WorldWideScience

Sample records for active proteins vaccines

  1. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity

    Institute of Scientific and Technical Information of China (English)

    Bo Sun; Zhao-Shen Li; Zhen-Xing Tu; Guo-Ming Xu; Yi-Qi Du

    2006-01-01

    AIM: To construct a live attenuated Salmonella typhimurium (S.typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity.METHODS: By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments.RESULTS: A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recompinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylor(i) whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response.CONCLUSION: The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.

  2. Active immunotherapy of allergic asthma with a recombinant human interleukin-5 protein as vaccine in a murine model

    Institute of Scientific and Technical Information of China (English)

    TAN Guang-hong; WANG Cai-chun; HUANG Feng-ying; WANG Hua; HUANG Yong-hao; LIN Ying-ying

    2007-01-01

    Background Eosinophils are highly related to allergic asthma inflammation. Interleukin (IL)-5 is the major chemokine of eosinophils, inhibition of the activity of IL-5 thus seems to be a potential approach to asthma therapy. The current study was performed to determine whether a recombinant human IL-5 protein as a xenogeneic vaccine has the capability of inducing anti-asthma activities.Methods Recombinant human IL-5 was used as a protein vaccine. Mouse asthma model was established to observe the anti-asthma activities. Lung histology was observed; eosinophils in blood and bronchoalveolar lavage were stained and counted. Airway hyperresponsiveness was determined by whole body plethysmograph. Antibody characters and cytokines were detected with enzyme linked immunosorbent assay (ELISA) and Western blot assay.Results Vaccination with recombinant human IL-5 protein as vaccine significantly reduced airway inflammation and airway hyperresponsiveness, and shifted the cytokine production from Th2 (IL-4) to Th1 (INF-γ) in mice allergic-asthma model. Immunization with recombinant human IL-5 protein vaccine bypassed the immunological tolerance and induced production of polyclonal antibodies that were cross-reactive with murine IL-5.Conclusions Active immunization with xenogeneic homologous IL-5 may be a possible therapeutic approach to the treatment of asthma and potentially of other eosinophilic disorders.

  3. Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant.

    Science.gov (United States)

    Engel, Abbi L; Sun, Guan-Cheng; Gad, Ekram; Rastetter, Lauren R; Strobe, Katie; Yang, Yi; Dang, Yushe; Disis, Mary L; Lu, Hailing

    2013-12-01

    Protein-bound polysaccharide-K (PSK) is a hot water extract from Trametes versicolor mushroom. It has been used traditionally in Asian countries for its immune stimulating and anti-cancer effects. We have recently found that PSK can activate Toll-like receptor 2 (TLR2). TLR2 is highly expressed on dendritic cells (DC), so the current study was undertaken to evaluate the effect of PSK on DC activation and the potential of using PSK as a vaccine adjuvant. In vitro experiments using mouse bone marrow-derived DC (BMDC) demonstrated that PSK induces DC maturation as shown by dose-dependent increase in the expression of CD80, CD86, MHCII, and CD40. PSK also induces the production of multiple inflammatory cytokines by DC, including IL-12, TNF-α, and IL-6, at both mRNA and protein levels. In vivo experiments using PSK as an adjuvant to OVAp323-339 vaccine showed that PSK as adjuvant leads to enlarged draining lymph nodes with higher number of activated DC. PSK also stimulates proliferation of OVA-specific T cells, and induces T cells that produce multiple cytokines, IFN-γ, IL-2, and TNF-α. Altogether, these results demonstrate the ability of PSK to activate DC in vitro and in vivo and the potential of using PSK as a novel vaccine adjuvant.

  4. Preparation and immune activity analysis of H5N1 subtype avian influenza virus recombinant protein-based vaccine.

    Science.gov (United States)

    Xie, Q M; Ji, J; Du, L Q; Cao, Y C; Wei, L; Xue, C Y; Qin, J P; Ma, J Y; Bi, Y Z

    2009-08-01

    Avian influenza is a severe disease among farmed poultry and free-living birds and a constant threat to the commercial chicken industry around the world. Hemagglutinin (HA) is the major immunogen on the envelope of influenza A virus and is the predominant inducer of neutralizing antibody. To obtain the bioactive antigen proteins in large quantities, a new protein expression vector pBCX was constructed, which is based on the pET32a vector. The HA gene of the H5N1 subtype of avian influenza virus (AIV) was inserted into the pBCX vector and expressed efficiently in Escherichia coli BL21 (DE3). Fused expression of the exogenous gene and msyB produced a 97-kDa msyB-HA fusion protein. Sodium dodecyl sulfate-PAGE combined with scanning analysis demonstrated that the msyB-HA fusion protein accounted for 29.5% of the total bacterial protein, 90.5% being soluble. The msyB-HA fusion protein was purified with nondenaturing 50% Ni-NTA column chromatography, and the result showed that 24 mg of purified msyB-HA fusion protein could be obtained from 1 L of induced expression bacterial culture medium. The comparative results in the present study showed that pBCX was superior to pET32a as a protein expression vector. Western blotting showed the recombinant msyB-HA (rHA) to have better antigenic activity, which may be the result from the better posttranslation protein modification and folding in the pBCX expression system. With the rHA fusion protein as antigen, we successfully prepared and screened specific monoclonal antibodys against the H5N1 subtype AIV, which indicated that the rHA had antigen epitopes and biofunctions. The immune test confirmed that the rHA protein vaccine could also induce high neutralizing antibodies, and the AIV challenge test proved that the rHA protein-based vaccine could prevent the corresponding infection. This study demonstrates that the recombinant HA protein produced by the pBCX expression system could be used as a recombinant protein-based vaccine

  5. A Mage3/Heat Shock Protein70 DNA vaccine induces both innate and adaptive immune responses for the antitumor activity.

    Science.gov (United States)

    Wang, Lifeng; Rollins, Lisa; Gu, Qinlong; Chen, Si-Yi; Huang, Xue F

    2009-12-11

    Heat shock proteins (HSPs) are highly effective and versatile molecules in promoting antitumor immune responses. We tested whether a HSP-based DNA vaccine can induce effective immune response against Mage3, a cancer testis (CT) antigen frequently expressed in many human tumors, thereby controlling the Mage3-expressing tumor. The vaccine was constructed by linking human inducible HSP70 to the C-terminus of a modified Mage3 gene (sMage3) that was attached at its N-terminus with the signal leader sequence of the human RANTES for releasing the expressed fusion protein from the transduced cells. Intramuscular injection of sMage3Hsp DNA induced CD4(+)/CD8(+) T cell and antibody responses. Vaccination with sMage3Hsp DNA was more effective in inhibiting Mage3-expressing TC-1 tumors. When we dissected the antitumor activity of CD4(+) and CD8(+) T cells by immunizing CD4(+) and CD8(+) knockout mice with sMage3Hsp DNA, we found that both CD8(+) T and CD4(+) T cells played a role in control of inoculated tumor, but did not constitute the whole of immune protection in the prophylactic immunization. Instead, depletion of natural killer (NK) cells led to a major loss of antitumor activity in the immunized mice. These results indicate that the HSP-based Mage3 DNA vaccine can more effectively inhibit tumor growth by inducing both the innate immune responses and Mage3-specific adaptive immune responses via the Hsp-associated adjuvant function.

  6. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    Science.gov (United States)

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost

  7. Listeria-vectored vaccine expressing the Mycobacterium tuberculosis 30 kDa major secretory protein via the constitutively active prfA* regulon boosts BCG efficacy against tuberculosis.

    Science.gov (United States)

    Jia, Qingmei; Dillon, Barbara Jane; Masleša-Galić, Saša; Horwitz, Marcus A

    2017-06-19

    A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis (Mtb) 30 kDa major secretory protein (r30/Ag85B) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated Lm vectors, rLm ΔactA (LmI), rLm ΔactA ΔinlB (LmII), and rLm ΔactA ΔinlBprfA* (LmIII), we constructed five rLm30 vaccine candidates expressing the r30 linked in-frame to the Lm Listeriolycin O signal sequence and driven by the hly promoter (h30) or linked in-frame to the ActA N-terminus and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm expressing r30 via a constitutively active prfA* regulon (rLmIII/a30) expressed the greatest amount of r30 in broth culture, all five rLm vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T-cells expressing the three cytokines of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) (P 2017 American Society for Microbiology.

  8. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins.

    Science.gov (United States)

    Grzybowski, Marcin M; Dziadek, Bożena; Gatkowska, Justyna M; Dzitko, Katarzyna; Długońska, Henryka

    2015-12-01

    Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.

  9. Protein Crystallography in Vaccine Research and Development.

    Science.gov (United States)

    Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J

    2015-06-09

    The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.

  10. Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime-protein boost HIV-1 vaccine.

    Science.gov (United States)

    Pouliot, Kimberly; Buglione-Corbett, Rachel; Marty-Roix, Robyn; Montminy-Paquette, Sara; West, Kim; Wang, Shixia; Lu, Shan; Lien, Egil

    2014-09-03

    Recombinant protein vaccines are commonly formulated with an immune-stimulatory compound, or adjuvant, to boost immune responses to a particular antigen. Recent studies have shown that, through recognition of molecular motifs, receptors of the innate immune system are involved in the functions of adjuvants to generate and direct adaptive immune responses. However, it is not clear to which degree those receptors are also important when the adjuvant is used as part of a novel heterologous prime-boost immunization process in which the priming and boosting components are not the same type of vaccines. In the current study, we compared the immune responses elicited by a pentavalent HIV-1 DNA prime-protein boost vaccine in mice deficient in either Toll-like receptor 4 (TLR4) or myeloid differentiation primary response gene 88 (MyD88) to wildtype mice. HIV gp120 protein administered in the boost phase was formulated with either monophosphoryl lipid A (MPLA), QS-21, or Al(OH)3. Endpoint antibody titer, serum cytokine response and T-cell memory response were assessed. Neither TLR4 nor MyD88 deficiency had a significant effect on the immune response of mice given vaccine formulated with QS-21 or Al(OH)3. However, TLR4- and MyD88-deficiency decreased both the antibody and T-cell responses in mice administered HIV gp120 formulated with MPLA. These results further our understanding of the activation of TLR4 and MyD88 by MPLA in the context of a DNA prime/protein boost immunization strategy. Copyright © 2014. Published by Elsevier Ltd.

  11. Vaccination in children with allergy to non active vaccine components.

    Science.gov (United States)

    Franceschini, Fabrizio; Bottau, Paolo; Caimmi, Silvia; Crisafulli, Giuseppe; Lucia, Liotti; Peroni, Diego; Saretta, Francesca; Vernich, Mario; Povesi Dascola, Carlotta; Caffarelli, Carlo

    2015-01-01

    Childhood immunisation is one of the greatest public health successes of the last century. Vaccines contain an active component (the antigen) which induces the immune response. They may also contain additional components such as preservatives, additives, adjuvants and traces of other substances. This review provides information about risks of hypersensitivity reactions to components of vaccines. Furthermore, recommendations to avoid or reduce reactions to vaccine components have been detailed.

  12. The Neisseria meningitidis Macrophage Infectivity Potentiator Protein Induces Cross-Strain Serum Bactericidal Activity and Is a Potential Serogroup B Vaccine Candidate ▿

    Science.gov (United States)

    Hung, Miao-Chiu; Salim, Omar; Williams, Jeannette N.; Heckels, John E.; Christodoulides, Myron

    2011-01-01

    A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and subtype, showed that the protein was highly conserved (98 to 100%), with only three distinct sequence types (designated I, II, and III) found. Western blotting showed that the MIP protein was expressed at similar levels by all of these strains. Immunization of mice with type I MC58 rMIP in detergent micelles and liposomes containing monophosphoryl lipid A (MPLA) induced high levels of surface-reactive antibodies with serum bactericidal activity (SBA) titers of 1/1,024 against the homologous strain. Bactericidal antibodies were also induced with the protein in saline alone and liposomes alone (titers, 1/128) but not following adsorption to Al(OH)3. Significantly, antisera raised against type I rMIP administered in saline or liposomes killed strains of heterologous sequence types II and III with similar SBA titers (1/128 to 1/256). Taken together, these findings suggest that rMIP can provide cross-strain protection against meningococci and should be considered a potential antigen for inclusion in new vaccines against meningococcal infection. PMID:21708989

  13. The Neisseria meningitidis macrophage infectivity potentiator protein induces cross-strain serum bactericidal activity and is a potential serogroup B vaccine candidate.

    Science.gov (United States)

    Hung, Miao-Chiu; Salim, Omar; Williams, Jeannette N; Heckels, John E; Christodoulides, Myron

    2011-09-01

    A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and subtype, showed that the protein was highly conserved (98 to 100%), with only three distinct sequence types (designated I, II, and III) found. Western blotting showed that the MIP protein was expressed at similar levels by all of these strains. Immunization of mice with type I MC58 rMIP in detergent micelles and liposomes containing monophosphoryl lipid A (MPLA) induced high levels of surface-reactive antibodies with serum bactericidal activity (SBA) titers of 1/1,024 against the homologous strain. Bactericidal antibodies were also induced with the protein in saline alone and liposomes alone (titers, 1/128) but not following adsorption to Al(OH)(3). Significantly, antisera raised against type I rMIP administered in saline or liposomes killed strains of heterologous sequence types II and III with similar SBA titers (1/128 to 1/256). Taken together, these findings suggest that rMIP can provide cross-strain protection against meningococci and should be considered a potential antigen for inclusion in new vaccines against meningococcal infection.

  14. Bordetella pertussis iron regulated proteins as potential vaccine components.

    Science.gov (United States)

    Alvarez Hayes, Jimena; Erben, Esteban; Lamberti, Yanina; Principi, Guido; Maschi, Fabricio; Ayala, Miguel; Rodriguez, Maria Eugenia

    2013-08-01

    Bordetella pertussis is the etiologic agent of whooping cough, an illness whose incidence has been increasing over the last decades. Pertussis reemergence despite high vaccination coverage, together with the recent isolation of circulating strains deficient in some of the vaccine antigens, highlight the need for new vaccines. Proteins induced under physiological conditions, such as those required for nutrient acquisition during infection, might represent good targets for better preventive strategies. By mean of serological proteome analysis we identified two novel antigens of B. pertussis potentially involved in iron acquisition during host colonization. We had previously demonstrated that one of them, designated IRP1-3, is protective against pertussis infection in mice. In the present study, we show that the other antigen, named AfuA (BP1605), is a highly antigenic protein, exposed on the bacterial surface, conserved among clinical isolates and expressed during infection. Immunization of mice with the recombinant AfuA induced opsonophagocytic antibodies which could explain the protection against B. pertussis infection conferred by mice immunization with rAfuA. Importantly, we found that the addition of rAfuA and rIRP1-3 proteins to the commercial three pertussis components acellular vaccine significantly increased its protective activity. Taken together, our results point at these two antigens as potential components of a new generation of acellular vaccines.

  15. Preparation of active proteins, vaccines and pharmaceuticals as fine powders using supercritical or near-critical fluids.

    Science.gov (United States)

    Cape, Stephen P; Villa, Joseph A; Huang, Edward T S; Yang, Tzung-Horng; Carpenter, John F; Sievers, Robert E

    2008-09-01

    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), alpha1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions.

  16. Effects of dendritic cell vaccine activated with protein components of toxoplasma gondii on tumor specific CD8+ T-cells

    Directory of Open Access Journals (Sweden)

    Amari A

    2009-12-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Dendritic Cell (DC is an important antigen-presenting cell that present tumor antigen to CD8+ and CD4+ T- Lymphocytes and induce specific anti-tumor immunity. In order to induce effective anti-tumor response, an option is increasing the efficiency of antigen presentation of dendritic cells and T cell activation capacity. The aim of the present study was to investigate the effect of dendritic cell maturation with protein components of toxoplasma gondii on cytotoxic T lymphocyte activity and their infiltration in to the tumor."n"nMethods: For DC generation, bone marrow cells were cultured in the presence of GM-CSF and IL-4 for five days. After that, LPS, protein components and whole extract of toxoplasma gondii were added to the culture media and incubated for another two days for DC maturation. To generate tumor, mices were injected subcutaneously with WEHI-164 cell line. For immunotherapy 106 DCs matured with different compounds were injected around the tumor site. Infiltration of CD8+ T cells were determined by flow cytometry and cytotoxic activity was measured by LDH detection kit."n"nResults: Immunotherapy with DCs treated with protein components of toxoplasma gondii led to a significant increase in the

  17. Anti-prion activity generated by a novel vaccine formulation.

    Science.gov (United States)

    Pilon, John; Loiacono, Christina; Okeson, Danelle; Lund, Sharon; Vercauteren, Kurt; Rhyan, Jack; Miller, Lowell

    2007-12-18

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of domestic and wild cervids in North America. To address possible prevention regimens for CWD, we have used a mouse model system and the Rocky Mountain Laboratory (RML) mouse-adapted scrapie prion strain to screen efficacy of potential vaccine candidates. Three peptides derived from the primary amino acid sequence of the prion protein were conjugated to blue carrier protein (BCP) and formulated in an adjuvant containing M. avium subsp. avium. CL57/BL6 mice were vaccinated and boosted with 50 microg of the carrier protein-peptide conjugate formulation; all vaccines produced a humoral immune response as measured by ELISA. Disease challenge with the RML scrapie prion strain revealed anti-prion activity was generated by the vaccine formulations as measured by a delay in clinical disease onset and prolonged survivorship.

  18. Immunoadjuvant activities of a recombinant chicken IL-12 in chickens vaccinated with Newcastle disease virus recombinant HN protein.

    Science.gov (United States)

    Su, Bor Sheu; Yin, Hsien Sheng; Chiu, Hua Hsien; Hung, Li Hsiang; Huang, Ji Ping; Shien, Jui Hung; Lee, Long Huw

    2011-08-05

    Recombinant fowlpox virus (rFPV/HN) expressing Newcastle disease virus (NDV) HN gene and rFPV/HN/chIL-12 co-expressing chicken IL-12 (chIL-12) and HN (rHN/chIL-12) genes have been characterized. rHN/chIL-12 or rchIL-12, expressed by our previous construct rFPV/chIL-12, co-administered with rHN was assessed for adjuvant activities of chIL-12. Chickens were vaccinated with various amounts of rHN/chIL-12 mixed with mineral oil (MO), intramuscularly. Levels of hemagglutination-inhibition (HI) antibody production depended on the concentration of the injected rHN or rHN/chIL-12. The lower HI antibody titers were obtained in chicken groups rHN/chIL-12/7-rHN/chIL-12/9, receiving 60ng rHN/8ng chIL-12 with MO, 30ng rHN/4ng chIL-12 with MO or 15ng rHN/2ng chIL-12 with MO, respectively, compared to those in chicken groups rHN/7-rHN/9, receiving rHN with MO alone. However, chickens in group rHN/chIL-12/7 or rHN/chIL-12/8 and rHN with MO alone showed the same effective protection. Chicken group rHN/chIL-12/9 was even more protective than that in group rHN/9. When rchIL-12 was co-injected with 15ng rHN plus MO, chickens produced low levels of HI antibody titers; while higher levels of IFN-γ production and an effective protection rate (83%) were obtained. On the other hand, low levels of IFN-γ production and low protection response (50%) were obtained in chickens injected with rHN with MO alone. Taken together, when the concentration of rHN decreased to certain levels, rchIL-12 reduced HI antibody production. The increase in the induction of IFN-γ production might suggest the enhancement of the cell-mediated immunity which conferred the protection from the NDV challenge.

  19. Development of antifertility vaccine using sperm specific proteins

    Directory of Open Access Journals (Sweden)

    A H Bandivdekar

    2014-01-01

    Full Text Available Sperm proteins are known to be associated with normal fertilization as auto- or iso-antibodies to these proteins may cause infertility. Therefore, sperm proteins have been considered to be the potential candidate for the development of antifertility vaccine. Some of the sperm proteins proved to be promising antigens for contraceptive vaccine includes lactate dehydrogenase (LDH-C4, protein hyaluronidase (PH-20, and Eppin. Immunization with LDH-C4 reduced fertility in female baboons but not in female cynomolgus macaques. Active immunization with PH-20 resulted in 100 per cent inhibition of fertility in male guinea pigs but it induced autoimmune orchitis. Immunization with Eppin elicited high antibody titres in 78 per cent of immunized monkeys and induced infertility but the immunopathological effect of immunization was not examined. Human sperm antigen (80kDa HSA is a sperm specific, highly immunogenic and conserved sperm protein. Active immunization with 80kDa HSA induced immunological infertility in male and female rats. Partial N-terminal amino acid sequence of 80kDa HSA (Peptide NT and its peptides (Peptides 1, 2, 3 and 4 obtained by enzymatic digestion did not show homology with any of the known proteins in gene bank. Peptides NT, 1, 2 and 4 were found to mimic immunobiological activity of native protein. Passive administration of antibodies to peptides NT, 1, 2 and 4 induced infertility in male and female rats and peptide 1 was found to be most effective in suppressing fertility. Active immunization with keyhole limpet haemocynin (KLH conjugated synthetic peptide 1 impaired fertility in all the male rabbits and six of the seven male marmosets. The fertility was restored following decline in antibody titre. All these findings on 80kDA HAS suggest that the synthetic Peptide-1 of 80kDa HSA is the promising candidate for development of male contraceptive vaccine.

  20. [Protein subunit vaccines: example of vaccination against hepatitis B virus].

    Science.gov (United States)

    Degos, F

    1995-06-15

    Hepatitis B vaccine has been used for over 10 years. It is efficient and safe. Protection of risk groups against hepatitis B virus infection is now achieved and vaccination of newborns and adolescents is a main public health problem. Bad responders are well characterized and immunomodulatory interventions (cytokines) must be tested in these patients. Response to hepatitis B vaccine is genetically determined and the possibility of vaccine induced escape mutants should lead to careful epidemiological studies of the spread of hepatitis B virus infection.

  1. Malaria vaccine based on Self-Assembling Protein Nanoparticles

    OpenAIRE

    Burkhard, Peter; David E Lanar

    2015-01-01

    Despite recent progress with GSK’s RTS’S malaria vaccine, there remains a desperate need for an efficient malaria vaccine. We have used a repetitive antigen display technology to display malaria specific B cell and T cell epitopes in an effort to design a vaccine against Plasmodium falciparum malaria. Our protein sequence when assembled into a nanoparticle induces strong, long-lived and protective immune responses against infection with the parasite. We are confident that the clinical trials ...

  2. Malaria vaccine based on Self-Assembling Protein Nanoparticles

    OpenAIRE

    Burkhard, Peter; Lanar, David E.

    2015-01-01

    Despite recent progress with GSK’s RTS’S malaria vaccine, there remains a desperate need for an efficient malaria vaccine. We have used a repetitive antigen display technology to display malaria specific B cell and T cell epitopes in an effort to design a vaccine against Plasmodium falciparum malaria. Our protein sequence when assembled into a nanoparticle induces strong, long-lived and protective immune responses against infection with the parasite. We are confident that the clinical trials ...

  3. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard...... to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored...

  4. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions.

    Directory of Open Access Journals (Sweden)

    Jessica B Hostetler

    2015-12-01

    Full Text Available A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC, and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion.We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins

  5. Malaria vaccine based on self-assembling protein nanoparticles.

    Science.gov (United States)

    Burkhard, Peter; Lanar, David E

    2015-01-01

    Despite recent progress with GSK's RTS,S malaria vaccine, there remains a desperate need for an efficient malaria vaccine. We have used a repetitive antigen display technology to display malaria specific B cell and T cell epitopes in an effort to design a vaccine against Plasmodium falciparum malaria. Our protein sequence when assembled into a nanoparticle induces strong, long-lived and protective immune responses against infection with the parasite. We are confident that the clinical trials with our most developed vaccine candidate will show good protection in a controlled human malaria infection trial.

  6. Recent advances in recombinant protein-based malaria vaccines.

    Science.gov (United States)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.

  7. Meningococcal factor H binding proteins in epidemic strains from Africa: implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Rolando Pajon

    2011-09-01

    Full Text Available Factor H binding protein (fHbp is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH, which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains.We investigated genes encoding fHbp in 106 serogroup A, W-135 and X case isolates from 17 African countries. We determined complement-mediated bactericidal activity of antisera from mice immunized with recombinant fHbp vaccines, or a prototype native outer membrane vesicle (NOMV vaccine from a serogroup B mutant strain with over-expressed fHbp. Eighty-six of the isolates (81% had one of four prevalent fHbp sequence variants, ID 4/5 (serogroup A isolates, 9 (W-135, or 74 (X in variant group 1, or ID 22/23 (W-135 in variant group 2. More than one-third of serogroup A isolates and two-thirds of W-135 isolates tested had low fHbp expression while all X isolates tested had intermediate or high expression. Antisera to the recombinant fHbp vaccines were generally bactericidal only against isolates with fHbp sequence variants that closely matched the respective vaccine ID. Low fHbp expression also contributed to resistance to anti-fHbp bactericidal activity. In contrast to the recombinant vaccines, the NOMV fHbp ID 1 vaccine elicited broad anti-fHbp bactericidal activity, and the antibodies had greater ability to inhibit binding of fH to fHbp than antibodies elicited by the control recombinant fHbp ID 1 vaccine.NOMV vaccines from mutants with increased fHbp expression elicit an antibody repertoire with greater bactericidal activity than recombinant fHbp vaccines. NOMV vaccines are promising for prevention of meningococcal disease in Africa and could be used to supplement coverage conferred by a serogroup A polysaccharide-protein conjugate vaccine recently introduced in some sub

  8. Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?

    Directory of Open Access Journals (Sweden)

    Daniel Y. Bargieri

    2011-01-01

    Full Text Available In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.

  9. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    Science.gov (United States)

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes.

  10. Translational Activities to Enable NTD Vaccines.

    Science.gov (United States)

    Gray, S A; Coler, R N; Carter, D; Siddiqui, A A

    2016-01-01

    There is an urgent need to develop new vaccines for tuberculosis, HIV/AIDS, and malaria, as well as for chronic and debilitating infections known as neglected tropical diseases (NTDs). The term "NTD" emerged at the beginning of the new millennium to describe a set of diseases that are characterized as (1) poverty related, (2) endemic to the tropics and subtropics, (3) lacking public health attention and inadequate industrial investment, (4) having poor research funding and a weak research and development (R&D) pipeline, (5) usually associated with high morbidity but low mortality, and (6) often having no safe and long-lasting treatment available. Many additional challenges to the current control and elimination programs for NTDs exist. These include inconsistent performance of diagnostic tests, regional differences in access to treatment and in treatment outcome, lack of integrated surveillance and vector/intermediate host control, and impact of ecological climatic changes particularly in regions where new cases are increasing in previously nonendemic areas. Moreover, the development of NTD vaccines, including those for schistosomiasis, leishmaniasis, leprosy, hookworm, and Chagas disease are being led by nonprofit product development partnerships (PDPs) working in partnership with academic and industrial partners, contract research organizations, and in some instances vaccine manufacturers in developing countries. In this review, we emphasize global efforts to fuel the development of NTD vaccines, the translational activities needed to effectively move promising vaccine candidates to Phase-I clinical trials and some of the hurdles to ensuring their availability to people in the poorest countries of Africa, Asia, Latin America, and the Caribbean. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Preventing rheumatic fever: M-protein based vaccine.

    Science.gov (United States)

    Tandon, Rajendra

    2014-01-01

    Group A beta hemolytic streptococcus (GAS), the organism which initiates rheumatic fever (RF) continues to be sensitive to penicillin. However, penicillin cannot prevent RF if the preceding sore throat is asymptomatic in more than 70 percent children. Prevention of rheumatic fever (RF) may be possible only with the use of a vaccine. Efforts to design a vaccine based on emm gene identification of GAS, M-protein going on for more than 40 years, is unlikely to succeed. M-protein is strain specific. Infection with one strain does not provide immunity from infection with another strain. Based on the emm gene identification, of 250 or more identified strains of GAS, the distribution is heterogenous and keeps changing. The M-protein gene sequence of the organism tends to mutate. A vaccine prepared from available strains may not be effective against a strain following mutation. Lethal toxic shock syndrome due to GAS infection has been described with organisms without identifiable or functional M-protein. M-protein has been excluded as the antigen responsible for acute glomerulonephritis (GN). Therefore M-protein plays no role in one suppurative (toxic shock syndrome) and one non-suppurative (acute GN) manifestation due to GAS infection. Lastly there is no direct evidence to indicate that M-protein is involved in inducing RF. The role of M-protein and the GAS component resulting in the suppurative manifestations of GAS infections like pyoderma, septic arthritis or necrotizing fasciitis etc is unknown. For a vaccine to be effective, an epitope of the streptococcus which is stable and uniformly present in all strains, needs to be identified and tested for its safety and efficacy. The vaccine if and when available is expected to prevent GAS infection. Preventing GAS infection will prevent all the suppurative as well as non-suppurative manifestations including RF.

  12. Evaluation of fusion protein cleavage site sequences of Newcastle disease virus in genotype matched vaccines.

    Science.gov (United States)

    Kim, Shin-Hee; Chen, Zongyan; Yoshida, Asuka; Paldurai, Anandan; Xiao, Sa; Samal, Siba K

    2017-01-01

    Newcastle disease virus (NDV) causes a devastating poultry disease worldwide. Frequent outbreaks of NDV in chickens vaccinated with conventional live vaccines suggest a need to develop new vaccines that are genetically matched against circulating NDV strains, such as the genotype V virulent strains currently circulating in Mexico and Central America. In this study, a reverse genetics system was developed for the virulent NDV strain Mexico/01/10 strain and used to generate highly attenuated vaccine candidates by individually modifying the cleavage site sequence of fusion (F) protein. The cleavage site sequence of parental virus was individually changed to those of the avirulent NDV strain LaSota and other serotypes of avian paramyxoviruses (APMV serotype-2, -3, -4, -6, -7, -8, and -9). In general, these mutations affected cell-to-cell fusion activity in vitro and the efficiency of the F protein cleavage and made recombinant Mexico/01/10 (rMex) virus highly attenuated in chickens. When chickens were immunized with the rMex mutant viruses and challenged with the virulent parent virus, there was reduced challenge virus shedding compared to birds immunized with the heterologous vaccine strain LaSota. Among the vaccine candidates, rMex containing the cleavage site sequence of APMV-2 induced the highest neutralizing antibody titer and completely protected chickens from challenge virus shedding. These results show the role of the F protein cleavage site sequence of each APMV type in generating genotype V-matched vaccines and the efficacy of matched vaccine strains to provide better protection against NDV strains currently circulating in Mexico.

  13. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoting...... immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion...

  14. Self-assembling protein nanoparticles in the design of vaccines

    Directory of Open Access Journals (Sweden)

    Jacinto López-Sagaseta

    2016-01-01

    Full Text Available For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.

  15. Vaccine-Mediated Activation of Human TLR4 Is Affected by Modulation of Culture Conditions during Whole-Cell Pertussis Vaccine Preparation

    Science.gov (United States)

    Hoonakker, Marieke E.; Verhagen, Lisa M.; Pupo, Elder; de Haan, Alex; Metz, Bernard; Hendriksen, Coenraad F. M.; Han, Wanda G. H.; Sloots, Arjen

    2016-01-01

    The potency of whole-cell pertussis (wP) vaccines is still determined by an intracerebral mouse protection test. To allow development of suitable in vitro alternatives to this test, insight into relevant parameters to monitor the consistency of vaccine quality is essential. To this end, a panel of experimental wP vaccines of varying quality was prepared by sulfate-mediated suppression of the BvgASR master virulence regulatory system of Bordetella pertussis during cultivation. This system regulates the transcription of a range of virulence proteins, many of which are considered important for the induction of effective host immunity. The protein compositions and in vivo potencies of the vaccines were BvgASR dependent, with the vaccine containing the highest amount of virulence proteins having the highest in vivo potency. Here, the capacities of these vaccines to stimulate human Toll-like receptors (hTLR) 2 and 4 and the role these receptors play in wP vaccine-mediated activation of antigen-presenting cells in vitro were studied. Prolonged BvgASR suppression was associated with a decreased capacity of vaccines to activate hTLR4. In contrast, no significant differences in hTLR2 activation were observed. Similarly, vaccine-induced activation of MonoMac-6 and monocyte-derived dendritic cells was strongest with the highest potency vaccine. Blocking of TLR2 and TLR4 showed that differences in antigen-presenting cell activation could be largely attributed to vaccine-dependent variation in hTLR4 signalling. Interestingly, this BvgASR-dependent decrease in hTLR4 activation coincided with a reduction in GlcN-modified lipopolysaccharides in these vaccines. Accordingly, expression of the lgmA-C genes, required for this glucosamine modification, was significantly reduced in bacteria exposed to sulfate. Together, these findings demonstrate that the BvgASR status of bacteria during wP vaccine preparation is critical for their hTLR4 activation capacity and suggest that including

  16. A subunit vaccine against the adenovirus egg-drop syndrome using part of its fiber protein.

    Science.gov (United States)

    Fingerut, E; Gutter, B; Gallili, G; Michael, A; Pitcovski, J

    2003-06-20

    In this study, the effectiveness of antibodies against the hexon, fiber or a fiber fragment of an avian adenovirus egg-drop syndrome (EDS), in neutralizing the virus was tested. The fiber protein is responsible for binding the virus to the target cell. The fiber fragment knob-s comprises the carboxy-terminal knob domain and 34 amino acids of the immediately adjacent shaft domain of the adenovirus fiber protein. The hexon, fiber capsid protein and knob-s were produced in E. coli and injected into chickens. Antibodies that were produced against the whole fiber protein showed some hemagglutination inhibition (HI) activity. Antibodies produced against the knob-s protein showed HI activity and serum neutralization (SN) activity similar to the positive control-whole virus vaccine. We assume that production of only part of the fiber enables the protein produced in E. coli to fold correctly. Antibodies produced against the hexon protein showed no SN activity. In summary, knob-s induced SN and HI antibodies against EDS virus at a rate similar to the whole virus and were significantly more efficient than the full-length fiber. The recombinant knob-s protein may be used as a vaccine against pathogenic adenovirus infections.

  17. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  18. Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R.

    Science.gov (United States)

    Zai, Xiaodong; Zhang, Jun; Liu, Ju; Liu, Jie; Li, Liangliang; Yin, Ying; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-02-25

    Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2-) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R.

  19. [HPV vaccination: active offer in an Italian region].

    Science.gov (United States)

    Terracciano, Elisa; D'Alò, Gian Loreto; Aquilani, Silvia; Aversa, Anna Maria; Bartolomei, Giuseppina; Calenda, Maria Gabriella; Catapano, Raffaele; Compagno, Silvio; Della Rovere, Piera; Fraioli, Angelo; Ieraci, Roberto; Reggiani, Daniela; Sgricia, Stefano; Spadea, Antonietta; Zaratti, Laura; Franco, Elisabetta

    2017-01-01

    Human Papillomavirus is responsible for 4.8% of cancers, and is the main cause of cervical cancer. Cervical cancer can be reduced by mean of secondary prevention (PAP-test, HPV-DNA test), while through primary prevention (anti-HPV vaccine) the incidence of other HPV-attributable cancers can also be reduced. In Italy, anti-HPV vaccination is part of the immunization schedule in girls since 2008, and in 2017 it was extended to boys. However, vaccine coverage is decreasing nationwide. This study aims to examine anti-HPV vaccination practices in Health care services of Lazio Region, Italy. Questionnaires were sent or administered directly to those in charge of vaccinations. Data, collected from 11/12 (92%) Lazio Local Health Units and from 116 vaccination centers, show a remarkable diversity in the offer: 41% of the centers open only 1-2 days/week, 42% only in the morning, and only 7% are open on Saturday. Vaccination is available by reservation only in 62% of the centers, while vaccines are not administered to ≥18 years subjects in 33%; 93% of the centers call actively the girls in the target cohort, while 70% and 94% recall the patients who had not received the first or the second dose of vaccine, respectively. Collaboration with family physicians and/or pediatricians was declared by 80% of the centers. Vaccine coverage could probably be improved by addressing the highlighted critical issues and applying best practices widely.

  20. KMP11-HASPB fusion protein-expressing lentiviral vaccine protects BALB/c mice against Leishmania major infection

    Directory of Open Access Journals (Sweden)

    Nahid Mortazavidehkordi

    2016-12-01

    Full Text Available Hydrophilic acylated surface protein B (HASPB is an immunogenic Leishmania-specific protein that antibodies are produced against it in the sera of Leishmania-infected individuals. Kinetoplastid membrane protein 11 (KMP11 is another Leishmania antigen and considered as suitable candidate for vaccine development leishmaniasis. It is a highly conserved surface protein expressed in both promastigotes and amastigotes. In this study, KMP11 and HASPB coding sequences were cloned into a pCDH-cGFPlentiviral vector as a fusion protein to be used as a DNA vaccine against L.major. KMP11-HASPB fusion protein was successfully expressed as evidenced by RT-PCR and western blot assays. The effect of the vaccine was determined by evaluating the level of IFN-γ, IL-10, IgG1, and IgG2a performed using ELISA as well as determining the parasite load after challenge with L.major in vaccinated mice. The results revealed that IFN-γ, IL-10, IgG1, and IgG2a significantly increased after vaccination using KMP11-HASPB-expressing lentiviruses in BALB/c mice. It is noteworthy that the level of IFN-γ and IgG2a was higher than that of IL-10 and IgG1, respectively, which indicates the activation Th1 cells, macrophages, and cellular immunity. Moreover, the parasite load in the spleen and liver of vaccinated mice after challenge was significantly lower than that of controls.

  1. Activity of glycated chitosan and other adjuvants to PDT vaccines

    Science.gov (United States)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  2. Curdlan microspheres. Synthesis, characterization and interaction with proteins (enzymes, vaccines).

    Science.gov (United States)

    Mocanu, Georgeta; Mihai, Doina; Moscovici, Misu; Picton, Luc; LeCerf, Didier

    2009-04-01

    Microparticles of curdlan, synthesized through crosslinking with epichlorohydrin in organic suspension media, were chemically modified with the aim of introducing strongly and/or weakly acidic anionic and palmitoyl hydrophobic groups. Microparticles of both curdlan and curdlan derivatives were physico-chemically characterized. Study of the interaction with enzymes, such as lysozyme, and vaccines, such as tetanus anatoxin, showed a co-operative protein retention effect, induced by electrostatic and hydrophobic forces. The results of the in vitro release studies on support-protein complexes recommend them as potential controlled release systems.

  3. Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Hoang, Truc; Agger, Else Marie; Cassidy, Joseph P; Christensen, Jan P; Andersen, Peter

    2015-05-01

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including tuberculosis (TB), but it is not clear how PEM influences vaccine-promoted immunity to TB. We demonstrate that PEM during low-level steady-state TB infection in a mouse model results in rapid relapse of Mycobacterium tuberculosis, as well as increased pathology, in both Mycobacterium bovis BCG-vaccinated and unvaccinated animals. PEM did not change the overall numbers of CD4 T cells in BCG-vaccinated animals but resulted in an almost complete loss of antigen-specific cytokine production. Furthermore, there was a change in cytokine expression characterized by a gradual loss of multifunctional antigen-specific CD4 T cells and an increased proportion of effector cells expressing gamma interferon and tumor necrosis factor alpha (IFN-γ(+) TNF-α(+) and IFN-γ(+) cells). PEM during M. tuberculosis infection completely blocked the protection afforded by the H56-CAF01 subunit vaccine, and this was associated with a very substantial loss of the interleukin-2-positive memory CD4 T cells promoted by this vaccine. Similarly, PEM during the vaccination phase markedly reduced the H56-CAF01 vaccine response, influencing all cytokine-producing CD4 T cell subsets, with the exception of CD4 T cells positive for TNF-α only. Importantly, this impairment was reversible and resupplementation of protein during infection rescued both the vaccine-promoted T cell response and the protective effect of the vaccine against M. tuberculosis infection.

  4. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available BACKGROUND: Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses. METHODS AND FINDINGS: BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo. CONCLUSION: Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can

  5. Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease.

    Science.gov (United States)

    Balderas, Miriam A; Nguyen, Chinh T Q; Terwilliger, Austen; Keitel, Wendy A; Iniguez, Angelina; Torres, Rodrigo; Palacios, Frederico; Goulding, Celia W; Maresso, Anthony W

    2016-12-01

    Bacillus anthracis is a sporulating Gram-positive bacterium that is the causative agent of anthrax and a potential weapon of bioterrorism. The U.S.-licensed anthrax vaccine is made from an incompletely characterized culture supernatant of a nonencapsulated, toxigenic strain (anthrax vaccine absorbed [AVA]) whose primary protective component is thought to be protective antigen (PA). AVA is effective in protecting animals and elicits toxin-neutralizing antibodies in humans, but enthusiasm is dampened by its undefined composition, multishot regimen, recommended boosters, and potential for adverse reactions. Improving next-generation anthrax vaccines is important to safeguard citizens and the military. Here, we report that vaccination with recombinant forms of a conserved domain (near-iron transporter [NEAT]), common in Gram-positive pathogens, elicits protection in a murine model of B. anthracis infection. Protection was observed with both Freund's and alum adjuvants, given subcutaneously and intramuscularly, respectively, with a mixed composite of NEATs. Protection correlated with an antibody response against the NEAT domains and a decrease in the numbers of bacteria in major organs. Anti-NEAT antibodies promote opsonophagocytosis of bacilli by alveolar macrophages. To guide the development of inactive and safe NEAT antigens, we also report the crystal structure of one of the NEAT domains (Hal) and identify critical residues mediating its heme-binding and acquisition activity. These results indicate that we should consider NEAT proteins in the development of an improved antianthrax vaccine. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Vaccination with self-adjuvanted protein nanoparticles provides protection against lethal influenza challenge.

    Science.gov (United States)

    Karch, Christopher P; Li, Jianping; Kulangara, Caroline; Paulillo, Sara M; Raman, Senthil K; Emadi, Sharareh; Tan, Anmin; Helal, Zeinab H; Fan, Qing; Khan, Mazhar I; Burkhard, Peter

    2017-01-01

    Current influenza vaccines should be improved by the addition of universal influenza vaccine antigens in order to protect against multiple virus strains. We used our self-assembling protein nanoparticles (SAPNs) to display the two conserved influenza antigens M2e and Helix C in their native oligomerization states. To further improve the immunogenicity of the SAPNs, we designed and incorporated the TLR5 agonist flagellin into the SAPNs to generate self-adjuvanted SAPNs. We demonstrate that addition of flagellin does not affect the ability of SAPNs to self-assemble and that they are able to stimulate TLR5 in a dose-dependent manner. Chickens vaccinated with the self-adjuvanted SAPNs induce significantly higher levels of antibodies than those with unadjuvanted SAPNs and show higher cross-neutralizing activity compared to a commercial inactivated virus vaccine. Upon immunization with self-adjuvanted SAPNs, mice were completely protected against a lethal challenge. Thus, we have generated a self-adjuvanted SAPN with a great potential as a universal influenza vaccine.

  7. Unexpected fold in the circumsporozoite protein target of malaria vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Doud, Michael B.; Koksal, Adem C.; Mi, Li-Zhi; Song, Gaojie; Lu, Chafen; Springer, Timothy A. (Harvard-Med)

    2012-10-09

    Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an '{alpha}TSR' domain. The {alpha}TSR domain possesses a hydrophobic pocket and core, missing in TSR domains. CS binds heparin, but {alpha}TSR does not. Interestingly, polymorphic T-cell epitopes map to specialized {alpha}TSR regions. The N and C termini are unexpectedly close, providing clues for sporozoite sheath organization. Elucidation of a unique structure of a domain within CS enables rational design of next-generation subunit vaccines and functional and medicinal chemical investigation of the conserved hydrophobic pocket.

  8. Proteins of Bartonella bacilliformis: Candidates for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Cesar Henriquez-Camacho

    2015-01-01

    Full Text Available Bartonella bacilliformis is the etiologic agent of Carrión’s disease or Oroya fever. B. bacilliformis infection represents an interesting model of human host specificity. The notable differences in clinical presentations of Carrión’s disease suggest complex adaptations by the bacterium to the human host, with the overall objectives of persistence, maintenance of a reservoir state for vectorial transmission, and immune evasion. These events include a multitude of biochemical and genetic mechanisms involving both bacterial and host proteins. This review focuses on proteins involved in interactions between B. bacilliformis and the human host. Some of them (e.g., flagellin, Brps, IalB, FtsZ, Hbp/Pap31, and other outer membrane proteins are potential protein antigen candidates for a synthetic vaccine.

  9. The Neisseria meningitidis Macrophage Infectivity Potentiator Protein Induces Cross-Strain Serum Bactericidal Activity and Is a Potential Serogroup B Vaccine Candidate ▿

    OpenAIRE

    Hung, Miao-Chiu; Salim, Omar; Williams, Jeannette N.; Heckels, John E.; Christodoulides, Myron

    2011-01-01

    A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and su...

  10. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Beatriz Beltrán-Beck

    Full Text Available Tuberculosis (TB remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV. Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.

  11. Immunisation against PCV2 structural protein by DNA vaccination of mice

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Barfoed, Annette Malene; Frimann, Tine;

    2004-01-01

    -protective levels around weaning at 3-5-weeks of age. If immunoprophylaxis is to be effective, an immunisation method capable of breaking through maternal immunity must be employed. In this study, we have developed and investigated the potential of a DNA vaccination approach to be one such method. The gene encoding...... the capsid protein of PCV2 was cloned in a DNA vaccination plasmid and expression of capsid protein was demonstrated in vitro. Mice were gene gun vaccinated three timesand all mice responded serologically by raising antibodies against PCV2. The results suggest, that DNA based vaccination might offer...... opportunities for vaccination of piglets against PCV2....

  12. Protein conjugate polysaccharide vaccines: Challenges in development and global implementation

    Directory of Open Access Journals (Sweden)

    Manisha Nair

    2012-01-01

    Replacement by nonvaccine serotypes;capsule switching;time duration of the antibody protective effect following vaccination;costs of the vaccines, programme costs, lack of knowledge of the disease burden, and targeting population groups for vaccination.

  13. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  14. A bicomponent Plasmodium falciparum investigational vaccine composed of protein-peptide conjugates.

    Science.gov (United States)

    Kubler-Kielb, Joanna; Majadly, Fathy; Biesova, Zuzana; Mocca, Christopher P; Guo, Chunyan; Nussenzweig, Ruth; Nussenzweig, Victor; Mishra, Satish; Wu, Yimin; Miller, Louis H; Keith, Jerry M; Liu, Teh-Yung; Robbins, John B; Schneerson, Rachel

    2010-01-19

    There is yet no licensed vaccine against malaria, a serious human disease affecting mostly children, with an annual death rate of about one million. Plasmodia, the malaria-causing parasites, have two obligatory hosts: mammals or birds, in which they multiply asexually, and mosquitoes with sexual multiplication. The most common and serious type of malaria is caused by Plasmodium falciparum. The circumsporozoite protein (CSP), a major surface antigen of sporozoites, is a protective antigen. A unique feature of P. falciparum CSP is its large central domain composed of over 30 tetrapeptide repeats of Asn-Ala-Asn-Pro (NANP). Several NANP peptide-protein conjugates were tested clinically but elicited a low level of CSP antibodies for a short duration. To provide a CSP-based candidate vaccine, we investigated recombinant CSP and NANP conjugates of various peptide lengths, with different N-terminal amino acids, bound at different ratios to various carrier proteins. Injected into mice, CSP alone and CSP or NANP conjugates induced antibodies with booster responses and were positive by the sporozoite immunofluorescent assay. The use of the mosquito stage P. falciparum ookinete surface protein, Pfs25, cross-linked onto itself as a carrier for NANP, induced in mice high levels of uniquely long-lasting antibodies to both vaccine components with secondary biological activities, that will provide immunity to liver infection by sporozoites and block transmission by mosquitoes.

  15. A Generic Polymer-Protein Ligation Strategy for Vaccine Delivery.

    Science.gov (United States)

    Lybaert, Lien; Vanparijs, Nane; Fierens, Kaat; Schuijs, Martijn; Nuhn, Lutz; Lambrecht, Bart N; De Geest, Bruno G

    2016-03-14

    Although the field of cancer immunotherapy is intensively investigated, there is still a need for generic strategies that allow easy, mild and efficient formulation of vaccine antigens. Here we report on a generic polymer-protein ligation strategy to formulate protein antigens into reversible polymeric conjugates for enhanced uptake by dendritic cells and presentation to CD8 T-cells. A N-hydroxypropylmethacrylamide (HPMA)-based copolymer was synthesized via RAFT polymerization followed by introduction of pyridyldisulfide moieties. To enhance ligation efficiency to ovalbumin, which is used as a model protein antigen, protected thiols were introduced onto lysine residues and deprotected in situ in the presence of the polymer. The ligation efficiency was compared for both the thiol-modified versus unmodified ovalbumin, and the reversibility was confirmed. Furthermore, the obtained nanoconjugates were tested in vitro for their interaction and association with dendritic cells, showing enhanced cellular uptake and antigen cross-presentation to CD8 T-cells.

  16. Polysaccharide-specific memory B cells generated by conjugate vaccines in humans conform to the CD27+IgG+ isotype-switched memory B Cell phenotype and require contact-dependent signals from bystander T cells activated by bacterial proteins to differentiate into plasma cells.

    Science.gov (United States)

    Clarke, Edward T; Williams, Neil A; Findlow, Jamie; Borrow, Ray; Heyderman, Robert S; Finn, Adam

    2013-12-15

    The polysaccharides (PS) surrounding encapsulated bacteria are generally unable to activate T cells and hence do not induce B cell memory (BMEM). PS conjugate vaccines recruit CD4(+) T cells via a carrier protein, such as tetanus toxoid (TT), resulting in the induction of PS-specific BMEM. However, the requirement for T cells in the subsequent activation of the BMEM at the time of bacterial encounter is poorly understood, despite having critical implications for protection. We demonstrate that the PS-specific BMEM induced in humans by a meningococcal serogroup C PS (Men C)-TT conjugate vaccine conform to the isotype-switched (IgG(+)CD27(+)) rather than the IgM memory (IgM(+)CD27(+)) phenotype. Both Men C and TT-specific BMEM require CD4(+) T cells to differentiate into plasma cells. However, noncognate bystander T cells provide such signals to PS-specific BMEM with comparable effect to the cognate T cells available to TT-specific BMEM. The interaction between the two populations is contact-dependent and is mediated in part through CD40. Meningococci drive the differentiation of the Men C-specific BMEM through the activation of bystander T cells by bacterial proteins, although these signals are enhanced by T cell-independent innate signals. An effect of the TT-specific T cells activated by the vaccine on unrelated BMEM in vivo is also demonstrated. These data highlight that any protection conferred by PS-specific BMEM at the time of bacterial encounter will depend on the effectiveness with which bacterial proteins are able to activate bystander T cells. Priming for T cell memory against bacterial proteins through their inclusion in vaccine preparations must continue to be pursued.

  17. Vaccinations

    Science.gov (United States)

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  18. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV.

    Science.gov (United States)

    Soares, Andreia; Müller, Tracey L; Chege, Gerald K; Williamson, Anna-Lise; Burgers, Wendy A

    2015-07-09

    Persistent T cell activation following immunization with HIV vaccines may increase HIV acquisition risk. We investigated the magnitude and kinetics of T cell activation following vaccination of rhesus macaques with a candidate HIV vaccine consisting of a recombinant DNA and MVA vaccination regimen. We show that global CD4+ and CD8+ T cell activation, as measured by the expression of Ki67 and Bcl-2, peaked one week after boosting with MVA, but then waned rapidly to pre-vaccination levels. Furthermore, increased frequencies of CD4+ CCR5+ T cells, which represent potential HIV target cells, were short-lived and decreased to baseline levels within two months. Activated CD4+ T cells were predominantly of a central memory phenotype, and activated CD8+ T cells were distributed between central and effector memory phenotypes. Thus, only transient changes in T cell activation occurred following poxvirus vaccination, indicating a lack of persistent immune activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    Science.gov (United States)

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-07

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1.

  20. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  1. Immunostimulation by synthetic lipopeptide based vaccine candidates: structure-activity relationships.

    Directory of Open Access Journals (Sweden)

    Mehfuz eZaman

    2013-10-01

    Full Text Available Peptide based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of adjuvant (thus are self-adjuvanting. Several lipopeptides derived from microbial origin, and their synthetic versions or simpler fatty acid moieties impart this self-adjuvanting activity by signalling via Toll-like receptor 2 (TLR2. Engagement of this innate immune receptor on antigen-presenting cell leads to the initiation and development of potent immune responses. Therefore optimization of lipopeptides to enhance TLR2-mediated activation is a promising strategy for vaccine development. Considerable structure-activity relationships that determine TLR2 binding and consequent stimulation of innate immune responses have been investigated for a range of lipopeptides. In this review we address the development of lipopeptide vaccines, mechanism of TLR2 recognition, and immune activation. An overview is provided of the best studied lipopeptide vaccine systems.

  2. Bactericidal antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed factor H-binding protein and genetically attenuated endotoxin.

    Science.gov (United States)

    Koeberling, Oliver; Seubert, Anja; Granoff, Dan M

    2008-07-15

    Outer membrane vesicle (OMV) vaccines from mutant Neisseria meningitidis strains engineered to overexpress factor H-binding protein (fHbp) have elicited broadly protective serum antibody responses in mice. The vaccines investigated were not treated with detergents to avoid extracting fHbp, which is a lipoprotein. Because of their high endotoxin content, the vaccines would not be safe to administer to humans. We prepared a native OMV vaccine from a strain engineered to overexpress fHbp and in which the gene encoding LpxL1 was inactivated, which reportedly decreases endotoxin activity. The OMV vaccine from the mutant had a similar or lower ability to induce the expression of proinflammatory cytokines by human peripheral blood mononuclear cells, compared with a detergent-extracted wild-type OMV, and 1000-10,000-fold lower activity than a native wild-type OMV. In mice, the OMV vaccine from the mutant elicited higher serum bactericidal antibody responses to a panel of heterologous N. meningitidis strains than did a control multicomponent recombinant protein vaccine or a detergent-extracted OMV vaccine that has been demonstrated to confer protection against meningococcal disease in humans. The data illustrate the potential to develop a broadly immunogenic native OMV vaccine that has decreased endotoxin activity and is potentially suitable for testing in humans.

  3. Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic proteins

    DEFF Research Database (Denmark)

    Jørgensen, Nicolai Grønne; Ahmad, Shamaila Munir; Abildgaard, Niels

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic...... vaccination with peptides from the proteins Bcl-2, Bcl-XL and Mcl-1 in patients with relapsed MM. Vaccines were given concomitant with bortezomib. Out of 7 enrolled patients, 4 received the full course of 8 vaccinations. The remaining 3 patients received fewer vaccinations due to progression, clinical...... decision of lacking effect and development of hypercalcemia, respectively. There were no signs of toxicity other than what was to be expected from bortezomib. Immune responses to the peptides were seen in all 6 patients receiving more than 2 vaccinations. Three patients had increased immune responses after...

  4. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice

    Science.gov (United States)

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J.

    2016-01-01

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans. PMID:27358023

  5. Cattle response to foot-and-mouth disease virus nonstructural proteins as antigens within vaccines produced using different concentrations.

    Science.gov (United States)

    Lubroth, J; López, A; Ramalho, A K; Meyer, R F; Brown, F; Darsie, G C

    1998-05-01

    Abstract Four groups of ten nine-month-old Nelore heifers were used for this study. Each group received one of four foot-and-mouth disease (FMD) trivalent vaccines for the duration of the experiment. The four vaccine formulations (Normal, 2X, 4X and 8X) differed in 140S content to determine the serological reactivities to FMD virus (FMDV) nonstructural proteins 2C, 3ABC and 3D. Vaccination was by the intramuscular administration of vaccine on day 0, 180 and 360. Bleedings were done at 30 days post vaccination (dpv), 90 dpv, 30 days post revaccination (dpr), 90 dpr, and 30 days post third administration (dprr). There was a general tendency to have higher mean 3D responses with increased vaccine application but not with increased concentration of antigen. With 2C and 3ABC this tendency was not seen, neither with repeated application of vaccine nor with increased antigen concentration. All individual animal observations to 2C and 3ABC remained within three standard deviations of the average observed for naive bovids. Percent of positive (PP) reactions was determined using an ELISA for nonstructural proteins 2C, 3ABC and 3D expressed in baculovirus as previously described. A value of >25 PP to 2C or 3ABC could be considered as an indication of previous infection or of the presence of viral activity. PP results between 18 and 25 PP suggest viral activity and animals should be retested. Those responses below 15 PP are suggestive of vaccination or naive status. As diagnosis in the laboratory is not divorced from the field epidemiological scene, the intermediate zone between 10 and 20 PP should be considered and acted upon according to the overall zoosanitary situation of that country or region and the purposes of the ongoing FMD control efforts.

  6. Immunoscreening of Plasmodium falciparum proteins expressed in a wheat germ cell-free system reveals a novel malaria vaccine candidate

    Science.gov (United States)

    Morita, Masayuki; Takashima, Eizo; Ito, Daisuke; Miura, Kazutoyo; Thongkukiatkul, Amporn; Diouf, Ababacar; Fairhurst, Rick M.; Diakite, Mahamadou; Long, Carole A.; Torii, Motomi; Tsuboi, Takafumi

    2017-01-01

    The number of malaria vaccine candidates in preclinical and clinical development is limited. To identify novel blood-stage malaria vaccine candidates, we constructed a library of 1,827P. falciparum proteins prepared using the wheat germ cell-free system (WGCFS). Also, a high-throughput AlphaScreen procedure was developed to measure antibody reactivity to the recombinant products. Purified IgGs from residents in malaria endemic areas have shown functional activity against blood-stage parasites as judged by an in vitro parasite Growth Inhibition Assay (GIA). Therefore, we evaluated the GIA activity of 51 plasma samples prepared from Malian adults living in a malaria endemic area against the WGCFS library. Using the AlphaScreen-based immunoreactivity measurements, antibody reactivity against 3 proteins was positively associated with GIA activity. Since anti-LSA3-C responses showed the strongest correlation with GIA activity, this protein was investigated further. Anti-LSA3-C-specific antibody purified from Malian adult plasmas showed GIA activity, and expression of LSA3 in blood-stage parasites was confirmed by western blotting. Taken together, we identified LSA3 as a novel blood-stage vaccine candidate, and we propose that this system will be useful for future vaccine candidate discovery. PMID:28378857

  7. Bioinformatics analysis of SARS-Cov M protein provides information for vaccine development

    Institute of Scientific and Technical Information of China (English)

    LIU Wanli; LU Yun; CHEN Yinghua

    2003-01-01

    The pathogen causing severe acute respiratory syndrome (SARS) is identified to be SARS-Cov. It is urgent to know more about SARS-Cov for developing an efficient SARS vaccine to prevent this epidemic disease. In this report, the homology of SARS-Cov M protein to other members of coronavirus is illustrated, and all amino acid changes in both S and M proteins among all available SARS-Cov isolates in GenBank are described. Furthermore, one topological trans-membrane secondary structure model of M protein is proposed, which is corresponded well with the accepted topology model of M proteins of other members of coronavirus. Hydrophilic profile analysis indicated that one region (aa150~210) on the cytoplasmic domain is fairly hydrophilic, suggesting its property of antigenicity. Based on the fact that cytoplasmic domain of the M protein of some other coronavirus could induce protective activities against virus infection, this region might be one potential target for SARS vaccine development.

  8. Observation of Serum Bactericidal Activity of Brucella abortus RB51 OMPs Combined with Brucella abortus RB51 Live Vaccine

    Directory of Open Access Journals (Sweden)

    Fahime Gholizadeh

    2013-06-01

    Full Text Available Background & objectives: vaccination is vital against brucellosis. Although current vaccines have low efficiency, some cell wall compartments such as Outer Membrane Proteins could be used as an immunogenic candidate in vaccine development. By this mean, our aim in this study was to evaluate the humoral immunity of the combination of Brucella abortus RB51 OMPs with the Brucella abortus RB51 live attenuated vaccine, by Serum Bactericidal Acitivity test. Materials and Methods: In this project, first Brucella abortus RB51 was cultivated in brucella agar. The OMPs were extracted by Sodium N-Lauryl Sarcosinate method, then added to the RB51 live attenuated vaccine. Immunization was done by injection of the vaccine to mice and rabbits. The blood was drawn on days 0, 15,30, and 45 from the rabbits and the sera were seperated. Brucella abortus 544 was also injected as challenge. Spleen colony count was also performed. Results: The data from Serum Bactericidal Assay has showed, there was a very high Humoral immunity and response as a bactericidal titre of the serum against Rb51 Live vaccine. There was a significant decrease of colonies in the group vaccinated with the combined vaccine in the Spleen colony count test. Statistical analysis of groups variances showed a significant difference between groups (P<0.05.Conclusions: The Serum Bactericidal Assay results showed despite previous studies, both the combine and live vaccine are capable to stimulate the Humoral immunity. greater activity of combined vaccine to boost the humoral activity might be due to the synergistic effect of this vaccine.

  9. Vaccination with Recombinant Non-transmembrane Domain of Protein Mannosyltransferase 4 Improves Survival during Murine Disseminated Candidiasis.

    Science.gov (United States)

    Wang, Li; Yan, Lan; Li, Xing Xing; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2015-01-01

    Candida albicans is the most common cause of invasive fungal infections in humans. The C. albicans cell wall proteins play an important role in crucial host-fungus interactions and might be ideal vaccine targets to induce protective immune response in host. Meanwhile, protein that is specific to C. albicans is also an ideal target of vaccine. In this study, 11 proteins involving cell wall biosynthesis, yeast-to-hypha formation, or specific to C. albicans were chosen and were successfully cloned, purified and verified. The immune protection of vaccination with each recombinant protein respectively in preventing systemic candidiasis in BALB/c mice was assessed. The injection of rPmt4p vaccination significantly increased survival rate, decreased fungal burdens in the heart, liver, brain, and kidneys, and increased serum levels of both immunoglobulin G (IgG) and IgM against rPmt4p in the immunized mice. Histopathological assessment demonstrated that rPmt4p vaccination protected the tissue structure, and decreased the infiltration of inflammatory cells. Passive transfer of the rPmt4p immunized serum increased survival rate against murine systemic candidiasis and significantly reduced organ fungal burden. The immune serum enhanced mouse neutrophil killing activity by directly neutralizing rPmt4p effects in vitro. Levels of interleukin (IL)-4, IL-10, IL-12p70, IL-17A and tumor necrosis factor (TNF)-α in serum were higher in the immunized mice compared to those in the adjuvant control group. In conclusion, our results suggested that rPmt4p vaccination may be considered as a potential vaccine candidate against systemic candidiasis.

  10. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  11. Liposomes containing recombinant E protein vaccine against duck Tembusu virus in ducks.

    Science.gov (United States)

    Ma, Tengfei; Liu, Yongxia; Cheng, Jia; Liu, Yanhan; Fan, Wentao; Cheng, Ziqiang; Niu, Xudong; Liu, Jianzhu

    2016-04-27

    To obtain an effective vaccine candidate against duck Tembusu viral (DTMUV) disease which causes egg-drop and great economical loss in the Chinese duck industry, liposome vaccines containing recombinant E protein were prepared and assessed in this study. The recombinant plasmid (PET28a-E) was constructed and transformed into BL21 (DE3) cells to produce E proteins. The recombinant E proteins were purified and entrapped by liposomes through reverse-phase evaporation. Eighty-four cherry valley ducks were randomly divided into seven groups and inoculated intramuscularly at one- or seven-day-old with liposomes-E protein or Freund's adjuvant-E protein vaccine. Blood samples were collected from the first week to the tenth week for serum antibody, plasma for viremia, as well as oropharyngeal and cloacal swabs for virus shedding analyses after being challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of duck Tembusu virus. Results showed that serum antibody level of the liposomes vaccine was higher than the Freund's adjuvant vaccine, and inoculating twice was superior to once; furthermore, the viremia and virus shedding tests also proved that the liposomes vaccine can provide complete protection against DTMUV challenge. These results demonstrated that the liposomes-E protein vaccine could be used as a potential candidate vaccine to prevent DTMUV infection in ducks.

  12. Foot-and-mouth disease virus capsid proteins; analysis of protein processing, assembly and utility as vaccines

    DEFF Research Database (Denmark)

    Belsham, Graham

    precursor enhances the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells. Such particles can potentially form the basis of a vaccine but they may only have the same properties as the current inactivated vaccines. We have expressed the FMDV P1-2A alone...... or with FMDV 3Cpro using a “single cycle” alphavirus vector based on Semliki Forest virus (SFV). Cattle vaccinated with these rSFV-FMDV vectors alone, produced anti-FMDV antibodies but the immune response was insufficient to give protection against FMDV challenge. However, vaccination with these vectors primed...... a much stronger immune response against FMDV post-challenge. In subsequent experiments, cattle were sequentially vaccinated with a rSFV-FMDV followed by recombinant FMDV empty capsid particles, or vice versa, prior to challenge. Animals given a primary vaccination with the rSFV-FMDV vector...

  13. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  14. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Litai Zhang

    Full Text Available Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4 emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.

  15. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein

    Science.gov (United States)

    Zhang, Litai; Huang, Xiaofeng; Xue, Bai; Peng, Quanhui; Wang, Zhisheng; Yan, Tianhai; Wang, Lizhi

    2015-01-01

    Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats. PMID:26445479

  16. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    Science.gov (United States)

    Zhang, Litai; Huang, Xiaofeng; Xue, Bai; Peng, Quanhui; Wang, Zhisheng; Yan, Tianhai; Wang, Lizhi

    2015-01-01

    Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.

  17. Evaluation of Haemophilus influenzae Type B Conjugate Vaccine (Meningococcal Protein Conjugate in Canadian Infants

    Directory of Open Access Journals (Sweden)

    David W Scheifele

    1994-01-01

    Full Text Available Objective: To assess adverse effects and immune responses with a three-dose series of Haemophilus influenzae type b meningococcal protein conjugate (PedvaxHIB or Hib.OMP vaccine, including any immunological response alterations from concurrent administration with routine vaccines for infants.

  18. Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Hoang, Truc; Agger, Else Marie; Cassidy, Joseph P

    2015-01-01

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including tuberculosis (TB), but it is not clear how PEM influences vaccine-promoted immunity to TB. We demonstrate that PEM during low-level steady-state TB infection in a mouse model results in rapid relapse...

  19. Production of a novel multi-epitope vaccine based on outer membrane proteins of Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Tayebeh Farhadi

    2015-09-01

    Full Text Available Klebsiella pneumoniae is a hospital-acquired pathogen that leads to various infections. Hence, efforts to develop an effective vaccine against that pathogen are well documented. Our interest is the production of the previously designed multi-epitope vaccine construct against the K. pneumoniae in a prokaryotic host. Therefore, a new construct containing the nucleotide sequence of the novel vaccine was successfully expressed in Escherichia coli and then purified by Ni-NTA spin column. The purified recombinant protein can be considered as potential vaccine candidate for wet-laboratory analysis aiming to fight K pneumoniae.

  20. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    Science.gov (United States)

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  1. A 52 Kilodalton Protein Vaccine Candidate for Francisella tularensis

    Science.gov (United States)

    2004-12-01

    du vaccin vivant F. tularensis (LVS). Soixante pourcent (60%) des souris vaccindes ont survdcu la dose ltale multiple alors que toutes les souris non...le lysat des cellules de cultures vivantes du vaccin vivant F. tularensis. Plusieurs composants de Francisella tularensis ont dt6 identifids par cet...antiserum. Le s6rum de souris provenant de souris vaccin6es avec F. tularensis non- vivant n’a pas identifid ces composants. A partir de ces prot6ines

  2. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene.

    Science.gov (United States)

    Changhong, Shi; Hai, Zhang; Limei, Wang; Jiaze, An; Li, Xi; Tingfen, Zhang; Zhikai, Xu; Yong, Zhao

    2009-01-01

    Use of therapeutic DNA vaccines is a promising strategy against tuberculosis (TB), however, their immunogenicity still needs to be improved. In this study, a plasmid DNA vaccine expressing heat shock protein 65 (HSP65) and the human interleukin 2 (IL-2) fusion gene was constructed. Immune responses induced by the vaccine in the mice and protection against Mycobacterium tuberculosis (MTB) were investigated, along with the therapeutic effect of the DNA vaccine on tuberculosis in mice. Administration of the HSP65-IL-2-DNA vaccine enhanced Th1-type cellular responses by producing greater amounts of interferon-gamma (IFN-gamma) and IL-2 with a higher titer of antigen-specific anti-Hsp65 IgG2a. Compared with the Bacille Calmette-Guérin (BCG) vaccine, the DNA vaccine was able to evoke both CD4 and CD8 T-cell responses, with an especially high percentage of CD8 T-cells. The DNA vaccine was also able to induce high antigen-specific cytotoxicity activity against target cells. When the mice were challenged with virulent MTB H37Rv, a dramatic decrease in the numbers of MTB colony forming units in the spleen and lungs was observed in the mice immunized with HSP65-IL-2-DNA (P<0.05). Meanwhile, the bacterial numbers in TB infected mice treated with the DNA vaccine were also significantly reduced. The protective and therapeutic effects of the HSP65-IL-2-DNA vaccine in the spleen and lungs were superior to that of the HSP65-DNA vaccine (P<0.05). These results suggest that the DNA vaccine expression of IL-2 and the HSP65 fusion gene enhances the immunogenicity and protective as well as therapeutic effects of the HSP65-DNA vaccine against TB in mice by improving the Th1-type response.

  3. Saponins from the Spanish saffron Crocus sativus are efficient adjuvants for protein-based vaccines.

    Science.gov (United States)

    Castro-Díaz, Nathaly; Salaun, Bruno; Perret, Rachel; Sierro, Sophie; Romero, Jackeline F; Fernández, Jose-Antonio; Rubio-Moraga, Angela; Romero, Pedro

    2012-01-05

    Protein and peptide-based vaccines provide rigorously formulated antigens. However, these purified products are only weakly immunogenic by themselves and therefore require the addition of immunostimulatory components or adjuvants in the vaccine formulation. Various compounds derived from pathogens, minerals or plants, possess pro-inflammatory properties which allow them to act as adjuvants and contribute to the induction of an effective immune response. The results presented here demonstrate the adjuvant properties of novel saponins derived from the Spanish saffron Crocus sativus. In vivo immunization studies and tumor protection experiments unambiguously establish the value of saffron saponins as candidate adjuvants. These saponins were indeed able to increase both humoral and cellular immune responses to protein-based vaccines, ultimately providing a significant degree of protection against tumor challenge when administered in combination with a tumor antigen. This preclinical study provides an in depth immunological characterization of a new saponin as a vaccine adjuvant, and encourages its further development for use in vaccine formulations.

  4. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Directory of Open Access Journals (Sweden)

    Rahmberg Andrew R

    2011-05-01

    Full Text Available Abstract Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.

  5. Stable accumulation of seed storage proteins containing vaccine peptides in transgenic soybean seeds.

    Science.gov (United States)

    Maruyama, Nobuyuki; Fujiwara, Keigo; Yokoyama, Kazunori; Cabanos, Cerrone; Hasegawa, Hisakazu; Takagi, Kyoko; Nishizawa, Keito; Uki, Yuriko; Kawarabayashi, Takeshi; Shouji, Mikio; Ishimoto, Masao; Terakawa, Teruhiko

    2014-10-01

    There has been a significant increase in the use of transgenic plants for the large-scale production of pharmaceuticals and industrial proteins. Here, we report the stable accumulation of seed storage proteins containing disease vaccine peptides in transgenic soybean seeds. To synthesize vaccine peptides in soybean seeds, we used seed storage proteins as a carrier and a soybean breeding line lacking major seed storage proteins as a host. Vaccine peptides were inserted into the flexible disordered regions in the A1aB1b subunit three-dimensional structure. The A1aB1b subunit containing vaccine peptides in the disordered regions were sorted to the protein storage vacuoles where vaccine peptides are partially cleaved by proteases. In contrast, the endoplasmic reticulum (ER)-retention type of the A1aB1b subunit containing vaccine peptides accumulated in compartments that originated from the ER as an intact pro-form. These results indicate that the ER may be an organelle suitable for the stable accumulation of bioactive peptides using seed storage proteins as carriers.

  6. Plasmodium falciparum CS protein - prime malaria vaccine candidate: definition of the human CTL domain and analysis of its variation

    Directory of Open Access Journals (Sweden)

    Denise L. Doolan

    1992-01-01

    Full Text Available Studies in mice have shown that immunity to malaria sporozoites is mediated primarily by citotoxic T lymphocytes (CTL specific for epitopes within the circumsporozoite (CS protein. Humans, had never been shown to generate CTL against any malaria or other parasite protein. The design of a sub-unit vaccine for humans ralies on the epitopes recognized by CTL being identified and polymorphisms therein being defined. We have developed a novel technique using an entire series of overlapping synthetic peptides to define the epitopes of the Plasmodium falciparum CS protein recognized by human CTL and have analyzed the sequence variation of the protein with respect to the identified CTL epitopic domain. We have demonstrated that some humans can indeed generate CTL. against the P. falciparum CS protein. Furthermore, the extent of variation observed for the CTL recognition domain is finite and the combination of peptides necessary for inclusion in a polyvalent vaccine may be small. If ways can be found to increase immune responsiveness, then a vaccine designed to stimulate CS protein-specific CTL activity may prevent malaria.

  7. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    Science.gov (United States)

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV.

  8. Effect of vaccination with carrier protein on response to meningococcal C conjugate vaccines and value of different immunoassays as predictors of protection.

    Science.gov (United States)

    Burrage, Moya; Robinson, Andrew; Borrow, Ray; Andrews, Nick; Southern, Joanna; Findlow, Jamie; Martin, Sarah; Thornton, Carol; Goldblatt, David; Corbel, Michael; Sesardic, Dorothea; Cartwight, Keith; Richmond, Peter; Miller, Elizabeth

    2002-09-01

    In order to plan for the wide-scale introduction of meningococcal C conjugate (MCC) vaccine for United Kingdom children up to 18 years old, phase II trials were undertaken to investigate whether there was any interaction between MCC vaccines conjugated to tetanus toxoid (TT) or a derivative of diphtheria toxin (CRM(197)) and diphtheria-tetanus vaccines given for boosting at school entry or leaving. Children (n = 1,766) received a diphtheria-tetanus booster either 1 month before, 1 month after, or concurrently with one of three MCC vaccines conjugated to CRM(197) or TT. All of the MCC vaccines induced high antibody responses to the serogroup C polysaccharide that were indicative of protection. The immune response to the MCC-TT vaccine was reduced as a result of prior immunization with a tetanus-containing vaccine, but antibody levels were still well above the lower threshold for protection. Prior or simultaneous administration of a diphtheria-containing vaccine did not affect the response to MCC-CRM(197) vaccines. The immune responses to the carrier proteins were similar to those induced by a comparable dose of diphtheria or tetanus vaccine. The results also demonstrate that, for these conjugate vaccines in these age groups, both standard enzyme-linked immunosorbent assays and those that measure high-avidity antibodies to meningococcal C polysaccharide correlated equally well with assays that measure serum bactericidal antibodies, the established serological correlate of protection for MCC vaccines.

  9. Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major.

    Science.gov (United States)

    Kronenberg, Katharina; Brosch, Sven; Butsch, Florian; Tada, Yayoi; Shibagaki, Naotaka; Udey, Mark C; von Stebut, Esther

    2010-11-01

    In murine leishmaniasis, healing is mediated by IFN-γ-producing CD4(+) and CD8(+) T cells. Thus, an efficacious vaccine should induce Th1 and Tc1 cells. Dendritic cells (DCs) pulsed with exogenous proteins primarily induce strong CD4-dependent immunity; induction of CD8 responses has proven to be difficult. We evaluated the immunogenicity of fusion proteins comprising the protein transduction domain of HIV-1 TAT and the Leishmania antigen LACK (Leishmania homolog of receptors for activated C kinase), as TAT-fusion proteins facilitate major histocompatibility complex class I-dependent antigen presentation. In vitro, TAT-LACK-pulsed DCs induced stronger proliferation of Leishmania-specific CD8(+) T cells compared with DCs incubated with LACK alone. Vaccination with TAT-LACK-pulsed DCs or fusion proteins plus adjuvant in vivo significantly improved disease outcome in Leishmania major-infected mice and was superior to vaccination with DCs treated with LACK alone. Vaccination with DC+TAT-LACK resulted in stronger proliferation of CD8(+) T cells when compared with immunization with DC+LACK. Upon depletion of CD4(+) or CD8(+) T cells, TAT-LACK-mediated protection was lost. TAT-LACK-pulsed IL-12p40-deficient DCs did not promote protection in vivo. In summary, these data show that TAT-fusion proteins are superior in activating Leishmania-specific Tc1 cells when compared with antigen alone and suggest that IL-12-dependent preferential induction of antigen-specific CD8(+) cells promotes significant protection against this important human pathogen.

  10. Prospects of riboflavin carrier protein (RCP) as an antifertility vaccine in male and female mammals.

    Science.gov (United States)

    Adiga, P R; Subramanian, S; Rao, J; Kumar, M

    1997-01-01

    Riboflavin carrier protein (RCP) is obligatorily involved in yolk deposition of the vitamin, riboflavin, in the developing oocyte of the hen. The production of this protein is inducible by oestrogen. It is evolutionarily conserved in terms of its physicochemical, immunological and functional characteristics. It is the prime mediator of vitamin supply to the developing fetus in mammals, including primates. Passive immunoneutralization of the protein terminates pregnancy in rats. Active immunization of rats and bonnet monkeys with avian RCP prevents pregnancy without causing any adverse physiological effects of the mother in terms of her vitamin status, reproductive cycles or reproductive-endocrine profile. Denatured, linearized RCP is more effective in eliciting neutralizing antibodies capable of interfering with embryonic viability either before or during peri-implantation stages. Two defined stretches of sequential epitopes, one located at the N-terminus and the other at the C-terminus of the protein have been identified. Active immunization with either of these epitopes conjugated with diphtheria toxoid curtails pregnancy in rats and monkeys. Immunohistochemical localization of RCP on ovulated oocytes and early embryos shows that the antibodies cause degeneration only of early embryos. RCP is produced intra-testicularly and becomes localized on acrosomal surface of mammalian spermatozoa. Active immunization of male rats and monkeys with denatured RCP markedly reduces fertility by impairing the fertilizing potential of spermatozoa. These findings suggest that RCP, or its defined fragments, could be a novel, first generation vaccine for regulating fertility in both the sexes.

  11. Quantification by LC-MS(E) of outer membrane vesicle proteins of the Bexsero® vaccine.

    Science.gov (United States)

    Tani, Chiara; Stella, Maria; Donnarumma, Danilo; Biagini, Massimiliano; Parente, Pierino; Vadi, Alessandro; Magagnoli, Claudia; Costantino, Paolo; Rigat, Fabio; Norais, Nathalie

    2014-03-05

    Meningococcal disease is a major cause of morbidity and mortality worldwide. Its epidemiology is currently dominated by five capsular serogroups (A, B, C, W, and Y). While effective vaccines already exist for serogroups A, C, W and Y, except for under clonal outbreaks, no vaccine was available against serogroup B. Recently, a four component vaccine, Bexsero(®), designed to prevent infection caused by this serogroup, has been approved in Europe and other Countries for use in individuals from two months of age and older. The active components of this vaccine are three recombinant proteins identified by reverse vaccinology combined with detergent extracted outer membrane vesicles (DOMV) prepared from a New Zealand epidemic strain. Considering their intrinsic complexity, we performed additional characterization of DOMVs on top of the standard quality control testing carried out for batch release. We applied the Hi3 label-free LC-MS(E) methodology to qualitatively and quantitatively characterize the DOMV protein content. We first, successfully investigated the robustness and the accuracy of the methodology for the DOMV characterization and we then applied it to compare six DOMV production lots. Around 100 proteins were quantified from each preparation. When classified according to their predicted cellular localization, about 90% of the total protein amount belongs consistently to the outer membrane compartment. Using nonparametric hypothesis testing and complementary log-log linear regression, the quantifications of a subset of 21 proteins common to all lots and including approximately 90% (85-92%) of the total protein amount quantified in any DOMV lot were found consistent across lots. The relevance of these results is two-fold, showing that the Hi3 quantification methodology is robust for a broad range of proteins and indicating that the manufacturing process currently used for the production of the Bexsero(®) DOMV components is highly reproducible and consistent

  12. In vitro characterization of the Meq proteins of Marek's disease virus vaccine strain CVI988.

    Science.gov (United States)

    Ajithdoss, Dharani K; Reddy, Sanjay M; Suchodolski, Paulette F; Lee, Lucy F; Kung, Hsing-Jien; Lupiani, Blanca

    2009-06-01

    Gallid herpesvirus 2 (GaHV-2), commonly known as Marek's disease virus serotype-1 (MDV-1), causes T cell lymphomas in chickens. Vaccines prepared from the attenuated CVI988/Rispens MDV-1 strain currently offer the best protection. Although attenuated CVI988/Rispens is non-oncogenic, it codes for at least two forms of the MDV oncoprotein Meq, and these proteins (CVI-Meq and CVI-LMeq) have not been fully characterized. Here, we report that both CVI-Meq proteins, like the Meq protein of Md5 (a very virulent oncogenic strain), were capable of transforming Rat-2 and NIH3T3 cells. Both CVI-Meq and CVI-LMeq proteins activated the meq promoter only in the presence of chicken c-Jun (CK-Jun) whereas Md5-Meq activated the same promoter irrespective of CK-Jun co-expression. However, Meq proteins of both Md5 and CVI988 bound the meq promoter in a ChIP assay regardless of whether CK-Jun was co-expressed. To understand the role of Meq DNA binding and transactivation/repression domains in transcription, we constructed three chimeric Meq proteins, namely, Md5-CVI-Meq, CVI-Md5-Meq, and Md5-CVI-L by exchanging domains between Md5 meq and CVI meq genes. Although these chimeric Meq proteins, unlike CVI-Meq proteins, transactivated the meq promoter, the activation was significantly less than Md5-Meq. To determine the role of individual amino acids, point mutations were introduced corresponding to the amino acid changes of CVI-Meq into Md5-Meq. Amino acid residues at positions 71 and 320 of the Md5-Meq protein were found to be important for transactivation of the meq promoter. All three Meq proteins activated the MDV gB, MMP-3 and Bcl-2 promoters and suppressed transcription from the MDV pp38/pp14 bidirectional promoter. Although no significant differences were observed, decreased transactivation activity was observed with CVI-Meq proteins when compared to Md5-Meq. Collectively, the data presented here indicate that CVI-Meq proteins are generally weak transactivators, which might

  13. Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections

    Science.gov (United States)

    Nuccitelli, Annalisa; Cozzi, Roberta; Gourlay, Louise J.; Donnarumma, Danilo; Necchi, Francesca; Norais, Nathalie; Telford, John L.; Rappuoli, Rino; Bolognesi, Martino; Maione, Domenico; Grandi, Guido; Rinaudo, C. Daniela

    2011-01-01

    Structural vaccinology is an emerging strategy for the rational design of vaccine candidates. We successfully applied structural vaccinology to design a fully synthetic protein with multivalent protection activity. In Group B Streptococcus, cell-surface pili have aroused great interest because of their direct roles in virulence and importance as protective antigens. The backbone subunit of type 2a pilus (BP-2a) is present in six immunogenically different but structurally similar variants. We determined the 3D structure of one of the variants, and experimentally demonstrated that protective antibodies specifically recognize one of the four domains that comprise the protein. We therefore constructed a synthetic protein constituted by the protective domain of each one of the six variants and showed that the chimeric protein protects mice against the challenge with all of the type 2a pilus-carrying strains. This work demonstrates the power of structural vaccinology and will facilitate the development of an optimized, broadly protective pilus-based vaccine against Group B Streptococcus by combining the uniquely generated chimeric protein with protective pilin subunits from two other previously identified pilus types. In addition, this work describes a template procedure that can be followed to develop vaccines against other bacterial pathogens. PMID:21593422

  14. EXPERIMENTAL MEASLES VACCINES: A RESEARCH TOOL IN VACCINATION EVENTS

    Directory of Open Access Journals (Sweden)

    V. A. Liashenko

    2007-01-01

    Full Text Available Abstract. The review article considers different variants of measles vaccine that may be classified into two groups, i.e., vaccines that do not contain viable measles virus, and attenuated measles vaccines which could be employed in unusual manner.The first group includes DNA-vaccines, recombinant vaccine strains encoding synthesis of measles hemagglutinin and fusion protein, as well as peptide vaccines containing molecular fragments of these proteins. The mentioned variants of vaccines were effective in animal experiments, but they have not been tested in humans. The second group includes live attenuated mucosal measles vaccins applied in combination with immunomodulator(s, as aerosol and intranasally. Efficiency of these vaccines was tested and confirmed by immunization of children and adults. Mucosal measles vaccine induces local production of IgA measles antibodies, along with induced synthesis of circulating IgM and IgG antibodies against measles. The latter experimental variant could be a live attenuated measles vaccine containing some immunity-modulating agent. Elaboration of these variant was based on the known data about transient immunosuppressive activity of measles vaccine. An appropriate experimental variant represents a mixture of attenuated measles vaccine and synthetic immunomodulating agent (MP-2 peptide which protects T-lymphocytes from inhibitory effect of the measles virus. In present revue, some data are presented concerning the mechanisms of immunogenic activity and adverse effects of measles vaccines.

  15. Anti-botulism single-shot vaccine using chitosan for protein encapsulation by simple coacervation.

    Science.gov (United States)

    Sari, Roger S; de Almeida, Anna Christina; Cangussu, Alex S R; Jorge, Edson V; Mozzer, Otto D; Santos, Hércules Otacílio; Quintilio, Wagner; Brandi, Igor Viana; Andrade, Viviane Aguiar; Miguel, Angelo Samir M; Sobrinho Santos, Eliane M

    2016-12-01

    The aim of the present study was to compare the potency and safety of vaccines against Clostridium botulinum (C. botulinum) type C and D formulated with chitosan as controlled release matrix and vaccines formulated in conventional manner using aluminum hydroxide. Parameters were established for the development of chitosan microspheres, using simple coacervation to standardize the use of this polymer in protein encapsulation for vaccine formulation. To formulate a single shot vaccine inactivated antigens of C. botulinum type C and D were used with original toxin titles equal to 5.2 and 6.2 log LD50/ml, respectively. For each antigen a chitosan based solution of 50 mL was prepared. Control vaccines were formulated by mixing toxoid type C and D with aluminum hydroxide [25% Al(OH)3, pH 6.3]. The toxoid sterility, innocuity and potency of vaccines were evaluated as stipulated by MAPA-BRASIL according to ministerial directive no. 23. Encapsulation efficiency of BSA in chitosan was 32.5-40.37%, while that the encapsulation efficiency to toxoid type C was 41,03% (1.94 mg/mL) and of the toxoid type D was 32.30% (1.82 mg/mL). The single shot vaccine formulated using chitosan for protein encapsulation through simple coacervation showed potency and safety similar to conventional vaccine currently used in Brazilian livestock (10 and 2 IU/mL against C. botulinum type C and D, respectively). The present work suggests that our single shot vaccine would be a good option as a cattle vaccine against these C. botulinum type C and D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Exploiting the Campylobacter jejuni protein glycosylation system for glycoengineering vaccines and diagnostic tools directed against brucellosis

    Directory of Open Access Journals (Sweden)

    Iwashkiw Jeremy A

    2012-01-01

    Full Text Available Abstract Background Immune responses directed towards surface polysaccharides conjugated to proteins are effective in preventing colonization and infection of bacterial pathogens. Presently, the production of these conjugate vaccines requires intricate synthetic chemistry for obtaining, activating, and attaching the polysaccharides to protein carriers. Glycoproteins generated by engineering bacterial glycosylation machineries have been proposed to be a viable alternative to traditional conjugation methods. Results In this work we expressed the C. jejuni oligosaccharyltansferase (OTase PglB, responsible for N-linked protein glycosylation together with a suitable acceptor protein (AcrA in Yersinia enterocolitica O9 cells. MS analysis of the acceptor protein demonstrated the transfer of a polymer of N-formylperosamine to AcrA in vivo. Because Y. enterocolitica O9 and Brucella abortus share an identical O polysaccharide structure, we explored the application of the resulting glycoprotein in vaccinology and diagnostics of brucellosis, one of the most common zoonotic diseases with over half a million new cases annually. Injection of the glycoprotein into mice generated an IgG response that recognized the O antigen of Brucella, although this response was not protective against a challenge with a virulent B. abortus strain. The recombinant glycoprotein coated onto magnetic beads was efficient in differentiating between naïve and infected bovine sera. Conclusion Bacterial engineered glycoproteins show promising applications for the development on an array of diagnostics and immunoprotective opportunities in the future.

  17. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida

    Directory of Open Access Journals (Sweden)

    Satparkash Singh

    2011-06-01

    Full Text Available Haemorrhagic Septicaemia (HS, an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  18. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida.

    Science.gov (United States)

    Singh, Satparkash; Singh, Vijendra Pal; Cheema, Pawanjit Singh; Sandey, Maninder; Ranjan, Rajeev; Gupta, Santosh Kumar; Sharma, Bhaskar

    2011-04-01

    Haemorrhagic Septicaemia (HS), an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA) has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  19. Evaluation of Mdh1 protein as an antigenic candidate for a vaccine against candidiasis.

    Science.gov (United States)

    Shibasaki, Seiji; Aoki, Wataru; Nomura, Takashi; Karasaki, Miki; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Candida albicans malate dehydrogenase (Mdh1p) has been screened by previous proteome studies as a candidate for a vaccine against candidiasis. In this study, recombinant Mdh1 protein with a His-tag was produced in Escherichia coli and evaluated as an immunogenic protein against candidiasis. Mdh1p was administrated to mice by two methods subcutaneous injection and intranasal administration before challenging them with a lethal dose of C. albicans. After vaccination of Mdh1p, antibody responses were observed. To evaluate the vaccination effect of Mdh1p, survival tests were performed after 35 d. Although all control mice died within 24 d or 25 d, 100% and 80% of mice survived with subcutaneous and intranasal administration, respectively. Therefore, our results indicate that, among C. albicans antigens examined thus far, Mdh1p is currently the most effective antigen for use as a vaccine for C. albicans.

  20. Antibodies induced by multi-epitope vaccine showed inhibitory activity against heterologous influenza A virus (H3N2)

    Institute of Scientific and Technical Information of China (English)

    DING Jian; WU Fan; WEI Wei; CHEN Yinghua

    2006-01-01

    In this study, recognition of 4 recombinant viral proteins (GST-NHA1) by the antibodies induced by multi-epitope vaccine was testified. Inhibitory activities of these antibodies were also investigated in vitro against four heterologous influenza A viruses (H3N2). Three epitope-specific antibodies purified by affinity chromatography could reduce the plaque formation. Interestingly, the three neutralizing antibodies in combination showed obvious enhancement of inhibitory activity, suggesting that the development of recombinant multi-epitope vaccine might be an effective way against viral mutation.

  1. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  2. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Jong Seok [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); National Institute of Biological Resources, Incheon (Korea, Republic of); Kim, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Yu-Na; Kim, Min-Chul [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo (Korea, Republic of); Cho, Minkyoung [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Kang, Sang-Moo, E-mail: skang24@gsu.edu [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States)

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  3. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Science.gov (United States)

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  4. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Pinzan

    Full Text Available Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6 or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6 to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  5. Expression, purification and refolding of a self-assembling protein nanoparticle (SAPN) malaria vaccine.

    Science.gov (United States)

    Guo, Qin; Dasgupta, Debleena; Doll, Tais A P F; Burkhard, Peter; Lanar, David E

    2013-05-01

    There are many ways to present antigens to the immune system. We have used a repetitive antigen display technology that relies on the self-assembly of 60 protein chains into a spherical self-assembling protein nanoparticle (SAPN) to develop a vaccine against Plasmodium falciparum malaria. The protein sequence contains selected B- and T-cell epitopes of the circumsporozoite protein of P. falciparum (PfCSP) and, when assembled into a nanoparticle induces strong, long-lived and protective immune responses against the PfCSP. Here we describe the conditions needed for promoting self-assembly of a P. falciparum vaccine nanoparticle, PfCSP-KMY-SAPN, and note pitfalls that may occur when determining conditions for other SAPN vaccines. Attention was paid to selecting processes that were amenable to scale up and cGMP manufacturing.

  6. Active vaccination attenuates the psychostimulant effects of α-PVP and MDPV in rats.

    Science.gov (United States)

    Nguyen, Jacques D; Bremer, Paul T; Ducime, Alex; Creehan, Kevin M; Kisby, Brent R; Taffe, Michael A; Janda, Kim D

    2017-04-01

    Recreational use of substituted cathinones continues to be an emerging public health problem in the United States; cathinone derivatives α-pyrrolidinopentiophenone (α-PVP) and 3,4-methylenedioxypyrovalerone (MDPV), which have been linked to human fatalities and show high potential for abuse liability in animal models, are of particular concern. The objective of this study was to develop an immunotherapeutic strategy for attenuating the effects of α-PVP and MDPV in rats, using drug-conjugate vaccines created to generate antibodies with neutralizing capacity. Immunoconjugates (α-PVP-KLH and MDPV-KLH) or the control carrier protein, keyhole limpet hemocyanin (KLH), were administered to groups (N = 12) of male Sprague-Dawley rats on Weeks 0, 2 and 4. Groups were administered α-PVP or MDPV (0.0, 0.25, 0.5, 1.0, 5.0 mg/kg, i.p.) in acute drug challenges and tested for changes in wheel activity. Increased wheel activity produced by α-PVP or MDPV in the controls was attenuated in the α-PVP-KLH and MDPV-KLH vaccinated groups, respectively. Rectal temperature decreases produced by MDPV in the controls were reduced in duration in the MDPV-KLH vaccine group. A separate group (N = 19) was trained to intravenously self-administer α-PVP (0.05, 0.1 mg/kg/inf) and vaccinated with KLH or α-PVP-KLH, post-acquisition. Self-administration in α-PVP-KLH rats was initially higher than in the KLH rats but then significantly decreased following a final vaccine booster, unlike the stable intake of KLH rats. The data demonstrate that active vaccination provides functional protection against the effects of α-PVP and MDPV, in vivo, and recommend additional development of vaccines as potential therapeutics for mitigating the effects of designer cathinone derivatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Protein energy malnutrition alters mucosal IgA responses and reduces mucosal vaccine efficacy in mice.

    Science.gov (United States)

    Rho, Semi; Kim, Heejoo; Shim, Seung Hyun; Lee, Seung Young; Kim, Min Jung; Yang, Bo-Gie; Jang, Myoung Ho; Han, Byung Woo; Song, Man Ki; Czerkinsky, Cecil; Kim, Jae-Ouk

    2017-08-30

    Oral vaccine responsiveness is often lower in children from less developed countries. Childhood malnutrition may be associated with poor immune response to oral vaccines. The present study was designed to investigate whether protein energy malnutrition (PEM) impairs B cell immunity and ultimately reduces oral vaccine efficacy in a mouse model. Purified isocaloric diets containing low protein (1/10 the protein of the control diet) were used to determine the effect of PEM. PEM increased both nonspecific total IgA and oral antigen-specific IgA in serum without alteration of gut permeability. However, PEM decreased oral antigen-specific IgA in feces, which is consistent with decreased expression of polymeric Immunoglobulin receptor (pIgR) in the small intestine. Of note, polymeric IgA was predominant in serum under PEM. In addition, PEM altered B cell development status in the bone marrow and increased the frequency of IgA-secreting B cells, as well as IgA secretion by long-lived plasma cells in the small intestinal lamina propria. Moreover, PEM reduced the protective efficacy of the mucosally administered cholera vaccine and recombinant attenuated Salmonella enterica serovar Typhimurium vaccine in a mouse model. Our results suggest that PEM can impair mucosal immunity where IgA plays an important role in host protection and may partly explain the reduced efficacy of oral vaccines in malnourished subjects. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  9. Wild-Type Measles Virus with the Hemagglutinin Protein of the Edmonston Vaccine Strain Retains Wild-Type Tropism in Macaques

    Science.gov (United States)

    Nagata, Noriyo; Kato, Sei-ich; Ami, Yasushi; Suzaki, Yuriko; Suzuki, Tadaki; Sato, Yuko; Tsunetsugu-Yokota, Yasuko; Mori, Kazuyasu; Van Nguyen, Nguyen; Kimura, Hideki; Nagata, Kyosuke

    2012-01-01

    A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM+ as well as CD46+ cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM+ cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM+ lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo. PMID:22238320

  10. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines.

    Science.gov (United States)

    Wedlock, D Neil; Aldwell, Frank E; Vordermeier, H Martin; Hewinson, R Glyn; Buddle, Bryce M

    2011-12-15

    Mycobacterium bovis bacille Calmette-Guérin (BCG) delivered to calves by the oral route in a formulated lipid matrix has been previously shown to induce protection against bovine tuberculosis. A study was conducted in cattle to determine if a combination of a low dose of oral BCG and a protein vaccine could induce protective immunity to tuberculosis while not sensitising animals to tuberculin. Groups of calves (10 per group) were vaccinated by administering 2 × 10(7)colony forming units (CFU) of BCG orally or a combination of 2 × 10(7)CFU oral BCG and a protein vaccine comprised of M. bovis culture filtrate proteins (CFP) formulated with the adjuvants Chitin and Gel 01 and delivered by the intranasal route, or CFP formulated with Emulsigen and the TLR2 agonist Pam(3)CSK(4) and administered by the subcutaneous (s.c.) route. Two further groups were vaccinated with the CFP/Chitin/Gel 01 or CFP/Emulsigen/Pam(3)CSK(4) vaccines alone. Positive control groups were given 10(8)CFU oral BCG or 10(6)CFU s.c. BCG while a negative control group was non-vaccinated. All animals were challenged with M. bovis 15 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Groups of cattle vaccinated with s.c. BCG, 10(8)CFU or 2 × 10(7)CFU oral BCG showed significant reductions in seven, three and four pathological or microbiological disease parameters, respectively, compared to the results for the non-vaccinated group. There was no evidence of protection in calves vaccinated with the combination of oral BCG and CFP/Emulsigen/Pam(3)CSK(4) or oral BCG and CFP/Chitin/Gel 01 or vaccinated with the protein vaccines alone. Positive responses in the comparative cervical skin test at 12 weeks after vaccination were only observed in animals vaccinated with s.c. BCG, 10(8)CFU oral BCG or a combination of 2 × 10(7)CFU oral BCG and CFP/Chitin/Gel 01. In conclusion, co-administration of a protein vaccine, administered by either systemic or mucosal routes with oral

  11. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Directory of Open Access Journals (Sweden)

    Natalija Budimir

    Full Text Available BACKGROUND: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV vaccine, that can target conserved internal antigens such as the nucleoprotein (NP and/or matrix protein (M1 need to be explored. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs, protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane

  12. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Science.gov (United States)

    Budimir, Natalija; Huckriede, Anke; Meijerhof, Tjarko; Boon, Louis; Gostick, Emma; Price, David A; Wilschut, Jan; de Haan, Aalzen

    2012-01-01

    The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.

  13. Assessment of vaccine potential of the Neisseria-specific protein NMB0938.

    Science.gov (United States)

    Sardiñas, Gretel; Climent, Yanet; Rodríguez, Yaindrys; González, Sonia; García, Darién; Cobas, Karem; Caballero, Evelin; Pérez, Yusleydis; Brookes, Charlotte; Taylor, Stephen; Gorringe, Andrew; Delgado, Maité; Pajón, Rolando; Yero, Daniel

    2009-11-16

    The availability of complete genome sequence of Neisseria meningitidis serogroup B strain MC58 and reverse vaccinology has allowed the discovery of several novel antigens. Here, we have explored the potential of N. meningitidis lipoprotein NMB0938 as a vaccine candidate, based on investigation of gene sequence conservation and the antibody response elicited after immunization in mice. This antigen was previously identified by a genome-based approach as an outer membrane lipoprotein unique to the Neisseria genus. The nmb0938 gene was present in all 37 Neisseria isolates analyzed in this study. Based on amino acid sequence identity, 16 unique sequences were identified which clustered into three variants with identities ranging from 92 to 99%, with one cluster represented by the Neisseria lactamica strains. Recombinant protein NMB0938 (rNMB0938) was expressed in Escherichia coli and purified after solubilization of the insoluble fraction. Antisera produced in mice against purified rNMB0938 reacted with a range of meningococcal strains in whole-cell ELISA and western blotting. Using flow cytometry, it was also shown that anti-rNMB0938 antibodies bound to the surface of the homologous meningococcal strain and activated complement deposition. Moreover, antibodies against rNMB0938 elicited complement-mediated killing of meningococcal strains from both sequence variants and conferred passive protection against meningococcal bacteremia in infant rats. According to our results, NMB0938 represents a promising candidate to be included in a vaccine to prevent meningococcal disease.

  14. [Experimental study on activating antileukemic T cells by vaccination with dendritic cells pulsed with survivin].

    Science.gov (United States)

    Zhang, Xiao-Hui; Xia, Ling-Hui; Liu, Zhong-Ping; Wei, Wen-Ning; Hu, Yu; Song, Shan-Jun

    2003-02-01

    The objective of this study is to investigate the effect of vaccination with dendritic cells pulsed with survivin antigen on activation of antileukemic T cells, and inhibiting proliferation of leukemic cells. The expression of survivin on acute leukemic cells were detected by cofocal microscopy and immunoprecipitation-Western blot. DCs collected from peripheral blood mononuclear cells were pulsed with survivin purified proteins. Stimulation index (SI) and antileukemia CTL induction were analyzed with (3)H-TdR incorporation and (51)Cr releasing assay, respectively. The phenotype of T cells and DCs were identified by flow cytometry. By immunofluorescence of bone marrow and peripheral blood mononuclear cells, survivin expression was detected in 16 out of 19 AML cases (84.2%). The results showed that survivin fluorescence distribution was in cytoplasm. DCs from peripheral blood mononuclear cells were successfully induced, with typical DC morphologic characteristic. The vaccination with dendritic cells pulsed with survivin antigen dramatically stimulated the proliferation of T cells. The DCs loading survivin activated T cells with higher CD4(+) T(H) ratio as compared with DCs group, T cells activated with DCs expressed CD8 and CD56. Survivin DCs significantly inhibited the growth of leukemic cells in vitro. In conclusion, survivin antigen expressed in the cytoplasm of leukemic cells, leukemic vaccination with DCs pulsed with survivin antigen in vitro inhibited the proliferation of leukemic cells, that may be a pathway for therapy of leukemia.

  15. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  16. Recommendation for use of the newly introduced pneumococcal protein conjugate vaccines in Korea

    Directory of Open Access Journals (Sweden)

    Eun Hwa Choi

    2011-04-01

    Full Text Available Streptococcus pneumoniae remains a leading cause of invasive infections including bacteremia and meningitis, as well as mucosal infections such as otitis media and pneumonia among children and adults. The 7-valent pneumococcal conjugate vaccine (PCV7 was licensed for use among infants and young children in many countries including Korea. The routine use of PCV7 has resulted in a decreased incidence of invasive pneumococcal disease (IPD by the vaccine serotypes among the vaccinees and substantial declines in IPD among unvaccinated populations such as older children and adults as well. In addition, there are increasing evidences to suggest that routine immunization with PCV7 is changing the epidemiology of pneumococcal diseases such as serotype distribution of IPD, nasopharyngeal colonization, and antibiotic resistance patterns. In contrast, there is an increase in the number of IPDs caused by nonvaccine serotypes, though it is much smaller than overall declines of vaccine serotype diseases. Several vaccines containing additional serotypes have been developed and tested clinically in order to expand the range of serotypes of Streptococcus pneumoniae. Recently two new pneumococcal protein conjugate vaccines, 10-valent pneumococcal conjugate vaccine (PCV10 and 13-valent pneumococcal conjugate vaccine (PCV13, have been approved for use in several countries including Korea. This report summarizes the recommendations approved by the Committee on Infectious Diseases, the Korean Pediatric Society.

  17. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    Directory of Open Access Journals (Sweden)

    Tania Rivera-Hernandez

    2016-06-01

    Full Text Available Group A Streptococcus (GAS is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i streptolysin O (SLO, interleukin 8 (IL-8 protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP], group A streptococcal C5a peptidase (SCPA, arginine deiminase (ADI, and trigger factor (TF; (ii the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model.

  18. Production and efficacy of an Aeromonas hydrophila recombinant S-layer protein vaccine for fish.

    Science.gov (United States)

    Poobalane, Saravanane; Thompson, Kim D; Ardó, László; Verjan, Noel; Han, Hyun-Ja; Jeney, Galina; Hirono, Ikuo; Aoki, Takashi; Adams, Alexandra

    2010-04-30

    A recombinant protein for the S-layer protein of Aeromonas hydrophila was produced and its ability to protect common carp Cyprinus carpio L. against six virulent isolates of A. hydrophila was assessed. A group of 120 carp (30-40 g) were vaccinated intra-peritoneally with 0.1 ml of adjuvanted vaccine (30 microg protein per fish). Another group of 120 carp were injected with 0.1 ml of PBS-adjuvant mixture to serve as controls. Twenty fish from each group were challenged with each one of six virulent isolates of A. hydrophila 35 days post-vaccination. The fish were maintained in 12 separate tanks before terminating the experiment at 16 days post-challenge. The relative percentage survival (RPS) for the six isolates of A. hydrophila ranged from 56 to 87%. The difference in survival rate of fish challenged with four of the isolates was statistically significant in vaccinated fish compared to control fish, when analysed using a Chi-square test. The results of the study suggest that the recombinant S-layer protein of A. hydrophila could be useful as a vaccine antigen to protect fish against different isolates of this pathogenic bacterium.

  19. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    Science.gov (United States)

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  20. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design.

    Science.gov (United States)

    Kotecha, Abhay; Seago, Julian; Scott, Katherine; Burman, Alison; Loureiro, Silvia; Ren, Jingshan; Porta, Claudine; Ginn, Helen M; Jackson, Terry; Perez-Martin, Eva; Siebert, C Alistair; Paul, Guntram; Huiskonen, Juha T; Jones, Ian M; Esnouf, Robert M; Fry, Elizabeth E; Maree, Francois F; Charleston, Bryan; Stuart, David I

    2015-10-01

    Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.

  1. Fusion protein vaccines targeting two tumor antigens generate synergistic anti-tumor effects.

    Directory of Open Access Journals (Sweden)

    Wen-Fang Cheng

    Full Text Available INTRODUCTION: Human papillomavirus (HPV has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII/E6 and PE(ΔIII/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. MATERIALS AND METHODS: In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. RESULTS: PE(ΔIII/E6+PE(ΔIII/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII/E6 group compared to 100% in the PE(ΔIII/E7 and PE(ΔIII/E6+PE(ΔIII/E7 groups. Mice vaccinated with the PE(ΔIII/E6+PE(ΔIII/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII/E6 or PE(ΔIII/E7 fusion proteins alone. CONCLUSION: Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies.

  2. Fusion Protein Vaccines Targeting Two Tumor Antigens Generate Synergistic Anti-Tumor Effects

    Science.gov (United States)

    Cheng, Wen-Fang; Chang, Ming-Cheng; Sun, Wei-Zen; Jen, Yu-Wei; Liao, Chao-Wei; Chen, Yun-Yuan; Chen, Chi-An

    2013-01-01

    Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies. PMID:24058440

  3. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Shu Ki Tsoi

    2015-01-01

    Full Text Available Group A streptococcus (GAS is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.

  4. Leptospirosis vaccines

    Directory of Open Access Journals (Sweden)

    Jin Li

    2007-12-01

    Full Text Available Abstract Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the recent advancements of recombinant outer membrane protein (OMP vaccines, lipopolysaccharide (LPS vaccines, inactivated vaccines, attenuated vaccines and DNA vaccines against leptospirosis are reviewed. A comparison of these vaccines may lead to development of new potential methods to combat leptospirosis and facilitate the leptospirosis vaccine research. Moreover, a vaccine ontology database was built for the scientists working on the leptospirosis vaccines as a starting tool.

  5. Trivalent M-related protein as a component of next generation group A streptococcal vaccines

    Science.gov (United States)

    2017-01-01

    Purpose There is a need to broaden protective coverage of M protein–based vaccines against group A streptococci (GAS) because coverage of the current 30-valent M protein vaccine does not extend to all emm types. An additional GAS antigen and virulence factor that could potentially extend vaccine coverage is M-related protein (Mrp). Previous work indicated that there are three structurally related families of Mrp (MrpI, MrpII, and MrpIII) and peptides of all three elicited bactericidal antibodies against multiple emm types. The purpose of this study was to determine if a recombinant form containing Mrp from the three families would evoke bactericidal antiserum and to determine if this antiserum could enhance the effectiveness of antisera to the 30-valent M protein vaccine. Materials and Methods A trivalent recombinant Mrp (trMrp) protein containing N-terminal fragments from the three families (trMrp) was constructed, purified and used to immunize rabbits. Anti-trMrp sera contained high titers of antibodies against the trMrp immunogen and recombinant forms representing MrpI, MrpII, and MrpIII. Results The antisera opsonized emm types of GAS representing each Mrp family and also opsonized emm types not covered by the 30-valent M protein–based vaccine. Importantly, a combination of trMrp and 30-valent M protein antiserum resulted in higher levels of opsonization of GAS than either antiserum alone. Conclusion These findings suggest that trMrp may be an effective addition to future constructs of GAS vaccines. PMID:28168173

  6. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    The extremely high fatality rates of many filovirus (FILV) strains the recurrent but rarely identified origin of human epidemics, the only partly identified viral reservoirs and the continuing non-human primate epizootics in Africa make a broadly-protective filovirus vaccine highly desirable. Cytotoxic T-cells (CTL) have been shown to be protective in mice, guinea pigs and non-human primates. In murine models the cytotoxic T-cell epitopes that are protective against Ebola virus have been mapped and in non-human primates CTL-mediated protection between viral strains (John Dye: specify) has been demonstrated using two filoviral proteins, nucleoprotein (NP) and glycoprotein (GP). These immunological results suggest that the CTL avenue of immunity deserves consideration for a vaccine. The poorly-understood viral reservoirs means that it is difficult to predict what strains are likely to cause epidemics. Thus, there is a premium on developing a pan-filoviral vaccine. The genetic diversity of FILV is large, roughly the same scale as human immunodeficiency virus (HIV). This presents a serious challenge for the vaccine designer because a traditional vaccine aspiring to pan-filoviral coverage is likely to require the inclusion of many antigenic reagents. A recent method for optimizing cytotoxic T-cell lymphocyte epitope coverage with mosaic antigens was successful in improving potential CTL epitope coverage against HIV and may be useful in the context of very different viruses, such as the filoviruses discussed here. Mosaic proteins are recombinants composed of fragments of wild-type proteins joined at locations resulting in exclusively natural k-mers, 9 {le} k {le} 15, and having approximately the same length as the wild-type proteins. The use of mosaic antigens is motivated by three conjectures: (1) optimizing a mosaic protein to maximize coverage of k-mers found in a set of reference proteins will give better odds of including broadly-protective CTL epitopes in a vaccine

  7. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    Science.gov (United States)

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (Precombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima.

  8. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Directory of Open Access Journals (Sweden)

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  9. Understanding Amino Acid Mutations in Hepatitis B Virus Proteins for Rational Design of Vaccines and Drugs.

    Science.gov (United States)

    Shen, Ke; Shen, Li; Wang, Jing; Jiang, Zhi; Shen, Bairong

    2015-01-01

    The hepatitis B virus (HBV) genome encodes four proteins, i.e., DNA polymerase, surface protein, X, and core proteins. HBV undergoes different selective pressures for drug resistance and immune/vaccine escape and mutations are common for the HBV proteins. We here collected all the reported amino acid mutations happened in these four HBV proteins and studied their patterns. The relationship between the mutations and epitopic functions are investigated with bioinformatics tools, based on their sequence information. Some interesting results are observed for the mutation patterns, such as we found the serine and threonine are both for frequently mutated residues and mutant residues, while the tryptophan and methionine have low mutability. The results provide important information for the understanding of the molecular mechanism of virus evolution and therefore will facilitate the future rational design of HBV vaccines or drugs.

  10. Identification of conserved surface proteins as novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Chen, Xiabing; Xu, Zhuofei; Li, Lu; Chen, Huanchun; Zhou, Rui

    2012-12-01

    Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing great economic losses worldwide. Identification of conserved surface antigenic proteins is helpful for developing effective vaccines. In this study, a genome-wide strategy combined with bioinformatic and experimental approaches, was applied to discover and characterize surface-associated immunogenic proteins of A. pleuropneumoniae. Thirty nine genes encoding outer membrane proteins (OMPs) and lipoproteins were identified by comparative genomics and gene expression profiling as being-highly conserved and stably transcribed in the different serotypes of A. pleuropneumoniae reference strains. Twelve of these conserved proteins were successfully expressed in Escherichia coli and their immunogenicity was estimated by homologous challenge in the mouse model, and then three of these proteins (APJL_0126, HbpA and OmpW) were further tested in the natural host (swine) by homologous and heterologous challenges. The results showed that these proteins could induce high titers of antibodies, but vaccination with each protein individually elicited low protective immunity against A. pleuropneumoniae. This study gives novel insights into immunogenicity of the conserved OMPs and lipoproteins of A. pleuropneumoniae. Although none of the surface proteins characterized in this study could individually induce effective protective immunity against A. pleuropneumoniae, they are potential candidates for subunit vaccines in combination with Apx toxins.

  11. Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens.

    Science.gov (United States)

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid; Hensel, Michael

    2012-03-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines.

  12. A mouse model based on replication-competent Tiantan vaccinia expressing luciferase/HIV-1 Gag fusion protein for the evaluation of protective efficacy of HIV vaccine

    Institute of Scientific and Technical Information of China (English)

    HUANG Yang; QIU Chao; LIU Lian-xing; FENG Yan-meng; ZHU Ting; XU Jian-qing

    2009-01-01

    Background Developing an effective vaccine against human immunodeficiency virus type 1 (HIV-1) remains a grand challenge after more than two decades of intensive effort. It is partially due to the lack of suitable animal models for screening and prioritizing vaccine candidates. In this study, we aim to develop a mice model to test HIV-1 vaccine efficacy. Methods We constructed a recombinant vaccinia expressing firefly luciferase and HIV-1 Gag fusion protein based on Tiantan strain, an attenuated but replication-competent poxvirus (rTTV-lucgag). By quantifying the luciferase activity as its read out, we defined the biodistribution of Tiantan strain poxvirus in mice inoculated intraperitoneally and attempted to apply this model to evaluate the HIV-1 vaccine efficacy. Results Our data demonstrated that the rTTV-lucgag was able to express high level of luciferase (≤106 relative luciferase units (RLU)/mg protein) and HIV-1 Gag (>3 folds increase comparing to the control). After intraperitoneal inoculation, this virus had dominant replication in the ovary, uterus, and cervix of mice and the luciferase activities in those organs are significantly correlated with viral titers (r2=0.71, P <0.01). Pre-immunization with an HIV gag DNA vaccine reduced the luciferase activity in ovary from (6006+3141) RLU/mg protein in control group to (1538±463) RLU/mg protein in vaccine group (P=0.1969). Conclusions The luciferase activity in ovary could represent viral replication in vivo;, this rTTV-lucgag/mice model may be suitable to assess the protective efficacy of cytotoxic T-cell responses to HIV Gag with less tedious work and high through-put.

  13. Immunogenicity and safety of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) co-administered with DTPa vaccine in Japanese children: A randomized, controlled study.

    Science.gov (United States)

    Iwata, Satoshi; Kawamura, Naohisa; Kuroki, Haruo; Tokoeda, Yasunobu; Miyazu, Mitsunobu; Iwai, Asayuki; Oishi, Tomohiro; Sato, Tomohide; Suyama, Akari; François, Nancy; Shafi, Fakrudeen; Ruiz-Guiñazú, Javier; Borys, Dorota

    2015-01-01

    This phase III, randomized, open-label, multicenter study (NCT01027845) conducted in Japan assessed the immunogenicity, safety, and reactogenicity of 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV, given intramuscularly) co-administered with diphtheria-tetanus-acellular pertussis vaccine (DTPa, given subcutaneously). Infants (N=360 ) were randomized (2:1) to receive either PHiD-CV and DTPa (PHiD-CV group) or DTPa alone (control group) as 3-dose primary vaccination (3-4-5 months of age) and booster vaccination (17-19 months of age). Immune responses were measured before and one month after primary/booster vaccination and adverse events (AEs) were recorded. Post-primary immune responses were non-inferior to those in pivotal/efficacy European or Latin American pneumococcal protein D-conjugate vaccine studies. For each PHiD-CV serotype, at least 92.6% of infants post-primary vaccination and at least 97.7% of children post-booster had pneumococcal antibody concentrations ≥0.2 μg/ml, and at least 95.4% post-primary and at least 98.1% post-booster had opsonophagocytic activity (OPA) titers ≥8 . Geometric mean antibody concentrations and OPA titers (except OPA titer for 6B) were higher post-booster than post-priming for each serotype. All PHiD-CV-vaccinated children had anti-protein D antibody concentrations ≥100 EL.U/ml one month post-primary/booster vaccination and all were seroprotected/seropositive against each DTPa antigen. Redness and irritability were the most common solicited AEs in both groups. Incidences of unsolicited AEs were comparable between groups. Serious AEs were reported for 47 children (28 in PHiD-CV group); none were assessed as vaccine-related. In conclusion, PHiD-CV induced robust immune responses and was well tolerated when co-administered with DTPa in a 3-dose priming plus booster regimen to Japanese children.

  14. Development of a recombinant fusion protein vaccine formulation to protect against Streptococcus pyogenes.

    Science.gov (United States)

    Morefield, Garry; Touhey, Graham; Lu, Fangjia; Dunham, Anisa; HogenEsch, Harm

    2014-06-24

    Diseases resulting from infection by group A streptococcus (GAS) are an increasing burden on global health. A novel vaccine was developed targeting infection by Streptococcus pyogenes. The vaccine incorporates a recombinant fusion protein antigen (SpeAB) which was engineered by combining inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB) from S. pyogenes. A rational, scientific approach to vaccine development was utilized to determine optimal formulation conditions with aluminum adjuvants. Investigations of the pH stability profile of SpeAB concluded the antigen was most stable near pH 8. Incorporation of the stabilizers sucrose and mannitol significantly enhanced the stability of the antigen. Vaccines were formulated in which most of the SpeAB was adsorbed to the adjuvant or remained in solution. A SpeAB vaccine formulation, stabilized with sucrose, in which the antigen remains adsorbed to the aluminum adjuvant retained the greatest potency as determined by evaluation of neutralizing antibody responses in mice. This vaccine has great potential to provide a safe and effective method for prevention of GAS disease.

  15. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, Precombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  16. Recombinant proteins as vaccines for protection against disease induced by infection with mink astrovirus

    DEFF Research Database (Denmark)

    2012-01-01

    and polypeptides of the capsid protein of a novel mink astrovirus strain denoted DK7627. Such polynucleotides and polypeptides may be used for the production of vaccines against mink astrovirus which may induce pre-weaning diarrhoea in minks. The invention furthermore relates to vectors, host cells, compositions...

  17. Recombinant proteins as vaccines for protection against disease induced by infection with mink astrovirus

    DEFF Research Database (Denmark)

    2012-01-01

    and polypeptides of the capsid protein of a novel mink astrovirus strain denoted DK7627. Such polynucleotides and polypeptides may be used for the production of vaccines against mink astrovirus which may induce pre-weaning diarrhoea in minks. The invention furthermore relates to vectors, host cells, compositions...

  18. Quantitative proteomics reveals distinct differences in the protein content of outer membrane vesicle vaccines.

    Science.gov (United States)

    van de Waterbeemd, Bas; Mommen, Geert P M; Pennings, Jeroen L A; Eppink, Michel H; Wijffels, René H; van der Pol, Leo A; de Jong, Ad P J M

    2013-04-05

    At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in more detail, the protein content of detergent-extracted OMV is compared with two detergent-free alternatives. A novel proteomics strategy has been developed that allows quantitative analysis of many biological replicates despite inherent multiplex restrictions of dimethyl labeling. This enables robust statistical analysis of relative protein abundance. The comparison with detergent-extracted OMV reveales that detergent-free OMV are enriched with membrane (lipo)proteins and contain less cytoplasmic proteins due to a milder purification process. These distinct protein profiles are substantiated with serum blot proteomics, confirming enrichment with immunogenic proteins in both detergent-free alternatives. Therefore, the immunogenic protein content of OMV vaccines depends at least partially on the purification process. This study demonstrates that detergent-free OMV have a preferred composition.

  19. Humoral Immune Response to Keyhole Limpet Haemocyanin, the Protein Carrier in Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    A. Kantele

    2011-01-01

    Full Text Available Keyhole limpet haemocyanin (KLH appears to be a promising protein carrier for tumor antigens in numerous cancer vaccine candidates. The humoral immune response to KLH was characterized at the single-cell level with ELISPOT combined with separations of cell populations according to their expression of homing receptors (HRs. The analysis of HR expressions is expected to reveal the targeting of the immune response in the body. Eight orally primed and four nonprimed volunteers received KLH-vaccine subcutaneously. Circulating KLH-specific plasmablasts were found in all volunteers, 60 KLH-specific plasmablasts/106 PBMC in the nonprimed and 136/106 in the primed group. The proportion of L-selectin+ plasmablasts proved high and integrin α4β7+ low. KLH serving as protein carrier in several vaccines, the homing profile of KLH-specific response may be applicable to the cancer antigen parts in the same vaccines. The present data reflect a systemic homing profile, which appears advantageous for the targeting of immune response to cancer vaccines.

  20. The preparation of HL-60 cells vaccine expressing BCG heat shock protein 70 and detection of its immunogenicity in vitro.

    Science.gov (United States)

    Li, Xiao-Ling; Zhao, Yan-Xia; Sun, Li-Rong; Yang, Jing; Xu, Hui-Juan

    2012-10-01

    Gene-modified cell vaccines are the best way to achieve the immunotherapy for all types of acute leukemia. In this study, the recombinant eukaryotic expression vector (pDisplay-HSP70) of heat shock protein 70 (HSP70) of Bacille Calmette-Guérin (BCG) was constructed by amplifying the whole BCG HSP70 gene using polymerase chain reaction (PCR) and sub-cloning into the polyclone endonuclease sites in pDisplay. Then the HL-60 cell vaccine expressing the protein onto the cell surface was prepared by lipofectamine transfection and its anti-tumor effect and mechanism were further studied. Results showed that the fragment of BCG HSP70 was consistent with Mycobacterium tuberculosis HSP70 gene published in GeneBank. DNA sequencing showed that the recombinant vector was correctly constructed and named pDisplay-HSP70. After BCG HSP70 gene transfection, the yellow-green fluorescence on the HL-60 cells surface was observed under a fluorescence microscope. The immunogenicity of HSP70-transfected HL-60 cells exhibited upregulated proliferation of lymphocytes, increased cytokine secretion (IFN-γ) and enhanced killing activity. These results suggested that gene transfection of BCG HSP70 could significantly enhance the immunogenicity of HL-60 cells. It may be used as a suitable candidate gene-modified cell vaccine for cancer immunotherapy.

  1. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model.

    Science.gov (United States)

    Verhoeven, David; Xu, Qingfu; Pichichero, Michael E

    2014-05-30

    Streptococcus pneumoniae infections continue to cause significant worldwide morbidity and mortality despite the availability of efficacious serotype-dependent vaccines. The need to incorporate emergent strains expressing additional serotypes into pneumococcal polysaccharide conjugate vaccines has led to an identified need for a pneumococcal protein-based vaccine effective against a broad scope of serotypes. A vaccine consisting of several conserved proteins with different functions during pathogenesis would be preferred. Here, we investigated the efficacy of a trivalent recombinant protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad D (PhtD), and genetically detoxified pneumolysin (PlyD1) in an infant mouse model. We found the trivalent vaccine conferred protection from lethal pneumonia challenges using serotypes 6A and 3. The observed protection with trivalent PcpA, PhtD, and PlyD1 vaccine in infant mice supports the ongoing study of this candidate vaccine in human infant clinical trials.

  2. Activity in mice of recombinant BCG-EgG1Y162 vaccine for Echinococcus granulosus infection.

    Science.gov (United States)

    Ma, Xiumin; Zhao, Hui; Zhang, Fengbo; Zhu, Yuejie; Peng, Shanshan; Ma, Haimei; Cao, Chunbao; Xin, Yan; Yimiti, Delixiati; Wen, Hao; Ding, Jianbing

    2016-01-01

    Cystic hydatid disease is a zoonotic parasitic disease caused by Echinococcus granulosus which is distributed worldwide. The disease is difficult to treat with surgery removal is the only cure treatment. In the high endemic areas, vaccination of humans is believed a way to protect communities from the disease. In this study we vaccinated BALB/c mice with rBCG-EgG1Y162, and then detected the level of IgG and IgE specifically against the recombinant protein by ELISA, rBCG-EgG1Y162 induced strong and specific cellular and humoral immune responses. In vitro study showed that rBCG-EgG1Y162 vaccine not only promote splenocytes proliferation but also active T cell. In addition, the rBCG-EgG1Y162 induced a protection in the mice against secondary infection of Echinococcus granulosus.

  3. An asymmetric and slightly dimerized structure for the tetanus toxoid protein used in glycoconjugate vaccines.

    Science.gov (United States)

    Abdelhameed, Ali Saber; Morris, Gordon A; Adams, Gary G; Rowe, Arthur J; Laloux, Olivier; Cerny, Louis; Bonnier, Benjamin; Duvivier, Pierre; Conrath, Karel; Lenfant, Christophe; Harding, Stephen E

    2012-11-06

    Tetanus toxoid protein has been characterized with regard oligomeric state and hydrodynamic (low-resolution) shape, important parameters with regard its use in glycoconjugate vaccines. From sedimentation velocity and sedimentation equilibrium analysis in the analytical ultracentrifuge tetanus toxoid protein is shown to be mostly monomeric in solution (~86%) with approximately 14% dimer. The relative proportions do not appear to change significantly with concentration, suggesting the two components are not in reversible equilibrium. Hydrodynamic solution conformation studies based on high precision viscometry, combined with sedimentation data show the protein to be slightly extended conformation in solution with an aspect ratio ~3. The asymmetric structure presents a greater surface area for conjugation with polysaccharide than a more globular structure, underpinning its popular choice as a conjugation protein for glycoconjugate vaccines.

  4. Preclinical assessment of viral vectored and protein vaccines targeting the Duffy-binding protein region II of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Simone C de Cassan

    2015-07-01

    Full Text Available Malaria vaccine development has largely focused on Plasmodium falciparum; however a reawakening to the importance of P. vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII with the human Duffy antigen receptor for chemokines (DARC, makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically-compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5, chimpanzee adenovirus serotype 63 (ChAd63 and modified vaccinia virus Ankara (MVA vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime, or in ‘mixed-modality’ adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant protein PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants. Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII and have recently entered clinical trials which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.

  5. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis.

    OpenAIRE

    1995-01-01

    Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is the world's leading cause of death in humans from a single infectious agent. A safe and effective vaccine against this scourge is urgently needed. This study demonstrates that immunization with the 30-kDa major secretory protein, alone or in combination with other abundant extracellular proteins of M. tuberculosis, induces strong cell-mediated immune responses and substantial protective immunity against aerosol ...

  6. The larval specific lymphatic filarial ALT-2: induction of protection using protein or DNA vaccination.

    Science.gov (United States)

    Ramachandran, Sabarinathan; Kumar, Mishra Pankaj; Rami, Reddy Maryada Venkata; Chinnaiah, Harinath Basker; Nutman, Thomas; Kaliraj, Perumal; McCarthy, James

    2004-01-01

    Genes from the infective stage of lymphatic filarial parasites expressed at the time of host invasion have been identified as potential vaccine candidates. By screening an L3 cDNA library with sera from uninfected longstanding residents of an area endemic for onchocerciasis, so-called "endemic normals" (EN), we have cloned and characterized one such gene termed the abundant larval transcript two (ALT-2). The stage specificity of ALT-2 gene transcription and protein synthesis was confirmed by PCR using genespecific primers, and by western blot analysis of protein extracts from various stages of the parasite life cycle using specific antisera. Significant differences in antibody response to the recombinant ALT-2 were observed in endemic populations with differing clinical manifestations of lymphatic filariasis with an antibody response present in sera from 18 of 25 (72%) EN subjects compared to 9 of 25 (36%) with subclinical microfilaracmia (MF) and 14 of 25 (52%) of those with chronic lymphatic obstruction (CP) (P=0.01 for comparison of EN to CP or to MF). This differential responsiveness suggests that the protective immunity postulated to account for their uninfected status might be associated with a response to this protein. When the utility of ALT-2 as a vaccine candidate was tested in a murine model using either recombinant protein or a DNA vaccine construct, statistically significant protection was observed when compared to a control filarial gene product expressed across all stages of the parasite lifecycle (SXP-1; P=0.02 for protein and P=0.01 for the DNA vaccine) or compared to adjuvant alone. This level of protection indicates that this vaccine is a promising candidate for further development.

  7. Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection.

    Directory of Open Access Journals (Sweden)

    Zenglin Pei

    Full Text Available Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA and neuraminidase (NA of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.

  8. Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine.

    Science.gov (United States)

    Khan, Shahneaz Ali; Polkinghorne, Adam; Waugh, Courtney; Hanger, Jon; Loader, Jo; Beagley, Kenneth; Timms, Peter

    2016-02-03

    The development of a vaccine is a key strategy to combat the widespread and debilitating effects of chlamydial infection in koalas. One such vaccine in development uses recombinant chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse model, suggest that both cell-mediated and antibody responses will be required for adequate protection. Recently, the important protective role of antibodies has been highlighted. In our current study, we conducted a detailed analysis of the antibody-mediated immune response in koalas that are either (a) naturally-infected, and/or (b) had received an rMOMP vaccine. Firstly, we observed that naturally-infected koalas had very low levels of Chlamydia pecorum-specific neutralising antibodies. A strong correlation between low IgG total titers/neutralising antibody levels, and higher C. pecorum infection load was also observed in these naturally-infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the humoral immune response by inducing strong levels of C. pecorum-specific neutralising antibodies. A detailed characterisation of the MOMP epitope response was also performed in naturally-infected and vaccinated koalas using a PepScan epitope approach. This analysis identified unique sets of MOMP epitope antibodies between naturally-infected non-protected and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a unique set of specific epitope-directed antibodies that we demonstrated were responsible for the in vitro neutralisation activity. Together, these results show the importance of antibodies in chlamydial infection and immunity following vaccination in the koala.

  9. Recombinant methionine aminopeptidase protein of Babesia microti: immunobiochemical characterization as a vaccine candidate against human babesiosis.

    Science.gov (United States)

    Munkhjargal, Tserendorj; Yokoyama, Naoaki; Igarashi, Ikuo

    2016-09-01

    Human babesiosis is the most important zoonotic protozoan infection in the world. This is the first report of the cloning, expression, purification, and immunobiochemical characterization of a methionine aminopeptidase 1 (MetAP1) protein from Babesia microti (B. microti). The gene encodes a MetAP1 protein of B. microti (BmMetAP1) of approximately 66.8 kDa that includes glutathione S-transferase (GST) tag and shows MetAP activity. BmMetAP1 was detected in a lysate of B. microti and further localized in cytoplasm of the B. microti merozoite. rBmMetAP1 was found to be immunogenic, eliciting a high antibody titer in mice. Moreover, rBmMetAP1 stimulated the production of IFN-γ and IL-12 but not IL-4. Finally, rBmMetAP1 was able to provide considerable protection to mice against a B. microti challenge infection based on a reduction in peak parasitemia levels and earlier clearance of the parasite as compared with control mice. Taken together, these results suggest that rBmMetAP1 confers significant protection against experimental B. microti infection and might be considered a potential vaccine target against human babesiosis.

  10. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines.

    Science.gov (United States)

    Davtyan, Hayk; Bacon, Andrew; Petrushina, Irina; Zagorski, Karen; Cribbs, David H; Ghochikyan, Anahit; Agadjanyan, Michael G

    2014-01-01

    Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials.

  11. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Damte, Dereje; Suh, Joo-Won; Lee, Seung-Jin; Yohannes, Sileshi Belew; Hossain, Md Akil; Park, Seung-Chun

    2013-07-01

    In the present study, a computational comparative and subtractive genomic/proteomic analysis aimed at the identification of putative therapeutic target and vaccine candidate proteins from Kyoto Encyclopedia of Genes and Genomes (KEGG) annotated metabolic pathways of Mycoplasma hyopneumoniae was performed for drug design and vaccine production pipelines against M.hyopneumoniae. The employed comparative genomic and metabolic pathway analysis with a predefined computational systemic workflow extracted a total of 41 annotated metabolic pathways from KEGG among which five were unique to M. hyopneumoniae. A total of 234 proteins were identified to be involved in these metabolic pathways. Although 125 non homologous and predicted essential proteins were found from the total that could serve as potential drug targets and vaccine candidates, additional prioritizing parameters characterize 21 proteins as vaccine candidate while druggability of each of the identified proteins evaluated by the DrugBank database prioritized 42 proteins suitable for drug targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Use of recombinant capsid proteins in the development of a vaccine against foot-and-mouth disease virus (FMDV)

    DEFF Research Database (Denmark)

    Belsham, Graham; Bøtner, Anette

    2015-01-01

    -scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self....... The development and use of such improved vaccines should assist in the global efforts to control this important disease...

  13. Protection of mice against Chlamydophila abortus infection with a bacteriophage-mediated DNA vaccine expressing the major outer membrane protein.

    Science.gov (United States)

    Ling, Yong; Liu, Wei; Clark, Jason R; March, John B; Yang, Junjing; He, Cheng

    2011-12-15

    A bacteriophage-delivered DNA vaccine against Chlamydophila abortus was constructed by cloning a eukaryotic cassette containing the ompA gene (which expresses the Major Outer Membrane Protein) into a bacteriophage lambda vector. Four groups, each of 20 BALB/c mice were inoculated separately with the phage vaccine, a conventional DNA vaccine based on the same ompA expression cassette, a live attenuated vaccine (strain 1B) or the empty phage vector. The phage and DNA vaccines and empty phage vector were administered intramuscularly on days 0, 14 and 28; the attenuated vaccine was given once on day 0. Half the animals in each group were challenged on day 42 by intraperitoneal injection of live C. abortus and sacrificed on day 49. Phage-vaccinated mice developed moderate antibody levels against C. abortus and yielded higher levels of IFN-γ and IL-2 compared with the attenuated live vaccine group. Clearance of chlamydiae from spleens was significantly better in the attenuated vaccine group compared with the phage vaccine group, while both groups were significantly superior to the DNA vaccine and control groups (p<0.01). Although levels of protection in the mouse model were lower in phage-vaccinated animals, than in 1B vaccinated animals, phage vaccines offer several other advantages, such as easier handling and safety, potentially cheaper production and no chance of reversion to virulence. Although these are preliminary results in a model system, it is possible that with further optimisation immunization with phage vaccines may provide a novel way to improve protection against C. abortus infection and trials in large animals are currently being initiated.

  14. Analyses of lipid rafts, Toll-like receptors 2 and 4, and cytokines in foals vaccinated with Virulence Associated Protein A/CpG oligonucleotide vaccine against Rhodococcus equi.

    Science.gov (United States)

    Kaur, Navjot; Townsend, Hugh; Lohmann, Katharina; Marques, Fernando; Singh, Baljit

    2013-12-15

    Rhodococcus equi establishes long-term pulmonary infection, survives in phagolysosomes of alveolar macrophages and causes pneumonia in foals. The failure of the foal to clear R. equi bacteria is believed to be due to its inability to produce IFN-γ and defects in Toll-like receptor(TLR) signaling. Lipid rafts sequester immune receptors such as TLRs and facilitate efficient cell signaling and therefore, a deficiency in accumulation of receptors in lipid rafts may result in failure to activate. We tested whether a Virulence Associated Protein A (VapA)/CpG vaccine against R. equi would impact the production of IL-10, IFN-γ and TNF-α in lung tissue and fluid samples, alter expression of TLR2 and TLR4 and alter their association with the lipid rafts in broncho-alveolar lavage (BAL) cells. Eight foals, 1–6 days of age, were vaccinated against R. equi followed by a booster at day 14 and challenged with R. equi (5 x 10(6) CFU/ml;10 ml) on day 28. This group was termed "vaccinated pre-challenge" before the infection and "vaccinated post-challenge" after the infection. A second group of foals (n = 7) was not vaccinated but challenged with R. equi on day 28 of the study. This group was termed "non-vaccinated pre-challenge" and after infection with R. equi was named "non-vaccinated post-challenged. We report adaptation of previous protocols to isolate plasma membrane fractions from BAL cells and identification of lipid raft fractions based on the presence of flotillin-1 and GM-1 and absence of transferrin receptor. TLR2 and TLR4 were restricted to plasma membrane fractions 7–9 of alveolar cells collected from vaccinated foals before and after the challenge. Western blots showed that vaccinated post-challenge foals had higher expression of TLR2 in their lung tissues compared to non-vaccinated pre-challenge foals. TNF- concentration was higher in BAL fluid collected from the vaccinated compared to the non-vaccinated foals on day 28. Lung tissue extracts collected on day 49

  15. A clinical trial examining the effect of increased total CRM(197) carrier protein dose on the antibody response to Haemophilus influenzae type b CRM(197) conjugate vaccine.

    Science.gov (United States)

    Usonis, Vytautas; Bakasenas, Vytautas; Lockhart, Stephen; Baker, Sherryl; Gruber, William; Laudat, France

    2008-08-18

    CRM(197) is a carrier protein in certain conjugate vaccines. When multiple conjugate vaccines with the same carrier protein are administered simultaneously, reduced response to vaccines and/or antigens related to the carrier protein may occur. This study examined responses of infants who, in addition to diphtheria toxoid/tetanus toxoid/acellular pertussis vaccine (DTaP) received either diphtheria CRM(197)-based Haemophilus influenzae type b conjugate vaccine (HbOC) or HbOC and a diphtheria CRM(197)-based combination 9-valent pneumococcal conjugate vaccine/meningococcal group C conjugate vaccine. Administration of conjugate vaccines with CRM(197) carrier protein load >50 microg did not reduce response to CRM(197) conjugate vaccines or immunogenicity to immunologically cross-reactive diphtheria toxoid.

  16. The adjuvanticity of an O. volvulus-derived rOv-ASP-1 protein in mice using sequential vaccinations and in non-human primates.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Adjuvants potentiate antigen-specific protective immune responses and can be key elements promoting vaccine effectiveness. We previously reported that the Onchocerca volvulus recombinant protein rOv-ASP-1 can induce activation and maturation of naïve human DCs and therefore could be used as an innate adjuvant to promote balanced Th1 and Th2 responses to bystander vaccine antigens in mice. With a few vaccine antigens, it also promoted a Th1-biased response based on pronounced induction of Th1-associated IgG2a and IgG2b antibody responses and the upregulated production of Th1 cytokines, including IL-2, IFN-γ, TNF-α and IL-6. However, because it is a protein, the rOv-ASP-1 adjuvant may also induce anti-self-antibodies. Therefore, it was important to verify that the host responses to self will not affect the adjuvanticity of rOv-ASP-1 when it is used in subsequent vaccinations with the same or different vaccine antigens. In this study, we have established rOv-ASP-1's adjuvanticity in mice during the course of two sequential vaccinations using two vaccine model systems: the receptor-binding domain (RBD of SARS-CoV spike protein and a commercial influenza virus hemagglutinin (HA vaccine comprised of three virus strains. Moreover, the adjuvanticity of rOv-ASP-1 was retained with an efficacy similar to that obtained when it was used for a first vaccination, even though a high level of anti-rOv-ASP-1 antibodies was present in the sera of mice before the administration of the second vaccine. To further demonstrate its utility as an adjuvant for human use, we also immunized non-human primates (NHPs with RBD plus rOv-ASP-1 and showed that rOv-ASP-1 could induce high titres of functional and protective anti-RBD antibody responses in NHPs. Notably, the rOv-ASP-1 adjuvant did not induce high titer antibodies against self in NHPs. Thus, the present study provided a sound scientific foundation for future strategies in the development of this novel protein

  17. The adjuvanticity of an O. volvulus-derived rOv-ASP-1 protein in mice using sequential vaccinations and in non-human primates.

    Science.gov (United States)

    Wang, Jing; Tricoche, Nancy; Du, Lanying; Hunter, Meredith; Zhan, Bin; Goud, Gaddam; Didier, Elizabeth S; Liu, Jing; Lu, Lu; Marx, Preston A; Jiang, Shibo; Lustigman, Sara

    2012-01-01

    Adjuvants potentiate antigen-specific protective immune responses and can be key elements promoting vaccine effectiveness. We previously reported that the Onchocerca volvulus recombinant protein rOv-ASP-1 can induce activation and maturation of naïve human DCs and therefore could be used as an innate adjuvant to promote balanced Th1 and Th2 responses to bystander vaccine antigens in mice. With a few vaccine antigens, it also promoted a Th1-biased response based on pronounced induction of Th1-associated IgG2a and IgG2b antibody responses and the upregulated production of Th1 cytokines, including IL-2, IFN-γ, TNF-α and IL-6. However, because it is a protein, the rOv-ASP-1 adjuvant may also induce anti-self-antibodies. Therefore, it was important to verify that the host responses to self will not affect the adjuvanticity of rOv-ASP-1 when it is used in subsequent vaccinations with the same or different vaccine antigens. In this study, we have established rOv-ASP-1's adjuvanticity in mice during the course of two sequential vaccinations using two vaccine model systems: the receptor-binding domain (RBD) of SARS-CoV spike protein and a commercial influenza virus hemagglutinin (HA) vaccine comprised of three virus strains. Moreover, the adjuvanticity of rOv-ASP-1 was retained with an efficacy similar to that obtained when it was used for a first vaccination, even though a high level of anti-rOv-ASP-1 antibodies was present in the sera of mice before the administration of the second vaccine. To further demonstrate its utility as an adjuvant for human use, we also immunized non-human primates (NHPs) with RBD plus rOv-ASP-1 and showed that rOv-ASP-1 could induce high titres of functional and protective anti-RBD antibody responses in NHPs. Notably, the rOv-ASP-1 adjuvant did not induce high titer antibodies against self in NHPs. Thus, the present study provided a sound scientific foundation for future strategies in the development of this novel protein adjuvant.

  18. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Li; Hye Na Kang; Lorne A Babiuk; Qiang Liu

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models.METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation,ELISPOT for the number of interferon-γ secreting cells,and cytotoxic T lymphocyte assays.RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets.CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations.

  19. Proteomic analysis of Mecistocirrus digitatus and Haemonchus contortus intestinal protein extracts and subsequent efficacy testing in a vaccine trial.

    Directory of Open Access Journals (Sweden)

    Alison J Dicker

    2014-06-01

    Full Text Available BACKGROUND: Gastrointestinal nematode infections, such as Haemonchus contortus and Mecistocirrus digitatus, are ranked in the top twenty diseases affecting small-holder farmers' livestock, yet research into M. digitatus, which infects cattle and buffalo in Asia is limited. Intestine-derived native protein vaccines are effective against Haemonchus, yet the protective efficacy of intestine-derived M. digitatus proteins has yet to be determined. METHODOLOGY/PRINCIPAL FINDINGS: A simplified protein extraction protocol (A is described and compared to an established method (B for protein extraction from H. contortus. Proteomic analysis of the H. contortus and M. digitatus protein extracts identified putative vaccine antigens including aminopeptidases (H11, zinc metallopeptidases, glutamate dehydrogenase, and apical gut membrane polyproteins. A vaccine trial compared the ability of the M. digitatus extract and two different H. contortus extracts to protect sheep against H. contortus challenge. Both Haemonchus fractions (A and B were highly effective, reducing cumulative Faecal Egg Counts (FEC by 99.19% and 99.89% and total worm burdens by 87.28% and 93.64% respectively, compared to the unvaccinated controls. There was no effect on H. contortus worm burdens following vaccination with the M. digitatus extract and the 28.2% reduction in cumulative FEC was not statistically significant. However, FEC were consistently lower in the M. digitatus extract vaccinates compared to the un-vaccinated controls from 25 days post-infection. CONCLUSIONS/SIGNIFICANCE: Similar, antigenically cross-reactive proteins are found in H. contortus and M. digitatus; this is the first step towards developing a multivalent native vaccine against Haemonchus species and M. digitatus. The simplified protein extraction method could form the basis for a locally produced vaccine against H. contortus and, possibly M. digitatus, in regions where effective cold chains for vaccine

  20. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...... boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...

  1. In silico analysis and recombinant expression of BamA protein as a universal vaccine against Escherichia coli in mice.

    Science.gov (United States)

    Guan, Qingfeng; Wang, Xiao; Wang, Xiumin; Teng, Da; Wang, Jianhua

    2016-06-01

    Colibacillosis, caused by pathogenic Escherichia coli, is a common disease in animals and human worldwide with extensive losses in breeding industry and with millions of people death annually. There is thus an urgent need for the development of universal vaccines against colibacillosis. In this study, the BamA protein was analyzed in silico for sequence homology, physicochemical properties, allergenic prediction, and epitopes prediction. The BamA protein (containing 286 amino acids) clusters in E. coli were retrieved in UniProtKB database, in which 81.7 % sequences were identical (Uniref entry A7ZHR7), and sequences with 94.82 % identity were above 93.4 %. Moreover, BamA was highly conserved among Salmonella and Shigella and has no allergenicity to mice and human. The epitopes of BamA were located principally in periplasm and extracellular domain. Surf_Ag_VNR domain (at position 448-810 aa) of BamA was expressed, purified, and then used for immunization of mice. Titers of the rBamA sera were 1:736,000 and 1:152,000 against rBamA and E. coli and over 1:27,000 against Salmonella and Shigella. Opsonophagocytosis result revealed that the rBamA sera strengthened the phagocytic activity of neutrophils against E. coli. The survival rate of mice vaccinated with rBamA and PBS was 80 and 20 %, respectively. These data indicated that BamA could serve as a promising universal vaccine candidate for the development of a protective subunit vaccine against bacterial infection. Thus, the above protocol would provide more feasible technical clues and choices for available control of pathogenic E. coli, Salmonella, and Shigella.

  2. Comparison of CRM197, diphtheria toxoid and tetanus toxoid as protein carriers for meningococcal glycoconjugate vaccines.

    Science.gov (United States)

    Tontini, M; Berti, F; Romano, M R; Proietti, D; Zambonelli, C; Bottomley, M J; De Gregorio, E; Del Giudice, G; Rappuoli, R; Costantino, P; Brogioni, G; Balocchi, C; Biancucci, M; Malito, E

    2013-10-01

    Glycoconjugate vaccines are among the most effective and safest vaccines ever developed. Diphtheria toxoid (DT), tetanus toxoid (TT) and CRM197 have been mostly used as protein carriers in licensed vaccines. We evaluated the immunogenicity of serogroup A, C, W-135 and Y meningococcal oligosaccharides conjugated to CRM197, DT and TT in naïve mice. The three carriers were equally efficient in inducing an immune response against the carbohydrate moiety in immunologically naïve mice. The effect of previous exposure to different dosages of the carrier protein on the anti-carbohydrate response was studied using serogroup A meningococcal (MenA) saccharide conjugates as a model. CRM197 showed a strong propensity to positively prime the anti-carbohydrate response elicited by its conjugates or those with the antigenically related carrier DT. Conversely in any of the tested conditions TT priming did not result in enhancement of the anti-carbohydrate response elicited by the corresponding conjugates. Repeated exposure of mice to TT or to CRM197 before immunization with the respective MenA conjugates resulted in a drastic suppression of the anti-carbohydrate response in the case of TT conjugate and only in a slight reduction in the case of CRM197. The effect of carrier priming on the anti-MenA response of DT-based conjugates varied depending on their carbohydrate to protein ratio. These data may have implications for human vaccination since conjugate vaccines are widely used in individuals previously immunized with DT and TT carrier proteins.

  3. Immune Reactivity of Brucella Melitensis–Vaccinated Rabbit Serum with Recombinant Omp31 and Dnak Proteins

    Directory of Open Access Journals (Sweden)

    Mahmood Jeddi-Tehrani

    2013-03-01

    Full Text Available Background and objectives: Brucella melitensis infection is still a major health problem for human and cattle in developing countries and the Middle East.Materials and Methods: In this study, in order to screen immunogenic candidate antigens for the development of a Brucella subunit vaccine, a cytoplasmic protein (DnaK and an outer membrane protein (Omp31 of B. melitensis were cloned, expressed in E.coli BL21 and then purified using Ni-NTA agarose. Immunized serum was prepared from a rabbit inoculated with attenuated B. melitensis.Results and Conclusion: It was proved that immunized serum contains antibodies against recombinant Omp31 (rOmp31 and DnaK (rDnaK by Western blot and ELISA assays. The results may suggest the importance of these proteins as subunit vaccines against B. melitensis as well as targets for immunotherapy.

  4. Heteroclitic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination.

    Science.gov (United States)

    Kawada, Junji; Wada, Hisashi; Isobe, Midori; Gnjatic, Sacha; Nishikawa, Hiroyoshi; Jungbluth, Achim A; Okazaki, Nami; Uenaka, Akiko; Nakamura, Yurika; Fujiwara, Shinichi; Mizuno, Naoaki; Saika, Takashi; Ritter, Erika; Yamasaki, Makoto; Miyata, Hiroshi; Ritter, Gerd; Murphy, Roger; Venhaus, Ralph; Pan, Linda; Old, Lloyd J; Doki, Yuichiro; Nakayama, Eiichi

    2012-02-01

    NY-ESO-1 is a prototypic cancer/testis antigen. In a recent phase I clinical trial, we vaccinated 13 patients bearing NY-ESO-1-expressing tumors with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1) and showed efficient induction of NY-ESO-1 antibody, and CD4 and CD8 T cell responses using peripheral blood from the patients. In our study, we analyzed heteroclitic serological responses in those patients after vaccination. Serological response against 11 tumor antigens including MAGE-A1, MAGE-A3, MAGE-A4, CT7/MAGEC1, CT10/MAGEC2, CT45, CT46/HORMAD1, SOX2, SSX2, XAGE1B and p53 was examined by enzyme-linked immunosorbent assay (ELISA) using sera from ten vaccinated patients. Expression of tumor antigens was determined by reverse transcription-polymerase chain reaction or immunohistochemistry. Eight of nine patients who showed antibody responses against NY-ESO-1 also showed an antibody response against at least 1 of these 11 tumor antigens after vaccination. In one patient, seven tumor antigens were recognized. Specificity analysis of the antibody response by ELISA using control recombinant proteins and synthetic peptides and by Western blot showed that the response was not against His6-tag and/or bacterial products included in a preparation of CHP-NY-ESO-1 used for vaccination. Thus, heteroclitic serological responses appear to be indicative of the overall immune response against the tumor, and their analysis could be useful for immune monitoring in cancer vaccine. Copyright © 2011 UICC.

  5. Vaccination with Enzymatically Cleaved GPI-Anchored Proteins from Schistosoma mansoni Induces Protection against Challenge Infection

    Directory of Open Access Journals (Sweden)

    Vicente P. Martins

    2012-01-01

    Full Text Available The flatworm Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. In the search for potential vaccine candidates, numerous tegument antigens have been assessed. As the major interface between parasite and mammalian host, the tegument plays crucial roles in the establishment and further course of schistosomiasis. Herein, we evaluated the potential of a GPI fraction, containing representative molecules located on the outer surface of adult worms, as vaccine candidate. Immunization of mice with GPI-anchored proteins induced a mixed Th1/Th2 type of immune response with production of IFN-γ and TNF-α, and low levels of IL-5 into the supernatant of splenocyte cultures. The protection engendered by this vaccination protocol was confirmed by 42% reduction in worm burden, 45% reduction in eggs per gram of hepatic tissue, 29% reduction in the number of granulomas per area, and 53% reduction in the granuloma fibrosis. Taken together, the data herein support the potential of surface-exposed GPI-anchored antigens from the S. mansoni tegument as vaccine candidate.

  6. Immunogenicity of a 2-dose priming and booster vaccination with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine

    DEFF Research Database (Denmark)

    Silfverdal, Sven Arne; Høgh, Birthe; Bergsaker, Marianne Riise

    2009-01-01

    BACKGROUND: The immunogenicity of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D-conjugate vaccine (PHiD-CV) was determined following a simplified 2-dose priming and the more commonly employed 3-dose priming both followed by a booster dose. METHODS: A total of 351 healthy...... subjects were primed with PHiD-CV at either 3 and 5 or 3, 4 and 5 months of age followed in all subjects by a booster dose at 11 to 12 months of age. Serotype-specific pneumococcal responses were measured by 22F-inhibition ELISA and opsonophagocytic assays 1 month following primary and booster vaccinations.......6%, respectively). Opsonophagocytic activity (OPA) could be measured in 74.4% to 100% and 88.9% to 100% of the subjects after the 2-dose or 3-dose priming, respectively, except for serotype 1 (60.8% and 62.9%, respectively). In both groups, robust increases in ELISA antibodies and OPA titers were observed for all...

  7. Immunogenicity of three Haemophilus influenzae type b protein conjugate vaccines in HIV seropositive adults and analysis of predictors of vaccine response.

    Science.gov (United States)

    Dockrell, D H; Poland, G A; Steckelberg, J M; Wollan, P C; Strickland, S R; Pomeroy, C

    1999-07-16

    HIV-seropositive adults may be at increased risk of infection due to Haemophilus influenzae type b (Hib) as compared with HIV-seronegative adults. Protein conjugate vaccines have been demonstrated to induce protective levels of antibodies against Hib in immunocompetent infants and also in HIV-seropositive infants. In this study we determined the immunogenicity of three protein conjugate Hib vaccines (PRP-D, HbOC, HbNOMP) in 135 HIV-seropositive adults who received one dose of Hib vaccine. Anti-polyribosylribitol phosphate (PRP) antibodies were measured at 0, 1, 3 and 12 months postimmunization by the Farr method. We demonstrate that all three vaccines are highly immunogenic and result in protective (> 1.0 microg/ml) levels of antibody. Overall the anti-PRP antibody level was > 1.0 microg/ml in 26% of patients preimmunization, 91% at both 1 and 3 months, and 79% at 12 months postvaccination. Comparison of responses to the three vaccines over time demonstrated differences in the mean geometric anti-PRP antibody level at 1 month (p=0.03) and the 12 month time points (p=0.03) with lower geometric mean levels in the HbNOMP group, though baseline differences in groups limit the interpretation of these findings. In a univariate analysis of baseline characteristics which predicted poor vaccine response, low total IgG2 levels preimmunization predicted a poor antibody response at 1 month (p < 0.01) and at 12 months (p=0.05), while low CD4 T-cell count predicted poor response at 12 months (p < 0.01). We conclude that all three US licensed protein conjugate Hib vaccines are immunogenic in HIV-seropositive adults, and that baseline CD4 T-cell count and IgG2 levels predict the likelihood of antibody response to vaccine.

  8. Protective activity of Vi capsular polysaccharide vaccine against typhoid fever.

    Science.gov (United States)

    Klugman, K P; Gilbertson, I T; Koornhof, H J; Robbins, J B; Schneerson, R; Schulz, D; Cadoz, M; Armand, J

    1987-11-21

    The protective efficacy against typhoid fever of a single intramuscular injection of 25 micrograms of the Vi capsular polysaccharide (CPS) was assessed in a randomised double-blind controlled trial. Vaccination of 11,384 children was followed by 21 months' surveillance. 47 blood-culture-proven cases of typhoid occurred in children who received meningococcal A + C CPS vaccine and 19 cases in those vaccinated with Vi CPS. Protective efficacy was 60% calculated from the day of vaccination and 64% from 6 weeks after vaccination. Surveillance also included 11,691 unvaccinated children; 173 cases occurred in this group. Protective efficacy in relation to the unvaccinated group was 77.4% and 81.0% after 21 months, calculated immediately and 6 weeks after vaccination, respectively. Vaccination was associated with minimum local side-effects, and an increase in anti-Vi antibodies occurred, as measured by radioimmunoassay and enzyme-linked immunosorbent assay. Antibody levels remained significantly raised at 6 and 12 months post vaccination. Vi CPS is thus a safe and effective means of typhoid vaccination.

  9. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Science.gov (United States)

    Beernink, Peter T; Shaughnessy, Jutamas; Pajon, Rolando; Braga, Emily M; Ram, Sanjay; Granoff, Dan M

    2012-01-01

    The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH), is fH-binding protein (fHbp), which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV) from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001) and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003). By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002), and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001). Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  10. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  11. Preclinical immunogenicity and functional activity studies of an A+W meningococcal outer membrane vesicle (OMV) vaccine and comparisons with existing meningococcal conjugate- and polysaccharide vaccines.

    Science.gov (United States)

    Tunheim, G; Arnemo, M; Næss, L M; Fjeldheim, Å K; Nome, L; Bolstad, K; Aase, A; Mandiarote, A; González, H; González, D; García, L; Cardoso, D; Norheim, G; Rosenqvist, E

    2013-12-09

    Meningococci of serogroups A and W (MenA and MenW) are the main causes of epidemic bacterial meningitis outbreaks in sub-Saharan Africa. In this study we prepared a detergent extracted outer membrane vesicle (dOMV) vaccine from representative African MenA and MenW strains, and compared the immunogenicity of this vaccine with existing meningococcal conjugate and polysaccharide (PS) vaccines in mice. NMRI mice were immunized with preclinical batches of the A+W dOMV vaccine, or with commercially available vaccines; a MenA conjugate vaccine (MenAfriVac(®), Serum Institute of India), ACYW conjugate vaccine (Menveo(®), Novartis) or ACYW PS vaccine (Mencevax(®), GlaxoSmithKline). The mice received 2 doses of 1/10 or 1/50 of a human dose with a three week interval. Immune responses were tested in ELISA, serum bactericidal activity (SBA) and opsonophagocytic activity (OPA) assays. High levels of IgG antibodies against both A and W dOMV were detected in mice receiving the A+W dOMV vaccine. High SBA titers against both MenA and MenW vaccine strains were detected after only one dose of the A+W dOMV vaccine, and the titers were further increased after the second dose. The SBA and OPA titers in mice immunized with dOMV vaccine were significantly higher than in mice immunized with the ACYW-conjugate vaccine or the PS vaccine. Furthermore, the A+W dOMV vaccine was shown to induce SBA and OPA titers against MenA of the same magnitude as the titers induced by the A-conjugate vaccine. In conclusion, the A+W dOMV vaccine induced high levels of functional antibodies to both MenA and MenW strains, levels that were shown to be higher or equal to the levels induced by licensed meningococcal vaccines. Thus, an A+W dOMV vaccine could potentially serve as an alternative or a supplement to existing conjugate and PS vaccines in the African meningitis belt. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Proteins mediating the Neospora caninum-host cell interaction as targets for vaccination.

    Science.gov (United States)

    Hemphill, Andrew; Debache, Karim; Monney, Thierry; Schorer, Michelle; Guionaud, Christophe; Alaeddine, Ferial; Mueller, Norbert; Mueller, Joachim

    2013-01-01

    Neospora caninum is an apicomplexan parasite that is capable of infecting, a wide range of tissues. The fact that Neospora represents an important abortion-causing parasite in cattle has transformed neosporosis research from an earlier, rather esoteric field, to a significant research topic, and considerable investments have been made in the last years to develop an efficacious vaccine or other means of intervention that would prevent infection and abortion due to N. caninum infection in cattle. Antigenic molecules associated with proteins involved in adhesion/invasion or other parasite-host-cell interaction processes can confer protection against Neospora caninum infection, and such proteins represent valuable targets for the development of a vaccine to limit economical losses due to neosporosis. Although not ideal, small laboratory animal models that mimic cerebral infection, acute disease and fetal loss upon infection during pregnancy have been used for the assessment of vaccine candidates, in parallel with studies on experimental infections in cattle. Herein, we review and critically assess these vaccination approaches and discuss potential options for improvements.

  13. Worldwide genetic variability of the Duffy binding protein: insights into Plasmodium vivax vaccine development.

    Directory of Open Access Journals (Sweden)

    Taís Nóbrega de Sousa

    Full Text Available The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBP(II, known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBP(II sequences will allow us to determine the minimum number of haplotypes (MNH to be included in a DBP-based vaccine of broad coverage. For that, all DBP(II sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBP(II genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBP(II sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48-84%. In addition, to identify related subgroups of DBP(II sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBP(II sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBP(II variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations.

  14. Newcastle disease virus fusion protein is the major contributor to protective immunity of genotype-matched vaccine.

    Science.gov (United States)

    Kim, Shin-Hee; Wanasen, Nanchaya; Paldurai, Anandan; Xiao, Sa; Collins, Peter L; Samal, Siba K

    2013-01-01

    Virulent strains of Newcastle disease virus (NDV) can cause devastating disease in chickens worldwide. Although the current vaccines are substantially effective, they do not completely prevent infection, virus shedding and disease. To produce genotype-matched vaccines, a full-genome reverse genetics system has been used to generate a recombinant virus in which the F protein cleavage site has been changed to that of avirulent vaccine virus. In the other strategy, the vaccines have been generated by replacing the F and HN genes of a commercial vaccine strain with those from a genotype-matched virus. However, the protective efficacy of a chimeric virus vaccine has not been directly compared with that of a full-genome virus vaccine developed by reverse genetics. Therefore, in this study, we evaluated the protective efficacy of genotype VII matched chimeric vaccines by generating three recombinant viruses based on avirulent LaSota (genotype II) strain in which the open reading frames (ORFs) encoding the F and HN proteins were replaced, individually or together, with those of the circulating and highly virulent Indonesian NDV strain Ban/010. The cleavage site of the Ban/010 F protein was mutated to the avirulent motif found in strain LaSota. In vitro growth characteristics and a pathogenicity test indicated that all three chimeric viruses retained the highly attenuated phenotype of the parental viruses. Immunization of chickens with chimeric and full-length genome VII vaccines followed by challenge with virulent Ban/010 or Texas GB (genotype II) virus demonstrated protection against clinical disease and death. However, only those chickens immunized with chimeric rLaSota expressing the F or F plus HN proteins of the Indonesian strain were efficiently protected against shedding of Ban/010 virus. Our findings showed that genotype-matched vaccines can provide protection to chickens by efficiently preventing spread of virus, primarily due to the F protein.

  15. Profiling of humoral response to influenza A(H1N1pdm09 infection and vaccination measured by a protein microarray in persons with and without history of seasonal vaccination.

    Directory of Open Access Journals (Sweden)

    Elisabeth G W Huijskens

    Full Text Available BACKGROUND: The influence of prior seasonal influenza vaccination on the antibody response produced by natural infection or vaccination is not well understood. METHODS: We compared the profiles of antibody responses of 32 naturally infected subjects and 98 subjects vaccinated with a 2009 influenza A(H1N1 monovalent MF59-adjuvanted vaccine (Focetria, Novartis, with and without a history of seasonal influenza vaccination. Antibodies were measured by hemagglutination inhibition (HI assay for influenza A(H1N1pdm09 and by protein microarray (PA using the HA1 subunit for seven recent and historic H1, H2 and H3 influenza viruses, and three avian influenza viruses. Serum samples for the infection group were taken at the moment of collection of the diagnostic sample, 10 days and 30 days after onset of influenza symptoms. For the vaccination group, samples were drawn at baseline, 3 weeks after the first vaccination and 5 weeks after the second vaccination. RESULTS: We showed that subjects with a history of seasonal vaccination generally exhibited higher baseline titers for the various HA1 antigens than subjects without a seasonal vaccination history. Infection and pandemic influenza vaccination responses in persons with a history of seasonal vaccination were skewed towards historic antigens. CONCLUSIONS: Seasonal vaccination is of significant influence on the antibody response to subsequent infection and vaccination, and further research is needed to understand the effect of annual vaccination on protective immunity.

  16. A bivalent Neisseria meningitidis recombinant lipidated factor H binding protein vaccine in young adults: results of a randomised, controlled, dose-escalation phase 1 trial.

    Science.gov (United States)

    Richmond, P C; Nissen, M D; Marshall, H S; Lambert, S B; Roberton, D; Gruber, W C; Jones, T R; Arora, A

    2012-09-21

    Neisseria meningitidis is a leading cause of meningitis and septicaemia, but a broadly-protective vaccine against endemic serogroup B disease is not licensed and available. The conserved, outer-membrane lipoprotein factor H binding protein (fHBP, also known as LP2086) is expressed as one of two subfamily variants in virtually all meningococci. This study investigated the safety, tolerability, and immunogenicity of a recombinant-expressed bivalent fHBP (r-fHBP) vaccine in healthy adults. Participants (N=103) aged 18-25 years were recruited into three ascending dose level cohorts of 20, 60, and 200μg of a bivalent r-fHBP vaccine formulation and randomised to receive vaccine or placebo at 0, 1, and 6 months. The vaccine was well tolerated. Geometric mean titres (GMTs) for r-fHBP subfamily-specific IgG antibodies increased 19-168-fold from pre-vaccination to post-dose 2 in a dose level-dependent manner. In addition, robust serum bactericidal assay using human complement (hSBA) responses for strains expressing both homologous and heterologous fHBP variants were observed. After three vaccinations, 16-52% of the placebo group and 47-90%, 75-100%, and 88-100%, of the 20, 60, and 200μg dose levels, respectively, had seroprotective (≥ 1:4) hSBA titres against six serogroup B strains. The bivalent r-fHBP vaccine was well tolerated and induced robust bactericidal activity against six diverse serogroup B strains in young adults at the 60 and 200μg dose levels.

  17. Clitocybe nuda Activates Dendritic Cells and Acts as a DNA Vaccine Adjuvant

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2013-01-01

    Full Text Available This work represents the first evaluation of the effects of water extract of C. nuda (WE-CN, an edible mushroom, on murine bone marrow-derived dendritic cells (BMDCs and the potential pathway through which the effects are mediated. Our experimental results show that WE-CN could induce phenotypic maturation of DCs, as shown by the increased expression of MHC and costimulatory molecules. In addition, it also induced the proinflammatory cytokines expression on DCs and enhanced both the proliferation and IFN-γ secretion of allogenic T cells. Therefore, since WE-CN did not induce maturation of DCs generated from mice with mutated TLR-4 or TLR-2, suggesting that TLR4 and TLR2 might function as membrane receptors for WE-CN. Moreover, the mechanism of action of WE-CN may be mediated by increased phosphorylation of ERK, p38, and JNK mitogen-activated protein kinase (MAPK and increased NF-κB p65 activity, which are important signaling molecules downstream of TLR-4 and TLR-2. Finally, coimmunization of mice with WE-CN and a HER-2/neu DNA vaccine induced a HER-2/neu-specific Th1 response that resulted in significant inhibition of HER-2/neu overexpressing mouse bladder tumor (MBT-2 growth. These data suggest that WE-CN induces DC maturation through TLR-4 and/or TLR-2 and that WE-CN can be used as an adjuvant in cancer vaccine immunotherapy.

  18. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults.

    Science.gov (United States)

    Fries, Louis; Shinde, Vivek; Stoddard, Jeffrey J; Thomas, D Nigel; Kpamegan, Eloi; Lu, Hanxin; Smith, Gale; Hickman, Somia P; Piedra, Pedro; Glenn, Gregory M

    2017-01-01

    A preventative strategy for Respiratory Syncytial Virus (RSV) infection constitutes an under-recognized unmet medical need among older adults. Four formulations of a novel recombinant RSV F nanoparticle vaccine (60 or 90 μg RSV F protein, with or without aluminum phosphate adjuvant) administered concurrently with a licensed inactivated trivalent influenza vaccine (TIV) in older adult subjects were evaluated for safety and immunogenicity in this randomized, observer-blinded study. A total of 220 healthy males and females ≥ 60 years of age, without symptomatic cardiopulmonary disease, were vaccinated concurrently with TIV and RSV F vaccine or placebo. All vaccine formulations produced an acceptable safety profile, with no vaccine-related serious adverse events or evidence of systemic toxicity. Vaccine-induced immune responses were rapid, rising as early as 7 days post-vaccination; and were comparable in all formulations in terms of magnitude, with maximal levels attained within 28 (unadjuvanted) or 56 (adjuvanted) days post-vaccination. Peak anti-F protein IgG antibody levels rose 3.6- to 5.6-fold, with an adjuvant effect observed at the 60 μg dose, and a dose-effect observed between the unadjuvanted 60 and 90 μg regimens. The anti-F response persisted through 12 months post-vaccination. Palivizumab-competitive antibodies were below quantifiable levels (F protein, closely paralleled the anti-F response. However, a larger proportion of antibodies in adjuvanted vaccine recipients bound to the Site II peptide at high avidity. Day 0 neutralizing antibodies were high in all subjects and rose 1.3- to 1.7-fold in response to vaccination. Importantly, the RSV F vaccine co-administered with TIV did not impact the serum hemagglutination inhibition antibody responses to a standard-dose TIV, and TIV did not impact the immune response to the RSV F vaccine. RSV F protein nanoparticle vaccine induced increases in measures of functional immunity to RSV in older adults

  19. Non-carrier nanoparticles adjuvant modular protein vaccine in a particle-dependent manner.

    Directory of Open Access Journals (Sweden)

    Arjun Seth

    Full Text Available Nanoparticles are increasingly used to adjuvant vaccine formulations due to their biocompatibility, ease of manufacture and the opportunity to tailor their size, shape, and physicochemical properties. The efficacy of similarly-sized silica (Si-OH, poly (D,L-lactic-co-glycolic acid (PLGA and poly caprolactone (PCL nanoparticles (nps to adjuvant recombinant capsomere presenting antigenic M2e modular peptide from Influenza A virus (CapM2e was investigated in vivo. Formulation of CapM2e with Si-OH or PLGA nps significantly boosted the immunogenicity of modular capsomeres, even though CapM2e was not actively attached to the nanoparticles prior to injection (i.e., formulation was by simple mixing. In contrast, PCL nps showed no significant adjuvant effect using this simple-mixing approach. The immune response induced by CapM2e alone or formulated with nps was antibody-biased with very high antigen-specific antibody titer and less than 20 cells per million splenocytes secreting interferon gamma. Modification of silica nanoparticle surface properties through amine functionalization and pegylation did not lead to significant changes in immune response. This study confirms that simple mixing-based formulation can lead to effective adjuvanting of antigenic protein, though with antibody titer dependent on nanoparticle physicochemical properties.

  20. Construction, Expression and Identification of a Recombinant BCG Vaccine Encoding Human Mycobacterium Tuberculosis Heat Shock Protein 65

    Institute of Scientific and Technical Information of China (English)

    戴五星; 梁靓; 高红; 黄海浪; 陈智浩; 程继忠; 皇甫永穆

    2004-01-01

    Heat shock protein 65 (HSP65) is one of the most important protective immunogens against the tuberculosis infection. The signal sequence of antigen 85B and the whole HSP65 DNA sequence of human Mycobacterium tuberculosis (M. tuberculosis) were amplified from BCG genome and plasmid pCMV-MTHSP65 respectively by polymerase chain reactions (PCR). These two sequences were cloned into the plasmid pBCG-2100 under the control of the promoter of heat shock protein 70 (HSP70) from human M. tuberculosis, yielding the prokaryotic shuttle expression plasmid pBCG-SP-HSP65. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis showed that the two cloned DNA sequences were consistent with those previously reported, and the direction of their inserting into the recombinant was correct and the reading frame had been maintained. The recombinants were electroporated into BCG to construct the recombinant BCG vaccine and induced by heating. The induced expression detected by SDS-PAGE showed that the content of 65 kD protein expressed in recombinant BCG was 35.69 % in total bacterial protein and 74.09 % in the cell lysate supernatants, suggesting that the recombinant HSP65 gene could express in BCG with high efficiency and the expressed proteins were mainly soluble. Western-blot showed that the secretive recombinant proteins could specifically combine with antibody against M.tuberculosis HSP65, indicating that the recombinant proteins possess the biological activity of HSP65.

  1. Targeting hepatitis B virus antigens to dendritic cells by heat shock protein to improve DNA vaccine potency

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate a novel DNA vaccination based upon expression of the HBV e antigen fused to a heat shock protein (HSP) as a strategy to enhance DNA vaccine potency.METHODS: A pCMV-HBeAg-HSP DNA vaccine and a control DNA vaccine were generated. Mice were immunized with these different construct. Immune responses were measured 2 wk after a second immunization by a T cell response assay, CTL cytotoxicity assay, and an antibody assay in C57BL/6 and BALB/c mice. CT26-HBeAg tumor cell challenge test in vivo was performed in BALB/c mice to monitor anti-tumor immune responses.RESULTS: In the mice immunized with pCMV-HBe-HSP DNA, superior CTL activity to target HBV-positive target cells was observed in comparison with mice immunized with pCMV-HBeAg (44% ± 5% vs 30% ± 6% in E: T > 50:1, P < 0.05). ELISPOT assays showed a stronger T-cell response from mice immunized with pCMV-HBe-HSP than that from pCMV-HBeAg immunized animals when stimulated either with MHC class Ⅰ or class Ⅱ epitopes derived from HBeAg (74% ± 9% vs 31% ± 6%, P < 0.01). ELISA assays revealed an enhanced HBeAg antibody response from mice immunized with pCMV-HBe-HSP than from those immunized with pCMV-HBeAg. The lowest tumor incidence and the slowest tumor growth were observed in mice immunized with pCMV-HBe-HSP when challenged with CT26-HBeAg.CONCLUSION: The results of this study demonstrate a broad enhancement of antigen-specific CD4+ helper,CD8+ cytotoxic T-cell, and B-cell responses by a novel DNA vaccination strategy. They also proved a stronger antigen-specific immune memory, which may be superior to currently described HBV DNA vaccination strategies for the treatment of chronic HBV infection.

  2. Vaccine process technology.

    Science.gov (United States)

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory

  3. Immunostimulation by Synthetic Lipopeptide-Based Vaccine Candidates: Structure-Activity Relationships

    OpenAIRE

    Zaman, Mehfuz; Toth, Istvan

    2013-01-01

    Peptide-based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of ad...

  4. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria.

    Science.gov (United States)

    Beeson, James G; Drew, Damien R; Boyle, Michelle J; Feng, Gaoqian; Fowkes, Freya J I; Richards, Jack S

    2016-05-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. © FEMS 2016.

  5. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria

    Science.gov (United States)

    Beeson, James G.; Drew, Damien R.; Boyle, Michelle J.; Feng, Gaoqian; Fowkes, Freya J.I.; Richards, Jack S.

    2016-01-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. PMID:26833236

  6. Antitumor immunity induced by DNA vaccine encoding alpha-fetoprotein/heat shock protein 70

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Wang; Guo-Zhen Liu; Ai-Li Song; Hai-Yan Li; Yu Liu

    2004-01-01

    AIM: To construct a DNA vaccine encoding human alphafetoprotein (hAFP)/heat shock protein 70 (HSP70), and to study its ability to induce specific CTL response and its protective effect against AFP-expressing tumor.METHODS: A DNA vaccine was constructed by combining hAFP gene with HSP70 gene. SP2/0 cells were stably transfected with pBBS212-hAFP and pBBS212-hAFP/HSP70eukaryotic expression vectors. Mice were primed and boosted with DNA vaccine hAFP/HSP70 by intramuscular injection, whereas plasmid with hAFP or HSP70 was used as controls. ELISPOT and ELISA were used to detect IFN-γ-producing splenocytes and the level of serum anti-AFP antibody from immunized mice respectively. In vivo tumor challenge was measured to assess the immune effect of the DNA vaccine.RESULTS: By DNA vaccine immunization, the results of ELISPOT and ELISA showed that the number of IFN-γ-producing splenocytes and the level of serum anti-AFP antibody were significantly higher in rhAFP/HSP70 group than in hAFP and empty plasmid groups (95.50±10.90IFN-γ spots/106 cells vs 23.60±11.80 IFN-γ spots/106 cells,7.17±4.24 IFN-γ spots/106 cells, P<0.01; 126.50±8.22 μg/mL vs 51.72±3.40 μg/mL, 5.83±3.79 μg/mL, P<0.01). The tumor volume in rhAFP/HSP70 group was significantly smaller than that in pBBS212-hAFP and empty plasmid groups (37.41±7.34 mm3 vs381.13±15.48 mm3, 817.51±16.25 mm3,P<0.01).CONCLUSION: Sequential immunization with a recombinant DNA vaccine encoding AFP and heat shock protein70 could generate effective AFP-specific T cell responses and induce definite antitumor effects on AFP-producing tumors, which may be suitable for some clinical testing as a vaccine for HCC.

  7. Effect of influenza and pneumococcal vaccines in elderly persons in years of low influenza activity

    Directory of Open Access Journals (Sweden)

    Sylvan Staffan PE

    2008-04-01

    Full Text Available Abstract Background The present prospective study was conducted from 2003–2005, among all individuals 65 years and older in Uppsala County, a region with 300 000 inhabitants situated close to the Stockholm urban area. The objective of this study was to assess the preventive effect of influenza and pneumococcal vaccination in reducing hospitalisation and length of hospital stay (LOHS even during periods of low influenza activity. The specificity of the apparent vaccine associations were evaluated in relation to the influenza seasons. Results In 2003, the total study population was 41,059, of which 12,907 (31% received influenza vaccine of these, 4,447 (11% were administered the pneumococcal vaccine. In 2004, 14,799 (34% individuals received the influenza vaccine and 8,843 (21% the pneumococcal vaccine and in 2005 16,926 (39% individuals were given the influenza vaccine and 12,340 (28% the pneumococcal vaccine. Our findings indicated that 35% of the vaccinated cohort belonged to a medical risk category (mainly those persons that received the pneumococcal vaccine. Data on hospitalisation and mortality during the 3-year period were obtained from the administrative database of the Uppsala county council. During the influenza seasons, reduction of hospital admissions and significantly shorter in-hospital stay for influenza was observed in the vaccinated cohort (below 80 years of age. For individuals who also had received the pneumococcal vaccine, a significant reduction of hospital admissions and of in-hospital stay was observed for invasive pneumococcal disease and for pneumococcal pneumonia. Effectiveness was observed for cardiac failure even in persons that also had received the pneumococcal vaccine, despite that the pneumococcal vaccinated mainly belonged to a medical risk category. Reduction of death from all causes was observed during the influenza season of 2004, in the 75–84-year old age group and in all age-groups during the influenza

  8. Immunopotentiation of outer membrane protein through anti-idiotype Pasteurella multocida vaccine in rabbits.

    Science.gov (United States)

    Arif, Javid; Rahman, Sajjad-Ur; Arshad, Muhammad; Akhtar, Pervez

    2013-11-01

    Pasteurella multocida was isolated from cattle affected with haemorrhagic septicaemia and characterized on the basis of morphological, cultural and biochemical tests. Bacterial outer membrane proteins (OMPs) were extracted with 1% Sarkosyl method. P. multocida anti-idiotype vaccine prepared from OMPs (21.3 mg per 100 ml), was evaluated and compared with bacterin supplemented with 10% OMPs and plain alum-adsorbed bacterin in rabbit models. It was observed that OMPs-anti-idiotype vaccine induced high levels of antibody titres (geomean titres -GMT) detected using indirect haemagglutination (IHA) test. The OMPs anti-idiotype antibody titres of 168.9 GMT were obtained to 42.2 GMT in OMPs supplemented bacterin on 21 days post vaccination, while the plain bacterin had the least titre of 27.9 GMT. The OMPs-anti-idiotype vaccine provoked better immunogenic response in terms of highest GMT titres and long lasting effect in rabbits and 100% protection against the challenge with homologous strain of P. multocida,while 88% protection was obtained in rabbits, given OMPs supplemented bacterin.

  9. Immunogenicity of a polyvalent HIV-1 candidate vaccine based on fourteen wild type gp120 proteins in golden hamsters

    Directory of Open Access Journals (Sweden)

    Ghorbani Masoud

    2006-10-01

    Full Text Available Abstract Background One of the major obstacles in the design of an effective vaccine against HIV-1 is the hypervariability of the HIV-1 envelope glycoprotein. Most HIV-1 vaccine candidates have utilized envelope glycoprotein from a single virus isolate, but to date, none of them elicited broadly reactive humoral immunity. Herein, we hypothesised that a cocktail of HIV-1 gp120 proteins containing multiple epitopes may increase the breadth of immune responses against HIV-1. We compared and evaluated the immunogenicity of HIV-1 vaccines containing either gp120 protein alone or in combinations of four or fourteen gp120s from different primary HIV-1 isolates in immunized hamsters. Results We amplified and characterized 14 different gp120s from primary subtype B isolates with both syncytium and non-syncytium inducing properties, and expressed the proteins in Chinese Hamster Ovary (CHO cell lines. Purified proteins were used either alone or in combinations of four or fourteen different gp120s to vaccinate golden hamsters. The polyvalent vaccine showed higher antibody titers to HIV-1 subtype B isolates MN and SF162 compared to the groups that received one or four gp120 proteins. However, the polyvalent vaccine was not able to show higher neutralizing antibody responses against HIV-1 primary isolates. Interestingly, the polyvalent vaccine group had the highest proliferative immune responses and showed a substantial proportion of cross-subtype CD4 reactivity to HIV-1 subtypes B, C, and A/E Conclusion Although the polyvalent approach achieved only a modest increase in the breadth of humoral and cellular immunity, the qualitative change in the vaccine (14 vs. 1 gp120 resulted in a quantitative improvement in vaccine-induced immunity.

  10. Allostery in BAX protein activation.

    Science.gov (United States)

    Jiang, Zhenyan; Zhang, Hansi; Böckmann, Rainer A

    2016-11-01

    BAX is a member of the proapoptotic BCL-2 family of proteins, which is involved in the regulation of the intrinsic pathway of apoptosis. In the process of apoptosis, BH3-only molecules activate cytosolic BAX. Activated BAX molecules insert into the mitochondrial outer membrane with their [Formula: see text]-helix and form oligomers that lead to membrane poration, resulting in the release of apoptogenic factors including cytochrome c. Recently, a novel interaction site for the binding of the BIM SAHB ligand to BAX was reported. BIM SAHB binding was shown to invoke the exposure of the 6A7 epitope (amino acids 13-19) and of the BH3 domain of BAX, followed by mobilization of the BAX [Formula: see text]-helix. However, the intramolecular pathway for signal transmission in BAX, from BIM SAHB binding to mobilization of the [Formula: see text]-helix largely remained elusive. For a molecular understanding of the activation of BAX, and thus the first steps in apoptosis, we performed microsecond atomistic molecular dynamics simulations both of the BAX protein and of the BAX:BIM SAHB complex in aqueous solution. In agreement with experiment, the 6A7 and BH3 domains adopt a more solvent-exposed conformation within the BAX:BIM SAHB complex. BIM SAHB binding was found to stabilize the secondary structure of the [Formula: see text]9-helix. A force distribution analysis revealed a force network of residue-residue interactions responsible for signal transmission from the BIM SAHB binding site predominantly via the [Formula: see text]4- and [Formula: see text]6-helices to the [Formula: see text]9-helix on the opposite site of the protein.

  11. Assessment of a recombinant F1-V fusion protein vaccine intended to protect Canada lynx (Lynx canadensis) from plague

    Science.gov (United States)

    Wolfe, Lisa L.; Shenk, Tanya M.; Powell, Bradford; Rocke, Tonie E.

    2011-01-01

    As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log10 reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29–59%) unvaccinated lynx captured or recaptured in Colorado during 2000–08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.

  12. Vaccine potential of recombinant saposin-like protein 2 against Fasciolosis gigantica in mice.

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Riengrojpitak, Suda; Chaichanasak, Pannigan; Meemon, Krai; Chaithirayanon, Kulathida; Chantree, Pathanin; Sansri, Veerawat; Itagaki, Tadashi; Sobhon, Prasert

    2013-11-12

    Saposin-like protein 2 (SAP-2) is a protein that adult of Fasciola spp. use to lyse plasma membrane of red blood cells, so that their contents can be digested by proteases for the parasites' nutrients. Thus SAP-2 is a plausible target for vaccination against these parasites. Recombinant Fasciola gigantica saposin-like protein 2 (rFgSAP-2) was expressed in Escherichia coli BL21 (DE3). A vaccination was performed in ICR mice (n=10) by subcutaneous injection with 50μg of rFgSAP-2 combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 30 F. gigantica metacercariae by oral route. The percentages of protection of rFgSAP-2 vaccine against F. gigantica were estimated to be 76.4-78.5% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The antibodies in immune sera of vaccinated mice were shown by immuno-blotting to react with native FgSAP-2 in the extract of 2- and 4-week-old juvenile parasites. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, it was found that both Th1 and Th2 humoral immune response were significantly increased in rFgSAP-2 immunized group compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rFgSAP-2-immunized group showed no significant difference from those of the non-immunized and infected group, indicating that early juvenile parasites induced liver parenchyma damage, even though the numbers of worm recoveries were significantly different. This study indicates that rFgSAP-2 has a high potential as a vaccine candidate against F. gigantica in mice, and this potential will be tested in larger economic animals.

  13. An active DNA vaccine against infectious pancreatic necrosis virus (IPNV) with a different mode of action than fish rhabdovirus DNA vaccines.

    Science.gov (United States)

    Cuesta, A; Chaves-Pozo, E; de Las Heras, A I; Saint-Jean, S Rodríguez; Pérez-Prieto, S; Tafalla, C

    2010-04-26

    Although there are some commercial vaccines available against infectious pancreatic necrosis virus (IPNV), the disease still continues to be a major problem for aquaculture development worldwide. In the current work, we constructed a DNA vaccine against IPNV (pIPNV-PP) by cloning the long open reading frame of the polyprotein encoded by the viral RNA segment A. In vitro, the vaccine is properly translated giving the functional IPNV polyprotein since preVP2, VP2 and VP3 proteins were detected because of the VP4-protease cleavage. EPC cells transfected with the vaccine plasmid expressed the viral proteins and induced the expression of type I interferon (IFN)-induced Mx genes. Furthermore, IPNV synthesized proteins seemed to assemble in virus-like particles as evidenced by electron microscopy. In vivo, rainbow trout specimens were intramuscularly injected with the vaccine and expression of immune-relevant genes, the presence of neutralizing antibodies and effect on viral load was determined. The pIPNV-PP vaccine was expressed at the injection site and up-regulated MHC Ialpha, MHC IIalpha, type-I interferon (IFN), Mx, CD4 and CD8alpha gene expression in the muscle, head kidney or spleen, although to a much lower extent than the up-regulations observed in response to an effective DNA vaccine against viral hemorrhagic septicaemia virus (VHSV). However, the IPNV vaccine was also very effective in terms of acquired immunity since it elicited neutralizing antibodies (in 6 out of 8 trout fingerlings) and decreased 665-fold the viral load after IPNV infection. The effectiveness of this new IPNV DNA vaccine and its possible mechanism of action are discussed and compared to other viral vaccines.

  14. A Recombinant G Protein Plus Cyclosporine A-Based Respiratory Syncytial Virus Vaccine Elicits Humoral and Regulatory T Cell Responses against Infection without Vaccine-Enhanced Disease.

    Science.gov (United States)

    Li, Chaofan; Zhou, Xian; Zhong, Yiwei; Li, Changgui; Dong, Aihua; He, Zhonghuai; Zhang, Shuren; Wang, Bin

    2016-02-15

    Respiratory syncytial virus (RSV) infection can cause severe disease in the lower respiratory tract of infants and older people. Vaccination with a formalin-inactivated RSV vaccine (FI-RSV) and subsequent RSV infection has led to mild to severe pneumonia with two deaths among vaccinees. The vaccine-enhanced disease (VED) was recently demonstrated to be due to an elevated level of Th2 cell responses following loss of regulatory T (Treg) cells from the lungs. To induce high levels of neutralizing Abs and minimize pathogenic T cell responses, we developed a novel strategy of immunizing animals with a recombinant RSV G protein together with cyclosporine A. This novel vaccine induced not only a higher level of neutralizing Abs against RSV infection, but, most importantly, also significantly higher levels of Treg cells that suppressed VED in the lung after RSV infection. The induced responses provided protection against RSV challenge with no sign of pneumonia or bronchitis. Treg cell production of IL-10 was one of the key factors to suppress VED. These finding indicate that G protein plus cyclosporine A could be a promising vaccine against RSV infection in children and older people.

  15. Proteins of the Rpf Family: Immune Cell Reactivity and Vaccination Efficacy against Tuberculosis in Mice

    Science.gov (United States)

    Yeremeev, Vladimir V.; Kondratieva, Tatiana K.; Rubakova, Elvira I.; Petrovskaya, Svetlana N.; Kazarian, Konstantin A.; Telkov, Miroslav V.; Biketov, Sergej F.; Kaprelyants, Arseny S.; Apt, Alexander S.

    2003-01-01

    It was shown recently that Mycobacterium tuberculosis expresses five proteins that are homologous to Rpf (resuscitation promoting factor), which is secreted by growing cells of Micrococcus luteus. Rpf is required to resuscitate the growth of dormant Micrococcus luteus organisms, and its homologues may be involved in mycobacterial reactivation. Mycobacterial Rpf-like products are secreted proteins, which makes them candidates for recognition by the host immune system and anti-Rpf immune responses potentially protective against reactivated tuberculosis. Here we report that the Rpf protein itself and four out of five of its mycobacterial homologues, which were administered as subunit vaccines to C57BL/6 mice, are highly immunogenic. Rpf-like proteins elicit immunoglobulin G1 (IgG1) and IgG2a responses and T-cell proliferation and stimulate production of gamma interferon, interleukin-10 (IL-10), and IL-12 but not IL-4 or IL-5. Both humoral and T-cell responses against these antigens show a high degree of cross-reactivity. Vaccination of mice with Rpf-like proteins results in a significant level of protection against a subsequent high-dose challenge with virulent M. tuberculosis H37Rv, both in terms of survival times and mycobacterial multiplication in lungs and spleens. PMID:12874362

  16. Pichia pastoris expressed EtMic2 protein as a potential vaccine against chicken coccidiosis.

    Science.gov (United States)

    Zhang, Jie; Chen, Peipei; Sun, Hui; Liu, Qing; Wang, Longjiang; Wang, Tiantian; Shi, Wenyan; Li, Hongmei; Xiao, Yihong; Wang, Pengfei; Wang, Fangkun; Zhao, Xiaomin

    2014-09-15

    Chicken coccidiosis caused by Eimeria species leads to tremendous economic losses to the avian industry worldwide. Identification of parasite life cycle specific antigens is a critical step in recombinant protein vaccine development against Eimeria infections. In the present study, we amplified and cloned the microneme-2 (EtMIC2) gene from Eimeria tenella wild type strain SD-01, and expressed the EtMic2 protein using Pichia pastoris and Escherichia coli expression systems, respectively. The EtMic2 proteins expressed by P. pastoris and E. coli were used as vaccines to immunize chickens and their protective efficacies were compared and evaluated. The results indicated that both P. pastoris and E. coli expressed EtMic2 proteins exhibited good immunogenicity in stimulating host immune responses and the Pichia expressed EtMic2 provided better protection than the E. coli expressed EtMic2 did by significantly increasing growth rate, inducing high specific antibody response, reducing the oocyst output and cecal lesions. Particularly, the Pichia expressed EtMic2 protein exhibited much better ability in inducing cell mediated immune response than the E. coli expressed EtMic2. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae.

    Science.gov (United States)

    Denoël, Philippe; Philipp, Mario T; Doyle, Lara; Martin, Dale; Carletti, Georges; Poolman, Jan T

    2011-07-26

    Infections caused by Streptococcus pneumoniae are a major cause of mortality throughout the world. Protein-based pneumococcal vaccines are envisaged to replace or complement the current polysaccharide-based vaccines. In this context, detoxified pneumolysin (dPly) and pneumococcal histidine triad protein D (PhtD) are two potential candidates for incorporation into pneumococcal vaccines. In this study, the protective efficacy of a PhtD-dPly vaccine was evaluated in a rhesus macaque (Macaca mulatta) model of pneumonia. The animals were immunized twice with 10 μg of PhtD and 10 μg of dPly formulated in the Adjuvant System AS02 or with AS02 alone, before they were challenged with a 19F pneumococcal strain. The survival was significantly higher in the protein-vaccinated group and seemed to be linked to the capacity to greatly reduce bacterial load within the first week post-challenge. Vaccination elicited high concentrations of anti-PhtD and anti-Ply antibodies and a link was found between survival and antibody levels. In conclusion, AS02-adjuvanted PhtD-dPly vaccine protects against S. pneumoniae-induced pneumonia. It is probable that the protection is at least partially mediated by PhtD- and Ply-specific antibodies.

  18. Vector prime/protein boost vaccine that overcomes defects acquired during aging and cancer

    DEFF Research Database (Denmark)

    Tang, Y.; Akbulut, H.; Maynard, J.;

    2006-01-01

    following the Ad-sig-TAA/ecdCD40L vector, the levels of the TAA-specific CD8 T cells and Abs increase dramatically over that seen with vector alone, in young (2-mo-old) as well as old (18-mo-old) mice. The Abs induced against hMUC-1 react with human breast cancer. This vaccine also induces a 4-fold......We showed that the Ad-sig-TAA/ecdCD40L vaccine induces a tumor suppressive immune response to the hMUC-1 and rH2N tumor-associated self Ags (TAA) and to the Annexin A1 tumor vascular Ag, even in mice in which anergy exists to these Ags. When the TAA/ecdCD40L protein is given s.c. as a boost...... decrement of negative regulatory CD4CD25FOXP3-T cells in the tumor tissue of 18-mo-old mice. These results suggest that the Ad-sig-TAA/ecdCD40L vector prime-TAA/ecdCD40L protein boost vaccine platform may be valuable in reducing postsurgery recurrence in a variety of epithelial neoplasms....

  19. Protecting the herd: the remarkable effectiveness of the bacterial meningitis polysaccharide-protein conjugate vaccines in altering transmission dynamics.

    Science.gov (United States)

    Stephens, David S

    2011-01-01

    Interrupting human-to-human transmission of the agents (Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae) of bacterial meningitis by new capsular polysaccharide-protein conjugate vaccines (PPCVs) has proven to be a remarkable (and unanticipated) contributor to vaccine effectiveness. Herd immunity accounts for ∼50% of the protection by meningococcal serogroup C PPCVs, pneumococcal PPCV7, and H. influenzae b PPCVs. Nasopharyngeal carriage can be reduced ≥75% for vaccine serotypes; the decrease in carriage is correlated with disease reduction in unvaccinated individuals, and the impact of herd immunity lasts for years. Based on these data, models for using herd immunity in vaccine-based prevention strategies are underway for control of meningitis in sub-Saharan Africa. Although the immunologic basis of herd immunity and impact on microbial biology need more study, protecting the unvaccinated by altering pathogen transmission dynamics is a powerful effect of PPCVs and increasingly important in vaccine introduction, implementation, and evaluation strategies.

  20. The effects of increasing dietary levels of soy protein concentrate (SPC) on the immune responses and disease resistance (furunculosis) of vaccinated and non-vaccinated Atlantic salmon (Salmo salar L.) parr.

    Science.gov (United States)

    Metochis, Christoforos P; Spanos, I; Auchinachie, N; Crampton, V O; Bell, J G; Adams, A; Thompson, K D

    2016-12-01

    Juvenile salmon, with an initial weight of 9 g, were fed three experimental diets, formulated to replace 35 (SPC35), 58 (SPC58) and 80 (SPC80) of high quality fishmeal (FM) with soy protein concentrate (SPC) in quadruplicate tanks. Higher dietary SPC inclusion was combined with increased supplementation of methionine, lysine, threonine and phosphorus. The experiment was carried out for 177 days. On day 92 salmon in each tank were bulk weighed. Post weighing eighty salmon from each tank were redistributed in two sets of 12 tanks. Salmon from the first set of tanks were vaccinated, while the second group was injected with phosphate buffer saline (PBS). Salmon were sampled on day 92 (pre-vaccination), day 94 (2 days post vaccination [dpv]/PBS injection [dpPBSinj]) and day 154 (62 dpv/dpPBSinj) of the trial for the assessment of their immune responses, prior to the performance of salmon bulk weights for each tank. On day 154, fish from each tank were again bulk weighed and then seventeen salmon per tank were redistributed in two sets of twelve tanks and intra-peritoneally infected with Aeromonas salmonicida. At Day 154, SPC80 demonstrated lower performance (weight gain, specific growth rate and thermal growth coefficient and feed conversion ratio) compared to SPC35 salmon. Reduced classical and total complement activities for salmon fed diets with over 58% of protein from SPC, were demonstrated prior to vaccination. Reduced alternative complement activity was detected for both SPC58 and SPC80 salmon at 2 dpv and for the SPC80 group at 62 dpv. Total and classical complement activities demonstrated no differences among the dietary groups after vaccination. Numerical increases in classical complement activity were apparent upon increased dietary SPC levels. Increased phagocytic activity (% phagocytosis and phagocytic index) was exhibited for the SPC58 group compared to SPC35 salmon at 62 dpPBSinj. No differences in serum lysozyme activity, total IgM, specific antibodies

  1. Target Identification in Ory S1 Pollen Protein Allergen from Oryza sativa in the Course of Construction of Hypoallergenic Vaccines

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2009-01-01

    Full Text Available Problem statement: Recombinant-based approaches are mostly focused on genetic modification of allergens to produce molecules with reduced allergenic activity and conserved antigenicity, such as hypoallergens. Recombinant allergens represent promising tools for diagnosis and therapy of type I allergy. This approach was probably feasible with every allergen with known amino acid sequence. Approach: The primary aim of this study was to determine the consensus epitope from twenty homologous protein sequences of Ory S1 allergenic protein sequence from Oryza sativa (indica group pollen. Molecular modeling calculations had been used to investigate the allergenic protein models for the epitope. Results: Oryza sativa (japonica, Phleum pratense, Poa pratensis, Holcus lanatus, Lolium perenne, Triticum aestivum, Dactylis glomerata and Zea mays were found more closely related (alignment score 1145-812 among all the homologs and investigated further. The major binding pocket comprised an area of 604.5 Å2 and 970 Å3 volume and another key binding pocket had 425.6 Ų area and 658.8 ų volume. The residues found in the key site included ile2, lys13, cys14, ser15, lys16, pro17, ala25, leu26, ile27, tyr40, his41, phe42, asp43, leu44, ser45, gly46, leu47, ala48, met49, ala50, asp55, leu58, arg59, ala61, gly62, ile63, ile64, asp65, gln67, phe68; corresponding to the allergen binding site and the IgE binding epitope given in the title. Conclusion: These are the functional sites on the allergenic proteins that can be mutated to develop hypoallergenic vaccine. These sites can be rationalized on the basis of simple arguments that lead to vaccine development, by predicting the structure of the allergenic epitopes and comparative analysis.

  2. Vaccination with hatched but non-activated, non-viable oncospheres of Taenia taeniaeformis in rats.

    Science.gov (United States)

    Ito, A; Hashimoto, A

    1993-06-01

    The usefulness of hatched but non-activated oncospheres as a candidate vaccine was evaluated using a Taenia taeniaeformis/rat system, since preparation of these oncospheres in vitro is known to be very simple. The findings were: (1) rats vaccinated with non-viable oncospheres became completely resistant to challenge infection; (2) intra-venous injection was the most effective to induce complete resistance; (3) a single oncosphere was sufficient to induce complete resistance in infected rats, whereas approximately 50 and 500 non-viable oncospheres were required to evoke strong and complete resistance, respectively, in vaccinated rats. The usefulness of non-viable oncospheres without adjuvant is discussed.

  3. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  4. Evaluation of Salmonella enterica serovar Enteritidis pathogenicity island-1 proteins as vaccine candidates against S. Enteritidis challenge in chickens.

    Science.gov (United States)

    Desin, Taseen S; Wisner, Amanda L S; Lam, Po-King S; Berberov, Emil; Mickael, Claudia S; Potter, Andrew A; Köster, Wolfgang

    2011-03-24

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of gastrointestinal disease in humans worldwide, which mainly results from the consumption of contaminated poultry meat and eggs. Vaccination of chickens is an important strategy to lower the prevalence of Salmonella in poultry flocks. The S. Enteritidis type 3 secretion system (T3SS) encoded on Salmonella pathogenicity island-1 (SPI-1) is an important virulence factor that plays a role in invasion and systemic spread in chickens. In this manuscript, we evaluated the efficacy of SPI-1 proteins as vaccine candidates for protection against S. Enteritidis oral challenge. Our results demonstrate for the first time that SPI-1 T3SS proteins elicit antigen specific IgG antibody responses in chickens. In one study we show that vaccination with the aforementioned proteins reduces the levels of S. Enteritidis in the liver, but not in the spleen and cecal contents of chickens. However, a second study shows that vaccination of hens with SPI-1 proteins using a seeder model of infection does not affect the levels of S. Enteritidis in the cecal contents or internal organs of progeny obtained from these hens. Hence, the SPI-1 proteins, in conjunction with other proteins, may form important components of subunit vaccines used for protection against colonization by S. Enteritidis in poultry.

  5. THE EFFECTS OF CRUDE RECOMBINANT VIRAL PROTEIN VACCINES AGAINST GROUPER SLEEPY DISEASE IRIDOVIRUS (GSDIV ON HUMPBACK GROUPER (Cromileptes altivelis

    Directory of Open Access Journals (Sweden)

    Ketut Mahardika

    2015-12-01

    Full Text Available Infection of Megalocytivirus cause serious mass mortality in marine fish in South East Asian countries. The aim of this study was to produce recombinant of GSDIV capsid protein and its protection to humpback grouper Cromileptes altivelis against grouper sleepy disease iridovirus (GSDIV. A major capsid protein (MCP was selected for use as a crude subunit vaccines. This gene target (MCP was inserted to the protein expression system vector of pET SUMO and cloned in cells bacteria Escherichia coli strain BL-21. The MCP was succeded to be induced using 1 mM of IPTG. Results of protein analysis using MALDI TOF-TOF indicated that the MCP has measurement of 49.566 kDa with PI index of 6.00, and contained 453 amino acids. BLAST homology analysis exhibited that the amino acid sequence of the MCP showed high similarity with MCP of Red Sea Bream Iridovirus (RSIV. E. coli expressing MCP protein was inactivated using 0.03% formalin overnight and washed using PBS. The inactivated E. coli as a crude subunit vaccine was then injected intramuscularly to humpback grouper juveniles. Subsequently, the juveniles were challenged tested with GSDIV. The juveniles vaccinated with the MCP recombinant bacteria showed significantly higher survival rates than control those vaccinated with PBS. Thus, the MCP fusion protein is considered as a potential vaccine against GSDIV infections in grouper.

  6. Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle

    DEFF Research Database (Denmark)

    Paton, D.J.; de Clercq, K.; Greiner, Matthias

    2006-01-01

    There has been much debate about the use of the so-called "vaccinate-to-live" policy for the control of foot-and-mouth disease (FMD) in Europe, according to which, spread of the FMD virus (FMDV) from future outbreaks could be controlled by a short period of "emergency" vaccination of surrounding...... herds, reducing the need for large-scale pre-emptive culling of at-risk animals. Since vaccinated animals may become subclinically infected with FMDV following challenge exposure, it is necessary to either remove all vaccinates (vaccinate-to-kill) or to detect and remove vaccinates in which virus...... is circulating or has established persistent infections (vaccinate-to-live), in order to rapidly regain the most favoured trading status of FMD-free without vaccination. The latter approach can be supported by testing vaccinated animals for the presence of antibodies to certain non-structural proteins (NSP...

  7. Vaccination with recombinant adenoviruses expressing the peste des petits ruminants virus F or H proteins overcomes viral immunosuppression and induces protective immunity against PPRV challenge in sheep.

    Science.gov (United States)

    Rojas, José M; Moreno, Héctor; Valcárcel, Félix; Peña, Lourdes; Sevilla, Noemí; Martín, Verónica

    2014-01-01

    Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants caused by the Morbillivirus peste des petits ruminants virus (PPRV). Two recombinant replication-defective human adenoviruses serotype 5 (Ad5) expressing either the highly immunogenic fusion protein (F) or hemagglutinin protein (H) from PPRV were used to vaccinate sheep by intramuscular inoculation. Both recombinant adenovirus vaccines elicited PPRV-specific B- and T-cell responses. Thus, neutralizing antibodies were detected in sera from immunized sheep. In addition, we detected a significant antigen specific T-cell response in vaccinated sheep against two different PPRV strains, indicating that the vaccine induced heterologous T cell responses. Importantly, no clinical signs and undetectable virus shedding were observed after virulent PPRV challenge in vaccinated sheep. These vaccines also overcame the T cell immunosuppression induced by PPRV in control animals. The results indicate that these adenovirus constructs could be a promising alternative to current vaccine strategies for the development of PPRV DIVA vaccines.

  8. Purification, stability, and immunogenicity analyses of five bluetongue virus proteins for use in development of a subunit vaccine that allows differentiation of infected from vaccinated animals.

    Science.gov (United States)

    Anderson, Jenna; Bréard, Emmanuel; Lövgren Bengtsson, Karin; Grönvik, Kjell-Olov; Zientara, Stéphan; Valarcher, Jean-Francois; Hägglund, Sara

    2014-03-01

    Bluetongue virus (BTV) causes bluetongue disease, a vector-borne disease of ruminants. The recent northerly spread of BTV serotype 8 in Europe resulted in outbreaks characterized by clinical signs in cattle, including unusual teratogenic effects. Vaccination has been shown to be crucial for controlling the spread of vector-borne diseases such as BTV. With the aim of developing a novel subunit vaccine targeting BTV-8 that allows differentiation of infected from vaccinated animals, five His-tagged recombinant proteins, VP2 and VP5 of BTV-8 and NS1, NS2, and NS3 of BTV-2, were expressed in baculovirus or Escherichia coli expression systems for further study. Optimized purification protocols were determined for VP2, NS1, NS2, and NS3, which remained stable for detection for at least 560 to 610 days of storage at +4°C or -80°C, and Western blotting using sera from vaccinated or experimentally infected cattle indicated that VP2 and NS2 were recognized by BTV-specific antibodies. To characterize murine immune responses to the four proteins, mice were subcutaneously immunized twice at a 4-week interval with one of three protein combinations plus immunostimulating complex ISCOM-Matrix adjuvant or with ISCOM-Matrix alone (n = 6 per group). Significantly higher serum IgG antibody titers specific for VP2 and NS2 were detected in immunized mice than were detected in controls. VP2, NS1, and NS2 but not NS3 induced specific lymphocyte proliferative responses upon restimulation of spleen cells from immunized mice. The data suggest that these recombinant purified proteins, VP2, NS1, and NS2, could be an important part of a novel vaccine design against BTV-8.

  9. Immunoediting and persistence of antigen-specific immunity in patients who have previously been vaccinated with NY-ESO-1 protein formulated in ISCOMATRIX™.

    Science.gov (United States)

    Nicholaou, Theo; Chen, Weisan; Davis, Ian D; Jackson, Heather M; Dimopoulos, Nektaria; Barrow, Catherine; Browning, Judy; Macgregor, Duncan; Williams, David; Hopkins, Wendie; Maraskovsky, Eugene; Venhaus, Ralph; Pan, Linda; Hoffman, Eric W; Old, Lloyd J; Cebon, Jonathan

    2011-11-01

    NY-ESO-1 protein formulated in ISCOMATRIX™ results in CD4+, CD8+ T cell and antibody-mediated immunity. We evaluated persistence of immunity, relapse-free survival and tumour antigen expression upon relapse in patients vaccinated in an earlier trial. Immunity was measured in 28 patients with resected NY-ESO-1-expressing tumours (melanoma 25, breast 3) 252-1,155 days (median = 681) after vaccination. In the earlier vaccination, trial patients received NY-ESO-1 with ISCOMATRIX™ adjuvant at three protein doses 10 μg, 30 μg or 100 μg (n = 14); 100 μg NY-ESO-1 protein (n = 8) or placebo (n = 6), together with 1 μg of intradermal (ID) NY-ESO-1 protein twice for DTH skin testing. Immune responses assessed in the current study included antibody titres, circulating NY-ESO-1-specific T cells and DTH reactivity 2 days after DTH skin testing with NY-ESO-1 protein (1 μg) or peptides (10 μg). Relapse-free survival was determined for 42 melanoma patients. On relapse NY-ESO-1 and HLA, class I was assessed by immunohistochemistry in 17. Persisting anti-NY-ESO-1 immunity was detected in 10/14 recipients who had previously received vaccine with ISCOMATRIX™ adjuvant. In contrast, immunity only persisted in 3/14 who received 100 μg un-adjuvanted NY-ESO-1 protein (3/8) or 2 μg DTH protein (0/6) P = 0.02. Hence, persisting NY-ESO-1 immunity was associated with prior adjuvant. Tumour NY-ESO-1 or HLA class I was downregulated in participants who relapsed suggesting immunoediting had occurred. Immunoediting suggests that a signal of anti-tumour activity was observed in high-risk resected melanoma patients vaccinated with NY-ESO-1/ISCOMATRIX™. This was associated with measurable persisting immunity in the majority of vaccinated subjects tested. A prospective randomised trial has been undertaken to confirm these results.

  10. A recombinant DNA vaccine encoding C. andersoni oocyst wall protein induces immunity against experimental C. parvum infection.

    Science.gov (United States)

    Zheng, Jun; Ren, Wenzhi; Pan, Qingshan; Wang, Qiuyue; Elhag, I A Elfaki; Li, Jianhua; Li, Mingying; Gong, Pengtao; Liu, Yingli; Zhang, Xichen

    2011-06-30

    Cryptosporidium andersoni parasited in the abomasum has been demonstrated as a cause of reduction of milk production in dairy cow. In this study, a novel chimeric DNA vaccine pVAX1-AB was constructed and the efficacy against Cryptosporidium parvum was determined. BALB/c mice were divided into 3 groups and immunized with DNA vaccine expressing the oocyst wall protein, AB protein of C. andersoni, the recombinant plasmid containing the AB gene, respectively. After inoculation of 1 × 10(6) oocysts of C. parvum, the humoral and cellular immune responses were detected. Experimental results showed that the recombinant plasmid can induce corresponding specific antibody response, simultaneously influenced cellular immune responses, and provided greater protection rate (48.6%) than the other groups. These results indicated that chimeric DNA vaccine has a potential in Cryptosporidium vaccine development.

  11. An evolutionary vaccination game in the modified activity driven network by considering the closeness

    Science.gov (United States)

    Han, Dun; Sun, Mei

    2016-02-01

    In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ / μ. However, when vaccination is allowed the final density of recovered individual first increases and then decreases with the value of λ / μ. Two variables are designed to identify the relation between the individuals' activities and their states. The results draw that both recovered and vaccinated frequency increase with the increase of the individuals' activities. Meanwhile, the immune fee has less impact on the individuals' vaccination than the closeness. While the λ / μ is in a certain range, with the increase of the value of λ / μ, the recovered frequency of the whole crowds reduces. Our results, therefore, reveal the fact that the best of intentions may lead to backfire.

  12. [Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].

    Science.gov (United States)

    Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B

    2014-01-01

    Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,

  13. Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice.

    Science.gov (United States)

    Yu, Hong; Karunakaran, Karuna P; Jiang, Xiaozhou; Brunham, Robert C

    2014-08-06

    An efficacious vaccine is needed to control Chlamydia trachomatis infection. In the murine model of Chlamydia muridarum genital infection, multifunctional mucosal CD4 T cells are the foundation for protective immunity, with antibody playing a secondary role. We previously identified four Chlamydia outer membrane proteins (PmpE, PmpF, PmpG and PmpH) as CD4 T cell vaccine candidates using a dendritic cell-based immunoproteomic approach. We also demonstrated that these four polymorphic membrane proteins (Pmps) individually conferred protection as measured by accelerated clearance of Chlamydia infection in the C57BL/6 murine genital tract model. The major outer membrane protein, MOMP is also a well-studied protective vaccine antigen in this system. In the current study, we tested immunogenicity and protection of a multisubunit recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with or without the major outer membrane protein (MOMP) formulated with a Th1 polarizing adjuvant in C57BL/6, Balb/c and C3H mice. We found that C57BL/6 mice vaccinated with PmpEFGH+MOMP elicited more robust cellular immune responses than mice immunized with individual protein antigens. Pmps elicited more variable cellular immune responses than MOMP among the three strains of mice. The combination vaccine accelerated clearance in the three strains of mice although at different rates. We conclude that the recombinant outer membrane protein combination constitutes a promising first generation Chlamydia vaccine construct that should provide broad immunogenicity in an outbred population.

  14. Expression of rabies glycoprotein and ricin toxin B chain (RGP-RTB) fusion protein in tomato hairy roots: a step towards oral vaccination for rabies.

    Science.gov (United States)

    Singh, Ankit; Srivastava, Subhi; Chouksey, Ankita; Panwar, Bhupendra Singh; Verma, Praveen C; Roy, Sribash; Singh, Pradhyumna K; Saxena, Gauri; Tuli, Rakesh

    2015-04-01

    Transgenic hairy roots of Solanum lycopersicum were engineered to express a recombinant protein containing a fusion of rabies glycoprotein and ricin toxin B chain (rgp-rtxB) antigen under the control of constitutive CaMV35S promoter. Asialofetuin-mediated direct ELISA of transgenic hairy root extracts was performed using polyclonal anti-rabies antibodies (Ab1) and epitope-specific peptidal anti-RGP (Ab2) antibodies which confirmed the expression of functionally viable RGP-RTB fusion protein. Direct ELISA based on asialofetuin-binding activity was used to screen crude protein extracts from five transgenic hairy root lines. Expressions of RGP-RTB fusion protein in different tomato hairy root lines varied between 1.4 and 8 µg in per gram of tissue. Immunoblotting assay of RGP-RTB fusion protein from these lines showed a protein band on monomeric size of ~84 kDa after denaturation. Tomato hairy root line H03 showed highest level of RGP-RTB protein expression (1.14 %) and was used further in bench-top bioreactor for the optimization of scale-up process to produce large quantity of recombinant protein. Partially purified RGP-RTB fusion protein was able to induce the immune response in BALB/c mice after intra-mucosal immunization. In the present investigation, we have not only successfully scaled up the hairy root culture but also established the utility of this system to produce vaccine antigen which subsequently will reduce the total production cost for implementing rabies vaccination programs in developing nations. This study in a way aims to provide consolidated base for low-cost preparation of improved oral vaccine against rabies.

  15. The ID93 tuberculosis vaccine candidate does not induce sensitivity to purified protein derivative.

    Science.gov (United States)

    Baldwin, Susan L; Reese, Valerie; Granger, Brian; Orr, Mark T; Ireton, Gregory C; Coler, Rhea N; Reed, Steven G

    2014-09-01

    The tuberculin skin test (TST) is a simple and inexpensive test to determine whether individuals have been exposed to Mycobacterium tuberculosis. This test is not always reliable, however, in people previously immunized with BCG and/or who have been exposed to environmental mycobacterial species due to a reaction to purified protein derivative (PPD) used in the skin test. An issue with BCG, therefore, is that the resulting sensitization to PPD in some individuals compromises the diagnostic use of the skin test. The ability to induce protective immune responses without sensitizing to the tuberculin skin test will be important properties of next-generation tuberculosis (TB) vaccine candidates. We show here that guinea pigs immunized with the candidate TB vaccine ID93/GLA-SE, currently in clinical trials, do not react to intradermal PPD administration. In contrast, positive DTH responses to both ID93 and components thereof were induced in ID93/GLA-SE-immunized animals, indicating robust but specific cellular responses were present in the immunized animals. Noninterference with the TST is an important factor for consideration in the development of a vaccine against M. tuberculosis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein.

    Science.gov (United States)

    Chen, Edwin; Salinas, Nichole D; Huang, Yining; Ntumngia, Francis; Plasencia, Manolo D; Gross, Michael L; Adams, John H; Tolia, Niraj Harish

    2016-05-31

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifs in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. The identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.

  17. Synthesis of biodegradable polymer-mesoporous silica composite microspheres for DNA prime-protein boost vaccination.

    Science.gov (United States)

    Ho, Jenny; Huang, Yi; Danquah, Michael K; Wang, Huanting; Forde, Gareth M

    2010-03-18

    DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(D,L-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 microm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.

  18. Structural correlates of carrier protein recognition in tetanus toxoid-conjugated bacterial polysaccharide vaccines.

    Science.gov (United States)

    Lockyer, Kay; Gao, Fang; Derrick, Jeremy P; Bolgiano, Barbara

    2015-03-10

    An analysis of structure-antibody recognition relationships in nine licenced polysaccharide-tetanus toxoid (TT) conjugate vaccines was performed. The panel of conjugates used included vaccine components to protect against disease caused by Haemophilus influenzae type b, Neisseria meningitidis groups A, C, W and Y and Streptococcus pneumoniae serotype 18C. Conformation and structural analysis included size exclusion chromatography with multi-angle light scattering to determine size, and intrinsic fluorescence spectroscopy and fluorescence quenching to evaluate the protein folding and exposure of Trp residues. A capture ELISA measured the recognition of TT epitopes in the conjugates, using four rat monoclonal antibodies: 2 localised to the HC domain, and 2 of which were holotoxoid conformation-dependent. The conjugates had a wide range of average molecular masses ranging from 1.8×10(6) g/mol to larger than 20×10(6) g/mol. The panel of conjugates were found to be well folded, and did not have spectral features typical of aggregated TT. A partial correlation was found between molecular mass and epitope recognition. Recognition of the epitopes either on the HC domain or the whole toxoid was not necessarily hampered by the size of the molecule. Correlation was also found between the accessibility of Trp side chains and polysaccharide loading, suggesting also that a higher level of conjugated PS does not necessarily interfere with toxoid accessibility. There were different levels of carrier protein Trp side-chain and epitope accessibility that were localised to the HC domain; these were related to the saccharide type, despite the conjugates being independently manufactured. These findings extend our understanding of the molecular basis for carrier protein recognition in TT conjugate vaccines.

  19. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  20. Antigenic differences between the EG95-related proteins from Echinococcus granulosus G1 and G6 genotypes: implications for vaccination.

    Science.gov (United States)

    Alvarez Rojas, C A; Gauci, C G; Lightowlers, M W

    2013-02-01

    Cystic echinococcosis caused by Echinococcus granulosus remains an important and neglected issue in public health. The study of the likely efficacy of the currently available EG95 vaccine against other genotypes of the parasite is important to improve the vaccine as a potential tool to be used in control programmes. The recombinant vaccine EG95-1G1 was developed based on the G1 genotype of E. granulosus. Characterization of the eg95 gene family in the G6 genotype by genomic DNA cloning previously produced the first unequivocal information about the composition of the gene family in a different genotype. The information was used in this study to predict and express two EG95-related proteins from the G6 genotype as recombinants, for assessment of their capacity to bind antibodies raised in sheep vaccinated with the EG95-1G1 vaccine. The proteins (EG95-1G6 and EG95-5G6) from the G6 genotype of E. granulosus were unable to bind all the antibodies raised by sheep vaccinated with EG95-1G1. Differences in the amino acid sequence of EG95-related proteins from G6 and likely the differences in the encoded FnIII domain may be responsible for changes in the conformation of these epitopes.

  1. Vaccination with Venezuelan equine encephalitis replicons encoding cowpox virus structural proteins protects mice from intranasal cowpox virus challenge.

    Science.gov (United States)

    Thornburg, Natalie J; Ray, Caroline A; Collier, Martha L; Liao, Hua-Xin; Pickup, David J; Johnston, Robert E

    2007-06-05

    An anti-poxvirus vaccine based on replicon particles of Venezuelan equine encephalitis virus (VRP) is being developed. The cowpox virus genes encoding structural proteins corresponding to vaccinia virus proteins A33, B5, and A27 were each expressed from VRP. High serum IgG titers against these proteins were generated in BALB/c mice vaccinated with each of these VRP. VRP induced both IgG1 and IgG2a with a strong predominance of IgG2a production. The response is long-lasting, as evidenced by the retention of high anti-B5 serum IgG titers through at least 50 weeks after priming immunization. Mice vaccinated with B5-, A33- or A27-VRP individually or together survived intranasal challenge with cowpox virus, with the multivalent vaccine formulation providing more effective protection from weight loss and clinical signs of illness than the monovalent vaccines. These results demonstrate that VRP may provide an effective alternative to vaccinia virus vaccines against poxvirus infection.

  2. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  3. Potent Dendritic Cell Vaccine Loaded with Latent Membrane Protein 2A(LMP2A)

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Kun Yao; Bing Wang; Jian Qing; Genyan Liu

    2008-01-01

    Epstein-Barr virus(EBV),a potential oncogenic herpesvirus,has been found to be associated with several malignancies.It's critical to elicit cellular immunity of the body to fight against EBV-associated tumor development.Using dendritic cells(DCs)loaded with latent membrane protein 2A(LMP2A)to elicit T cell response against tumor may be one of the most direct and safest immunotherapy approaches.The present study aimed to develop DCs-based cancer vaccine (DC loaded with LMP2A protein)and study its biological characteristics and immune functions.Purified LMP2A protein was extracted from a cell line L929/LMP2A stably expressing LMP2A.LMP2A could be loaded on DCs with no significant changes of the DC surface markers and cytomorphology.The percentage of DCs loaded with LMP2A was above 80%.LMP2A-loaded DCs markedly enhanced the proliferation of antigen-specific CD8+ T and CD4+ T cells by 3H-TdR incorporation assay.Besides, the specific cytotoxicity of the CTLs against LMP2A target cells was also significantly increased.These results indicated that DC-based vaccine loaded with virus antigen could elicit potent CTL response and provide a foundation for further study on the DC-based immunotherapy for nasopharygeal carcinoma and other EBV associated tumors.

  4. Protective antitumor activity induced by a fusion vaccine with murine ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... vaccine to provide an effective protection against tumors. Here, we construct ... quence and established cationic nano-liposomes-DNA delivery .... cad in coating buffer (carbonate bicarbonate, pH 9.6) overnight at. 4ºC. Diluted ...

  5. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available Antibodies to both infectious forms of vaccinia virus, the mature virion (MV and the enveloped virion (EV, as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.

  6. Activation of human platelets by misfolded proteins

    NARCIS (Netherlands)

    Herczenik, E.; Bouma, B.; Korporaal, J.A.; Strangi, R.; Zeng, Q.; Gros, P.; van Eck, M.; van Berkel, T.J.C.; Gebbink, M.F.B.G.; Akkerman, J.W.N.

    2007-01-01

    Objective: Protein misfolding diseases result from the deposition of insoluble protein aggregates that often contain fibrils called amyloid. Amyloids are found in Alzheimer disease, atherosclerosis, diabetes mellitus, and systemic amyloidosis,which are diseases where platelet activation might be

  7. Strain-transcending immune response generated by chimeras of the malaria vaccine candidate merozoite surface protein 2

    Science.gov (United States)

    Krishnarjuna, Bankala; Andrew, Dean; MacRaild, Christopher A.; Morales, Rodrigo A. V.; Beeson, James G.; Anders, Robin F.; Richards, Jack S.; Norton, Raymond S.

    2016-01-01

    MSP2 is an intrinsically disordered protein that is abundant on the merozoite surface and essential to the parasite Plasmodium falciparum. Naturally-acquired antibody responses to MSP2 are biased towards dimorphic sequences within the central variable region of MSP2 and have been linked to naturally-acquired protection from malaria. In a phase IIb study, an MSP2-containing vaccine induced an immune response that reduced parasitemias in a strain-specific manner. A subsequent phase I study of a vaccine that contained both dimorphic forms of MSP2 induced antibodies that exhibited functional activity in vitro. We have assessed the contribution of the conserved and variable regions of MSP2 to the generation of a strain-transcending antibody response by generating MSP2 chimeras that included conserved and variable regions of the 3D7 and FC27 alleles. Robust anti-MSP2 antibody responses targeting both conserved and variable regions were generated in mice, although the fine specificity and the balance of responses to these regions differed amongst the constructs tested. We observed significant differences in antibody subclass distribution in the responses to these chimeras. Our results suggest that chimeric MSP2 antigens can elicit a broad immune response suitable for protection against different strains of P. falciparum. PMID:26865062

  8. BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial

    Science.gov (United States)

    Gasper, Melanie A.; Hesseling, Anneke C.; Mohar, Isaac; Myer, Landon; Azenkot, Tali; Passmore, Jo-Ann S.; Hanekom, Willem; Cotton, Mark F.; Crispe, I. Nicholas; Sodora, Donald L.; Jaspan, Heather B.

    2017-01-01

    BACKGROUND. Bacillus Calmette-Guérin (BCG) vaccine is administered at birth to protect infants against tuberculosis throughout Africa, where most perinatal HIV-1 transmission occurs. We examined whether BCG vaccination alters the levels of activated HIV target T cells in HIV-exposed South African infants. METHODS. HIV-exposed infants were randomized to receive routine (at birth) or delayed (at 8 weeks) BCG vaccination. Activated and CCR5-expressing peripheral blood CD4+ T cell, monocyte, and NK cell frequencies were evaluated by flow cytometry and immune gene expression via PCR using Biomark (Fluidigm). RESULTS. Of 149 infants randomized, 92% (n = 137) were retained at 6 weeks: 71 in the routine BCG arm and 66 in the delayed arm. Routine BCG vaccination led to a 3-fold increase in systemic activation of HIV target CD4+CCR5+ T cells (HLA-DR+CD38+) at 6 weeks (0.25% at birth versus 0.08% in delayed vaccination groups; P = 0.029), which persisted until 8 weeks of age when the delayed arm was vaccinated. Vaccination of the infants in the delayed arm at 8 weeks resulted in a similar increase in activated CD4+CCR5+ T cells. The increase in activated T cells was associated with increased levels of MHC class II transactivator (CIITA), IL12RB1, and IFN-α1 transcripts within peripheral blood mononuclear cells but minimal changes in innate cells. CONCLUSION. BCG vaccination induces immune changes in HIV-exposed infants, including an increase in the proportion of activated CCR5+CD4+ HIV target cells. These findings provide insight into optimal BCG vaccine timing to minimize the risks of HIV transmissions to exposed infants while preserving potential benefits conferred by BCG vaccination. TRIAL REGISTRATION. ClinicalTrials.gov NCT02062580. FUNDING. This trial was sponsored by the Elizabeth Glaser Pediatric AIDS Foundation (MV-00-9-900-01871-0-00) and the Thrasher Foundation (NR-0095); for details, see Acknowledgments. PMID:28405623

  9. [Protein nutrition and physical activity].

    Science.gov (United States)

    Navarro, M P

    1992-09-01

    The relationship between physical exercise and diet in order to optimize performance is getting growing interest. This review examines protein needs and protein intakes as well as the role of protein in the body and the metabolic changes occurring at the synthesis and catabolic levels during exercise. Protein synthesis in muscle or liver, amino acids oxidation, glucose production via gluconeogenesis from amino acids, etc., are modified, and consequently plasma and urinary nitrogen metabolites are affected. A brief comment on the advantages, disadvantages and forms of different protein supplements for sportsmen is given.

  10. Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants.

    Science.gov (United States)

    Lu, Fangjia; Mencia, Alejandra; Bi, Lin; Taylor, Aaron; Yao, Yuan; HogenEsch, Harm

    2015-04-28

    The use of nanoparticles for delivery of vaccine antigens and as vaccine adjuvants is appealing because their size allows efficient uptake by dendritic cells and their biological properties can be tailored to the desired function. Here, we report the effect of chemically modified phytoglycogen, a dendrimer-like α-d-glucan nanoparticle, on dendritic cells in vitro, and the utility of this type of nanoparticle as a vaccine adjuvant in vivo. The modified phytoglycogen nanoparticle, termed Nano-11, has a positive surface charge which enabled electrostatic adsorption of negatively charged protein antigens. The Nano-11-antigen complexes were efficiently phagocytized by dendritic cells. Nano-11 induced increased expression of costimulatory molecules and the secretion of IL-1β and IL-12p40 by dendritic cells. Intramuscular injection of Nano-11-antigen formulations induced a significantly enhanced immune response to two different protein antigens. Examination of the injection site revealed numerous monocytes and relatively few neutrophils at one day after injection. The inflammation had nearly completely disappeared by 2 weeks after injection. These studies indicate that Nano-11 is an effective vaccine delivery vehicle that significantly enhances the immune response. This type of plant based nanoparticle is considered highly cost-effective compared with fully synthetic nanoparticles and appears to have an excellent safety profile making them an attractive adjuvant candidate for prophylactic vaccines.

  11. The recombinant globular head domain of the measles virus hemagglutinin protein as a subunit vaccine against measles.

    Science.gov (United States)

    Lobanova, Liubov M; Eng, Nelson F; Satkunarajah, Malathy; Mutwiri, George K; Rini, James M; Zakhartchouk, Alexander N

    2012-04-26

    Despite the availability of live attenuated measles virus (MV) vaccines, a large number of measles-associated deaths occur among infants in developing countries. The development of a measles subunit vaccine may circumvent the limitations associated with the current live attenuated vaccines and eventually contribute to global measles eradication. Therefore, the goal of this study was to test the feasibility of producing the recombinant globular head domain of the MV hemagglutinin (H) protein by stably transfected human cells and to examine the ability of this recombinant protein to elicit MV-specific immune responses. The recombinant protein was purified from the culture supernatant of stably transfected HEK293T cells secreting a tagged version of the protein. Two subcutaneous immunizations with the purified recombinant protein alone resulted in the production of MV-specific serum IgG and neutralizing antibodies in mice. Formulation of the protein with adjuvants (polyphosphazene or alum) further enhanced the humoral immune response and in addition resulted in the induction of cell-mediated immunity as measured by the production of MV H-specific interferon gamma (IFN-γ) and interleukin 5 (IL-5) by in vitro re-stimulated splenocytes. Furthermore, the inclusion of polyphosphazene into the vaccine formulation induced a mixed Th1/Th2-type immune response. In addition, the purified recombinant protein retained its immunogenicity even after storage at 37°C for 2 weeks.

  12. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus.

    Science.gov (United States)

    Kulkarni, Amod D; Kiron, Viswanath; Rombout, Jan H W M; Brinchmann, Monica F; Fernandes, Jorge M O; Sudheer, Naduvilamuriparampu S; Singh, Bright I S

    2014-07-01

    White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.

  13. Protein-water dynamics in antifreeze protein III activity

    Science.gov (United States)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  14. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    Science.gov (United States)

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing.

  15. Identification of peptidoglycan-associated proteins as vaccine candidates for enterococcal infections.

    Directory of Open Access Journals (Sweden)

    Felipe Romero-Saavedra

    Full Text Available Infections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH. Proteomic profiling was carried out by gel-free and gel-nanoLC-MS/MS analyses. The total proteins found with each method were 390 by the trypsin shaving, 329 by the elution at high pH, and 45 using biotinylation. An exclusively extracytoplasmic localization was predicted in 39 (10% by trypsin shaving, in 47 (15% by elution at high pH, and 27 (63% by biotinylation. Comparison between the three extraction methods by Venn diagram and subcellular localization predictors (CELLO v.2.5 and Gpos-mPLoc allowed us to identify six proteins that are most likely surface-exposed: the SCP-like extracellular protein, a low affinity penicillin-binding protein 5 (PBP5, a basic membrane lipoprotein, a peptidoglycan-binding protein LysM (LysM, a D-alanyl-D-alanine carboxypeptidase (DdcP and the peptidyl-prolyl cis-trans isomerase (PpiC. Due to their close relationship with the peptidoglycan, we chose PBP5, LysM, DdcP and PpiC to test their potential as vaccine candidates. These putative surface-exposed proteins were overexpressed in Escherichia coli and purified. Rabbit polyclonal antibodies raised against the purified proteins were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Passive immunization with rabbit antibodies raised against these proteins

  16. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  17. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology

    Science.gov (United States)

    Li, Yuanyuan; Leneghan, Darren B.; Miura, Kazutoyo; Nikolaeva, Daria; Brian, Iona J.; Dicks, Matthew D. J.; Fyfe, Alex J.; Zakutansky, Sarah E.; de Cassan, Simone; Long, Carole A.; Draper, Simon J.; Hill, Adrian V. S.; Hill, Fergal; Biswas, Sumi

    2016-01-01

    Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine. PMID:26743316

  18. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer

    Directory of Open Access Journals (Sweden)

    Minamida Hidetoshi

    2004-06-01

    Full Text Available Abstract Survivin is a member of the inhibitor of apoptosis protein (IAP family containing a single baculovirus IAP repeat domain. It is expressed during fetal development but becomes undetectable in terminally differentiated normal adult tissues. We previously reported that survivin and its splicing variant survivin-2B was expressed abundantly in various types of tumor tissues as well as tumor cell lines and was suitable as a target antigen for active-specific anti-cancer immunization. Subsequently, we identified an HLA-A24-restricted antigenic peptide, survivin-2B80-88 (AYACNTSTL recognized by CD8+ cytotoxic T lymphocytes (CTLs. We, therefore, started a phase I clinical study assessing the efficacy of survivin-2B peptide vaccination in patients with advanced or recurrent colorectal cancer expressing survivin. Vaccinations with survivin-2B peptide were given subcutaneously six times at 14-day intervals. Of 15 patients who finished receiving the vaccination schedule, three suffered slight toxicities, including anemia (grade 2, general malaise (grade 1, and fever (grade 1. No severe adverse events were observed in any patient. In 6 patients, tumor marker levels (CEA and CA19-9 decreased transiently during the period of vaccination. Slight reduction of the tumor volume was observed in one patient, which was considered a minor responder. No changes were noted in three patients while the remaining eleven patients experienced tumor progression. Analysis of peripheral blood lymphocytes of one patient using HLA-A24/peptide tetramers revealed an increase in peptide-specific CTL frequency from 0.09% to 0.35% of CD8+ T cells after 4 vaccinations. This phase I clinical study indicates that survivin-2B peptide-based vaccination is safe and should be further considered for potential immune and clinical efficacy in HLA-A24-expression patients with colorectal cancer.

  19. Natural killer T cell and TLR9 agonists as mucosal adjuvants for sublingual vaccination with clade C HIV-1 envelope protein.

    Science.gov (United States)

    Singh, Shailbala; Yang, Guojun; Byrareddy, Siddappa N; Barry, Michael A; Sastry, K Jagannadha

    2014-12-05

    The vast majority of HIV-1 infections occur at mucosa during sexual contact. It may therefore be advantageous to provide mucosal barrier protection against this entry by mucosal vaccination. While a number of mucosal routes of vaccination are possible, many like enteric oral vaccines or intranasal vaccines have significant impediments that limit vaccine efficacy or pose safety risks. In contrast, immunogens applied to the sublingual region of the mouth could provide a simple route for mucosal vaccination. While sublingual immunization is appealing, this site does not always drive strong immune responses, particularly when using protein antigens. To address this issue, we have tested the ability of two mucosal adjuvants: alpha-galactosylceramide (αGalCer) that is a potent stimulator of natural killer T cells and CpG-oligodeoxynucleotide (CpG-ODN) a TLR9 agonist for their ability to amplify immune responses against clade C gp140 HIV-1 envelope protein antigen. Immunization with envelope protein alone resulted in a weak T cell and antibody responses. In contrast, CD4(+) and CD8(+) T cells responses in systemic and mucosal tissues were significantly higher in mice immunized with gp140 in the presence of either αGalCer or CpG-ODN and these responses were further augmented when the two adjuvants were used together. While both the adjuvants effectively increased gp140-specific serum IgG and vaginal IgA antibody levels, combining both significantly improved these responses. Memory T cell responses 60 days after immunization revealed αGalCer to be more potent than CpG-ODN and the combination of the αGalCer and CpG-ODN adjuvants was more effective than either alone. Serum and vaginal washes collected 60 days after immunization with gp140 with both αGalCer and CpG-ODN adjuvants had significant neutralization activity against Tier 1 and Tier 2 SHIVs. These data support the utility of the sublingual route for mucosal vaccination particularly in combination with

  20. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  1. Development of a subunit vaccine containing recombinant Riemerella anatipestifer outer membrane protein A and CpG ODN adjuvant.

    Science.gov (United States)

    Chu, Chun-Yen; Liu, Chia-Hui; Liou, Jhong-Jie; Lee, Jai-Wei; Cheng, Li-Ting

    2015-01-01

    Riemerella anatipestifer, a Gram-negative bacillus, causes septicemia that can result in high mortality for ducklings. In this study, we evaluated the immune response and protective efficacy provided by a subunit vaccine containing recombinant outer membrane protein A (rOmpA) and plasmid constructs containing CpG oligodeoxynucleotides (ODN). Results showed that CpG ODN enhanced both humoral and cell-mediated immunity elicited by rOmpA as early as two weeks after primary immunization. When compared to ducks immunized with rOmpA, ducks immunized with rOmpA+CpG ODN showed higher levels (pvaccine reduced the pathological score by 90% in comparison with the saline control. In conclusion, our study found that CpG ODN can enhance both humoral and cellular immunity elicited by a rOmpA vaccine. The rOmpA+CpG ODN vaccine can be further developed as a subunit vaccine against R. anatipestifer.

  2. Immunogenicity and efficacy of codon optimized DNA vaccines encoding the F-protein of respiratory syncytial virus.

    Science.gov (United States)

    Ternette, Nicola; Tippler, Bettina; Uberla, Klaus; Grunwald, Thomas

    2007-10-10

    Respiratory syncytial virus F-protein (RSV-F) is poorly expressed from DNA expression plasmids containing the wild type RSV-F open reading frame. By codon optimization, premature polyadenylation signals were deleted and a striking enhancement of RSV-F expression levels was achieved. Therefore, the immunogenicity and efficacy of wild type DNA vaccines were compared to codon optimized expression plasmids encoding full-length RSV-F or its ectodomain. Mice were immunized twice with the different DNA vaccines followed by an RSV challenge. Only codon optimized DNA vaccines and in particular the one encoding the ectodomain of RSV-F induced substantial antibody levels and reduced viral load 13-170-fold. Thus, codon optimization enhances the immunogenicity and efficacy of RSV encoding DNA vaccines.

  3. Vaccination with pcDNA3-15/60 Naked DNA Encoding the Surface Protein of Sporozoites in Cryptosporidium parvum

    Institute of Scientific and Technical Information of China (English)

    HE Hong-xuan; ZHANG Xi-chen; YIN Ji-gang; LI Jian-hua; YANG Ju

    2004-01-01

    The CP15/60 gene encoding the CP15/60 surface protein of sporozoites in Cryptosporidium parvum was obtained by PCR so as to research the nucleic vaccine against C.parvum. The eukaryotic expressing vector pcDNA3-15/60 was constructed by inserting CP15/60 gene into pcDNA3 (+) in Xho Ⅰ and EcoR Ⅰ. A vaccination protocol was the adult pregnant goats inoculated intranasally with the pcDNA3-15/60 plasmid and their offspring were infected with C.parvum oocysts. The results showed that the pcDNA3-15/60 plasmid can induce the immune response of goats and the vaccinated goats can transfer the immunity to offspring conferring protection against C.parvum infection. These suggested that the recombinant plasmid could be a DNA vaccine candidate.

  4. [Vaccines and preventive activities in patients with inflammatory arthritis].

    Science.gov (United States)

    Casals-Sánchez, J L; Casals Vázquez, C; Vázquez Sánchez, M Á; Giménez Basallote, S

    2013-10-01

    Patients with inflammatory arthritis and eligible for immunosuppressive therapy account for more than 1% of general population, and represents a significant workload on family doctors. They are prone to other comorbidities, with an increased cardiovascular risk and a higher incidence of infections than the general population, especially skin infections and pneumonitis. This comorbidity can be considered vulnerable to a prevention program-prevention of cardiovascular risk, cancer screening, vaccination schedule for adults. As for prevention through vaccination, importance should be given to pneumococcal infection - significant in adults aged 50 or over, especially amongst immunosuppressed patients. The 13-valent conjugate vaccine, which has been recently approved for adults, must be considered. An attempt has been made to write a simple, applicable document on preventive measures that should be implemented both at primary and secondary care level for those adults. Copyright © 2012 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  5. Limited variation in vaccine candidate Plasmodium falciparum Merozoite Surface Protein-6 over multiple transmission seasons

    Directory of Open Access Journals (Sweden)

    Branch OraLee H

    2010-05-01

    Full Text Available Abstract Background Plasmodium falciparum Merozoite Surface Protein-6 (PfMSP6 is a component of the complex proteinacious coat that surrounds P. falciparum merozoites. This location, and the presence of anti-PfMSP6 antibodies in P. falciparum-exposed individuals, makes PfMSP6 a potential blood stage vaccine target. However, genetic diversity has proven to be a major hurdle for vaccines targeting other blood stage P. falciparum antigens, and few endemic field studies assessing PfMSP6 gene diversity have been conducted. This study follows PfMSP6 diversity in the Peruvian Amazon from 2003 to 2006 and is the first longitudinal assessment of PfMSP6 sequence dynamics. Methods Parasite DNA was extracted from 506 distinct P. falciparum infections spanning the transmission seasons from 2003 to 2006 as part of the Malaria Immunology and Genetics in the Amazon (MIGIA cohort study near Iquitos, Peru. PfMSP6 was amplified from each sample using a nested PCR protocol, genotyped for allele class by agarose gel electrophoresis, and sequenced to detect diversity. Allele frequencies were analysed using JMP v.8.0.1.0 and correlated with clinical and epidemiological data collected as part of the MIGIA project. Results Both PfMSP6 allele classes, K1-like and 3D7-like, were detected at the study site, confirming that both are globally distributed. Allele frequencies varied significantly between transmission seasons, with 3D7-class alleles dominating and K1-class alleles nearly disappearing in 2005 and 2006. There was a significant association between allele class and village location (p-value = 0.0008, but no statistically significant association between allele class and age, sex, or symptom status. No intra-allele class sequence diversity was detected. Conclusions Both PfMSP6 allele classes are globally distributed, and this study shows that allele frequencies can fluctuate significantly between communities separated by only a few kilometres, and over time in the

  6. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults.

    Science.gov (United States)

    van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie

    2017-09-04

    Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the immunological fitness of the middle-aged population is ill-defined. It is currently unknown whether effective T-cell help towards B-cells is initiated by conjugate-carrier vaccines at middle-age. We characterized systemic Tetanus Toxoid (TT) specific T-helper cell responses in the circulation of middle-aged adults (50-65years of age, n=31) having received the MenACWY-TT vaccination. Blood samples were taken pre- as well as 7days, 28days, and 1year post-vaccination. TT-specific T-cell responses were determined by IFNγ Elispot and by the secretion of IFNγ, IL13, IL10, IL17, and IL21 in cell culture supernatants. Circulating CD4+CXCR5+ICOS+IL21+ cells were analyzed by flow cytometry, and meningococcal and TT-specific IgG responses by bead-based immunoassays. The correlation between the T-cell help and humoral responses was evaluated. Vaccination with a TT-carrier protein induced a mixed TT-specific Th1 (IFNγ), Th2 (IL13, IL10), and Th17 (IL17) response in most participants. Additionally, circulating CD4+CXCR5+ICOS+IL21+ cells were significantly increased 7days post-vaccination. Pre-vaccination TT-specific cytokine production and post-vaccination Th2 responses correlated positively with the increase of CD4+CXCR5+ICOS+IL21+ cells. No correlation between T-cell help and antibody responses was found. The characteristics of the T-cell response upon a TT-carrier vaccination suggests effective T-cell help towards B-cells in response to meningococcal polysaccharides, although the absence of a correlation with the antibody responses warrants further clarification. However, the robust T-helper cell response in middle-aged adults, decades after previous TT vaccinations, strengthens the classification of

  7. Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate

    Science.gov (United States)

    Radtke, Andrea J.; Anderson, Charles F.; Riteau, Nicolas; Rausch, Kelly; Scaria, Puthupparampil; Kelnhofer, Emily R.; Howard, Randall F.; Sher, Alan; Germain, Ronald N.; Duffy, Patrick

    2017-01-01

    Humoral immune responses have the potential to maintain protective antibody levels for years due to the immunoglobulin-secreting activity of long-lived plasma cells (LLPCs). However, many subunit vaccines under development fail to generate robust LLPC responses, and therefore a variety of strategies are being employed to overcome this limitation, including conjugation to carrier proteins and/or formulation with potent adjuvants. Pfs25, an antigen expressed on malaria zygotes and ookinetes, is a leading transmission blocking vaccine (TBV) candidate for Plasmodium falciparum. Currently, the conjugate vaccine Pfs25-EPA/Alhydrogel is in Phase 1 clinical trials in the USA and Africa. Thus far, it has proven to be safe and immunogenic, but it is expected that a more potent formulation will be required to establish antibody titers that persist for several malaria transmission seasons. We sought to determine the contribution of carrier determinants and adjuvants in promoting high-titer, long-lived antibody responses against Pfs25. We found that both adjuvants and carrier proteins influence the magnitude and capacity of Pfs25-specific humoral responses to remain above a protective level. Furthermore, a liposomal adjuvant with QS21 and a TLR4 agonist (GLA-LSQ) was especially effective at inducing T follicular helper (Tfh) and LLPC responses to Pfs25 when coupled to immunogenic carrier proteins. PMID:28091576

  8. Quantitative detection of RT activity by PERT assay: feasibility and limits to a standardized screening assay for human vaccines.

    Science.gov (United States)

    André, M; Morgeaux, S; Fuchs, F

    2000-06-01

    The detection of adventitious retroviruses has always been critical for assessing the safety concerns associated with viral vaccines. Assays for the enzymatic activity of reverse transcriptase (RT) are used as general methods for the detection of both known and unknown retroviruses. Several studies using newly-developed ultrasensitive PCR-based RT assays reported RT activity in viral vaccines grown in chicken cells. Here, we have assessed the performances of such a PCR-based RT assay--PERT assay--for the quantitative detection of RT activity in vaccines. Sensitivity, linearity and reproducibility of the method were studied on purified RT and viral vaccines treated to release RT from potentially contaminant retroviruses. The level of RT activity detected in chicken cell-derived vaccines was higher for live attenuated vaccines compared to inactivated ones. Contrary to other studies, RT activity was found in some mammalian cell-derived vaccines. AZT-TP sensitivity of RT activities detected in these vaccines and discrimination between retroviral and RT-like activities was further investigated. Feasibility and limits of PERT assay as a broad-spectrum retroviruses detection method in vaccines are discussed.

  9. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

    Science.gov (United States)

    Lucas, Carolina G D O; Matassoli, Flavio L; Peçanha, Ligia M T; Santillo, Bruna Tereso; Oliveira, Luanda Mara da Silva; Oshiro, Telma Miyuki; Marques, Ernesto T D A; Oxenius, Annette; de Arruda, Luciana B

    2016-08-01

    The decline in number and function of T cells is a hallmark of HIV infection, and preservation or restoration of HIV-specific cellular immune response is a major goal of AIDS treatment. Dendritic cells (DCs) play a key role in the initiation and maintenance of the immune response, and their use as a vaccine vehicle is a promising strategy for enhancing vaccine efficacy. We evaluated the potential of DC-mediated immunization with a DNA vaccine consisting of HIV-1-p55gag (gag, group-specific antigen) associated to lysosomal associated protein (LAMP) sequence (LAMP/gag vaccine). Immunization of mice with mouse DCs transfected with LAMP/gag (Lg-mDCs) stimulated more potent B- and T-cell responses than naked DNA or DCs pulsed with inactivated HIV. Anti-Gag antibody levels were sustained for at least 3 mo after immunization, and recall T-cell responses were also strongly detected at this time point. Human DCs transfected with LAMP/gag (Lg-hDCs) were also activated and able to stimulate greater T-cell response than native gag-transfected DCs. Coculture between Lg-hDCs and T lymphocytes obtained from patients with HIV resulted in upregulation of CD38, CD69, HLA-DR, and granzyme B by CD4(+) and CD8(+) T cells, and increased IFN-γ and TNF-α production. These results indicate that the use of LAMP/gag-DC may be an efficient strategy for enhancing immune function in patients with HIV.-Lucas, C. G. D. O., Matassoli, F. L., Peçanha, L. M. T., Santillo, B. T., Oliveira, L. M. D. S., Oshiro, T. M., Marques, E. T. D. A., Jr., Oxenius, A., de Arruda, L. B. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

  10. [Vaccination of mice against murine coccidiosis by ingestion of surface proteins of Eimeria falciformis incorporated in liposomes].

    Science.gov (United States)

    Rhalem, A; Bekhti, K; Bourdieu, C; Luffau, G; Péry, P

    1989-01-01

    Proteins are released from the surface of sporozoites of Eimeria falciformis during their in vitro incubation in a detergent solution. Some of these proteins reacted with antibodies from infected mice and specifically stimulated the proliferation of mesenteric lymph node cells of these mice. Oral immunization of mice with liposome encapsulated sporozoite surface antigens protected mice against a challenge infection. Two proteins (M.W. 27 and 180 K) induced an antibody synthesis in these vaccinated mice.

  11. Liposomes containing recombinant gp85 protein vaccine against ALV-J in chickens.

    Science.gov (United States)

    Zhang, Limei; Cai, Dongjie; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Qi, Chunhua; Liu, Jianzhu; Xu, Ruixue; Zhao, Peng; Cui, Zhizhong

    2014-05-01

    To study the potential of liposome vaccines in the clinical prevention of ALV-J, the effect of recombinant gp85 protein of subgroup J avian leukosis virus (ALV-J) entrapped by liposomes in chickens against ALV-J infection was investigated in this paper. A recombinant plasmid (PET28a-gp85) containing the PET28a vector and gp85 gene was constructed and then expressed in Rosetta (DE3) cells with 0.5mM IPTG to produce recombinant gp85 proteins that could be entrapped by liposomes through reverse-phase evaporation. The chickens were inoculated intramuscularly either once or twice with the liposomes or with Freund's adjuvant emulsion containing recombinant gp85 protein. Sixty chickens were raised to one week old for the first inoculation and to three weeks old for the second inoculation. Chickens raised to five weeks old were challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of ALV-J. Blood samples were collected from each chicken at weekly intervals for serum antibody and viremia analyses. Changes in serum antibodies showed that positive serum antibodies (S/P value >0.6) could be induced in all groups regardless of the frequency of inoculation but improved significantly in the twice-inoculated groups. As well, high levels of antibodies emerged earlier in the Freund's adjuvant groups but persisted longer in the liposome groups. Detection of viremia indicated that the liposomes provide better protection against ALV-J than Freund's adjuvant emulsion and that this protection is directly influenced by serum antibody levels. Overall, this study reveals the potential of liposome vaccines containing recombinant gp85 protein in the clinical prevention of ALV-J.

  12. New Viral Vector for Superproduction of Epitopes of Vaccine Proteins in Plants

    Science.gov (United States)

    Tyulkina, L.G.; Skurat, E.V.; Frolova, O.Yu.; Komarova, T.V.; Karger, E.M.; Atabekov, I.G.

    2011-01-01

    The novel viral vectors PVX-CP AltMV and PVXdt-CP AltMV are superexpressors of the capsid protein (CP). These viral vectors were constructed on the basis of the potato virus X (PVX) genome andAlternantheramosaic virus (AltMV) CP gene. The expression, based on the hybrid viral vectors, is genetically safe, since the systemic transport and formation of infective viral particles are blocked. CP AltMV can self-assemble into virus-like particles (VLPs) in the absence of genomic RNA. The vectors can be used for the presentation of foreign peptides (including epitopes of human pathogens) on the surface of the VLP. The N-terminal extracellular domain (M2e) of the influenza virus A M2 protein and its truncated variant (ΔM2e) were used as model heterologous peptides for the construction of the chimeric CP AltMV. Chimeric CP AltMV retains its ability to self-assemble into VLP. The epitopes of the M2 influenza virus protein were not eliminated during the process of accumulation, polymerization and purification of chimeric VLP AltMV, providing evidence of the stability of chimeric VLP with C-terminal heterologous epitopes. It appears that VLP produced by the vectors PVX-CP AltMV and PVXdt-CP AltMV can be used in the field of biotechnology for the presentation of the epitopes of vaccine proteins on their surfaces. The chimeric VLP AltMV with the presented foreign epitopes can be used as candidate vaccines. PMID:22649706

  13. Effects of active anti-methamphetamine vaccination on intravenous self-administration in rats.

    Science.gov (United States)

    Miller, M L; Aarde, S M; Moreno, A Y; Creehan, K M; Janda, K D; Taffe, M A

    2015-08-01

    d-Methamphetamine (METH) addiction is a serious public health concern for which successful treatment remains elusive. Immunopharmacotherapy has been shown to attenuate locomotor and thermoregulatory effects of METH. The current study investigated whether active vaccination against METH could alter intravenous METH self-administration in rats. Male Sprague-Dawley rats (Experiment 1: N=24; Experiment 2: N=18) were vaccinated with either a control keyhole-limpet hemocyanin conjugate vaccine (KLH) or a candidate anti-METH vaccine (MH6-KLH) or. Effects of vaccination on the acquisition of METH self-administration under two dose conditions (0.05, 0.1mg/kg/inf) and post-acquisition dose-substitution (0, 0.01, 0.05, 0.20mg/kg/inf, Experiment 1; 0.01, 0.05, 0.10, 0.15mg/kg/inf, Experiment 2) during steady-state responding were investigated. Plasma METH concentrations were determined 30min after an acute challenge dose of 3.2mg/kg METH. Active vaccination inhibited the acquisition of METH self-administration under the 0.1mg/kg/inf dose condition, with 66% of the MH6-KLH-vaccinated rats compared to 100% of the controls reaching criteria, and produced transient and dose-dependent effects on self-administration during the maintenance phase. Under the 0.05mg/kg/inf dose condition, MH6-KLH-vaccinated rats initially self-administered more METH than controls, but then self-administration decreased across the acquisition phase relative to controls; a subsequent dose-response assessment confirmed that MH6-KLH-vaccinated rats failed to acquire METH self-administration. Finally, plasma METH concentrations were higher in MH6-KLH-vaccinated rats compared to controls after an acute METH challenge, and these were positively correlated with antibody titers. These data demonstrate that active immunopharmacotherapy for METH attenuates the acquisition of METH self-administration. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  15. Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

    Science.gov (United States)

    Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.

    2013-01-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

  16. Transgenic parasites stably expressing full-length Plasmodium falciparum circumsporozoite protein as a model for vaccine down-selection in mice using sterile protection as an endpoint.

    Science.gov (United States)

    Porter, Michael D; Nicki, Jennifer; Pool, Christopher D; DeBot, Margot; Illam, Ratish M; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R; Bennett, Jason W; Schwenk, Robert J; Ockenhouse, Christian F; Dutta, Sheetij

    2013-06-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations.

  17. Activity assay of membrane transport proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Xie

    2008-01-01

    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  18. Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine.

    Science.gov (United States)

    Yang, Yanling; Wang, Lin; Yin, Jigang; Wang, Xinglong; Cheng, Shipeng; Lang, Xulong; Wang, Xiuran; Qu, Hailong; Sun, Chunhui; Wang, Jinglong; Zhang, Rui

    2011-10-01

    In order to screen immunogenic candidate antigens for the development of a brucellosis subunit vaccine, an immunoproteomic assay was used to identify immunogenic proteins from Brucella melitensis 16 M soluble proteins. In this study, a total of 56 immunodominant proteins were identified from the two-dimensional electrophoresis immunoblot profiles by liquid chromatography tandem mass spectrometry (LC-MS/MS). Two proteins of interest, riboflavin synthase alpha chain (RS-α) and Loraine synthase (LS-2), which are both involved in riboflavin synthesis, were detected by two-dimensional immunoblots using antisera obtained from Brucella-infected human and goats. LS-2, however, is an already well-known vaccine candidate. Therefore, we focussed our studies on the novel vaccine candidate RS-α. B. melitensis RS-α and LS-2 were then expressed in Escherichia coli as fusion proteins with His tag. The humoral and cellular immune responses to the recombinant (r)RS-α was characterized. In response to in vitro stimulation by rRS-α, splenocytes from mice vaccinated with rRS-α were able to produce γ-interferon (IFN-γ) and interleukin (IL)-2 but not interleukin (IL)-4 and interleukin (IL)-10. Furthermore, rRS-α or rLS-2-vaccinated mice were partially protected against B. melitensis infection. Our results suggested that we have developed a high-throughout, accurate, rapid and highly efficient method for the identification of candidate antigens by a combination of immunoproteomics with immunisation and bacterial challenge and rRs-α could be a useful candidate for the development of subunit vaccines against B. melitensis.

  19. Nucleic Acid Vaccines

    Institute of Scientific and Technical Information of China (English)

    LU Shan

    2004-01-01

    @@ Anew method of immunization was discovered in the early 1990s. Several research groups independently demonstrated that direct inoculation of DNA plasmids coding for a specific protein antigen could elicit immune responses against that antigen[1-4].Since in theory the mRNA molecules also have the potential to be translated into the protein antigen, this vaccination approach was officially named by WHO as the nucleic acid vaccination even though the term DNA vaccine has been used more commonly in the literature. This novel approach is considered the fourth generation of vaccines after live attenuated vaccines, killed or inactivated vaccines and recombinant protein based subunit vaccines.

  20. Characterization of NoV P particle-based chimeric protein vaccines developed from two different expression systems.

    Science.gov (United States)

    Fu, Lu; Jin, Hao; Yu, Yongjiao; Yu, Bin; Zhang, Haihong; Wu, Jiaxin; Yin, Yuhe; Yu, Xianghui; Wu, Hui; Kong, Wei

    2017-02-01

    The Norovirus (NoV) P domain, with three surface loops for foreign antigen insertion, has been demonstrated as an excellent platform for antigen presentation and novel vaccine development. The P domain alone can self-assemble into a P dimer, 12-mer small particle or 24-mer P particle, and vaccines based on those particles may elicit different levels of immunogenicity. Currently, P particles are generally produced in soluble expression systems in Escherichia coli, mainly in the 24-mer form. However, the low yield of the soluble protein has hindered further clinical applications of P particle-based protein vaccines. In this study, we inserted the Alzheimer's disease (AD) immunogen Aβ1-6 into the three loops of the P particle to generate an AD protein vaccine. To increase the yield of this chimeric protein, we tested the generation of proteins in a soluble expression system and an inclusion body expression system separately in E. coli. The result showed that the inclusion body expression system could greatly enhance the product yield of the chimeric protein compared with the soluble expression system. The refolded protein from the inclusion bodies was mainly in the 12-mer form, while the protein generated from the soluble supernatant was mainly in the 24-mer form. Moreover, the immunogenicity of soluble proteins was significantly stronger than that of the refolded proteins. Thus, comparisons between the two expression methods suggested that the soluble expression system generated chimeric P particles with better immunogenicity, while inclusion body expression system yielded more P particle proteins.

  1. PMA Induces Vaccine Adjuvant Activity by the Modulation of TLR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Dool-Ri Oh

    2014-01-01

    Full Text Available Toll-like receptor (TLR ligands are being developed for use as vaccine adjuvants and as immunomodulators because of their ability to stimulate innate and adaptive immune responses. Flagellin, a TLR5 ligand, was reported to show potent mucosal vaccine adjuvant activity. To identify ligands that potentiate the adjuvant activity of flagellin, we screened a plant library using HEK293T cells transiently cotransfected with phTLR5 and pNF-κB-SEAP plasmids. The 90% EtOH extract from Croton tiglium showed significant NF-κB transactivation in a TLR5-independent manner along with the increase of a flagellin activity. We have studied to characterize an active component from Croton tiglium and to elucidate the action mechanisms. Phorbol 12-myristate 13-acetate (PMA was isolated as an active component of Croton tiglium by activity-guided fractionation, column chromatography, HPLC, NMR, and MS. PMA at a range of nM induced PKC-dependent NF-κB activation and IL-8 production in both TLR5− and TLR5+ assay systems. In in vivo mouse vaccination model, PMA induced antigen-specific IgG and IgA antibody responses and increased IL-12 production corresponding to T cell responses in spleen lymphocytes. These results suggest that PMA would serve as an efficacious mucosal vaccine adjuvant.

  2. Genotype-specific neutralization determinants in envelope protein: implications for the improvement of Japanese encephalitis vaccine.

    Science.gov (United States)

    Ye, Qing; Xu, Yan-Peng; Zhang, Yu; Li, Xiao-Feng; Wang, Hong-Jiang; Liu, Zhong-Yu; Li, Shi-Hua; Liu, Long; Zhao, Hui; Nian, Qing-Gong; Deng, Yong-Qiang; Qin, E-De; Qin, Cheng-Feng

    2015-08-01

    Japanese encephalitis remains the leading cause of viral encephalitis in children in Asia and is expanding its geographical range to larger areas in Asia and Australasia. Five genotypes of Japanese encephalitis virus (JEV) co-circulate in the geographically affected areas. In particular, the emergence of genotype I (GI) JEV has displaced genotype III (GIII) as the dominant circulating genotype in many Asian regions. However, all approved vaccine products are derived from GIII strains. In the present study, bioinformatic analysis revealed that GI and GIII JEV strains shared two distinct amino acid residues within the envelope (E) protein (E222 and E327). By using reverse genetics approaches, A222S and S327T mutations were demonstrated to decrease live-attenuated vaccine (LAV) SA14-14-2-induced neutralizing antibodies in humans, without altering viral replication. A222S or S327T mutations were then rationally engineered into the infectious clone of SA14-14-2, and the resulting mutant strains retained the same genetic stability and attenuation characteristics as the parent strain. More importantly, immunization of mice with LAV-A222S or LAV-S327T elicited increased neutralizing antibodies against GI strains. Together, these results demonstrated that E222 and E327 are potential genotype-related neutralization determinants and are critical in determining the protective efficacy of live Japanese encephalitis vaccine SA14-14-2 against circulating GI strains. Our findings will aid in the rational design of the next generation of Japanese encephalitis LAVs capable of providing broad protection against all JEV strains belonging to different genotypes.

  3. Combination of pneumococcal surface protein A (PspA with whole cell pertussis vaccine increases protection against pneumococcal challenge in mice.

    Directory of Open Access Journals (Sweden)

    Maria Leonor S Oliveira

    Full Text Available Streptococcus pneumoniae is the leading cause of respiratory acute infections around the world. In Latin America, approximately 20,000 children under 5 years of age die of pneumococcal diseases annually. Pneumococcal surface protein A (PspA is among the best-characterized pneumococcal antigens that confer protection in animal models of pneumococcal infections and, as such, is a good alternative for the currently available conjugated vaccines. Efficient immune responses directed to PspA in animal models have already been described. Nevertheless, few low cost adjuvants for a subunit pneumococcal vaccine have been proposed to date. Here, we have tested the adjuvant properties of the whole cell Bordetella pertussis vaccine (wP that is currently part of the DTP (diphtheria-tetanus-pertussis vaccine administrated to children in several countries, as an adjuvant to PspA. Nasal immunization of BALB/c mice with a combination of PspA5 and wP or wP(low--a new generation vaccine that contains low levels of B. pertussis LPS--conferred protection against a respiratory lethal challenge with S. pneumoniae. Both PspA5-wP and PspA5-wP(low vaccines induced high levels of systemic and mucosal antibodies against PspA5, with similar profile, indicating no essential requirement for B. pertussis LPS in the adjuvant properties of wP. Accordingly, nasal immunization of C3H/HeJ mice with PspA5-wP conferred protection against the pneumococcal challenge, thus ruling out a role for TLR4 responses in the adjuvant activity and the protection mechanisms triggered by the vaccines. The high levels of anti-PspA5 antibodies correlated with increased cross-reactivity against PspAs from different clades and also reflected in cross-protection. In addition, passive immunization experiments indicated that antibodies played an important role in protection in this model. Finally, subcutaneous immunization with a combination of PspA5 with DTP(low protected mice against challenge with two

  4. Biochemical characterization and evaluation of a Brugia malayi small heat shock protein as a vaccine against lymphatic filariasis.

    Directory of Open Access Journals (Sweden)

    Gajalakshmi Dakshinamoorthy

    Full Text Available Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10 productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6 that can bind to soluble human IL-10 receptor alpha (IL-10R and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6 has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential.

  5. MyD88-dependent pro-inflammatory activity in Vi polysaccharide vaccine against typhoid promotes Ab switching to IgG.

    Science.gov (United States)

    Garg, Rohini; Akhade, Ajay Suresh; Yadav, Jitender; Qadri, Ayub

    2015-10-01

    Vi capsular polysaccharide is currently in use as a vaccine against human typhoid caused by Salmonella Typhi. The vaccine efficacy correlates with IgG anti-Vi Abs. We have recently reported that Vi can generate inflammatory responses through activation of the TLR2/TLR1 complex. In the present study, we show that immunization with Vi produces IgM as well as IgG Abs in wild type mice. This ability is not compromised in mice deficient in T cells. However, immunization of mice lacking the TLR adaptor protein, MyD88, with Vi elicits only IgM Abs. These results suggest that MyD88-dependent pro-inflammatory ability of the Vi vaccine might be vital in generating IgG Abs with this T-independent Ag.

  6. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  7. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine.

    Science.gov (United States)

    Erova, Tatiana E; Rosenzweig, Jason A; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C; Kirtley, Michelle L; van Lier, Christina J; Telepnev, Maxim V; Motin, Vladimir L; Chopra, Ashok K

    2013-02-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.

  8. Evaluation of Protective Potential of Yersinia pestis Outer Membrane Protein Antigens as Possible Candidates for a New-Generation Recombinant Plague Vaccine

    Science.gov (United States)

    Erova, Tatiana E.; Rosenzweig, Jason A.; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C.; Kirtley, Michelle L.; van Lier, Christina J.; Telepnev, Maxim V.; Motin, Vladimir L.

    2013-01-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1− strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1− mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1− CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains. PMID:23239803

  9. Reactogenicity, safety and immunogenicity of a protein-based pneumococcal vaccine in Gambian children aged 2-4 years: A phase II randomized study.

    Science.gov (United States)

    Odutola, A; Ota, M O; Ogundare, E O; Antonio, M; Owiafe, P; Worwui, A; Greenwood, B; Alderson, M; Traskine, M; Verlant, V; Dobbelaere, K; Borys, D

    2016-01-01

    Pneumococcal conjugate vaccines (PCVs) have been successful in preventing invasive pneumococcal disease but effectiveness has been challenged by replacement of vaccine serotypes with non-vaccine serotypes. Vaccines targeting common pneumococcal protein(s) found in most/all pneumococci may overcome this limitation. This phase II study assessed safety and immunogenicity of a new protein-based pneumococcal vaccine containing polysaccharide conjugates of 10 pneumococcal serotypes combined with pneumolysin toxoid(dPly) and pneumococcal histidine triad protein D(PhtD) (PHiD-CV/dPly/PhtD-30) in African children. 120 Gambian children (2-4 years, not previously vaccinated against Streptococcus pneumoniae) randomized (1:1) received a single dose of PHiD-CV/dPly/PhtD-30 or PCV13. Adverse events occurring over 4 d post-vaccination were reported, and blood samples obtained pre- and 1-month post-vaccination. Serious adverse events were reported for 6 months post-vaccination. Solicited local and systemic adverse events were reported at similar frequency in each group. One child (PHiD-CV/dPly/PhtD-30 group) reported a grade 3 local reaction to vaccination. Haematological and biochemical parameters seemed similar pre- and 1-month post-vaccination in each group. High pre-vaccination Ply and PhtD antibody concentrations were observed in each group, but only increased in PHiD-CV/dPly/PhtD-30 vaccinees one month post-vaccination. One month post-vaccination, for each vaccine serotype ≥96.2% of PHiD-CV/dPly/PhtD-30 vaccinees had serotype-specific polysaccharide antibody concentrations ≥0.20µg/mL except serotypes 6B (80.8%) and 23F (65.4%), and ≥94.1% had OPA titres of ≥8 except serotypes 1 (51.9%), 5 (38.5%) and 6B (78.0%), within ranges seen in PCV13-vaccinated children. A single dose of PHiD-CV/dPly/PhtD-30 vaccine, administered to Gambian children aged 2-4 y not previously vaccinated with a pneumococcal vaccine, was well-tolerated and immunogenic.

  10. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    Science.gov (United States)

    Liu, Xiang; Zaid, Ali; Goh, Lucas Y. H.; Hobson-Peters, Jody; Hall, Roy A.; Merits, Andres

    2017-01-01

    ABSTRACT Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. PMID:28223458

  11. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Adam Taylor

    2017-02-01

    Full Text Available Mosquito-transmitted chikungunya virus (CHIKV is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design.

  12. Activity-Based Protein Profiling of Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  13. Vaccination against Very Virulent Infectious Bursal Disease Virus Using Recombinant T4 Bacteriophage Displaying Viral Protein VP2

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang CAO; Quan-Cheng SHI; Jing-Yun MA; Qing-Mei XIE; Ying-Zuo BI

    2005-01-01

    In order to develop a desirable inexpensive, effective and safe vaccine against the very virulent infectious bursal disease virus (vvIBDV), we tried to take advantage of the emerging T4 bacteriophage surface protein display system. The major immunogen protein VP2 from the vvIBDV strain HK46 was fused to the nonessential T4 phage surface capsid protein, a small outer capsid (SOC) protein, resulting in the 49 kDa SOC-VP2 fusion protein, which was verified by sodium dodecylsulfate polyacrylamide gel electrophoresis and Western blot. Immunoelectromicroscopy showed that the recombinant VP2 protein was successfully displayed on the surface of the T4 phage. The recombinant VP2 protein is antigenic and showed reactivities to various monoclonal antibodies (mAbs) against IBDV, whereas the wild-type phage T4 could not react to any mAb. In addition, the recombinant VP2 protein is immunogenic and elicited specific antibodies in immunized specific pathogen free (SPF) chickens. More significantly, immunization of SPF chickens with the recombinant T4-VP2 phage protected them from infection by the vvIBDV strain HK46. When challenged with the vvIBDV strain HK46 at a dose of 100 of 50% lethal dose (LD50) per chicken 4 weeks after the booster was given, the group vaccinated with the T4-VP2 recombinant phage showed no clinical signs of disease or death, wh ereas the unvaccinated group and the group vaccinated with the wild-type T4phage exhibited 100% clinical signs of disease and bursal damages, and 30%-40% mortality. Collectively,the data herein showed that the T4-displayed VP2 protein might be an inexpensive, effective and safe vaccine candidate against vvIBDV.

  14. Correlation of haemagglutinin-neuraminidase and fusion protein content with protective antibody response after immunisation with inactivated Newcastle disease vaccines.

    NARCIS (Netherlands)

    Maas, R.A.; Komen, M.; Diepen, van M.; Oei, H.L.; Claassen, I.J.T.M.

    2003-01-01

    The correlation between the antigen content of inactivated Newcastle disease (ND) oil emulsion-vaccines and the serological response after immunisation was studied. The haemagglutinin-neuraminidase (HN) and fusion (F) proteins of Newcastle disease virus (NDV) were quantified in 33 inactivated oil-ad

  15. The use of outer membrane proteins as an exposure surface for foreign antigens in AIDS vaccine methodology and AIDS diagnostics

    NARCIS (Netherlands)

    Soede WWD; Hegger I

    1992-01-01

    A live recombinant bacteria or virus with HIV determinants exposed at the outermembrane is one strategy for AIDS vaccine development. Two HIV determinants that showed neutralization capacity in in- vitro experiments were tested for their expression in PhoE outer membrane protein of E coli K12.

  16. Killed but metabolically active Leishmania infantum as a novel whole-cell vaccine for visceral leishmaniasis.

    Science.gov (United States)

    Bruhn, Kevin W; Birnbaum, Ron; Haskell, Jacquelyn; Vanchinathan, Veena; Greger, Stephanie; Narayan, Rupa; Chang, Pei-Lin; Tran, Thu Anh; Hickerson, Suzanne M; Beverley, Stephen M; Wilson, Mary E; Craft, Noah

    2012-04-01

    There are currently no effective vaccines for visceral leishmaniasis, the second most deadly parasitic infection in the world. Here, we describe a novel whole-cell vaccine approach using Leishmania infantum chagasi promastigotes treated with the psoralen compound amotosalen (S-59) and low doses of UV A radiation. This treatment generates permanent, covalent DNA cross-links within parasites and results in Leishmania organisms termed killed but metabolically active (KBMA). In this report, we characterize the in vitro growth characteristics of both KBMA L. major and KBMA L. infantum chagasi. Concentrations of S-59 that generate optimally attenuated parasites were identified. Like live L. infantum chagasi, KBMA L. infantum chagasi parasites were able to initially enter liver cells in vivo after intravenous infection. However, whereas live L. infantum chagasi infection leads to hepatosplenomegaly in mice after 6 months, KBMA L. infantum chagasi parasites were undetectable in the organs of mice at this time point. In vitro, KBMA L. infantum chagasi retained the ability to enter macrophages and induce nitric oxide production. These characteristics of KBMA L. infantum chagasi correlated with the ability to prophylactically protect mice via subcutaneous vaccination at levels similar to vaccination with live, virulent organisms. Splenocytes from mice vaccinated with either live L. infantum chagasi or KBMA L. infantum chagasi displayed similar cytokine patterns in vitro. These results suggest that KBMA technology is a potentially safe and effective novel vaccine strategy against the intracellular protozoan L. infantum chagasi. This approach may represent a new method for whole-cell vaccination against other complex intracellular pathogens.

  17. EXPERIMENTAL LIPOSOMAL VIRAL VACCINE SAFETY

    Directory of Open Access Journals (Sweden)

    Romanova OA

    2016-12-01

    Full Text Available Introduction. With the transport links development there is rather important issue respiratory viral infections spread, especially influenza. The only method controlling influenza is vaccination. Search and development effective and safe vaccines is important. Material and methods. In base SO "Mechnikov Institute Microbiology and Immunology National Ukrainian Academy Medical Sciences" in the scientific theme "Developing new approaches to creating viral vaccines and study specific activity depending of type and degree component`s modification" was created several experimental influenza vaccine with subsequent component`s modification for selecting the most optimal pattern of safety and immunogenicity. In assessing the influenza vaccine safety is using a few criteria, including, reactivity, as measured by the frequency of local and systemic adverse (negative effects, which due to its introduction, and for lipid content drugs, ability to influence oxidation processes. At present study phase was determined: a systemic reaction and local reaction of delayed-type hypersensitivity (foot pad swelling assay;b lipids and proteins peroxidation processes after administration officinal and experimental vaccines (content protein’s carbonyl groups, lipid’s hydroperoxides, activity of glutathione-peroxidase.Study objects were trivalent seasonal influenza vaccine, "Vaxigrip" (Sanofi Pasteur, S.A., France, "Inflexal V" (Biotech Ltd. Berne, Switzerland and experimental vaccine samples. Highest immunogenicity vaccines had undergone improvements and modifications using adjuvant systems and acylation influenza proteins. Liposomes 2 – the experimental influenza vaccine with a liposome negative charge and antigenic composition like split vaccines "Vaksihryp". Liposomes 2.1 - the adjuvantexperimental influenza vaccine with modifications liposomal components (etoniy and chlorophyllipt molecules embedded in liposomal membrane. Liposomes 2.2 - the adjuvant

  18. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  19. Quantitative Proteomics Reveals Distinct Differences in the Protein Content of Outer Membrane Vesicle Vaccines

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Mommen, G.P.M.; Pennings, J.L.A.; Eppink, M.H.M.; Wijffels, R.H.; Pol, van der L.A.; Jong, de A.P.J.M.

    2013-01-01

    At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in

  20. Classification of self-assembling protein nanoparticle architectures for applications in vaccine design

    Science.gov (United States)

    Indelicato, G.; Burkhard, P.; Twarock, R.

    2017-04-01

    We introduce here a mathematical procedure for the structural classification of a specific class of self-assembling protein nanoparticles (SAPNs) that are used as a platform for repetitive antigen display systems. These SAPNs have distinctive geometries as a consequence of the fact that their peptide building blocks are formed from two linked coiled coils that are designed to assemble into trimeric and pentameric clusters. This allows a mathematical description of particle architectures in terms of bipartite (3,5)-regular graphs. Exploiting the relation with fullerene graphs, we provide a complete atlas of SAPN morphologies. The classification enables a detailed understanding of the spectrum of possible particle geometries that can arise in the self-assembly process. Moreover, it provides a toolkit for a systematic exploitation of SAPNs in bioengineering in the context of vaccine design, predicting the density of B-cell epitopes on the SAPN surface, which is critical for a strong humoral immune response.

  1. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region.

    Science.gov (United States)

    Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti

    2017-02-10

    The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSPrep), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSPΔHP). Our results show that the CSPrep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSPΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96.

    Science.gov (United States)

    Pishraft-Sabet, Leila; Kosinska, Anna D; Rafati, Sima; Bolhassani, Azam; Taheri, Tahereh; Memarnejadian, Arash; Alavian, Seyed-Moayed; Roggendorf, Michael; Samimi-Rad, Katayoun

    2015-01-01

    Induction of a strong hepatitis C virus (HCV)-specific immune response plays a key role in control and clearance of the virus. A polytope (PT) DNA vaccine containing B- and T-cell epitopes could be a promising vaccination strategy against HCV, but its efficacy needs to be improved. The N-terminal domain of heat shock protein gp96 (NT(gp96)) has been shown to be a potent adjuvant for enhancing immunity. We constructed a PT DNA vaccine encoding four HCV immunodominant cytotoxic T lymphocyte epitopes (two HLA-A2- and two H2-D(d)-specific motifs) from the Core, E2, NS3 and NS5B antigens in addition to a T-helper CD4+ epitope from NS3 and a B-cell epitope from E2. The NT(gp96) was fused to the C- or N-terminal end of the PT DNA (PT-NT(gp96) or NT(gp96)-PT), and their potency was compared. Cellular and humoral immune responses against the expressed peptides were evaluated in CB6F1 mice. Our results showed that immunization of mice with PT DNA vaccine fused to NT(gp96) induced significantly stronger T-cell and antibody responses than PT DNA alone. Furthermore, the adjuvant activity of NT(gp96) was more efficient in the induction of immune responses when fused to the C-terminal end of the HCV DNA polytope. In conclusion, the NT(gp96) improved the efficacy of the DNA vaccine, and this immunomodulatory effect was dependent on the position of the fusion.

  3. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines.

    Directory of Open Access Journals (Sweden)

    Simone M Costa

    Full Text Available The dengue non-structural 3 (NS3 is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase, fused or not to a signal peptide (t-PA. The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture, mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

  4. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines.

    Science.gov (United States)

    Costa, Simone M; Yorio, Anna Paula; Gonçalves, Antônio J S; Vidale, Mariana M; Costa, Emmerson C B; Mohana-Borges, Ronaldo; Motta, Marcia A; Freire, Marcos S; Alves, Ada M B

    2011-01-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

  5. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity

    DEFF Research Database (Denmark)

    Theisen, M; Dodoo, D; Toure-Balde, A;

    2001-01-01

    Antibodies against three long synthetic peptides (LSPs) derived from the glutamate-rich protein (GLURP) of Plasmodium falciparum were analyzed in three cohorts from Liberia, Ghana, and Senegal. Two overlapping LSPs, LR67 and LR68, are derived from the relatively conserved N-terminal nonrepeat reg...... antisera recognized parasite proteins as determined by immunofluorescence and immunoblotting. This indicates that synthetic peptides derived from relatively conserved epitopes of GLURP might serve as useful immunogens for vaccination against P. falciparum malaria....

  6. Prevention of meningococcal serogroup B infections in children: A protein-based vaccine induces immunologic memory

    NARCIS (Netherlands)

    E.D. de Kleijn (Ester); R. de Groot (Ronald); A.B. van Gageldonk-Lafeber (Rianne); J. Labadie (J.); C.J.P. van Limpt (C. J P); J. Visser (John); G.A. Berbers; L. van Alphen (Loek); H. Rümke (Hans)

    2001-01-01

    textabstractImmunologic memory against meningococci was studied in 177 children (100 children were 10-11 years old and 77 were 5-6 years old) 2.5 years after vaccination with hexavalent meningococcal outer membrane vesicle (OMV) vaccine or hepatitis B (HepB) vaccine. Children were revaccinated with

  7. EspA-Intimin chimeric protein, a candidate vaccine against Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Hamid Sedighian Rad

    2013-09-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 is an important enteric pathogen in human causing bloody or nonbloody diarrhea, which may be complicated by hemolytic uremic syndrome (HUS. Cattle are an important reservoir of EHEC. This research aims at vaccination with a divalent chimer protein composed of EspA120 and Intimin 282 and its preventive effect of EHEC O157 colonization in mice rectal epithelium.A divalent recombinant EspA-Intimin (EI protein containing EspA120 and Intimin280 attached with a linker was amplified from a trivalent construct and cloned in pET-28a (+ vector. The immunization was conducted in mice after expression and purification of the recombinant EI (rEI.Mice subcutaneously immunized with rEI, elicited significant rEI specific serum IgG antibodies and showed significantly decreased E.coli O157:H7 shedding compared to the control group.The chimeric recombinant protein induced strong humoral response as well as protection against oral challenges with live E.coli O157:H7.

  8. Bioinformatics Study on Zaire Ebolavirus (EBOV Protein for Better Understanding the Vaccine Development

    Directory of Open Access Journals (Sweden)

    D.S. Mundaganur

    2014-12-01

    Full Text Available Nine, Ebola viruse EBOV (Zaire ebolavirus, proteins are extracted from the NCBI repository and their study was carried out. The physicchemical properties and evolutionary link with other such viruses by homology modeling were carried out. All the proteins show rich in leucine domain an ideal requirement for fast attachment of the virus to the receptor molecule on the host cell surface. The prediction of trans-membrane sequence for the entire glycoprotein component reveals the ability of the virus to enter the host with ease. The lack of adequate homology model for the viral proteins indicates its novel origin and lack of well traceable evolutionary link. We studied the homology based model by using various available tools and find similar approach in all, hence finally concentrated only on one method. The model predicted shows well acceptable region on Ramchandran plot. This discrepancy is only due to the fact that we validate the model to Ramchandran plot and the model predicted were not under the well acceptable ‘e’ value range i.e. >1. Therefore we suggests that vaccine production against this deadly virus should be concentrated on the structure and functions of glycoprotein like low quality secreted glycoprotein (NP_066248, low quality spike glycoprotein(NP_0662460, small secreted glycoprotein (NP_066247 and RNA dependent RNA polymerase (NP_066251.

  9. Identification of proteins of Propionibacterium acnes for use as vaccine candidates to prevent infection by the pig pathogen Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Li, Linxi; Sun, Changjiang; Yang, Feng; Yang, Shuxin; Feng, Xin; Gu, Jingmin; Han, Wenyu; Langford, Paul R; Lei, Liancheng

    2013-10-25

    Actinobacillus pleuropneumoniae is the causative agent of acute and chronic pleuroneumonia that is responsible for substantial morbidity and mortality in the pig industry. New improved vaccines that can protect against all serotypes and prevent colonization are required. In a previous study we showed that whole cells of Propionibacterium acnes protected pigs from A. pleuropneumoniae serotype 1 and 5 and, therefore, the basis for a promising heterologous vaccine. The aim of this study was to identify those protein antigens of P. acnes responsible for protection against A. pleuropneumoniae infection. Six P. acnes protein antigens that were recognized by sera raised against A. pleuropneumoniae were identified by 2-DE and immunoblotting. Recombinant versions of all P. acnes proteins gave partial protection (10-80%) against A. pleuropneumoniae serotype 1 and/or 5 infection in a mouse challenge model. The best protection (80% serotype 1; 60% serotype 5) was obtained using recombinant P. acnes single-stranded DNA-binding protein. In part, protection against A. pleuropneumoniae infection may be mediated by small peptide sequences present in P. acnes single-stranded DNA-binding protein that are cross-reactive with those present in the A. pleuropneumoniae-specific RTX toxin ApxIV and the zinc-binding protein ZnuA. The results suggest that P. acnes may be a useful vaccine to protect against different serotypes of A. pleuropneumoniae. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A non-allergenic Ole e 1-like protein from birch pollen as a tool to design hypoallergenic vaccine candidates.

    Science.gov (United States)

    Marazuela, Eva G; Hajek, Roswitha; Villalba, Mayte; Barber, Domingo; Breiteneder, Heimo; Rodríguez, Rosalía; Batanero, Eva

    2012-02-01

    Recombinant DNA technology offers several approaches to convert allergens into hypoallergenic derivatives that can represent the basis of novel, safer and more effective forms of allergy vaccines. In this context, we used a new strategy for the design of a hypoallergenic derivative of Ole e 1, the main allergen of olive pollen. By screening a cDNA library from birch pollen, the clone BB18, encoding the birch counterpart of Ole e 1, was identified. In this study, BB18 has been produce in Pichia pastoris as a recombinant protein and immunologically characterized. The well-established non-allergenic properties of BB18 were used to generate a genetic variant of Ole e 1, named OB(55-58), by site-direct mutagenesis of four residues (E(55)V(56)G(57)Y(58)) in an IgE/IgG epitope of Ole e 1 by the corresponding ones in BB18 (SDSE). OB(55-58) was expressed in P. pastoris, purified to homogeneity and analyzed for IgE-reactivity by means of ELISA using sera from olive pollen allergic patients and rat basophil activation assay. T cell reactivity was assayed in a mouse model of Ole e 1 sensitization. The mutant OB(55-58) exhibited an impaired IgE reactivity, but not affected T cell reactivity, compared to wild type rOle e 1. This study emphasizes the usefulness of BB18 as a tool for epitope mapping and for engineering hypoallergenic derivatives of Ole e 1 as vaccine candidates for allergy prevention and treatment.

  11. Anti-IgE Qb-VLP Conjugate Vaccine Self-Adjuvants through Activation of TLR7

    Science.gov (United States)

    Akache, Bassel; Weeratna, Risini D.; Deora, Aparna; Thorn, Jennifer M.; Champion, Brian; Merson, James R.; Davis, Heather L.; McCluskie, Michael J.

    2016-01-01

    Qb bacteriophage virus-like particles (Qb-VLP) are utilized as carriers to enhance immune responses to weakly or non-immunogenic antigens such as peptides and haptens. Qb-VLPs are formed through the self-assembly of multiple Qb capsid protein monomers, a process which traps a large amount of bacterial RNA in the core of the VLP. Bacterial RNA is known to activate the innate immune system via TLR 7 and 8 found within the endosomes of certain immune cells and has been shown to contribute to the immunogenicity of Qb-VLP vaccines. Herein, we evaluated an anti-IgE vaccine comprised of two IgE peptides (Y and P) conjugated to Qb-VLP (Qb-Y and Qb-P, respectively) for in vitro stimulation of human PBMCs and in vivo immunogenicity in mice. The in vitro secretion of IFN-α from human PBMCs exposed to Qb-Y is consistent with TLR7 activation. Immunization of mice with the IgE peptide Qb-VLP conjugates induced high titers of anti-IgE antibodies in wild-type mice, but significantly lower titers in TLR7 knockout mice, supporting the self-adjuvanting role of the RNA. Inclusion of alum and alum/CpG as adjuvants partially or completely compensated for the lack of TLR7 activation in TLR7-deficient mice. Our study demonstrates the key role that TLR7 plays in the immunogenicity of the IgE peptide Qb-VLP conjugate vaccine. PMID:26805897

  12. Anti-IgE Qb-VLP Conjugate Vaccine Self-Adjuvants through Activation of TLR7.

    Science.gov (United States)

    Akache, Bassel; Weeratna, Risini D; Deora, Aparna; Thorn, Jennifer M; Champion, Brian; Merson, James R; Davis, Heather L; McCluskie, Michael J

    2016-01-21

    Qb bacteriophage virus-like particles (Qb-VLP) are utilized as carriers to enhance immune responses to weakly or non-immunogenic antigens such as peptides and haptens. Qb-VLPs are formed through the self-assembly of multiple Qb capsid protein monomers, a process which traps a large amount of bacterial RNA in the core of the VLP. Bacterial RNA is known to activate the innate immune system via TLR 7 and 8 found within the endosomes of certain immune cells and has been shown to contribute to the immunogenicity of Qb-VLP vaccines. Herein, we evaluated an anti-IgE vaccine comprised of two IgE peptides (Y and P) conjugated to Qb-VLP (Qb-Y and Qb-P, respectively) for in vitro stimulation of human PBMCs and in vivo immunogenicity in mice. The in vitro secretion of IFN-α from human PBMCs exposed to Qb-Y is consistent with TLR7 activation. Immunization of mice with the IgE peptide Qb-VLP conjugates induced high titers of anti-IgE antibodies in wild-type mice, but significantly lower titers in TLR7 knockout mice, supporting the self-adjuvanting role of the RNA. Inclusion of alum and alum/CpG as adjuvants partially or completely compensated for the lack of TLR7 activation in TLR7-deficient mice. Our study demonstrates the key role that TLR7 plays in the immunogenicity of the IgE peptide Qb-VLP conjugate vaccine.

  13. Anti-IgE Qb-VLP Conjugate Vaccine Self-Adjuvants through Activation of TLR7

    Directory of Open Access Journals (Sweden)

    Bassel Akache

    2016-01-01

    Full Text Available Qb bacteriophage virus-like particles (Qb-VLP are utilized as carriers to enhance immune responses to weakly or non-immunogenic antigens such as peptides and haptens. Qb-VLPs are formed through the self-assembly of multiple Qb capsid protein monomers, a process which traps a large amount of bacterial RNA in the core of the VLP. Bacterial RNA is known to activate the innate immune system via TLR 7 and 8 found within the endosomes of certain immune cells and has been shown to contribute to the immunogenicity of Qb-VLP vaccines. Herein, we evaluated an anti-IgE vaccine comprised of two IgE peptides (Y and P conjugated to Qb-VLP (Qb-Y and Qb-P, respectively for in vitro stimulation of human PBMCs and in vivo immunogenicity in mice. The in vitro secretion of IFN-α from human PBMCs exposed to Qb-Y is consistent with TLR7 activation. Immunization of mice with the IgE peptide Qb-VLP conjugates induced high titers of anti-IgE antibodies in wild-type mice, but significantly lower titers in TLR7 knockout mice, supporting the self-adjuvanting role of the RNA. Inclusion of alum and alum/CpG as adjuvants partially or completely compensated for the lack of TLR7 activation in TLR7-deficient mice. Our study demonstrates the key role that TLR7 plays in the immunogenicity of the IgE peptide Qb-VLP conjugate vaccine.

  14. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model

    Science.gov (United States)

    Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Mohammed M.; Al-Shorbagy, Muhammad; Laible, Götz

    2017-04-01

    Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. In conclusion: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

  15. Induction of a robust immunity response against novel duck reovirus in ducklings using a subunit vaccine of sigma C protein

    Science.gov (United States)

    Bi, Zhuangli; Zhu, Yingqi; Chen, Zongyan; Li, Chuanfeng; Wang, Yong; Wang, Guijun; Liu, Guangqing

    2016-01-01

    Novel duck reovirus (NDRV) disease emerged in China in 2011 and continues to cause high morbidity and about 5.0 to 50% mortality in ducklings. Currently there are no approved vaccines for the virus. This study aimed to assess the efficacy of a new vaccine created from the baculovirus and sigma C gene against NDRV. In this study, a recombinant baculovirus containing the sigma C gene was constructed, and the purified protein was used as a vaccine candidate in ducklings. The efficacy of sigma C vaccine was estimated according to humoral immune responses, cellular immune response and protection against NDRV challenge. The results showed that sigma C was highly expressed in Sf9 cells. Robust humoral and cellular immune responses were induced in all ducklings immunized with the recombinant sigma C protein. Moreover, 100% protection against lethal challenge with NDRV TH11 strain was observed. Summary, the recombinant sigma C protein could be utilized as a good candidate against NDRV infection. PMID:27974824

  16. Safety, reactogenicity and immunogenicity of 2-dose catch-up vaccination with 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) in Malian children in the second year of life: Results from an open study.

    Science.gov (United States)

    Dicko, Alassane; Dicko, Yahia; Barry, Amadou; Sidibe, Youssoufa; Mahamar, Almahamoudou; Santara, Gaoussou; Dolo, Amagana; Diallo, Aminata; Doumbo, Ogobara; Shafi, Fakrudeen; François, Nancy; Yarzabal, Juan Pablo; Strezova, Ana; Borys, Dorota; Schuerman, Lode

    2015-01-01

    Pneumonia is still the leading cause of death among African children with pneumococcal serotypes 1 and 5 being dominant in the below 5 y of age group. The present study assessed the safety, reactogenicity and immunogenicity of a 2-dose catch-up vaccination with the 10-valent pneumococcal non-typeable Haemophilus influenzae Protein D conjugate vaccine (PHiD-CV) in Malian children. This phase III, open-label study (NCT00985465) was conducted in Ouelessebougou, Mali, between November 2009 and July 2010. The study population consisted of PHiD-CV unprimed Malian children previously enrolled in the control group of study NCT00678301 receiving a 2-dose catch-up vaccination with PHiD-CV in the second year of life. Adverse events were recorded following each PHiD-CV dose. Antibody responses and opsonophagocytic activity (OPA) were measured pre-vaccination and after the second PHiD-CV catch-up dose. Swelling and fever (axillary temperature ≥ 37.5°C) were the most frequently reported solicited symptoms following either PHiD-CV dose. Few grade 3 solicited symptoms were reported. Large swelling reactions and serious adverse events were not reported. Post-catch-up vaccination, for each vaccine pneumococcal serotype, at least 94.7% of subjects had antibody concentrations ≥ 0.2 μg/ml, except for serotypes 6B (82.5%) and 23F (87.7%). At least 94.0% of subjects had OPA titres ≥ 8, except for serotype 19F (89.4%). The geometric mean concentration for antibodies against protein D was 839.3 (95% CI: 643.5-1094.6) EL.U/ml. Two-dose PHiD-CV catch-up regimen in the second year of life was well-tolerated and immunogenic for all vaccine pneumococcal serotypes and NTHi protein D when administered to Malian children.

  17. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate.

    Science.gov (United States)

    Chen, Wen-Hsiang; Du, Lanying; Chag, Shivali M; Ma, Cuiqing; Tricoche, Nancy; Tao, Xinrong; Seid, Christopher A; Hudspeth, Elissa M; Lustigman, Sara; Tseng, Chien-Te K; Bottazzi, Maria Elena; Hotez, Peter J; Zhan, Bin; Jiang, Shibo

    2014-01-01

    Development of vaccines for preventing a future pandemic of severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV) and for biodefense preparedness is urgently needed. Our previous studies have shown that a candidate SARS vaccine antigen consisting of the receptor-binding domain (RBD) of SARS-CoV spike protein can induce potent neutralizing antibody responses and protection against SARS-CoV challenge in vaccinated animals. To optimize expression conditions for scale-up production of the RBD vaccine candidate, we hypothesized that this could be potentially achieved by removing glycosylation sites in the RBD protein. In this study, we constructed two RBD protein variants: 1) RBD193-WT (193-aa, residues 318-510) and its deglycosylated forms (RBD193-N1, RBD193-N2, RBD193-N3); 2) RBD219-WT (219-aa, residues 318-536) and its deglycosylated forms (RBD219-N1, RBD219-N2, and RBD219-N3). All constructs were expressed as recombinant proteins in yeast. The purified recombinant proteins of these constructs were compared for their antigenicity, functionality and immunogenicity in mice using alum as the adjuvant. We found that RBD219-N1 exhibited high expression yield, and maintained its antigenicity and functionality. More importantly, RBD219-N1 induced significantly stronger RBD-specific antibody responses and a higher level of neutralizing antibodies in immunized mice than RBD193-WT, RBD193-N1, RBD193-N3, or RBD219-WT. These results suggest that RBD219-N1 could be selected as an optimal SARS vaccine candidate for further development.

  18. The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice.

    Science.gov (United States)

    Palma, Carla; Iona, Elisabetta; Giannoni, Federico; Pardini, Manuela; Brunori, Lara; Orefici, Graziella; Fattorini, Lanfranco; Cassone, Antonio

    2007-06-01

    Clarifying how an initial protective immune response to tuberculosis may later loose its efficacy is essential to understand tuberculosis pathology and to develop novel vaccines. In mice, a primary vaccination with Ag85B-encoding plasmid DNA (DNA-85B) was protective against Mycobacterium tuberculosis (MTB) infection and associated with Ag85B-specific CD4+ T cells producing IFN-gamma and controlling intramacrophagic MTB growth. Surprisingly, this protection was eliminated by Ag85B protein boosting. Loss of protection was associated with a overwhelming CD4+ T cell proliferation and IFN-gamma production in response to Ag85B protein, despite restraint of Th1 response by CD8+ T cell-dependent mechanisms and activation of CD4+ T cell-dependent IL-10 secretion. Importantly, these Ag85B-responding CD4+ T cells lost the ability to produce IFN-gamma and control MTB intramacrophagic growth in coculture with MTB-infected macrophages, suggesting that the protein-dependent expansion of non-protective CD4+ T cells determined dilution or loss of the protective Ag85B-specific CD4+ induced by DNA-85B vaccination. These data emphasize the need of exerting some caution in adopting aggressive DNA-priming, protein-booster schedules for MTB vaccines. They also suggest that Ag85B protein secreted during MTB infection could be involved in the instability of protective anti-tuberculosis immune response, and actually concur to disease progression.

  19. NY-ESO-1 Protein Cancer Vaccine With Poly-ICLC and OK-432: Rapid and Strong Induction of NY-ESO-1-specific Immune Responses by Poly-ICLC.

    Science.gov (United States)

    Takeoka, Tomohira; Nagase, Hirotsugu; Kurose, Koji; Ohue, Yoshihiro; Yamasaki, Makoto; Takiguchi, Shuji; Sato, Eiichi; Isobe, Midori; Kanazawa, Takayuki; Matsumoto, Mitsunobu; Iwahori, Kota; Kawashima, Atsunari; Morimoto-Okazawa, Akiko; Nishikawa, Hiroyoshi; Oka, Mikio; Pan, Linda; Venhaus, Ralph; Nakayama, Eiichi; Mori, Masaki; Doki, Yuichiro; Wada, Hisashi

    2017-03-23

    We conducted a clinical trial of a cancer vaccine using NY-ESO-1 protein with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) and/or OK-432 against solid tumors. A total of 15 patients were sequentially enrolled in 4 cohorts. Patients in cohort 1 received NY-ESO-1 protein; cohort 2a received NY-ESO-1 protein+OK-432; cohort 2b received NY-ESO-1 protein+poly-ICLC; cohort 3 received NY-ESO-1 protein+OK-432+poly-ICLC with Montanide ISA-51. The endpoints of this trial were safety, NY-ESO-1 immune responses, and clinical response. Vaccine-related adverse events observed were fever and injection-site reaction (grade 1). Two patients showed stable disease after vaccination. NY-ESO-1 antibodies were observed in 4 patients at the baseline (sero-positive) and augmented in all patients after vaccination. Eleven patients showed a conversion of negative antibody responses at baseline to positive after vaccination (seroconversion). The seroconversions were observed in all 11 sero-negative patients by the fourth immunization; in particular, it was observed by the second immunization in patients with poly-ICLC, and these induced antibody responses were stronger than those in patients immunized without poly-ICLC. The number of NY-ESO-1-specific interferon (IFN)γ-producing T cells was increased in patients immunized with poly-ICLC and/or OK-432, and furthermore, the increase of IFNγ-producing CD8 T cells in patients immunized with poly-ICLC was significantly higher than that in patients without poly-ICLC. Nonspecific activations of T-cell or antigen presenting cells were not observed. Our present study showed that poly-ICLC is a promising adjuvant for cancer vaccines.

  20. The efficacy of oral vaccination of mice with alginate encapsulated outer membrane proteins of Pasteurella haemolytica and One-Shot.

    Science.gov (United States)

    Kidane, A; Guimond, P; Ju, T R; Sanchez, M; Gibson, J; Bowersock, T L

    2001-03-21

    The goal of this study was to examine the efficacy of oral delivery of alginate encapsulated outer membrane proteins (OMP) of Pasteurella haemolytica and a commercial One-Shot vaccine in inducing protection in mice against lethal challenge with virulent P. haemolytica. We examined two alginate microsphere formulations and compared them with oral unencapsulated and subcutaneously administered vaccines. Alginate microspheres were made by the emulsion-cross-linking technique. They were examined for size, hydrophobicity, and antigen loading efficiency before they were used in the study. Mice were vaccinated by administering 200 microg of antigens in 200 microl of microspheres suspension orally or subcutaneously. One group of mice received blank microspheres and a second group was given unencapsulated antigen orally. A third and a fourth group received different formulations of alginate encapsulated antigens by oral administration. Three groups received subcutaneous inoculations (alginate encapsulated, non-adjuvanted and unencapsulated antigens, and adjuvanted One-Shot), and one group received water (naïve group). Mice were vaccinated orally for four consecutive days and challenged with P. haemolytica 5 weeks after the first vaccination. Weekly serum and feces samples were assayed for antigen specific antibodies. The number of dead mice in each group 4 days post challenge was used to compare the efficacy of the various vaccination groups. The mean volume sizes of blank alginate microsphere formulations A, and AA were 15.9, 16 and 9.2 microm, respectively. Hydrophobicity of the microspheres was evaluated by measuring contact angle on a glass slide coated with the microspheres. The contact angles on A and AA were 37.8 and 74.3 degrees, respectively. Antigen concentration in a 1:1 w/w suspension of microspheres in water was 0.9 mg/ml. Rate of death for the blank group was 42.8% whereas for groups vaccinated with antigens encapsulated in A and AA the death rates were 40

  1. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.;

    2015-01-01

    target diverse regions in highly variable viral pathogens and this diversity may need to be addressed through redefinition of suitable peptide targets. Methods: We have developed a method for antigen assessment and target selection for polyvalent vaccines, with which we identified immune epitopes from...... the number of potential vaccine targets compared to the number of targets discovered using the traditional approach where low-frequency peptides are excluded. Conclusions: We developed a webserver with an intuitive visualization scheme for summarizing the T cell-based antigenic potential of any given protein......Background: Computational methods for T cell-based vaccine target discovery focus on selection of highly conserved peptides identified across pathogen variants, followed by prediction of their binding of human leukocyte antigen molecules. However, experimental studies have shown that T cells often...

  2. DNA vaccination with a gene encoding Toxoplasma gondii Rhoptry Protein 17 induces partial protective immunity against lethal challenge in mice

    Directory of Open Access Journals (Sweden)

    Wang Hai-Long

    2016-01-01

    Full Text Available Toxoplasma gondii is an obligate intracellular apicomplexan parasite that affects humans and various vertebrate livestock and causes serious economic losses. To develop an effective vaccine against T. gondii infection, we constructed a DNA vaccine encoding the T. gondii rhoptry protein 17 (TgROP17 and evaluated its immune protective efficacy against acute T. gondii infection in mice. The DNA vaccine (p3×Flag-CMV-14-ROP17 was intramuscularly injected to BALB/c mice and the immune responses of the vaccinated mice were determined. Compared to control mice treated with empty vector or PBS, mice immunized with the ROP17 vaccine showed a relatively high level of specific anti-T. gondii antibodies, and a mixed IgG1/IgG2a response with predominance of IgG2a production. The immunized mice also displayed a specific lymphocyte proliferative response, a Th1-type cellular immune response with production of IFN-γ and interleukin-2, and increased number of CD8+ T cells. Immunization with the ROP17 DNA significantly prolonged the survival time (15.6 ± 5.4 days, P < 0.05 of mice after challenge infection with the virulent T. gondii RH strain (Type I, compared with the control groups which died within 8 days. Therefore, our data suggest that DNA vaccination with TgROP17 triggers significant humoral and cellular responses and induces effective protection in mice against acute T. gondii infection, indicating that TgROP17 is a promising vaccine candidate against acute toxoplasmosis.

  3. Vaccination with viral protein-mimicking peptides postpones mortality in domestic pigs infected by African swine fever virus.

    Science.gov (United States)

    Ivanov, Vadim; Efremov, Evgeniy E; Novikov, Boris V; Balyshev, Vladimir M; Tsibanov, Sodnom Zh; Kalinovsky, Tatiana; Kolbasov, Denis V; Niedzwiecki, Aleksandra; Rath, Matthias

    2011-01-01

    Periodic outbreaks of African swine fever virus (ASFV) infection around the world threaten local populations of domestic pigs with lethal disease and provide grounds for pandemic spread. Effective vaccination may bring this threat under control. We investigated the effectiveness of select peptides mimicking viral proteins in establishing a protective immune response. Forty-six synthetic peptides based on the analysis of the complete nucleotide sequence of ASFV were tested for immunogenicity in mice. The 17 best immune response-inducing peptide candidates were selected for further investigation. Twenty-four domestic pigs, 3-4 months old and weighing 20-25 kg, were divided into six groups (n = 4) and immunized by subcutaneous injection using a standard three-round injection protocol with one of four peptide combinations prepared from the 17 peptides (Groups 1-4) or with carrier only (Group 5). Group 6, the control, was not vaccinated. Animal body temperature and behavior were monitored during and post immunization for health assessment. Two weeks after the last round of immunizations, the pigs were infected with live ASFV (Espania 70) at 6.0 Ig GAE50/cm3, and the survival rate was monitored. Blood samples were collected for analysis the day before infection and on days 3, 7 and 10 post-infection, or from deceased animals. The serum titers of specific immunoglobulins against synthetic peptides and whole inactivated ASFV were determined by enzyme immunoassay before and after infection. The presence of viral DNA in blood serum samples was determined by polymerase chain reaction. Viral infection activity in blood sera was determined by heme absorption in cultured porcine bone marrow and porcine leukocyte cells. Repeating the injection of synthetic peptides in both the mice and pigs produced an immune response specific to individual peptides, which differed widely in the intensity scale. Specific anti-whole virus immunoglobulin binding activity in the swine serum samples

  4. The use of dissolved oxygen-controlled, fed-batch aerobic cultivation for recombinant protein subunit vaccine manufacturing.

    Science.gov (United States)

    Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony

    2015-11-27

    A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales.

  5. Assessment of a novel recombinant vesicular stomatitis virus with triple mutations in its matrix protein as a vaccine for pigs.

    Science.gov (United States)

    Fang, Xinkui; Qi, Bing; Ma, Yufang; Zhou, Xinchu; Zhang, Shikuan; Sun, Tao

    2015-11-17

    Vesicular stomatitis virus (VSV) causes a serious vesicular disease responsible for economic losses in the livestock industry. Currently, there are no suitable vaccines to prevent VSV infection. Although the structural matrix (M) protein of VSV has been shown to be a virulence factor in rodent models, its role in the pathogenicity of VSV infection in livestock species is unknown. We hypothesized that VSV with mutations in the M protein represents a novel live attenuated vaccine candidate. To test this, we introduced mutations into VSV M protein using reverse genetics and assessed their attenuation both in vitro and in pigs, an important natural host of VSV. A recombinant VSV with a triple amino acid mutation in M protein (VSVMT) demonstrated a significantly reduced ability to inhibit the type I interferon (IFN) signaling pathway and to shutoff host gene expression compared to WT-VSV and a mutant virus with a single amino acid deletion (VSVΔM51). Inoculation of pigs with VSVMT induced no apparent vesicular lesions but stimulated virus-neutralizing antibodies and animals were protected against virulent VSV challenge infection. These data demonstrate that the M protein is an important virulence factor for VSV in swine and VSVMT represents a novel vaccine candidate for VSV infections in pigs.

  6. CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets.

    Science.gov (United States)

    Aldhamen, Yasser A; Rastall, David P W; Chen, Weimin; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Kaminski, Norbert E; Amalfitano, Andrea

    2016-06-08

    The CD2-like receptor activating cytotoxic cell (CRACC) receptor is a member of the SLAM family of receptors that are found on several types of immune cells. We previously demonstrated that increasing the abundance of the adaptor protein EAT-2 during vaccination enhanced innate and adaptive immune responses to vaccine antigens. Engagement of the CRACC receptor in the presence of the EAT-2 adaptor generally results in immune cell activation, while activating CRACC signaling in cells that lack EAT-2 adaptor inhibits their effector and regulatory functions. As EAT-2 is the only SAP adaptor that interacts with the CRACC receptor, we hypothesized that technologies that specifically modulate CRACC signaling during vaccination may also improve antigen specific adaptive immune responses. To test this hypothesis, we constructed a CRACC-targeting Fc fusion protein and included it in vaccination attempts. Indeed, mice co-vaccinated with the CRACC-Fc fusion protein and an adenovirus vaccine expressing the HIV-Gag protein had improved Gag-specific T cell responses, as compared to control mice. These responses are characterized by increased numbers of Gag-specific tetramer+ CD8+ T cells and increases in production of IFNγ, TNFα, and IL2, by Gag-specific CD8+ T cells. Moreover, our results revealed that use of the CRACC-Fc fusion protein enhances vaccine-elicited innate immune responses, as characterized by increased dendritic cells (DCs) maturation and IFNγ production from NK cells. This study highlights the importance of CRACC signaling during the induction of an immune response generally, and during vaccinations specifically, and also lends insight into the mechanisms underlying our prior results noting EAT-2-dependent improvements in vaccine efficacy.

  7. Halitosis vaccines targeting FomA, a biofilm-bridging protein of fusobacteria nucleatum.

    Science.gov (United States)

    Liu, P-F; Huang, I-F; Shu, C-W; Huang, C-M

    2013-09-01

    Halitosis (bad breath) is estimated to influence more than half of the world's population with varying degree of intensity. More than 85% of halitosis originates from oral bacterial infections. Foul-smelling breath mainly results from bacterial production of volatile sulfur compounds (VSCs) such as hydrogen sulfide and methyl mercaptan. To date, major treatments for elimination of oral malodor include periodontal therapy combined with antibiotics or antimicrobial agents, and mechanical approaches including tooth and tongue cleaning. These treatments may transiently reduce VSCs but carry risks of generating toxicity, increasing resistant strains and misbalancing the resident human flora. Therefore, there is a need to develop alternative therapeutic modalities for halitosis. Plaque biofilms are the principal source for generating VSCs which are originally metabolized from amino acids during co-aggregation of oral bacteria. Blocking the bacterial coaggregation, therefore, may prevent various biofilm-associated oral diseases such as periodontitis and halitosis. Fusobacterium nucleatum (F. nucleatum), a Gram-negative anaerobe oral bacterium, is a main bacterial strain related to halitosis. Aggregation of F. nucleatum with other bacteria to form plaque biofilms in oral cavity causes bad breath. FomA, the major outer membrane protein of F. nucleatum, recruits other oral pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) in the periodontal pockets. A halitosis vaccine targeting F. bacterium FomA significantly abrogates the enhancement of bacterial co-aggregation, biofilms, production of VSCs, and gum inflammation mediated by an inter-species interaction of F. nucleatum with P. gingivalis, which suggests FomA of F. nucleatum to be a potential target for development of vaccines or drugs against bacterial biofilm formation and its associated pathogenicities.

  8. UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate.

    Science.gov (United States)

    Foucault, Marine; Mayol, Katia; Receveur-Bréchot, Véronique; Bussat, Marie-Claire; Klinguer-Hamour, Christine; Verrier, Bernard; Beck, Alain; Haser, Richard; Gouet, Patrice; Guillon, Christophe

    2010-05-01

    The 101-residue long Tat protein of primary isolate 133 of the human immunodeficiency virus type 1 (HIV-1), wt-Tat(133) displays a high transactivation activity in vitro, whereas the mutant thereof, STLA-Tat(133), a vaccine candidate for HIV-1, has none. These two proteins were chemically synthesized and their biological activity was validated. Their structural properties were characterized using circular dichroism (CD), fluorescence emission, gel filtration, dynamic light scattering, and small angle X-ray scattering (SAXS) techniques. SAXS studies revealed that both proteins were extended and belong to the family of intrinsically unstructured proteins. CD measurements showed that wt-Tat(133) or STLA-Tat(133) underwent limited structural rearrangements when complexed with specific fragments of antibodies. Crystallization trials have been performed on the two forms, assuming that the Tat(133) proteins might have a better propensity to fold in supersaturated conditions, and small crystals have been obtained. These results suggest that biologically active Tat protein is natively unfolded and requires only a limited gain of structure for its function.

  9. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    example of a dominant and variable site. This variability is a problem when designing vaccines against this disease, because it necessitates a close match between vaccine strain and virus in an outbreak. We have introduced a series of mutations into viral capsid proteins with the aim of selectively...

  10. Protection of pigs against challenge with virulent Streptococcus suis serotype 2 strains by a muramidase-released protein and extracellular factor vaccine

    NARCIS (Netherlands)

    Wisselink, H.J.; Vecht, U.; Stockhofe Zurwieden, N.; Smith, H.E.

    2001-01-01

    The efficacy of a muramidase-released protein (MRP) and extracellular factor (EF) vaccine in preventing infection and disease in pigs challenged either with a homologous or a heterologous Streptococcus suis serotype 2 strain (MRP EF ) was compared with the efficacy of a vaccine containing formalin-k

  11. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  12. Constitutively active IRF7/IRF3 fusion protein completely protects swine against Foot-and-Mouth Disease

    Science.gov (United States)

    Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype specific vaccine formulations exist but require about 5-7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine ...

  13. Vaccination against the M protein of Streptococcus pyogenes prevents death after influenza virus: S. pyogenes super-infection.

    Science.gov (United States)

    Klonoski, Joshua M; Hurtig, Heather R; Juber, Brian A; Schuneman, Margaret J; Bickett, Thomas E; Svendsen, Joshua M; Burum, Brandon; Penfound, Thomas A; Sereda, Grigoriy; Dale, James B; Chaussee, Michael S; Huber, Victor C

    2014-09-08

    Influenza virus infections are associated with a significant number of illnesses and deaths on an annual basis. Many of the deaths are due to complications from secondary bacterial invaders, including Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes. The β-hemolytic bacteria S. pyogenes colonizes both skin and respiratory surfaces, and frequently presents clinically as strep throat or impetigo. However, when these bacteria gain access to normally sterile sites, they can cause deadly diseases including sepsis, necrotizing fasciitis, and pneumonia. We previously developed a model of influenza virus:S. pyogenes super-infection, which we used to demonstrate that vaccination against influenza virus can limit deaths associated with a secondary bacterial infection, but this protection was not complete. In the current study, we evaluated the efficacy of a vaccine that targets the M protein of S. pyogenes to determine whether immunity toward the bacteria alone would allow the host to survive an influenza virus:S. pyogenes super-infection. Our data demonstrate that vaccination against the M protein induces IgG antibodies, in particular those of the IgG1 and IgG2a isotypes, and that these antibodies can interact with macrophages. Ultimately, this vaccine-induced immunity eliminated death within our influenza virus:S. pyogenes super-infection model, despite the fact that all M protein-vaccinated mice showed signs of illness following influenza virus inoculation. These findings identify immunity against bacteria as an important component of protection against influenza virus:bacteria super-infection.

  14. Design of meningococcal factor H binding protein mutant vaccines that do not bind human complement factor H.

    Science.gov (United States)

    Pajon, Rolando; Beernink, Peter T; Granoff, Dan M

    2012-08-01

    Meningococcal factor H binding protein (fHbp) is a human species-specific ligand for the complement regulator, factor H (fH). In recent studies, fHbp vaccines in which arginine at position 41 was replaced by serine (R41S) had impaired fH binding. The mutant vaccines elicited bactericidal responses in human fH transgenic mice superior to those elicited by control fHbp vaccines that bound human fH. Based on sequence similarity, fHbp has been classified into three variant groups. Here we report that although R41 is present in fHbp from variant groups 1 and 2, the R41S substitution eliminated fH binding only in variant group 1 proteins. To identify mutants in variant group 2 with impaired fH binding, we generated fHbp structural models and predicted 63 residues influencing fH binding. From these, we created 11 mutants with one or two amino acid substitutions in a variant group 2 protein and identified six that decreased fH binding. Three of these six mutants retained conformational epitopes recognized by all six anti-fHbp monoclonal antibodies (MAbs) tested and elicited serum complement-mediated bactericidal antibody titers in wild-type mice that were not significantly different from those obtained with the control vaccine. Thus, fHbp amino acid residues that affect human fH binding differ across variant groups. This result suggests that fHbp sequence variation induced by immune selection also affects fH binding motifs via coevolution. The three new fHbp mutants from variant group 2, which do not bind human fH, retained important epitopes for eliciting bactericidal antibodies and may be promising vaccine candidates.

  15. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease.

    Science.gov (United States)

    Seid, Christopher A; Jones, Kathryn M; Pollet, Jeroen; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J

    2017-03-04

    A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.

  16. Heterogeneity in rhesus macaque complement factor H binding to meningococcal factor H binding protein (FHbp) informs selection of primates to assess immunogenicity of FHbp-based vaccines.

    Science.gov (United States)

    Beernink, Peter T; Shaughnessy, Jutamas; Stefek, Heather; Ram, Sanjay; Granoff, Dan M

    2014-11-01

    Neisseria meningitidis causes disease only in humans. An important mechanism underlying this host specificity is the ability of the organism to resist complement by recruiting the complement downregulator factor H (FH) to the bacterial surface. In previous studies, binding of FH to one of the major meningococcal FH ligands, factor H binding protein (FHbp), was reported to be specific for human FH. Here we report that sera from 23 of 73 rhesus macaques (32%) tested had high FH binding to FHbp. Similar to human FH, binding of macaque FH to the meningococcal cell surface inhibited the complement alternative pathway by decreasing deposition of C3b. FH contains 20 domains (or short consensus repeats), with domains 6 and 7 being responsible for binding of human FH to FHbp. DNA sequence analyses of FH domains 6 and 7 from macaques with high or low FH binding showed a polymorphism at residue 352 in domain 6, with Tyr being associated with high binding and His with low binding. A recombinant macaque FH 6,7/Fc fragment with Tyr352 showed higher binding to FHbp than the corresponding fragment with His352. In previous studies in human FH transgenic mice, binding of FH to FHbp vaccines decreased protective antibody responses, and mutant FHbp vaccines with decreased FH binding elicited serum antibodies with greater protective activity. Thus, macaques with high FH binding to FHbp represent an attractive nonhuman primate model to investigate further the effects of FH binding on the immunogenicity of FHbp vaccines.

  17. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available BACKGROUND: The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects. METHODOLOGY/PRINCIPAL FINDINGS: To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites. CONCLUSION: The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  18. Structural analysis of the synthetic Duffy Binding Protein (DBP antigen DEKnull relevant for Plasmodium vivax malaria vaccine design.

    Directory of Open Access Journals (Sweden)

    Edwin Chen

    2015-03-01

    Full Text Available The Plasmodium vivax vaccine candidate Duffy Binding Protein (DBP is a protein necessary for P. vivax invasion of reticulocytes. The polymorphic nature of DBP induces strain-specific immune responses that pose unique challenges for vaccine development. DEKnull is a synthetic DBP based antigen that has been engineered through mutation to enhance induction of blocking inhibitory antibodies. We determined the x-ray crystal structure of DEKnull to identify if any conformational changes had occurred upon mutation. Computational and experimental analyses assessed immunogenicity differences between DBP and DEKnull epitopes. Functional binding assays with monoclonal antibodies were used to interrogate the available epitopes in DEKnull. We demonstrate that DEKnull is structurally similar to the parental Sal1 DBP. The DEKnull mutations do not cause peptide backbone shifts within the polymorphic loop, or at either the DBP dimerization interface or DARC receptor binding pockets, two important structurally conserved protective epitope motifs. All B-cell epitopes, except for the mutated DEK motif, are conserved between DEKnull and DBP. The DEKnull protein retains binding to conformationally dependent inhibitory antibodies. DEKnull is an iterative improvement of DBP as a vaccine candidate. DEKnull has reduced immunogenicity to polymorphic regions responsible for strain-specific immunity while retaining conserved protein folds necessary for induction of strain-transcending blocking inhibitory antibodies.

  19. Efficacy of bacterin-, outer membrane protein- and fimbriae extract-based vaccines for the control of Salmonella Enteritidis experimental infection in chickens

    Directory of Open Access Journals (Sweden)

    Márcia C. Menão

    2013-03-01

    Full Text Available The efficacy of three vaccines was evaluated in chickens for the control of experimental infection with Salmonella Enteritidis (SE phage type 4. The vaccines were produced with bacterin, outer membrane proteins (OMP and fimbriae crude extract (FE. The chickens were vaccinated intramuscularly with two doses of each vaccine at 12 and 15 weeks of age. The chickens were then orally challenged with 10(9 CFU/chicken Salmonella Enteritidis phage type 4 at 18 weeks of age. Fecal swabs were performed for the recovery of shedding SE, and SE was recovered from the liver and spleen. Additionally, antibody titers were measured in the serum by micro-agglutination test. The results indicated that the vaccine produced with bacterin yielded better results and resulted in reduction of fecal shedding and organ invasion by SE after oral challenge, although no vaccine was 100% effective for the control of SE experimental infection.

  20. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW;

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...

  1. Mutation of candidate immunosuppressive domains of viral envelope proteins in order to generate hyperimmunogenic vaccines

    DEFF Research Database (Denmark)

    Thomsen, Jonas

    2017-01-01

    nosokomiel transmission. Den manglende effekt af især type 1 PRRSV vaccinen indikerer et behov for at forberede vacciner mod PRRSV og der er endnu ingen vaccine imod MERS coronavirus. Dog er der fornyeligt blevet rapporteret, at en Ebola vaccine har udvist 100% effektivitet, men i kapløbet mod de evigt...... udviklende patogener er vaccine forbedringer altid nødvendige. I denne afhandling bliver det demonstreret, at enkelte punkt mutationer af specifikke aminosyrer i de formodede ISD’er ikke ødelægger proteinernes funktion i cellekultur. Proteinernes funktion blev testet ved transduktion af vildtypevirus...

  2. Gamma-irradiated influenza A virus provides adjuvant activity to a co-administered poorly immunogenic SFV vaccine in mice.

    Directory of Open Access Journals (Sweden)

    Rachelle eBabb

    2014-06-01

    Full Text Available Many currently available inactivated vaccines require 'adjuvants' to maximise the protective immune responses generated against the antigens of interest. Recent studies in mice with gamma-irradiated influenza A virus (γ-FLU have shown its superior efficacy compared to other forms of inactivated FLU vaccines and its ability to induce both potent type-I interferon (IFN-I responses and the IFN-I associated partial lymphocyte activation. Commonly, IFN-I responses induced by adjuvants, combined in vaccine preparations, have been shown to effectively enhance the immunogenicity of the antigens of interest. Therefore, we investigated the potential adjuvant activity of γ-FLU and the possible effect on antibody responses against co-administrated antigens, using gamma-irradiated Semliki Forest Virus (γ-SFV as the experimental vaccine in mice. Our data show that co-vaccination with γ-FLU and γ-SFV resulted in enhanced SFV-specific antibody responses in terms of increased titres by 6 fold and greater neutralisation efficacy, when compared to vaccination with γ-SFV alone. This study provides promising evidence related to the possible use of γ-FLU as an adjuvant to poorly immunogenic vaccines without compromising the vaccine efficacy of γ-FLU.

  3. Neutrophil Migration in the Activation of the Innate Immune Response to Different Flavobacterium psychrophilum Vaccines in Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Camila J. Solís

    2015-01-01

    Full Text Available Flavobacterium psychrophilum is a Gram-negative bacterium, responsible for the bacterial cold-water disease and the rainbow trout fry syndrome in freshwater salmonid fish. At present, there is only one commercial vaccine in Chile, made with two Chilean F. psychrophilum isolates and another licensed in Europe. The present study analyzed neutrophil migration, as a marker of innate immune activation, in zebrafish (Danio rerio in response to different F. psychrophilum bath vaccines, which is the first step in evaluating vaccine effectiveness and efficiency in fish. Results indicated that bacterins of the LM-02-Fp isolate were more immunogenic than those from the LM-13-Fp isolate. However, no differences were observed between the same bacteria inactivated by either formaldehyde or heat. Importantly, the same vaccine formulation without an adjuvant only triggered a mild neutrophil migration compared to the complete vaccine. Observations also found that, after a year of storage at 4°C, the activation of the innate immune system by the different vaccines was considerably decreased. Finally, new vaccine formulations prepared with heat and formaldehyde inactivated LM-02-Fp were significantly more efficient than the available commercial vaccine in regard to stimulating the innate immune system.

  4. Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle.

    Science.gov (United States)

    Paton, David J; de Clercq, Kris; Greiner, Matthias; Dekker, Aldo; Brocchi, Emiliana; Bergmann, Ingrid; Sammin, Donal J; Gubbins, Simon; Parida, Satya

    2006-10-30

    There has been much debate about the use of the so-called "vaccinate-to-live" policy for the control of foot-and-mouth disease (FMD) in Europe, according to which, spread of the FMD virus (FMDV) from future outbreaks could be controlled by a short period of "emergency" vaccination of surrounding herds, reducing the need for large-scale preemptive culling of at-risk animals. Since vaccinated animals may become subclinically infected with FMDV following challenge exposure, it is necessary to either remove all vaccinates (vaccinate-to-kill) or to detect and remove vaccinates in which virus is circulating or has established persistent infections (vaccinate-to-live), in order to rapidly regain the most favoured trading status of FMD-free without vaccination. The latter approach can be supported by testing vaccinated animals for the presence of antibodies to certain non-structural proteins (NSP) of FMDV, which are induced by infection with the virus, but not by vaccination with purified FMD vaccines. Using test sensitivity and specificity data established at a recent workshop on NSP assays [Brocchi E, Bergmann I, Dekker A, Paton DJ, Sammin DJ, Greiner M, et al. Comparative performance of six ELISAs for antibodies to the non-structural proteins of foot-and-mouth disease. Vaccine, in press], this paper examines the ways in which serological testing with NSP ELISAs can be used and interpreted and the effect that this will have on the confidence with which freedom from infection can be demonstrated within guidelines specified by the World Animal Health Organisation and the European Commission.

  5. Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamy- dia-induced upper genital tract gross pathology and histopathological characterization were also de- tected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were sig- nificantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vacci- nated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against patho- logical consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immu- nization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.

  6. Soluble F proteins exacerbate pulmonary histopathology after vaccination upon respiratory syncytial virus challenge but not when presented on virus-like particles.

    Science.gov (United States)

    Lee, Youri; Lee, Young-Tae; Ko, Eun-Ju; Kim, Ki-Hye; Hwang, Hye Suk; Park, Soojin; Kwon, Young-Man; Kang, Sang Moo

    2017-08-30

    Respiratory syncytial virus (RSV) fusion (F) protein is suggested to be a protective vaccine target although its efficacy and safety concerns remain not well understood. We investigated immunogenicity, efficacy, and safety of F proteins in a soluble form or on virus-like particle (F-VLP). F VLP preferentially elicited IgG2a antibody and T helper type 1 (Th1) immune responses whereas F protein induced IgG1 isotype and Th2 responses. Despite lung viral clearance after prime or prime-boost and then RSV challenge, F protein immune mice displayed weight loss and lung histopathology and high mucus production and eosinophils. In contrast, prime or prime-boost vaccination of F VLP induced effective protection, prevented infiltration of eosinophils, and vaccine- enhanced disease after challenge. This study provides insight into developing an effective and safe RSV vaccine candidate.

  7. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge.

    Science.gov (United States)

    Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B; Buchman, George W; Volkin, David B; Middaugh, C Russell; Isaacs, Stuart N

    2013-01-02

    The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit-vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit-vaccine immunogenicity and protection.

  8. Safety and immunogenicity of three doses of an eleven-valent diphtheria toxoid and tetanus protein – conjugated pneumococcal vaccine in Filipino infants

    Directory of Open Access Journals (Sweden)

    Käyhty Helena

    2003-08-01

    Full Text Available Abstract Background An 11-valent pneumococcal conjugate vaccine could provide significantly larger reduction in pneumococcal disease burden than the currently available 7-valent vaccine formulation in many countries. Methods In total, 50 infants were enrolled to this open, uncontrolled study, which evaluated the safety and immunogenicity of an aluminium adjuvanted 11-valent mixed-carrier diphtheria toxoid or tetanus protein-conjugated vaccine (11-PncTD when administered in three doses at 6, 10 and 14 weeks of age simultaneously with DTwP//PRP-T and OPV vaccines in Filipino infants. Results The rates of local reactions between the two injection sites, those associated with the 11-PncTD vaccine and those with the DTwP//PRP-T were almost of equal frequency for all three vaccine doses except for induration, which was significantly more common in the DTP//PRP-T injection site. Fever was present in 39%, 22% and 21% of infants following each of the three doses. Antibody responses were determined by an enzyme immunoassay method before the first vaccination and after the three doses. The vaccine elicited a significant anti-pneumococcal polysaccharide antibody response against all serotypes included in the vaccine, except for type 14, for which the pre-vaccination geometric mean antibody concentration (GMC was high (1.61 μg/ml. The GMCs one month after the vaccination series ranged from 1.1 micrograms/ml for type 6B to 23.4 μg/ml for type 4. Conclusion The 11-PncTD vaccine is safe, well-tolerated and immunogenic. The effectiveness of the non-adjuvanted formulation of the vaccine in preventing pneumonia is currently being evaluated in the Philippines.

  9. A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates.

    Science.gov (United States)

    Cendron, Delphine; Ingoure, Sophie; Martino, Angelo; Casetti, Rita; Horand, Françoise; Romagné, François; Sicard, Hélène; Fournié, Jean-Jacques; Poccia, Fabrizio

    2007-02-01

    Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.

  10. Moderate PEGylation of the carrier protein improves the polysaccharide-specific immunogenicity of meningococcal group A polysaccharide conjugate vaccine.

    Science.gov (United States)

    Zhang, Tingting; Yu, Weili; Wang, Yanfei; Hu, Tao

    2015-06-22

    Neisseria meningitidis can cause severe and fulminant diseases such as meningitis. Meningococcal capsular polysaccharide (PS) is a key virulence determinant that is not able to induce immunological memory. Conjugation of PS to a carrier protein can significantly increase the immunogenicity of PS and induce immunological memory. Due to the classically described carrier-induced epitopic suppression (CIES) mechanisms, a strong immune response against the carrier protein could suppress the immune response to PS after coadministration of free carrier protein with the conjugate vaccine. However, it was not clear whether suppressing or enhancing the protein-specific immunogenicity could improve the PS-specific immunogenicity of the conjugate vaccine. Thus, moderate PEGylation, extensive PEGylation and oligomerization were used to regulate the immunogenicity of tetanus toxoid (TT) in the conjugate vaccine (PS-TT). Moderate PEGylation led to a 2.7-fold increase in the PS-specific IgG titers elicited by PS-TT. In contrast, extensive PEGylation and oligomerization of TT led to 1.4-fold and 1.6-fold decrease in the PS-specific IgG titers elicited by PS-TT, respectively. The PS-specific immunogenicity of PS-TT can be increased by moderate PEGylation through mild suppression of the TT-specific immunogenicity. The PS-specific immunogenicity of PS-TT was decreased through significant suppression or enhancement of the TT-specific immunogenicity. Thus, our study contributes to understand the CIES mechanisms and improve the PS-specific immunogenicity of a meningococcal PS conjugate vaccine.

  11. n Silico Analysis of Envelope Dengue Virus-2 and Envelope Dengue Virus-3 Protein as the Backbone of Dengue Virus Tetravalent Vaccine by Using Homology Modeling Method

    Directory of Open Access Journals (Sweden)

    Rizky I. Taufik

    2009-01-01

    Full Text Available Problem statement: Dengue fever, which was caused by Dengue virus infection, had became a major public health problem in the tropic and subtropical countries. Dengue virus (DENV had four serotypes (DENV-1, DENV-2, DENV-3 and DENV-4, based on their immunogenic in the human body. Preventive measure will be necessary to decrease the prevalence of dengue fever, by developing modern vaccine. Approach: This research was focused on in silico study of dengue virus vaccines, by using envelope (E protein of DENV-2 and DENV-3 as their backbones. T cell epitope prediction was determined by using MULTIPRED server and B cell epitope prediction was determined by using Conformational Epitope Prediction server (CEP. Homology modeling study of E DENV-3 protein as the vaccine backbone had produced six dengue vaccine peptides (HMM Vaccine 1-6. Moreover, homology modeling study of E DENV-2 protein as vaccine backbone had produced six dengue vaccine peptides (ANN vaccine 1-6. Results: The BLAST analysis of HMM and ANN vaccines had produced 93% and 91% identity, respectively. The Ramachandran Plot of both vaccines had shown less than 15% non glycine residue in the disallowed region, therefore it showed the solid stability of the proteins. The VAST analysis of E DENV-3 backbone vaccines had determined, that HMM4 and HMM6 had the highest structure similarity with native E DENV-3. HMM4 and HMM6 had the highest VAST score of 64.5. Moreover, the VAST analysis of E DENV-2 backbone vaccines had determined, that ANN1, ANN3, ANN4, ANN5 and ANN6 had the highest structure similarity with native E DENV-2. ANN1, ANN3, ANN4, ANN5 and ANN6 have the highest VAST score of 64.7. Conclusion/Recommendation: It could be inferred from this research that HMM4; HMM6; ANN1; ANN3; ANN4; ANN5; and ANN6 were the best in silico vaccine design, based on their similarity with native E DENV Proteins. This research could be applied for the wet

  12. Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation

    Directory of Open Access Journals (Sweden)

    Hung Chien-Fu

    2010-11-01

    Full Text Available Abstract Background Effective vaccination against human papillomavirus (HPV represents an opportunity to control cervical cancer. Peptide-based vaccines targeting HPV E6 and/or E7 antigens while safe, will most likely require additional strategies to enhance the vaccine potency. Methods We tested the HPV-16 E7 peptide-based vaccine in combination with a strategy to enhance CD4+ T help using a Pan HLA-DR epitope (PADRE peptide and a strategy to enhance dendritic cell activation using the toll-like receptor 3 ligand, poly(I:C. Results We observed that mice vaccinated with E7 peptide-based vaccine in combination with PADRE peptide and poly(I:C generated better E7-specific CD8+ T cell immune responses as well as significantly improved therapeutic anti-tumor effects against TC-1 tumors compared to E7 peptide-based vaccine with either PADRE peptide or poly(I:C alone. Furthermore, we found that intratumoral vaccination with the E7 peptide in conjunction with PADRE peptide and poly(I:C generates a significantly higher frequency of E7-specific CD8+ T cells as well as better survival compared to subcutaneous vaccination with the same regimen in treated mice. Conclusions The combination of PADRE peptide and poly(I:C with antigenic peptide is capable of generating potent antigen-specific CD8+ T cell immune responses and antitumor effects in vaccinated mice. Our study has significant clinical implications for peptide-based vaccination.

  13. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins.

    Science.gov (United States)

    James, Eddie A; LaFond, Rebecca E; Gates, Theresa J; Mai, Duy T; Malhotra, Uma; Kwok, William W

    2013-12-01

    Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8(+) T cell responses, less is known about YFV-specific CD4(+) T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4(+) T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4(+) T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4(+) T cell responses that contract, forming a detectable memory population.

  14. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  15. Immunization of a wild koala population with a recombinant Chlamydia pecorum Major Outer Membrane Protein (MOMP) or Polymorphic Membrane Protein (PMP) based vaccine: New insights into immune response, protection and clearance

    Science.gov (United States)

    Robbins, Amy; Jelocnik, Martina; Khan, Shahneaz Ali; Hanger, Jon; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Timms, Peter

    2017-01-01

    We assessed the effects of two different single-dose anti-Chlamydia pecorum (C. pecorum) vaccines (containing either Major Outer Membrane Protein (3MOMP) or Polymorphic Membrane Protein (Pmp) as antigens) on the immune response of a group of wild koalas. Both vaccines elicited a systemic humoral response as seen by the production of anti-chlamydial IgG antibodies in more than 90% of vaccinated koalas. A mucosal immune response was also observed, with an increase in Chlamydia-specific mucosal IgG and/or IgA antibodies in some koalas post-vaccination. Both vaccines elicited a cell-mediated immune response as measured by the production of the cytokines IFN-γ and IL-17 post-vaccination. To determine the level of protection provided by the vaccines under natural conditions we assessed C. pecorum infection loads and chlamydial disease status of all vaccinated koalas pre- and post-vaccination, compared to a non-vaccinated cohort from the same habitat. The MOMP vaccinated koalas that were infected on the day of vaccination showed significant clearance of their infection at 6 months post-vaccination. In contrast, the number of new infections in the PMP vaccine was similar to the control group, with some koalas progressing to disease. Genotyping of the ompA gene from the C. pecorum strains infecting the vaccinated animals, identified genetic variants of ompA-F genotype and a new genotype ompA-O. We found that those animals that were the least well protected became infected with strains of C. pecorum not covered by the vaccine. In conclusion, a single dose vaccine formulated with either recombinant PmpG or MOMP can elicit both cell-mediated and humoral (systemic and mucosal) immune responses, with the MOMP vaccine showing clearance of infection in all infected koalas. Although the capability of our vaccines to stimulate an adaptive response and be protective needs to be fully evaluated, this work illustrates the necessity to combine epitopes most relevant to a large panel of

  16. Assessment of the impact of manufacturing changes on the physicochemical properties and biological activity of Her1-ECD vaccine during product development.

    Science.gov (United States)

    Garcia Duardo, Katia; Prieto Curbelo, Yadira; Raymond Pous, Judith; Rabasa Legón, Estela Yamilet; Ramírez, Belinda Sánchez; Hernández, Kathya Rashida de la Luz; Castillo Vitoch, Adolfo

    2015-08-20

    Vaccine preparations based on the extracellular domain of Her1 (Her1-ECD) have demonstrated, in vitro and in vivo, a potent antimetastatic effect on EGFR(+) Lewis lung carcinoma model, while associated side effects were absent. The Her1-ECD is a glycoprotein with a molecular weight of 105 kDa and has 11 potential sites for N-glycosylation. Currently Her1-ECD based vaccine has been evaluated in patients with hormone refractory prostate cancer. Her1-ECD molecule used for in clinical trials was obtained from culture supernatant of HEK 293 transfectomes used the protein free culture media and is purified by immunoaffinity chromatography. In order to increase the cell growth and productivity, new defined culture media have been developed (alternative culture media) in Her1-ECD vaccine production process. In this work, a comparability study was performed to evaluate the impact of process changes in the characteristics physic-chemical and biologicals of the Her1-ECD protein and the degree of similitude between both variants. Techniques such as: SDS-PAGE, SEC-HPLC, isoelectric point, peptide mapping, mass spectrometric, SCX-HPLC, oligosaccharide map, ELISA and flow cytometric were used with this aim. Results indicated that this process change decreases the degree of sialylation of the protein but does not affect its biological activity (measured as titers of Abs and recognition for A431 cell line).

  17. The effect of dietary protein level on performance characteristics of coccidiosis vaccinated and nonvaccinated broilers following mixed-species Eimeria challenge.

    Science.gov (United States)

    Lee, J T; Eckert, N H; Ameiss, K A; Stevens, S M; Anderson, P N; Anderson, S M; Barri, A; McElroy, A P; Danforth, H D; Caldwell, D J

    2011-09-01

    A series of experiments were conducted to investigate the effect of starter diet protein levels on the performance of broilers vaccinated with a commercially available live oocyst coccidiosis vaccine before subsequent challenge with a mixed-species Eimeria challenge. Data indicated that an increasing protein concentration in the starter diet improved broiler performance during coccidiosis vaccination. Prechallenge performance data indicated that vaccination could decrease BW and increase feed conversion ratio. The time period most important for the observed effects appeared to be between 13 and 17 d of age. This reduction in performance parameters of vaccinated broilers compared with nonvaccinated broilers was eliminated by the conclusion of the experiments (27 d) in the diet groups with higher protein. Vaccination was effective at generating protective immunity against Eimeria challenge, as evidenced by increased (P coccidiosis in commercially reared broilers. More important, these findings suggest that reduced protein concentration of starter diets can lead to significant losses in broiler performance when using a vaccination program to prevent coccidiosis.

  18. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection.

    Science.gov (United States)

    Arumugam, Sridhar; Wei, Junfei; Liu, Zhuyun; Abraham, David; Bell, Aaron; Bottazzi, Maria Elena; Hotez, Peter J; Zhan, Bin; Lustigman, Sara; Klei, Thomas R

    2016-04-01

    The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted.

  19. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection.

    Directory of Open Access Journals (Sweden)

    Sridhar Arumugam

    2016-04-01

    Full Text Available The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious.Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi, respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells.Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted.

  20. Immunological response to hepatitis B vaccination in patients with AIDS and virological response to highly active antiretroviral therapy.

    Science.gov (United States)

    Paitoonpong, Leilani; Suankratay, Chusana

    2008-01-01

    Previous studies showed that an immunological response to hepatitis B virus (HBV) vaccination in patients with AIDS was lower than in the normal population. However, those with virological response to highly active antiretroviral therapy (HAART) may have a normal immunological response to HBV vaccination. In our study, patients with AIDS who had a virological response to HAART and no immunity to HBV received 3 doses of HBV vaccine (20 microg of Engerix-B(R)) on d 0, 30, and 180. Anti-HBs level was measured 1 month after complete vaccination. Of 28 patients, overall response rate to vaccination was 71.4%. The responder group had a significantly higher CD4 count at 1 month after complete vaccination than the non-responder group (466.95+/-146.94 and 335+/-112.62 cells/microl, p =0.035). The patients receiving efavirenz-containing HAART had better response than those without efavirenz-containing HAART (p =0.030). The responder group had received a longer duration of HAART. In conclusion , to our knowledge, ours is the first prospective study to determine the immunological response to HBV vaccination in all patients with AIDS who had maintained the virological response after receiving HAART throughout the study period. Patients with AIDS and virological response to HAART have a good immunological response to HBV vaccination.

  1. Antitumor immunopreventive effect in mice induced by DNA vaccine encoding a fusion protein of α-fetoprotein and CTLA4

    Institute of Scientific and Technical Information of China (English)

    Geng Tian; Ji-Lin Yi; Ping Xiong

    2004-01-01

    AIM: To develop a tumor DNA vaccine encoding a fusion protein of murine AFP and CTLA4, and to study its ability to induce specific CTL response and its protective effect against AFP-producing tumor.METHODS: Murine α-fetoprotein (mAFP) gene was cloned from total RNA of Hepa1-6 cells by RT-PCR. A DNA vaccine was constructed by fusion murine α-fetoprotein gene and extramembrane domain of murine CTLA4 gene. The DNA vaccine was identified by restriction enzyme analysis,sequencing and expression. EL-4 (mAFP) was developed by stable transfection of EL-4 cells with pmAFP. The frequency of cells produdng IFN-γ in splenocytes harvested from the immunized mice was measured by ELISPOT. Mice immunized with DNA vaccine were inoculated with EL-4 (mAFP) cells in back to observe the protective effect of immunization on tumor. On the other hand, blood samples were collected from the immunized mice to check the functions of liver and kidney.RESULTS: 1.8 kb mAFP cDNA was cloned from total RNA of Hepa1-6 cells by RT-PCR. The DNA vaccine encoding a fusion protein of mAFP-CTLA4 was constructed and confirmed by restriction enzyme analysis, sequencing and expression. The expression of mAFP mRNA in EL-4 (mAFP) was confirmed by RT-PCR. The ELISPOT results showed that the number of IFN-γ-producing cells in pmAFP-CTLA4 group was significantly higher than that in pmAFP, pcDNA3.1 and PBS group. The tumor volume in pmAFP-CTLA4 group was significantly smaller than that in pmAFP, pcDNA3.1 and PBS group, respectively. The hepatic and kidney functions in each group were not altered.CONCLUSION: AFP-CTLA4 DNA vaccine can stimulate potent specific CTL responses and has distinctive antitumor effect on AFP-producing tumor. The vaccine has no impact on the function of mouse liver and kidney.

  2. The Immunosuppressive Activity of Heat Shock Protein 70

    Directory of Open Access Journals (Sweden)

    Pawel Stocki

    2012-01-01

    Full Text Available Heat shock protein 70 (HSP70 has previously been described as a potent antitumour vaccine. The mechanism relied on the ability of tumour derived HSP70 to associate with antigenic peptides, which, when cross presented, elicited a T cell mediated antitumour response. Subsequently, HSP70 was incorrectly described as a potent adjuvant of innate immunity, and although mistakes in the experimental approaches were exposed and associated with endotoxin contamination in the recombinant HSP70 specimen, questions still remain regarding this matter. Here we review only publications that have cautiously addressed the endotoxin contamination problem in HSP70 in order to reveal the real immunological function of the protein. Accordingly, “endotoxin free” HSP70 stimulates macrophages and delivers antigenic peptides to APCs, which effectively prime T cells mediating an antitumour reaction. Conversely, HSP70 has potent anti-inflammatory functions as follows: regulating T cell responses, reducing stimulatory capacity of DCs, and inducing development of immunosuppressive regulatory T cells. These activities were further associated with the immune evasive mechanism of tumours and implicated in the modulation of immune reactivity in autoimmune diseases and transplant-related clinical conditions. Consequently, the role of HSP70 in immune regulation is newly emerging and contrary to what was previously anticipated.

  3. Production of H5N1 influenza virus matrix protein 2 ectodomain protein bodies in tobacco plants and in insect cells as a candidate universal influenza vaccine

    Directory of Open Access Journals (Sweden)

    Sandiswa Mbewana

    2015-12-01

    Full Text Available The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of a M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human and plant codon optimised and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera® of the γ-zein protein of maize. Zera®M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus / insect cell expression systems, and Zera®M2e protein bodies (PBs were successfully produced in both expression systems. The plant-produced Zera®M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera®M2e PBs and multiple tandem M2e sequences (5xM2e fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA confirmed the presence of M2e-specific antibodies in immunised mice sera. The immunogenicity of the Zera®M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine.

  4. Optimization of Ammonium Sulfate Concentration for Purification of Colorectal Cancer Vaccine Candidate Recombinant Protein GA733-FcK Isolated from Plants.

    Science.gov (United States)

    Park, Se-Ra; Lim, Chae-Yeon; Kim, Deuk-Su; Ko, Kisung

    2015-01-01

    A protein purification procedure is required to obtain high-value recombinant injectable vaccine proteins produced in plants as a bioreactor. However, existing purification procedures for plant-derived recombinant proteins are often not optimized and are inefficient, with low recovery rates. In our previous study, we used 25-30% ammonium sulfate to precipitate total soluble proteins (TSPs) in purification process for recombinant proteins from plant leaf biomass which has not been optimized. Thus, the objective in this study is to optimize the conditions for plant-derived protein purification procedures. Various ammonium sulfate concentrations (15-80%) were compared to determine their effects on TSPs yield. With 50% ammonium sulfate, the yield of precipitated TSP was the highest, and that of the plant-derived colorectal cancer-specific surface glycoprotein GA733 fused to the Fc fragment of human IgG tagged with endoplasmic reticulum retention signal KDEL (GA733(P)-FcK) protein significantly increased 1.8-fold. SDS-PAGE analysis showed that the purity of GA733(P)-FcK protein band appeared to be similar to that of an equal dose of mammalian-derived GA733-Fc (GA733(M)-Fc). The binding activity of purified GA733(P)-FcK to anti-GA733 mAb was as efficient as the native GA733(M)-Fc. Thus, the purification process was effectively optimized for obtaining a high yield of plant-derived antigenic protein with good quality. In conclusion, the purification recovery rate of large quantities of recombinant protein from plant expression systems can be enhanced via optimization of ammonium sulfate concentration during downstream processes, thereby offering a promising solution for production of recombinant GA733-Fc protein in plants.

  5. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... patterns that increase activation of the innate immune system. Importantly, viral-vectored vaccines that act through the induction of one or more of these factors also may benefit from cytokine coadministration and increased antigen presentation. In order to increase immunogenicity to the level achieved...

  6. Liver myofibroblasts activate protein C and respond to activated protein C

    Institute of Scientific and Technical Information of China (English)

    Jennifer; Gillibert-Duplantier; Anne; Rullier; Véronique; Neaud; Walter; Kisiel; Jean; Rosenbaum

    2010-01-01

    AIM:To study the protein C activation system in human liver myofibroblasts,and the effects of activated protein C(APC)on these cells.METHODS:Human liver myofibroblasts were obtained by outgrowth.Expression of protease activated receptor 1(PAR-1),endothelial protein C receptor(EPCR) and thrombomodulin(TM)was analyzed by flow cytometry.Extracellular signal-regulated kinase(ERK)1/2 activation was assessed by Western blotting using anti-phospho-ERK antibodies.Collagen synthesis was studied with real-time revers...

  7. Vaccination with recombinant adenoviruses expressing the peste des petits ruminants virus F or H proteins overcomes viral immunosuppression and induces protective immunity against PPRV challenge in sheep.

    Directory of Open Access Journals (Sweden)

    José M Rojas

    Full Text Available Peste des petits ruminants (PPR is a highly contagious disease of small ruminants caused by the Morbillivirus peste des petits ruminants virus (PPRV. Two recombinant replication-defective human adenoviruses serotype 5 (Ad5 expressing either the highly immunogenic fusion protein (F or hemagglutinin protein (H from PPRV were used to vaccinate sheep by intramuscular inoculation. Both recombinant adenovirus vaccines elicited PPRV-specific B- and T-cell responses. Thus, neutralizing antibodies were detected in sera from immunized sheep. In addition, we detected a significant antigen specific T-cell response in vaccinated sheep against two different PPRV strains, indicating that the vaccine induced heterologous T cell responses. Importantly, no clinical signs and undetectable virus shedding were observed after virulent PPRV challenge in vaccinated sheep. These vaccines also overcame the T cell immunosuppression induced by PPRV in control animals. The results indicate that these adenovirus constructs could be a promising alternative to current vaccine strategies for the development of PPRV DIVA vaccines.

  8. UV-inactivated vaccinia virus (VV) in a multi-envelope DNA-VV-protein (DVP) HIV-1 vaccine protects macaques from lethal challenge with heterologous SHIV

    Science.gov (United States)

    Jones, Bart G; Sealy, Robert E; Zhan, Xiaoyan; Freiden, Pamela J; Surman, Sherri L; Blanchard, James L.; Hurwitz, Julia L

    2012-01-01

    The pandemic of HIV-1 has continued for decades, yet there remains no licensed vaccine. Previous research has demonstrated the effectiveness of a multi-envelope, multi-vectored HIV-1 vaccine in a macaque-SHIV model, illustrating a potential means of combating HIV-1. Specifically, recombinant DNA, vaccinia virus (VV) and purified protein (DVP) delivery systems were used to vaccinate animals with dozens of antigenically-distinct HIV-1 envelopes for induction of immune breadth. The vaccinated animals controlled disease following challenge with a heterologous SHIV. This demonstration suggested that the antigenic cocktail vaccine strategy, which has succeeded in several other vaccine fields (e.g. pneumococcus), might also succeed against HIV-1. The strategy remains untested in an advanced clinical study, in part due to safety concerns associated with the use of replication-competent VV. To address this concern, we designed a macaque study in which psoralen/ultraviolet light-inactivated VV (UV VV) was substituted for replication-competent VV in the multi-envelope DVP protocol. Control animals received a vaccine encompassing no VV, or no vaccine. All VV vaccinated animals generated an immune response toward VV, and all vaccinated animals generated an immune response toward HIV-1 envelope. After challenge with heterologous SHIV 89.6P, animals that received replication-competent VV or UV VV experienced similar outcomes. They exhibited reduced peak viral loads, maintenance of CD4+ T cell counts and improved survival compared to control animals that received no VV or no vaccine; there were 0/15 deaths among all animals that received VV and 5/9 deaths among controls. Results define a practical means of improving VV safety, and encourage advancement of a promising multi-envelope DVP HIV-1 vaccine candidate. PMID:22425790

  9. LECTINPred: web Server that Uses Complex Networks of Protein Structure for Prediction of Lectins with Potential Use as Cancer Biomarkers or in Parasite Vaccine Design.

    Science.gov (United States)

    Munteanu, Cristian R; Pedreira, Nieves; Dorado, Julián; Pazos, Alejandro; Pérez-Montoto, Lázaro G; Ubeira, Florencio M; González-Díaz, Humberto

    2014-04-01

    Lectins (Ls) play an important role in many diseases such as different types of cancer, parasitic infections and other diseases. Interestingly, the Protein Data Bank (PDB) contains +3000 protein 3D structures with unknown function. Thus, we can in principle, discover new Ls mining non-annotated structures from PDB or other sources. However, there are no general models to predict new biologically relevant Ls based on 3D chemical structures. We used the MARCH-INSIDE software to calculate the Markov-Shannon 3D electrostatic entropy parameters for the complex networks of protein structure of 2200 different protein 3D structures, including 1200 Ls. We have performed a Linear Discriminant Analysis (LDA) using these parameters as inputs in order to seek a new Quantitative Structure-Activity Relationship (QSAR) model, which is able to discriminate 3D structure of Ls from other proteins. We implemented this predictor in the web server named LECTINPred, freely available at http://bio-aims.udc.es/LECTINPred.php. This web server showed the following goodness-of-fit statistics: Sensitivity=96.7 % (for Ls), Specificity=87.6 % (non-active proteins), and Accuracy=92.5 % (for all proteins), considering altogether both the training and external prediction series. In mode 2, users can carry out an automatic retrieval of protein structures from PDB. We illustrated the use of this server, in operation mode 1, performing a data mining of PDB. We predicted Ls scores for +2000 proteins with unknown function and selected the top-scored ones as possible lectins. In operation mode 2, LECTINPred can also upload 3D structural models generated with structure-prediction tools like LOMETS or PHYRE2. The new Ls are expected to be of relevance as cancer biomarkers or useful in parasite vaccine design.

  10. Probing the equatorial groove of the hookworm protein and vaccine candidate antigen, Na-ASP-2.

    Science.gov (United States)

    Mason, Lyndel; Tribolet, Leon; Simon, Anne; von Gnielinski, Natascha; Nienaber, Lisa; Taylor, Paul; Willis, Charlene; Jones, Malcolm K; Sternberg, Paul W; Gasser, Robin B; Loukas, Alex; Hofmann, Andreas

    2014-05-01

    Hookworm activation-associated secreted proteins can be structurally classified into at least three different groups. The hallmark feature of Group 1 activation-associated secreted proteins is a prominent equatorial groove, which is inferred to form a ligand binding site. Furthermore, a conserved tandem histidine motif is located in the centre of the groove and believed to provide or support a yet to be determined catalytic activity. Here, we report three-dimensional crystal structures of Na-ASP-2, an L3-secreted activation-associated secreted protein from the human hookworm Necator americanus, which demonstrate transition metal binding ability of the conserved tandem histidine motif. We further identified moderate phosphohydrolase activity of recombinant Na-ASP-2, which relates to the tandem histidine motif. By panning a random 12-mer peptide phage library, we identified a peptide with high similarity to the human calcium-activated potassium channel SK3, and confirm binding of the synthetic peptide to recombinant Na-ASP-2 by differential scanning fluorimetry. Potential binding modes of the peptide to Na-ASP-2 were studied by molecular dynamics simulations which clearly identify a preferred topology of the Na-ASP-2:SK3 peptide complex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Administration of Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) and Avian Beta Defensin as Adjuvants in Inactivated Inclusion Body Hepatitis Virus and its Hexon Protein-Based Experimental Vaccine Formulations in Chickens.

    Science.gov (United States)

    Dar, Arshud; Tipu, Masroor; Townsend, Hugh; Potter, Andy; Gerdts, Volker; Tikoo, Suresh

    2015-12-01

    Inclusion body hepatitis (IBH) is one of the major infectious diseases adversely affecting the poultry industry of the United States and Canada. Currently, no effective and safe vaccine is available for the control of IBH virus (IBHV) infection in chickens. However, based on the excellent safety and immunogenic profiles of experimental veterinary vaccines developed with the use of new generation adjuvants, we hypothesized that characterization of vaccine formulations containing inactivated IBHV or its capsid protein hexon as antigens, along with poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) and avian beta defensin 2 (ABD2) as vaccine adjuvants, will be helpful in development of an effective and safe vaccine formulation for IBH. Our data demonstrated that experimental administration of vaccine formulations containing inactivated IBHV and a mixture of PCEP with or without ABD2 as an adjuvant induced significantly higher antibody responses compared with other vaccine formulations, while hexon protein-based vaccine formulations showed relatively lower levels of antibody responses. Thus, a vaccine formulation containing inactivated IBHV with PCEP or a mixture of PCEP and ABD2 (with a reduced dosage of PCEP) as an adjuvant may serve as a potential vaccine candidate. However, in order to overcome the risks associated with whole virus inactivated vaccines, characterization of additional viral capsid proteins, including fiber protein and penton of IBHV along with hexon protein in combination with more new generation adjuvants, will be helpful in further improvements of vaccines against IBHV infection.

  12. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach.

    Directory of Open Access Journals (Sweden)

    Gabriel Gomez

    Full Text Available Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1-Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.

  13. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach.

    Science.gov (United States)

    Gomez, Gabriel; Pei, Jianwu; Mwangi, Waithaka; Adams, L Garry; Rice-Ficht, Allison; Ficht, Thomas A

    2013-01-01

    Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1-Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.

  14. Discovery of GAMA, a Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen.

    Science.gov (United States)

    Arumugam, Thangavelu U; Takeo, Satoru; Yamasaki, Tsutomu; Thonkukiatkul, Amporn; Miura, Kazutoyo; Otsuki, Hitoshi; Zhou, Hong; Long, Carole A; Sattabongkot, Jetsumon; Thompson, Jennifer; Wilson, Danny W; Beeson, James G; Healer, Julie; Crabb, Brendan S; Cowman, Alan F; Torii, Motomi; Tsuboi, Takafumi

    2011-11-01

    One of the solutions for reducing the global mortality and morbidity due to malaria is multivalent vaccines comprising antigens of several life cycle stages of the malarial parasite. Hence, there is a need for supplementing the current set of malaria vaccine candidate antigens. Here, we aimed to characterize glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (GAMA) encoded by the PF08_0008 gene in Plasmodium falciparum. Antibodies were raised against recombinant GAMA synthesized by using a wheat germ cell-free system. Immunoelectron microscopy demonstrated for the first time that GAMA is a microneme protein of the merozoite. Erythrocyte binding assays revealed that GAMA possesses an erythrocyte binding epitope in the C-terminal region and it binds a nonsialylated protein receptor on human erythrocytes. Growth inhibition assays revealed that anti-GAMA antibodies can inhibit P. falciparum invasion in a dose-dependent manner and GAMA plays a role in the sialic acid (SA)-independent invasion pathway. Anti-GAMA antibodies in combination with anti-erythrocyte binding antigen 175 exhibited a significantly higher level of invasion inhibition, supporting the rationale that targeting of both SA-dependent and SA-independent ligands/pathways is better than targeting either of them alone. Human sera collected from areas of malaria endemicity in Mali and Thailand recognized GAMA. Since GAMA in P. falciparum is refractory to gene knockout attempts, it is essential to parasite invasion. Overall, our study indicates that GAMA is a novel blood-stage vaccine candidate antigen.

  15. Use of adjuvant containing mycobacterial cell-wall skeleton, monophosphoryl lipid A, and squalane in malaria circumsporozoite protein vaccine.

    Science.gov (United States)

    Rickman, L S; Gordon, D M; Wistar, R; Krzych, U; Gross, M; Hollingdale, M R; Egan, J E; Chulay, J D; Hoffman, S L

    1991-04-27

    Human immune responses to modern synthetic and recombinant peptide vaccines administered with the standard adjuvant, aluminum hydroxide, tend to be poor, hence the search for better adjuvants. Antibody responses to a Plasmodium falciparum circumsporozoite (CS) protein vaccine, R32NS1(81), administered with an adjuvant containing cell-wall skeleton of mycobacteria and monophosphoryl lipid A in squalane (MPL/CWS) have been compared to responses to the same immunogen administered with aluminum hydroxide. 2 weeks after the third dose the following indices were greater in the 5 patients who received MPL/CWS than in controls (p less than 0.05): the geometric mean concentration (2.0 vs 25.4 microgram/ml) and avidity index of antibodies to the P falciparum CS protein by ELISA, the geometric mean titre to P falciparum sporozoites by IFAT (1/115 vs 1/1600), and the geometric mean inhibition of sporozoite invasion of hepatoma cells in vitro (37.6 vs 90.3%). For R32NS1(81) MPL/CWS is superior to aluminum hydroxide as an adjuvant, and the data support the evaluation of this complex as an adjuvant for other vaccines.

  16. Evaluation on a Streptococcus suis vaccine using recombinant sao-l protein manufactured by bioreactors as the antigen in pigs.

    Science.gov (United States)

    Hsueh, K-J; Lee, J-W; Hou, S-M; Chen, H-S; Chang, T-C; Chu, C-Y

    2014-12-01

    Streptococcus suis (S. suis) can be classified into 33 serotypes based on the structure of capsular polysaccharides. Recent research indicated that a new surface protein designated as Sao (surface antigen one) reacts with 30 serotypes of convalescent-phase sera during S. suis infections, which makes Sao a good potential antigen for developing S. suis vaccines. The objectives of this study were to produce recombinant Sao-L protein (rSao-L) from a strain of S. suis serotype 2 by a prokaryotic expression system in bioreactors and to use rSao-L as the antigen for a S. suis vaccine in mouse and swine models. The antibody titres in mice and pigs immunized with rSao-L were significantly (P bacteria, the anatomical lesions in pigs immunized with rSao-L were reduced by 60%. These data indicated that immunization with rSao-L can confer cross-serotype protection against S. suis. Moreover, percentages of CD8(+) and CD4(+) /CD8(+) double-positive T cells in immunized pigs were significantly higher than those of the control group (P < 0.01). Using bioreactors to produce rSao-L as the antigen for S. suis vaccines may broaden protective efficacy and reduce production costs.

  17. The INHIBITOR OF MERISTEM ACTIVITY (IMA) protein

    Science.gov (United States)

    Sicard, Adrien; Hernould, Michel

    2008-01-01

    The INHIBITOR OF MERISTEM ACTIVITY (IMA) gene from tomato regulates the processes of flower and ovule development. 1 IMA encodes a Mini Zinc Finger (MIF) protein that is characterized by a very short sequence containing an unusual zinc-finger domain. IMA acts as a repressor of WUSCHEL expression which controls the meristem organizing centre and the determinacy of the nucellus during ovule development. IMA inhibits cell proliferation during floral termination, controls the number of carpels during floral development and participates in the initiation of ovule primordia by activating D-type gene expression. In addition IMA is involved in a multiple hormonal signalling pathway like its Arabidopsis homolog MIF1.2 We thus propose that IMA, as a representative of this new family of zinc finger proteins, is an important effector in the regulatory pathway controlling meristem activity linking cell division, differentiation and hormonal control of development. PMID:19704478

  18. The meningococcal vaccine candidate neisserial surface protein A (NspA binds to factor H and enhances meningococcal resistance to complement.

    Directory of Open Access Journals (Sweden)

    Lisa A Lewis

    Full Text Available Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH to fH-binding protein (fHbp is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a approximately 17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA, a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep I chain of lipooligosaccharide (LOS, or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6-7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.

  19. Activity of allergenic proteins from Dermatophagoides pteronyssinus

    Energy Technology Data Exchange (ETDEWEB)

    Wahn, U.; Mueller-Krampe, B.; Lind, P.

    1985-01-01

    Two purified allergens from Dermatophagoides pteronyssinus, Dp 42 (identical to P1) and Dp X were studied for their ability to induce histamine release from washed leukocytes and to bind to IgE antibodies from the serum of 27 mite-sensitive children. Almost all patients were demonstrated to be sensitive to both proteins by both assays. Dp 42 was found to have the highest allergenic activity, releasing histamine from leukocytes at a median concentration 10 times lower than for Dp X. There was a positive correlation between basophil sensitivity to both proteins and allergen specific serum IgE concentrations.

  20. Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus.

    Science.gov (United States)

    Romanutti, Carina; D'Antuono, Alejandra; Palacios, Carlos; Quattrocchi, Valeria; Zamorano, Patricia; La Torre, Jose; Mattion, Nora

    2013-08-30

    The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines. The highest antibody titers were found in the group that received two doses of adjuvanted KV (Pviral vectors induced a shift of the cytokine balance toward a Th1 type immune response regardless of the delivery system used for boosting. The highest IgG1 titer was induced by two doses of adjuvanted KV (P=0.0002) and the highest IgG2a titer corresponded to the group primed with Ad and boosted with KV (P=0.01). Re-stimulation of all groups of mice with 0.5 μg of inactivated virus five months later resulted in a fast increase of antibody titers in all the groups tested. After virus stimulation, antibody titers in the groups that received KV alone or Ad prime-KV boost, were indistinguishable (P=0.800). Protection from challenge was similar (75%) in the groups of animals that received Ad prime-Hs boost or Ad prime-KV boost, or two doses of oil-adjuvanted KV. The data presented in this study suggest that sequential immunization with viral vectors-based vaccines combined with protein-based vaccines have the potential to enhance the quality of the immune response against FMDV. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A New Approach for Designing a Potentially Vaccine Candidate against Urinary Tract Infection by Using Protein Display on Lactobacillus

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2015-10-01

    Full Text Available Background: The prevalence of Urinary Tract Infection (UTI is really high in the world. Escherichia coli is a major agent of UTI. One of the strategies for decreasing UTI infections is vaccine development. As the attachment is a really important stage in colonization and infection, at- tachment inhibition has an applied strategy.  FimH protein is a major factor during bacterial colonization in urinary tract and could be used as a vaccine. Thus, it was considered in this research as a candidate anti- gen.Methods: The sequences of fimH and acmA genes were used for de- signing a synthetic gene. It was cloned to pET23a expression vector and transformed  to E. coli (DE3 Origami.  To confirm the expression  of recombinant  protein,  SDS-PAGE  and western  blotting  methods  were used.  Subsequently,  recombinant  protein  was  purified.  On  the  other hand, Lactobacillus reuteri was cultured and mixed with FimH / AcmA recombinant  protein. The rate of protein localization  on lactobacillus surface was assessed using ELISA method.Results: It was showed that the recombinant protein was expressed inE. coli (DE3 Origami and purified by affinity chromatography. More- over, this protein could be localized on lactobacillus surface by 5 days. Conclusion:  In current study,  a fusion recombinant  protein was pre- pared and displayed on L. reuteri surface. This strain could be used for animal  experiment  as  a  competitor  against  Uropathogenic   E.  coli (UPEC. Using manipulated probiotics strains instead of antibiotic ther- apy could decrease the antibiotic consumption  and reduce multi-drug resistant strains.

  2. Immune reactivity of sera obtained from brucellosis patients and vaccinated-rabbits to a fusion protein from Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Jafar Amani

    2015-04-01

    Full Text Available Objective(s: Brucella spp. are facultative intracellular pathogens which can stay alive and multiply in professional and nonprofessional phagocytes. Immunity against Brucella melitensis involves antigen-specific CD4+ and CD8+ T-cells activation and humoral immune responses. Due to negative aspects of live attenuated vaccines, much attention has been focused on finding Brucella-protective antigens to introduce them as potential subunit vaccine candidates. Materials and Methods: A chimeric gene encoding trigger factor (TF, Omp3148-74 and BP2687-111 fragments (TOB from B. melitensis was successfully cloned, expressed in Escherichia coliBL21-DE3 and purified by Ni-NTA agarose column. Antibodies to recombinant TOB (rTOB have been investigated in Brucella-infected human sera and a pool serum prepared from B. melitensis-vaccinated rabbits. Results: Our results showed that the immunized rabbit pool serum strongly reacted with rTOB. In addition, antibodies against rTOB were detectable in 76.5% of sera obtained from infected patients. Conclusion: These findings suggest that rTOB may provide a potential immunogenic candidate which could be considered in future vaccine studies.

  3. Antibody profiling of canine IgG responses to the OspC protein of the Lyme disease spirochetes supports a multivalent approach in vaccine and diagnostic assay development.

    Science.gov (United States)

    Oliver, Lee D; Earnhart, Christopher G; Virginia-Rhodes, DeLacy; Theisen, Michael; Marconi, Richard T

    2016-12-01

    OspC performs essential functions during the enzootic cycle of the Lyme disease (LD) spirochetes. In this study, the specificity of antibody (Ab) responses to OspC was profiled to define the antigenic determinants during infection and after vaccination. Several OspC variants or 'types' were screened with serum from SNAP4Dx C6 positive dogs and with serum from rabbits hyperimmunized with OspC proteins. The OspC type-specific nature of the Ab response revealed that variable domains of OspC are immunodominant during infection and upon vaccination. To assess the potential of OspC to elicit Ab in the context of a bacterin vaccine, OspC production in strains cultivated in vitro was assessed. Immunoblot and indirect immunofluorescent antibody analyses demonstrated that production is low and that only a subset of cells actively produces OspC in vitro, raising questions about the potential of bacterin vaccines to stimulate significant anti-OspC Ab responses. The specificity of the OspC Ab response in experimentally infected mice over time was assessed to determine if domains shielded in the OspC homodimer become accessible and stimulate Ab production as infection progresses. The results demonstrate that the OspC Ab response remains focused on surface exposed variable regions of the protein throughout infection. In contrast to some earlier studies, it is concluded that conserved domains of OspC, including the C7 or C10 domain, do not elicit significant Ab responses during infection or upon vaccination. Collectively, the results indicate that OspC diversity must be considered in vaccine design and in the interpretation of diagnostic assays that employ OspC as a diagnostic antigen. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. A novel recombinant bivalent outer membrane protein of Vibrio vulnificus and Aeromonas hydrophila as a vaccine antigen of American eel (Anguilla rostrata).

    Science.gov (United States)

    SongLin, Guo; PanPan, Lu; JianJun, Feng; JinPing, Zhao; Peng, Lin; LiHua, Duan

    2015-04-01

    The immogenicity of a novel vaccine antigen was evaluated after immunized American eels (Anguilla rostrata) with a recombinant bivalent expressed outer membrane protein (OMP) of Vibrio vulnificus and Aeromonas hydrophila. Three groups of eels were intraperitoneal (i.p) injected with phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila and V. vulnificus (FKC group) or the bivalent OMP (OMP group). On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody and lysozyme activities of experimental eels were detected. On 28 day post-vaccination, eels from three groups were challenged by i.p injection of live A. hydrophila or V. vulnificus. The results showed that, compared with the PBS group, proliferation of whole blood cells in OMP group was significant enhanced on 28 days, and the serum titers of anti-A.hydrophila and anti-V. vulnificus antibody in eels of FKC and OMP group were significant increased on 14, 21 and 28d. Lysozyme Activities in serum, skin mucus, liver and kidney were significant changed between the three groups. Relative Percent Survival (RPS) after challenged A. hydrophila in KFC vs. PBS group and OMP vs. PBS group were 62.5% and 50% respectively, and the RPS challenged V. vulnificus in FKC and OMP vs. PBS group were 37.5% and 50% respectively. These results suggest that American eels immunized with the bivalent OMP would positively affect specific as well as non-specific immune parameters and protect against infection by the two pathogens in fresh water farming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver [Robert Koch-Institut, Berlin (Germany); Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D. [Paul-Ehrlich-Institut, Langen (Germany); Bannert, Norbert; Kurth, Reinhard [Robert Koch-Institut, Berlin (Germany); Norley, Stephen, E-mail: NorleyS@rki.de [Robert Koch-Institut, Berlin (Germany)

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  6. HIV Vaccine Trials Network: activities and achievements of the first decade and beyond

    OpenAIRE

    Kublin, James G.; Morgan, Cecilia A.; Day, Tracey A.; Gilbert, Peter B.; Self, Steve G.; McElrath, M. Juliana; Corey, Lawrence

    2012-01-01

    The HIV Vaccine Trials Network (HVTN) is an international collaboration of scientists and educators facilitating the development of HIV/AIDS preventive vaccines. The HVTN conducts all phases of clinical trials, from evaluating experimental vaccines for safety and immunogenicity, to testing vaccine efficacy. Over the past decade, the HVTN has aimed to improve the process of designing, implementing and analyzing vaccine trials. Several major achievements include streamlining protocol developmen...

  7. [Construction of fusion gene vaccine of WT1 multi-epitope fused with stimulating epitope of mycobacterium tuberculosis heat shock protein 70 and its expression and immunogenicity].

    Science.gov (United States)

    Tian, Wei-Wei; Qiao, Zhen-Hua; Yang, Lin-Hua; Wang, Hong-Wei; Tang, Yan-Hong; Bian, Si-Cheng

    2011-04-01

    This study was purposed to construct a fusion DNA vaccine containing WT1 multi-epitope and stimulating epitope of mycobacterium tuberculosis heat shock protein 70 and to detect its expression and immunogenicity. On the basis of published data, a multi-epitope gene (Multi-WT1) containing three HLA *0201-restricted CTL epitopes: one HLA*2402-restricted CTL epitope, two Th epitopes and one universal Th Pan-DR epitope (PADRE) was constructed. DNA-coding sequence was modified by Computer-Aided Design (CAD) to optimize proteasome-mediated epitope processing through the introduction of different amino acid spacer sequences. The synthetic nucleotide sequence was then inserted into an eukaryotic vector to construct the plasmid pcDNA3.1-WT1.For enhancing CTL activity, HSP70 fragment including stimulatory domain P407-426 was amplified by PCR from mycobacterial HSP70 gene and cloned into pcDNA3.1(+). Then Multi-WT1 was fused to the N-terminal of pcDNA3.1-mHSP70(407-426) to make the multi-epitope fusion gene vaccine pcDNA3.1-WT1-mHSP70(407-426). HEK-293T cells were transfected with this vaccine and the expressed product was identified by RT-PCR. Enzyme-linked immunospot assay (ELISPOT) was used to evaluate the immunological responses elicited by vaccine. The results showed that the most of WT1 epitopes could be correctly cleaved which was confirmed by software Net Chop 3.1 and PAPROCIanalysis. RT-PCR showed correct expression of target gene in HEK293T cells and ELISPOT showed specific T-cell responses. It is concluded that the eukaryotic expression vector PcDNA3.1-WT1-mHSP70(407-426) fusion gene has been successfully constructed and the immunity response is also elicited, which is a good candidate for further research of DNA vaccine.

  8. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells.

    Science.gov (United States)

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-07-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Immune Activation and Viral Replication after Vaccination with an Influenza A H1N1 2009 Vaccine in HIV-Infected Children Receiving Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Nattawat Onlamoon

    2013-01-01

    Full Text Available Immunization with a pandemic influenza A H1N1 2009 was recommended for HIV-infected patients. However, there is limited information concerning the impact of immunization with this vaccine on immune activation and HIV viral replication. In this study, 45 HIV-infected children and adolescents receiving antiretroviral therapy were immunized with a 2-dose series of nonadjuvated monovalent influenza A H1N1 2009 vaccine upon enrollment and approximately 1 month later. Immunogenicity was determined by haemagglutination inhibition assay. The level of immune activation was determined by identification of CD38 and HLA-DR on CD8+ T cells. Patients were divided into 2 groups which include patients who had an undetectable HIV viral load (HIV detectable group and patients who show virological failure (HIV nondetectable group. The results showed seroconversion rate of 55.2% in HIV nondetectable group, whereas 31.3% was found in HIV detectable group. Both groups of patients showed no major increase in immune activation after immunization. Interestingly, a decrease in the frequency of CD8+ T cells that coexpressed CD38 and HLA-DR was observed after immunization in both groups of patients. We suggested that immunization with influenza A H1N1 2009 vaccine can induce immune response to the pandemic virus without major impact on HIV viral replication and immune activation.

  10. A 78 kDa host cell invasion protein of Neospora caninum as a potential vaccine candidate.

    Science.gov (United States)

    Lv, Qiang; Xing, Shenyang; Gong, Pengtao; Chang, Le; Bian, Zhengzheng; Wang, Lidong; Zhang, Xichen; Li, Jianhua

    2015-01-01

    Neosporosis is an intracellular protozoan disease caused by Neospora caninum. Until now, there is no effective vaccine to prevent neosporosis. The host cell binding protein has the potential as neosporosis vaccine. In the present study, a T7 phage display library was constructed and screened using Vero cells to obtain host cell binding protein of N. caninum. Two host cell binding proteins, a hypothetical protein of 78 kDa (named as NcP78) homologous to the acylglycerol lipase of Toxoplasma gondii ME49 (XP_002370319.1) and NcGRA7 (known as a dense granules protein that is involved in the invasion of N. caninum to the host cells), were identified. Immune responses induced by recombinant NcP78 and NcGRA7 proteins and their protective efficacies against homologous challenge in BALB/c mice were evaluated respectively. Results showed that recombinant NcP78 and NcGRA7 could elicit both Th1 and Th2 immune responses (with the elevated levels of IgG1 and IgG2a antibody), but predominately a Th2 immune response with a high level of IgG1. The ani-NcP78 and anti-NcGRA7 serum also had inhibitory effects on N. caninum invasion to Vero cells in vitro, which indicated that both NcP78 and NcGRA7 proteins were involved in host cell invasion. Recombinant NcP78 and NcGRA7 could not prolong the survival times and improve the survival rates of dams, but could prolong the survival times and improve the survival rates of offspring significantly. Moreover, the recombinant NcP78 and NcGRA7 could reduce the brain parasite load of dams and offspring. Though these protein vaccines could not effectively alleviate the symptom of abortion, they could increase the number of born offspring significantly, indicating that Nc78 and NcGRA7 recombinant proteins could provide a partial protection against N. caninum infection in mice.

  11. Head-to-head comparison of three vaccination strategies based on DNA and raw insect-derived recombinant proteins against Leishmania.

    Science.gov (United States)

    Todolí, Felicitat; Rodríguez-Cortés, Alhelí; Núñez, María Del Carmen; Laurenti, Márcia D; Gómez-Sebastián, Silvia; Rodríguez, Fernando; Pérez-Martín, Eva; Escribano, José M; Alberola, Jordi

    2012-01-01

    Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines- is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against

  12. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  13. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis.

    Science.gov (United States)

    Garren, Hideki; Robinson, William H; Krasulová, Eva; Havrdová, Eva; Nadj, Congor; Selmaj, Krzysztof; Losy, Jacek; Nadj, Ilinka; Radue, Ernst-Wilhelm; Kidd, Brian A; Gianettoni, Jill; Tersini, Karen; Utz, Paul J; Valone, Frank; Steinman, Lawrence

    2008-05-01

    To evaluate the efficacy and safety of BHT-3009 in relapsing-remitting multiple sclerosis (MS) and to confirm that BHT-3009 causes immune tolerance. BHT-3009 is a tolerizing DNA vaccine for MS, encoding full-length human myelin basic protein. Relapsing-remitting MS patients were randomized 1:1:1 into three groups: placebo, 0.5 mg BHT-3009, or 1.5 mg BHT-3009, given intramuscularly at weeks 0, 2, 4, and every 4 weeks thereafter until week 44. The primary end point was the 4-week rate of occurrence of new gadolinium-enhancing lesions on brain magnetic resonance images from weeks 28 to 48. Protein microarrays were used to measure levels of anti-myelin autoantibodies. Compared with placebo, in the 267 patient analysis population the median 4-week rate of new enhancing lesions during weeks 28 to 48 was 50% lower with 0.5 mg BHT-3009 (p = 0.07) and during weeks 8 to 48 was 61% lower with 0.5 mg BHT-3009 (p = 0.05). The mean volume of enhancing lesions at week 48 was 51% lower on 0.5 mg BHT-3009 compared with placebo (p = 0.02). No significant improvement in magnetic resonance imaging lesion parameters was observed with 1.5 mg BHT-3009. Dramatic reductions in 23 myelin-specific autoantibodies in the 0.5 mg BHT-3009 arm were observed, but not with placebo or 1.5 mg BHT-3009. In relapsing-remitting MS patients, treatment with the lower dose (0.5 mg) of BHT-3009 for 44 weeks nearly attained the primary end point for reduction of the rate of new enhancing magnetic resonance imaging lesions (p = 0.07) and achieved several secondary end points including a reduction of the rate of enhancing magnetic resonance imaging lesions from weeks 8 to 48 (p = 0.05). Immunological data in a preselected subgroup of patients also indicated that treatment with 0.5 mg induced antigen-specific immune tolerance. The greater dose was ineffective.

  14. Active and passive immune responses to transmissible gastroenteritis virus (TGEV) in swine inoculated with recombinant baculovirus-expressed TGEV spike glycoprotein vaccines.

    Science.gov (United States)

    Shoup, D I; Jackwood, D J; Saif, L J

    1997-03-01

    Baculovirus-expressed transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein vaccines were inoculated parenterally in swine to determine whether such vaccines could induce serum and whey virus-neutralizing (VN) antibodies and protective lactogenic immunity for TGEV-challenge-exposed pigs. ANIMALS AND PROCEDURES: 3 recombinant baculoviruses that expressed full or partial length TGEV Miller strain S glycoproteins were inoculated SC in 17 conventionally raised 11-day-old TGEV-seronegative pigs to determine whether the recombinant S glycoproteins would elicit serum VN antibodies. Eleven TGEV-seronegative pregnant sows were inoculated SC or intramammarily with subunit vaccines (R2-2 or R3-5) or control proteins. Pigs born to 9 of the 11 sows were challenge exposed at 4 to 5 days of age with the virulent Miller strain, and passive immunity was assessed. Serum and whey antibody responses to TGEV were analyzed by VN and ELISA testing. Recombinant S glycoproteins (R2-2 or R3-5) containing the 4 major antigenic sites induced similar VN antibody titers to TGEV in serum and colostrum, but low (some sows) or no VN antibody titer was detected in milk. Subcutaneous inoculation of sows with R2-2 or R3-5 elicited IgG, but not IgA antibodies to TGEV in colostrum. Morbidity was 100%, and mortality ranged from 20 to 80% in TGEV challenge-exposed pigs nursing sows inoculated SC or intramammarily with TGEV S glycoprotein vaccines. Parenterally administered TGEV S glycoprotein vaccines elicit VN antibodies to TGEV in serum and colostrum that do not fully provide active or passive immunity in swine.

  15. Synaptic Vesicle Proteins and Active Zone Plasticity.

    Science.gov (United States)

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  16. Global suppression of mitogen-activated ovine peripheral blood mononuclear cells by surface protein activity from Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Shahzad, W; Ajuwape, Adebowale Titilayo Phillip; Rosenbusch, Ricardo Francisco

    2010-07-01

    Mycoplasma ovipneumoniae is associated with chronic non-progressive pneumonia of sheep and goats. As with many other mycoplasmas involved in animal diseases, protective immune responses have not been achieved with vaccines, even though antibody responses can be obtained. This study focuses on characterizing the interaction of M. ovipneumoniae with ovine PBMC using carboxy-fluorescein-succinimidyl-ester (CFSE) loading and flow cytometry to measure lymphoid cell division. M. ovipneumoniae induced a strong in vitro polyclonal suppression of CD4(+), CD8(+), and B blood lymphocyte subsets. The suppressive activity could be destroyed by heating to 60 degrees C, and partially impaired by formalin and binary ethyleneimine treatment that abolished its viability. The activity resided on the surface-exposed membrane protein fraction of the mycoplasma, since mild trypsin treatment not affecting viability was shown to reduce suppressive activity. Trypsin-treated mycoplasma regained suppressive activity once the mycoplasma was allowed to re-synthesize its surface proteins. Implications for the design of vaccines against M. ovipneumoniae are discussed.

  17. Ns1 is a key protein in the vaccine composition to protect Ifnar(-/- mice against infection with multiple serotypes of African horse sickness virus.

    Directory of Open Access Journals (Sweden)

    Francisco de la Poza

    Full Text Available African horse sickness virus (AHSV belongs to the genus Orbivirus. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2 and NS1 proteins from AHSV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-NS1 from AHSV-4 in an heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies specific of AHSV-4. In addition, vaccination stimulated specific T cell responses against the virus. The vaccine elicited partial protection against an homologous AHSV-4 infection and induced cross-protection against the heterologous AHSV-9. Similarly, IFNAR((-/- mice vaccinated with an homologous prime-boost strategy with rMVA-VP2-NS1 from AHSV-4 developed neutralizing antibodies and protective immunity against AHSV-4. Furthermore, the levels of immunity were very high since none of vaccinated animals presented viraemia when they were challenged against the homologous AHSV-4 and very low levels when they were challenged against the heterologous virus AHSV-9. These data suggest that the immunization with rMVA/rMVA was more efficient in protection against a virulent challenge with AHSV-4 and both strategies, DNA/rMVA and rMVA/rMVA, protected against the infection with AHSV-9. The inclusion of the protein NS1 in the vaccine formulations targeting AHSV generates promising multiserotype vaccines.

  18. Quest for a broad-range vaccine against Neisseria meningitidis serogroup B: implications of genetic variations of the surface-exposed proteins.

    Science.gov (United States)

    de Filippis, Ivano

    2009-09-01

    Despite the development of new vaccine formulations using new biotechnology resources to combat emerging and re-emerging diseases, serogroup B meningococcal disease is still a worldwide burden, accounting for many deaths and disabilities every year. The successful approach of coupling a polysaccharide (PS) with a carrier protein in order to increase long-lasting immunity could not be exploited against Neisseria meningitidis B because of the limitations of using the capsular PS of serogroup B meningococci. Tailor-made vaccines based on exposed proteins were shown to be a promising approach to overcome these flaws. However, the continuous adaptation of surface meningococcal structures to the external environment has led to genetic shifts of potential vaccine-target epitopes, hampering the quest for a broad-range vaccine that could be used against all serogroups, especially against serogroup B.

  19. Lipid activators of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, V.P.S.; Chauhan, A.; Deshmukh, D.S.; Brockerhoff, H. (New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (USA))

    1990-01-01

    Among the many reported lipid activators of protein kinase C only those of high affinity can be considered true physiological effectors, at present the tumor promoters, e.g., phorbol esters; 1,2-diacyl-sn-glycerols; and phosphatidylinositol 4,5-bisphosphate. Many other compounds (including arachidonic acid) are activators at high, unphysiological concentrations only, and they seem to be sterically unsuited for bonding to the enzyme. Such pseudoactivators possibly act by scrambling the structure of the regulatory moiety of the kinase.

  20. Bioinformatics and protein modelling of the GS element of Mycobacteriumavium subsp. paratuberculosis (MAP) and GS-encoded proteins as drugtargets and vaccine components

    Institute of Scientific and Technical Information of China (English)

    Joe Sheridan; Tim Bull; Nazira Sumar; Jun Cheng; John Hermon-Taylor

    2000-01-01

    AIM To determine the function and cellular localization of GS-encoded proteins and to assess their potentialas drug targets and vaccine components.METHODS Bioinformatics software was used to predict the function of GS-encoded proteins and theirlocation within MAP. Protein modelling software was used to build protein structures.RESULTS The gene gsa is a truncated glycosyl transferase and probably non-functional. gsbA and gsbBproduce GDP-fucose which is methylated by gsc and acetylated by mpa. gsd is a fucosyl transferase whichattaches fucose to subterminal rhamnose on cell surface glycopeptidolipid. gsa, gsbA and gsbB and gsc arelocated within the cytoplasm. mpa is embedded in the plasma membrane with 10 transmembrane regions anda conspicuous extracellular loop. gsd is lipid-linked and predicted to localize to the microbial cell surface.CONCLUSION GS encodes the biosynthetic machinery to give MAP a surface coat of methylated andacetylated fucose which may contribute to its protease-resistant nature and ability to minimize immunerecognition. The gsbA/gsbB operon and gsd are promising drug targets and gsd is a good candidatecomponent of a new class of anti-MAP vaccines.

  1. Immunology of O-glycosylated proteins: approaches to the design of a MUC1 glycopeptide-based tumor vaccine.

    Science.gov (United States)

    Hanisch, Franz-Georg; Ninkovic, Tanja

    2006-08-01

    Until about 1990 there was general consent about the assumption that only protein and peptide antigens have the capacity of CD4(+) or CD8(+) T-cell stimulation. Since about ten years evidence is now accumulating that carbohydrate-peptide epitopes do play a role in classical MHC-mediated immune responses. This holds true for glycopeptides, where the glycan chain is short and not located at an "anchor residue" needed for MHC interaction. T-cell recognition of O-glycosylated peptides is potentially of high biomedical significance, because it can mediate the immune protection against microorganisms, the vaccination in anti-tumor therapies, but also some aspects of autoimmunity. The epithelial type 1 transmembrane mucin MUC1 is established as a marker for monitoring recurrence of breast cancer and is a promising target for immunotherapeutic strategies to treat cancer by active specific immunization. Natural human immune responses to the tumor-associated glycoforms of the mucin indicate that antibody reactivities are more directed to glycopeptide than to non-glycosylated peptide epitopes. To overcome the weak immunogenicity of the natural target, heavily O-glycosylated MUC1, the question was addressed whether O-linked glycans remain intact during processing in the MHC class II pathway and interfere with endosomal processing and peptide presentation. Attempts were made to define on a biochemical level the structural requirements for an efficient endosomal proteolysis catalyzed by cathepsin L in antigen-presenting cells. Evidence based on work with CD4(+) T-hybridomas confirms that O-glycopeptides can be effectively presented to T-cells and that glycans can form integral parts of the TCR defined epitopes. Similar approaches are currently followed in the MHC class I pathway which aim at the identification of immunogenic glycopeptides generated by immunoproteasomes.

  2. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  3. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  4. Recombinant outer membrane protein A (OmpA) of Edwardsiella tarda, a potential vaccine candidate for fish, common carp.

    Science.gov (United States)

    Maiti, Biswajit; Shetty, Mahesh; Shekar, Malathi; Karunasagar, Iddya; Karunasagar, Indrani

    2011-12-20

    Outer membrane protein A (OmpA) is a component of the outer membrane of Edwardsiella tarda and is wildly distributed in Enterobacteriaceae family. The gene encoding the OmpA protein was cloned from E. tarda and expressed in Escherichia coli M15 cells. The recombinant OmpA protein containing His(6) residues was estimated to have a molecular weight of ~38kDa. In Western blot the native protein showed expression at ~36kDa molecular weight which was within the range of major outer membrane proteins (36-44kDa) observed in this study. All E. tarda isolates tested harbored the ompA gene and the antibody raised to this protein was seen to cross react with other Gram negative bacteria. The OmpA protein characterized in this study was observed to be highly immunogenic in both rabbit and fish. In Enzyme linked immunosorbent assay, rabbit antisera showed an antibody titer of 1: 128,000. Common carp vaccinated with recombinant OmpA protein elicited high antibody production and immunized fish showed a relative percentage survival of 54.3 on challenge.

  5. Proteomics Reveals that Proteins Expressed During the Early Stage of Bacillus anthracis Infection Are Potential Targets for the Development of Vaccines and Drugs

    Institute of Scientific and Technical Information of China (English)

    Chun-Ming Huang; Craig A. Elmets; De-chu C. Tang; Fuming Li; Nabiha Yusuf

    2004-01-01

    In this review, we advance a new concept in developing vaccines and/or drugs to target specific proteins expressed during the early stage of Bacillus anthracis (an thrax) infection and address existing challenges to this concept. Three proteins (immune inhibitor A, GPR-like spore protease, and alanine racemase) initially identified by proteomics in our laboratory were found to have differential expres sions during anthrax spore germination and early outgrowth. Other studies of different bacillus strains indicate that these three proteins are involved in either germination or cytotoxicity of spores, suggesting that they may serve as potential targets for the design of anti-anthrax vaccines and drugs.

  6. T cell responses induced by adenoviral vectored vaccines can be adjuvanted by fusion of antigen to the oligomerization domain of C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Emily K Forbes

    Full Text Available Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp as a candidate T cell "molecular adjuvant" when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5 vectored vaccines in BALB/c mice. We demonstrate that i C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4(+ and CD8(+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP1(42 or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1, but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation.

  7. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    Science.gov (United States)

    Xin, Hong

    2016-01-01

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi.

  8. Effect of viral membrane fusion activity on antibody induction by influenza H5N1 whole inactivated virus vaccine.

    Science.gov (United States)

    Geeraedts, Felix; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke; de Haan, Aalzen

    2012-10-05

    Whole inactivated virus (WIV) influenza vaccines are more immunogenic in unprimed individuals than split-virus or subunit vaccines. In mice, this superior immunogenicity has been linked to the recognition of the viral ssRNA by endosomal TLR7 receptors in immune cells, leading to IFNα production and Th1-type antibody responses. Recent data suggest that viral membrane fusion in target cell endosomes is necessary for TLR7-mediated IFNα induction. If so, virus inactivation procedures that compromise the fusion activity of WIV vaccines, like formaldehyde (FA) treatment, could potentially harm vaccine efficacy. Therefore, we measured the effect of fusion inactivation of H5N1 WIV on TLR7 activation in vitro, and on antibody isotype responses in vivo. Fusion inactivation of WIV reduced, but did not block, TLR7-dependent IFNα induction in murine dendritic cells in vitro. In vivo, fusion-inactive WIV was as potent as fusion-active WIV in inducing total H5N1-specific serum IgG and IgG2c subtype antibodies in unprimed mice. Both vaccines induced only small amounts of IgG1. However, FA treatment of WIV did reduce the capacity of the vaccine to induce hemagglutination-inhibiting (HI) antibodies. This possibly relates to modification of epitopes that are targets for HI antibodies rather than to loss of fusion activity. Antibody affinity maturation was not negatively affected by fusion inactivation. In conclusion, fusion activity of H5N1 WIV does not play a major role in Th1-type antibody induction. Yet, to preserve the full immunogenicity of WIV, or possibly also other inactivated influenza vaccines, harsh treatment with formaldehyde should be avoided. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Use of recombinant capsid proteins in the development of a vaccine against the foot-and-mouth disease virus

    Directory of Open Access Journals (Sweden)

    Belsham GJ

    2015-02-01

    Full Text Available Graham J Belsham, Anette Bøtner National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark Abstract: Foot-and-mouth disease remains one of the world's most economically important diseases of livestock. It is caused by foot-and-mouth disease virus, a member of the picornavirus family. The virus replicates very rapidly and can be efficiently transmitted between hosts by a variety of routes. The disease has been effectively controlled in some parts of the world but remains endemic in many others, thus there is a constant risk of introduction of the disease into areas that are normally free of foot-and-mouth disease with potentially huge economic consequences. To reduce the need for large-scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self-assemble to generate “empty capsid” particles which share many features with the intact virus but lack the ribonucleic acid genome and are therefore non-infectious. Such particles can be “designed” to improve their stability or modify their antigenicity and can be produced without “high containment” facilities. The development and use of such improved vaccines should assist in the global efforts to control this important disease. Keywords: picornavirus, diagnostic assays, virus structure, infection, immune responses

  10. Protective efficacy and immunogenicity of an adenoviral vector vaccine encoding the codon-optimized F protein of respiratory syncytial virus.

    Science.gov (United States)

    Kohlmann, Rebekka; Schwannecke, Sarah; Tippler, Bettina; Ternette, Nicola; Temchura, Vladimir V; Tenbusch, Matthias; Uberla, Klaus; Grunwald, Thomas

    2009-12-01

    Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans.

  11. Protective Efficacy and Immunogenicity of an Adenoviral Vector Vaccine Encoding the Codon-Optimized F Protein of Respiratory Syncytial Virus▿

    Science.gov (United States)

    Kohlmann, Rebekka; Schwannecke, Sarah; Tippler, Bettina; Ternette, Nicola; Temchura, Vladimir V.; Tenbusch, Matthias; Überla, Klaus; Grunwald, Thomas

    2009-01-01

    Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans. PMID:19776123

  12. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    2007-08-01

    Full Text Available Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1. In cell culture, nsp1 of mouse hepatitis virus (MHV, like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.

  13. A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2.

    Science.gov (United States)

    Hervé, Pierre-Louis; Raliou, Mariam; Bourdieu, Christiane; Dubuquoy, Catherine; Petit-Camurdan, Agnès; Bertho, Nicolas; Eléouët, Jean-François; Chevalier, Christophe; Riffault, Sabine

    2014-01-01

    In this study, subnucleocapsid nanorings formed by the recombinant nucleoprotein (N) of the respiratory syncytial virus were evaluated as a platform to anchor heterologous antigens. The ectodomain of the influenza virus A matrix protein 2 (M2e) is highly conserved and elicits protective antibodies when it is linked to an immunogenic carrier, making it a promising target to develop universal influenza vaccines. In this context, one or three M2e copies were genetically linked to the C terminus of N to produce N-M2e and N-3M2e chimeric recombinant nanorings. Mice were immunized intranasally with N-M2e or N-3M2e or with M2e or 3M2e control peptides. N-3M2e-vaccinated mice showed the strongest mucosal and systemic antibody responses. These mice presented a reduced viral load and minor weight loss, and all survived upon challenge with influenza virus A/PR8/34 (H1N1) (PR8). We compared the intranasal route to the subcutaneous route of N-3M2e immunization. Only the intranasal route induced a strong local IgA response and led to the protection of mice upon challenge. Finally, we demonstrated that the induction of anti-M2e antibodies by N-3M2e is not impaired by preexisting anti-N immunity. Overall, these results show that the N nanoring is a potent carrier for mucosal delivery of vaccinal antigens.

  14. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    Science.gov (United States)

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.

  15. A novel dual promoter DNA vaccine induces CD8+ response against Toxoplasma gondii sporozoite specific surface protein “SporoSAG” through non-apoptotic cells

    Directory of Open Access Journals (Sweden)

    Sultan Gülçe İz

    2014-01-01

    The results of this study reveal the ability of SporoSAG protein to induce CD8+ T lymphocyte response for the first time. Overall, SporoSAG protein can be included to multivalant vaccine formulations in future studies to increase the protection in infections acquired through T. gondii oocysts.

  16. Applications of an Automated and Quantitative CE-Based Size and Charge Western Blot for Therapeutic Proteins and Vaccines.

    Science.gov (United States)

    Rustandi, Richard R; Hamm, Melissa; Lancaster, Catherine; Loughney, John W

    2016-01-01

    Capillary Electrophoresis (CE) is a versatile and indispensable analytical tool that can be applied to characterize proteins. In recent years, labor-intensive SDS-PAGE and IEF slab gels have been replaced with CE-SDS (CGE) and CE-IEF methods, respectively, in the biopharmaceutical industry. These two CE-based methods are now an industry standard and are an expectation of the regulatory agencies for biologics characterization. Another important and traditional slab gel technique is the western blot, which detects proteins using immuno-specific reagents after SDS-PAGE separation. This technique is widely used across industrial and academic laboratories, but it is very laborious, manual, time-consuming, and only semi-quantitative. Here, we describe the applications of a relatively new CE-based western blot technology which is automated, fast, and quantitative. We have used this technology for both charge- and size-based CE westerns to analyze biotherapeutic and vaccine products. The size-based capillary western can be used for fast antibody screening, clone selection, product titer, identity, and degradation while the charge-based capillary western can be used to study product charge heterogeneity. Examples using this technology for monoclonal antibody (mAb), Enbrel, CRM197, and Clostridium difficile (C. difficile) vaccine proteins are presented here to demonstrate the utility of the capillary western techniques. Details of sample preparation and experimental conditions for each capillary western mode are described in this chapter.

  17. Streptococcus iniae M-Like Protein Contributes to Virulence in Fish and Is a Target for Live Attenuated Vaccine Development

    Science.gov (United States)

    Locke, Jeffrey B.; Aziz, Ramy K.; Vicknair, Mike R.; Nizet, Victor; Buchanan, John T.

    2008-01-01

    Background Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA) and C5a peptidase (scpI). Methodology/Principal Findings S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes), scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB) and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the ΔsimA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT) S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development. Conclusions/Significance Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an unusual arrangement

  18. Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Locke

    Full Text Available BACKGROUND: Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA and C5a peptidase (scpI. METHODOLOGY/PRINCIPAL FINDINGS: S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes, scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the Delta simA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development. CONCLUSIONS/SIGNIFICANCE: Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an

  19. Comparative M-protein analysis of Streptococcus pyogenes from pharyngitis and skin infections in New Zealand: Implications for vaccine development.

    Science.gov (United States)

    Williamson, Deborah A; Smeesters, Pierre R; Steer, Andrew C; Morgan, Julie; Davies, Mark; Carter, Philip; Upton, Arlo; Tong, Stephen Y C; Fraser, John; Moreland, Nicole J

    2016-10-12

    Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are responsible for a significant disease burden amongst Māori and Pacific populations in New Zealand (NZ). However, contemporary data are lacking regarding circulating group A Streptococcal (GAS) strains in NZ. Such information is important in guiding vaccine development. GAS isolates from April to June 2015 were recovered from skin and pharyngeal samples from children living in areas of high social deprivation in Auckland, NZ, a significant proportion of which are Māori or Pacific. These children are among the highest risk group for developing ARF. Isolates were compared to concurrently collected pharyngeal isolates from Dunedin, NZ, where both the proportion of Māori and Pacific children and risk of developing ARF is low. Emm typing, emm cluster typing and theoretical coverage of the 30-valent vaccine candidate were undertaken as previously described. A high diversity of emm types and a high proportion of emm-pattern D and cluster D4 isolates were detected amongst both skin and pharyngeal isolates in children at high risk of ARF. Pharyngeal isolates from children at low risk of ARF within the same country were significantly less diverse, less likely to be emm pattern D, and more likely to be theoretically covered by the 30-valent M protein vaccine. The high proportion of emm pattern D GAS strains amongst skin and pharyngeal isolates from children at high risk of ARF raises further questions about the role of skin infection in ARF pathogenesis. Emm types and emm clusters differed considerably between ARF endemic and non-endemic settings, even within the same country. This difference should be taken into account for vaccine development.

  20. A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice

    Directory of Open Access Journals (Sweden)

    Beck Markus

    2010-07-01

    Full Text Available Abstract Background Since its first appearance in the USA in 1999, West Nile virus (WNV has spread in the Western hemisphere and continues to represent an important public health concern. In the absence of effective treatment, there is a medical need for the development of a safe and efficient vaccine. Live attenuated WNV vaccines have shown promise in preclinical and clinical studies but might carry inherent risks due to the possibility of reversion to more virulent forms. Subunit vaccines based on the large envelope (E glycoprotein of WNV have therefore been explored as an alternative approach. Although these vaccines were shown to protect from disease in animal models, multiple injections and/or strong adjuvants were required to reach efficacy, underscoring the need for more immunogenic, yet safe DIII-based vaccines. Results We produced a conjugate vaccine against WNV consisting of recombinantly expressed domain III (DIII of the E glycoprotein chemically cross-linked to virus-like particles derived from the recently discovered bacteriophage AP205. In contrast to isolated DIII protein, which required three administrations to induce detectable antibody titers in mice, high titers of DIII-specific antibodies were induced after a single injection of the conjugate vaccine. These antibodies were able to neutralize the virus in vitro and provided partial protection from a challenge with a lethal dose of WNV. Three injections of the vaccine induced high titers of virus-neutralizing antibodies, and completely protected mice from WNV infection. Conclusions The immunogenicity of DIII can be strongly enhanced by conjugation to virus-like particles of the bacteriophage AP205. The superior immunogenicity of the conjugate vaccine with respect to other DIII-based subunit vaccines, its anticipated favourable safety profile and low production costs highlight its potential as an efficacious and cost-effective prophylaxis against WNV.

  1. Immunogenicity of a meningococcal native outer membrane vesicle vaccine with attenuated endotoxin and over-expressed factor H binding protein in infant rhesus monkeys.

    Science.gov (United States)

    Koeberling, Oliver; Seubert, Anja; Santos, George; Colaprico, Annalisa; Ugozzoli, Mildred; Donnelly, John; Granoff, Dan M

    2011-06-24

    We previously investigated immunogenicity of meningococcal native outer membrane vesicle (NOMV) vaccines prepared from recombinant strains with attenuated endotoxin (ΔLpxL1) and over-expressed factor H binding protein (fHbp) in a mouse model. The vaccines elicited broad serum bactericidal antibody responses. While human toll-like receptor 4 (TLR-4) is mainly stimulated by wildtype meningococcal endotoxin, mouse TLR-4 is stimulated by both the wildtype and mutant endotoxin. An adjuvant effect in mice of the mutant endotoxin would be expected to be much less in humans, and may have contributed to the broad mouse bactericidal responses. Here we show that as previously reported for humans, rhesus primate peripheral blood mononuclear cells incubated with a NOMV vaccine from ΔLpxL1 recombinant strains had lower proinflammatory cytokine responses than with a control wildtype NOMV vaccine. The cytokine responses to the mutant vaccine were similar to those elicited by a detergent-treated, wildtype outer membrane vesicle vaccine that had been safely administered to humans. Monkeys (N=4) were immunized beginning at ages 2-3 months with three doses of a NOMV vaccine prepared from ΔLpxL1 recombinant strains with over-expressed fHbp in the variant 1 and 2 groups. The mutant NOMV vaccine elicited serum bactericidal titers≥1:4 against all 10 genetically diverse strains tested, including 9 with heterologous PorA to those in the vaccine. Negative-control animals had serum bactericidal titers<1:4. Thus, the mutant NOMV vaccine elicited broadly protective serum antibodies in a non-human infant primate model that is more relevant for predicting human antibody responses than mice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. In vivo assessment of equine arteritis virus vaccine improvement by disabling the deubiquitinase activity of papain-like protease 2.

    Science.gov (United States)

    van Kasteren, Puck B; Knaap, Robert C M; van den Elzen, Paul; Snijder, Eric J; Balasuriya, Udeni B R; van den Born, Erwin; Kikkert, Marjolein

    2015-07-09

    Arteriviruses are a family of positive-stranded RNA viruses that includes the prototypic equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV). Although several vaccines against these viruses are commercially available there is room for improvement, especially in the case of PRRSV. The ability of arteriviruses to counteract the immune response is thought to decrease the efficacy of the current modified live virus vaccines. We have recently shown that the deubiquitinase (DUB) activity of EAV papain-like protease 2 (PLP2) is important for the inhibition of innate immune activation during infection. A vaccine virus lacking PLP2 DUB activity may therefore be more immunogenic and provide improved protection against subsequent challenge than its DUB-competent counterpart. To test this hypothesis, twenty Shetland mares were randomly assigned to one of three groups. Two groups were vaccinated, either with DUB-positive (n=9) or DUB-negative (n=9) recombinant EAV. The third group (n=2) was not vaccinated. All horses were subsequently challenged with the virulent KY84 strain of EAV. Both vaccine viruses proved to be replication competent in vivo. In addition, the DUB-negative virus provided a similar degree of protection against clinical disease as its DUB-positive parental counterpart. Owing to the already high level of protection provided by the parental virus, a possible improvement due to inactivation of PLP2 DUB activity could not be detected under these experimental conditions. Taken together, the data obtained in this study warrant further in vivo investigations into the potential of using DUB-mutant viruses for the improvement of arterivirus vaccines.

  3. Characterization of the structure and immunostimulatory activity of a vaccine adjuvant, de-O-acylated lipooligosaccharide.

    Directory of Open Access Journals (Sweden)

    Ji Eun Han

    Full Text Available Lipopolysaccharide (LPS is a major component of the outer membrane of Gram-negative bacteria. LPS elicits strong immunopathological responses during bacterial infection, and the lipid A moiety of LPS is responsible for this immunostimulatory activity. Lipid A exerts its biological activity by sending signals via TLR4 present on immune cells, and TLR4 agonists have been a target for vaccine adjuvant. Previously, we demonstrated an adjuvant activity of deacylated lipooligosaccharide (dLOS to viral and bacterial antigens. In this study, we characterized the chemical structure of dLOS and evaluated its immunostimulatory activity on mouse and human immune cells in comparison with monophosphoryl lipid A (MPL. dLOS consists of the R3-type core, a glucosamine disaccharide with two phosphate groups, and two N-linked acyl groups [corrected], and two N-linked acyl groups. dLOS was similar to MPL in induction of cytokine production in mouse peritoneal macrophages, but was a more potent activator in human monocytes and dendritic cells (DCs. Results of an analysis of allogeneic T cell responses revealed that dLOS induces Th1, Th2, and Th17-type immune responses in a dose-dependent manner. The immunostimulatory activities of dLOS were completely abrogated in TLR4(-/- mice, which confirms its TLR4-dependency. These results suggest that in the presence of the core oligosaccharide, O-linked acyl groups of LPS are dispensable for activating the TLR4 signaling pathway. dLOS did not cause any pathological effects or death at 0.25, 0.5, or 1 mg per kg body weight in mice in the acute toxicity tests. This result suggests that dLOS has a low toxicity. dLOS should be considered for further development as a safe and effective adjuvant for human vaccines.

  4. Nedd4-mediated increase in HIV-1 Gag and Env proteins and immunity following DNA-vaccination of BALB/c mice.

    Science.gov (United States)

    Lewis, Brad; Whitney, Stephen; Hudacik, Lauren; Galmin, Lindsey; Huaman, Maria Cecilia; Cristillo, Anthony D

    2014-01-01

    The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation.

  5. Nedd4-mediated increase in HIV-1 Gag and Env proteins and immunity following DNA-vaccination of BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Brad Lewis

    Full Text Available The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation.

  6. Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA) as a Candidate Subunit Cholera Vaccine

    Science.gov (United States)

    Molaee, Neda; Amozande-Nobaveh, Alireza; Soleyman, Mohammad Reza

    2017-01-01

    Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response. PMID:28191473

  7. Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA as a Candidate Subunit Cholera Vaccine

    Directory of Open Access Journals (Sweden)

    Neda Molaee

    2017-01-01

    Full Text Available Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response.

  8. Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA) as a Candidate Subunit Cholera Vaccine.

    Science.gov (United States)

    Molaee, Neda; Mosayebi, Ghasem; Amozande-Nobaveh, Alireza; Soleyman, Mohammad Reza; Abtahi, Hamid

    2017-01-01

    Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response.

  9. Head-to-Head Comparison of Three Vaccination Strategies Based on DNA and Raw Insect-Derived Recombinant Proteins against Leishmania

    Science.gov (United States)

    Núñez, María del Carmen; Laurenti, Márcia D.; Gómez-Sebastián, Silvia; Rodríguez, Fernando; Pérez-Martín, Eva; Escribano, José M.

    2012-01-01

    Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories –the cheapest way of producing DNA-PROT vaccines– is a practical and cost-effective way for potential “off the shelf” supplying vaccines at very low prices for the protection against

  10. [A novel immunization strategy to induce strong humoral responses against HIV-1 using combined DNA, recombinant vaccinia virus and protein vaccines].

    Science.gov (United States)

    Liu, Chang; Wang, Shu-hui; Ren, Li; Hao, Yan-ling; Zhang, Qi-cheng; Liu, Ying

    2014-11-01

    To optimize the immunization strategy against HIV-1, a DNA vaccine was combined with a recombinant vaccinia virus (rTV) vaccine and a protein vaccine. Immune responses against HIV-1 were detected in 30 female guinea pigs divided into six groups. Three groups of guinea pigs were primed with HIV-1 DNA vaccine three times, boosted with rTV at week 14, and then boosted with gp140 protein at intervals of 4, 8 or 12 weeks. Simultaneously, the other three groups of animals were primed with rTV vaccine once, and then boosted with gp140 after 4, 8 or 12 weeks. The HIV-1 specific binding antibody and neutralizing antibody, in addition to the relative affinity of these antibodies, were detected at different time points after the final administration of vaccine in each group. The DNA-rTV-gp140 immune regimen induced higher titers and affinity levels of HIV-1 gp120/gp140 antibodies and stronger V1V2-gp70 antibodies than the rTV-gp140 regimen. In the guinea pigs that underwent the DNA-rTV-gp140 regimen, the highest V1V2-gp70 antibody was induced in the 12-week-interval group. However, the avidity of antibodies was improved in the 4-week-interval group. Using the rTV-gp140 immunization strategy, guinea pigs boosted at 8 or 12 weeks after rTV priming elicited stronger humoral responses than those boosted at 4 weeks after priming. In conclusion, this study shows that the immunization strategy of HIV-1 DNA vaccine priming, followed by rTV and protein vaccine boosting, could strengthen the humoral response against HIV-1. Longer intervals were better to induce V1V2-gp70-specific antibodies, while shorter intervals were more beneficial to enhance the avidity of antibodies.

  11. Recombinant M2e protein-based ELISA: a novel and inexpensive approach for differentiating avian influenza infected chickens from vaccinated ones.

    Directory of Open Access Journals (Sweden)

    Farhid Hemmatzadeh

    Full Text Available Available avian influenza (AIV serological diagnostic tests cannot distinguish vaccinated from naturally infected birds. Differentiation of vaccinated from infected animals (DIVA is currently advocated as a means of achieving the full control of H5N1. In this study, for the first time, recombinant ectodomain of M2 protein (M2e of avian influenza virus (H5N1 strain was used for the DIVA serology test. M2e was cloned into pMAL-P4X vector and expressed in E. coli cells. We used Western blot to recognize the expressed M2e-MBP protein by chicken antisera produced against live H5N1 virus. Also, the specificity of M2e-MBP protein was compared to the M2e synthetic peptide via ELISA. In M2e-MBP ELISA, all sera raised against the live avian influenza viruses were positive for M2e antibodies, whereas sera from killed virus vaccination were negative. Furthermore, M2e-MBP ELISA of the field sera obtained from vaccinated and non-vaccinated chickens showed negative results, while challenged vaccinated chickens demonstrated strong positive reactions. H5N1-originated recombinant M2e protein induced broad-spectrum response and successfully reacted with antibodies against other AIV strains such as H5N2, H9N2, H7N7, and H11N6. The application of the recombinant protein instead of synthetic peptide has the advantages of continues access to an inexpensive reagent for performing a large scale screening. Moreover, recombinant proteins provide the possibility of testing the DIVA results with an additional technique such a Western blotting which is not possible in the case of synthetic proteins. All together, the results of the present investigation show that recombinant M2e-MBP can be used as a robust and inexpensive solution for DIVA test.

  12. 77 FR 55221 - Agency Information Collection Activities: Report of Medical Examination and Vaccination Record...

    Science.gov (United States)

    2012-09-07

    ... Medical Examination and Vaccination Record, Form I-693; Revision of a Currently Approved Collection ACTION...: Report of Medical Examination and Vaccination Record. (3) Agency form number, if any, and the...

  13. Active and passive immunization with Pseudomonas aeruginosa ribosomal vaccines and antisera in the burned rat model.

    Science.gov (United States)

    Lieberman, M M; Walker, H L; Ayala, E; Chapa, I

    1986-02-01

    Pseudomonas aeruginosa ribosomal vaccines were tested for their ability to protect rats subjected to a 20% total body surface burn against the lethal effects of infection with homologous organisms. When administered prior to burning, the vaccines provided 100% protection. When administered postburning, the vaccine from one strain also provided 100% protection when the time interval between vaccination and infection was 3 days. When this time interval was reduced to 1 or 2 days, approximately 50% protection was obtained with the same vaccine. The vaccine from a second strain tested provided about 50% protection with a 3-day time interval. In addition, passive immunization using antiserum to a ribosomal vaccine was also demonstrated to be effective in protecting burned and infected rats, especially when multiple doses of antiserum were used. In this case, 80% protection was obtained (with no protection observed using multiple doses of normal serum). Finally, a comparison of ribosomal and lipopolysaccharide vaccines and antisera was also performed.

  14. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis

    National Research Council Canada - National Science Library

    Beltrán-Beck, Beatriz; de la Fuente, José; Garrido, Joseba M; Aranaz, Alicia; Sevilla, Iker; Villar, Margarita; Boadella, Mariana; Galindo, Ruth C; Pérez de la Lastra, José M; Moreno-Cid, Juan A; Fernández de Mera, Isabel G; Alberdi, Pilar; Santos, Gracia; Ballesteros, Cristina; Lyashchenko, Konstantin P; Minguijón, Esmeralda; Romero, Beatriz; de Juan, Lucía; Domínguez, Lucas; Juste, Ramón; Gortazar, Christian

    2014-01-01

    ...). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special...

  15. Vaccination against Taenia taeniaeformis infection in rats using a recombinant protein and preliminary analysis of the induced antibody response.

    Science.gov (United States)

    Ito, A; Bøgh, H O; Lightowlers, M W; Mitchell, G F; Takami, T; Kamiya, M; Onitake, K; Rickard, M D

    1991-01-01

    Primary screening of a cDNA expression library of Taenia taeniaeformis oncospheres in lambda gt11 bacteriophage was carried out using rabbit anti-T, taeniaeformis oncosphere serum affinity-purified from oncosphere pellets. From approximately 1.6 x 10(5) plaques, 21 single clones that were positive with the affinity-purified antibodies were isolated. Sibling analysis revealed that 17 clones out of the 21 could be assigned to five different antigen families. Only family 1 was strongly recognized by a serum prepared in a rabbit against a partially purified host-protective oncosphere antigen fraction. The fragments of lambda DNA were inserted into a pGEX plasmid vector that encodes glutathione S-transferase (GST) of Schistosoma japonicum. Clones designated TtO-18, -49.53 (family 1), 46 (family 2), 15 (family 3), 40 (family 4) and 66 (family 5) were established as subclones in pGEX-1 plasmid vectors which produced GST fusion proteins. All GST fusion proteins were soluble and recognized by anti-GST and anti-TtO sera. Three vaccination experiments with these fusion proteins using specific-pathogen-free Wistar rats revealed that all three fusion proteins of family 1 were exclusively effective against T. taeniaeformis oncosphere challenge with approximately 95% and 91% reductions in cystic metacestode and total metacestode recoveries, respectively. Rats vaccinated with fusion proteins of family 1 produced antibodies which reacted with a 21-kDa oncosphere antigen component which appeared to be a major oncosphere stage-specific antigen.

  16. Development of an in process control filtration-assisted chemiluminometric immunoassay to quantify foot and mouth disease virus (FMDV) non-capsid proteins in vaccine-antigen batches.

    Science.gov (United States)

    Capozzo, Alejandra Victoria; Martínez, Manuel Rosendo; Schielen, Wilhelmus Joseph Gerardus

    2010-09-14

    In many countries, foot and mouth disease (FMD) is controlled by vaccination and surveillance against non-capsid proteins (NCP); therefore vaccines are required not to induce antibodies against NCP. Vaccine purity is evaluated by repeated inoculation of naïve cattle, an expensive and time consuming protocol that raises several animal welfare concerns. We have developed an in process control filtration-assisted chemiluminometric immunoassay (FAL-ELISA), to detect and quantify NCP in vaccine-antigen batches regardless of its volume and composition. Samples are filtered through PVDF-filter microplates pre-coated with a monoclonal antibody against NCP. Filtration removes all unbound components in the sample and captured NCP are detected by anti-NCP conjugate followed by incubation with the substrate, luminol/peroxide. Analytical detection limit was 2 ng for purified NCP and 4 ng for vaccine-antigen batches spiked with NCP, which makes this assay sensitive enough to be applied to purity control of FMD vaccines. Vaccine components did not interfere with the antibody and substrate reactions in the assay. FAL-ELISA is an alternative for the in vivo tests, observing the objective to Replace, Reduce and Refine the use of animals for quality control of immunobiologicals.

  17. Granulocyte-macrophage colony-stimulating factor DNA prime-protein boost strategy to enhance efficacy of a recombinant pertussis DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Qing-tian LI; Yong-zhang ZHU; Jia-you CHU; Ke DONG; Ping HE; Chun-yan FENG; Bao-yu HU; Shu-min ZHANG; Xiao-kui GUO

    2006-01-01

    Aim: To investigate a new strategy to enhance the efficacy of a recombinant pertussis DNA vaccine. The strategy is co-injection with cytokine plasmids as prime, and boosted with purified homologous proteins. Method: A recombinant pertussis DNA vaccine containing the pertussis toxin subunit 1 (PTS1), fragments of the filamentous hemagglutinin (FHA) gene and pertactin (PRN) gene encoding filamentous hemagglutinin and pertactin were constructed. Balb/c mice were immunized with several DNA vaccines and antigen-specific antibodies anti-PTSl, anti-PRN, anti-FHA, cytokines interleukin (IL)-10, IL-4, IFN-γ, TNF-oc, and spleno-cyte-proliferation assay were used to describe immune responses. Results: The recombinant DNA vaccine could elicit similar immune responses in mice as that of separate plasmids encoding the 3 fragments, respectively. Mice immunized with DNA and boosted with the corresponding protein elicited more antibodies than those that received DNA as boost. In particular, when the mice were co-immunized with murine granulocyte-macrophage colony-stimulating factor plasmids and boosted with proteins, all 4 cytokines and the 3 antigen-specific antibodies were significantly increased compared to the pVAXl group. Anti-PTSl, anti-FHA, IL-4 and TNF-α elicited in the colony stimulating factor (CSF) prime-protein boost group showed significant increase compared to all the other groups. Conclusion: This prime and boost strategy has proven to be very useful in improving the immunogenicity of DNA vaccines against pertussis.

  18. Potential use of outer membrane proteins as subunit vaccines against Haemophilus parasuis

    Science.gov (United States)

    Haemophilus parasuis is a Gram-negative bacterium belonging to the Pasteurellaceae family that causes Glässer's disease in pigs, a disease characterized by polyserositis, meningitis and arthritis. There are at least 15 serotypes of H. parasuis and vaccines are largely limited to bacterins that provi...

  19. Vaccine development against the Taenia solium parasite: the role of recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Gauci, Charles; Jayashi, César; Lightowlers, Marshall W

    2013-01-01

    Taenia solium is a zoonotic parasite that causes cysticercosis. The parasite is a major cause of human disease in impoverished communities where it is transmitted to humans from pigs which act as intermediate hosts. Vaccination of pigs to prevent transmission of T. solium to humans is an approach that has been investigated to control the disease. A recombinant vaccine antigen, TSOL18, has been remarkably successful at reducing infection of pigs with T. solium in several experimental challenge trials. The vaccine has been shown to eliminate transmission of naturally acquired T. solium in a field trial conducted in Africa. We recently reported that the vaccine was also effective in a field trial conducted in Peru. The TSOL18 recombinant antigen for each of these trials has been produced by expression in Escherichia coli. Here we discuss research that has been undertaken on the TSOL18 antigen and related antigens with a focus on improved methods of preparation of recombinant TSOL18 and optimized expression in Escherichia coli.

  20. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  1. Serological method using recombinant S2 protein to differentiate equine infectious anemia virus (EIAV)-infected and EIAV-vaccinated horses.

    Science.gov (United States)

    Jin, Sha; Issel, Charles J; Montelaro, Ronald C

    2004-11-01

    We recently reported a highly protective attenuated live virus vaccine for equine infectious anemia virus (EIAV) based on a proviral construct (EIAVUKDeltaS2) with a genetically engineered mutation in the viral S2 gene that eliminates expression of this accessory protein. While the EIAVUKDeltaS2 vaccine provides protection from detectable infection by experimental challenge with highly virulent virus, the potential for commercial application of this vaccine is complicated by the fact that horses inoculated with the EIAVUKDeltaS2 vaccine strain become seropositive in various reference diagnostic assays based on detection of antibodies to virion core or envelope proteins. To address this issue, we describe here the development and optimization of a new serologic EIAV diagnostic enzyme-linked immunosorbent assay (ELISA) to detect serum antibodies to the EIAV S2 protein that are produced in infected horses but not in horses inoculated with the EIAVUKDeltaS2 vaccine virus. The test S2 protein antigen was developed using the S2 gene sequence from the EIAVUK strain of virus and a series of modifications to facilitate production and purification of the diagnostic antigen, designated HS2G. Using this HS2G as antigen, we describe the development of an affinity ELISA that provides a sensitive and specific detection of S2-specific serum antibodies in experimentally and field-infected horses (22 of 24), without detectable reactivity with immune serum from uninfected (12 of 12) or vaccinated (29 of 29) horses. These data indicate that the S2-based diagnostic ELISA has the potential to accurately differentiate horses infected with EIAV from horses inoculated with an attenuated EIAV vaccine strain with a mutant S2 gene.

  2. Vaccination with F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against plague upon oral challenge with Yersinia pestis

    Science.gov (United States)

    Rocke, T.E.; Smith, S.; Marinari, Paul E.; Kreeger, J.; Enama, J.T.; Powell, B.S.

    2008-01-01

    Previous studies have established that vaccination of black-footed ferrets (Mustela nigripes) with F1-V fusion protein by subcutaneous (SC) injection protects the animals against plague upon injection of the bacterium Yersinia pestis. This study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse, a probable route for natural infection. Eight black-footed ferret kits were vaccinated with F1-V protein by SC injection at approximately 60 days-of-age. A booster vaccination was administered 3 mo later via SC injection. Four additional ferret kits received placebos. The animals were challenged 6 wk after the boost by feeding each one a Y. pestis-infected mouse. All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days after exposure. To determine the duration of antibody postvaccination, 18 additional black-footed ferret kits were vaccinated and boosted with F1-V by SC injection at 60 and 120 days-of-age. High titers to both F1 and V (mean reciprocal titers of 18,552 and 99,862, respectively) were found in all vaccinates up to 2 yr postvaccination, whereas seven control animals remained antibody negative throughout the same time period. ?? Wildlife Disease Association 2008.

  3. Antioxidative Activity of Tobacco Leaf Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Guohua Rao

    2007-01-01

    Full Text Available Discarded tobacco leaf protein hydrolysate (DTLPH was prepared by enzymatic hydrolysis using papain and then separated using ultrafiltration (UF membranes with molecular mass cut-off (MMCO of 10, 5, 3 and 1 kDa. Four permeate fractions including 10-K, 5-K, 3-K and 1-K (the permeate fractions from 10, 5, 3 and 1 kDa hydrolysate fractions were obtained. The 5-K hydrolysate fraction had high oxidation inhibilitory ratio (42.62 %, which was about twofold higher than the original hydrolysate and as high as that of vitamin E (α-tocopherol. The fractionated hydrolysates were superior to the original hydrolysate in the antioxidative activity tested. Moreover, these separated hydrolysates showed the enhanced functional property. The amino acid composition of 5-K hydrolysate was analyzed and the results show that the high antioxidative activity of 5-K hydrolysate was derived from high content of histidine, methionine, cystine and tryptophan.