclusions—Transcription of elastase and cathepsin G mRNA in promyelocytes of patients with Chediak-Higashi disease is normal, but the protein products are deficient in these cells and absent in mature neutrophils. This suggests that the translated proteins are not packaged into azurophil granules but are degaded or secreted from the cells. Images PMID:16695972

  20. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    International Nuclear Information System (INIS)

    Tomilina, O A; Berzhansky, V N; Shaposhnikov, A N; Tomilin, S V

    2016-01-01

    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate. (paper)

  1. Are Proteinase 3 and Cathepsin C Enzymes Related to Pathogenesis of Periodontitis?

    Directory of Open Access Journals (Sweden)

    Oya Türkoğlu

    2014-01-01

    Full Text Available Aim. Cathepsin C is the activator of the polymorphonuclear leukocyte-derived proteinase 3, which contributes to inflammatory processes. The aim of the present study was to investigate gingival crevicular fluid (GCF proteinase 3 and cathepsin C levels in periodontal diseases. Design. Eighteen patients with chronic periodontitis (CP, 20 patients with generalized aggressive periodontitis (G-AgP, 20 patients with gingivitis, and 18 healthy subjects were included in the study. Periodontal parameters including probing depth, clinical attachment level, papilla bleeding index, and plaque index were assessed in all study subjects. GCF proteinase 3 and cathepsin C levels were analyzed by ELISA. Results. GCF proteinase 3 total amount was significantly higher in diseased groups compared to control group, after adjusting age P0.05. Periodontal parameters of sampling sites were positively correlated with GCF proteinase 3 total amounts P0.05. Conclusions. Elevated levels of GCF proteinase 3 in CP, G-AgP, and gingivitis might suggest that proteinase 3 plays a role during inflammatory periodontal events in host response. However, cathepsin C in GCF does not seem to have an effect on the pathogenesis of periodontal diseases.

  2. Fibrinogen and fibrin are novel substrates for Fasciola hepatica cathepsin L peptidases.

    Science.gov (United States)

    Mebius, Mirjam M; Op Heij, Jody M J; Tielens, Aloysius G M; de Groot, Philip G; Urbanus, Rolf T; van Hellemond, Jaap J

    2018-02-04

    Cathepsin peptidases form a major component of the secreted proteins of the blood-feeding trematodes Fasciola hepatica and Schistosoma mansoni. These peptidases fulfill many functions, from facilitating infection to feeding and immune evasion. In this study, we examined the Fasciola cathepsin L peptidases FhCL1, FhCL2, and FhCL3 and the schistosomal cathepsin peptidases SmCB1 and SmCL3 for their anticoagulant properties. Although no direct anticoagulant effect of these peptidases was observed, we discovered that cathepsin peptidases from Fasciola, but not from Schistosoma, were able to degrade purified fibrinogen, with FhCL1 having the highest fibrinogenolytic activity. Additionally, FhCL1 and FhCL2 both efficiently degraded fibrin. The lack of a direct anticoagulant or fibrinolytic effect of these peptidases is explained by their inhibition by plasma components. However, within the parasite gut, high concentrations of these peptidases could induce an anticoagulant environment, facilitating blood-feeding for extended periods. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Human lysosomal beta-galactosidase-cathepsin A complex: definition of the beta-galactosidase-binding interface on cathepsin A.

    Science.gov (United States)

    Pshezhetsky, A V; Elsliger, M A; Vinogradova, M V; Potier, M

    1995-02-28

    Human lysosomal beta-galactosidase is organized as a 680-kDa complex with cathepsin A (also named carboxypeptidase L and protective protein), which is necessary to protect beta-galactosidase from intralysosomal proteolysis. To understand the molecular mechanism of beta-galactosidase protection by cathepsin A, we defined the structural organization of their complex including the beta-galactosidase-binding interface on cathepsin A. Radiation inactivation analysis suggested the existence of a 168-kDa structural subunit of the complex containing both beta-galactosidase and cathepsin A. Chemical cross-linking of the complex confirmed the existence of this subunit and showed that it is composed of one cathepsin A dimer and one beta-galactosidase monomer. The modeling of the cathepsin A dimer tertiary structure based on atomic coordinates of a wheat carboxypeptidase suggested a putative beta-galactosidase-binding cavity formed by the association of two cathepsin A monomers. According to this model two exposed loops of cathepsin A bordering the cavity were chosen as part of a putative beta-galactosidase-binding interface. Synthetic peptides corresponding to these loops were found both to dissociate the complex and to inhibit its in vitro reconstitution from purified cathepsin A and beta-galactosidase. The defined location of the GAL monomer in the complex with 35% of its surface covered by the CathA dimer may explain the stabilizing effect of CathA on GAL in lysosome.

  4. Cre-dependent DNA recombination activates a STING-dependent innate immune response

    Science.gov (United States)

    Pépin, Geneviève; Ferrand, Jonathan; Höning, Klara; Jayasekara, W. Samantha N.; Cain, Jason E.; Behlke, Mark A.; Gough, Daniel J.; G. Williams, Bryan R.; Hornung, Veit

    2016-01-01

    Abstract Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell–cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies. PMID:27166376

  5. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2006-01-01

    Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3......, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F......) are downstream of Rad51 function. We propose that Top3 functions in S phase to both process homologous recombination intermediates and modulate checkpoint activity....

  6. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    Science.gov (United States)

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  7. Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis.

    Science.gov (United States)

    Souza, Géssika Silva; do Nascimento, Viviane Veiga; de Carvalho, Laís Pessanha; de Melo, Edésio José Tenório; Fernandes, Keysson Vieira; Machado, Olga Lima Tavares; Retamal, Claudio Andres; Gomes, Valdirene Moreira; Carvalho, André de Oliveira

    2013-09-01

    Antimicrobial peptides (AMPs), which are differentiated from other antibiotic peptides, such as gramicidins and polymyxins, because they are synthesized by large enzymatic complex and bear modified amino acids including d-amino acids, are short polymers of l-amino acids synthesized by ribosomes upon which all living organisms rely to defend themselves from invaders or competitor microorganisms. AMPs have received a great deal of attention from the scientific community as potential new drugs for neglected diseases such as Leishmaniasis. In plants, they include several families of compounds, including the plant defensins. The aim of the present study was to improve the expression of recombinant defensin from Vigna unguiculata seeds (Vu-Defr) and to test its activity against Leishmania amazonensis promatigotes. Recombinant expression was performed in LB and TB media and under different conditions. The purification of Vu-Defr was achieved by immobilized metal ion affinity and reversed-phase chromatography. The purified Vu-Defr was analyzed by circular dichroism (CD), and its biological activity was tested against L. amazonenis promastigotes. To demonstrate that the recombinant production of Vu-Defr did not interfere with its fold and biological activity, the results of all experiments were compared with the results from the natural defensin (Vu-Def). The CD spectra of both peptides presented good superimposition indicating that both peptides present very similar secondary structure and that the Vu-Defr was correctly folded. L. amazonensis treated with Vu-Defr led to the elimination of 54.3% and 46.9% of the parasites at 24 and 48h of incubation time, respectively. Vu-Def eliminated 50% and 54.8% of the parasites at 24 and 48 h, respectively. Both were used at a concentration of 100 μg/mL. These results suggested the potential for plant defensins to be used as new antiparasitic substances. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Conformational transitions during FtsK translocase activation of individual XerCD-dif recombination complexes.

    Science.gov (United States)

    Zawadzki, Pawel; May, Peter F J; Baker, Rachel A; Pinkney, Justin N M; Kapanidis, Achillefs N; Sherratt, David J; Arciszewska, Lidia K

    2013-10-22

    Three single-molecule techniques have been used simultaneously and in tandem to track the formation in vitro of single XerCD-dif recombination complexes. We observed the arrival of the FtsK translocase at individual preformed synaptic complexes and demonstrated the conformational change that occurs during their activation. We then followed the reaction intermediate transitions as Holliday junctions formed through catalysis by XerD, isomerized, and were converted by XerC to reaction products, which then dissociated. These observations, along with the calculated intermediate lifetimes, inform the reaction mechanism, which plays a key role in chromosome unlinking in most bacteria with circular chromosomes.

  9. Acyl hydrazides and triazoles as novel inhibitors of mammalian cathepsin B and cathepsin H.

    Science.gov (United States)

    Raghav, Neera; Singh, Mamta

    2014-04-22

    In the past decade, the work on the identification of small molecular weight compounds as inhibitors of cysteine proteases has been in focus. In this direction, we here present the facile microwave assisted synthesis of some acyl hydrazides and triazoles, followed by their evaluation as protease inhibitors and inhibitory studies on cathepsin B and cathepsin H, two significant lysosomal cysteine proteases. The compounds were characterized by (1)H NMR, (13)C NMR, Mass and IR spectral data. The compounds which were found inhibitory to endogenous proteolysis in liver homogenate at pH 5.0 were further studied for determination of inhibition type and Ki values on purified cathepsin B and cathepsin H. The maximum inhibitory effect was exerted by 3-(3'-nitrophenyl)-5-(3'-nitrophenyl)-4-amino-1,2,4-triazoles (2c), 3-(4'-chlorophenyl)-5-(4'-chloro phenyl)-4-amino-1,2,4-triazoles (2h), 3-(3'-aminophenyl)-5-(3'-aminophenyl)-4-amino-1,2,4-triazoles (2i) and 4-methoxybenzohydrazide (1b). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Refolded Recombinant Human Paraoxonase 1 Variant Exhibits Prophylactic Activity Against Organophosphate Poisoning.

    Science.gov (United States)

    Bajaj, Priyanka; Tripathy, Rajan K; Aggarwal, Geetika; Datusalia, Ashok K; Sharma, Shyam S; Pande, Abhay H

    2016-09-01

    Organophosphate (OP) compounds are neurotoxic chemicals, and current treatments available for OP-poisoning are considered as unsatisfactory and inadequate. There is an urgent need for the development of more effective treatment(s) for OP-poisoning. Human paraoxonase 1 (h-PON1) is known to hydrolyze a variety of OP-compounds and is a leading candidate for the development of prophylactic and therapeutic agent against OP-poisoning in humans. Non-availability of effective system(s) for the production of recombinant h-PON1 (rh-PON1) makes it hard to produce improved variant(s) of this enzyme and analyze their in vivo efficacy in animal models. Production of recombinant h-PON1 (rh-PON1) using an Escherichia coli expression system is a key to develop variant(s) of h-PON1. Recently, we have developed a procedure to produce active rh-PON1 enzymes by using E. coli expression system. In this study, we have characterized the OP-hydrolyzing properties of refolded rh-PON1(wt) and rh-PON1(H115W;R192K) variant. Our results show that refolded rh-PON1(H115W;R192K) variant exhibit enhanced OP-hydrolyzing activity in in vitro and ex vivo assays and exhibited prophylactic activity in mouse model of OP-poisoning, suggesting that refolded rh-PON1 can be developed as a therapeutic candidate.

  11. A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors.

    Science.gov (United States)

    Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar

    2015-11-04

    With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.

  12. The crystal structure of human dipeptidyl peptidase I (cathepsin C) in complex with the inhibitor Gly-Phe-CHN2

    DEFF Research Database (Denmark)

    Mølgaard, Anne; Arnau, Jose; Lauritzen, C.

    2007-01-01

    hDDPI (human dipeptidyl peptidase I) is a lysosomal cysteine protease involved in zymogen activation of granule-associated proteases, including granzymes A and B from cytotoxic T-lymphocytes and natural killer cells, cathepsin G and neutrophil elastase, and mast cell tryptase and chymase. In the ......hDDPI (human dipeptidyl peptidase I) is a lysosomal cysteine protease involved in zymogen activation of granule-associated proteases, including granzymes A and B from cytotoxic T-lymphocytes and natural killer cells, cathepsin G and neutrophil elastase, and mast cell tryptase and chymase...

  13. A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci.

    Directory of Open Access Journals (Sweden)

    Martin A Bewley

    2011-01-01

    Full Text Available The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D(-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function.

  14. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  15. Albinism-Causing Mutations in Recombinant Human Tyrosinase Alter Intrinsic Enzymatic Activity

    Science.gov (United States)

    Dolinska, Monika B.; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T.; Brooks, Brian P.; Sergeev, Yuri V.

    2014-01-01

    Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1. PMID:24392141

  16. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2014-01-01

    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  17. Escherichia coli Fails to Efficiently Maintain the Activity of an Important Flavin Monooxygenase in Recombinant Overexpression

    Directory of Open Access Journals (Sweden)

    Sofia Milker

    2017-11-01

    Full Text Available This paper describes the measurement and analysis of in vivo activity and stability of cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMO, a model Baeyer–Villiger monooxygenase, in the recombinant host Escherichia coli. This enzyme was often described as poorly stable in vitro, and has recently been found to deactivate rapidly in the absence of its essential cofactors and antioxidants. Its stability in vivo was scarcely studied, so far. Under conditions common for the overexpression of CHMO we investigated the ability of the host to support these properties using metabolomics. Our results showed that E. coli failed to provide the intracellular levels of cofactors required to functionally stabilize the enzyme, although the biocatalyst was produced in high concentration, and was invariably detected after protein synthesis had stopped. We thus infer that biotechnological applications of CHMO with this host relied on a residual activity of approximately 5-10%. Other microorganisms might offer a more efficient solution for recombinant production of CHMO and related enzymes.

  18. Plasma levels of cathepsins L, K, and V and risks of abdominal aortic aneurysms

    DEFF Research Database (Denmark)

    Lv, Bing-Jie; Lindholt, Jes S; Wang, Jing

    2013-01-01

    Cathepsin L (CatL), cathepsin K (CatK), and cathepsin V (CatV) are potent elastases implicated in human arterial wall remodeling. Whether plasma levels of these cathepsins are altered in patients with abdominal aortic aneurysms (AAAs) remains unknown....

  19. Recombinant protein production technology

    Science.gov (United States)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  20. Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming.

    Science.gov (United States)

    Rupanagudi, Khader Valli; Kulkarni, Onkar P; Lichtnekert, Julia; Darisipudi, Murthy Narayana; Mulay, Shrikant R; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Hartmann, Guido; Anders, Hans-Joachim

    2015-02-01

    Major histocompatibility complex (MHC) class II-mediated priming of T and B lymphocytes is a central element of autoimmunity in systemic lupus erythematosus (SLE) and lupus nephritis. The cysteine protease cathepsin S degrades the invariant peptide chain during MHC II assembly with antigenic peptide in antigen-presenting cells; therefore, we hypothesised that cathepsin S inhibition would be therapeutic in SLE. We developed a highly specific small molecule, orally available, cathepsin S antagonist, RO5461111, with suitable pharmacodynamic and pharmacokinetic properties that efficiently suppressed antigen-specific T cell and B cell priming in vitro and in vivo. When given to MRL-Fas(lpr) mice with SLE and lupus nephritis, RO5461111 significantly reduced the activation of spleen dendritic cells and the subsequent expansion and activation of CD4 T cells and CD4/CD8 double-negative T cells. Cathepsin S inhibition impaired the spatial organisation of germinal centres, suppressed follicular B cell maturation to plasma cells and Ig class switch. This reversed hypergammaglobulinemia and significantly suppressed the plasma levels of numerous IgG (but not IgM) autoantibodies below baseline, including anti-dsDNA. This effect was associated with less glomerular IgG deposits, which protected kidneys from lupus nephritis. Together, cathepsin S promotes SLE by driving MHC class II-mediated T and B cell priming, germinal centre formation and B cell maturation towards plasma cells. These afferent immune pathways can be specifically reversed with the cathepsin S antagonist RO5461111, which prevents lupus nephritis progression even when given after disease onset. This novel therapeutic strategy could correct a common pathomechanism of SLE and other immune complex-related autoimmune diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Biologic activities of recombinant human-beta-defensin-4 toward cultured human cancer cells.

    Science.gov (United States)

    Gerashchenko, O L; Zhuravel, E V; Skachkova, O V; Khranovska, N N; Filonenko, V V; Pogrebnoy, P V; Soldatkina, M A

    2013-06-01

    The aim of the study was in vitro analysis of biological activity of recombinant human beta-defensin-4 (rec-hBD-4). hBD-4 cDNA was cloned into pGEX-2T vector, and recombinant plasmid was transformed into E. coli BL21(DE3) cells. To purify soluble fusion GST-hBD-4 protein, affinity chromatography was applied. Rec-hBD-4 was cleaved from the fusion protein with thrombin, and purified by reverse phase chromatography on Sep-Pack C18. Effects of rec-hBD-4 on proliferation, viability, cell cycle distribution, substrate-independent growth, and mobility of cultured human cancer cells of A431, A549, and TPC-1 lines were analyzed by direct cell counting technique, MTT assay, flow cytofluorometry, colony forming assay in semi-soft medium, and wound healing assay. Rec-hBD-4 was expressed in bacterial cells as GST-hBD-4 fusion protein, and purified by routine 3-step procedure (affine chromatography on glutathione-agarose, cleavage of fusion protein by thrombin, and reverse phase chromatography). Analysis of in vitro activity of rec-hBD-4 toward three human cancer cell lines has demonstrated that the defensin is capable to affect cell behaviour in concentration-dependent manner. In 1-100 nM concentrations rec-hBD-4 significantly stimulates cancer cell proliferation and viability, and promotes cell cycle progression through G2/M checkpoint, greatly enhances colony-forming activity and mobility of the cells. Treatment of the cells with 500 nM of rec-hBD-4 resulted in opposite effects: significant suppression of cell proliferation and viability, blockage of cell cycle in G1/S checkpoint, significant inhibition of cell migration and colony forming activity. Recombinant human beta-defensin-4 is biologically active peptide capable to cause oppositely directed effects toward biologic features of cancer cells in vitro dependent on its concentration.

  2. Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction.

    Science.gov (United States)

    Keller, Andrew N; Xin, Yue; Boer, Stephanie; Reinhardt, Jonathan; Baker, Rachel; Arciszewska, Lidia K; Lewis, Peter J; Sherratt, David J; Löwe, Jan; Grainge, Ian

    2016-10-06

    Bacterial chromosomes are most often circular DNA molecules. This can produce a topological problem; a genetic crossover from homologous recombination results in dimerization of the chromosome. A chromosome dimer is lethal unless resolved. A site-specific recombination system catalyses this dimer-resolution reaction at the chromosomal site dif. In Escherichia coli, two tyrosine-family recombinases, XerC and XerD, bind to dif and carry out two pairs of sequential strand exchange reactions. However, what makes the reaction unique among site-specific recombination reactions is that the first step, XerD-mediated strand exchange, relies on interaction with the very C-terminus of the FtsK DNA translocase. FtsK is a powerful molecular motor that functions in cell division, co-ordinating division with clearing chromosomal DNA from the site of septation and also acts to position the dif sites for recombination. This is a model system for unlinking, separating and segregating large DNA molecules. Here we describe the molecular detail of the interaction between XerD and FtsK that leads to activation of recombination as deduced from a co-crystal structure, biochemical and in vivo experiments. FtsKγ interacts with the C-terminal domain of XerD, above a cleft where XerC is thought to bind. We present a model for activation of recombination based on structural data.

  3. Evaluation of Aryoseven Safety (Recombinant Activated Factor VII) in Patients with Bleeding Disorders (An Observational Post-Marketing Surveillance Study).

    Science.gov (United States)

    Toogeh, Gholamreza; Abolghasemi, Hassan; Eshghi, Peyman; Managhchi, Mohammadreza; Shaverdi-Niasari, Mohammadreza; Karimi, Katayoon; Roostaei, Samin; Emran, Neda; Abdollahi, Alireza

    2016-01-01

    Recombinant activated factor VII induces hemostasis in patients with coagulopathy disorders. AryoSeven™ as a safe Iranian Recombinant activated factor VII has been available on our market. This study was performed to establish the safety of AryoSeven on patients with coagulopathy disorder. This single-center, descriptive, cross sectional study was carried out in Thrombus and Homeostasis Research Center ValiAsr Hospital during 2013-2014. Fifty one patients with bleeding disorders who received at least one dose of Aryoseven were enrolled. Patients' demographic data and adverse effect of drug and reaction related to Aryoseven or previous usage of Recombinant activated FVII were recorded in questionnaires. Finally data were analyzed to compare side effects of Aryoseven and other Recombinant activated FVII brands. Aryoseven was prescribed for 51 Patients. Of all participants with mean age 57.18+21.38 yr, 31 cases were male and 26 subjects had past history of recombinant activated FVII usage. Glanzman was the most frequent disorder followed by congenital FVII deficiency, hemophilia with inhibitors, factor 5 deficiency, acquired hemophilia, hemophilia A with inhibitor, and hemophilia A or B with inhibitor. The majority of bleeding episodes had occurred in joints. Three patients (5.9%) complained about adverse effects of Aryoseven vs. 11.5 % about adverse effects of other brands. However this difference was not significant, statistically. Based on monitor patients closely for any adverse events, we concluded that Aryoseven administration under careful weighing of benefit versus potential harm may comparable with other counterpart drugs.

  4. Characterization of Dictyostelium discoideum cathepsin D.

    Science.gov (United States)

    Journet, A; Chapel, A; Jehan, S; Adessi, C; Freeze, H; Klein, G; Garin, J

    1999-11-01

    Previous studies using magnetic purification of Dictyostelium discoideum endocytic vesicles led us to the identification of some major vesicle proteins. Using the same purification procedure, we have now focused our interest on a 44 kDa soluble vesicle protein. Microsequencing of internal peptides and subsequent cloning of the corresponding cDNA identified this protein as the Dictyostelium homolog of mammalian cathepsins D. The only glycosylation detected on Dictyostelium cathepsin D (CatD) is common antigen 1, a cluster of mannose 6-sulfate residues on N-linked oligosaccharide chains. CatD intracellular trafficking has been studied, showing the presence of the protein throughout the entire endocytic pathway. During the differentiation process, the catD gene presents a developmental regulation, which is also observed at the protein level. catD gene disruption does not alter significantly the cell behaviour, either in the vegetative form or the differentiation stage. However, modifications in the SDS-PAGE profiles of proteins bearing common antigen 1 were detected, when comparing parental and catD(-) cells. These modifications point to a possible role of CatD in the maturation of a few Dictyostelium lysosomal proteins.

  5. Correlation between the glycan variations and defibrinogenating activities of acutobin and its recombinant glycoforms.

    Directory of Open Access Journals (Sweden)

    Ying-Ming Wang

    Full Text Available Acutobin isolated from Deinagkistrodon acutus venom has been used to prevent or treat stroke in patients. This defibrinogenating serine protease is a 39 kDa glycoprotein containing terminal disialyl-capped N-glycans. After sialidase treatment, the enzyme showed similar catalytic activities toward chromogenic substrate, and cleaved the Aα chain of fibrinogen as efficiently as the native acutobin did. However, the level of fibrinogen degradation products in mice after i.p.-injection of desialylated-acutobin was significantly lower than the level after acutobin injection, suggesting that the disialyl moieties may improve or prolong the half-life of acutobin. Two recombinant enzymes with identical protein structures and similar amidolytic activities to those of native acutobin were expressed from HEK293T and SW1353 cells and designated as HKATB and SWATB, respectively. Mass spectrometric profiling showed that their glycans differed from those of acutobin. In contrast to acutobin, HKATB cleaved not only the Aα chain but also the Bβ and γ chains of human fibrinogens, while SWATB showed a reduced α-fibrinogenase activity. Non-denaturing deglycosylation of these proteases by peptide N-glycosidase F significantly reduced their fibrinogenolytic activities and thermal stabilities. The in vivo defibrinogenating effect of HKATB was inferior to that of acutobin in mice. Taken together, our results suggest that the conjugated glycans of acutobin are involved in its interaction with fibrinogen, and that the selection of cells optimally expressing efficient glycoforms and further glycosylation engineering are desirable before a recombinant product can replace the native enzyme for clinical use.

  6. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A

    2012-09-01

    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  7. The effect of liposome encapsulation on the pharmacokinetics of recombinant secretory leukocyte protease inhibitor (rSLPI) therapy after local delivery to a guinea pig asthma model.

    LENUS (Irish Health Repository)

    Gibbons, Aileen

    2011-09-01

    Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo.

  8. Rapid Assessment of Antibacterial Activity against Mycobacterium ulcerans by Using Recombinant Luminescent Strains▿

    Science.gov (United States)

    Zhang, Tianyu; Bishai, William R.; Grosset, Jacques H.; Nuermberger, Eric L.

    2010-01-01

    Mycobacterium ulcerans causes Buruli ulcer, an emerging infectious disease for which antimicrobial therapy has only recently proven to be beneficial. The discovery and development of new drugs against M. ulcerans are severely impeded by its very slow growth. Recombinant bioluminescent strains have proven useful in drug development for other mycobacterial infections, but the ability of such strains to discriminate bacteriostatic from bactericidal activity has not been well demonstrated. We engineered recombinant M. ulcerans strains to express luxAB from Vibrio harveyi. In drug susceptibility tests employing a wide range of antimicrobial agents and concentrations, the relative light unit (RLU) count measured in real time was a reliable surrogate marker for CFU counts available 3 months later, indicating utility for the rapid determination of drug susceptibility and discrimination of bacteriostatic and bactericidal effects. A second important finding of this study is that the addition of subinhibitory concentrations of the ATP-binding cassette transporter inhibitor reserpine increases the susceptibility of M. ulcerans to tetracycline and erythromycin, indicating that drug efflux may explain at least part of the intrinsic resistance of M. ulcerans to these agents. PMID:20421401

  9. Novel purification method and antibiotic activity of recombinant Momordica charantia MAP30.

    Science.gov (United States)

    Chang, Ching-Dong; Lin, Ping-Yuan; Chen, Yo-Chia; Huang, Han-Hsiang; Shih, Wen-Ling

    2017-05-01

    Ribosome-inactivating proteins (RIPs) are a group of enzymes originally isolated from plants that possess the ability to damage ribosomes in an irreversible manner, leading to inhibition of protein synthesis in eukaryotic cells. In this study, we aimed to purify recombinant RIPs, investigate their function in the treatment of bacterial infection, and determine their toxicity in mice. We employed a pMAL protein fusion and purification system using E. coli transformed with a plasmid containing MBP-tagged MAP30 cDNA. MBP-tagged MAP30 was purified using a modified novel protocol to effectively produce highly active MAP30 of high purity. In an acute toxicity study in mice, no mortality occurred at doses lower than 1.25 mg/kg. MAP30 at both 0.42 and 0.14 mg/kg induced anti-MAP30 IgG, which reached a maximum titer at week 3. In conclusion, recombinant MAP30 prepared using our purification method possesses bioactivity, and has a synergistic bacteria-killing effect that can significantly reduce the required dosages of chloramphenicol and erythromycin. Therefore, when MAP30 is used in combination with chloramphenicol or erythromycin, it may of benefit in terms of reducing the side effects of the antibiotics, as lower concentrations of antibiotics are required.

  10. Role of Cathepsin S in Periodontal Inflammation and Infection

    Directory of Open Access Journals (Sweden)

    S. Memmert

    2017-01-01

    Full Text Available Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.

  11. Activation and Stabilization of Olive Recombinant 13-Hydroperoxide Lyase Using Selected Additives.

    Science.gov (United States)

    Jacopini, Sabrina; Vincenti, Sophie; Mariani, Magali; Brunini-Bronzini de Caraffa, Virginie; Gambotti, Claude; Desjobert, Jean-Marie; Muselli, Alain; Costa, Jean; Tomi, Félix; Berti, Liliane; Maury, Jacques

    2017-07-01

    The stabilization of olive recombinant hydroperoxide lyases (rHPLs) was investigated using selected chemical additives. Two rHPLs were studied: HPL full-length and HPL with its chloroplast transit peptide deleted (matured HPL). Both olive rHPLs are relatively stable at 4 °C, and enzyme activity can be preserved (about 100% of the rHPL activities are maintained) during 5 weeks of storage at -20 or at -80 °C in the presence of glycerol (10%, v/v). Among the additives used in this study, glycine (2.5% w/v), NaCl (0.5 M), and Na 2 SO 4 (0.25 M) provided the highest activation of HPL full-length activity, while the best matured HPL activity was obtained with Na 2 SO 4 (0.25 M) and NaCl (1 M). Although the inactivation rate constants (k) showed that these additives inactivate both rHPLs, their use is still relevant as they strongly increase HPL activity. Results of C6-aldehyde production assays also showed that glycine, NaCl, and Na 2 SO 4 are appropriate additives and that NaCl appears to be the best additive, at least for hexanal production.

  12. Inhibition of activated protein C by recombinant alpha 1-antitrypsin variants with substitution of arginine or leucine for methionine358

    NARCIS (Netherlands)

    Heeb, M.J.; Bischoff, Rainer; Courtney, M.; Griffin, J.H.

    1990-01-01

    alpha 1-Antitrypsin (alpha 1-AT) was recently identified as a major physiologic plasma inhibitor of activated protein C. The reaction with activated protein C of recombinant alpha 1-AT containing amino acid substitutions at the reactive center was studied. The substitution of Arg358 for Met, as

  13. Cathepsin D as a Promising Target for the Discovery of Novel Anticancer Agents.

    Science.gov (United States)

    Dubey, Vijaya; Luqman, Suaib

    2017-01-01

    Cathepsin D (CATD), one of the aspartyl endoproteinase involved in different physiological processes and signaling pathways, is accountable for metabolic breakdown of intracellular proteins, the activation of growth factors, hormones, and precursors of enzyme, the processing of antigens, enzyme inhibitors and activators and the regulation of apoptosis. Implication as a Target: Studies have confirmed the role and significance of CATD in an assortment of pathological conditions like Atherosclerosis, Alzheimer, Cancer, Cardiovascular, Huntington and Parkinson diseases. Amalgamated and veiled as inactive proCATD, it undergoes diverse cleavages to attain a desired conformation in an acidic milieu to act as a functionally active protein. In search of new candidate target (s) for cancer, CATD has attracted a wide group of investigators across the globe and is being recognized as a well-defined marker in cancer especially for breast and hormone-dependent cancer. In this review, PubMed, Sci-finder and other search engines were used to gather information on Cathepsin D. The necessary and relevant information was thoroughly studied to make the article appropriate to highlight all the aspects related to Cathepsin D and its role in cancer. Findings & Conclusion: The present review illustrates structural, functional and regulatory aspects of CATD in cancer, its significant role in angiogenesis, metastasis, invasion, apoptosis, cell proliferation, and therapeutic potential besides the benefits of targeting CATD by the natural products in cancer chemoprevention. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs.

    Directory of Open Access Journals (Sweden)

    Zita Nagy

    2016-02-01

    Full Text Available DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR, a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1 is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ and Homologous Recombination (HR repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose Polymerases (PARPs TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation.

  15. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Mayer, Stephan A; Brun, Nikolai C; Begtrup, Kamilla

    2008-01-01

    BACKGROUND: Intracerebral hemorrhage is the least treatable form of stroke. We performed this phase 3 trial to confirm a previous study in which recombinant activated factor VII (rFVIIa) reduced growth of the hematoma and improved survival and functional outcomes. METHODS: We randomly assigned 841...... patients with intracerebral hemorrhage to receive placebo (268 patients), 20 microg of rFVIIa per kilogram of body weight (276 patients), or 80 microg of rFVIIa per kilogram (297 patients) within 4 hours after the onset of stroke. The primary end point was poor outcome, defined as severe disability...... or death according to the modified Rankin scale 90 days after the stroke. RESULTS: Treatment with 80 microg of rFVIIa per kilogram resulted in a significant reduction in growth in volume of the hemorrhage. The mean estimated increase in volume of the intracerebral hemorrhage at 24 hours was 26...

  16. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    International Nuclear Information System (INIS)

    Kojima, Takuto; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi 2

  17. Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus).

    Science.gov (United States)

    White, P C; Cordeiro, M C; Arnold, D; Brodelius, P E; Kay, J

    1999-06-11

    The cDNA encoding the precursor of an aspartic proteinase from the flowers of the cardoon, Cynara cardunculus, was expressed in Pichia pastoris, and the recombinant, mature cyprosin that accumulated in the culture medium was purified and characterized. The resultant mixture of microheterogeneous forms was shown to consist of glycosylated heavy chains (34 or 32 kDa) plus associated light chains with molecular weights in the region of 14,000-18,000, resulting from excision of most, but not all, of the 104 residues contributed by the unique region known as the plant specific insert. SDS-polyacrylamide gel electrophoresis under non-reducing conditions indicated that disulfide bonding held the heavy and light chains together in the heterodimeric enzyme forms. In contrast, when a construct was expressed in which the nucleotides encoding the 104 residues of the plant specific insert were deleted, the inactive, unprocessed precursor form (procyprosin) accumulated, indicating that the plant-specific insert has a role in ensuring that the nascent polypeptide is folded properly and rendered capable of being activated to generate mature, active proteinase. Kinetic parameters were derived for the hydrolysis of a synthetic peptide substrate by wild-type, recombinant cyprosin at a variety of pH and temperature values and the subsite requirements of the enzyme were mapped using a systematic series of synthetic inhibitors. The significance is discussed of the susceptibility of cyprosin to inhibitors of human immunodeficiency virus proteinase and particularly of renin, some of which were found to have subnanomolar potencies against the plant enzyme.

  18. Dendritic cell activation and maturation induced by recombinant calreticulin fragment 39-272.

    Science.gov (United States)

    Li, Yue; Zeng, Xiaoli; He, Lijuan; Yuan, Hui

    2015-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells for initiating immune responses. DC maturation can be induced by exposing of immature DC to pathogen products or pro-inflammatory factor, which dramatically enhances the ability of DC to activate Ag-specific T cells. In this study, a recombinant calreticulin fragment 39-272 (rCRT/39-272) covering the lectin-like N domain and partial P domain of murine CRT has been expressed and purified in Escherichia coli. Functional analysis studies revealed that rCRT/39-272 has potent immunostimulatory activities in both activating human monocytes and B cells to secrete cytokines. rCRT/39-272 can drive the activation of bone marrow derived DC in TLR4/CD14 dependent way, as indicated by secretion of cytokines IL-12/IL-23 (p40) and IL-1β. Exposure of DC to rCRT/39-272 induces P-Akt, suggesting that rCRT/39-272 induces maturation of DC through PI3K/Akt signaling pathway. The results suggest that soluble rCRT/39-272 is a potent stimulatory agent to DC maturation in TLR4/CD14 and PI3K/Akt dependent pathway. It may play important roles in initiating cellular immunity in vivo and the T cell response in vitro. Thus it could be used for study of DC-based tumor vaccines.

  19. The BCL11A transcription factor directly activates RAG gene expression and V(D)J recombination.

    Science.gov (United States)

    Lee, Baeck-seung; Dekker, Joseph D; Lee, Bum-kyu; Iyer, Vishwanath R; Sleckman, Barry P; Shaffer, Arthur L; Ippolito, Gregory C; Tucker, Philip W

    2013-05-01

    Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11a(lox/lox) deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.

  20. Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol.

    Directory of Open Access Journals (Sweden)

    Elizaveta O Boldinova

    Full Text Available Human PrimPol is a DNA primase/polymerase involved in DNA damage tolerance and prevents nuclear genome instability. PrimPol is also localized to the mitochondria, but its precise function in mitochondrial DNA maintenance has remained elusive. PrimPol works both as a translesion (TLS polymerase and as the primase that restarts DNA replication after a lesion. However, the observed biochemical activities of PrimPol vary considerably between studies as a result of different reaction conditions used. To reveal the effects of reaction composition on PrimPol DNA polymerase activity, we tested the polymerase activity in the presence of various buffer agents, salt concentrations, pH values and metal cofactors. Additionally, the enzyme stability was analyzed under various conditions. We demonstrate that the reaction buffer with pH 6-6.5, low salt concentrations and 3 mM Mg2+ or 0.3-3 mM Mn2+ cofactor ions supports the highest DNA polymerase activity of human PrimPol in vitro. The DNA polymerase activity of PrimPol was found to be stable after multiple freeze-thaw cycles and prolonged protein incubation on ice. However, rapid heat-inactivation of the enzyme was observed at 37ºC. We also for the first time describe the purification of human PrimPol from a human cell line and compare the benefits of this approach to the expression in Escherichia coli and in Saccharomyces cerevisiae cells. Our results show that active PrimPol can be purified from E. coli and human suspension cell line in high quantities and that the activity of the purified enzyme is similar in both expression systems. Conversely, the yield of full-length protein expressed in S. cerevisiae was considerably lower and this system is therefore not recommended for expression of full-length recombinant human PrimPol.

  1. Human recombinant anti-thyroperoxidase autoantibodies: in vitro cytotoxic activity on papillary thyroid cancer expressing TPO.

    Science.gov (United States)

    Rebuffat, S A; Morin, M; Nguyen, B; Castex, F; Robert, B; Péraldi-Roux, S

    2010-03-02

    Thyroid cancers are difficult to treat due to their limited responsiveness to chemo- and radiotherapy. There is thus a great interest in and a need for alternative therapeutic approaches. We studied the cytotoxic activity of anti-thyroperoxidase autoantibodies (anti-TPO aAbs, expressed in baculovirus/insect cell (B4) and CHO cells (B4') or purified from patients' sera) against a papillary thyroid cancer (NPA) cell line. Anti-TPO aAbs from patients' sera led to a partial destruction of NPA cell line by complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) and exhibited an anti-proliferative activity. Comparison of the cytotoxic activity of anti-TPO aAbs shows that B4' induced an anti-proliferative effect and a better ADCC than B4, but a lower one than anti-TPO aAbs from patients' sera. Antibody-dependent cell-mediated cytotoxicity was increased when human peripheral blood mononuclear cells were used as effector cells, suggesting that FcgammaRs, CD64, CD32 and CD16 are involved. Indeed, anti-TPO aAbs from patients' sera, but not B4 and B4', exhibited CDC activity. These data indicate that anti-TPO aAbs display moderate ADCC and anti-proliferative activities on NPA cells; IgG glycosylation appears to be important for cytotoxic activity and ADCC efficiency depends on FcgammaR-bearing cells. Finally, recombinant human anti-TPO aAbs cannot yet be considered as an optimal tool for the development of a novel therapeutic approach for thyroid cancer.

  2. Activation of human T cells by a tumor vaccine infected with recombinant Newcastle disease virus producing IL-2

    NARCIS (Netherlands)

    Janke, M.; Peeters, B.; Zhao, H.; Leeuw, O.; Moormann, R.J.M.; Arnold, A.; Ziouta, Y.; Fournier, P.; Schirrmacher, V.

    2008-01-01

    A new recombinant (rec) Newcastle disease virus (NDV) with incorporated human interleukin 2 (IL-2) as foreign therapeutic gene [rec(IL-2)] will be described. The foreign gene in rec(IL-2) did not affect the main features of NDV replication nor its tumor selectivity. Biologically active IL-2 was

  3. Synergistic apoptotic response between valproic acid and fludarabine in chronic lymphocytic leukaemia (CLL) cells involves the lysosomal protease cathepsin B

    International Nuclear Information System (INIS)

    Yoon, J-Y; Szwajcer, D; Ishdorj, G; Benjaminson, P; Xiao, W; Kumar, R; Johnston, J B; Gibson, S B

    2013-01-01

    Fludarabine, a nucleoside analogue, is commonly used in combination with other agents for the treatment of chronic lymphocytic leukaemia (CLL). In previous studies, valproic acid (VPA), an inhibitor of histone deacetylases, combined with fludarabine to synergistically increase apoptotic cell death in CLL cells. In the present study, we found that the combination of fludarabine and VPA decreases the level of the anti-apoptotic proteins Mcl-1 and XIAP in primary CLL cells. Treatment with fludarabine alone, or in combination with VPA, led to the loss of lysosome integrity, and chemical inhibition of the lysosomal protease cathepsin B, using CA074-Me, was sufficient to reduce apoptosis. VPA treatment increased cathepsin B levels and activities in primary CLL cells, thereby priming CLL cells for lysosome-mediated cell death. Six previously treated patients with relapsed CLL were treated with VPA, followed by VPA/fludarabine combination. The combined therapy resulted in reduced lymphocyte count in five out of six and reduced lymph node sizes in four out of six patients. In vivo VPA treatment increased histone-3 acetylation and cathepsin B expression levels. Thus, the synergistic apoptotic response with VPA and fludarabine in CLL is mediated by cathepsin B activation leading to a decrease in the anti-apoptotic proteins

  4. Tumor Necrosis Factor-α Induced Apoptosis in U937 Cells Promotes Cathepsin D-Independent Stefin B Degradation.

    Science.gov (United States)

    Bidovec, Katja; Božič, Janja; Dolenc, Iztok; Turk, Boris; Turk, Vito; Stoka, Veronika

    2017-12-01

    Lysosomal cathepsins were previously found to be involved in tumor necrosis factor-α (TNFα)-induced apoptosis. However, there are opposing views regarding their role as either initiators or amplifiers of the signaling cascade as well as the order of molecular events during this process. In this study, we investigated the role of cathepsin D (catD) in TNFα/cycloheximide-induced apoptosis in U937 human monocytic cells. TNFα-induced apoptosis proceeds through caspase-8 activation, processing of the pro-apoptotic molecule Bid, mitochondrial membrane permeabilization, and caspase-3 activation. The translocation of lysosomal catD into the cytosol was a late event, suggesting that lysosomal membrane permeabilization and the release of cathepsins are not required for the induction of apoptosis, but rather amplifies the process through the generation of reactive oxygen species. For the first time, we show that apoptosis is accompanied by degradation of the cysteine cathepsin inhibitor stefin B (StfB). CatD did not exhibit a crucial role in this step. However, this degradation was partially prevented through pre-incubation with the antioxidant N-acetyl cysteine, although it did not prevent apoptosis and its progression. These results suggest that the degradation of StfB, as a response to TNFα, could induce a cell death amplification effect as a result of progressive damage to lysosomes during TNFα treatment. J. Cell. Biochem. 118: 4813-4820, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Influence of natural and recombinant interferons on development of antiviral condition and activity of natural killers

    International Nuclear Information System (INIS)

    Kuznetsov, V.P.; Avdeev, G.I.; Vyadro, M.M.; Leikin, Yu.D.; Frolova, I.S.

    1986-01-01

    For the purpose of a preliminary estimate of the therapeutic potential of domestic recombinant alpha 2 -component of human leukocytic interferon (rl) in vitro tests, the authors studied its ability to induce development of antiviral condition in diploid culture of human embryo fibroblasts and to activate the cytolytic effect of natural killers in relation to tumor cells, of the K-562 leukemia line and cells of lung adenocarcinoma. The authors used a medicinal form of rL which was derived by expression of a reconstructed gene in Escherichia coli cells. Part of the tests were conducted with an analogous preparation synthesized using another producer, Pseudomonas sp). The biological effect of both preparations was the same. For comparison, a natural preparation was used in all tests: human leukocytic interferon for injection, II(le). The authors studied activity of natural killers in a fraction of mononuclears isolated from blood of essentially healthy donors and from cancer patients. Cells were incubated for 2 h with various concentrations of interferons, then combined in a ratio of 25-50:1 with target cells labeled with 51 Cr. Cytotoxic reaction was conducted for 4 (4-CTR) or 18 h (18-CTR) at 37 0 C. Natural killers could thus be divided into two subpopulations: killer (4-CTR) and cytotoxic (18-CTR) cells. In preliminary tests, both preparations possessed the ability to active natural killers. The effective concentration for rL was within the limits of 1000-2000 IU/ml, and 50-200 Iu/ml for Le. The data on activation of natural killers in 16 oncological patients (primarily with lung cancer), the authors established that both rL and Le induced activation of natural killers in the overwhelming majority of cases in relation to K-562 target cells and adenocarcinomas of the lung

  6. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity.

    Science.gov (United States)

    Ito, Kohji; Kashiyama, Taku; Shimada, Kiyo; Yamaguchi, Akira; Awata, Jun ya; Hachikubo, You; Manstein, Dietmar J; Yamamoto, Keiichi

    2003-12-26

    The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin filaments in an in vitro motility assay. A CCM motor domain without light chain binding site moved actin filaments at a velocity of 8.8 microm/s at 30 degrees C and a CCM motor domain with an artificial lever arm consisting of two alpha-actinin repeats moved actin filaments at 16.2 microm/s. Both constructs displayed high actin-activated ATPase activities ( approximately 500 Pi/s/head), which is indicative of a very fast hydrolysis step. Our results provide an excellent system to dissect the specific structural and functional features that distinguish the myosin responsible for fast cytoplasmic streaming.

  7. Expression, Purification and Bioactivities Analysis of Recombinant Active Peptide from Shark Liver

    Directory of Open Access Journals (Sweden)

    Boping Ye

    2009-06-01

    Full Text Available The Active Peptide from Shark Liver (APSL was expressed in E. coli BL21 cells. The cDNA encoding APSL protein was obtained from shark regenerated hepatic tissue by RT-PCR, then it was cloned in the pET-28a expression vector. The expressed fusion protein was purified by Ni-IDA affinity chromatography. SDS-PAGE and HPLC analysis showed the purity of the purified fusion protein was more than 98%. The recombinant APSL (rAPSL was tested for its biological activity both in vitro, by its ability to improve the proliferation of SMMC7721 cells, and in vivo, by its significant protective effects against acute hepatic injury induced by CCl4 and AAP (acetaminophen in mice. In addition, the rAPSL could decrease the blood glucose concentration of mice with diabetes mellitus induced by alloxan. Paraffin sections of mouse pancreas tissues showed that rAPSL (3 mg/kg could effectively protect mouse islets from lesions induced by alloxan, which indicated its potential application in theoretical research and industry.

  8. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation.

    Science.gov (United States)

    Saunders, Arpiar; Sabatini, Bernardo L

    2015-07-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre(+) and Cre(-) neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre(+) neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. Copyright © 2015 John Wiley & Sons, Inc.

  9. Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1).

    Science.gov (United States)

    Yang, A H; Yeh, K W

    2005-06-01

    A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5'-/3'-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST-CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 microg recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150-200 microg/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium.

  10. High-level expression of a recombinant active microbial transglutaminase in Escherichia coli.

    Science.gov (United States)

    Salis, Barbara; Spinetti, Gaia; Scaramuzza, Silvia; Bossi, Michele; Saccani Jotti, Gloria; Tonon, Giancarlo; Crobu, Davide; Schrepfer, Rodolfo

    2015-09-15

    Bacterial transglutaminases are increasingly required as industrial reagents for in vitro modification of proteins in different fields such as in food processing as well as for enzymatic site-specific covalent conjugation of therapeutic proteins to polyethylene glycol to get derivatives with improved clinical performances. In this work we studied the production in Escherichia coli of a recombinant transglutaminase from Streptomyces mobaraensis (microbial transglutaminase or MTGase) as enzymatically active chimeric forms using different expression systems under the control of both lac promoter or thermoinducible phage lambda promoter. Thermoinducible and constitutive expression vectors were constructed expressing Met-MTGase with chimeric LacZ1-8PNP1-20 or LacZ1-8 fusion protein under different promoters. After transformed in competent Escherichia coli K12 strains were fermented in batch and fed-bach mode in different mediums in order to select the best conditions of expression. The two most performing fusion protein systems namely short thermoinducible LacZ1-8Met-MTGase from NP668/1 and long constitutive LacZ1-8PNP1-20Met-MTGase from NP650/1 has been chosen to compare both efficiency of expression and biochemical qualities of the product. Proteins were extracted, purified to homogeneity and verified as a single peak obtained in RP-HPLC. The LacZ1-8PNP1-20Met-MTGase fusion protein purified from NP650/1 exhibited an activity of 15 U/mg compared to 24 U/mg for the shorter fusion protein purified from NP668/1 cell strain. Combining the experimental data on expression levels and specific activities of purified MTGase fusion proteins, the chimeric LacZ1-8Met-MTGase, which displays an enzymatic activity comparable to the wild-type enzyme, was selected as a candidate for producing microbial transglutaminase for industrial applications.

  11. Identification of dipeptidyl nitriles as potent and selective inhibitors of cathepsin B through structure-based drug design.

    Science.gov (United States)

    Greenspan, P D; Clark, K L; Tommasi, R A; Cowen, S D; McQuire, L W; Farley, D L; van Duzer, J H; Goldberg, R L; Zhou, H; Du, Z; Fitt, J J; Coppa, D E; Fang, Z; Macchia, W; Zhu, L; Capparelli, M P; Goldstein, R; Wigg, A M; Doughty, J R; Bohacek, R S; Knap, A K

    2001-12-20

    Cathepsin B is a member of the papain superfamily of cysteine proteases and has been implicated in the pathology of numerous diseases, including arthritis and cancer. As part of an effort to identify potent, reversible inhibitors of this protease, we examined a series of dipeptidyl nitriles, starting with the previously reported Cbz-Phe-NH-CH(2)CN (19, IC(50) = 62 microM). High-resolution X-ray crystallographic data and molecular modeling were used to optimize the P(1), P(2), and P(3) substituents of this template. Cathepsin B is unique in its class in that it contains a carboxylate recognition site in the S(2)' pocket of the active site. Inhibitor potency and selectivity were enhanced by tethering a carboxylate functionality from the carbon alpha to the nitrile to interact with this region of the enzyme. This resulted in the identification of compound 10, a 7 nM inhibitor of cathepsin B, with excellent selectivity over other cysteine cathepsins.

  12. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Tripti Tamhane

    2015-12-01

    Full Text Available The endo-lysosomal cysteine cathepsin L has recently been shown to have moonlighting activities in that its unexpected nuclear localization in colorectal carcinoma cells is involved in cell cycle progression (Tamhane et al., 2015 [1]. Here, we show data on the construction and sequence of a plasmid coding for human cathepsin L tagged with an enhanced green fluorescent protein (phCL-EGFP in which the fluorescent protein is covalently attached to the C-terminus of the protease. The plasmid was used for transfection of HCT116 colorectal carcinoma cells, while data from non-transfected and pEGFP-N1-transfected cells is also shown. Immunoblotting data of lysates from non-transfected controls and HCT116 cells transfected with pEGFP-N1 and phCL-EGFP, showed stable expression of cathepsin L-enhanced green fluorescent protein chimeras, while endogenous cathepsin L protein amounts exceed those of hCL-EGFP chimeras. An effect of phCL-EGFP expression on proliferation and metabolic states of HCT116 cells at 24 h post-transfection was observed.

  13. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Directory of Open Access Journals (Sweden)

    Arpiar eSaunders

    2012-07-01

    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  14. Factors predicting intracerebral hemorrhage of patients treated with intravenous recombinant tissue plasminogen activator

    International Nuclear Information System (INIS)

    Kawamura, Yoichiro; Torihashi, Kouichi; Sadamasa, Nobutake; Narumi, Osamu; Chin, Masaki; Yamagata, Sen; Yoshida, Kazumichi

    2010-01-01

    The use of recombinant tissue plasminogen activator (rt-PA) was approved in Japan in October 2005, and has had a marked effect on the treatment of patients presenting with acute ischemic stroke. Since the administration of rt-PA might cause intracerebral hemorrhage (ICH) and a poor prognosis, it is necessary to identify predictors of ICH after treatment with rt-PA. In this article, we examined 58 consecutive patients with acute ischemic stroke treated with intravenous rt-PA within 3 hours of symptom onset for 45 months, March 2006 to November 2009. In principle, we evaluated patients before and one day after rt-PA with MRI. We made a retrospective comparison of 21 patients with hemorrhagic change on CT and MRI T2* within 36 hours and 37 patients without hemorrhagic change. The rate of ICH with or without symptoms was increased with a higher National Institutes of Health Stroke Scale (NIHSS) and infarction range, defined by diffusion weighted imaging (DWI) Alberta Stroke Programme Early CT Score (ASPECTS). Major artery occlusion and reperfusion, including partial recanalization in MR angiography (MRA), were taken as factors in the hemorrhage group. In conclusion, DWI ASPECTS and NIHSS were useful predictors of ICH after rt-PA administration. (author)

  15. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  16. Activities of Fluoroquinolones against Streptococcus pneumoniae Type II Topoisomerases Purified as Recombinant Proteins

    Science.gov (United States)

    Morrissey, Ian; George, John

    1999-01-01

    Streptococcus pneumoniae topoisomerase IV and DNA gyrase have been purified from a fluoroquinolone-susceptible Streptococcus pneumoniae strain, from first-step mutants showing low-level resistance to ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin, and from two clinical isolates showing intermediate- and high-level fluoroquinolone resistance by a gene cloning method that produces recombinant proteins from Escherichia coli. The concentrations of ciprofloxacin, sparfloxacin, levofloxacin, or ofloxacin required to inhibit wild-type topoisomerase IV were 8 to 16 times lower than those required to inhibit wild-type DNA gyrase. Furthermore, low-level resistance to these fluoroquinolones was entirely due to the reduced inhibitory activity of fluoroquinolones against topoisomerase IV. For all the laboratory strains, the 50% inhibitory concentration for topoisomerase IV directly correlated with the MIC. We therefore propose that with S. pneumoniae, ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin target topoisomerase IV in preference to DNA gyrase. Sitafloxacin, on the other hand, was found to be equipotent against either enzyme. This characteristic is unique for a fluoroquinolone. A reduction in the sensitivities of both topoisomerase IV and DNA gyrase are required, however, to achieve intermediate- or high-level fluoroquinolone resistance in S. pneumoniae. PMID:10543732

  17. 76 FR 3150 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Science.gov (United States)

    2011-01-19

    ... repeat (LTR), in order to address the small risk of recombination with endogenous retroviruses which... valuable resources (time and money) for their IBC, Institutional Animal Care and Use Committee, and...

  18. Molecular cloning and functional characterization of cathepsin B from the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Chen, Huahui; Lv, Miao; Lv, Zhimeng; Li, Chenghua; Xu, Wei; Zhang, Weiwei; Zhao, Xuelin; Duan, Xuemei; Jin, Chunhua

    2017-01-01

    Cathepsin B (CTSB), a member of lysosomal cysteine protease, is involved in multiple levels of physiological and biological processes, and also plays crucial roles in host immune defense against pathogen infection in vertebrates. However, the function of CTSB within the innate immune system of invertebrates, particularly in marine echinoderms, has been poorly documented. In this study, the immune function of CTSB in Apostichopus japonicus (designated as AjCTSB), a commercially important and disease vulnerable aquaculture specie, was investigated by integrated molecular and protein approaches. A 2153 bp cDNA representing the full-length of AjCTSB was cloned via overlapping ESTs and RACE fragments. AjCTSB contained an open reading frame of 999 bp encoding a secreted protein of 332 amino acid residues with a predicted molecular mass of 36.8 kDa. The deduced amino acid of AjCTSB shared a typical activity center containing three conserved amino acid residues (Cys 108 , His 277 and Asn 297 ). Phylogenetic tree analysis also supported that AjCTSB was a new member of CTSB family with clustering firstly with invertebrate CTSBs. Quantitative real time PCR analysis revealed that AjCTSB was ubiquitously expressed in all examined tissues with the highest levels in intestine. The Vibrio splendidus challenged sea cucumber and LPS-exposed coelomocytes could both significantly boost the expression of AjCTSB. Moreover, the purified recombinant AjCTSB exhibited dose-dependent CTSB activities at the concentration ranged from 0 to 0.24 μg μL -1 . Further functional analysis indicated that coelomocytes apoptosis was significantly inhibited by 0.16-fold in vivo and the apoptosis execution Ajcaspase 3 was extremely reduced in Apostichopus japonicus coelomocytes treated with specific AjCTSB siRNA. Collectively, all these results suggested that AjCTSB was an important immune factor and might be served as apoptosis enhancers in pathogen challenged sea cucumber. Copyright © 2016

  19. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    NARCIS (Netherlands)

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  20. Expression and characterization of recombinant single-chain salmon class I MHC fused with beta2-microglobulin with biological activity

    DEFF Research Database (Denmark)

    Zhao, Heng; Stet, René J M; Skjødt, Karsten

    2008-01-01

    Heterodimeric class I major histocompatibility complex (MHC) molecules consist of a putative 45-kDa heavy chain and a 12-kDa beta2-microglobulin (beta2m) light chain. The knowledge about MHC genes in Atlantic salmon accumulated during the last decade has allowed us to generate soluble and stable ...... MHC class I molecules with biological activity. We report here the use of a bacterial expression system to produce the recombinant single-chain MHC molecules based on a specific allele Sasa-UBA*0301. This particular allele was selected because previous work has shown its association...... antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently......, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC...

  1. Expression and Localization of Cathepsins B, D, and G in Dupuytren’s Disease

    Directory of Open Access Journals (Sweden)

    Kirin Tan, MB ChB

    2018-02-01

    Conclusions:. Cathepsins B, D, and G were expressed in the DD tissues, with cathepsins B and D localized to the primitive population in the endothelium of the microvessels, whereas cathepsin G was localized to phenotypic mast cells, suggesting the presence of bypass loops for the RAS.

  2. Potency of full-length MGF to induce maximal activation of the IGF-I R Is similar to recombinant human IGF-I at high equimolar concentrations

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); L.J. Hofland (Leo); C.J. Strasburger; E.S.R.D. Van Dungen (Elisabeth S.R. Den); M. Thevis (Mario)

    2016-01-01

    textabstractAims To compare full-length mechano growth factor (full-length MGF) with human recombinant insulin-like growth factor-I (IGF-I) and human recombinant insulin (HI) in their ability to activate the human IGF-I receptor (IGF-IR), the human insulin receptor (IR-A) and the human insulin

  3. Intravenous recombinant tissue plasminogen activator for acute ischemic stroke: a feasibility and safety study

    Directory of Open Access Journals (Sweden)

    Sadeghi-Hokmabadi E

    2016-10-01

    Full Text Available Elyar Sadeghi-Hokmabadi, Mehdi Farhoudi, Aliakbar Taheraghdam, Mazyar Hashemilar, Daryous Savadi-Osguei, Reza Rikhtegar, Kaveh Mehrvar, Ehsan Sharifipour, Parisa Youhanaee, Reshad Mirnour Neurosciences Research Center, Neurology Department, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran Background: In developing countries, intravenous thrombolysis (IVT is available at a limited number of centers. This study aimed to assess the feasibility and safety of IVT at Tabriz Imam Reza Hospital. Methods: In a prospective study, over a 55-month period, any patient at the hospital for whom stroke code had been activated was enrolled in the study. Data on demographic characteristics, stroke risk factors, admission blood pressure, blood tests, findings of brain computed tomography (CT scans, time of symtom onset, time of arrival to the emergency department, time of stroke code activation, time of CT scan examination, and the time of recombinant tissue plasminogen activator administration were recorded. National Institutes of Health Stroke Scale assessments were performed before IVT bolus, at 36 hours, at either 7 days or discharge (which ever one was earlier, and at 3-month follow-up. Brain CT scans were done for all patients before and 24 hours after the treatment. Results: Stroke code was activated for 407 patients and IVT was done in 168 patients. The rate of functional independence (modified Rankin Scale [mRS] 0–1 at 3 months was 39.2% (62/158. The mortality rate at day 7 was 6% (10/168. Hemorrhagic transformation was noted in 16 patients (9.5%. Symptomatic intracranial hemorrhage occurred in 5 (3%, all of which were fatal. One case of severe urinary bleeding and one other fatal case of severe angioedema were observed. Conclusion: During the first 4–5 years of administration of IVT in the hospital, it was found to be feasible and safe, but to increase the efficacy, poststroke care should be more organized and a stroke center

  4. Expression of the Cydia pomonella granulovirus matrix metalloprotease enhances Autographa californica multiple nucleopolyhedrovirus virulence and can partially substitute for viral cathepsin.

    Science.gov (United States)

    Ishimwe, Egide; Hodgson, Jeffrey J; Passarelli, A Lorena

    2015-07-01

    The Cydia pomonella granulovirus open reading frame 46 (CpGV-ORF46) contains predicted domains found in matrix metalloproteases (MMPs), a family of zinc-dependent endopeptidases that degrade extracellular matrix proteins. We showed that CpGV-MMP was active in vitro. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing CpGV-ORF46 replicated similarly to a control virus lacking CpGV-ORF46 in cultured cells. The effects of AcMNPV expressing CpGV-MMP on virus infection in cultured cells and Trichoplusia ni larvae in the presence or absence of other viral degradative enzymes, cathepsin and chitinase, were evaluated. In the absence of cathepsin and chitinase or cathepsin alone, larval time of death was significantly delayed. This delay was compensated by the expression of CpGV-MMP. CpGV-MMP was also able to promote larvae melanization in the absence of cathepsin and chitinase. In addition, CpGV-MMP partially substituted for cathepsin in larvae liquefaction when chitinase, which is usually retained in the endoplasmic reticulum, was engineered to be secreted. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Impact on postoperative bleeding and cost of recombinant activated factor VII in patients undergoing heart transplantation

    Directory of Open Access Journals (Sweden)

    Allison L Hollis

    2016-01-01

    Full Text Available Background: Cardiac transplantation can be complicated by refractory hemorrhage particularly in cases where explantation of a ventricular assist device is necessary. Recombinant activated factor VII (rFVIIa has been used to treat refractory bleeding in cardiac surgery patients, but little information is available on its efficacy or cost in heart transplant patients. Methods: Patients who had orthotopic heart transplantation between January 2009 and December 2014 at a single center were reviewed. Postoperative bleeding and the total costs of hemostatic therapies were compared between patients who received rFVIIa and those who did not. Propensity scores were created and used to control for the likelihood of receiving rFVIIa in order to reduce bias in our risk estimates. Results: Seventy-six patients underwent heart transplantation during the study period. Twenty-one patients (27.6% received rFVIIa for refractory intraoperative bleeding. There was no difference in postoperative red blood cell transfusion, chest tube output, or surgical re-exploration between patients who received rFVIIa and those who did not, even after adjusting with the propensity score (P = 0.94, P = 0.60, and P = 0.10, respectively. The total cost for hemostatic therapies was significantly higher in the rFVIIa group (median $10,819 vs. $1,985; P < 0.0001. Subgroup analysis of patients who underwent redo-sternotomy with left ventricular assist device explantation did not show any benefit for rFVIIa either. Conclusions: In this relatively small cohort, rFVIIa use was not associated with decreased postoperative bleeding in patients undergoing heart transplantation; however, it led to significantly higher cost.

  6. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Lung [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan, ROC (China)

    2017-04-01

    Recombinant tissue plasminogen activator (rtPA) was encapsulated in thermosensitive magnetic liposome (TML) prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, distearolyphosphatidyl ethanolamine-N-poly(ethylene glycol) 2000, cholesterol and Fe{sub 3}O{sub 4} magnetic nanoparticles by solvent evaporation/sonication and freeze-thaw cycles method. Response surface methodology was proved to be a powerful tool to predict the drug encapsulation efficiency and temperature-sensitive drug release. Validation experiments verified the accuracy of the model that provides a simple and effective method for fabricating TML with controllable encapsulation efficiency and predictable temperature-sensitive drug release behavior. The prepared samples were characterized for physico-chemical properties by dynamic light scattering, transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Temperature-sensitive release of rtPA could be confirmed from in vitro thrombolysis experiments. A thrombolytic drug delivery system using TML could be proposed for magnetic targeted delivery of rtPA to the site of thrombus followed by temperature-triggered controlled drug release in an alternating magnetic field. - Highlights: • rtPA and Fe{sub 3}O{sub 4} MNP were encapsulated in thermosensitive magnetic liposome (TML). • RSM could predict the drug encapsulation efficiency and temperature-sensitive drug release from TML. • Temperature-sensitive release of rtPA was confirmed from in vitro thrombolysis experiments. • TML-rtPA will be useful as a magnetic targeted nanodrug to improve clinical thrombolytic therapy.

  7. NURR1 involvement in recombinant tissue-type plasminogen activator treatment complications after ischemic stroke.

    Science.gov (United States)

    Merino-Zamorano, Cristina; Hernández-Guillamon, Mar; Jullienne, Amandine; Le Béhot, Audrey; Bardou, Isabelle; Parés, Mireia; Fernández-Cadenas, Israel; Giralt, Dolors; Carrera, Caty; Ribó, Marc; Vivien, Denis; Ali, Carine; Rosell, Anna; Montaner, Joan

    2015-02-01

    Despite the effectiveness of recombinant tissue-type plasminogen activator (r-tPA) during the acute phase of ischemic stroke, the therapy remains limited by a narrow time window and the occurrence of occasional vascular side effects, particularly symptomatic hemorrhages. Our aim was to investigate the mechanisms underlying the endothelial damage resulting from r-tPA treatment in ischemic-like conditions. Microarray analyses were performed on cerebral endothelial cells submitted to r-tPA treatment during oxygen and glucose deprivation to identify novel biomarker candidates. Validation was then performed in vivo in a mouse model of thromboembolic stroke and culminated in an analysis in a clinical cohort of patients with ischemic stroke treated with thrombolysis. The transcription factor NURR1 (NR4A2) was identified as a downstream target induced by r-tPA during oxygen and glucose deprivation. Silencing NURR1 expression reversed the endothelial-toxicity induced by the combined stimuli, a protective effect attributable to reduced levels of proinflammatory mediators, such as nuclear factor-kappa-beta 2 (NF-κ-B2), interleukin 1 alpha (IL1α), intercellular adhesion molecule 1 (ICAM1), SMAD family member 3 (SMAD3), colony stimulating factor 2 (granulocyte-macrophage; CSF2). The detrimental effect of delayed thrombolysis, in conditions in which NURR1 gene expression was enhanced, was confirmed in the preclinical stroke model. Finally, we determined that patients with stroke who had a symptomatic hemorrhagic transformation after r-tPA treatment exhibited higher baseline serum NURR1 levels than did patients with an asymptomatic or absence of cerebral bleedings. Our results suggest that NURR1 upregulation by r-tPA during ischemic stroke is associated with endothelial dysfunction and inflammation and the enhancement of hemorrhagic complications associated to thrombolysis. © 2014 American Heart Association, Inc.

  8. Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli.

    Science.gov (United States)

    Kennedy, Sean P; Chevalier, Fabien; Barre, François-Xavier

    2008-05-01

    The co-ordination and synchronization of DNA replication, chromosome partitioning and cell division in bacteria are critical to survival. In Escherichia coli, the septal protein FtsK links cell division and chromosome segregation through its integral membrane N-terminal and cytoplasmic C-terminal domains. FtsK is responsible for promoting decatenation and dimer resolution in the later stages of chromosome segregation by activating recombination at dif by the site-specific Xer recombinases. Here, we formally demonstrate, using novel assay based on real-time quantitative polymerase chain reaction, that dif recombination depends not only on proteins upstream of FtsK in the septum assembly pathway, but also on the activity of downstream proteins. Work in synchronized cell cultures further showed that even though FtsK is recruited early to the septum, dif recombination only occurs shortly before cell division and this activity requires a closing septum. We propose a model whereby septum localization and concentration of FtsK co-ordinate its various roles in chromosome segregation and cell division.

  9. Recombinant human activated protein C inhibits local and systemic activation of coagulation without influencing inflammation during Pseudomonas aeruginosa pneumonia in rats

    NARCIS (Netherlands)

    Choi, Goda; Hofstra, Jorrit-Jan H.; Roelofs, Joris J. T. H.; Florquin, Sandrine; Bresser, Paul; Levi, Marcel; van der Poll, Tom; Schultz, Marcus J.

    2007-01-01

    OBJECTIVE: Alveolar fibrin deposition is a hallmark of pneumonia. It has been proposed that recombinant human activated protein C exerts lung-protective effects via anticoagulant and anti-inflammatory pathways. We investigated the role of the protein C system in pneumonia caused by Pseudomonas

  10. Recombinant human activated protein C inhibits local and systemic activation of coagulation without influencing inflammation during Pseudomonas aeruginosa pneumonia in rats

    NARCIS (Netherlands)

    Choi, Goda; Hofstra, Jorrit-Jan H; Roelofs, Joris J T H; Florquin, Sandrine; Bresser, Paul; Levi, Marcel; van der Poll, Tom; Schultz, Marcus J

    OBJECTIVE: Alveolar fibrin deposition is a hallmark of pneumonia. It has been proposed that recombinant human activated protein C exerts lung-protective effects via anticoagulant and anti-inflammatory pathways. We investigated the role of the protein C system in pneumonia caused by Pseudomonas

  11. Cathepsin-D And Tnf-α in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    T. Salman

    1996-01-01

    Full Text Available In a study of 34 normal healthy controls, 35 patients with urinary tract bilharziasis and 93 bladder cancer patients (62 of them are operable cases and 31 are non-operable ones, serum tumor necrosis factor alpha (TNF-α and cytosolic Cathepsin-D were estimated. Though both potential markers were elevated in bladder cancer patients, neither Cathepsin-D nor TNF-α showed associations of prognostic value since there were no positive correlations with tumor stages, grades or association of tumors with bilharzia ova or lymph node involvement.

  12. Trichomonas vaginalis cathepsin D-like aspartic proteinase (Tv-CatD) is positively regulated by glucose and degrades human hemoglobin.

    Science.gov (United States)

    Mancilla-Olea, Maria Inocente; Ortega-López, Jaime; Figueroa-Angulo, Elisa E; Avila-González, Leticia; Cárdenas-Guerra, Rosa Elena; Miranda-Ozuna, Jesús F T; González-Robles, Arturo; Hernández-García, Mar Saraí; Sánchez-Ayala, Lizbeth; Arroyo, Rossana

    2018-04-01

    Trichomonas vaginalis genome encodes ∼440 proteases, six of which are aspartic proteases (APs). However, only one belongs to a clan AA (EC 3.4.23.5), family A1 (pepsin A), cathepsin D-like protease. This AP is encoded by an 1113-bp gene (tv-catd), which translates into a 370-aa residues zymogen of 40.7-kDa and a theoretical pI of 4.6, generating a ∼35 kDa active enzyme after maturation (Tv-CatD). The goal of this study was to identify and analyze the effect of glucose on the expression of Tv-CatD at the transcript and protein levels, subcellular localization, and proteolytic activity. The qRT-PCR assays showed a ∼2-fold increase in tv-catd mRNA under high-glucose (HG) conditions compared to glucose-restriction (GR) conditions. We amplified, cloned, and expressed the tv-catd gene, and purified the recombinant precursor enzyme (Tv-CatDr) to generate a polyclonal antibody (anti-Tv-CatDr). Western blot (WB) and immunolocalization assays showed that glucose increases the amount of Tv-CatD in different subcellular localizations and in in vitro secretions. Additionally, Tv-CatD proteolytic activity was detected in protease-resistant extracts (PREs) using a synthetic fluorogenic peptide specific for cathepsin D/E APs at different pHs and in the presence of AP inhibitors. In a two-dimensional (2-DE) WB analysis of a PRE from parasites grown under GR and HG conditions, an anti-Tv-CatDr antibody detected a 35-kDa protein spot at pI 5.0 identified as the mature Tv-CatD form by mass spectrometry that showed proteolytic activity in 2-DE zymograms copolymerized with hemoglobin under both glucose conditions. Thus, Tv-CatD could be involved in trichomonal hemolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Evaluation of recombinant activated protein C for severe sepsis at a tertiary academic medical center

    Directory of Open Access Journals (Sweden)

    Anger KE

    2013-06-01

    Full Text Available Kevin E Anger,1 Jeremy R DeGrado,1 Bonnie C Greenwood,1 Steven A Cohen,2 Paul M Szumita1 1Department of Pharmacy, Brigham and Women’s Hospital, Boston, MA, USA; 2Department of Family Medicine and Population Health, Division of Epidemiology, Virginia Commonwealth University, Richmond, VA, USA Purpose: Early clinical trials of recombinant human activated protein C (rhAPC for severe sepsis excluded patients at high risk of bleeding. Recent literature suggests bleeding rates are higher in clinical practice and may be associated with worsened outcomes. Our objective was to evaluate baseline demographics; incidence, and risk factors for major bleeding; and mortality of patients receiving rhAPC for severe sepsis at our institution. Methods: A retrospective study was performed for all patients receiving rhAPC for treatment of severe sepsis at a tertiary academic medical center from January 2002 to June 2009. Demographic information, clinical variables, intensive care unit, and hospital outcomes were recorded. Results: Of the 156 patients that received rhAPC, 54 (34.6% did not meet institutional criteria for safe use at baseline due to bleeding precaution or contraindication. Twenty-three (14.7% patients experienced a major bleeding event. Multivariate analysis demonstrated baseline International Normalized Ratio ≥2.5 (odds ratio [OR] 3.68, 95% confidence interval [CI]: 1.28–10.56; P = 0.03 and platelet count ≤100 × 103/mm3 (OR 2.86, 95% CI: 1.07–7.67; P = 0.01 as significant predictors of a major bleed. Overall hospital mortality was 57.7%. Multivariate analysis demonstrated the presence of ≥3 organ dysfunctions (OR 2.46, 95% CI: 1.19–5.09; P < 0.05 and medical intensive care unit admission (OR 1.99, 95% CI: 1.00–3.98; P = 0.05 were independent variables associated with hospital mortality. Conclusion: Patients receiving rhAPC at our institution had higher APACHE II scores, mortality, and major bleeding events than published

  14. Inhibition of cathepsin B by E-64 induces oxidative stress and apoptosis in filarial parasite.

    Directory of Open Access Journals (Sweden)

    Mohit Wadhawan

    Full Text Available Current available antifilarial drug strategies only eliminate the larval stages of filarial parasites. Therefore, there is an urgent need of drugs which are macrofilaricidals. Identification of molecular targets crucial for survival of parasite is a prerequisite for drug designing. Cathepsin B, a cysteine protease family member is known to play crucial role in the normal growth, digestion of nutrients, exsheathment of the helminth parasites. Therefore, we targeted this enzyme in the filarial parasite using its specific inhibitor, E-64.We have exposed the parasites to E-64 and observed their motility and viability at various time intervals. It caused marked decrease in the motility and viability of the parasites ultimately leading to their death after 8 hours. It is well known that E-64 protects the cell from apoptosis, however, it causes apoptotic effect in carcinoma cell lines. To understand the mechanism of action of E-64 on parasite survival, we have measured levels of different apoptotic markers in the treated parasites. E-64 significantly reduced the level of ced-9 and activity of tyrosine phosphatases, cytochrome c oxidase. It also activated ced-3, homolog of mammalian caspase 3 suggesting initiation of an apoptotic like event in the filarial parasites. Different antioxidant enzymes were also evaluated to further explore the mechanism behind the death of the parasites. There was marked decrease in the level of GSH and activity of Glutathione reductase and glutathione-s-transferase leading to increased generation of reactive oxygen species. This led to the induced oxidation of fatty acids and protein which might alter the mitochondrial membrane permeability.This study suggests that inhibition of cathepsin B by E-64 generates oxidative stress followed by mitochondrial mediated apoptotic like event in filarial parasites leading to their death. Hence, suggesting filarial cathepsin B as a potential chemotherapeutic target for lymphatic

  15. An Aspartyl Cathepsin Targeted PET Agent: Application in an Alzheimer's Disease Mouse Model.

    Science.gov (United States)

    Snir, Jonatan A; Suchy, Mojmir; Bindseil, Geron A; Kovacs, Michael; Chronik, Blaine A; Hudson, Robert H E; Pasternak, Stephen H; Bartha, Robert

    2018-01-01

    Early detection of Alzheimer's disease (AD) pathology is a serious challenge for both diagnosis and clinical trials. The aspartyl protease, Cathepsin D (CatD), is overexpressed in AD and could be a biomarker of disease. We have previously designed a unique contrast agent (CA) for dual-optical and magnetic resonance imaging of the activity of the CatD class of enzymes. To compare the uptake and retention of a novel, more sensitive, and clinically-translatable 68Ga PET tracer targeting CatD activity in 5XFAD mice and non-Tg littermates. The targeted CA consisted of an HIV-1 Tat cell penetrating peptide (CPP) conjugated to a specialized cleavage sequence targeting aspartyl cathepsins and a DOTA conjugate chelating 68Ga. PET images were acquired using a Siemens Inveon preclinical microPET in female Tg AD mice and non-Tg age matched female littermates (n = 5-8) following intravenous CA administration at 2, 6, and 9 months of age. Additionally, 18F fluorodeoxyglucose (FDG) PET imaging was performed at 10 months to measure glucose uptake. The Tg mice showed significantly higher relative uptake rate of the targeting CA in the forebrain relative to hindbrain at all ages compared to controls, consistent with histology. In contrast, no differences were seen in CA uptake in other organs. Additionally, the Tg mice did not show any differences in relative uptake of FDG at 10 months of age in the forebrain relative to the hindbrain compared to age matched non-Tg controls. Elevated aspartryl cathepsin activity was detected in vivo in the 5XFAD mouse model of AD using a novel targeted PET contrast agent.

  16. 75 FR 21008 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-04-22

    ...-competent adenovirus in stocks of replication defective adenovirus recombinants ([Delta]E1 + [Delta]E3... genomes contain less than two-thirds but more than one-half of the viral genome. VRP-based vaccines are currently under evaluation in clinical trials. The central feature of VRP-based vaccines is their ability to...

  17. High-level expression of biologically active recombinant bovine follicle stimulating hormone in a baculovirus system

    NARCIS (Netherlands)

    Wiel, van de D.F.M.; Rijn, van P.A.; Meloen, R.H.; Moormann, R.J.M.

    1998-01-01

    Superovulation treatment of cows can benefit from the application of very pure recombinant bovine FSH (rbFSH), which is produced in nonmammalian cells. rbFSH is completely free of LH, and therefore can possibly reduce the variability in the results of superovulation. Furthermore, it does not contain

  18. 78 FR 66751 - Office of Science Policy, Office of Biotechnology Activities; Recombinant or Synthetic Nucleic...

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Science Policy... Biosafety Committees (IBCs) for setting containment for research involving recombinant or synthetic nucleic... Etiologic Agents on the Basis of Hazard). The RG of the agent often correlates with the minimum containment...

  19. Comparison of real time RT-PCR and flow cytometry methods for evaluation of biological activity of recombinant human erythropoietin

    Directory of Open Access Journals (Sweden)

    Sepehrizadeh Z

    2008-05-01

    Full Text Available Background: Evaluation of bioactivity of recombinant erythropoietin is essential for pharmaceutical industry, quality control authorities and researchers. The purpose of this study was to compare real time RT-PCR and flow cytometry for the assay of biological activity of recombinant erythropoietin. Methods: Three concentrations of recombinant erythropoietin BRP (80, 40 and 20 IU/ml were injected subcutaneously to mice. After 4 days the blood was collected and used for reticulocyte counts by flow cytometry and also for the RNA extraction. Real time RT-PCR amplification was carried out for β-globin. Results and conclusion: There was a significant correlation between the total RNA amounts (R2= 0.9995, relative quantity of β-globin mRNA (R2= 0.984 and reticulocyte counts (R2= 0.9742 with rhEpo concentrations. Total RNA and quantitative RT-PCR showed significant dose dependent results as well the reticulocyte counts by flow cytometry for the biological activity assay of rhEpo and so these methods could be considered as alternatives for flow cytometry.

  20. Structure-based optimization of non-peptidic Cathepsin D inhibitors.

    Science.gov (United States)

    Grädler, Ulrich; Czodrowski, Paul; Tsaklakidis, Christos; Klein, Markus; Werkmann, Daniela; Lindemann, Sven; Maskos, Klaus; Leuthner, Birgitta

    2014-09-01

    We discovered a novel series of non-peptidic acylguanidine inhibitors of Cathepsin D as target for osteoarthritis. The initial HTS-hits were optimized by structure-based design using CatD X-ray structures resulting in single digit nanomolar potency in the biochemical CatD assay. However, the most potent analogues showed only micromolar activities in an ex vivo glycosaminoglycan (GAG) release assay in bovine cartilage together with low cellular permeability and suboptimal microsomal stability. This new scaffold can serve as a starting point for further optimization towards in vivo efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Loss of melanoregulin (MREG) enhances cathepsin-D secretion by the retinal pigment epithelium

    OpenAIRE

    Frost, Laura S.; Lopes, Vanda S.; Stefano, Frank P.; Bragin, Alvina; Williams, David S.; Mitchell, Claire H.; Boesze-Battaglia, Kathleen

    2013-01-01

    Cathepsin-D (Cat-D) is a major proteolytic enzyme in phagocytic cells. In the retinal pigment epithelium (RPE), it is responsible for the daily degradation of photoreceptor outer segments (POSs) to maintain retinal homeostasis. Melanoregulin (MREG)-mediated loss of phagocytic capacity has been linked to diminished intracellular Cat-D activity. Here, we demonstrate that loss of MREG enhances the secretion of intermediate Cat-D (48 kDa), resulting in a net enhancement of extracellular Cat-D act...

  2. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    Science.gov (United States)

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  3. The lysosomal enzymes acid phosphatase and cathepsin D in rats intoxicated with Senna occidentalis seeds.

    Science.gov (United States)

    Calore, E E; Calore, N M; Weg, R; Cavaliere, M J; Ruckert da Rosa, A; De Souza Dias, S

    1999-04-01

    Chronic administration of Senna occidentalis seeds induces an experimental toxic myopathy characterized by skeletal muscle fibers atrophy, decrease in histochemical activity of cytochrome oxidase, and increase of the acid phosphatase activity in muscle fibres at the light microscopic level. The mechanisms that lead to the increase of this lysosomal enzyme activity are not known and could be related to other biochemical disturbs than the mitochondrial function impairment. The main aim of the present study is to localize the acid phosphatase activity using a cytochemical method at transmission electron microscopy level and to quantify cathepsin D in muscle of rats chronically intoxicated with Senna occidentalis seeds by immunoblotting. Acid phosphatase was observed in lysosomes and over profiles of some organelles apparently not involved by lysosomal membrane. In addition immunoblotting demonstrated a decrease in the content of the precursor and of the mature form of cathepsin D in samples of muscles and liver of intoxicated animals. We concluded that there is a selective increase in acid phosphatase activity in muscle--and maybe in other tissues--of animals intoxicated with Senna occidentalis, that can be related to the skeletal muscle atrophy and the intense decrease in weight gain of these animals. Further studies should be performed to establish the mechanisms of selectivity in increase of lysosomal enzymes in different situations and pathological states.

  4. Recombinant Human Plasminogen Activator Inhibitor-1 Accelerates Odontoblastic Differentiation of Human Stem Cells from Apical Papilla.

    Science.gov (United States)

    Jin, Bin; Choung, Pill-Hoon

    2016-05-01

    Dental caries, the most prevalent oral disease in dental patients, involves the phases of demineralization and destruction of tooth hard tissues like enamel, dentin, and cementum. Dentin is a major component of the root and is also the innermost layer that protects the tooth nerve, exposure of which results in pain. In this study, we used human stem cells from apical papilla (hSCAP), which are early progenitor cells, to examine the effects of recombinant human plasminogen activator inhibitor-1 (rhPAI-1) on odontogenic differentiation in vitro and in vivo. We demonstrated that rhPAI-1 promoted the proliferation and odontogenic differentiation of hSCAP and increased the expression levels of odontoblast-associated markers. We also observed that rhPAI-1 upregulated the expression of Smad4, nuclear factor I-C (NFI-C), Runx2, and osterix (OSX) during odontogenic differentiation. Notably, transplantation of rhPAI-1-treated hSCAP effectively induced odontoblastic differentiation and dentinal formation. And the differentiated odontoblast-like cells showed numerous odontoblast processes inserted in dentin tubules and arranged collagen fibers. Furthermore, odontoblast-associated markers were more highly expressed in the rhPAI-1-induced differentiated odontoblast-like cells compared with the control group. These markers were also more highly expressed in the newly formed dentin-like tissue of the rhPAI-1-treated group compared with the control group. Consistent with our in vitro results, the expression levels of Smad4, NFI-C, and OSX were also increased in the rhPAI-1-treated group compared with the control group. Taken together, these results suggest that rhPAI-1 promotes odontoblast differentiation and dentin formation of hSCAP, and Smad4/NFI-C/OSX may play critical roles in the rhPAI-1-induced odontogenic differentiation. Thus, dental stem cells from apical papilla combined with rhPAI-1 could lead to dentin regeneration in clinical implications.

  5. Cathepsin B & L are not required for ebola virus replication.

    Directory of Open Access Journals (Sweden)

    Andrea Marzi

    Full Text Available Ebola virus (EBOV, family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV. EBOV encodes one viral surface glycoprotein (GP, which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL, which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control, catB(-/- and catL(-/- mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.

  6. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  7. Crystallographic, DFT and docking (cathepsin B) studies on an organotellurium(IV) compound

    International Nuclear Information System (INIS)

    Caracelli, Ignez; Maganhi, Stella H.; Zukerman-Schpector, Julio; Sousa Madureira, Lucas; Stefani, Helio A.; Guadagnin, Rafael C.; Tiekink, Edward R.T.

    2016-01-01

    Some biologically active organotellurium compounds exhibit inhibitory potency against cathepsin B. In this study, an alkyl derivative, viz. [CH 3 (CH 2 ) 2 C(I)=C(H)](nBu)TeI 2 , 1, has been structurally characterised by X-ray crystallography and shown to be coordinated within a C 2 I 2 donor set. When the stereochemically active lone pair of electrons is taken into account, a distorted trigonal bipyramidal geometry results with the iodide atoms in axial positions. Both intra- and inter-molecular Te..I interactions are also noted. If all interactions are considered, the coordination geometry is based on a Ψ-pentagonal bipyramidal geometry. An unusual feature of the structure is the curving of the functionalised C 5 chain. This feature has been explored by DFT methods and shown to arise as a result of close C-H..I interactions. A docking study (cathepsin B) was performed to understand the inhibition mechanism and to compare the new results with previous observations. Notably, 1 has the same pose exhibited by analogous biologically active compounds with aryl groups. Thus, the present study suggests that (alkyl) 2 TeX 2 compounds should also be evaluated for biological activity.

  8. Crystallographic, DFT and docking (cathepsin B) studies on an organotellurium(IV) compound

    Energy Technology Data Exchange (ETDEWEB)

    Caracelli, Ignez; Maganhi, Stella H. [Univ. Federal de Sao Carlos (Brazil). BioMat; Zukerman-Schpector, Julio; Sousa Madureira, Lucas [Univ. Federal de Sao Carlos (Brazil). Lab. de Cristalografia, Estereodinamica e Modelagem Molecular; Stefani, Helio A. [Sao Paulo Univ. (Brazil). Dept. de Farmacia; Guadagnin, Rafael C. [Univ. Federal de Sao Paulo, Diadema (Brazil). Inst. e Ciencias Mabientais, Quimicas e Farmaceuticas; Tiekink, Edward R.T. [Sunway Univ., Selangor Darul Ehsan (Malaysia). Centre for Crystalline Materials

    2016-08-01

    Some biologically active organotellurium compounds exhibit inhibitory potency against cathepsin B. In this study, an alkyl derivative, viz. [CH{sub 3}(CH{sub 2}){sub 2}C(I)=C(H)](nBu)TeI{sub 2}, 1, has been structurally characterised by X-ray crystallography and shown to be coordinated within a C{sub 2}I{sub 2} donor set. When the stereochemically active lone pair of electrons is taken into account, a distorted trigonal bipyramidal geometry results with the iodide atoms in axial positions. Both intra- and inter-molecular Te..I interactions are also noted. If all interactions are considered, the coordination geometry is based on a Ψ-pentagonal bipyramidal geometry. An unusual feature of the structure is the curving of the functionalised C{sub 5} chain. This feature has been explored by DFT methods and shown to arise as a result of close C-H..I interactions. A docking study (cathepsin B) was performed to understand the inhibition mechanism and to compare the new results with previous observations. Notably, 1 has the same pose exhibited by analogous biologically active compounds with aryl groups. Thus, the present study suggests that (alkyl){sub 2}TeX{sub 2} compounds should also be evaluated for biological activity.

  9. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin...

  10. Corrigendum to ''A novel nonsense mutation in the cathepsin C ...

    African Journals Online (AJOL)

    Corrigendum to ''A novel nonsense mutation in the cathepsin C gene in an Egyptian patient presenting with Papillon–Lefe`vre syndrome” [Egypt. J. Med. Hum. Genet. 16 (4) (2015) 387–392]. Hala Soliman, Heba Gamal Eldeen, Mostafa Ibrahim Mostafa ...

  11. Activities of Fluoroquinolones against Streptococcus pneumoniae Type II Topoisomerases Purified as Recombinant Proteins

    OpenAIRE

    Morrissey, Ian; George, John

    1999-01-01

    Streptococcus pneumoniae topoisomerase IV and DNA gyrase have been purified from a fluoroquinolone-susceptible Streptococcus pneumoniae strain, from first-step mutants showing low-level resistance to ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin, and from two clinical isolates showing intermediate- and high-level fluoroquinolone resistance by a gene cloning method that produces recombinant proteins from Escherichia coli. The concentrations of ciprofloxacin, sparfloxacin, levofloxac...

  12. The reversal effect of prothrombin complex concentrate (PCC), activated PCC and recombinant activated factor VII against anticoagulation of Xa inhibitor.

    Science.gov (United States)

    Schultz, Nina Haagenrud; Tran, Hoa Thi Tuyet; Bjørnsen, Stine; Henriksson, Carola Elisabeth; Sandset, Per Morten; Holme, Pål Andre

    2017-01-01

    An increasing number of patients are treated with direct-acting oral anticoagulants (DOACs), but the optimal way to reverse the anticoagulant effect is not known. Specific antidotes are not available and prothrombin complex concentrate (PCC), activated PCC (aPCC) and recombinant factor VIIa (rFVIIa) are variously used as reversal agents in case of a major bleeding. We aimed to determine the most effective haemostatic agent and dose to reverse the effect of rivaroxaban in blood samples from patients taking rivaroxaban for therapeutic reasons. Blood samples from rivaroxaban-treated patients ( n =  50) were spiked with PCC, aPCC and rFVIIa at concentrations imitating 80%, 100% and 125% of suggested therapeutic doses. The reversal effect was assessed by thromboelastometry in whole blood and a thrombin generation assay (TGA) in platelet-poor plasma. Samples from healthy subjects ( n =  40) were included as controls. In thromboelastometry measurements, aPCC and rFVIIa had a superior effect to PCC in reversing the rivaroxaban-induced lenghtening of clotting time (CT). aPCC was the only haemostatic agent that shortened the CT down to below the control level. Compared to healthy controls, patients on rivaroxaban also had a prolonged lag time and decreased peak concentration, velocity index and endogenous thrombin potential (ETP) in platelet-poor plasma. aPCC reversed these parameters more effectively than rFVIIa and PCC. There were no differences in efficacy between 80%, 100% and 125% doses of aPCC. aPCC seems to reverse the anticoagulant effect of rivaroxaban more effectively than rFVIIa and PCC by evaluation with thromboelastometry and TGA in vitro.

  13. DISCOVERY OF THE RECOMBINING PLASMA IN THE SOUTH OF THE GALACTIC CENTER: A RELIC OF THE PAST GALACTIC CENTER ACTIVITY?

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, S.; Nobukawa, M.; Uchida, H.; Tanaka, T.; Tsuru, T. G.; Koyama, K. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Murakami, H. [Department of Information Science, Faculty of Liberal Arts, Tohoku Gakuin University 2-1-1 Tenjinzawa, Izumi-ku, Sendai, Miyagi 981-3193 (Japan); Uchiyama, H., E-mail: shinya@cr.scphys.kyoto-u.ac.jp [Science Education, Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)

    2013-08-10

    We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter {sup G}C South{sup )} has an angular size of {approx}42' Multiplication-Sign 16' centered at (l, b) {approx} (0. Degree-Sign 0, - 1. Degree-Sign 4) and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at {approx}2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density Multiplication-Sign elapsed time) of 5.3 Multiplication-Sign 10{sup 11} s cm{sup -3}. The absorption column density of GC South is consistent with that toward the GC region. Thus, GC South is likely to be located in the GC region ({approx}8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be {approx}97 pc Multiplication-Sign 37 pc, 0.16 cm{sup -3}, and 1.6 Multiplication-Sign 10{sup 51} erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.

  14. Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2

    Directory of Open Access Journals (Sweden)

    Liliána Tóth

    2018-03-01

    Full Text Available The increasing number of life-threatening Candida infections caused by antifungal drug-resistant strains urges the development of new therapeutic strategies. The small, cysteine-rich, and cationic Neosartorya fischeri antifungal protein 2 (NFAP2 effectively inhibits the growth of Candida spp. Limiting factors of its future application, are the low-yield production by the native producer, unavailable information about potential clinical application, and the unsolved relationship between the structure and function. In the present study we adopted a Penicillium chrysogenum-based expression system for bulk production of recombinant NFAP2. Furthermore, solid-phase peptide synthesis and native chemical ligation were applied to produce synthetic NFAP2. The average yield of recombinant and synthetic NFAP2 was 40- and 16-times higher than in the native producer, respectively. Both proteins were correctly processed, folded, and proved to be heat-stable. They showed the same minimal inhibitory concentrations as the native NFAP2 against clinically relevant Candida spp. Minimal inhibitory concentrations were higher in RPMI 1640 mimicking the human inner fluid than in a low ionic strength medium. The recombinant NFAP2 interacted synergistically with fluconazole, the first-line Candida therapeutic agent and significantly decreased its effective in vitro concentrations in RPMI 1640. Functional mapping with synthetic peptide fragments of NFAP2 revealed that not the evolutionary conserved antimicrobial γ-core motif, but the mid-N-terminal part of the protein influences the antifungal activity that does not depend on the primary structure of this region. Preliminary nucleic magnetic resonance measurements signed that the produced recombinant NFAP2 is suitable for further structural investigations.

  15. Improved insecticidal activity of a recombinant baculovirus expressing spider venom cyto-insectotoxin.

    Science.gov (United States)

    Ali, M P; Kato, Tatsuya; Park, Enoch Y

    2015-12-01

    Baculoviruses have a long history of safe use as specific, environmentally friendly insecticides that provide alternatives to chemical pesticides for controlling insect pests. However, their use has been limited by several factors, particularly their slow pathogenicity. In this study, we constructed a recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) and an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) that expressed an insect-specific cyto-insectotoxin (Cit1a) from the venom of the central Asian spider Lachesana tarabaevi. Cit1a is a comparatively long linear cytolytic molecule that contains a predicted α-helix structure composed of two short membrane-acting antimicrobial peptides (MAMPs) that are joined together in a "head-to-tail" shape. Cit1a fused to polyhedrin gene (polh) (polh-cit1a) was expressed in the nuclei as polyhedra in silkworm larvae, Bm5 and Sf9 cells. An early death of Bm5 and Sf9 cells by recombinant BmNPV/Polh-Cit1a and AcMNPV/Polh-Cit1a was observed compared with control viruses that lacked the toxin gene. The infected cells showed a loss of cytoplasm, membrane integrity, and structural changes, suggesting that recombinant baculovirus-infected cells were killed by the necrosis caused by Cit1a. In addition, the BmNPV/Polh-Cit1a showed a significant reduction in the median lethal time (LT50) against silkworm larvae compared with those of control BmNPV that lacked the cit1a gene.

  16. Association of N-acetylgalactosamine-6-sulfate sulfatase with the multienzyme lysosomal complex of beta-galactosidase, cathepsin A, and neuraminidase. Possible implication for intralysosomal catabolism of keratan sulfate.

    Science.gov (United States)

    Pshezhetsky, A V; Potier, M

    1996-11-08

    N-Acetylgalactosamine-6-sulfate sulfatase (GALNS) catalyzes the first step of intralysosomal keratan sulfate (KS) catabolism. In Morquio type A syndrome GALNS deficiency causes the accumulation of KS in tissues and results in generalized skeletal dysplasia in affected patients. We show that in normal cells GALNS is in a 1.27-MDa complex with three other lysosomal hydrolases: beta-galactosidase, alpha-neuraminidase, and cathepsin A (protective protein). GALNS copurifies with the complex by different chromatography techniques: affinity chromatography on both cathepsin A-binding and beta-galactosidase-binding columns, gel filtration, and chromatofocusing. Anti-human cathepsin A rabbit antiserum coprecipitates GALNS together with cathepsin A, beta-galactosidase, and alpha-neuraminidase in both a purified preparation of the 1. 27-MDa complex and crude glycoprotein fraction from human placenta extract. Gel filtration analysis of fibroblast extracts of patients deficient in either beta-galactosidase (beta-galactosidosis) or cathepsin A (galactosialidosis), which accumulate KS, demonstrates that the 1.27-MDa complex is disrupted and that GALNS is present only in free homodimeric form. The GALNS activity and cross-reacting material are reduced in the fibroblasts of patients affected with galactosialidosis, indicating that the complex with cathepsin A may protect GALNS in the lysosome. We suggest that the 1.27-MDa complex of lysosomal hydrolases is essential for KS catabolism and that the disruption of this complex may be responsible for the KS accumulation in beta-galactosidosis and galactosialidosis patients.

  17. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    Directory of Open Access Journals (Sweden)

    Manlio Palumbo

    2008-06-01

    Full Text Available Cathepsin G (CatG is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions.

  18. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Raheem Ullah

    Full Text Available Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  19. DNA distribution and respiratory activity of Spodoptera frugiperda populations infected with wild-type and recombinant Autographa californica nuclear polyhedrosis virus.

    Science.gov (United States)

    Schopf, B; Howaldt, M W; Bailey, J E

    1990-07-01

    Spodoptera frugiperda cells were infected with a wild-type Autographa californica nuclear polyhedrosis virus and with a recombinant Autographa californica nuclear polyhedrosis virus. The recombinant virus was derived from the wild-type virus and produced beta-galactosidase instead of polyhedrin. The changes in cell size, cell growth, viability, DNA distribution, and respiratory activity were followed through the time course of the infection. The DNA content as measured by flow cytometry of infected cells increased to approximately 1.8 times the value of uninfected cells and the distributions of single-cell DNA content of the infected cells were strongly deformed. Early in the infection the respiratory activity passed through a maximum. The mitochondrial activity based on Rhodamine 123 labelling of cells infected with the recombinant virus, as determined by flow cytometry, also passed through a maximum at 24 h post infection while the mitochondrial activity of cells infected with the wild-type virus continued to increase. Evolution of single-cell mitochondrial activity was different in uninfected populations and in populations infected with wild-type and with recombinant virus. In all experiments performed, the recombinant virus influenced cell behavior and the measured parameters earlier than the wild-type virus. The influence of the multiplicity of infection was stronger for the wild-type virus than for the recombinant virus.

  20. β-Endorphin biotransformation in brain: Formation of γ-endorphin by a synaptosomal plasma membrane associated endopeptidase distinct from cathepsin D

    NARCIS (Netherlands)

    Burbach, J.P.H.; Loeber, J.G.; Verhoef, J.; Kloet, E.R. de

    1980-01-01

    cSPM preparations of rat brain contain a peptidase activity which generates γ-endorphin from β-endorphin. Some properties of this enzyme were studied and compared with those of cathepsin D. Maximal accumulation of γ-endorphin upon digestion of β-endorphin with a cSPM preparation was found at neutral

  1. Investigation of the effect of recombinant Neutrophil activating protein (Hp-NapA of helicobacter pylori on proliferation and viability by peritoneal macrophage from BALB/c mice

    Directory of Open Access Journals (Sweden)

    Soleimani N

    2015-04-01

    Full Text Available Abstract Background: The neutrophil-activating protein (HP-NAP of Helicobacter pylori is a protective antigen and a major virulence factor of this bacteria. Stimulating the immune system for helicobacter infection treatment could have an important role. The aim of study is to assess the effect of recombinant Neutrophil activating protein (Hp-NapA of helicobacter pylori on proliferation and viability of peritoneal macrophages from BALB/c mice. Materials and Methods: In this experimental study, recombinant Hp-NapA of helicobacter pylori was produced in vitro. Mice peritoneal macrophages were purified and cultured. Different concentrations of recombinant Hp-NapA was used for macrophages stimulation. MTT assay was performed to assess the viability and proliferation of macrophages. Results: The results elucidated that the increasing effect of stimulation with recombinant Hp-NapA was significant at the dose of 30 µg/ml(p=0.01. The rate of viabitity was significantly higher than control group at the doses of 30 and 60 µg/ml and in the concurrency series of recombinant protein with lipopolysaccharid, there was a statistically significarit increase in proliferation at just these doses. Conclusion: According to our findings, recombinant Hp-NapA has a positive effect on proliferation, viability and function of peritoneal macrophages. Therefore, it is proposed that recombinant Hp-NapA can be studied as an immunomodulator for immunotherapy.

  2. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing.

    Science.gov (United States)

    Khaki, Mohsen; Salmanian, Ali Hatef; Mosayebi, Ghasem; Baazm, Maryam; Babaei, Saeed; Molaee, Neda; Abtahi, Hamid

    2017-07-01

    Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli ( E. coli ) system and then biological activity of this protein was evaluated in animal wound healing. E. coli BL21 (DE3) competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG). The recombinant protein was purified by affinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w) was used for external wound (25×15mm thickness) healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. The recombinant protein with molecular weight of 45 kilodaltons (kDa) and concentration of 0.8 mg/ml was produced. Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Recombinant VEGF-A produced by pET32a in E. coli , possesses acceptable structure and has wound healing capability.

  3. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing

    Directory of Open Access Journals (Sweden)

    Mohsen Khaki

    2017-07-01

    Full Text Available Objective(s: Vascular endothelial growth factor (VEGF is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli system and then biological activity of this protein was evaluated in animal wound healing. Materials and Methods: E. coli BL21 (DE3 competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG. The recombinant protein was purified byaffinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w was used for external wound (25×15mm thickness healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. Results: The recombinant protein with molecular weight of 45 kilodaltons (kDa and concentration of 0.8 mg/ml was produced.Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Conclusion: Recombinant VEGF-A produced by pET32a in E. coli, possesses acceptable structure and has wound healing capability.

  4. The occluding loop of cathepsin B prevents its effective inhibition by human kininogens.

    Science.gov (United States)

    Naudin, C; Lecaille, F; Chowdhury, S; Krupa, J C; Purisima, E; Mort, J S; Lalmanach, G

    2010-07-30

    Kininogens, the major plasma cystatin-like inhibitors of cysteine cathepsins, are degraded at sites of inflammation, and cathepsin B has been identified as a prominent mediator of this process. Cathepsin B, in contrast to cathepsins L and S, is poorly inhibited by kininogens. This led us to delineate the molecular interactions between this protease and kininogens (high molecular weight kininogen and low molecular weight kininogen) and to elucidate the dual role of the occluding loop in this weak inhibition. Cathepsin B cleaves high molecular weight kininogen within the N-terminal region of the D2 and D3 cystatin-like domains and close to the consensus QVVAG inhibitory pentapeptide of the D3 domain. The His110Ala mutant, unlike His111Ala cathepsin B, fails to hydrolyze kininogens, but rather forms a tight-binding complex as observed by gel-filtration analysis. K(i) values (picomolar range) as well as association rate constants for the His110Ala cathepsin B variant compare to those reported for cathepsin L for both kininogens. Homology modeling of isolated inhibitory (D2 and D3) domains and molecular dynamics simulations of the D2 domain complexed with wild-type cathepsin B and its mutants indicate that additional weak interactions, due to the lack of the salt bridge (Asp22-His110) and the subsequent open position of the occluding loop, increase the inhibitory potential of kininogens on His110Ala cathepsin B. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis

    Science.gov (United States)

    Wardlaw, Joanna M; Murray, Veronica; Berge, Eivind; del Zoppo, Gregory; Sandercock, Peter; Lindley, Richard L; Cohen, Geoff

    2012-01-01

    Summary Background Recombinant tissue plasminogen activator (rt-PA, alteplase) improved functional outcome in patients treated soon after acute ischaemic stroke in randomised trials, but licensing is restrictive and use varies widely. The IST-3 trial adds substantial new data. We therefore assessed all the evidence from randomised trials for rt-PA in acute ischaemic stroke in an updated systematic review and meta-analysis. Methods We searched for randomised trials of intravenous rt-PA versus control given within 6 h of onset of acute ischaemic stroke up to March 30, 2012. We estimated summary odds ratios (ORs) and 95% CI in the primary analysis for prespecified outcomes within 7 days and at the final follow-up of all patients treated up to 6 h after stroke. Findings In up to 12 trials (7012 patients), rt-PA given within 6 h of stroke significantly increased the odds of being alive and independent (modified Rankin Scale, mRS 0–2) at final follow-up (1611/3483 [46·3%] vs 1434/3404 [42·1%], OR 1·17, 95% CI 1·06–1·29; p=0·001), absolute increase of 42 (19–66) per 1000 people treated, and favourable outcome (mRS 0–1) absolute increase of 55 (95% CI 33–77) per 1000. The benefit of rt-PA was greatest in patients treated within 3 h (mRS 0–2, 365/896 [40·7%] vs 280/883 [31·7%], 1·53, 1·26–1·86, p<0·0001), absolute benefit of 90 (46–135) per 1000 people treated, and mRS 0–1 (283/896 [31·6%] vs 202/883 [22·9%], 1·61, 1·30–1·90; p<0·0001), absolute benefit 87 (46–128) per 1000 treated. Numbers of deaths within 7 days were increased (250/2807 [8·9%] vs 174/2728 [6·4%], 1·44, 1·18–1·76; p=0·0003), but by final follow-up the excess was no longer significant (679/3548 [19·1%] vs 640/3464 [18·5%], 1·06, 0·94–1·20; p=0·33). Symptomatic intracranial haemorrhage (272/3548 [7·7%] vs 63/3463 [1·8%], 3·72, 2·98–4·64; p<0·0001) accounted for most of the early excess deaths. Patients older than 80 years achieved similar

  6. A recombinant cystatin from Ascaris lumbricoides attenuates inflammation of DSS-induced colitis.

    Science.gov (United States)

    Coronado, S; Barrios, L; Zakzuk, J; Regino, R; Ahumada, V; Franco, L; Ocampo, Y; Caraballo, L

    2017-04-01

    Helminthiasis may ameliorate inflammatory diseases, such as inflammatory bowel disease and asthma. Information about immunomodulators from Ascaris lumbricoides is scarce, but could be important considering the co-evolutionary relationships between helminths and humans. We evaluated the immunomodulatory effects of a recombinant cystatin from A. lumbricoides on an acute model of dextran sodium sulphate (DSS)-induced colitis in mice. From an A. lumbricoides cDNA library, we obtained a recombinant cystatin (rAl-CPI). Protease activity inhibition was demonstrated on cathepsin B and papain. Immunomodulatory effects were evaluated at two intraperitoneal doses (0.5 and 0.25 μg/G) on mice with DSS-induced colitis. Body weight, colon length, Disease Activity Index (DAI), histological inflammation score, myeloperoxidase (MPO) activity, gene expression of cytokines and cytokines levels in colon tissue were analysed. Treatment with rAl-CPI significantly reduced DAI, MPO activity and inflammation score without toxic effects. Also, IL-10 and TGF-B gene overexpression was observed in rAl-CPI-treated group compared to DSS-exposed control and healthy mice. Furthermore, a reduction in IL-6 and TNF-A expression was found, and this was confirmed by the levels of these cytokines in colonic tissue. In conclusion, rAl-CPI reduces inflammation in a mouse model of DSS-induced colitis, probably by increasing the expression of anti-inflammatory cytokines and reducing pro-inflammatory ones. © 2017 John Wiley & Sons Ltd.

  7. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface

    NARCIS (Netherlands)

    Weeterings, Cees; de Groot, Philip G.; Adelmeijer, Jelle; Lisman, Ton

    2008-01-01

    Several lines of evidence suggest that recombinant factor VIIa (rFVIIa) is able to activate factor X on an activated platelet, in a tissue factor-independent manner. We hypothesized that, besides the anionic surface, a receptor on the activated platelet surface is involved in this process. Here, we

  8. Deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B-cell development

    Science.gov (United States)

    Stengel, Kristy R.; Barnett, Kelly R.; Wang, Jing; Liu, Qi; Hodges, Emily; Hiebert, Scott W.; Bhaskara, Srividya

    2017-01-01

    Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B-cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/−Mb1-Cre+/− mice were virtually devoid of mature B cells, and B220+CD43+ B-cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the Ig heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3Δ/− bone marrow. For Hdac3Δ/− B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment use. Although transcriptional effects within these loci were modest, Hdac3Δ/− progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Reintroduction of wild-type Hdac3 restored normal B-cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells. PMID:28739911

  9. PROTECTIVE ACTIVITY STUDY OF A CANDIDATE VACCINE AGAINST ROTAVIRUS INFECTION BASED ON RECOMBINANT PROTEIN FliCVP6VP8

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2016-01-01

    Full Text Available Rotavirus infection is among leading causes of severe diarrhea which often leads to severe dehydration, especially, in children under 5 years old. In Russia, the incidence of rotavirus infection is constantly increased, due to higher rates of actual rotavirus infection cases and improved diagnostics of the disease. Immunity to rotavirus is unstable, thus causing repeated infections intra vitam. Anti-infectious resistance in reconvalescents is explained by induction of specific IgM, IgG, and, notably, IgA antibodies. Due to absence of market drugs with direct action against rotavirus, a rational vaccination is considered the most effective way to control the disease. Currently available vaccines for prevention of rotavirus infection are based on live attenuated rotavirus strains, human and/or animal origin, which replicate in human gut. Their implementation may result into different complications. Meanwhile, usage of vaccines based on recombinant proteins is aimed to avoid risks associated with introduction of a complete virus into humans. In this paper, we studied protective activity of candidate vaccines against rotavirus.In this work we studied protective activity of a candidate vaccine against rotavirus infection based on recombinant FliCVP6VP8 protein which includes VP6 and VP8, as well as components of Salmonella typhimurium flagellin (FliC as an adjuvant. Different components are joined by flexible bridges. Efficiency of the candidate vaccine was studied in animal model using Balb/c mice. We have shown high level of protection which occurs when the candidate vaccine is administered twice intramuscularly. Complete protection of animals against mouse rotavirus EDC after intramuscular immunization with a candidate vaccine was associated with arising rotavirus-specific IgA and IgG antibodies in serum and intestine of immunized animals. The efficacy of candidate vaccine based on recombinant protein FliCVP6VP8 against rotavirus infection was

  10. Regulation of split anergy in natural killer cells by inhibition of cathepsins C and H and cystatin F

    Science.gov (United States)

    Magister, Špela; Tseng, Han-Ching; Bui, Vickie T.; Kos, Janko; Jewett, Anahid

    2015-01-01

    Freshly isolated human primary NK cells induce preferential lysis of Oral Squamous Carcinoma Stem Cells (OSCSCs) when compared to differentiated Oral Squamous Carcinoma Cells (OSCCs), while anti-CD16 antibody and monocytes induce functional split anergy in primary NK cells by decreasing the cytotoxic function of NK cells and increasing the release of IFN-γ. Since NK92 cells have relatively lower levels of cytotoxicity when compared to primary NK cells, and have the ability to increase secretion of regulatory cytokines IL-10 and IL-6, we used these cells as a model of NK cell anergy to identify and to study the upstream regulators of anergy. We demonstrate in this paper that the levels of truncated monomeric cystatin F, which is known to inhibit the functions of cathepsins C and H, is significantly elevated in NK92 cells and in anergized primary NK cells. Furthermore, cystatin F co-localizes with cathepsins C and H in the lysosomal/endosomal vesicles of NK cells. Accordingly, the mature forms of aminopeptidases cathepsins C and H, which regulate the activation of effector granzymes in NK cells, are significantly decreased, whereas the levels of pro-cathepsin C enzyme is increased in anergized NK cells after triggering of the CD16 receptor. In addition, the levels of granzyme B is significantly decreased in anti-CD16mAb and target cell anergized primary NK cells and NK92 cells. Our study provides the cellular and molecular mechanisms by which target cells may utilize to inhibit the cytotoxic function of NK cells. PMID:26247631

  11. Molecular characterization of cathepsin B from Clonorchis sinensis excretory/secretory products and assessment of its potential for serodiagnosis of clonorchiasis

    Directory of Open Access Journals (Sweden)

    Zhou Chenhui

    2011-07-01

    Full Text Available Abstract Background Cathepsin cysteine proteases play multiple roles in the life cycle of parasites such as food uptake, immune invasion and pathogenesis, making them valuable targets for diagnostic assays, vaccines and drugs. The purpose of this study was to identify a cathepsin B of Clonorchis sinensis (CsCB and to investigate its diagnostic value for human helminthiases. Results The predicted amino acid sequence of the cathepsin B of C. sinensis shared 63%, 52%, 50% identity with that of Schistosoma japonicum, Homo sapiens and Fasciola hepatica, respectively. Sequence encoding proenzyme of CsCB was overexpressed in Escherichia coli. Reverse transcription PCR experiments revealed that CsCB transcribed in both adult worm and metacercaria of C. sinensis. CsCB was identified as a C. sinensis excretory/secretory product by immunoblot assay, which was consistent with immunohistochemical localization showing that CsCB was especially expressed in the intestine of C. sinensis adults. Both ELISA and western blotting analysis showed recombinant CsCB could react with human sera from clonorchiasis and other helminthiases. Conclusions Our findings revealed that secreted CsCB may play an important role in the biology of C. sinensis and could be a diagnostic candidate for helminthiases.

  12. Functional Divergence among Silkworm Antimicrobial Peptide Paralogs by the Activities of Recombinant Proteins and the Induced Expression Profiles

    Science.gov (United States)

    Ye, Mingqiang; Deng, Xiaojuan; Yi, Huiyu; Huang, Yadong; Tan, Xiang; Han, Dong; Wang, Bo; Xiang, Zhonghuai; Cao, Yang; Xia, Qingyou

    2011-01-01

    Antimicrobial peptides are small-molecule proteins that are usually encoded by multiple-gene families. They play crucial roles in the innate immune response, but reports on the functional divergence of antimicrobial peptide gene families are rare. In this study, 14 paralogs of antimicrobial peptides belonging to cecropin, moricin and gloverin families were recombinantly expressed in pET expression systems. By antimicrobial activity tests, peptides representing paralogs in the same family of cecropin and moricin families, displayed remarkable differences against 10 tested bacteria. The evolutionary rates were relatively fast in the two families, which presented obvious functional divergence among paralogs of each family. Four peptides of gloverin family had similar antimicrobial spectrum and activity against tested bacteria. The gloverin family showed similar antimicrobial function and slow evolutionary rates. By induced transcriptional activity, genes encoding active antimicrobial peptides were upregulated at obviously different levels when silkworm pupae were infected by three types of microbes. Association analysis of antimicrobial activities and induced transcriptional activities indicated that the antimicrobial activities might be positively correlated with induced transcriptional activities in the cecropin and moricin families. These results suggest that representative BmcecB6, BmcecD and Bmmor as the major effector genes have broad antimicrobial spectrum, strong antimicrobial activity and high microbe-induced expression among each family and maybe play crucial roles in eliminating microbial infection. PMID:21479226

  13. Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis.

    Science.gov (United States)

    Cotton, James A; Bhargava, Amol; Ferraz, Jose G; Yates, Robin M; Beck, Paul L; Buret, Andre G

    2014-07-01

    Giardia duodenalis (syn. G. intestinalis, G. lamblia) infections are a leading cause of waterborne diarrheal disease that can also result in the development of postinfectious functional gastrointestinal disorders via mechanisms that remain unclear. Parasite numbers exceed 10(6) trophozoites per centimeter of gut at the height of an infection. Yet the intestinal mucosa of G. duodenalis-infected individuals is devoid of signs of overt inflammation. G. duodenalis infections can also occur concurrently with infections with other proinflammatory gastrointestinal pathogens. Little is known of whether and how this parasite can attenuate host inflammatory responses induced by other proinflammatory stimuli, such as a gastrointestinal pathogen. Identifying hitherto-unrecognized parasitic immunomodulatory pathways, the present studies demonstrated that G. duodenalis trophozoites attenuate secretion of the potent neutrophil chemoattractant interleukin-8 (CXCL8); these effects were observed in human small intestinal mucosal tissues and from intestinal epithelial monolayers, activated through administration of proinflammatory interleukin-1β or Salmonella enterica serovar Typhimurium. This attenuation is caused by the secretion of G. duodenalis cathepsin B cysteine proteases that degrade CXCL8 posttranscriptionally. Furthermore, the degradation of CXCL8 via G. duodenalis cathepsin B cysteine proteases attenuates CXCL8-induced chemotaxis of human neutrophils. Taken together, these data demonstrate for the first time that G. duodenalis trophozoite cathepsins are capable of attenuating a component of their host's proinflammatory response induced by a separate proinflammatory stimulus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines

    Directory of Open Access Journals (Sweden)

    Veridiana Gomes Virginio

    2017-01-01

    Full Text Available The adjuvant potential of two mesoporous silica nanoparticles (MSNs, SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP. The recombinant antigen (HSP70212-600, previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.

  15. Vaccination against Fasciola hepatica using cathepsin L3 and B3 proteases delivered alone or in combination.

    Science.gov (United States)

    Wesołowska, Agnieszka; Basałaj, Katarzyna; Norbury, Luke J; Sielicka, Alicja; Wędrychowicz, Halina; Zawistowska-Deniziak, Anna

    2018-01-30

    No licensed vaccine is currently available for prevention of Fasciola hepatica infections. However, considering the alarming increase in drug resistance, there is an urgent need for a safe and fully effective vaccine against fasciolosis. Here, we tested if cathepsins L (FhCL3-1, FhCL3-2) and B (FhCB3) secreted by juvenile liver flukes are viable vaccine targets when delivered alone or in combination in a rat model. Since control over the early immune response is crucial for parasite's establishment in its host, it was hypothesised that targeting fluke juvenile stages may prove beneficial. Moreover, it was assumed that selected antigens will act in a cumulative manner to interfere with liver fluke migration and thereby will reduce F. hepatica infection. Recombinant FhCL3-1 and FhCL3-2 delivered alone reduced liver fluke burdens by 47 % and 63 %, respectively. A trivalent vaccine containing rFhCL3-1/CL3-2/CB3 did not increase the protective vaccine efficacy compared to the rFhCL3-2 vaccinated group (53 %), although, reductions in liver fluke wet weight (statistically significant) and liver damage score were most pronounced. Further, the highest IgG1 and IgG2a levels were seen in rFhCL3-2 vaccinated rats, the group for which the highest reduction in worm burden was demonstrated. Moreover, IgG1 and IgG2a levels in vaccinated rats were significantly elevated compared to those reported for control groups up to 4 week post-infection. While the mechanism of protection remains unknown, it appears that it depends on vaccine-induced antibodies directed against cathepsins. The obtained results imply that F. hepatica juvenile-specific cathepsins are promising vaccine candidates that induce responses that successfully target early migratory liver fluke stages. Now, the challenge is to evaluate these juvenile-specific cathepsins for use in livestock. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cathepsin E deficiency impairs autophagic proteolysis in macrophages.

    Directory of Open Access Journals (Sweden)

    Takayuki Tsukuba

    Full Text Available Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE(-/- mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE(-/- macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE(-/- macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR, Akt, and extracellular signal-related kinase (ERK. Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE(-/- macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE(-/- cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE(-/- macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE(-/- macrophages showed increased reactive oxygen species (ROS production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress.

  17. Structure of a Kunitz-type potato cathepsin D inhibitor

    Czech Academy of Sciences Publication Activity Database

    Guo, J.; Erskine, P. T.; Coker, A. R.; Wood, S. P.; Cooper, J. B.; Mareš, Michael; Baudyš, Miroslav

    2015-01-01

    Roč. 192, č. 3 (2015), s. 554-560 ISSN 1047-8477 R&D Projects: GA ČR GA15-18929S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : potato cathepsin D inhibitor * Kunitz-type protease inhibitor * protein X-ray structure * reactive-site loop * docking Subject RIV: CE - Biochemistry Impact factor: 2.570, year: 2015

  18. The role of cathepsin B and cystatin C in the mechanisms of invasion by ovarian cancer.

    Science.gov (United States)

    Nishikawa, Hiroshi; Ozaki, Yasuhiko; Nakanishi, Tamao; Blomgren, Klas; Tada, Toyohiro; Arakawa, Atsushi; Suzumori, Kaoru

    2004-03-01

    The aim of this study was to investigate the contribution of cathepsin B and cystatin C to the mechanisms of invasion by ovarian cancer. Using surgical materials from patients with ovarian cancer, immunohistochemistry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting analysis were performed using antibodies against cathepsin B or cystatin C. Serum levels of cathepsin B and cystatin C in patients with benign and malignant ovarian lesions were determined by enzyme-linked immunosorbent assay (ELISA). An invasion assay using an ovarian cancer cell line was performed by addition of cystatin C or specific inhibitors of cathepsin B. While immunohistochemical staining of cathepsin B and cystatin C was evident in cancer cells and associated stromal tissue, this was not the case in benign tumors. The malignancies were also found to be positive for cathepsin B and cystatin C by SDS-PAGE and Western blotting analysis. No significant difference in serum cathepsin B levels was observed between patients with benign and malignant disease. However, the concentration of cystatin C in cases with ovarian cancer was significantly higher in benign cases (Pcancer cells was dose-dependently suppressed by cystatin C and cathepsin B inhibitors. The results provided convincing evidence that cathepsin B and cystatin C may contribute to the mechanisms of invasion of ovarian cancer.

  19. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  20. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  1. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  2. Taking out the garbage: cathepsin D and calcineurin in neurodegeneration.

    Science.gov (United States)

    Aufschnaiter, Andreas; Kohler, Verena; Büttner, Sabrina

    2017-11-01

    Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to maintain cellular health over decades. Thus, a functional decline of processes contributing to protein degradation such as autophagy and general lysosomal proteolytic capacity is connected to several age-associated neurodegenerative disorders, including Parkinson's, Alzheimer's and Huntington's diseases. These so called proteinopathies are characterized by the accumulation and misfolding of distinct proteins, subsequently driving cellular demise. We recently linked efficient lysosomal protein breakdown via the protease cathepsin D to the Ca2 + /calmodulin-dependent phosphatase calcineurin. In a yeast model for Parkinson's disease, functional calcineurin was required for proper trafficking of cathepsin D to the lysosome and for recycling of its endosomal sorting receptor to allow further rounds of shuttling. Here, we discuss these findings in relation to present knowledge about the involvement of cathepsin D in proteinopathies in general and a possible connection between this protease, calcineurin signalling and endosomal sorting in particular. As dysregulation of Ca2 + homeostasis as well as lysosomal impairment is connected to a plethora of neurodegenerative disorders, this novel interplay might very well impact pathologies beyond Parkinson's disease.

  3. Taking out the garbage: cathepsin D and calcineurin in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Andreas Aufschnaiter

    2017-01-01

    Full Text Available Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to maintain cellular health over decades. Thus, a functional decline of processes contributing to protein degradation such as autophagy and general lysosomal proteolytic capacity is connected to several age-associated neurodegenerative disorders, including Parkinson's, Alzheimer's and Huntington's diseases. These so called proteinopathies are characterized by the accumulation and misfolding of distinct proteins, subsequently driving cellular demise. We recently linked efficient lysosomal protein breakdown via the protease cathepsin D to the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for Parkinson's disease, functional calcineurin was required for proper trafficking of cathepsin D to the lysosome and for recycling of its endosomal sorting receptor to allow further rounds of shuttling. Here, we discuss these findings in relation to present knowledge about the involvement of cathepsin D in proteinopathies in general and a possible connection between this protease, calcineurin signalling and endosomal sorting in particular. As dysregulation of Ca2+ homeostasis as well as lysosomal impairment is connected to a plethora of neurodegenerative disorders, this novel interplay might very well impact pathologies beyond Parkinson's disease.

  4. Increased Plasma Cathepsin S at the Time of Percutaneous Transluminal Angioplasty is Associated with 6-Months’ Restenosis of the Femoropopliteal Artery

    Directory of Open Access Journals (Sweden)

    Mijovski Mojca Bozic

    2018-01-01

    Full Text Available Background: We tested the hypothesis that increased levels of cathepsin S and decreased levels of cystatin C in plasma at the time of percutaneous transluminal angioplasty (PTA are associated with the occurrence of 6-months’ restenosis of the femoropopliteal artery (FPA. Methods: 20 patients with restenosis and 24 matched patients with patent FPA after a 6-months follow-up were in - cluded in this study. They all exhibited disabling claudication or critical limb ischemia and had undergone technically successful PTA. They were all receiving statins and ACE in hi - bitors (or angiotensin II receptor antagonist before the PTA and the therapy did not change throughout the observational period. Plasma concentrations of C-reactive protein were < 10 mg/L and of creatinine within the reference range at the time of the PTA. Plasma concentration and activity of cathepsin S, together with its potent inhibitor cystatin C, were measured the day before and the day after the PTA. Results: The increased plasma concentration and activity of cathepsin S at the time of PTA was associated with the occurrence of 6-months’ restenosis of FPA, independently of established risk factors (lesion complexity, infrapopliteal run-off vessels, type of PTA, age, gender, smoking, diabetes, lipids and of cystatin C. Plasma cystatin C concentration was not associated with restenosis and did not correlate with cathepsin S activity and concentration in the plasma. Conclusion: Increased level of plasma cathepsin S at the time of PTA is associated with 6-months’ restenosis of PTA, independently of established risk factors.

  5. Expression of recombinant staphylokinase, a fibrin-specific plasminogen activator of bacterial origin, in potato (Solanum tuberosum L.) plants.

    Science.gov (United States)

    Gerszberg, Aneta; Wiktorek-Smagur, Aneta; Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Kononowicz, Andrzej K

    2012-03-01

    One of the most dynamically developing sectors of green biotechnology is molecular farming using transgenic plants as natural bioreactors for the large scale production of recombinant proteins with biopharmaceutical and therapeutic values. Such properties are characteristic of certain proteins of bacterial origin, including staphylokinase. For many years, work has been carried out on the use of this protein in thrombolytic therapy. In this study, transgenic Solanum tuberosum plants expressing a CaMV::sak-mgpf-gusA gene fusion, were obtained. AGL1 A. tumefaciens strain was used in the process of transformation. The presence of the staphylokinase gene was confirmed by PCR in 22.5% of the investigated plants. The expression of the fusion transgene was detected using the β-glucuronidase activity assay in 32 putative transgenic plants. Furthermore, on the basis of the GUS histochemical reaction, the transgene expression pattern had a strong, constitutive character in seven of the transformants. The polyacrylamide gel electrophoresis of a protein extract from the SAK/PCR-positive plants, revealed the presence of a119 kDa protein that corresponds to that of the fusion protein SAK-mGFP-GUSA. Western blot analysis, using an antibody against staphylokinase, showed the presence of the staphylokinase domain in the 119 kDa protein in six analyzed transformants. However, the enzymatic test revealed amidolytic activity characteristic of staphylokinase in the protein extract of only one plant. This is the first report on a Solanum tuberosum plant producing a recombinant staphylokinase protein, a plasminogen activator of bacterial origin.

  6. Cultured Mast Cells from Patients with Asthma and Controls Respond with Similar Sensitivity to Recombinant Der P2-Induced, IgE-Mediated Activation

    DEFF Research Database (Denmark)

    Krohn, I K; Sverrild, A; Lund, G

    2013-01-01

    for mite allergen Der p2. The sensitivity of IgE-mediated activation of mast cells was investigated as FcεRI-mediated upregulation of CD63. Ten subjects were atopic, defined as a positive skin prick test (>3 mm) to at least one of ten common allergens. After activation with recombinant Der p2, the maximum...

  7. Activation of coagulation by administration of recombinant factor VIIa elicits interleukin 6 (IL-6) and IL-8 release in healthy human subjects

    NARCIS (Netherlands)

    de Jonge, Evert; Friederich, Philip W.; Vlasuk, George P.; Rote, William E.; Vroom, Margaretha B.; Levi, Marcel; van der Poll, Tom

    2003-01-01

    The activation of coagulation has been shown to contribute to proinflammatory responses in animal and in vitro experiments. Here we report that the activation of coagulation in healthy human subjects by the administration of recombinant factor VIIa also elicits a small but significant increase in

  8. Application of synchrotron-radiation-based x-ray microprobe techniques for the analysis of recombination activity of metals precipitated at Si/SiGe misfit dislocations

    CERN Document Server

    Vyvenko, O F; Istratov, A A; Weber, E R; Kittler, M; Seifert, W

    2002-01-01

    In this study we report application of synchrotron-radiation-based x-ray microprobe techniques (the x-ray-beam-induced current (XBIC) and x-ray fluorescence (mu-XRF) methods) to the analysis of the recombination activity and space distribution of copper and iron in the vicinity of dislocations in silicon/silicon-germanium structures. A combination of these two techniques enables one to study the chemical nature of the defects and impurities and their recombination activity in situ and to map metal clusters with a micron-scale resolution. XRF analysis revealed that copper formed clearly distinguishable precipitates along the misfit dislocations. A proportional dependence between the XBIC contrast and the number of copper atoms in the precipitates was established. In hydrogen-passivated iron-contaminated samples we observed clusters of iron precipitates which had no recombination activity detectable by the XBIC technique as well as iron clusters which were not completely passivated.

  9. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: mvchuong@yahoo.fr [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  10. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity.

    Science.gov (United States)

    Fernandez-del-Carmen, Asun; Juárez, Paloma; Presa, Silvia; Granell, Antonio; Orzáez, Diego

    2013-02-20

    The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    International Nuclear Information System (INIS)

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-01-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by [ 3 H]thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3 + lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3 - lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection

  12. Activity in mice of recombinant BCG-EgG1Y162 vaccine for Echinococcus granulosus infection.

    Science.gov (United States)

    Ma, Xiumin; Zhao, Hui; Zhang, Fengbo; Zhu, Yuejie; Peng, Shanshan; Ma, Haimei; Cao, Chunbao; Xin, Yan; Yimiti, Delixiati; Wen, Hao; Ding, Jianbing

    2016-01-01

    Cystic hydatid disease is a zoonotic parasitic disease caused by Echinococcus granulosus which is distributed worldwide. The disease is difficult to treat with surgery removal is the only cure treatment. In the high endemic areas, vaccination of humans is believed a way to protect communities from the disease. In this study we vaccinated BALB/c mice with rBCG-EgG1Y162, and then detected the level of IgG and IgE specifically against the recombinant protein by ELISA, rBCG-EgG1Y162 induced strong and specific cellular and humoral immune responses. In vitro study showed that rBCG-EgG1Y162 vaccine not only promote splenocytes proliferation but also active T cell. In addition, the rBCG-EgG1Y162 induced a protection in the mice against secondary infection of Echinococcus granulosus.

  13. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal

    2003-01-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different...... consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic...... transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  14. EFFECT OF RECOMBINANT TISSUE-PLASMINOGEN ACTIVATOR ON INTRAABDOMINAL ABSCESS FORMATION IN RATS WITH GENERALIZED PERITONITIS

    NARCIS (Netherlands)

    van Goor, Harry; de Graaf, JS; Kooi, K; Sluiter, WJ; Bom, VJJ; van der Meer, J; Bleichrodt, RP

    1994-01-01

    BACKGROUND: During generalized peritonitis, intraabdominal fibrin deposition is stimulated whereas fibrinolytic activity is reduced, which predisposes intra-abdominal abscess formation. We investigated the effects of increasing the intra-abdominal fibrinolytic activity on abscess formation by

  15. Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Matarrese Paola

    2010-08-01

    Full Text Available Abstract Background Cathepsins represent a group of proteases involved in determining the metastatic potential of cancer cells. Among these are cysteinyl- (e.g. cathepsin B and cathepsin L and aspartyl-proteases (e.g. cathepsin D, normally present inside the lysosomes as inactive proenzymes. Once released in the extracellular space, cathepsins contribute to metastatic potential by facilitating cell migration and invasiveness. Results In the present work we first evaluated, by in vitro procedures, the role of cathepsins B, L and D, in the remodeling, spreading and invasiveness of eight different cell lines: four primary and four metastatic melanoma cell lines. Among these, we considered two cell lines derived from a primary cutaneous melanoma and from a supraclavicular lymph node metastasis of the same patient. To this purpose, the effects of specific chemical inhibitors of these proteases, i.e. CA-074 and CA-074Me for cathepsin B, Cathepsin inhibitor II for cathepsin L, and Pepstatin A for cathepsin D, were evaluated. In addition, we also analyzed the effects of the biological inhibitors of these cathepsins, i.e. specific antibodies, on cell invasiveness. We found that i cathepsin B, but not cathepsins L and D, was highly expressed at the surface of metastatic but not of primary melanoma cell lines and that ii CA-074, or specific antibodies to cathepsin B, hindered metastatic cell spreading and dissemination, whereas neither chemical nor biological inhibitors of cathepsins D and L had significant effects. Accordingly, in vivo studies, i.e. in murine xenografts, demonstrated that CA-074 significantly reduced human melanoma growth and the number of artificial lung metastases. Conclusions These results suggest a reappraisal of the use of cathepsin B inhibitors (either chemical or biological as innovative strategy in the management of metastatic melanoma disease.

  16. Cathepsin B Improves ß-Amyloidosis and Learning and Memory in Models of Alzheimer's Disease.

    Science.gov (United States)

    Embury, Christine M; Dyavarshetty, Bhagyalaxmi; Lu, Yaman; Wiederin, Jayme L; Ciborowski, Pawel; Gendelman, Howard E; Kiyota, Tomomi

    2017-06-01

    Amyloid-ß (Aß) precursor protein (APP) metabolism engages neuronal endolysosomal pathways for Aß processing and secretion. In Alzheimer's disease (AD), dysregulation of APP leads to excess Aß and neuronal dysfunction; suggesting that neuronal APP/Aß trafficking can be targeted for therapeutic gain. Cathepsin B (CatB) is a lysosomal cysteine protease that can lower Aß levels. However, whether CatB-modulation of Aß improves learning and memory function deficits in AD is not known. To this end, progenitor neurons were infected with recombinant adenovirus expressing CatB and recovered cell lysates subjected to proteomic analyses. The results demonstrated Lamp1 deregulation and linkages between CatB and the neuronal phagosome network. Hippocampal injections of adeno-associated virus expressing CatB reduced Aß levels, increased Lamp1 and improved learning and memory. The findings were associated with the emergence of c-fos + cells. The results support the idea that CatB can speed Aß metabolism through lysosomal pathways and as such reduce AD-associated memory deficits.

  17. Scalable Production of Recombinant Membrane Active Peptides and Its Potential as a Complementary Adjunct to Conventional Chemotherapeutics.

    Directory of Open Access Journals (Sweden)

    Hussin A Rothan

    Full Text Available The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH and Latarcin 1 (LATA were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer

  18. Cathepsin B as a potential cystatin M/E target in the mouse hair follicle

    Science.gov (United States)

    Oortveld, Merel A. W.; van Vlijmen-Willems, Ivonne M. J. J.; Kersten, Ferry F. J.; Cheng, Tsing; Verdoes, Martijn; van Erp, Piet E. J.; Verbeek, Sjef; Reinheckel, Thomas; Hendriks, Wiljan J. A. J.; Schalkwijk, Joost; Zeeuwen, Patrick L. J. M.

    2017-01-01

    Deficiency of the cysteine protease inhibitor cystatin M/E (Cst6) in mice leads to disturbed epidermal cornification, impaired barrier function, and neonatal lethality. We report the rescue of the lethal skin phenotype of ichq (Cst6-deficient; Cst6−/−) mice by transgenic, epidermis-specific, reexpression of Cst6 under control of the human involucrin (INV) promoter. Rescued Tg(INV-Cst6)Cst6ichq/ichq mice survive the neonatal phase, but display severe eye pathology and alopecia after 4 mo. We observed keratitis and squamous metaplasia of the corneal epithelium, comparable to Cst6−/−Ctsl+/− mice, as we have reported in other studies. We found the INV promoter to be active in the hair follicle infundibulum; however, we did not observe Cst6 protein expression in the lower regions of the hair follicle in Tg(INV-Cst6)Cst6ichq/ichq mice. This result suggests that unrestricted activity of proteases is involved in disturbance of hair follicle biology, eventually leading to baldness. Using quenched activity-based probes, we identified mouse cathepsin B (CtsB), which is expressed in the lower regions of the hair follicle, as an additional target of mouse Cst6. These data suggest that Cst6 is necessary to control CtsB activity in hair follicle morphogenesis and highlight Cst6-controlled proteolytic pathways as targets for preventing hair loss.—Oortveld, M. A. W., van Vlijmen-Willems, I. M. J. J., Kersten, F. F. J., Cheng, T., Verdoes, M., van Erp, P. E. J., Verbeek, S., Reinheckel, T., Hendriks, W. J. A. J., Schalkwijk, J., Zeeuwen, P. L. J. M. Cathepsin B as a potential cystatin M/E target in the mouse hair follicle. PMID:28596234

  19. Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay

    Science.gov (United States)

    Wang, Jingxian; Wu, Wenzhong; Henkelmann, Bernhard; You, Li; Kettrup, Antonius; Schramm, Karl-Werner

    Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

  20. Fibrinogen and fibrin are novel substrates for Fasciola hepatica cathepsin L peptidases

    NARCIS (Netherlands)

    Mebius, Mirjam M.; Op Heij, Jody M J; Tielens, Aloysius G.M.; de Groot, Philip G; Urbanus, Rolf T; van Hellemond, Jaap J.

    2018-01-01

    Cathepsin peptidases form a major component of the secreted proteins of the blood-feeding trematodes Fasciola hepatica and Schistosoma mansoni. These peptidases fulfill many functions, from facilitating infection to feeding and immune evasion. In this study, we examined the Fasciola cathepsin L

  1. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L

    DEFF Research Database (Denmark)

    Parker, Erica N; Song, Jiangli; Kishore Kumar, G D

    2015-01-01

    Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results fr...

  2. Prognostic and predictive value of cathepsin X in serum from colorectal cancer patients

    DEFF Research Database (Denmark)

    Vižin, Tjaša; Christensen, Ib Jarle; Wilhelmsen, Michael

    2014-01-01

    .4 SD, p > 0.05) and there was no association with age, gender, disease stage, tumour location or CEA. In univariate analysis no association between cathepsin X levels and overall survival was demonstrated for the entire set of patients, however, cathepsin X was associated with survival in a group...

  3. Cathepsins B, L and cystatin C in cyst fluid of ovarian tumors.

    NARCIS (Netherlands)

    Kolwijck, E.; Massuger, L.F.A.G.; Thomas, C.M.G.; Span, P.N.; Krasovec, M.; Kos, J.; Sweep, F.C.

    2010-01-01

    INTRODUCTION: In cancer, an extracellular and membrane bound localization of cathepsins contribute to the invasion of tumor cells at the basement membrane. METHODS: This is the first study that explored levels of cathepsins B (CatB), L (CatL) and their inhibitor cystatin C (CysC) in the cystic fluid

  4. Identification of Chalcones as Fasciola hepatica Cathepsin L Inhibitors Using a Comprehensive Experimental and Computational Approach.

    Directory of Open Access Journals (Sweden)

    Florencia Ferraro

    2016-07-01

    Full Text Available Increased reports of human infections have led fasciolosis, a widespread disease of cattle and sheep caused by the liver flukes Fasciola hepatica and Fasciola gigantica, to be considered an emerging zoonotic disease. Chemotherapy is the main control measure available, and triclabendazole is the preferred drug since is effective against both juvenile and mature parasites. However, resistance to triclabendazole has been reported in several countries urging the search of new chemical entities and target molecules to control fluke infections.We searched a library of forty flavonoid derivatives for inhibitors of key stage specific Fasciola hepatica cysteine proteases (FhCL3 and FhCL1. Chalcones substituted with phenyl and naphtyl groups emerged as good cathepsin L inhibitors, interacting more frequently with two putative binding sites within the active site cleft of the enzymes. One of the compounds, C34, tightly bounds to juvenile specific FhCL3 with an IC50 of 5.6 μM. We demonstrated that C34 is a slow-reversible inhibitor that interacts with the Cys-His catalytic dyad and key S2 and S3 pocket residues, determinants of the substrate specificity of this family of cysteine proteases. Interestingly, C34 induces a reduction in NEJ ability to migrate through the gut wall and a loss of motility phenotype that leads to NEJ death within a week in vitro, while it is not cytotoxic to bovine cells.Up to date there are no reports of in vitro screening for non-peptidic inhibitors of Fasciola hepatica cathepsins, while in general these are considered as the best strategy for in vivo inhibition. We have identified chalcones as novel inhibitors of the two main Cathepsins secreted by juvenile and adult liver flukes. Interestingly, one compound (C34 is highly active towards the juvenile enzyme reducing larval ability to penetrate the gut wall and decreasing NEJ´s viability in vitro. These findings open new avenues for the development of novel agents to control

  5. Identification of Chalcones as Fasciola hepatica Cathepsin L Inhibitors Using a Comprehensive Experimental and Computational Approach.

    Science.gov (United States)

    Ferraro, Florencia; Merlino, Alicia; Dell Oca, Nicolás; Gil, Jorge; Tort, José F; Gonzalez, Mercedes; Cerecetto, Hugo; Cabrera, Mauricio; Corvo, Ileana

    2016-07-01

    Increased reports of human infections have led fasciolosis, a widespread disease of cattle and sheep caused by the liver flukes Fasciola hepatica and Fasciola gigantica, to be considered an emerging zoonotic disease. Chemotherapy is the main control measure available, and triclabendazole is the preferred drug since is effective against both juvenile and mature parasites. However, resistance to triclabendazole has been reported in several countries urging the search of new chemical entities and target molecules to control fluke infections. We searched a library of forty flavonoid derivatives for inhibitors of key stage specific Fasciola hepatica cysteine proteases (FhCL3 and FhCL1). Chalcones substituted with phenyl and naphtyl groups emerged as good cathepsin L inhibitors, interacting more frequently with two putative binding sites within the active site cleft of the enzymes. One of the compounds, C34, tightly bounds to juvenile specific FhCL3 with an IC50 of 5.6 μM. We demonstrated that C34 is a slow-reversible inhibitor that interacts with the Cys-His catalytic dyad and key S2 and S3 pocket residues, determinants of the substrate specificity of this family of cysteine proteases. Interestingly, C34 induces a reduction in NEJ ability to migrate through the gut wall and a loss of motility phenotype that leads to NEJ death within a week in vitro, while it is not cytotoxic to bovine cells. Up to date there are no reports of in vitro screening for non-peptidic inhibitors of Fasciola hepatica cathepsins, while in general these are considered as the best strategy for in vivo inhibition. We have identified chalcones as novel inhibitors of the two main Cathepsins secreted by juvenile and adult liver flukes. Interestingly, one compound (C34) is highly active towards the juvenile enzyme reducing larval ability to penetrate the gut wall and decreasing NEJ´s viability in vitro. These findings open new avenues for the development of novel agents to control fluke infection and

  6. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  7. Activation of Recombinantly Expressed l-Amino Acid Oxidase from Rhizoctonia solani by Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Katharina Hahn

    2017-12-01

    Full Text Available l-Amino acid oxidases (l-AAO catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids. The non-covalently bound cofactor FAD is reoxidized by oxygen under formation of hydrogen peroxide. We expressed an active l-AAO from the fungus Rhizoctonia solani as a fusion protein in E. coli. Treatment with small amounts of the detergent sodium dodecyl sulfate (SDS stimulated the activity of the enzyme strongly. Here, we investigated whether other detergents and amphiphilic molecules activate 9His-rsLAAO1. We found that 9His-rsLAAO1 was also activated by sodium tetradecyl sulfate. Other detergents and fatty acids were not effective. Moreover, effects of SDS on the oligomerization state and the protein structure were analyzed. Native and SDS-activated 9His-rsLAAO1 behaved as dimers by size-exclusion chromatography. SDS treatment induced an increase in hydrodynamic radius as observed by size-exclusion chromatography and dynamic light scattering. The activated enzyme showed accelerated thermal inactivation and an exposure of additional protease sites. Changes in tryptophan fluorescence point to a more hydrophilic environment. Moreover, FAD fluorescence increased and a lower concentration of sulfites was sufficient to form adducts with FAD. Taken together, these data point towards a more open conformation of SDS-activated l-amino acid oxidase facilitating access to the active site.

  8. 76 FR 27653 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Science.gov (United States)

    2011-05-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Biotechnology Activities is updating Appendix D of the NIH Guidelines to include additional lines of... obtained from the Office of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive...

  9. 78 FR 12074 - Office of Biotechnology Activities; Recombinant DNA Research: Actions Under the NIH Guidelines...

    Science.gov (United States)

    2013-02-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... recommendations of the RAC, the NIH Office of Biotechnology Activities (OBA) concluded that more specific guidance... address or by fax at 301-496-9839 or by mail to the Office of Biotechnology Activities, National...

  10. Serum cathepsin H as a potential prognostic marker in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Schweiger, A; Christensen, Ib Jarle; Nielsen, Hans Jørgen

    2005-01-01

    Cathepsin H is a lysosomal cysteine protease that may participate in tumor progression. In order to evaluate its potential as a prognostic marker, its protein levels were measured by ELISA in preoperative sera from 324 patients with colorectal cancer. The level of cathepsin H was significantly...... increased in patient sera, the median level was 8.4 ng/mL versus 2.1 ng/mL in 90 healthy blood donors (p CEA). In survival analysis...... a significant difference was found between the group of patients with low cathepsin H (first tertile) who had a poor prognosis and the remaining patients (p = 0.03). The risk of patients was further stratified when cathepsin H levels were combined with CEA. Patients with high CEA and low cathepsin H had...

  11. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  12. Serum cathepsin B to cystatin C ratio as a potential marker for the diagnosis of cholangiocarcinoma.

    Science.gov (United States)

    Monsouvanh, Ammala; Proungvitaya, Tanakorn; Limpaiboon, Temduang; Wongkham, Chaisiri; Wongkham, Sopit; Luvira, Vor; Proungvitaya, Siriporn

    2014-01-01

    Cholangiocarcinoma (CCA) is a cancer of the bile duct epithelial cells. The highest incidence rate of CCA with a poor prognosis and poor response to chemotherapy is found in Southeast Asian countries, especially in northeastern Thailand and Lao PDR. Cathepsin B is a lysosomal cysteine protease which is regulated by cysteine proteinase inhibitors such as cystatin C. Elevation of cathepsin B levels in biological fluid has been observed in patients with inflammatory diseases and many cancers. We aimed to investigate the serum cathepsin B and cystatin C levels of CCA patients to evaluate the feasibility of using cathepsin B and cystatin C as markers for the diagnosis of CCA. Fifty-six sera from CCA patients, 17 with benign biliary diseases (BBD) and 13 from controls were collected and the cathepsin B and cystatin C levels were determined. In addition, cathepsin B expression was investigated immunohistochemically for 9 matched-pairs of cancerous and adjacent tissues of CCA patients. Serum cathepsin B, but not cystatin C, was significantly higher in CCA and BBD patient groups compared to that in the control group. Consistently, all cancerous tissues strongly expressed cathepsin B while adjacent tissues were negative in 7 out of 9 cases. In contrast, serum cystatin C levels were comparable between CCA and control groups, although serum cystatin C levels in the BBD group was higher than that in the control or CCA groups. When the serum cathepsin B to cystatin C ratio was calculated, that of the CCA group was significantly higher than that of the control group, and, although statistically not significant, the ratio of CCA group showed a trend to be higher than that of the BBD group. Thus, the cathepsin B to cystatin C ratio might be used as an alternative marker for aiding diagnosis of CCA.

  13. [Antiviral activity of recombinant interferon-alpha-2b in combination with certain antioxidant].

    Science.gov (United States)

    Vasil'ev, A N; Deriabin, P G; Galegov, G A

    2011-01-01

    In vitro activity of interferon-alpha-2b in combination with various antioxidants against the influenza virus and Herpes simplex was studied. The standard strains and a clinical strain of Herpes simplex isolated from a patient with resistance to acyclovir were used. The in vitro studie showed that antioxidants, such as alpho-tocoferol acetate (vitamin E), Unithiol and ascorbic acid had a significant antiinfluenzae and antiherpetic action on the influenza virus A/H5N1 and Herpes simplex variants. They protected up to 100% of the cell monolayer from the virus cytopathic effect. The taurin solutions had no antiviral activity irrespective of the infection dose. Combinations of interferon-alpha-2b with alpha-tocopherol acetate (vitamin E), Unithiol or ascorbic acid showed a significant synergistic effect: the antiviral activity of interferon increased several times. The antiinfluenza activity of interferon-a-2b in the presence of various concentrations of taurin did not change.

  14. Endogenous and recombinant type I interferons and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Krakauer, Martin; Limborg, Signe

    2012-01-01

    Although treatment of multiple sclerosis (MS) with the type I interferon (IFN) IFN-ß lowers disease activity, the role of endogenous type I IFN in MS remains controversial. We studied CD4+ T cells and CD4+ T cell subsets, monocytes and dendritic cells by flow cytometry and analysed the relationship...... with endogenous type I IFN-like activity, the effect of IFN-ß therapy, and clinical and magnetic resonance imaging (MRI) disease activity in MS patients. Endogenous type I IFN activity was associated with decreased expression of the integrin subunit CD49d (VLA-4) on CD4+CD26(high) T cells (Th1 helper cells......), and this effect was associated with less MRI disease activity. IFN-ß therapy reduced CD49d expression on CD4+CD26(high) T cells, and the percentage of CD4+CD26(high) T cells that were CD49d(high) correlated with clinical and MRI disease activity in patients treated with IFN-ß. Treatment with IFN-ß also increased...

  15. Recombinant tissue-type plasminogen activator and immediate angioplasty in acute myocardial infarction. : One-year follow up. The European Cooperative Study Group

    NARCIS (Netherlands)

    A.E.R. Arnold (Alfred); M.L. Simoons (Maarten); D.P. de Bono (David); J.G.P. Tijssen (Jan); P.W.J.C. Serruys (Patrick); M. Verstraete (Marc); J. Lubsen (Jacob); F.J.J. van de Werf (Frans)

    1992-01-01

    textabstractBACKGROUND. The European Cooperative Study Group conducted two randomized trials in patients with suspected myocardial infarction to assess the effect of 100 mg single-chain recombinant tissue-type plasminogen activator (rt-PA, alteplase) on enzymatic infarct size, left ventricular

  16. Reasons for the lack of benefit of immediate angioplasty during recombinant tissue plasminogen activator therapy for acute myocardial infarction: a regional wall motion analysis

    NARCIS (Netherlands)

    P.W.J.C. Serruys (Patrick); W.R. Rutsch (Wolfgang); M.L. Simoons (Maarten); D.P. de Bono (David); J.G.P. Tijssen (Jan); J. Lubsen (Jacob); M. Verstraete (Marc); A.E.R. Arnold (Alfred)

    1991-01-01

    textabstractRegional ventricular wall motion analysis utilizing three different methods was performed on predischarge left ventriculograms from 291 of 367 patients enrolled in a randomized trial of single chain recombinant tissue-type plasminogen activator (rt-PA), aspirin and heparin with and

  17. The biological activity of a recombinantly expressed (His)(6)-tagged peanut allergen (rAra h 1) is unaffected by endotoxin removal

    DEFF Research Database (Denmark)

    Jensen, Louise Bjerremann; Torp, Anna Maria; Andersen, Sven Bode

    2008-01-01

    The application of recombinant (His)(6)-tagged proteins in cell culture assays is associated with problems due to lipopolysaccharide (LPS) contamination. LPS stimulates cells of the immune system, thereby masking antigen-specific activation of T cells. Due to the affinity of LPS for histidine it ...

  18. Reasons for the lack of benefit of immediate angioplasty during recombinant tissue plasminogen activator therapy for acute myocardial infarction: a regional wall motion analysis. European Cooperative Study Group

    NARCIS (Netherlands)

    Arnold, A. E.; Serruys, P. W.; Rutsch, W.; Simoons, M. L.; de Bono, D. P.; Tijssen, J. G.; Lubsen, J.; Verstraete, M.

    1991-01-01

    Regional ventricular wall motion analysis utilizing three different methods was performed on predischarge left ventriculograms from 291 of 367 patients enrolled in a randomized trial of single chain recombinant tissue-type plasminogen activator (rt-PA), aspirin and heparin with and without immediate

  19. Increased volume of distribution for recombinant activated factor VII and longer plasma-derived factor VII half-life may explain their long lasting prophylactic effect

    NARCIS (Netherlands)

    Mathijssen, N.C.J.; Masereeuw, R.; Holme, P.A.; Kraaij, M.G.J. van; Laros, B.A.P.; Peyvandi, F.; Heerde, W.L. van

    2013-01-01

    INTRODUCTION: Prophylaxis with plasma-derived or recombinant activated factor VII is beneficial in severe factor VII deficiency. To understand why prophylactic treatment with both products is efficacious, we conducted a pharmacokinetic study. MATERIALS AND METHODS: Ten factor VII deficient patients

  20. Cathepsin D immobilized capillary reactors for on-flow screening assays.

    Science.gov (United States)

    Cornelio, Vivian Estevam; de Moraes, Marcela Cristina; Domingues, Vanessa de Cassia; Fernandes, João Batista; da Silva, Maria Fátima das Gracas Fernandes; Cass, Quezia Bezerra; Vieira, Paulo Cezar

    2018-03-20

    The treatment of diseases using enzymes as targets has called for the development of new and reliable methods for screening. The protease cathepsin D is one such target involved in several diseases such as tumors, degenerative processes, and vital processes of parasites causing schistosomiasis. Herein, we describe the preparation of a fused silica capillary, cathepsin D (CatD)-immobilized enzyme reactor (IMER) using in a multidimensional High Performance Liquid Chromatography-based method (2D-HPLC) and zonal affinity chromatography as an alternative in the search for new ligands. The activity and kinetic parameters of CatD-IMER were evaluated by monitoring the product MOCAc-Gly-Lys-Pro-Ile-Leu-Phe (P-MOCAc) (K M  = 81.9 ± 7.49 μmol/L) generated by cleavage of the fluorogenic substrate MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-d-Arg-NH2 (S-MOCAc). Stability studies have indicated that CatD-IMER retained 20% of activity after 5 months, a relevant result, because proteases are susceptible to autoproteolysis in solution assays with free enzyme. In the search for inhibitors, 12 crude natural product extracts were analyzed using CatD-IMER as the target, resulting in the isolation of different classes of natural products. In addition, 26 compounds obtained from different species of plants were also screened, demonstrating the efficiency and reproducibility of the herein reported assay even in the case of complex matrices such as plant crude extracts. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A convenient method for preparation of biologically active recombinant CHH of the kuruma prawn, Marsupenaeus japonicus, using the bacterial expression system.

    Science.gov (United States)

    Nagai, Chiaki; Asazuma, Hideaki; Nagata, Shinji; Ohira, Tsuyoshi; Nagasawa, Hiromichi

    2009-03-01

    Crustacean hyperglycemic hormone (CHH) not only plays an important role in the modulation of hemolymph glucose level but also functions in other biological events including molting, reproduction and stress response. Of the six CHHs characterized in Marsupenaeus japonicus, an expression system for recombinant Pej-SGP-VII (rPej-SGP-VII-amide) has not yet been established. Here, we established a procedure using a Nus-tag for solubilization, thereby soluble and biologically active rPej-SGP-VII-amide could successfully be obtained by a simpler procedure than previous ones used for producing other recombinant Pej-SGPs (Pej-SGP-I, III and IV). It was found that rPej-SGP-VII-amide thus obtained had the correct arrangement of intramolecular disulfide bonds and helix-rich secondary structure. The established expression system for rPej-SGP-VII-amide may be applicable for the preparation of other recombinant CHHs.

  2. Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases.

    OpenAIRE

    Ben-Artzi, H; Zeelon, E; Le-Grice, S F; Gorecki, M; Panet, A

    1992-01-01

    An in situ gel assay was applied to the study of double stranded RNA dependent RNase activity associated with reverse transcriptase (RT) of HIV-1 and murine leukemia virus. Polyacrylamide gels containing [32P] RNA/RNA substrate were used for electrophoresis of proteins under denaturing conditions. The proteins were renatured and in situ enzymatic degradation of 32P-RNA/RNA was followed. E. coli RNaseIII, but not E. coli RNaseH, was active in this in situ gel assay, indicating specificity of t...

  3. Role of the recombinant non-integrin platelet collagen receptor P65 on platelet activation induced by convulxin.

    Science.gov (United States)

    Francischetti, I M; Chiang, T M; Guimarães, J A; Bon, C

    2000-04-21

    Convulxin (Cvx) isolated from Crotalus durissus terrificus venom selectively binds with a high affinity to platelets and induces platelet aggregation by a mechanism that resembles that induced by collagen. Taking advantage that P65 has been recently cloned and expressed as a recombinant soluble protein (rec-P65), we examined the role of this non-integrin collagen receptor in platelet activation induced by Cvx. Rec-P65 blocked platelet adhesion to collagen-coated surfaces and inhibited platelet aggregation and ATP secretion induced by type I collagen. On the other hand, rec-P65 did not inhibit platelet aggregation and ATP secretion induced by Cvx, and it did not affect platelet adhesion to Cvx. In addition, ligand-blotting indicated that the Cvx binding to the collagen receptor GPVI was preserved in the presence of rec-P65. These observations indicate that P65 does not play a significant role in platelet activation by Cvx; in contrast, platelet response to collagen involves multiple receptors. Copyright 2000 Academic Press.

  4. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A

    Science.gov (United States)

    Botulinum neurotoxins (BoNT) have the unique capacity to cross epithelial barriers, target neuromuscular junctions, and translocate active metalloprotease component to the cytosol of motor neurons. We have taken advantage of the molecular carriers responsible for this trafficking to create a family ...

  5. 75 FR 42114 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Action Under the NIH...

    Science.gov (United States)

    2010-07-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... the breeding of a transgenic rodent and a non-transgenic rodent). The NIH Office of Biotechnology... Office of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, MSC...

  6. 75 FR 69687 - Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... to the NIH Office of Biotechnology Activities (OBA). The data to be considered for certifying a new... same e-mail address or by fax at 301-496-9839 or sent by U.S. mail to the Office of Biotechnology...

  7. 75 FR 28811 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-05-24

    ... Yersinia pestis has been submitted to the NIH Office of Biotechnology Activities (OBA) by the Institutional... while working with an attenuated strain of Yersinia pestis highlights that attenuated strains may be.../oba/index.html . SUPPLEMENTARY INFORMATION: Yersinia pestis is the causative organism for plague and...

  8. Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity

    Science.gov (United States)

    Schnorr, Kirk; Kramer, Randall

    2017-03-28

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse.

    Science.gov (United States)

    Diagne, Cheikh Tidiane; Salhi, Maya; Crozat, Estelle; Salomé, Laurence; Cornet, Francois; Rousseau, Philippe; Tardin, Catherine

    2014-02-01

    Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is thought to contribute to the assembly of the XerCD-dif synapse. In our study, direct observation of the assembly of the XerCD-dif synapse, which had previously eluded other methods, was made possible by the use of Tethered Particle Motion, a single molecule approach. We show that XerC, XerD and two dif sites suffice for the assembly of XerCD-dif synapses in absence of FtsK, but lead to inactive XerCD-dif synapses. We also show that the presence of the γ domain of FtsK increases the rate of synapse formation and convert them into active synapses where recombination occurs. Our results represent the first direct observation of the formation of the XerCD-dif recombination synapse and its activation by FtsK.

  10. Expression and biological activity of two recombinant polypeptides related to subunit 1 of the interferon-a receptor

    Directory of Open Access Journals (Sweden)

    S. Yoon

    2000-07-01

    Full Text Available Abnormal production of interferon alpha (IFN-a has been found in certain autoimmune diseases and can be also observed after prolonged therapy with IFN-a. IFN-a can contribute to the pathogenesis of allograft rejection in bone marrow transplants. Therefore, the development of IFN-a inhibitors as a soluble receptor protein may be valuable for the therapeutic control of these diseases. We have expressed two polypeptides encoding amino acids 93-260 (P1 and 261-410 (P2 of the extracellular domain of subunit 1 of the interferon-a receptor (IFNAR 1-EC in E. coli. The activities of the recombinant polypeptides and of their respective antibodies were evaluated using antiproliferative and antiviral assays. Expression of P1 and P2 polypeptides was achieved by transformation of cloned plasmid pRSET A into E. coli BL21(DE3pLysS and by IPTG induction. P1 and P2 were purified by serial sonication steps and by gel filtration chromatography with 8 M urea and refolded by dialysis. Under reducing SDS-PAGE conditions, the molecular weight of P1 and P2 was 22 and 17 kDa, respectively. Polyclonal anti-P1 and anti-P2 antibodies were produced in mice. P1 and P2 and their respective polyclonal antibodies were able to block the antiproliferative activity of 6.25 nM IFN-aB on Daudi cells, but did not block IFN-aB activity at higher concentrations (>6.25 nM. On the other hand, the polypeptides and their respective antibodies did not inhibit the antiviral activity of IFN-aB on Hep 2/c cells challenged with encephalomyocarditis virus.

  11. Peptidoglycan degrading activity of the broad-range Salmonella bacteriophage S-394 recombinant endolysin.

    Science.gov (United States)

    Legotsky, Sergey A; Vlasova, Ksenia Yu; Priyma, Anastasia D; Shneider, Mikhail M; Pugachev, Vladimir G; Totmenina, Olga D; Kabanov, Alexander V; Miroshnikov, Konstantin A; Klyachko, Natalia L

    2014-12-01

    The use of bacteriophage endolysins as specific antibacterial agents is a prospective strategy to treat bacterial infections caused by antibiotic-resistant pathogens. In case of Gram-negative species this strategy has limited applications since outer membrane shields the enzyme target and prevents bacteria lysis. We aimed to obtain and characterize the endolysin of the newly discovered anti-Salmonella bacteriophage S-394 (Lys394) and to choose an appropriate permeabilizing agent to disrupt Escherichia coli cells suspended in buffer solution and grown on agar surface. Lys394 synthesized in E. coli C41(DE3) was obtained as an electrophoretically homogenous protein. The protein of 18 kDa molecular weight shows high muralytic activity against various genera of chloroform treated Gram-negatives. Maximum of enzyme activity was observed at pH 8.5 and low ionic strength. In silico analysis of amino acid sequence identified Lys394 as an endopeptidase. Various outer membrane permeabilizers were analyzed in combination with Lys394 to degrade laboratory strain of E. coli CR63. Permeabilizing activity was evaluated using a periplasmic β-lactamase leakage test with untreated E. coli cells as a substrate. The highest rate of planktonic E. coli lysis was reached for Lys394 applied together with 25 μg/ml of poly-l-arginine with molecular weight distribution from 5 to 15 kDa or 20 μg/ml PGLa peptide. Lawn E. coli colony forming ability was decreased by 4 orders of magnitude after 30 min treatment with 25 μg of Lys394, 1 mM EDTA and 50 μg/ml of PGLa peptide at a room temperature. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  12. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  13. Expression of cathepsin D in bladder carcinoma: correlation with pathological features and serum cystatin C levels.

    Science.gov (United States)

    Tokyol, Cidğem; Köken, Tülay; Demirbas, Murat; Dilek, Fatma Hüsniye; Yörükoglu, Kutsal; Mungan, Ugur; Kirkali, Ziya

    2006-01-01

    The aim of this study is to evaluate the expression of cathepsin D in primary bladder cancer and to determine its relationship with conventional pathological features and serum cystatin C levels. The immunohistochemical cathepsin D expression and staining patterns of epithelial and stromal cells were investigated in 21 patients with primary bladder carcinoma. Serum cystatin C levels were determined by immunoturbidimetry and compared with matched controls. There were 7 papillary neoplasms of low malignant potential, 7 low-grade and 7 high-grade carcinomas. Six tumors were invasive. Statistical analysis showed a significant inverse relationship between cathepsin D expression of the tumor cells and tumor grade and stage (P = 0.018 and P = 0.046, respectively). Serum cystatin C levels of the controls and patients varied between 0.39 mg/L and 1.99 mg/L (P > 0.05). There was no significant relation between cathepsin D expression in tumor tissue and serum cystatin C levels. Loss of cathepsin D expression in bladder carcinomas may be associated with high-grade and invasive tumors. Thus, increased cathepsin D expression by tumor cells may be related to local tumor invasion at an early stage, but it seems that extracellular cystatin C is not affected by cathepsin D expression of tumor or stromal cells, and cystatin C concentrations are not directly correlated with the progression of primary bladder carcinomas.

  14. Analysis of the Peroxidase Activity of Rice (Oryza Sativa) Recombinant Hemoglobin 1: Implications for the In Vivo Function of Hexacoordinate Non-Symbiotic Hemoglobins in Plants

    Science.gov (United States)

    In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about the peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH ...

  15. A SEP tag enhances the expression, solubility and yield of recombinant TEV protease without altering its activity.

    Science.gov (United States)

    Nautiyal, Kalpana; Kuroda, Yutaka

    2018-02-12

    Tobacco Etch Virus (TEV) protease is used in the purification of recombinant proteins, but its usage is often hampered by solubility issues. Here, we report a short, 12-residue solubility enhancing peptide (SEP) tag attached at the C-terminus of TEV (TEV-C9R). We assessed the effects of the C9R tag on the biophysical and biochemical characteristics of TEV. The yield of HPLC purified TEV-C9R expressed in E. coli grown in 200 mL LB or TB media was between 10 and 13 mg, which was up to 6.5 times higher than the yield of the untagged TEV (untagged-TEV). TEV-C9R was active over a pH range of 5-8, which was wider than that of the commonly used thrombin, and it remained active upon incubation at 60 °C much longer than the untagged-TEV, which aggregated at this temperature. Static and dynamic light scattering demonstrated the higher solubility of purified TEV-C9R. Furthermore, the thermal unfolding of TEV-C9R, as assessed by circular dichroism at pH 4.7, was almost perfectly reversible, in contrast to that of untagged-TEV, which aggregated at high temperature. These results demonstrate the improved biophysical and biochemical characteristics of TEV-C9R originating from higher solubility and provide another example of how SEP tags can enhance enzyme solubility without altering its activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Mutations in Recombination Activating Gene 1 and 2 in patients with severe combined immunodeficiency disorders in Egypt.

    Science.gov (United States)

    Meshaal, Safa; El Hawary, Rabab; Elsharkawy, Marwa; Mousa, Reem K; Farid, Reem J; Abd Elaziz, Dalia; Alkady, Radwa; Galal, Nermeen; Massaad, Michel J; Boutros, Jeannette; Elmarsafy, Aisha

    2015-06-01

    The Recombination Activating Genes (RAG) 1/2 are important for the development and function of T and B cells. Loss of RAG1/2 function results in severe combined immunodeficiency (SCID), which could lead to early death. We studied the prevalence of RAG1/2 mutations in ten SCID patients in Egypt. We identified two novel homozygous nonsense mutations in RAG1, a novel homozygous deletion, and a previously reported homozygous missense mutation from four patients, as well as two homozygous mutations in RAG2 from the same patient. Prenatal diagnosis performed in the mother of a patient with RAG1 deficiency determined that the fetus was heterozygous for the same mutation. This represents the first report on RAG1/2 mutations in SCID patients in Egypt. The early diagnosis dramatically affects the outcome of the disease by allowing bone marrow transplantation at an early age, and providing prenatal diagnosis and genetic counseling for families with a history of SCID. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs

    Science.gov (United States)

    Dumont, Jennifer A.; Liu, Tongyao; Low, Susan C.; Zhang, Xin; Kamphaus, George; Sakorafas, Paul; Fraley, Cara; Drager, Douglas; Reidy, Thomas; McCue, Justin; Franck, Helen W. G.; Merricks, Elizabeth P.; Nichols, Timothy C.; Bitonti, Alan J.; Pierce, Glenn F.

    2012-01-01

    Despite proven benefits, prophylactic treatment for hemophilia A is hampered by the short half-life of factor VIII. A recombinant factor VIII-Fc fusion protein (rFVIIIFc) was constructed to determine the potential for reduced frequency of dosing. rFVIIIFc has an ∼ 2-fold longer half-life than rFVIII in hemophilia A (HemA) mice and dogs. The extension of rFVIIIFc half-life requires interaction of Fc with the neonatal Fc receptor (FcRn). In FcRn knockout mice, the extension of rFVIIIFc half-life is abrogated, and is restored in human FcRn transgenic mice. The Fc fusion has no impact on FVIII-specific activity. rFVIIIFc has comparable acute efficacy as rFVIII in treating tail clip injury in HemA mice, and fully corrects whole blood clotting time (WBCT) in HemA dogs immediately after dosing. Furthermore, consistent with prolonged half-life, rFVIIIFc shows 2-fold longer prophylactic efficacy in protecting HemA mice from tail vein transection bleeding induced 24-48 hours after dosing. In HemA dogs, rFVIIIFc also sustains partial correction of WBCT 1.5- to 2-fold longer than rFVIII. rFVIIIFc was well tolerated in both species. Thus, the rescue of FVIII by Fc fusion to provide prolonged protection presents a novel pathway for FVIII catabolism, and warrants further investigation. PMID:22246033

  18. Massive Pulmonary Embolism: Treatment with Thrombus Fragmentation and Local Fibrinolysis with Recombinant Human-Tissue Plasminogen Activator

    International Nuclear Information System (INIS)

    Stock, Klaus Wilhelm; Jacob, Augustinus Ludwig; Schnabel, Karl Jakob; Bongartz, Georg; Steinbrich, Wolfgang

    1997-01-01

    Purpose: To report the results of thrombus fragmentation in combination with local fibrinolysis using recombinant human-tissue plasminogen activator (rtPA) in patients with massive pulmonary embolism. Methods: Five patients with massive pulmonary embolism were treated with thrombus fragmentation followed by intrapulmonary injection of rtPA. Clot fragmentation was performed with a guidewire, angiographic catheter, and balloon catheter. Three patients had undergone recent surgery; one of them received a reduced dosage of rtPA. Results: All patients survived and showed clinical improvement with a resultant significant (p < 0.05) decrease in the pulmonary blood pressure (mean systolic pulmonary blood pressure before treatment, 49 mmHg; 4 hr after treatment, 28 mmHg). Angiographic follow-up in three patients revealed a decrease in thrombus material and an increase in pulmonary perfusion. Two patients developed retroperitoneal hematomas requiring transfusion. Conclusion: Clot fragmentation and local fibrinolysis with rtPA was an effective therapy for massive pulmonary embolism. Bleeding at the puncture site was a frequent complication

  19. Solubilization and folding of a fully active recombinant Gaussia luciferase with native disulfide bonds by using a SEP-Tag.

    Science.gov (United States)

    Rathnayaka, Tharangani; Tawa, Minako; Nakamura, Takashi; Sohya, Shihori; Kuwajima, Kunihiro; Yohda, Masafumi; Kuroda, Yutaka

    2011-12-01

    Gaussia luciferase (GLuc) is the smallest known bioluminescent protein and is attracting much attention as a potential reporter protein. However, its 10 disulfide bond forming cysteines have hampered the efficient production of recombinant GLuc and thus limited its use in bio-imaging application. Here, we demonstrate that the addition of a short solubility enhancement peptide tag (SEP-Tag) to the C-terminus of GLuc (GLuc-C9D) significantly increased the fraction of soluble protein at a standard expression temperature. The expression time was much shorter, and the final yield of GLuc-C9D was significantly higher than with our previous pCold expression system. Reversed phase HPLC indicated that the GLuc-C9D variant folded with a single disulfide bond pattern after proper oxidization. Further, the thermal denaturation of GLuc-C9D was completely reversible, and its secondary structure content remained unchanged until 40°C as assessed by CD spectroscopy. The (1)H-NMR spectrum of GLuc indicated sharp well dispersed peaks typical for natively folded proteins. GLuc-C9D bioluminescence activity was strong and fully retained even after incubation at high temperatures. These results suggest that solubilization using SEP-Tags can be useful for producing large quantities of proteins containing multiple disulfide bonds. Copyright © 2011. Published by Elsevier B.V.

  20. Expression of active secreted forms of human amyloid beta-protein precursor by recombinant baculovirus-infected insect cells.

    OpenAIRE

    Bhasin, R; Van Nostrand, W E; Saitoh, T; Donets, M A; Barnes, E A; Quitschke, W W; Goldgaber, D

    1991-01-01

    Three alternatively spliced forms of the amyloid precursor protein (APP), APP-695, APP-751, and APP-770, were expressed in the baculovirus expression vector system. The recombinant proteins were secreted into the culture medium by infected insect cells, and APP molecules were detected in insect cells and medium 2 days after infection with the recombinant APP-baculoviruses. A partial sequence of the NH2 terminus of the secreted protein revealed identity with the native secreted protein and sho...

  1. Inhibitory selectivity of canecystatin: a recombinant cysteine peptidase inhibitor from sugarcane

    International Nuclear Information System (INIS)

    Oliva, Maria Luiza Vilela; Carmona, Adriana K.; Andrade, Sheila S.; Cotrin, Simone S.; Soares-Costa, Andrea; Henrique-Silva, Flavio

    2004-01-01

    The cDNA of a cystein peptidase inhibitor was isolated from sugarcane and expressed in Escherichia coli. The protein, named canecystatin, has previously been shown to exert antifungal activity on the filamentous fungus Trichoderma reesei. Herein, the inhibitory specificity of canecystatin was further characterized. It inhibits the cysteine peptidases from plant source papain (K i =3.3 nM) and baupain (K i =2.1x10 -8 M), but no inhibitory effect was observed on ficin or bromelain. Canecystatin also inhibits lysosomal cysteine peptidases such as human cathepsin B (K i =125 nM), cathepsin K (K i =0.76 nM), cathepsin L (K i =0.6 nM), and cathepsin V (K i =1.0 nM), but not the aspartyl peptidase cathepsin D. The activity of serine peptidases such as trypsin, chymotrypsin, pancreatic, and neutrophil elastases, and human plasma kallikrein is not affected by the inhibitor, nor is the activity of the metallopeptidases angiotensin converting enzyme and neutral endopeptidase. This is the first report of inhibitory activity of a sugarcane cystatin on cysteine peptidases

  2. Colorimetric activity measurement of a recombinant putrescine N-methyltransferase from Datura stramonium.

    Science.gov (United States)

    Biastoff, Stefan; Teuber, Michael; Zhou, Zhaohui Sunny; Dräger, Birgit

    2006-10-01

    Putrescine N-methyltransferase (PMT, EC 2.1.1.53) catalyses the S-adenosyl- L-methionine (SAM or AdoMet)-dependent methylation of putrescine to N-methylputrescine within the biosynthetic pathways of calystegines, nicotine, and tropane alkaloids in medicinal plants and produces S-adenosyl- L-homocysteine (SAH or AdoHcy). Determination of PMT activity was time-consuming and hardly reproducible in the past because it required tedious separation steps after chemical derivatisation or radioactive labelling of N-methylputrescine. A convenient and accurate enzyme-coupled colorimetric assay is based on the conversion of SAH to homocysteine by 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase (MTAN/SAHN, EC 3.2.2.9) and S-ribosylhomocysteine lyase (LuxS, EC 4.4.1.21). Homocysteine is quantified by 5,5'-dithiobis-2-nitrobenzoic acid. Putrescine was shown not to interfere with MTAN or LuxS. The colorimetric assay was validated by HPLC analysis. K(m) values determined by the assay, 108 microM for putrescine and 42 microM for SAM, are lower than the previously reported values, due to alleviation of PMT inhibition by SAH. DTNB:5,5'-dithiobis-2-nitrobenzoic acid LuxS: S-ribosylhomocysteine lyase MTAN:5'-methylthioadenosine nucleosidase PMT:putrescine N-methyltransferase SAH: S-adenosyl- L-homocysteine SAM: S-adenosyl- L-methionine TNB:2-nitro-5-thiobenzoic acid.

  3. Recombinant human lactoferrin as a biomaterial for bone tissue engineering: mechanism of antiapoptotic and osteogenic activity.

    Science.gov (United States)

    Amini, Ashley A; Nair, Lakshmi S

    2014-06-01

    Lactoferrin is a bioactive globular protein with unique properties towards musculo-skeletal cells and anabolic to bone in vivo. Even though the potent anti-apoptotic and osteogenic activity of lactoferrin has been reported, the mechanism of action has not been fully elucidated. The study demonstrates that the anti-apoptotic effect of rhLF towards MC3T3 pre-osteoblast cells is mediated by Wnt5a/PKA pathway and the stabilization of β-catenin by rhLF is dependent on PKA/LRP6 signaling pathway. The study also investigates the feasibility of developing rhLF as a biomaterial for cell delivery. The injectable rhLF cell delivery vehicles are prepared by enzymatic crosslinking of tyramine-modified rhLF in the presence of hydrogen peroxide and horseradish peroxidase. The modified rhLF shows bioactivity similar to unmodified rhLF. The rhLF gels support encapsulated MC3T3 cell viability, proliferation, and differentiation, as well as phosphorylation of signaling proteins. In conclusion, the study demonstrates the involvement of Wnt5a, LRP6, and PKA signaling in rhLF-mediated bioactivity towards MC3T3 cells and the feasibility of developing an injectable cell delivery vehicle from rhLF. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells.

    Science.gov (United States)

    Amantini, Consuelo; Morelli, Maria Beatrice; Santoni, Matteo; Soriani, Alessandra; Cardinali, Claudio; Farfariello, Valerio; Eleuteri, Anna Maria; Bonfili, Laura; Mozzicafreddo, Matteo; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2015-01-01

    Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells.

  5. Reduced cathepsins B and D cause impaired autophagic degradation that can be almost completely restored by overexpression of these two proteases in Sap C-deficient fibroblasts.

    Science.gov (United States)

    Tatti, Massimo; Motta, Marialetizia; Di Bartolomeo, Sabrina; Scarpa, Susanna; Cianfanelli, Valentina; Cecconi, Francesco; Salvioli, Rosa

    2012-12-01

    Saposin (Sap) C deficiency, a rare variant form of Gaucher disease, is due to mutations in the Sap C coding region of the prosaposin (PSAP) gene. Sap C is required as an activator of the lysosomal enzyme glucosylceramidase (GCase), which catalyzes glucosylceramide (GC) degradation. Deficit of either GCase or Sap C leads to the accumulation of undegraded GC and other lipids in lysosomes of monocyte/macrophage lineage. Recently, we reported that Sap C mutations affecting a cysteine residue result in increased autophagy. Here, we characterized the basis for the autophagic dysfunction. We analyzed Sap C-deficient and GCase-deficient fibroblasts and observed that autophagic disturbance was only associated with lack of Sap C. By a combined fluorescence microscopy and biochemical studies, we demonstrated that the accumulation of autophagosomes in Sap C-deficient fibroblasts is not due to enhanced autophagosome formation but to delayed degradation of autolysosomes caused, in part, to decreased amount and reduced enzymatic activity of cathepsins B and D. On the contrary, in GCase-deficient fibroblasts, the protein level and enzymatic activity of cathepsin D were comparable with control fibroblasts, whereas those of cathepsin B were almost doubled. Moreover, the enhanced expression of both these lysosomal proteases in Sap C-deficient fibroblasts resulted in close to functional autophagic degradation. Our data provide a novel example of altered autophagy as secondary event resulting from insufficient lysosomal function.

  6. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C?*.

    Science.gov (United States)

    Opal, Steven M; Dellinger, R Phillip; Vincent, Jean-Louis; Masur, Henry; Angus, Derek C

    2014-07-01

    The developmental pipeline for novel therapeutics to treat sepsis has diminished to a trickle compared to previous years of sepsis research. While enormous strides have been made in understanding the basic molecular mechanisms that underlie the pathophysiology of sepsis, a long list of novel agents have now been tested in clinical trials without a single immunomodulating therapy showing consistent benefit. The only antisepsis agent to successfully complete a phase III clinical trial was human recumbent activated protein C. This drug was taken off the market after a follow-up placebo-controlled trial (human recombinant activated Protein C Worldwide Evaluation of Severe Sepsis and septic Shock [PROWESS SHOCK]) failed to replicate the favorable results of the initial registration trial performed ten years earlier. We must critically reevaluate our basic approach to the preclinical and clinical evaluation of new sepsis therapies. We selected the major clinical studies that investigated interventional trials with novel therapies to treat sepsis over the last 30 years. Phase II and phase III trials investigating new treatments for sepsis and editorials and critiques of these studies. Selected manuscripts and clinical study reports were analyzed from sepsis trials. Specific shortcomings and potential pit falls in preclinical evaluation and clinical study design and analysis were reviewed and synthesized. After review and discussion, a series of 12 recommendations were generated with suggestions to guide future studies with new treatments for sepsis. We need to improve our ability to define appropriate molecular targets for preclinical development and develop better methods to determine the clinical value of novel sepsis agents. Clinical trials must have realistic sample sizes and meaningful endpoints. Biomarker-driven studies should be considered to categorize specific "at risk" populations most likely to benefit from a new treatment. Innovations in clinical trial design

  7. Activation processing of cathepsin H impairs recognition by its propeptide

    Czech Academy of Sciences Publication Activity Database

    Horn, Martin; Marešová, Lucie; Rulíšek, Lubomír; Máša, Martin; Vasiljeva, O.; Turk, B.; Gan-Erdene, T.; Baudyš, Miroslav; Mareš, Michael

    2005-01-01

    Roč. 386, - (2005), s. 941-947 ISSN 1431-6730 R&D Projects: GA ČR(CZ) GP203/01/D008; GA AV ČR(CZ) IAA4055303; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : aminopeptidase * cysteine peptidase * inhibition Subject RIV: CE - Biochemistry Impact factor: 2.577, year: 2005

  8. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice.

    Science.gov (United States)

    Dong, Hui; Huang, Yanmei; Yao, Shuwen; Liang, Bingshao; Long, Yan; Xie, Yongqiang; Mai, Jialiang; Gong, Sitang; Zhou, Zhenwen

    2017-07-01

    The neutrophil-activating protein of Helicobacter pylori (HP-NAP) has been identified as a modulator with anti-Th2 inflammation activity, and cholera toxin B (CTB) is a mucosal adjuvant that can also induce antigen tolerance. In this study, we constructed a CTB-NAP fusion protein on the surface of Bacillus subtilis spore and evaluate the efficiency of oral administration of the recombinant CTB-NAP spores in preventing asthma in mice. Oral administration of recombinant CTB or CTB-NAP spores significantly decreased serum ovalbumin (OVA)-specific IgE (p recombinant spores. Oral administration of recombinant CTB or CTB-NAP spores induced IL-10 and IFN-γ expression and reduced IL-4 levels in bronchoalveolar lavage fluid (BALF). Moreover, CTB and CTB-NAP spores reduced the eosinophils in BALF and inflammatory cell infiltration in the lungs. Furthermore, CD4 + CD25 + Foxp3 + Tregs in splenocytes were significantly increased in mice treated with recombinant CTB or CTB-NAP spores. The number of CD4 + CD25 + Foxp3 + Tregs caused by CTB-NAP was higher than that by CTB alone. Our study indicated that B. subtilis spores with surface expression of subunit CTB or CTB-NAP could inhibit OVA-induced allergic inflammation in mice. The attenuated inflammation was attributed to the induction of CD4 + CD25 + Foxp3 + Tregs and IgA. Moreover, the fusion protein CTB-NAP demonstrated a better efficiency than CTB alone in inhibiting the inflammation.

  9. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  10. Azilsartan increases levels of IL-10, down-regulates MMP-2, MMP-9, RANKL/RANK, Cathepsin K and up-regulates OPG in an experimental periodontitis model.

    Directory of Open Access Journals (Sweden)

    Aurigena Antunes de Araújo

    Full Text Available AIMS: The aim of this study was to evaluate the effects of azilsartan (AZT on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs, receptor activator of nuclear factor κB ligand (RANKL, receptor activator of nuclear factor κB (RANK, osteoprotegerin (OPG, cyclooxygenase-2 (COX-2, and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. MATERIALS AND METHODS: Male Wistar albino rats were randomly divided into 5 groups of 10 rats each: (1 nonligated, water; (2 ligated, water; (3 ligated, 1 mg/kg AZT; (4 ligated, 5 mg/kg AZT; and (5 ligated, 10 mg/kg AZT. All groups were treated with saline or AZT for 10 days. Periodontal tissues were analyzed by histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1β, IL-10, TNF-α, myeloperoxidase (MPO, and glutathione (GSH were determined by ELISA. RESULTS: Treatment with 5 mg/kg AZT resulted in reduced MPO (p<0.05 and IL-1β (p<0.05, increased levels of IL-10 (p<0.05, and reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and increased expression of OPG. CONCLUSIONS: These findings reveal that AZT increases anti-inflammatory cytokines and GSH and decreases bone loss in ligature-induced periodontitis in rats.

  11. The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development.

    Directory of Open Access Journals (Sweden)

    Violeta Morin

    Full Text Available Proteolysis of sperm histones in the sea urchin male pronucleus is the consequence of the activation at fertilization of a maternal cysteine protease. We previously showed that this protein is required for male chromatin remodelling and for cell-cycle progression in the newly formed embryos. This enzyme is present in the nucleus of unfertilized eggs and is rapidly recruited to the male pronucleus after insemination. Interestingly, this cysteine-protease remains co-localized with chromatin during S phase of the first cell cycle, migrates to the mitotic spindle in M-phase and is re-located to the nuclei of daughter cells after cytokinesis. Here we identified the protease encoding cDNA and found a high sequence identity to cathepsin proteases of various organisms. A phylogenetical analysis clearly demonstrates that this sperm histone protease (SpHp belongs to the cathepsin L sub-type. After an initial phase of ubiquitous expression throughout cleavage stages, SpHp gene transcripts become restricted to endomesodermic territories during the blastula stage. The transcripts are localized in the invaginating endoderm during gastrulation and a gut specific pattern continues through the prism and early pluteus stages. In addition, a concomitant expression of SpHp transcripts is detected in cells of the skeletogenic lineage and in accordance a pharmacological disruption of SpHp activity prevents growth of skeletal rods. These results further document the role of this nuclear cathepsin L during development.

  12. Cathepsin D polymorphism in Italian sporadic and familial Alzheimer's disease.

    Science.gov (United States)

    Bagnoli, Silvia; Nacmias, Benedetta; Tedde, Andrea; Guarnieri, Bianca Maria; Cellini, Elena; Ciantelli, Monica; Petruzzi, Concetta; Bartoli, Antonella; Ortenzi, Luigi; Serio, Antonio; Sorbi, Sandro

    2002-08-16

    A recent study has shown that a genetic variation in the Cathepsin D (catD) gene is a major risk factor for the development of Alzheimer's disease (AD). CatD is an intracellular aspartyl protease involved in neurodegeneration. A C-->T (Ala-->Val) transition at position 224 has been associated with altered intracellular maturation. Recently, a significant overrepresentation of the T allele of the catD gene in AD patients compared with controls was reported. However, this finding has not yet been confirmed. We analyzed the distribution of catD and apolipoprotein E polymorphisms in Italian patients with sporadic and familial AD (FAD). Our studies revealed that the distribution of catD polymorphism did not differ in AD and FAD patients and controls. Thus, our data do not support a role for the catD gene as a genetic risk factor in the development of AD.

  13. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    Science.gov (United States)

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  14. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    Directory of Open Access Journals (Sweden)

    Suman Kumar Nandy

    Full Text Available Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  15. Production of Active Nonglycosylated Recombinant B-Chain of Type-2 Ribosome-Inactivating Protein from Viscum articulatum and Its Biological Effects on Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Tzu-Li Lu

    2011-01-01

    Full Text Available Type-2 ribosome-inactivating proteins, composed of a toxic A-chain and lectin-like B-chain, display various biological functions, including cytotoxicity and immunomodulation. We here cloned the lectin-like B-chain encoding fragment of a newly identified type-2 RIP gene, articulatin gene, from Viscum articulatum, into a bacterial expression vector to obtain nonglycosylated recombinant protein expressed in inclusion bodies. After purification and protein refolding, soluble refolded recombinant articulatin B-chain (rATB showed lectin activity specific toward galactoside moiety and was stably maintained while stored in low ionic strength solution. Despite lacking glycosylation, rATB actively bound leukocytes with preferential binding to monocytes and in vitro stimulated PBMCs to release cytokines without obvious cytotoxicity. These results implicated such a B-chain fragment as a potential immunomodulator.

  16. Effects of RNAi-mediated cathepsin L gene silencing on bionomics ...

    African Journals Online (AJOL)

    . The transfection efficiency of each group was observed. The expression of cathepsin L in hepatoma carcinoma cells was detected by immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR) and western blot.

  17. The balance between extracellular cathepsins and cystatin C is of importance for ovarian cancer.

    NARCIS (Netherlands)

    Kolwijck, E.; Kos, J.; Obermajer, N.; Span, P.N.; Thomas, C.M.G.; Massuger, L.F.A.G.; Sweep, F.C.

    2010-01-01

    BACKGROUND: A major step in cancer formation involves the degradation of the extracellular matrix, mediated by multiple degradative actions of (lysosomal) proteases. Extracellular release of lysosomal proteases (cathepsins) and their inhibitors has been associated with the development and

  18. Hyperacute thrombolysis with recombinant tissue plasminogen activator of acute ischemic stroke: Feasibility and effectivity from an Indian perspective

    Directory of Open Access Journals (Sweden)

    Sharma S

    2008-01-01

    Full Text Available Given the constraints of resources, thrombolysis for acute ischemic stroke (AIS is under evaluation in developing countries like India, especially in areas such as western Utter Pradesh, where it is overly crowded and there is poor affordability. Aim: This study was done to evaluate recombinant tissue plasminogen activator r-tpa in acute ischemic stroke in hyper acute phase, in selected patients of western Utter Pradesh, in terms of feasibility and effectivity. Design: Open, non randomized study. Materials and Methods: Thirty two patients were classified using Trial of ORG 10172 in Acute Stroke treatment (TOAST criteria (large artery atherosclerotic = 8; cardio embolic = 6; small vessel occlusion = 14; other determined etiology = 2; undetermined etiology = 2. The mean time to reach the hospital was 2 h (1.15-3.0, the mean door to CT scan 20 min (10-40 and door to r-tpa injection was 30 min (24-68. The National Institute of Health Stroke Scale (NIHSS scores ranged from 11-22 (mean 15.5 +2.7. The dose of r-tpa administered was 0.9 mg/kg. Results: Twenty one patients (65.6% showed significant improvement on the NIHSS score, at 48 h (4 points. (Mean change = 10; range = 4-17. At one month, 25 (78% recorded improvement on the Barthel index (mean change = 45%. One developed frontal lobe hemorrhage and another developed recurrent stroke; one died of aspiration; and four showed no improvement. Modified Rankin score (m RS was administered at the end of three months to 28 patients (90%; however, the rest could not be directly observed. The average modified Rankin Score was 1.2 (0-2. Conclusions: Hyperacute thrombolysis was found feasible and effective in selected patients with AIS from western Utter Pradesh and who had poor affordability.

  19. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris.

    Science.gov (United States)

    Meng, De-Mei; Zhao, Jing-Fang; Ling, Xiao; Dai, Hong-Xia; Guo, Ya-Jun; Gao, Xiao-Fang; Dong, Bin; Zhang, Zi-Qi; Meng, Xin; Fan, Zhen-Chuan

    2017-02-01

    The antimicrobial peptide PaDef was isolated from Mexican avocado fruit and was reported to inhibit the growth of Escherichia coli and Staphylococcus aureus in 2013. In this study, an N-terminal 6 × His tagged recombinant PaDef (rPaDef) with a molecular weight of 7.5 KDa, for the first time, was expressed as a secreted peptide in Pichia pastoris. The optimal culture condition for rPaDef expression was determined to be incubation with 1.5% methanol for 72 h at 28 °C under pH 6.0. Under this condition, the amount of the rPaDef accumulation reached as high as 79.6 μg per 1 ml of culture medium. Once the rPaDef peptide was purified to reach a 95.7% purity using one-step nickel affinity chromatography, its strong and concentration-dependent antimicrobial activity was detected to be against a broad-spectrum of bacteria of both Gram-negative and Gram-positive. The growth of these bacterial pathogens was almost completely inhibited when the rPaDef peptide was at a concentration of as low as 90 μg/ml. In summary, our data showed that rPaDef derived from Mexican avocado fruit can be expressed and secreted efficiently when P. pastoris was used as a cell factory. This is the first report on heterologous expression of PaDef in P. pastoris and the approach described holds great promise for antibacterial drug development. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Recombinant tissue plasminogen activator plus heparin compared with heparin alone for patients with acute submassive pulmonary embolism: one-year outcome

    OpenAIRE

    Mi, Yu-Hong; Liang, Ying; Lu, Yan-Hui; Li, Ya-Min; Liu, Wen-Xu; Qian, Wang

    2013-01-01

    Objective To evaluate the long-term effects of thrombolysis on patients with submassive pulmonary embolism (PE). Methods Data of 136 patients with acute submassive PE and low risk of bleeding were prospectively collected from January 2005 to October 2011 in a single medical center. Patients received recombinant tissue plasminogen activator (r-tPA) plus low molecular weight heparin (LMWH, TT group, n = 79) or LMWH alone (AT group, n = 57), depending on treating physician's recommendation and p...

  1. Plasma cathepsin S and cystatin C levels and risk of abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Lv, Bing-Jie; Lindholt, Jes Sanddal; Cheng, Xiang

    2012-01-01

    Human abdominal aortic aneurysm (AAA) lesions contain high levels of cathepsin S (CatS), but are deficient in its inhibitor, cystatin C. Whether plasma CatS and cystatin C levels are also altered in AAA patients remains unknown.......Human abdominal aortic aneurysm (AAA) lesions contain high levels of cathepsin S (CatS), but are deficient in its inhibitor, cystatin C. Whether plasma CatS and cystatin C levels are also altered in AAA patients remains unknown....

  2. Serum and saliva levels of cathepsin L in patients with acute coronary syndrome.

    Science.gov (United States)

    Mirzaii-Dizgah, Iraj; Riahi, Esmail

    2011-03-01

    Coronary artery disease (CAD) is the major cause of death nearly all over the world, and accurate and rapid diagnosis of CAD is of major medical and economic importance. The aim of this study was to evaluate the serum and saliva levels of cathepsin L in patients with acute coronary syndrome (ACS). In a cross-sectional study, 39 patients with ACS and 28 with controls were recruited to the study, and cathepsin L levels were measured in serum, resting saliva, and stimulated saliva obtained 12 and 24 h after the onset of ACS by ELISA method. Statistical analyses of Fisher's exact test, the Student's t-test or Kruskal-Wallis test were performed. Stimulated saliva cathepsin L levels in patients with ACS 12 hours but not 24 hours after admission showed significant decrease compared with that in control subjects. However, there were no significant differences in serum and unstimulated saliva cathepsin L levels between groups. Serum and saliva levels of cathepsin L remain unchanged in patients with ACS and hence may not be a promising factor in CAD risk assessment. It seems that serum and saliva cathepsin L may not be a good biomarker for CHD. CAD: Coronary artery disease, ACS: Acute coronary syndrome, CHD: Coronary heart disease, EU: Emergency unit, MI: Myocardial infarction. Cathepsin L, Acute coronary syndrome, Resting saliva, Stimulated saliva. How to cite this article: Mirzaii-Dizgah I, Riahi E. Serum and Saliva Levels of Cathepsin L in Patients with Acute Coronary Syndrome. J Contemp Dent Pract 2011;12(2):114-119.

  3. Cloning, purification and characterization of recombinant silkworm ...

    African Journals Online (AJOL)

    The recombinant His-tagged BmAK protein was expressed in soluble form in Escherichia coli Rosetta and purified by metal chelating affinity chromatography. The amino acid sequence of recombinant protein was confirmed by mass spectroscopic analysis and the enzyme activity assay that indicated the recombinant ...

  4. Hydrolysis of androgen receptor by cathepsin D: its biological significance in human prostate cancer.

    Science.gov (United States)

    Mordente, J A; Choudhury, M S; Tazaki, H; Mallouh, C; Konno, S

    1998-09-01

    To elicit the biological role of a lysosomal protease, cathepsin D (CatD) in prostate cancer, by investigating its regulatory effect on the androgen receptor (AR) using human prostate cancer LNCaP cells and prostate tissue specimens. Cell extracts were prepared from LNCaP or prostate specimens by cell lysis and tissue homogenization. Proteolytic assays were performed by incubating these extracts in acidic buffer (pH 3-4) at 37 degrees C. The resulting effects on AR and CatD were then analysed using Western immunoblots. The Western blots showed that AR was virtually hydrolysed with acid treatment, because endogenous CatD was activated; this activation only occurred at pH 3.2-3.5, but no specific acid appeared to be required. Further analyses suggested that CatD activation could be attributed to acid-induced autoproteolysis of mature CatD. Similar assays were also performed on prostate tissues, including normal and malignant specimens. These studies revealed that CatD-mediated AR hydrolysis was observed only in cancer specimens, while no such hydrolysis occurred in normal specimens. Endogenous CatD can hydrolyse AR, thereby possibly modulating AR function/metabolism in LNCaP cells, and in cancer specimens. CatD activity also appears to differ significantly between normal and malignant tissue. Thus, CatD may play a pivotal role as a growth modulator in androgen-dependent prostate cancer.

  5. Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent.

    Directory of Open Access Journals (Sweden)

    Kathleen M Averette

    2009-11-01

    Full Text Available NOD-like receptors (NLRs are a group of cytoplasmic molecules that recognize microbial invasion or 'danger signals'. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT, is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP. The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis.

  6. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's Disease IL-10 Cooperative Study Group

    NARCIS (Netherlands)

    Schreiber, S.; Fedorak, R. N.; Nielsen, O. H.; Wild, G.; Williams, C. N.; Nikolaus, S.; Jacyna, M.; Lashner, B. A.; Gangl, A.; Rutgeerts, P.; Isaacs, K.; van Deventer, S. J.; Koningsberger, J. C.; Cohard, M.; LeBeaut, A.; Hanauer, S. B.

    2000-01-01

    Interleukin (IL)-10 is a cytokine with potent anti-inflammatory properties. We investigated the safety and efficacy of different doses of human recombinant (rhu)IL-10 in patients with Crohn's disease (CD). A prospective, multicenter, double-blind, placebo-controlled study was conducted in 329

  7. Recombinant interferon-beta blocks proliferation but enhances interleukin-10 secretion by activated human T-cells

    NARCIS (Netherlands)

    Rep, M. H.; Hintzen, R. Q.; Polman, C. H.; van Lier, R. A.

    1996-01-01

    Results from recent clinical trials have indicated that recombinant interferon-beta (rIFN-beta) is a promising drug for the treatment of Multiple Sclerosis (MS), a disease of supposed autoimmune etiology. To gain insight into the immunoregulatory properties of this cytokine, we analyzed effects of

  8. Identification and Characterization of the V(DJ Recombination Activating Gene 1 in Long-Term Memory of Context Fear Conditioning

    Directory of Open Access Journals (Sweden)

    Edgardo Castro-Pérez

    2016-01-01

    Full Text Available An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs may be associated with long-term memory (LTM processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(DJ recombination-activating gene 1 (RAG1, which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(DJ recombination-activating gene 1, RAG1, may play a role in LTM consolidation.

  9. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+-NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future.

  10. Identification of a recombinant inulin fructotransferase (difructose dianhydride III forming) from Arthrobacter sp. 161MFSha2.1 with high specific activity and remarkable thermostability.

    Science.gov (United States)

    Wang, Xiao; Yu, Shuhuai; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2015-04-08

    Difructose dianhydride III (DFA III) is a functional carbohydrate produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). In this work, an IFTase gene from Arthrobacter sp. 161MFSha2.1 was cloned and expressed in Escherachia coli. The recombinant enzyme was purified by metal affinity chromatography. It showed significant inulin hydrolysis activity, and the produced main product from inulin was determined as DFA III by nuclear magnetic resonance analysis. The molecular mass of the purified protein was calculated to be 43 and 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively, suggesting the native enzyme might be a homotrimer. The recombinant enzyme showed maximal activity as 2391 units/mg at pH 6.5 and 55 °C. It displayed the highest thermostability among previously reported IFTases (DFA III forming) and was stable up to 80 °C for 4 h of incubation. The smallest substrate was determined as nystose. The conversion ratio of inulin to DFA III reached 81% when 100 g/L inulin was catalyzed by 80 nM recombinant enzyme for 20 min at pH 6.5 and 55 °C. All of these data indicated that the IFTase (DFA III forming) from Arthrobacter sp. 161MFSha2.1 had great potential for industrial DFA III production.

  11. Identification and Characterization of the V(D)J Recombination Activating Gene 1 in Long-Term Memory of Context Fear Conditioning.

    Science.gov (United States)

    Castro-Pérez, Edgardo; Soto-Soto, Emilio; Pérez-Carambot, Marizabeth; Dionisio-Santos, Dawling; Saied-Santiago, Kristian; Ortiz-Zuazaga, Humberto G; Peña de Ortiz, Sandra

    2016-01-01

    An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs) may be associated with long-term memory (LTM) processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(D)J recombination-activating gene 1 (RAG1), which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(D)J recombination-activating gene 1, RAG1, may play a role in LTM consolidation.

  12. Prediction of human pharmacokinetics of activated recombinant factor VII and B-domain truncated factor VIII from animal population pharmacokinetic models of haemophilia

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Juul, Rasmus Vestergaard; Groth, Andreas Velsing

    2018-01-01

    for nonlinear kinetics and gender-specific difference in clearance for rFVIII. The predictive performance of the animal population PK models of rFVIIa and rFVIII revealed significant species-variation. The developed PK models of rFVIIa and rFVIII in monkeys and dogs along with allometric interspecies scaling......Various experimental animal models are used in haemophilia research, however, little is known about how well the different species predict pharmacokinetic (PK) profiles in haemophilia patients. The aim of the current study was to describe the plasma concentration-time profile of recombinant...... activated factor VII (rFVIIa) and recombinant factor VIII (rFVIII) in several experimental animal models using population PK modelling, and apply a simulation-based approach to evaluate how well the developed animal population PK models predict human PK. PK models were developed for rFVIIa and r...

  13. The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation.

    Science.gov (United States)

    Fan, Kai; Li, Daobo; Zhang, Yanli; Han, Chao; Liang, Junjie; Hou, Changyi; Xiao, Hongliang; Ikenaka, Kazuhiro; Ma, Jianmei

    2015-03-19

    Neuroinflammation is a hallmark that leads to selective neuronal loss and/or dysfunction in neurodegenerative disorders. Microglia-derived lysosomal cathepsins are increasingly recognized as important inflammatory mediators to trigger signaling pathways that aggravate neuroinflammation. However, cathepsin H (Cat H), a cysteine protease, has been far less studied in neuroinflammation, compared to cathepsins B, D, L, and S. The expression patterns and functional roles of Cat H in the brain in neuroinflammation remain unknown. C57BL/6J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze expression and localization of Cat H in the brain. Nitrite assay was used to examine microglial activation in vitro; ELISA was used to determine the release of Cat H and proinflammatory cytokines (TNF-α, IL-1β, IL-6, IFN-γ). Cat H activity was analyzed by cellular Cat H assay kit. Flow cytometry and in situ cell death detection were used to investigate neuronal death. Data were evaluated for statistical significance with one-way ANOVA and t test. Cat H mRNA was only present in perivascular microglia and non-parenchymal sites under normal conditions. After LPS injection, Cat H mRNA expression in activated microglia in different brain regions was increased. Twenty-four hours after LPS injection, Cat H mRNA expression was maximal in SNr; 72 h later, it peaked in cerebral cortex and hippocampus then decreased and maintained at a low level. The expression of Cat H protein exhibited the similar alterations after LPS injection. In vitro, inflammatory stimulation (LPS, TNF-α, IL-1β, IL-6, and IFN-γ) increased the release and activity of Cat H in microglia. Conversely, addition of Cat H to microglia promoted the production and release of NO, IL-1β, and IFN-γ which could be prevented by neutralizing antibody. Further, addition of Cat H to Neuro2a cells induced

  14. Molecular Cloning, Recombinant Expression and Antifungal Activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.

    Directory of Open Access Journals (Sweden)

    Yongting Yu

    2017-10-01

    Full Text Available Phytocystatins play multiple roles in plant growth, development and resistance to pests and other environmental stresses. A ramie (Boehmeria nivea L. phytocystatin gene, designated as BnCPI, was isolated from a ramie cDNA library and its full-length cDNA was obtained by rapid amplification of cDNA ends (RACE. The full-length cDNA sequence (691 bp consisted of a 303 bp open reading frame (ORF encoding a protein of 100 amino acids with deduced molecular mass of 11.06 kDa and a theoretical isoelectric point (pI of 6.0. The alignment of genome DNA (accession no. MF153097 and cDNA sequences of BnCPI showed that an intron (~104 bp exists in the coding region. The BnCPI protein contains most of the highly conserved blocks including Gly5-Gly6 at the N-terminal, the reactive site motif QxVxG (Q49V50V51S52G53, the L79-W80 block and the [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N (L22G23R24 F25A26V27 D28D29H30 N31 block that is common among plant cystatins. BLAST analysis indicated that BnCPI is similar to cystatins from Glycine max (77%, Glycine soja (76%, Hevea brasiliensis (75% and Ricinus communis (75%. The BnCPI was subcloned into expression vector pSmart-I and then overexpressed in Escherichia coli BL21 (DE3 as a His-tagged recombinant protein. The purified reBnCPI has a molecular mass of 11.4 kDa determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE. Purified reBnCPI can efficiently inhibit the protease activity of papain and ficin toward BANA (Nα-benzoyl-L-arginine-2-naphthyamide, as well as the mycelium growth of some important plant pathogenic fungi. The data further contribute to our understanding of the molecular functions of BnCPI.

  15. Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2.

    Science.gov (United States)

    Shetty, Jagathpala; Sinville, Rondedrick; Shumilin, Igor A; Minor, Wladek; Zhang, Jianhai; Hawkinson, Jon E; Georg, Gunda I; Flickinger, Charles J; Herr, John C

    2016-05-01

    The testis-specific serine/threonine kinase 2 (TSSK2) has been proposed as a candidate male contraceptive target. Development of a selective inhibitor for this kinase first necessitates the production of highly purified, soluble human TSSK2 and its substrate, TSKS, with high yields and retention of biological activity for crystallography and compound screening. Strategies to produce full-length, soluble, biologically active hTSSK2 in baculovirus expression systems were tested and refined. Soluble preparations of TSSK2 were purified by immobilized-metal affinity chromatography (IMAC) followed by gel filtration chromatography. The biological activities of rec.hTSSK2 were verified by in vitro kinase and mobility shift assays using bacterially produced hTSKS (isoform 2), casein, glycogen synthase peptide (GS peptide) and various TSKS peptides as target substrates. Purified recombinant hTSSK2 showed robust kinase activity in the in vitro kinase assay by phosphorylating hTSKS isoform 2 and casein. The ATP Km values were similar for highly and partially purified fractions of hTSSK2 (2.2 and 2.7 μM, respectively). The broad spectrum kinase inhibitor staurosporine was a potent inhibitor of rec.hTSSK2 (IC50 = 20 nM). In vitro phosphorylation experiments carried out with TSKS (isoform 1) fragments revealed particularly strong phosphorylation of a recombinant N-terminal region representing aa 1-150 of TSKS, indicating that the N-terminus of human TSKS is phosphorylated by human TSSK2. Production of full-length enzymatically active recombinant TSSK2 kinase represents the achievement of a key benchmark for future discovery of TSSK inhibitors as male contraceptive agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Role of teh Rad52 Amino-terminal DNA Binding Activity in DNA Strand Capture in Homologous Recombination

    DEFF Research Database (Denmark)

    Shi, Idina; Hallwyl, Swee Chuang Lim; Seong, Changhyun

    2009-01-01

    Saccharomyces cerevisiae Rad52 protein promotes homologous recombination by nucleating the Rad51 recombinase onto replication protein A-coated single-stranded DNA strands and also by directly annealing such strands. We show that the purified rad52-R70A mutant protein, with a compromised amino......-terminal DNA binding domain, is capable of Rad51 delivery to DNA but is deficient in DNA annealing. Results from chromatin immunoprecipitation experiments find that rad52-R70A associates with DNA double-strand breaks and promotes recruitment of Rad51 as efficiently as wild-type Rad52. Analysis of gene...... conversion intermediates reveals that rad52-R70A cells can mediate DNA strand invasion but are unable to complete the recombination event. These results provide evidence that DNA binding by the evolutionarily conserved amino terminus of Rad52 is needed for the capture of the second DNA end during homologous...

  17. Cathepsin C gene 5'-untranslated region mutation in papillon-lefèvre syndrome.

    Science.gov (United States)

    Kosem, Rok; Debeljak, Maruša; Repič Lampret, Barbka; Kansky, Aleksej; Battelino, Tadej; Trebušak Podkrajšek, Katarina

    2012-01-01

    Papillon-Lefèvre syndrome (PLS) is a rare autosomal recessive disorder characterized by palmoplantar keratoderma together with a severe form of generalized aggressive periodontitis and associated with mutations in cathepsin C gene (CTSC). To investigate the clinical and mutational characteristics of 6 PLS patients from 4 unrelated Slovenian families. CTSC mutational and functional analyses were performed. In all patients, a novel homozygous substitution, c.-55C>A, in the CTSC 5'-untranslated region (UTR) was detected on genomic DNA level and confirmed by mRNA analysis, resulting in the almost complete loss of CTSC mRNA expression and CTSC activity. In silico analysis revealed the potential of the mutation to disrupt putative transcription factor binding sites (TFBSs) for AP-2 and Sp families of transcription factors. Identification of a novel CTSC 5'-UTR mutation together with a severe reduction of CTSC mRNA expression and virtually nonexistent CTSC activity was suggestive of a novel mechanism of TFBS dysfunction associated with PLS. Copyright © 2012 S. Karger AG, Basel.

  18. Functional Cathepsin C mutations cause different Papillon-Lefèvre syndrome phenotypes.

    Science.gov (United States)

    Noack, Barbara; Görgens, Heike; Schacher, Beate; Puklo, Magda; Eickholz, Peter; Hoffmann, Thomas; Schackert, Hans Konrad

    2008-04-01

    The autosomal-recessive Papillon-Lefèvre syndrome (PLS) is characterized by severe aggressive periodontitis, combined with palmoplantar hyperkeratosis, and is caused by mutations in the Cathepsin C (CTSC) gene. This study aimed to identify CTSC mutations in different PLS phenotypes, including atypical forms and isolated pre-pubertal aggressive periodontitis (PAP). Thirteen families with different phenotypes were analysed by direct sequencing of the entire coding region and the regulatory regions of CTSC. The function of novel mutations was tested with enzyme activity measurements. In 11 of 13 families, 12 different pathogenic CTSC mutations were found in 10 typical PLS patients, three atypical cases and one PAP patient. Out of four novel mutations, three result in protein truncation and are thus considered to be pathogenic. The homozygous c.854C>T nucleotide exchange (p.P285L) was associated with an almost complete loss of enzyme activity. The observed phenotypic heterogeneity could not be associated with specific genotypes. The phenotypic variability of the PLS associated with an identical genetic background may reflect the influence of additional genetic or environmental factors on disease characteristics. CTSC mutation analyses should be considered for differential diagnosis in all children suffering from severe aggressive periodontitis.

  19. Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol

    Directory of Open Access Journals (Sweden)

    Annamalai Thirunavukkarasu

    2009-06-01

    Full Text Available Abstract Background Mycobacterium tuberculosis DNA topoisomerase I is an attractive target for discovery of novel TB drugs that act by enhancing the accumulation of the topoisomerase-DNA cleavage product. It shares a common transesterification domain with other type IA DNA topoisomerases. There is, however, no homology between the C-terminal DNA binding domains of Escherichia coli and M. tuberculosis DNA topoisomerase I proteins. Results A new protocol for expression and purification of recombinant M. tuberculosis DNA topoisomerase I (MtTOP has been developed to produce enzyme of much higher specific activity than previously characterized recombinant enzyme. MtTOP was found to be less efficient than E. coli DNA topoisomerase I (EcTOP in removal of remaining negative supercoils from partially relaxed DNA. DNA cleavage by MtTOP was characterized for the first time. Comparison of DNA cleavage site selectivity with EcTOP showed differences in cleavage site preferences, but the preferred sites of both enzymes have a C nucleotide in the -4 position. Conclusion Recombinant M. tuberculosis DNA topoisomerase I can be expressed as a soluble protein and purified in high yield from E. coli host with a new protocol. Analysis of DNA cleavage with M. tuberculosis DNA substrate showed that the preferred DNA cleavage sites have a C nucleotide in the -4 position.

  20. Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody.

    Science.gov (United States)

    Piperno, G M; López-Requena, A; Predonzani, A; Dorvignit, D; Labrada, M; Zentilin, L; Burrone, O R; Cesco-Gaspere, M

    2015-12-01

    The ganglioside GM3(Neu5Gc) has gained increasing attention as therapeutic target because of its selective expression in various human tumours, such as melanoma, breast and lung cancer. 14F7 is a mouse IgG1 with specific reactivity to GM3(Neu5Gc)-positive tumours. The therapeutic activity of 14F7 has also been demonstrated in vivo, through its repetitive passive administration in tumour-bearing animals. In this work we used an alternative strategy to deliver recombinant 14F7 in vivo and analysed the therapeutic efficacy of this approach. We engineered a recombinant adeno-associated vector to direct the expression of secretable recombinant 14F7 in BALB/c animals. A single administration of the rAAV induced efficient production and secretion of the antibody in the bloodstream, with an expression level reaching plateau at ∼3 weeks after injection and persisting for almost a year. Strikingly, upon challenge with GM3(Neu5Gc)-positive X63-AG8.653 myeloma cells, tumour development was significantly delayed in animals treated with rAAV-14F7 with respect to animals treated with a control rAAV codifying for an irrelevant antibody. Finally, no significant differences in survival proportion were detected in animals injected with rAAV-14F7 or treated by standard administration of repetitive doses of purified monoclonal antibody 14F7.

  1. Molecular cloning, over expression, and activity studies of a peptidic HIV-1 protease inhibitor: designed synthetic gene to functional recombinant peptide.

    Science.gov (United States)

    Vathipadiekal, Vinod; Umasankar, Perunthottathu K; Patole, Milind S; Rao, Mala

    2010-01-01

    The aspartic protease inhibitor (ATBI) purified from a Bacillus sp. is a potent inhibitor of several proteases including recombinant HIV-1 protease, pepsin, and fungal aspartic protease. In this study, we report the cloning, and over expression of a synthetic gene coding for ATBI in Escherichia coli and establish a purification protocol. The ATBI molecule consists of eleven amino acids and is peptidic in nature. We used the peptide sequence data of ATBI to synthesize complementary oligonucleotides, which were annealed and subsequently cloned in-frame with the gene for glutathione-S-transferase (GST). The expression of the resulting fusion protein was induced in E. coli BL21-A1 cells using arabinose. The recombinant peptide was purified using a reduced glutathione column, and cleaved with Factor Xa to remove the GST tag. The resultant product was further purified to homogeneity using RP-HPLC. Mass spectroscopy analysis revealed that the purified peptide had a molecular weight of 1186Da which matches the theoretical molecular weight of the amino acids present in the synthetic gene. The recombinant peptide was found to be active in vitro against HIV-1 protease, pepsin, and fungal aspartic protease. The protocol described in this study may be used to clone pharmaceutically important peptide molecules.

  2. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    Science.gov (United States)

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  3. Recombinant protein expression of Moringa oleifera lectin in methylotrophic yeast as active coagulant for sustainable high turbid water treatment.

    Science.gov (United States)

    Abd Wahid, Muhamad Azhar; Megat Mohd Noor, Megat Johari; Goto, Masafumi; Sugiura, Norio; Othman, Nor'azizi; Zakaria, Zuriati; Ahmad Mohammed, Thamer; Jusoh, Ahmad; Hara, Hirofumi

    2017-08-01

    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.

  4. Intranasal immunization with recombinant HA and mast cell activator C48/80 elicits protective immunity against 2009 pandemic H1N1 influenza in mice.

    Directory of Open Access Journals (Sweden)

    Shu Meng

    Full Text Available BACKGROUND: Pandemic influenza represents a major threat to global health. Vaccination is the most economic and effective strategy to control influenza pandemic. Conventional vaccine approach, despite being effective, has a number of major deficiencies including limited range of protection, total dependence on embryonated eggs for production, and time consuming for vaccine production. There is an urgent need to develop novel vaccine strategies to overcome these deficiencies. METHODOLOGY/PRINCIPAL FINDINGS: The major objective of this work was to develop a novel vaccine strategy combining recombinant haemagglutinin (HA protein and a master cell (MC activator C48/80 for intranasal immunization. We demonstrated in BALB/c mice that MC activator C48/80 had strong adjuvant activity when co-administered with recombinant HA protein intranasally. Vaccination with C48/80 significantly increased the serum IgG and mucosal surface IgA antibody responses against HA protein. Such increases correlated with stronger and durable neutralizing antibody activities, offering protection to vaccinated animals from disease progression after challenge with lethal dose of A/California/04/2009 live virus. Furthermore, protected animals demonstrated significant reduction in lung virus titers, minimal structural alteration in lung tissues as well as higher and balanced production of Th1 and Th2 cytokines in the stimulated splenocytes when compared to those without C48/80. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that the novel vaccine approach of combining recombinant HA and mucosal adjuvant C48/80 is safe and effective in eliciting protective immunity in mice. Future studies on the mechanism of action of C48/80 and potential combination with other vaccine strategies such as prime and boost approach may help to induce even more potent and broad immune responses against viruses from various clades.

  5. Induction of protective immunity in cattle against infection with Fasciola hepatica by vaccination with cathepsin L proteinases and with hemoglobin.

    Science.gov (United States)

    Dalton, J P; McGonigle, S; Rolph, T P; Andrews, S J

    1996-01-01

    Two cathepsin L proteinases, cathepsin L1 and cathepsin L2, secreted by liver flukes may be involved in tissue penetration, nutrition, and protection from immune attack. To ascertain the immunoprophylactic potential of these proteinases, and of another molecule, liver fluke hemoglobin (Hb), we performed vaccine trials in cattle. In the first vaccine trial various doses of cathepsin L1 were tested. The mean protection level obtained was 53.7%. In a second vaccine trial cathepsin L1 and Hb elicited 42.5 and 43.8% protection levels, respectively, while a combination of the two molecules induced a significantly higher level of protection (51.9%). Cathepsin L2 was not examined alone; however, vaccination of cattle with a combination of cathepsin L2 and Hb elicited the highest level of protection (72.4%). The animals that received cathepsin L1-Hb or cathepsin L2-Hb showed reduced liver damage as assessed by serum glutamic dehydrogenase and gamma-glutamyl transferase levels. Furthermore, a reduced viability was observed for fluke eggs recovered from all vaccine groups. This anti-embryonation effect of vaccination was particularly evident in the group that received cathepsin L2-Hb where >98% of the eggs recovered did not embryonate to miracidia. Although all vaccine preparations induced high antibody titers which were boosted following the challenge infection, there was no correlation between antibody titers and protection. The results of these trials demonstrate that cathepsin Ls and Hb could form the basis of a molecular vaccine that would not only reduce parasite burden but would also prevent transmission of liver fluke disease. PMID:8945548

  6. The propeptide of yeast cathepsin D inhibits programmed necrosis.

    Science.gov (United States)

    Carmona-Gutiérrez, D; Bauer, M A; Ring, J; Knauer, H; Eisenberg, T; Büttner, S; Ruckenstuhl, C; Reisenbichler, A; Magnes, C; Rechberger, G N; Birner-Gruenberger, R; Jungwirth, H; Fröhlich, K-U; Sinner, F; Kroemer, G; Madeo, F

    2011-05-19

    The lysosomal endoprotease cathepsin D (CatD) is an essential player in general protein turnover and specific peptide processing. CatD-deficiency is associated with neurodegenerative diseases, whereas elevated CatD levels correlate with tumor malignancy and cancer cell survival. Here, we show that the CatD ortholog of the budding yeast Saccharomyces cerevisiae (Pep4p) harbors a dual cytoprotective function, composed of an anti-apoptotic part, conferred by its proteolytic capacity, and an anti-necrotic part, which resides in the protein's proteolytically inactive propeptide. Thus, deletion of PEP4 resulted in both apoptotic and necrotic cell death during chronological aging. Conversely, prolonged overexpression of Pep4p extended chronological lifespan specifically through the protein's anti-necrotic function. This function, which triggered histone hypoacetylation, was dependent on polyamine biosynthesis and was exerted via enhanced intracellular levels of putrescine, spermidine and its precursor S-adenosyl-methionine. Altogether, these data discriminate two pro-survival functions of yeast CatD and provide first insight into the physiological regulation of programmed necrosis in yeast.

  7. Production and characterization of monoclonal antibodies against cathepsin B and cathepsin B-Like proteins of Naegleria fowleri.

    Science.gov (United States)

    Seong, Gi-Sang; Sohn, Hae-Jin; Kang, Heekyoung; Seo, Ga-Eun; Kim, Jong-Hyun; Shin, Ho-Joon

    2017-12-01

    Naegleria fowleri causes fatal primary amoebic meningoencephalitis (PAM) in humans and experimental animals. In previous studies, cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes of N. fowleri were cloned, and it was suggested that refolding rNfCPB and rNfCPB-L proteins could play important roles in host tissue invasion, immune response evasion and nutrient uptake. In this study, we produced anti-NfCPB and anti-NfCPB-L monoclonal antibodies (McAb) using a cell fusion technique, and observed their immunological characteristics. Seven hybridoma cells secreting rNfCPB McAbs and three hybridoma cells secreting rNfCPB-L McAbs were produced. Among these, 2C9 (monoclone for rNfCPB) and 1C8 (monoclone for rNfCPB-L) McAb showed high antibody titres and were finally selected for use. As determined by western blotting, 2C9 McAb bound to N. fowleri lysates, specifically the rNfCPB protein, which had bands of 28 kDa and 38.4 kDa. 1C8 McAb reacted with N. fowleri lysates, specifically the rNfCPB-L protein, which had bands of 24 kDa and 34 kDa. 2C9 and 1C8 monoclonal antibodies did not bind to lysates of other amoebae, such as N. gruberi, Acanthamoeba castellanii and A. polyphaga in western blot analyses. Immuno-cytochemistry analysis detected NfCPB and NfCPB-L proteins in the cytoplasm of N. fowleri trophozoites, particularly in the pseudopodia and food-cup. These results suggest that monoclonal antibodies produced against rNfCPB and rNfCPB-L proteins may be useful for further immunological study of PAM. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Amniotic fluid cathepsin-G in pregnancies complicated by the preterm prelabor rupture of membranes.

    Science.gov (United States)

    Musilova, Ivana; Andrys, Ctirad; Drahosova, Marcela; Soucek, Ondrej; Pliskova, Lenka; Stepan, Martin; Bestvina, Tomas; Maly, Jan; Jacobsson, Bo; Kacerovsky, Marian

    2017-09-01

    The aim of this study was to evaluate the amniotic fluid cathepsin-G concentrations in women with preterm prelabor rupture of membranes (PPROM) based on the presence of the microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). A total of 154 women with singleton pregnancies complicated by PPROM were included in this study. Amniotic fluid samples were obtained by transabdominal amniocentesis. Amniotic fluid cathepsin-G concentrations were assessed by ELISA. MIAC was determined using a non-cultivation approach. IAI was defined as an amniotic fluid bedside interleukin-6 concentration ≥ 745 pg/mL. Women with MIAC had higher amniotic fluid cathepsin-G concentrations than women without MIAC (with MIAC: median 82.7 ng/mL, versus without MIAC: median 64.7 ng/mL; p = 0.0003). Women with IAI had higher amniotic fluid cathepsin-G concentrations than women without this complication (with IAI: median 103.0 ng/mL, versus without IAI: median 66.2 ng/mL; p G concentrations than women with colonization (MIAC without IAI) and women without both MIAC and IAI (p G concentrations in pregnancies complicated by PPROM. Amniotic fluid cathepsin-G appears to be a potential marker of IAI.

  9. Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G

    Directory of Open Access Journals (Sweden)

    Andreas Koeberle

    2018-02-01

    Full Text Available Age-related diseases, such as osteoarthritis, Alzheimer’s disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO pathway. Boswellic acids (BAs are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.

  10. Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G.

    Science.gov (United States)

    Koeberle, Andreas; Henkel, Arne; Verhoff, Moritz; Tausch, Lars; König, Stefanie; Fischer, Dagmar; Kather, Nicole; Seitz, Stefanie; Paul, Michael; Jauch, Johann; Werz, Oliver

    2018-02-24

    Age-related diseases, such as osteoarthritis, Alzheimer's disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO) pathway. Boswellic acids (BAs) are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.

  11. Prevalence and clinical significance of cathepsin G antibodies in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    M. Favaro

    2011-09-01

    Full Text Available Objectives: To evaluate the prevalence and clinical significance of cathepsin G antibodies in patients affected with systemic sclerosis (SSc, scleroderma. Methods: 115 patients affected by SSc, 55 (47,8% with diffuse scleroderma (dSSc and 60 (52,2% with limited scleroderma (lSSc, were tested for cathepsin G antibodies by ELISA method. Moreover these sera were evaluated by indirect immunofluorescence (IIF on ethanol and formalin fixed human neutrophils. Results: By means of the ELISA method 16 (13,9% patients were found to be sera positive for anti-cathepsin G, 2 (12.5% of which showed a perinuclear fluorescence pattern (P-ANCA and 4 (25% an atypical ANCA staining, while 10 (62,5% were negative on IIF. The IIF on scleroderma sera revealed 5 (4,3% P-ANCA and 18 (15,7% atypical ANCA patterns. The anti-cathepsin G antibodies significantly prevailed in scleroderma sera (p=0.02 when their frequency was compared with that of healthy controls; while they were not significantly associated to any clinical or serological features of SSc patients. Conclusions: The anti-cathepsin G antibodies were significantly frequent in scleroderma sera; however, no clinical correlations were found. Thus, the significance of their presence in SSc still needs to be clarified.

  12. Cathepsin L Helps to Defend Mice from Infection with Influenza A.

    Directory of Open Access Journals (Sweden)

    Xiang Xu

    Full Text Available Host-derived proteases can augment or help to clear infections. This dichotomy is exemplified by cathepsin L (CTSL, which helps Hendra virus and SARS coronavirus to invade cells, but is essential for survival in mice with mycoplasma pneumonia. The present study tested the hypothesis that CTSL protects mice from serious consequences of infection by the orthomyxovirus influenza A, which is thought to be activated by host-supplied proteases other than CTSL. Ctsl-/- mice infected with influenza A/Puerto Rico/8/34(H1N1 had larger lung viral loads and higher mortality than infected Ctsl+/+ mice. Lung inflammation in surviving infected mice peaked 14 days after initial infection, accompanied marked focal distal airway bronchiolization and epithelial metaplasia followed by desquamation and fibrotic interstitial remodeling, and persisted for at least 6 weeks. Most deaths occurred during the second week of infection in both groups of mice. In contrast to mycoplasma pneumonia, infiltrating cells were predominantly mononuclear rather than polymorphonuclear. The histopathology of lung inflammation and remodeling in survivors was similar in Ctsl-/- and Ctsl+/+ mice, although Ctsl+/+ mice cleared immunoreactive virus sooner. Furthermore, Ctsl-/- mice had profound deficits in CD4+ lymphocytes before and after infection and weaker production of pathogen-specific IgG. Thus, CTSL appears to support innate as well as adaptive responses, which confer a survival advantage on mice infected with the orthomyxovirus influenza A.

  13. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis.

    Directory of Open Access Journals (Sweden)

    David Freeman

    Full Text Available α-synuclein dysregulation is a critical aspect of Parkinson's disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson's disease, thus connecting these aspects of Parkinson's disease to the propagation of α-synuclein pathology in cells.

  14. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  15. Lysosomal Cathepsin A Plays Significant Role In The Processing Of Endogenous Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Zehra Timur

    2016-10-01

    Full Text Available Lysosomal serine carboxypeptidase Cathepsin A (CTSA is a multifunctional enzyme with distinct protective and catalytic function. CTSA that is present in the lysosomal multienzyme complex facilitates correct lysosomal routing, stability and activation of betagalactosidase and alpha-neuraminidase. In addition, CTSA plays a role in the inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of one or two amino acid(s from the C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in a knock-in mouse model of CTSAS190A. We evaluated the levels of bradykinin, substances P, oxytocin, angiotensin I and endothelin-I in the kidney, liver, lung, brain and serum of the CTSAS190A mouse model at three- and six-months of age. Our results suggest that CTSA selectively contributes to the processing of bioactive peptides in different tissues of CTSAS190A mice compared to those of age-matched wild-type mice.

  16. The Coordinated Action of Calcineurin and Cathepsin D Protects Against α-Synuclein Toxicity.

    Science.gov (United States)

    Aufschnaiter, Andreas; Habernig, Lukas; Kohler, Verena; Diessl, Jutta; Carmona-Gutierrez, Didac; Eisenberg, Tobias; Keller, Walter; Büttner, Sabrina

    2017-01-01

    The degeneration of dopaminergic neurons during Parkinson's disease (PD) is intimately linked to malfunction of α-synuclein (αSyn), the main component of the proteinaceous intracellular inclusions characteristic for this pathology. The cytotoxicity of αSyn has been attributed to disturbances in several biological processes conserved from yeast to humans, including Ca 2+ homeostasis, general lysosomal function and autophagy. However, the precise sequence of events that eventually results in cell death remains unclear. Here, we establish a connection between the major lysosomal protease cathepsin D (CatD) and the Ca 2+ /calmodulin-dependent phosphatase calcineurin. In a yeast model for PD, high levels of human αSyn triggered cytosolic acidification and reduced vacuolar hydrolytic capacity, finally leading to cell death. This could be counteracted by overexpression of yeast CatD (Pep4), which re-installed pH homeostasis and vacuolar proteolytic function, decreased αSyn oligomers and aggregates, and provided cytoprotection. Interestingly, these beneficial effects of Pep4 were independent of autophagy. Instead, they required functional calcineurin signaling, since deletion of calcineurin strongly reduced both the proteolytic activity of endogenous Pep4 and the cytoprotective capacity of overexpressed Pep4. Calcineurin contributed to proper endosomal targeting of Pep4 to the vacuole and the recycling of the Pep4 sorting receptor Pep1 from prevacuolar compartments back to the trans-Golgi network. Altogether, we demonstrate that stimulation of this novel calcineurin-Pep4 axis reduces αSyn cytotoxicity.

  17. The Coordinated Action of Calcineurin and Cathepsin D Protects Against α-Synuclein Toxicity

    Directory of Open Access Journals (Sweden)

    Andreas Aufschnaiter

    2017-06-01

    Full Text Available The degeneration of dopaminergic neurons during Parkinson’s disease (PD is intimately linked to malfunction of α-synuclein (αSyn, the main component of the proteinaceous intracellular inclusions characteristic for this pathology. The cytotoxicity of αSyn has been attributed to disturbances in several biological processes conserved from yeast to humans, including Ca2+ homeostasis, general lysosomal function and autophagy. However, the precise sequence of events that eventually results in cell death remains unclear. Here, we establish a connection between the major lysosomal protease cathepsin D (CatD and the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for PD, high levels of human αSyn triggered cytosolic acidification and reduced vacuolar hydrolytic capacity, finally leading to cell death. This could be counteracted by overexpression of yeast CatD (Pep4, which re-installed pH homeostasis and vacuolar proteolytic function, decreased αSyn oligomers and aggregates, and provided cytoprotection. Interestingly, these beneficial effects of Pep4 were independent of autophagy. Instead, they required functional calcineurin signaling, since deletion of calcineurin strongly reduced both the proteolytic activity of endogenous Pep4 and the cytoprotective capacity of overexpressed Pep4. Calcineurin contributed to proper endosomal targeting of Pep4 to the vacuole and the recycling of the Pep4 sorting receptor Pep1 from prevacuolar compartments back to the trans-Golgi network. Altogether, we demonstrate that stimulation of this novel calcineurin-Pep4 axis reduces αSyn cytotoxicity.

  18. Safety and efficacy of recombinant activated factor VII: a randomized placebo-controlled trial in the setting of bleeding after cardiac surgery

    DEFF Research Database (Denmark)

    Gill, Ravi; Herbertson, Mike; Vuylsteke, Alain

    2009-01-01

    BACKGROUND: Blood loss is a common complication of cardiac surgery. Evidence suggests that recombinant activated factor VII (rFVIIa) can decrease intractable bleeding in patients after cardiac surgery. Our objective was to investigate the safety and possible benefits of rFVIIa in patients who bleed....../kg, 14%; P=0.25; 80 microg/kg, 12%; P=0.43). After randomization, significantly fewer patients in the rFVIIa group underwent a reoperation as a result of bleeding (P=0.03) or required allogeneic transfusions (P=0.01). CONCLUSIONS: On the basis of this preliminary evidence, rFVIIa may be beneficial...

  19. TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors

    Directory of Open Access Journals (Sweden)

    Anna Prudova

    2016-08-01

    Full Text Available Deregulated cathepsin proteolysis occurs across numerous cancers, but in vivo substrates mediating tumorigenesis remain ill-defined. Applying 8-plex iTRAQ terminal amine isotopic labeling of substrates (TAILS, a systems-level N-terminome degradomics approach, we identified cathepsin B, H, L, S, and Z in vivo substrates and cleavage sites with the use of six different cathepsin knockout genotypes in the Rip1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis. Among 1,935 proteins and 1,114 N termini identified by TAILS, stable proteolytic products were identified in wild-type tumors compared with one or more different cathepsin knockouts (17%–44% of 139 cleavages. This suggests a lack of compensation at the substrate level by other cathepsins. The majority of neo-N termini (56%–83% for all cathepsins was consistent with protein degradation. We validated substrates, including the glycolytic enzyme pyruvate kinase M2 associated with the Warburg effect, the ER chaperone GRP78, and the oncoprotein prothymosin-alpha. Thus, the identification of cathepsin substrates in tumorigenesis improves the understanding of cathepsin functions in normal physiology and cancer.

  20. Seven-up facilitates insect counter-defense by suppressing cathepsin B expression.

    Science.gov (United States)

    Ahn, Ji-Eun; Guarino, Linda A; Zhu-Salzman, Keyan

    2007-06-01

    When challenged by the dietary soybean cysteine protease inhibitor scN, the cowpea bruchid (Callosobruchus maculatus) adapts to the inhibitory effects by readjusting the transcriptome of its digestive system, including the specific activation of a cathepsin B-like cysteine protease CmCatB. To understand the transcriptional regulation of CmCatB, we cloned a portion of its promoter and demonstrated its activity in Drosophila cells using a chloramphenicol acetyltransferase reporter system. EMSAs detected differential DNA-binding activity between nuclear extracts of scN-adapted and -unadapted midguts. Two tandem chicken ovalbumin upstream promoter (COUP) elements were identified in the CmCatB promoter that specifically interacted with a protein factor unique to nuclear extracts of unadapted insect guts, where CmCatB expression was repressed. Seven-up (Svp) is a COUP-TF-related transcription factor that interacted with the COUP responsive element. Polyclonal anti-(mosquito Svp) serum abolished the specific DNA-binding activity in cowpea bruchid midgut extracts, suggesting that the protein factor is an Svp homolog. Subsequent cloning of a cowpea bruchid Svp (CmSvp) indicated that it shares a high degree of amino acid sequence similarity with COUP-TF/Svp orphan nuclear receptor family members from varied species. The protein was more abundant in scN-unadapted insect guts than scN-adapted guts, consistent with the observed DNA-binding activity. Furthermore, CmCatB expression was repressed when CmSvp was transiently expressed in Drosophila cells, most likely through COUP binding. These findings indicate that CmSvp may contribute to insect counter-defense, in part by inhibiting CmCatB expression under normal growth conditions, but releasing the inhibition when insects are challenged by dietary protease inhibitors.

  1. Changes in collagenous tissue microstructures and distributions of cathepsin L in body wall of autolytic sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Yan-Fei; Li, Dong-Mei; Dong, Xiu-Ping; Tan, Ming-Qian; Du, Ming; Zhu, Bei-Wei

    2016-12-01

    The autolysis of sea cucumber (Stichopus japonicus) was induced by ultraviolet (UV) irradiation, and the changes of microstructures of collagenous tissues and distributions of cathepsin L were investigated using histological and histochemical techniques. Intact collagen fibers in fresh S. japonicus dermis were disaggregated into collagen fibrils after UV stimuli. Cathepsin L was identified inside the surface of vacuoles in the fresh S. japonicus dermis cells. After the UV stimuli, the membranes of vacuoles and cells were fused together, and cathepsin L was released from cells and diffused into tissues. The density of cathepsin L was positively correlated with the speed and degree of autolysis in different layers of body wall. Our results revealed that lysosomal cathepsin L was released from cells in response to UV stimuli, which contacts and degrades the extracellular substrates such as collagen fibers, and thus participates in the autolysis of S. japonicus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults

    Directory of Open Access Journals (Sweden)

    Piotr Szpakowski

    2015-01-01

    Full Text Available Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG, the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18 and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4+ T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs.

  3. Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli.

    Science.gov (United States)

    Fischer, Curt R; Tseng, Hsien-Chung; Tai, Mitchell; Prather, Kristala L J; Stephanopoulos, Gregory

    2010-09-01

    In clostridia, n-butanol production from carbohydrates at yields of up to 76% of the theoretical maximum and at titers of up to 13 g/L has been reported. However, in Escherichia coli, several groups have reported butyric acid or butanol production from recombinant expression of clostridial genes, at much lower titers and yields. To pinpoint deficient steps in the recombinant pathway, we developed an analytical procedure for the determination of intracellular pools of key pathway intermediates and applied the technique to the analysis of three sets of E. coli strains expressing various combinations of butyrate biosynthesis genes. Low expression levels of the hbd-encoded S-3-hydroxybutyryl-CoA dehydrogenase were insufficient to convert acetyl-CoA to 3-hydroxybutyryl-CoA, indicating that hbd was a rate-limiting step in the production of butyryl-CoA. Increasing hbd expression alleviated this bottleneck, but in resulting strains, our pool size measurements and thermodynamic analysis showed that the reaction step catalyzed by the bcd-encoded butyryl-CoA dehydrogenase was rate-limiting. E. coli strains expressing both hbd and ptb-buk produced crotonic acid as a byproduct, but this byproduct was not observed with expression of related genes from non-clostridial organisms. Our thermodynamic interpretation of pool size measurements is applicable to the analysis of other metabolic pathways.

  4. The Recombinant Bacteriophage Endolysin HY-133 Exhibits In Vitro Activity against Different African Clonal Lineages of the Staphylococcus aureus Complex, Including Staphylococcus schweitzeri.

    Science.gov (United States)

    Idelevich, Evgeny A; Schaumburg, Frieder; Knaack, Dennis; Scherzinger, Anna S; Mutter, Wolfgang; Peters, Georg; Peschel, Andreas; Becker, Karsten

    2016-04-01

    HY-133 is a recombinant bacteriophage endolysin with bactericidal activity againstStaphylococcus aureus Here, HY-133 showedin vitroactivity against major African methicillin-susceptible and methicillin-resistantS. aureuslineages and ceftaroline/ceftobiprole- and borderline oxacillin-resistant isolates. HY-133 was also active againstStaphylococcus schweitzeri, a recently described species of theS. aureuscomplex. The activity of HY-133 on the tested isolates (MIC50, 0.25 μg/ml; MIC90, 0.5 μg/ml; range, 0.125 to 0.5 μg/ml) was independent of the species and strain background or antibiotic resistance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Pharmacodynamic Monitoring of RO5459072, a Small Molecule Inhibitor of Cathepsin S

    Directory of Open Access Journals (Sweden)

    Michel Theron

    2017-07-01

    Full Text Available Major histocompatibility complex class II (MHCII-restricted antigen priming of CD4+ T cells is both involved in adaptive immune responses and the pathogenesis of autoimmune diseases. Degradation of invariant chain Ii, a protein that prevents premature peptide loading, is a prerequisite for nascent MHCII–peptide complex formation. A key proteolytic step in this process is mediated by cathepsin S. Inhibition of this cysteine protease is known to result in the intracellular accumulation of Lip10 in B cells. Here, we describe the development and application of a neoepitope-based flow cytometry assay measuring accumulation of Lip10. This novel method enabled the investigation of cathepsin S-dependent MHCII maturation in professional antigen-presenting cell (APC subsets. Inhibition of cathepsin S by a specific inhibitor, RO5459072, in human PBMC ex vivo resulted in accumulation of Lip10 in B cells and myeloid dendritic cells, but not in plasmacytoid dendritic cells and only to a minor degree in monocytes. We qualified Lip10 as a pharmacodynamic biomarker by showing the cathepsin S inhibitor-dependent accumulation of Lip10 in vivo in cynomolgus monkeys treated with RO5459072. Finally, dosing of RO5459072 in a first-in-human clinical study (www.ClinicalTrials.gov, identifier NCT02295332 exhibited a dose-dependent increase in Lip10, confirming target engagement and demonstrating desired pharmacologic inhibition in vivo. The degree of cathepsin S antagonist-induced maximum Lip10 accumulation in APCs varied significantly between individuals both in vitro and in vivo. This finding has not been reported previously using alternative, less sensitive methods and demands further investigation as to the potential of this biomarker to predict response to treatment. These results will help guide subsequent clinical studies investigating the pharmacokinetic and pharmacodynamic relationship of cathepsin S inhibitor RO5459072 after multiple dosing.

  6. Deficiency of Cathepsin K prevents inflammation and bone erosion in rheumatoid arthritis and periodontitis and reveals its shared osteoimmune role

    Science.gov (United States)

    Lu, Yun; Wang, Min; Jules, Joel; Zhou, Xuedong; Chen, Wei

    2015-01-01

    Using RA and periodontitis mouse models, we demonstrated that RA and periodontitis share many pathological features, such as deregulated cytokine production, increased immune-cell infiltration, increased expression of Toll-like receptors (TLRs), and enhanced osteoclast activity and bone erosion. We revealed that genetic deletion of Cathepsin K (Ctsk) caused a radical reduction in inflammation and bone erosion within RA joint capsules and periodontal lesions, a drastic decrease in immune-cell infiltration, and a significant reduction in osteoclasts, macrophages, dendritic and T-cells. Deficiency of Ctsk greatly decreased the expression of TLR-4, 5, and 9 and their downstream cytokines in periodontal gingival epithelial lesions and synovial RA lesions. Hence, Ctsk may be targeted to treat RA and periodontitis simultaneously due to its shared osteoimmune role. PMID:25896020

  7. Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi.

    Directory of Open Access Journals (Sweden)

    Waleska Maldonado-Aguayo

    Full Text Available Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S as well as in an aspartic protease group (D. Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi.

  8. Cathepsin K expression is increased in oral lichen planus.

    Science.gov (United States)

    Siponen, Maria; Bitu, Carolina Cavalcante; Al-Samadi, Ahmed; Nieminen, Pentti; Salo, Tuula

    2016-11-01

    Oral lichen planus (OLP) is an idiopathic T-cell-mediated mucosal inflammatory disease. Cathepsin K (Cat K) is one of the lysosomal cysteine proteases. It is involved in many pathological conditions, including osteoporosis and cancer. The expression and role of Cat K in OLP are unknown. Twenty-five oral mucosal specimens diagnosed histopathologically as OLP and fourteen healthy controls (HC) were used to study the immunohistochemical (IHC) expression of Cat K. Colocalization of Cat K with CD1a, Melan-A, CD68, CD45, mast cell tryptase (MCT), and Toll-like receptors (TLRs) 4 and 9 were studied using double IHC and/or immunofluorescence (IF) staining. Expression of Cat K was also evaluated in OLP tissue samples before and after topical tacrolimus treatment. Cat K was expressed in a higher percentage of cells in the epithelial zone, and the staining intensity was stronger in the stroma in OLP compared to controls (P < 0.001). In OLP, Cat K was present mostly in melanocytes and macrophages and sporadically in basal keratinocytes, endothelial cells, and extracellularly. Cat K was found also in some fibroblasts in HC and OLP samples. Coexpression of Cat K and TLRs 4 and 9 was seen in some dendritic cells (presumably melanocytes) and macrophages. In OLP, tacrolimus treatment reduced the expression of Cat K in the epithelium but increased it in the stroma. These results suggest that Cat K is involved in the pathogenesis of OLP. Cat K possibly takes part in the modulation of matrix molecules and cellular receptors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Enhancement of 2,3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity.

    Science.gov (United States)

    Park, Jang Min; Oh, Baek-Rock; Kang, In Yeong; Heo, Sun-Yeon; Seo, Jeong-Woo; Park, Seung-Moon; Hong, Won-Kyung; Kim, Chul Ho

    2017-07-01

    A Bacillus sp. strain named BRC1 is capable of producing 2,3-butanediol (2,3-BD) using hydrolysates of the Jerusalem artichoke tuber (JAT), a rich source of the fructose polymer inulin. To enhance 2,3-BD production, we undertook an extensive analysis of the Bacillus sp. BRC1 genome, identifying a putative gene (sacC) encoding a fructan hydrolysis enzyme and characterizing the activity of the resulting recombinant protein expressed in and purified from Escherichia coli. Introduction of the sacC gene into Bacillus sp. BRC1 using an expression vector increased enzymatic activity more than twofold. Consistent with this increased enzyme expression, 2,3-BD production from JAT was also increased from 3.98 to 8.10 g L -1 . Fed-batch fermentation of the recombinant strain produced a maximal level of 2,3-BD production of 28.6 g L -1 , showing a high theoretical yield of 92.3%.

  10. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  11. Active and passive immune responses to transmissible gastroenteritis virus (TGEV) in swine inoculated with recombinant baculovirus-expressed TGEV spike glycoprotein vaccines.

    Science.gov (United States)

    Shoup, D I; Jackwood, D J; Saif, L J

    1997-03-01

    Baculovirus-expressed transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein vaccines were inoculated parenterally in swine to determine whether such vaccines could induce serum and whey virus-neutralizing (VN) antibodies and protective lactogenic immunity for TGEV-challenge-exposed pigs. ANIMALS AND PROCEDURES: 3 recombinant baculoviruses that expressed full or partial length TGEV Miller strain S glycoproteins were inoculated SC in 17 conventionally raised 11-day-old TGEV-seronegative pigs to determine whether the recombinant S glycoproteins would elicit serum VN antibodies. Eleven TGEV-seronegative pregnant sows were inoculated SC or intramammarily with subunit vaccines (R2-2 or R3-5) or control proteins. Pigs born to 9 of the 11 sows were challenge exposed at 4 to 5 days of age with the virulent Miller strain, and passive immunity was assessed. Serum and whey antibody responses to TGEV were analyzed by VN and ELISA testing. Recombinant S glycoproteins (R2-2 or R3-5) containing the 4 major antigenic sites induced similar VN antibody titers to TGEV in serum and colostrum, but low (some sows) or no VN antibody titer was detected in milk. Subcutaneous inoculation of sows with R2-2 or R3-5 elicited IgG, but not IgA antibodies to TGEV in colostrum. Morbidity was 100%, and mortality ranged from 20 to 80% in TGEV challenge-exposed pigs nursing sows inoculated SC or intramammarily with TGEV S glycoprotein vaccines. Parenterally administered TGEV S glycoprotein vaccines elicit VN antibodies to TGEV in serum and colostrum that do not fully provide active or passive immunity in swine.

  12. A successful strategy for the recovering of active P21, an insoluble recombinant protein of Trypanosoma cruzi

    Science.gov (United States)

    Santos, Marlus Alves Dos; Teixeira, Francesco Brugnera; Moreira, Heline Hellen Teixeira; Rodrigues, Adele Aud; Machado, Fabrício Castro; Clemente, Tatiana Mordente; Brigido, Paula Cristina; Silva, Rebecca Tavares E.; Purcino, Cecílio; Gomes, Rafael Gonçalves Barbosa; Bahia, Diana; Mortara, Renato Arruda; Munte, Claudia Elisabeth; Horjales, Eduardo; da Silva, Claudio Vieira

    2014-03-01

    Structural studies of proteins normally require large quantities of pure material that can only be obtained through heterologous expression systems and recombinant technique. In these procedures, large amounts of expressed protein are often found in the insoluble fraction, making protein purification from the soluble fraction inefficient, laborious, and costly. Usually, protein refolding is avoided due to a lack of experimental assays that can validate correct folding and that can compare the conformational population to that of the soluble fraction. Herein, we propose a validation method using simple and rapid 1D 1H nuclear magnetic resonance (NMR) spectra that can efficiently compare protein samples, including individual information of the environment of each proton in the structure.

  13. Critical appraisal of the role of recombinant activated factor VII in the treatment of hemophilia patients with inhibitors

    Directory of Open Access Journals (Sweden)

    Ampaiwan Chuansumrit

    2010-03-01

    Full Text Available Ampaiwan Chuansumrit1, Pantep Angchaisuksiri2, Nongnuch Sirachainan11Departments of Pediatrics and 2Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University,  Bangkok, ThailandAbstract: Hemophilia patients with inhibitors faced the constraint of inadequate treatment for several years before the era of recombinant factor VIIa (rFVII. Initially, rFVIIa was used in the compassionate-use programs. After a worldwide license was issued, more than 1.5 million doses were administered. Bleeding of joints and muscles was controlled effectively by means of an early home treatment program, with either a standard dose of 90 μg/kg every 2 to 3 hours for a few doses or a single dose of 270 μg/kg. For more serious bleeding episodes or minor surgery, an initial dose of 90 μg/kg was given every 2 hours for 24 to 48 hours followed by increased intervals of 3 to 6 hours according to the severity of bleeding and efficacy of bleeding control. In cases of major surgery such as orthopedic procedures, the same regimen can be applied except for a higher initial dose of 120 to 180 μg/kg. However, increasing the dose should be considered if there are unexpected bleeding complications since the half-life and clearance of rFVIIa differ between individuals. In addition, prophylaxis is administered to a small number of patients. Finally, the reported thromboembolic events found in hemophilia patients with inhibitors receiving rFVIIa are extremely low, much less than 1%.Keywords: bleeding disorder, hemophilia, inhibitor, NovoSeven, recombinant factor VIIa

  14. Essential role for cathepsin D in bleomycin-induced apoptosis of alveolar epithelial cells.

    Science.gov (United States)

    Li, Xiaopeng; Rayford, Heather; Shu, Ruijie; Zhuang, Jiaju; Uhal, Bruce D

    2004-07-01

    Our earlier studies showed that bleomycin-induced apoptosis of type II alveolar epithelial cells (AECs) requires the autocrine synthesis and proteolytic processing of angiotensinogen into ANG II and that inhibitors of ANG-converting enzyme (ACEis) block bleomycin-induced apoptosis (Li X, Zhang H, Soledad-Conrad V, Zhuang J, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 284: L501-L507, 2003). Given the documented role of cathepsin D (CatD) in apoptosis of other cell types, we hypothesized that CatD might be the AEC enzyme responsible for the conversion of angiotensinogen into ANG I, the substrate for ACE. Primary cultures of rat type II AECs challenged with bleomycin in vitro showed upregulation and secretion of CatD enzymatic activity and immunoreactive protein but no increases in CatD mRNA. The aspartyl protease inhibitor pepstatin A, which completely blocked CatD enzymatic activity, inhibited bleomycin-induced nuclear fragmentation by 76% and reduced bleomycin-induced caspase-3 activation by 47%. Antisense oligonucleotides against CatD mRNA reduced CatD-immunoreactive protein and inhibited bleomycin-induced nuclear fragmentation by 48%. A purified fragment of angiotensinogen (F1-14) containing the CatD and ACE cleavage sites, when applied to unchallenged AEC in vitro, yielded mature ANG II peptide and induced apoptosis. The apoptosis induced by F1-14 was inhibited 96% by pepstatin A and 77% by neutralizing antibodies specific for CatD (both P CatD in bleomycin-induced apoptosis of cultured AEC and suggest that the role(s) of CatD in AEC apoptosis include the conversion of newly synthesized angiotensinogen to ANG II.

  15. Conformational dynamics of cathepsin D and binding to a small-molecule BACE1 inhibitor.

    Science.gov (United States)

    Ellis, Christopher R; Tsai, Cheng-Chieh; Lin, Fang-Yu; Shen, Jana

    2017-06-05

    BACE1 is a major therapeutic target for prevention and treatment of Alzheimer's disease. Developing inhibitors that can selectively target BACE1 in favor of other proteases, especially cathepsin D (CatD), has presented significant challenges. Here, we investigate the conformational dynamics and protonation states of BACE1 and CatD using continuous constant pH molecular dynamics with pH replica-exchange sampling protocol. Despite similar structure, BACE1 and CatD exhibit markedly different active site dynamics. BACE1 displays pH-dependent flap dynamics that controls substrate accessibility, while the CatD flap is relatively rigid and remains open in the pH range 2.5-6. Interestingly, although each protease hydrolyzes peptide bonds, the protonation states of the catalytic dyads are different within the active pH range. The acidic and basic components of the BACE1 catalytic dyad are clear, while either aspartic acid of the CatD catalytic dyad could play the role of acid or base. Finally, we investigate binding of the inhibitor LY2811376 developed by Eli Lilly to BACE1 and CatD. Surprisingly, in the enzyme active pH range, LY2811376 forms a stronger salt bridge with the catalytic dyad in CatD than in BACE1, which might explain the retinal toxicity of the inhibitor related to off-target inhibition of CatD. This work highlights the complexity and challenge in structure-based drug design where receptor-ligand binding induces protonation state change in both the protein and the inhibitor. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Investigations on the activation of recombinant microbial pro-transglutaminase: in contrast to proteinase K, dispase removes the histidine-tag.

    Science.gov (United States)

    Sommer, Christian; Hertel, Thomas C; Schmelzer, Christian E H; Pietzsch, Markus

    2012-02-01

    In order to produce recombinant microbial transglutaminase (rMTG) which is free of the activating protease, dispase was used to activate the pro-rMTG followed by immobilized metal affinity chromatography (IMAC). As shown by MALDI-MS, the dispase does not only cleave the pro-sequence, but unfortunately also cleaves within the C-terminal histidine-tag. Hence, the active rMTG cannot properly bind to the IMAC material. As an alternative, proteinase K was investigated. This protease was successfully applied for the activation of purified pro-rMTG either as free or immobilized enzyme and the free enzyme was also applicable directly in the crude cell extract of E. coli. Thus, it enables a simple two-step activation/purification procedure resulting in protease-free and almost pure transglutaminase preparations. The protocol has been successfully applied to both, wild-type transglutaminase of Streptomyces mobaraensis as well as to the highly active variant S2P. Proteinase K activates the pro-rMTG without unwanted degradation of the histidine-tag. It turned out to be very important to inhibit proteinase K activity, e.g., by PMSF, prior to protein separation by SDS-PAGE.

  17. Understanding Recombination.

    Science.gov (United States)

    Zimmerman, Ira

    2003-01-01

    Describes a science activity on the importance of meiosis for variability. Uses a coin flip to demonstrate the random arrangement of genetic materials and explains how this results in zygotes with a new DNA combination. (YDS)

  18. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.

    Science.gov (United States)

    Ding, Chao; Zhang, Yaohong; Liu, Feng; Nakazawa, Naoki; Huang, Qingxun; Hayase, Shuzi; Ogomi, Yuhei; Toyoda, Taro; Wang, Ruixiang; Shen, Qing

    2017-09-22

    Using spatial energy-level gradient engineering with quantum dots (QDs) of different sizes to increase the generated carrier collection at the junction of a QD heterojunction solar cell (QDHSC) is a hopeful route for improving the energy-conversion efficiency. However, the results of current related research have shown that a variable band-gap structure in a QDHSC will create an appreciable increase, not in the illumination current density, but rather in the fill factor. In addition, there are a lack of studies on the mechanism of the effect of these graded structures on the photovoltaic performance of QDHSCs. This study presents the development of air atmosphere solution-processed TiO 2 /PbS QDs/Au QDHSCs by engineering the energy-level alignment (ELA) of the active layer via the use of a sorted order of differently sized QD layers (four QD sizes). In comparison to the ungraded device (without the ELA), the optimized graded architecture (containing the ELA) solar cells exhibited a great increase (21.4%) in short-circuit current density (J sc ). As a result, a J sc value greater than 30 mA/cm 2 has been realized in planar, thinner absorption layer (∼300 nm) PbS QDHSCs, and the open-circuit voltage (V oc ) and power-conversion efficiency (PCE) were also improved. Through characterization by the light intensity dependences of the J sc and V oc and transient photovoltage decay, we find that (i) the ELA structure, serving as an electron-blocking layer, reduces the interfacial recombination at the PbS/anode interface, and (ii) the ELA structure can drive more carriers toward the desirable collection electrode, and the additional carriers can fill the trap states, reducing the trap-assisted recombination in the PbS QDHSCs. This work has clearly elucidated the mechanism of the recombination suppression in the graded QDHSCs and demonstrated the effects of ELA structure on the improvement of J sc . The charge recombination mechanisms characterized in this work would be

  19. Cathepsin B Cysteine Proteinase is Essential for the Development and Pathogenesis of the Plant Parasitic Nematode Radopholus similis

    Science.gov (United States)

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Dong-Wei; Xu, Chun-Ling; Huang, Xin; Wu, Wen-Jia; Li, Dan-Lei

    2015-01-01

    Radopholus similis is an important plant parasitic nematode which severely harms many crops. Cathepsin B is present in a wide variety of organisms, and plays an important role in many parasites. Understanding cathepsin B of R. similis would allow us to find new targets and approaches for its control. In this study, we found that Rs-cb-1 mRNA was expressed in esophageal glands, intestines and gonads of females, testes of males, juveniles and eggs in R. similis. Rs-cb-1 expression was the highest in females, followed by juveniles and eggs, and was the lowest in males. The maximal enzyme activity of Rs-CB-1 was detected at pH 6.0 and 40 °C. Silencing of Rs-cb-1 using in vitro RNAi (Soaking with dsRNA in vitro) not only significantly inhibited the development and hatching of R. similis, but also greatly reduced its pathogenicity. Using in planta RNAi, we confirmed that Rs-cb-1 expression in nematodes were significantly suppressed and the resistance to R. similis was significantly improved in T2 generation transgenic tobacco plants expressing Rs-cb-1 dsRNA. The genetic effects of in planta RNAi-induced gene silencing could be maintained in the absence of dsRNA for at least two generations before being lost, which was not the case for the effects induced by in vitro RNAi. Overall, our results first indicate that Rs-cb-1 plays key roles in the development, hatching and pathogenesis of R. similis, and that in planta RNAi is an effective tool in studying gene function and genetic engineering of plant resistance to migratory plant parasitic nematodes. PMID:26221074

  20. Lipid core peptide targeting the cathepsin D hemoglobinase of Schistosoma mansoni as a component of a schistosomiasis vaccine.

    Science.gov (United States)

    Dougall, Annette M; Skwarczynski, Mariusz; Khoshnejad, Makan; Chandrudu, Saranya; Daly, Norelle L; Toth, Istvan; Loukas, Alex

    2014-01-01

    The self-adjuvanting lipid core peptide (LCP) system offers a safe alternative vaccine delivery strategy, eliminating the need for additional adjuvants such as CpG Alum. In this study, we adopted the LCP as a scaffold for an epitope located on the surface of the cathepsin D hemoglobinase (Sm-CatD) of the human blood fluke Schistosoma mansoni. Sm-CatD plays a pivotal role in digestion of the fluke's bloodmeal and has been shown to be efficacious as a subunit vaccine in a murine model of human schistosomiasis. Using molecular modeling we showed that S. mansoni cathepsin D possesses a predicted surface exposed α-helix (A₂₆₃K) that corresponds to an immunodominant helix and target of enzyme-neutralizing antibodies against Necator americanus APR-1 (Na-APR-1), the orthologous protease and vaccine antigen from blood-feeding hookworms. The A₂₆₃K epitope was engineered as two peptide variants, one of which was flanked at both termini with a coil maintaining sequence, thereby promoting the helical characteristics of the native A₂₆₃K epitope. Some of the peptides were fused to a self-adjuvanting lipid core scaffold to generate LCPs. Mice were vaccinated with unadjuvanted peptides, peptides formulated with Freund's adjuvants, or LCPs. Antibodies generated to LCPs recognized native Sm-CatD within a soluble adult schistosome extract, and almost completely abolished its enzymatic activity in vitro. Using immunohistochemistry we showed that anti-LCP antibodies bound to the native Sm-CatD protein in the esophagus and anterior regions of the gastrodermis of adult flukes. Vaccines offer an alternative control strategy in the fight against schistosomiasis, and further development of LCPs containing multiple epitopes from this and other vaccine antigens should become a research priority.

  1. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii.

    Science.gov (United States)

    Morozova, E A; Kulikova, V V; Yashin, D V; Anufrieva, N V; Anisimova, N Y; Revtovich, S V; Kotlov, M I; Belyi, Y F; Pokrovsky, V S; Demidkina, T V

    2013-07-01

    The steady-state kinetic parameters of pyridoxal 5'-phosphate-dependent recombinant methionine γ -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in β- and γ-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the γ-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-histidine fragment of three recombinant enzymes influences their catalytic activity and facilitates the aggregation of monomers to yield dimeric forms under denaturing conditions. The cytotoxicity of methionine γ-lyase from C. sporogenes and C. tetani in comparison with Citrobacter freundii was evaluated using K562, PC-3, LnCap, MCF7, SKOV-3, and L5178y tumor cell lines. K562 (IC50=0.4-1.3 U/ml), PC-3 (IC50=0.1-0.4 U/ml), and MCF7 (IC50=0.04-3.2 U/ml) turned out to be the most sensitive cell lines.

  2. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus.

    Science.gov (United States)

    Matsubara, F H; Meissner, G O; Herzig, V; Justa, H C; Dias, B C L; Trevisan-Silva, D; Gremski, L H; Gremski, W; Senff-Ribeiro, A; Chaim, O M; King, G F; Veiga, S S

    2017-02-01

    Loxosceles intermedia venom comprises a complex mixture of proteins, glycoproteins and low molecular mass peptides that act synergistically to immobilize envenomed prey. Analysis of a venom-gland transcriptome from L. intermedia revealed that knottins, also known as inhibitor cystine knot peptides, are the most abundant class of toxins expressed in this species. Knottin peptides contain a particular arrangement of intramolecular disulphide bonds, and these peptides typically act upon ion channels or receptors in the insect nervous system, triggering paralysis or other lethal effects. Herein, we focused on a knottin peptide with 53 amino acid residues from L. intermedia venom. The recombinant peptide, named U 2 -sicaritoxin-Li1b (Li1b), was obtained by expression in the periplasm of Escherichia coli. The recombinant peptide induced irreversible flaccid paralysis in sheep blowflies. We screened for knottin-encoding sequences in total RNA extracts from two other Loxosceles species, Loxosceles gaucho and Loxosceles laeta, which revealed that knottin peptides constitute a conserved family of toxins in the Loxosceles genus. The insecticidal activity of U 2 -SCTX-Li1b, together with the large number of knottin peptides encoded in Loxosceles venom glands, suggests that studies of these venoms might facilitate future biotechnological applications of these toxins. © 2016 The Royal Entomological Society.

  3. Active immunization with recombinant GnRH fusion protein in boars reduces both testicular development and mRNA expression levels of GnRH receptor in pituitary.

    Science.gov (United States)

    Fang, Fugui; Li, Haidong; Liu, Ya; Zhang, Yunhai; Tao, Yong; Li, Yunsheng; Cao, Hongguo; Wang, Suolu; Wang, Lin; Zhang, Xiaorong

    2010-06-01

    Immunization using recombinant maltose binding protein-gonadotropin releasing hormone (MBP-GnRH6) altered both testicular development and transcription of the pituitary GnRH receptor (GnRHR) gene in boars. Scrotal measurement and blood samples were taken at 4-week interval after immunization at 9 weeks of age. The concentrations of testosterone and anti-GnRH antibodies in serum were determined by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The results showed that active immunization with MBP-GnRH6 increased the serum concentration of anti-GnRH antibodies (Pimmunized animals as compared with MBP immunized boars. MBP-GnRH6 immunized pigs exhibited mounting behavior 4 weeks later than MBP immunized boars. No mature spermatozoa were observed from MBP-GnRH6 immunized animals. By real-time quantitative PCR analysis, the amount of GnRHR mRNA in the pituitary tissue was found to be significantly lower in MBP-GnRH6 immunized animals than in controls (P<0.05). These data demonstrate that recombinant MBP-GnRH6 was effective in immunological castration in boars. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Plasma cathepsin D levels: a novel tool to predict pediatric hepatic inflammation.

    Science.gov (United States)

    Walenbergh, Sofie M A; Houben, Tom; Hendrikx, Tim; Jeurissen, Mike L J; van Gorp, Patrick J; Vreugdenhil, Anita C E; Adriaanse, Marlou P; Buurman, Wim A; Hofker, Marten H; Mosca, Antonella; Lindsey, Patrick J; Alisi, Anna; Liccardo, Daniela; Panera, Nadia; Koek, Ger H; Nobili, Valerio; Shiri-Sverdlov, Ronit

    2015-03-01

    Nonalcoholic steatohepatitis (NASH) is the most severe form of a hepatic condition known as nonalcoholic fatty liver disease (NAFLD). NASH is histologically characterized by hepatic fat accumulation, inflammation, and ballooning, and eventually coupled with fibrosis that, in turn, may progress to end-stage liver disease even in young individuals. Hence, there is a critical need for specific noninvasive markers to predict hepatic inflammation at an early age. We investigated whether plasma levels of cathepsin D (CatD), a lysosomal protease, correlated with the severity of liver inflammation in pediatric NAFLD. Liver biopsies from children (n=96) with NAFLD were histologically evaluated according to the criteria of Kleiner (NAFLD activity score) and the Brunt's criteria. At the time of liver biopsy, blood was taken and levels of CatD, alanine aminotransferase (ALT), and cytokeratin-18 (CK-18) were measured in plasma. Plasma CatD levels were significantly lower in subjects with liver inflammation compared with steatotic subjects. Furthermore, we found that CatD levels were gradually reduced and corresponded with increasing severity of liver inflammation, steatosis, hepatocellular ballooning, and NAFLD activity score. CatD levels correlated with pediatric NAFLD disease progression better than ALT and CK-18. In particular, CatD showed a high diagnostic accuracy (area under receiver operating characteristic curve (ROC-AUC): 0.94) for the differentiation between steatosis and hepatic inflammation, and reached almost the maximum accuracy (ROC-AUC: 0.998) upon the addition of CK-18. Plasma CatD holds a high diagnostic value to distinguish pediatric patients with hepatic inflammation from children with steatosis.

  5. Assembly, translocation, and activation of XerCD-dif recombination by FtsK translocase analyzed in real-time by FRET and two-color tethered fluorophore motion.

    Science.gov (United States)

    May, Peter F J; Zawadzki, Pawel; Sherratt, David J; Kapanidis, Achillefs N; Arciszewska, Lidia K

    2015-09-15

    The FtsK dsDNA translocase functions in bacterial chromosome unlinking by activating XerCD-dif recombination in the replication terminus region. To analyze FtsK assembly and translocation, and the subsequent activation of XerCD-dif recombination, we extended the tethered fluorophore motion technique, using two spectrally distinct fluorophores to monitor two effective lengths along the same tethered DNA molecule. We observed that FtsK assembled stepwise on DNA into a single hexamer, and began translocation rapidly (∼ 0.25 s). Without extruding DNA loops, single FtsK hexamers approached XerCD-dif and resided there for ∼ 0.5 s irrespective of whether XerCD-dif was synapsed or unsynapsed. FtsK then dissociated, rather than reversing. Infrequently, FtsK activated XerCD-dif recombination when it encountered a preformed synaptic complex, and dissociated before the completion of recombination, consistent with each FtsK-XerCD-dif encounter activating only one round of recombination.

  6. Localization profile of Cathepsin L in the brain of African giant rat ...

    African Journals Online (AJOL)

    Strong labeling in the hypothalamus was present in the anterior commissure and median eminencewhile in the cerebellum cathepsin L was observed in the deep white matter, granule cell layer, stellate, and basket cells of cerebellar cortex and in the Purkinje neurons. The distribution pattern and functional implications of ...

  7. RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model.

    Directory of Open Access Journals (Sweden)

    Maha-Hamadien Abdulla

    2008-09-01

    Full Text Available We investigated the roles played by the cysteine proteases cathepsin B and cathepsin L (brucipain in the pathogenesis of Trypansoma brucei brucei in both an in vivo mouse model and an in vitro model of the blood-brain barrier. Doxycycline induction of RNAi targeting cathepsin B led to parasite clearance from the bloodstream and prevent a lethal infection in the mice. In contrast, all mice infected with T. brucei containing the uninduced Trypanosoma brucei cathepsin B (TbCatB RNA construct died by day 13. Induction of RNAi against brucipain did not cure mice from infection; however, 50% of these mice survived 60 days longer than uninduced controls. The ability of T. b. brucei to cross an in vitro model of the human blood-brain barrier was also reduced by brucipain RNAi induction. Taken together, the data suggest that while TbCatB is the more likely target for the development of new chemotherapy, a possible role for brucipain is in facilitating parasite entry into the brain.

  8. Estrogen regulates the expression of cathepsin E-A-like gene via ...

    Indian Academy of Sciences (India)

    徐春林

    by estrogen, and the regulative effect was predominantly mediated via ER-β in chicken liver. Keywords: Estrogen ... the RNA-seq technique to investigate the mechanism of hepatic lipid metabolism (Li et al. 2015). ... To clone the cathepsin E-A-like gene and investigate the effect of estrogen on expression of the gene, a total ...

  9. Fasciola gigantica cathepsin L proteinase-based synthetic peptide for immunodiagnosis and prevention of sheep fasciolosis

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; El Ridi, R.; Salah, M.; Wagih, A.; Aziz, H. W.; Tallima, H.; El Shafie, M. H.; Khalek, T. A.; Ammou, F. F. A.; Strongylis, C.; Moussis, V.; Tsikaris, V.

    2008-01-01

    Roč. 90, č. 3 (2008), s. 349-357 ISSN 0006-3525 Institutional research plan: CEZ:AV0Z40550506 Keywords : cathepsin L proteinase * peptides * sequential oligopeptide carriers * synthetic peptide vaccine * Fasciiola gigantica Subject RIV: CC - Organic Chemistry Impact factor: 2.823, year: 2008

  10. A novel nonsense mutation in cathepsin C gene in an Egyptian ...

    African Journals Online (AJOL)

    A novel nonsense mutation in cathepsin C gene in an Egyptian patient presenting with Papillon–Lefe`vre syndrome. ... Egyptian Journal of Medical Human Genetics ... Aim: The aim of this study is to detect the mutation in CTSC gene expected to be the cause of Papillon Lefe`vre syndrome (PLS) in an Egyptian patient ...

  11. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets

    Czech Academy of Sciences Publication Activity Database

    Sojka, D.; Hartmann, D.; Bartošová-Sojková, P.; Dvořák, Jan

    2016-01-01

    Roč. 32, č. 9 (2016), s. 708-723 ISSN 1471-4922 R&D Projects: GA ČR GA13-11043S; GA ČR(CZ) GAP302/11/1481 Institutional support: RVO:61388963 Keywords : aspartic peptidases * cathepsin D * hemoglobinolysis * parasites * vectors Subject RIV: CE - Biochemistry Impact factor: 6.333, year: 2016

  12. Effects of RNAi-mediated cathepsin L gene silencing on bionomics ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... The changes of cell cycle and apoptosis were observed by flow cytometry. The changes of invasiveness of hepatoma carcinoma cells were detected by Boyden chamber. Compared with the blank group and fluorescence control group, mRNA and protein level of cathepsin L decreased significantly, and cell.

  13. Individual cathepsins degrade immune complexes internalized by antigen-presenting cells via Fcgamma receptors.

    NARCIS (Netherlands)

    Driessen, C.A.G.G.; Lennon-Dumenil, A.M.; Ploegh, H.L.

    2001-01-01

    We have analyzed the intracellular degradation of an immune complex after its FcgammaR-mediated uptake in antigen-presenting cells (APC). Mice that lack the cathepsins (Cat) S, L, B and D allowed us to assess the direct contribution of these individual proteases to the processing events observed.

  14. Presence and removal of a contaminating NADH oxidation activity in recombinant maltose-binding protein fusion proteins expressed in Escherichia coli.

    Science.gov (United States)

    Guo, Fengguang; Zhu, Guan

    2012-04-01

    We observed the presence of contaminating NADH oxidation activity in maltose binding protein (MBP) fusion proteins expressed in Escherichia coli and purified using conventional amylose resin-based affinity chromatography. This contaminating NADH oxidation activity was detectable with at least four different enzymes from Cryptosporidium parvum expressed as MBP-fusion proteins (i.e., an enoyl-reductase domain from a type I fatty acid synthase, a fatty acyl-CoA binding protein, the acyl-ligase domain from a polyketide synthase, and a putative thioesterase), regardless of their NADH dependence. However, contaminating NADH oxidation activity was not present when fusion proteins were engineered to contain a His-tag and were purified using a Ni-NTA resin-based protocol. Alternatively, for proteins containing only an MBP-tag, the contaminating activity could be eliminated through the addition of 0.1% Triton X-100 and 2% glycerol to the column buffer during homogenization of bacteria and first column wash, followed by an additional wash and elution with regular column and elution buffers. Removal of the artifactual activity is very valuable in the study of enzymes using NADH as a cofactor, particularly when the native activity is low or the recombinant proteins are inactive.

  15. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Directory of Open Access Journals (Sweden)

    Rui-Li Zhang

    Full Text Available The recombinant Treponema pallidum protein Tp0965 (rTp0965, one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.

  16. 177Lu-labeled HPMA copolymers utilizing cathepsin B and S cleavable linkers: Synthesis, characterization and preliminary in vivo investigation in a pancreatic cancer model

    International Nuclear Information System (INIS)

    Ogbomo, Sunny M.; Shi, Wen; Wagh, Nilesh K.; Zhou, Zhengyuan; Brusnahan, Susan K.; Garrison, Jered C.

    2013-01-01

    Introduction: A major barrier to the advancement of therapeutic nanomedicines has been the non-target toxicity caused by the accumulation of the drug delivery systems in organs associated with the reticuloendothelial system, particularly the liver and spleen. Herein, we report the development of peptide based metabolically active linkers (MALs) that are enzymatically cleaved by cysteine cathepsin B and S, two proteases highly expressed in the liver and spleen. The overall goal of this approach is to utilize the MALs to lower the non-target retention and toxicity of radiolabeled drug delivery systems, thus resulting in higher diagnostic and radiotherapeutic efficacy. Methods: In this study three MALs (MAL0, MAL1 and MAL2) were investigated. MAL1 and MAL2 are composed of known substrates of cathepsin B and S, respectively, while MAL0 is a non-cleavable control. Both MAL1 and MAL2 were shown to undergo enzymatic cleavage with the appropriate cathepsin protease. Subsequent to conjugation to the HPMA copolymer and radiolabeling with 177 Lu, the peptide–polymer conjugates were renamed 177 Lu-metabolically active copolymers ( 177 Lu-MACs) with the corresponding designations: 177 Lu-MAC0, 177 Lu-MAC1 and 177 Lu-MAC2. Results: In vivo evaluation of the 177 Lu-MACs was performed in an HPAC human pancreatic cancer xenograft mouse model. 177 Lu-MAC1 and 177 Lu-MAC2 demonstrated 3.1 and 2.1 fold lower liver retention, respectively, compared to control ( 177 Lu-MAC0) at 72 h post-injection. With regard to spleen retention, 177 Lu-MAC1 and 177 Lu-MAC2 each exhibited a nearly fourfold lower retention, relative to control, at the 72 h time point. However, the tumor accumulation of the 177 Lu-MAC0 was two to three times greater than 177 Lu-MAC1 and 177 Lu-MAC2 at the same time point. The MAL approach demonstrated the capability of substantially reducing the non-target retention of the 177 Lu-labeled HPMA copolymers. Conclusions: While further studies are needed to optimize the

  17. Cathepsin D gene Expression in Stomach: Its Association with Age, Sex, and Menopausal status

    Directory of Open Access Journals (Sweden)

    Reza Abedi

    2016-03-01

    Full Text Available Background & Objectives :Gastric cancer is 2-4 folds higher in men than women. Sex hormones are one of the leading causes of sexual dimorphism in incidence of gastric cancer. The aim of this study is to compare Cathepsin D and Caspase-7 gene expressions in the gastric tissue of normal men and women. Materials & Methods :In this cross-sectional study, gastric antrum tissue samples were collected from 21 healthy females and 21 males in the three age groups including 35, 35-50, and over 50 years. Following RNA extraction and cDNA synthesis, the expressions of genes were compared between men and women via semi-quantitative Reverse Transcription-PCR method. The obtained data were analyzed, using the statistical T-Test and ANOVA. Results: Statical analyses confirmed that the expression of Cathepsin D gene was significantly higher in men under 35 than those in the range of 35-50 years (p=0.04. In addition, the expression of Cathepsin D gene was significantly 10 folds in pre-menopause than post-menopause women and men (post-menopause women and men as one group (p=0.008. Furthermore, the expression of Cathepsin D gene between men and women was significant at borderline (p=0.056. Conclusion: The findings of the present research indicate that the expression of Cathepsin D is higher in pre-menopause than post-menopause women and men, and is greater in men under 35 than those in the range of 35-50 years.

  18. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination.

    Science.gov (United States)

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua

    2017-10-01

    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  19. Pro