WorldWideScience

Sample records for active pauses induce

  1. Active pauses induce more variable electromyographic pattern of the trapezius muscle activity during computer work

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    , with passive (relax) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 2 min at two different work paces (low/high). Bipolar SEMG from four parts of the trapezius muscle was recorded. The relative rest time was higher for the lower parts compared with the upper......The aim of this laboratory study was to evaluate effects of active and passive pauses and investigate the distribution of the trapezius surface electromyographic (SEMG) activity during computer mouse work. Twelve healthy male subjects performed four sessions of computer work for 10 min in one day...... of the trapezius (pactive pause compared with passive one (p

  2. Pause

    OpenAIRE

    Travis, Michael Andrew

    2014-01-01

    Pause is a necessity within the rhythm of life. There are pauses everywhere around us; we pause when we breathe, we pause when we speak, and we pause when we think. Pause is a crucial part in the most beautiful pieces of music, it is in between our bites of food and sips of coffee. Pause is what makes life beautiful; without it the world around us will consist of a meaningless cacophony. Architecture, much like other things in life must also contain pauses to be enjoyable. The most memora...

  3. Profiles and Pauses: Two Practical Activities for the Writing Class

    Directory of Open Access Journals (Sweden)

    Ernest Hall

    1998-01-01

    Full Text Available Abstract : This article describes two classroom activities, "Profiling" and "Pause Analysis", that can be successfully used in ESL writing classes. "Profiling" addresses such problems as poor development of ideas, simplistic ideas, and lack of coherence in written texts. "Pause Analysis" focusses on the thinking processes that students engage in while drafting text, processes such as searching for ideas, evaluat­ing ideas, and postponing ideas. Both activities enable the instructor to assume the role of intervener in the students' writing processes, rather than evaluator of the text produced. In drawing The attention of the student write to both product and process, "Profiling" and "Pause Analysis" help them develop an awareness of the relation-ship between ideas in English expository text and the thinking pro­cesses that writers engage in while drafting such text.

  4. Experimental pain leads to reorganisation of trapezius electromyography during computer work with active and passive pauses

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    in one day, with passive (relax) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40 s without and with presence of experimental pain. Surface EMG signals were recorded from four parts of the trapezius. The centroid of exposure variation analysis along the time axis......The aim of this laboratory study was to investigate acute effects of experimental muscle pain on spatial electromyographic (EMG) activity of the trapezius muscle during computer work with active and passive pauses. Twelve healthy male subjects performed four sessions of computer work for 2 min...... was lower during computer work with active pauses when compared with passive one in all muscle parts (P

  5. Effects of eccentric exercise on trapezius electromyography during computer work with active and passive pauses

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    BACKGROUND: The aim of this laboratory study was to investigate the effects of eccentric exercises on the trapezius muscle spatial electromyographic (EMG) activity during computer work with active and passive pauses. METHODS: Twelve healthy male subjects performed computer work with passive (relax......) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40s over 2 days, before, immediately and 24h after eccentric exercise. Surface EMG signals were recorded from four parts of the trapezius during computer work. FINDINGS: EMG amplitude during computer work decreased...... immediately after exercise (Pactive pauses compared with passive ones (P

  6. A universal transcription pause sequence is an element of initiation factor σ70-dependent pausing

    Science.gov (United States)

    Bird, Jeremy G.; Strobel, Eric J.; Roberts, Jeffrey W.

    2016-01-01

    The Escherichia coli σ70 initiation factor is required for a post-initiation, promoter-proximal pause essential for regulation of lambdoid phage late gene expression; potentially, σ70 acts at other sites during transcription elongation as well. The pause is induced by σ70 binding to a repeat of the promoter −10 sequence. After σ70 binding, further RNA synthesis occurs as DNA is drawn (or ‘scrunched’) into the enzyme complex, presumably exactly as occurs during initial synthesis from the promoter; this synthesis then pauses at a defined site several nucleotides downstream from the active center position when σ70 first engages the −10 sequence repeat. We show that the actual pause site in the stabilized, scrunched complex is the ‘elemental pause sequence’ recognized from its frequent occurrence in the E. coli genome. σ70 binding and the elemental pause sequence together, but neither alone, produce a substantial transcription pause. PMID:27098041

  7. An Investigation of the Effects of Different Types of Activities during Pauses in a Segmented Instructional Animation

    Science.gov (United States)

    Cheon, Jongpil; Chung, Sungwon; Crooks, Steven M.; Song, Jaeki; Kim, Jeakyeong

    2014-01-01

    Since the complex and transient information in instructional animations requires more cognitive resources, the segmenting principle has been proposed to reduce cognitive overload by providing smaller chunks with pauses between segments. This study examined the effects of different types of activities during pauses in a segmented animation. Four…

  8. An Investigation of the Effects of Different Types of Activities during Pauses in a Segmented Instructional Animation

    Science.gov (United States)

    Cheon, Jongpil; Chung, Sungwon; Crooks, Steven M.; Song, Jaeki; Kim, Jeakyeong

    2014-01-01

    Since the complex and transient information in instructional animations requires more cognitive resources, the segmenting principle has been proposed to reduce cognitive overload by providing smaller chunks with pauses between segments. This study examined the effects of different types of activities during pauses in a segmented animation. Four…

  9. Effects of active pause pattern of surface electromyographic activity among subjects performing monotonous tasks: A systematic review.

    Science.gov (United States)

    Januario, Leticia Bergamin; Moreira, Roberta de Fátima Carreira; Cid, Marina Machado; Samani, Afshin; Madeleine, Pascal; Oliveira, Ana Beatriz

    2016-10-01

    Active pauses have shown potentially beneficial effects to increase the variability of the electrical activation pattern of muscles. However, there is a lack of consensus as to how to design and implement those pauses and the processing methods of surface electromyography (EMG) data when evaluating low-level monotonous tasks. The aim of this systematic review was to synthesize the evidences regarding the way which active pauses have been applied, and the methods used to investigate the related EMG changes. PubMed-MEDLINE, Embase, Web of Science, Lilacs, Ebsco, and Scopus databases were searched. Two authors independently extracted data from the primary studies. The methodological quality was assessed using a list from van der Windt et al. (2000), and the level of evidence was synthesized through GRADE. The ISEK guideline for reporting EMG data was also applied as a checklist. Fifteen studies were included - 14 with high methodological quality. In general, active pauses were able to change the level of EMG activity in monotonous tasks. The level of evidence through GRADE was very low for all EMG processing methods, except RMS which was low. A vast heterogeneity concerning the methods applied to analyze EMG data contributed to decrease the quality of evidence synthesis, and the findings need to be carefully considered. The GRADE approach and the ISEK guideline contributed to identify important flaws in the literature. Future studies investigating active pauses in longitudinal studies and following the standard for recording and reporting EMG data care are warranted.

  10. Pausing and activating thread state upon pin assertion by external logic monitoring polling loop exit time condition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong; Giampapa, Mark; Heidelberger, Philip; Ohmacht, Martin; Satterfield, David L; Steinmacher-Burow, Burkhard; Sugavanam, Krishnan

    2013-05-21

    A system and method for enhancing performance of a computer which includes a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program are executed by a processer. The processor processes instructions from the program. A wait state in the processor waits for receiving specified data. A thread in the processor has a pause state wherein the processor waits for specified data. A pin in the processor initiates a return to an active state from the pause state for the thread. A logic circuit is external to the processor, and the logic circuit is configured to detect a specified condition. The pin initiates a return to the active state of the thread when the specified condition is detected using the logic circuit.

  11. Alterations in apoptotic markers and egg-specific protein gene expression in the chicken oviduct during pause in laying induced by tamoxifen.

    Science.gov (United States)

    Socha, Joanna K; Hrabia, Anna

    2017-09-21

    The aim of this study was to examine the cell apoptosis, gene expression and activity of caspases 2, 3, 8 and 9, and the mRNA expression of selected egg-specific proteins in the chicken oviduct during pause in egg laying induced by tamoxifen (TMX) treatment. The experiment was carried out on Hy-Line Brown laying hens. The control birds were treated subcutaneously with vehicle (ethanol) and the experimental ones with TMX at a dose of 6 mg/kg of body weight. Hens were treated daily until a pause in egg laying occurred and sacrificed on Day 7 of the experiment. Within the oviductal wall, the highest number of apoptotic cells (TUNEL-positive) was found in the luminal epithelium and the lowest in the stroma. The administration of TMX increased the percentage of apoptotic cells in the magnum, isthmus, and shell gland as well as immunoreactivity for caspases 3 and 9. Real-time PCR analysis revealed the segment-dependent mRNA expression of caspases 2, 3, 8 and 9. Treatment of hens with TMX elevated the level of caspase-2 transcript in the infundibulum, caspases 2, 3 and 8 in the isthmus, and caspase-9 in the shell gland (P avidin and ovocleidin-116 mRNAs was decreased (P egg-specific proteins after TMX treatment suggest that there is a relationship between estrogen action and the expression of these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tachy-Brady Arrhythmias: The Critical Role of Adenosine-induced Sino-Atrial Conduction Block in Post-Tachycardia Pauses

    Science.gov (United States)

    Lou, Qing; Glukhov, Alexey V.; Hansen, Brian; Hage, Lori; Vargas-Pinto, Pedro; Billman, George E.; Carnes, Cynthia A.; Fedorov, Vadim V.

    2012-01-01

    Background In patients with sinoatrial nodal (SAN) dysfunction, atrial pauses lasting several seconds may follow rapid atrial pacing or paroxysmal tachycardia (tachy-brady arrhythmias). Clinical studies suggest that adenosine may play an important role in SAN dysfunction, but the mechanism remains unclear. Objective To define the mechanism of SAN dysfunction induced by the combination of adenosine and tachycardia. Methods We studied the mechanism of SAN dysfunction produced by a combination of adenosine and rapid atrial pacing in isolated coronary-perfused canine atrial preparations using high-resolution optical mapping (n=9). Sinus cycle length (SCL) and sinoatrial conduction time (SACT) were measured during adenosine (1–100μM) and 1μM DPCPX (A1 receptor antagonist, n=7) perfusion. Sinoatrial node recovery time was measured after one minute of “slow” pacing (3.3Hz) or tachypacing (7–9Hz). Results Adenosine significantly increased SCL (477±62 vs. 778±114 ms, p<0.01), and SACT during sinus rhythm (41±11 vs. 86±16 ms, p<0.01) dose-dependently. Adenosine dramatically affected SACT of the first SAN beat after tachypacing (41±5 vs. 221±98ms, p<0.01). Moreover, at high concentrations of adenosine (10–100μM), termination of tachypacing or atrial flutter/fibrillation produced atrial pauses of 4.2±3.4 seconds (n=5) due to conduction block between the SAN and atria, despite a stable SAN intrinsic rate. Conduction block was preferentially related to depressed excitability in SAN conduction pathways. Adenosine-induced changes were reversible upon washout or DPCPX treatment. Conclusions These data directly demonstrate that adenosine contributes to post-tachycardia atrial pauses through SAN exit block rather than slowed pacemaker automaticity. Thus, these data suggest an important modulatory role of adenosine in tachy-brady syndrome. PMID:22985657

  13. Effect of growth hormone on steroid concentrations and mRNA expression of their receptor, and selected egg-specific protein genes in the chicken oviduct during pause in laying induced by fasting.

    Science.gov (United States)

    Socha, J K; Sechman, A; Mika, M; Hrabia, A

    2017-10-01

    This study was undertaken to examine the effect of growth hormone (GH) treatment during pause in laying on (1) the concentration of steroids in blood plasma and oviduct tissues, (2) the expression of mRNA of steroid receptors, and (3) the mRNA expression of selected egg-specific proteins in the chicken oviduct. A pause in egg laying was induced by food deprivation for 5 d, followed by feeding every other day, and then feeding daily from Day 10 onward. Birds were divided into three groups: control (n = 18) fed ad libitum, subjected to pause in laying (n = 18), and subjected to pause in laying and injected every day with 200 μg/kg BW of chicken GH (chGH; n = 18). The oviduct was isolated from hens of each group on Days 6 (when the oviduct was regressed), 13 (during oviduct recrudescence), and 17 or 20 (rejuvenated oviduct) of the experiment. Fasting caused a decrease in plasma concentrations of progesterone (P4), testosterone, and estradiol on Day 6 and a reduction in tissue concentrations of these steroids on Days 6 and 13. Fasting also caused an increased relative expression of estrogen receptor α and β (ERα, ERβ) and progesterone receptor (PR) in the magnum and shell gland on Day 6, increased ERα and PR in the magnum on Days 13 and 17 or 20, and increased androgen receptor (AR) mRNA in the magnum on Days 6 and 13 and in the shell gland on Day 13. A fasting-induced elevation in ovocalyxin-36 mRNA expression on Day 6 and a decrease in avidin mRNA on Days 6 and 13 and in ovocleidin-116 on Day 13 were also observed (P avidin in the magnum on Day 6, and ERα in the shell gland on Day 13. The gene expression of ovalbumin on Days 6 and 13, ovocalyxin-36 and ovocleidin-116 on Day 6 was decreased in chGH-treated chickens. In contrast, the expression of ovalbumin on Day 17 or 20 was increased (P egg proteins indicate that GH might be the regulator of the secretory activity of the hen oviduct. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations.

    Science.gov (United States)

    Mooney, Rachel Anne; Landick, Robert

    2003-11-15

    Bacterial sigma factors compete for binding to RNA polymerase (RNAP) to control promoter selection, and in some cases interact with RNAP to regulate at least the early stages of transcript elongation. However, the effective concentration of sigmas in vivo, and the extent to which sigma can regulate transcript elongation generally, are unknown. We report that tethering sigma70 to all RNAP molecules via genetic fusion of rpoD to rpoC (encoding sigma70 and RNAP's beta' subunit, respectively) yields viable Escherichia coli strains in which alternative sigma-factor function is not impaired. beta'::sigma70 RNAP transcribed DNA normally in vitro, but allowed sigma70-dependent pausing at extended -10-like sequences anywhere in a transcriptional unit. Based on measurement of the effective concentration of tethered sigma70, we conclude that the effective concentration of sigma70 in E. coli (i.e., its thermodynamic activity) is close to its bulk concentration. At this level, sigma70 would be a bona fide elongation factor able to direct transcriptional pausing even after its release from RNAP during promoter escape.

  15. Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks.

    Science.gov (United States)

    Williams, Lucy H; Fromm, George; Gokey, Nolan G; Henriques, Telmo; Muse, Ginger W; Burkholder, Adam; Fargo, David C; Hu, Guang; Adelman, Karen

    2015-04-16

    The remarkable capacity for pluripotency and self-renewal in embryonic stem cells (ESCs) requires a finely tuned transcriptional circuitry wherein the pathways and genes that initiate differentiation are suppressed, but poised to respond rapidly to developmental signals. To elucidate transcriptional control in mouse ESCs in the naive, ground state, we defined the distribution of engaged RNA polymerase II (Pol II) at high resolution. We find that promoter-proximal pausing of Pol II is most enriched at genes regulating cell cycle and signal transduction and not, as expected, at developmental or bivalent genes. Accordingly, ablation of the primary pause-inducing factor NELF does not increase expression of lineage markers, but instead causes proliferation defects, embryonic lethality, and dysregulation of ESC signaling pathways. Indeed, ESCs lacking NELF have dramatically attenuated FGF/ERK activity, rendering them resistant to differentiation. This work thus uncovers a key role for NELF-mediated pausing in establishing the responsiveness of stem cells to developmental cues.

  16. Kinetic modeling of molecular motors: pause model and parameter determination from single-molecule experiments

    Science.gov (United States)

    Morin, José A.; Ibarra, Borja; Cao, Francisco J.

    2016-05-01

    Single-molecule manipulation experiments of molecular motors provide essential information about the rate and conformational changes of the steps of the reaction located along the manipulation coordinate. This information is not always sufficient to define a particular kinetic cycle. Recent single-molecule experiments with optical tweezers showed that the DNA unwinding activity of a Phi29 DNA polymerase mutant presents a complex pause behavior, which includes short and long pauses. Here we show that different kinetic models, considering different connections between the active and the pause states, can explain the experimental pause behavior. Both the two independent pause model and the two connected pause model are able to describe the pause behavior of a mutated Phi29 DNA polymerase observed in an optical tweezers single-molecule experiment. For the two independent pause model all parameters are fixed by the observed data, while for the more general two connected pause model there is a range of values of the parameters compatible with the observed data (which can be expressed in terms of two of the rates and their force dependencies). This general model includes models with indirect entry and exit to the long-pause state, and also models with cycling in both directions. Additionally, assuming that detailed balance is verified, which forbids cycling, this reduces the ranges of the values of the parameters (which can then be expressed in terms of one rate and its force dependency). The resulting model interpolates between the independent pause model and the indirect entry and exit to the long-pause state model

  17. Progress in Written Language Bursts, Pauses, Transcription, and Written Composition across Schooling

    Science.gov (United States)

    Alves, Rui A.; Limpo, Teresa

    2015-01-01

    Research on adult writers has shown that writing proceeds through bursts of transcription activity interspersed by long pauses. Yet few studies have examined how these writing behaviors unfold during early and middle childhood. This study traces the progress of bursts, pauses, transcription, and written composition in Portuguese students from…

  18. Thermodynamic and Kinetic Modeling of Transcriptional Pausing

    National Research Council Canada - National Science Library

    Vasisht R. Tadigotla; Dáibhid Ó. Maoiléidigh; Anirvan M. Sengupta; Vitaly Epshtein; Richard H. Ebright; Evgeny Nudler; Andrei E. Ruckenstein

    2006-01-01

    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC...

  19. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation

    Science.gov (United States)

    Chauvier, Adrien; Picard-Jean, Frédéric; Berger-Dancause, Jean-Christophe; Bastet, Laurène; Naghdi, Mohammad Reza; Dubé, Audrey; Turcotte, Pierre; Perreault, Jonathan; Lafontaine, Daniel A.

    2017-01-01

    On the basis of nascent transcript sequencing, it has been postulated but never demonstrated that transcriptional pausing at translation start sites is important for gene regulation. Here we show that the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch contains a regulatory pause site in the translation initiation region that acts as a checkpoint for thiC expression. By biochemically probing nascent transcription complexes halted at defined positions, we find a narrow transcriptional window for metabolite binding, in which the downstream boundary is delimited by the checkpoint. We show that transcription complexes at the regulatory pause site favour the formation of a riboswitch intramolecular lock that strongly prevents TPP binding. In contrast, cotranscriptional metabolite binding increases RNA polymerase pausing and induces Rho-dependent transcription termination at the checkpoint. Early transcriptional pausing may provide a general mechanism, whereby transient transcriptional windows directly coordinate the sensing of environmental cues and bacterial mRNA regulation. PMID:28071751

  20. eRNAs lure NELF from paused polymerases.

    Science.gov (United States)

    Plosky, Brian S

    2014-10-02

    RNAs transcribed from enhancers (eRNAs) have been linked to enhancer function. In this issue of Molecular Cell, Schaukowitch et al. (2014) show that upon activation, eRNAs can bind NELF and are necessary for its transient removal from promoters to release paused RNA polymerase II and drive expression of immediate-early genes in neurons.

  1. Back Channelling, Repair, Pausing, and Private Speech.

    Science.gov (United States)

    White, Ron

    1997-01-01

    Focuses on differences in back channelling, repair, repetition, pausing, and private speech among Japanese and American study participants, based on sales negotiations. Findings indicate that differences in the deployment of such features as back channelling and pausing can result in pragma-linguistic breakdown, which is linked to culturally…

  2. Interruption and Pausing of Public Display Games

    DEFF Research Database (Denmark)

    Feuchtner, Tiare; Walter, Robert; Müller, Jörg

    We present a quantitative and qualitative analysis of interruptions of interaction with a public display game, and explore the use of a manual pause mode in this scenario. In previous public display installations we observed users frequently interrupting their interaction. To explore ways...... of supporting such behavior, we implemented a gesture controlled multiuser game with four pausing techniques. We evaluated them in a field study analyzing 704 users and found that our pausing techniques were eagerly explored, but rarely used with the intention to pause the game. Our study shows...... that interactions with public displays are considerably intermissive, and that users mostly interrupt interaction to socialize and mainly approach public displays in groups. We conclude that, as a typical characteristic of public display interaction, interruptions deserve consideration. However, manual pause modes...

  3. PBMA Pause and Learn Video Nuggets Transcript

    Science.gov (United States)

    Rogers, Ed

    2006-01-01

    This document is a transcript for a video about a practice practiced at Goddard Space Flight Center called Pause and Learn (PaL). The PaL process is intended to, first of all, help the team learn. So, the team that was involved in the activity, the group that actually did the work, that handled the review, or ran the tests, or developed the piece of equipment, they sit down and actually say, "What did we learn from this exercise?" The idea is to create a learning environment at various key milestones in the execution of a process, rather than wait until the end of the given process, be it a launch or a mission.

  4. Absence of Non-histone Protein Complexes at Natural Chromosomal Pause Sites Results in Reduced Replication Pausing in Aging Yeast Cells

    Directory of Open Access Journals (Sweden)

    Marleny Cabral

    2016-11-01

    Full Text Available There is substantial evidence that genomic instability increases during aging. Replication pausing (and stalling at difficult-to-replicate chromosomal sites may induce genomic instability. Interestingly, in aging yeast cells, we observed reduced replication pausing at various natural replication pause sites (RPSs in ribosomal DNA (rDNA and non-rDNA locations (e.g., silent replication origins and tRNA genes. The reduced pausing occurs independent of the DNA helicase Rrm3p, which facilitates replication past these non-histone protein-complex-bound RPSs, and is independent of the deacetylase Sir2p. Conditions of caloric restriction (CR, which extend life span, also cause reduced replication pausing at the 5S rDNA and at tRNA genes. In aged and CR cells, the RPSs are less occupied by their specific non-histone protein complexes (e.g., the preinitiation complex TFIIIC, likely because members of these complexes have primarily cytosolic localization. These conditions may lead to reduced replication pausing and may lower replication stress at these sites during aging.

  5. Interword and intraword pause threshold in writing

    Science.gov (United States)

    Chenu, Florence; Pellegrino, François; Jisa, Harriet; Fayol, Michel

    2014-01-01

    Writing words in real life involves setting objectives, imagining a recipient, translating ideas into linguistic forms, managing grapho-motor gestures, etc. Understanding writing requires observation of the processes as they occur in real time. Analysis of pauses is one of the preferred methods for accessing the dynamics of writing and is based on the idea that pauses are behavioral correlates of cognitive processes. However, there is a need to clarify what we are observing when studying pause phenomena, as we will argue in the first section. This taken into account, the study of pause phenomena can be considered following two approaches. A first approach, driven by temporality, would define a threshold and observe where pauses, e.g., scriptural inactivity occurs. A second approach, linguistically driven, would define structural units and look for scriptural inactivity at the boundaries of these units or within these units. Taking a temporally driven approach, we present two methods which aim at the automatic identification of scriptural inactivity which is most likely not attributable to grapho-motor management in texts written by children and adolescents using digitizing tablets in association with Eye and Pen© (Chesnet and Alamargot, 2005). The first method is purely statistical and is based on the idea that the distribution of pauses exhibits different Gaussian components each of them corresponding to a different type of pause. After having reviewed the limits of this statistical method, we present a second method based on writing dynamics which attempts to identify breaking points in the writing dynamics rather than relying only on pause duration. This second method needs to be refined to overcome the fact that calculation is impossible when there is insufficient data which is often the case when working with young scriptors. PMID:24723896

  6. A positioned +1 nucleosome enhances promoter-proximal pausing.

    Science.gov (United States)

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C

    2015-03-31

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5'-3' exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression.

  7. Replication pauses of the wild-type and mutant mitochondrial DNA polymerase gamma: a simulation study.

    Directory of Open Access Journals (Sweden)

    Zhuo Song

    2011-11-01

    Full Text Available The activity of polymerase γ is complicated, involving both correct and incorrect DNA polymerization events, exonuclease activity, and the disassociation of the polymerase:DNA complex. Pausing of pol-γ might increase the chance of deletion and depletion of mitochondrial DNA. We have developed a stochastic simulation of pol-γ that models its activities on the level of individual nucleotides for the replication of mtDNA. This method gives us insights into the pausing of two pol-γ variants: the A467T substitution that causes PEO and Alpers syndrome, and the exonuclease deficient pol-γ (exo(- in premature aging mouse models. To measure the pausing, we analyzed simulation results for the longest time for the polymerase to move forward one nucleotide along the DNA strand. Our model of the exo(- polymerase had extremely long pauses, with a 30 to 300-fold increase in the time required for the longest single forward step compared to the wild-type, while the naturally occurring A467T variant showed at most a doubling in the length of the pauses compared to the wild-type. We identified the cause of these differences in the polymerase pausing time to be the number of disassociations occurring in each forward step of the polymerase.

  8. Replication pauses of the wild-type and mutant mitochondrial DNA polymerase gamma: a simulation study.

    Science.gov (United States)

    Song, Zhuo; Cao, Yang; Samuels, David C

    2011-11-01

    The activity of polymerase γ is complicated, involving both correct and incorrect DNA polymerization events, exonuclease activity, and the disassociation of the polymerase:DNA complex. Pausing of pol-γ might increase the chance of deletion and depletion of mitochondrial DNA. We have developed a stochastic simulation of pol-γ that models its activities on the level of individual nucleotides for the replication of mtDNA. This method gives us insights into the pausing of two pol-γ variants: the A467T substitution that causes PEO and Alpers syndrome, and the exonuclease deficient pol-γ (exo(-)) in premature aging mouse models. To measure the pausing, we analyzed simulation results for the longest time for the polymerase to move forward one nucleotide along the DNA strand. Our model of the exo(-) polymerase had extremely long pauses, with a 30 to 300-fold increase in the time required for the longest single forward step compared to the wild-type, while the naturally occurring A467T variant showed at most a doubling in the length of the pauses compared to the wild-type. We identified the cause of these differences in the polymerase pausing time to be the number of disassociations occurring in each forward step of the polymerase.

  9. Run-and-pause dynamics of cytoskeletal motor proteins

    Science.gov (United States)

    Hafner, Anne E.; Santen, Ludger; Rieger, Heiko; Shaebani, M. Reza

    2016-11-01

    Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. When attached to cytoskeletal filaments, the motor exhibits distinct states of motility: active motion along the filaments, and pause phase in which it remains stationary for a finite time interval. The transition probabilities between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of individual non-interacting molecular motors on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition probabilities between the two states of motility drastically changes the dynamics: multiple transitions between different types of anomalous diffusive dynamics occur and the crossover time to the asymptotic diffusive or ballistic motion varies by several orders of magnitude. We map out the phase diagrams in the space of transition probabilities, and address the role of initial conditions of motion on the resulting dynamics.

  10. Thermodynamic and kinetic modeling of transcriptional pausing.

    Science.gov (United States)

    Tadigotla, Vasisht R; O Maoiléidigh, Dáibhid; Sengupta, Anirvan M; Epshtein, Vitaly; Ebright, Richard H; Nudler, Evgeny; Ruckenstein, Andrei E

    2006-03-21

    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC). Our algorithm is based on the thermodynamic stability of the EC along the DNA template calculated from the sequence-dependent free energy of DNA-DNA, DNA-RNA, and RNA-RNA base pairing associated with (i) the translocational and size fluctuations of the transcription bubble; (ii) changes in the associated DNA-RNA hybrid; and (iii) changes in the cotranscriptional RNA secondary structure upstream of the RNA exit channel. The calculations involve no adjustable parameters except for a cutoff used to discriminate paused from nonpaused complexes. When applied to 100 experimental pauses in transcription elongation by Escherichia coli RNA polymerase on 10 DNA templates, the approach produces statistically significant results. We also present a kinetic model for the rate of recovery of backtracked paused complexes. A crucial ingredient of our model is the incorporation of kinetic barriers to backtracking resulting from steric clashes of EC with the cotranscriptionally generated RNA secondary structure, an aspect not included explicitly in previous attempts at modeling the transcription elongation process.

  11. Interruption and Pausing of Public Display Games

    DEFF Research Database (Denmark)

    Feuchtner, Tiare; Walter, Robert; Müller, Jörg

    2016-01-01

    We present a quantitative and qualitative analysis of interruptions of interaction with a public display game, and explore the use of a manual pause mode in this scenario. In previous public display installations we observed users frequently interrupting their interaction. To explore ways of supp...

  12. Thermodynamic and kinetic modeling of transcriptional pausing

    OpenAIRE

    Tadigotla, Vasisht R.; Maoiléidigh, Dáibhid Ó; Sengupta, Anirvan M.; Epshtein, Vitaly; Ebright, Richard H.; Nudler, Evgeny; Ruckenstein, Andrei E.

    2006-01-01

    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC). Our algorithm is based on the thermodynamic stability of the EC along the DNA template calculated from the sequence-dependent free energy of DNA–DNA, DNA–RNA, and RNA–RNA base pairing associated with (i) the translocational and size fluctuations of the transcription bubble; (ii) changes in the as...

  13. Effects of transcriptional pausing on gene expression dynamics.

    Directory of Open Access Journals (Sweden)

    Tiina Rajala

    2010-03-01

    Full Text Available Stochasticity in gene expression affects many cellular processes and is a source of phenotypic diversity between genetically identical individuals. Events in elongation, particularly RNA polymerase pausing, are a source of this noise. Since the rate and duration of pausing are sequence-dependent, this regulatory mechanism of transcriptional dynamics is evolvable. The dependency of pause propensity on regulatory molecules makes pausing a response mechanism to external stress. Using a delayed stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, we investigate how RNA polymerase pausing affects a gene's transcriptional dynamics and gene networks. We show that pauses' duration and rate of occurrence affect the bursting in RNA production, transcriptional and translational noise, and the transient to reach mean RNA and protein levels. In a genetic repressilator, increasing the pausing rate and the duration of pausing events increases the period length but does not affect the robustness of the periodicity. We conclude that RNA polymerase pausing might be an important evolvable feature of genetic networks.

  14. ON THE PAUSED WARMING CONTROVERSY BASED ON IPCC AR5 AND BEYOND

    Directory of Open Access Journals (Sweden)

    MIKA J.

    2014-03-01

    Full Text Available The paused warming since ca. 2002 (maybe, 1998 is not satisfactorily reflected by the IPCC WGI (2013 Report. The aim of the present study is to collect, present and discuss the key arguments of the issue, selected strictly from this valuable Report. Our study tackles three aspects: (i Symptoms of pausing, including atmospheric changes, near-surface oceans, cryosphere and geographical differences. (ii Possible reasons of the paused warming, including external forcing factors, playing rather minor role, and the enhanced ocean heat uptake. Though missing warming is 0.2 K/decade compared to the model expectations, the whole climate system integrates continuously increasing amount of heat, 95 % of which is locked in the oceans. (iii Consequences of the pausing for the three main branches of the IPCC activity. For climate science, correct simulation of the enhanced heat uptake is a challenge. Since characteristic time scale of most adaptation measures is 1-2 decades, or shorter, near-term projections may not drive adaptation until climate models become able meet this challenge. On the other hand, pausing warming does not question the need for mitigation, since it is physically unlikely, that oceans can uptake endless amount of heat. Vertical temperature gradients of the upper ocean layers already show stagnation.

  15. Pol II Docking and Pausing at Growth and Stress Genes in C. elegans

    Directory of Open Access Journals (Sweden)

    Colin S. Maxwell

    2014-02-01

    Full Text Available Fluctuations in nutrient availability profoundly impact gene expression. Previous work revealed postrecruitment regulation of RNA polymerase II (Pol II during starvation and recovery in Caenorhabditis elegans, suggesting that promoter-proximal pausing promotes rapid response to feeding. To test this hypothesis, we measured Pol II elongation genome wide by two complementary approaches and analyzed elongation in conjunction with Pol II binding and expression. We confirmed bona fide pausing during starvation and also discovered Pol II docking. Pausing occurs at active stress-response genes that become downregulated in response to feeding. In contrast, “docked” Pol II accumulates without initiating upstream of inactive growth genes that become rapidly upregulated upon feeding. Beyond differences in function and expression, these two sets of genes have different core promoter motifs, suggesting alternative transcriptional machinery. Our work suggests that growth and stress genes are both regulated postrecruitment during starvation but at initiation and elongation, respectively, coordinating gene expression with nutrient availability.

  16. Pause Time Patterns in Writing Narrative and Expository Texts by Children and Adults

    NARCIS (Netherlands)

    Hell, J.G. van; Verhoeven, L.T.W.; Beijsterveldt, E.M. van

    2008-01-01

    How do beginning and skilled writers compose a text in the course of time? To gain insight into the temporal aspects of planning and translating activities during writing, this article examined writing in real time and analyzed pause time patterns in writing in relation to linguistic characteristics

  17. Execution and pauses in writing narratives: processing time, cognitive effort and typing skill.

    Science.gov (United States)

    Alves, Rui Alexandre; Castro, São Luís; Olive, Thierry

    2008-12-01

    At the behavioural level, the activity of a writer can be described as periods of typing separated by pauses. Although some studies have been concerned with the functions of pauses, few have investigated motor execution periods. Precise estimates of the distribution of writing processes, and their cognitive demands, across periods of typing and pauses are lacking. Furthermore, it is uncertain how typing skill affects these aspects of writing. We addressed these issues, selecting writers of low and high typing skill who performed dictation and composition tasks. The occurrences of writing processes were assessed through directed verbalization, and their cognitive demands were measured through interference in reaction times (IRT). Before writing a narrative, 34 undergraduates learned to categorize examples of introspective thoughts as different types of activities related to writing (planning, translating, or revising). Then, while writing, they responded to random auditory probes, and reported their ongoing activity according to the learned categories. Convergent with previous findings, translating was most often reported, and revising and planning had fewer occurrences. Translating was mostly activated during motor execution, whereas revising and planning were mainly activated during pauses. However, none of the writing processes can be characterized as being typical of pauses, since translating was activated to a similar extent as the other two processes. Regarding cognitive demands, revising is likely to be the most demanding process in narrative writing. Typing skill had an impact on IRTs of motor execution. The demands of execution were greater in the low than in the high typing skill group, but these greater demands did not affect the strategy of writing processes activation. Nevertheless, low typing skill had a detrimental impact on text quality.

  18. Phonetic Pause Unites Phonology and Semantics against Morphology and Syntax

    Science.gov (United States)

    Sakarna, Ahmad Khalaf; Mobaideen, Adnan

    2012-01-01

    The present study investigates the phonological effect triggered by the different types of phonetic pause used in Quran on morphology, syntax, and semantics. It argues that Quranic pause provides interesting evidence about the close relation between phonology and semantics, from one side, and semantics, morphology, and syntax, from the other…

  19. Phonetic Pause Unites Phonology and Semantics against Morphology and Syntax

    Science.gov (United States)

    Sakarna, Ahmad Khalaf; Mobaideen, Adnan

    2012-01-01

    The present study investigates the phonological effect triggered by the different types of phonetic pause used in Quran on morphology, syntax, and semantics. It argues that Quranic pause provides interesting evidence about the close relation between phonology and semantics, from one side, and semantics, morphology, and syntax, from the other…

  20. Using Habit Reversal to Decrease Filled Pauses in Public Speaking

    Science.gov (United States)

    Mancuso, Carolyn; Miltenberger, Raymond G.

    2016-01-01

    This study evaluated the effectiveness of simplified habit reversal in reducing filled pauses that occur during public speaking. Filled pauses consist of "uh," "um," or "er"; clicking sounds; and misuse of the word "like." After baseline, participants received habit reversal training that consisted of…

  1. Pause for thought: response perseveration and personality in gambling.

    Science.gov (United States)

    Corr, Philip J; Thompson, Stephen J

    2014-12-01

    In a sample of normal volunteers, response perseveration (RP) on a computerised gambling task, the card perseveration task, was examined under two conditions: No pause (Standard task) and a 5-s pause (Pause task) following feedback from previous bet. Behavioural outcomes comprised number of cards played (and cash won/lost) and latency of response. Individual differences in these outcomes were conceptualised in terms of the reinforcement sensitivity theory of personality. Results showed that, on the Standard task only, sub-scales of the Carver and White (J Pers Social Psychol 67:319-333, 1994) Behavioural Approach System scale positively correlated with number of cards played and amount of money lost (indicative of impaired RP), but these associations were abolished with the imposition of a 5-s pause between feedback and the opportunity to make the next bet-this pause also had an overall main effect of improving RP and reducing losses. As related research shows that such a pause normalises the RP deficit seen in pathological gamblers, these findings hold potentially valuable implications for informing practice in the prevention and treatment of pathological gambling, and point to the role played by individual differences in approach motivation.

  2. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  3. Global distribution of pauses observed with satellite measurements

    Indian Academy of Sciences (India)

    M Venkat Ratnam; P Kishore; Isabella Velicogna

    2013-04-01

    Several studies have been carried out on the tropopause, stratopause, and mesopause (collectively termed as ‘pauses’) independently; however, all the pauses have not been studied together. We present global distribution of altitudes and temperatures of these pauses observed with long-term space borne high resolution measurements of Global Positioning System (GPS) Radio Occultation (RO) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) aboard Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported. In addition, we show that asymmetries between northern and southern hemispheres continue up to the mesopause. We analyze inter and intra-seasonal variations and long-term trends of these pauses at different latitudes. Finally, a new reference temperature profile is shown from the ground to 110 km for tropical, mid-latitudes, and polar latitudes for both northern and southern hemispheres.

  4. Detection of bursts and pauses in spike trains.

    Science.gov (United States)

    Ko, D; Wilson, C J; Lobb, C J; Paladini, C A

    2012-10-15

    Midbrain dopaminergic neurons in vivo exhibit a wide range of firing patterns. They normally fire constantly at a low rate, and speed up, firing a phasic burst when reward exceeds prediction, or pause when an expected reward does not occur. Therefore, the detection of bursts and pauses from spike train data is a critical problem when studying the role of phasic dopamine (DA) in reward related learning, and other DA dependent behaviors. However, few statistical methods have been developed that can identify bursts and pauses simultaneously. We propose a new statistical method, the Robust Gaussian Surprise (RGS) method, which performs an exhaustive search of bursts and pauses in spike trains simultaneously. We found that the RGS method is adaptable to various patterns of spike trains recorded in vivo, and is not influenced by baseline firing rate, making it applicable to all in vivo spike trains where baseline firing rates vary over time. We compare the performance of the RGS method to other methods of detecting bursts, such as the Poisson Surprise (PS), Rank Surprise (RS), and Template methods. Analysis of data using the RGS method reveals potential mechanisms underlying how bursts and pauses are controlled in DA neurons.

  5. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts.

    Directory of Open Access Journals (Sweden)

    Krishanpal Anamika

    Full Text Available Recent genome-wide chromatin immunoprecipitation coupled high throughput sequencing (ChIP-seq analyses performed in various eukaryotic organisms, analysed RNA Polymerase II (Pol II pausing around the transcription start sites of genes. In this study we have further investigated genome-wide binding of Pol II downstream of the 3' end of the annotated genes (EAGs by ChIP-seq in human cells. At almost all expressed genes we observed Pol II occupancy downstream of the EAGs suggesting that Pol II pausing 3' from the transcription units is a rather common phenomenon. Downstream of EAGs Pol II transcripts can also be detected by global run-on and sequencing, suggesting the presence of functionally active Pol II. Based on Pol II occupancy downstream of EAGs we could distinguish distinct clusters of Pol II pause patterns. On core histone genes, coding for non-polyadenylated transcripts, Pol II occupancy is quickly dropping after the EAG. In contrast, on genes, whose transcripts undergo polyA tail addition [poly(A(+], Pol II occupancy downstream of the EAGs can be detected up to 4-6 kb. Inhibition of polyadenylation significantly increased Pol II occupancy downstream of EAGs at poly(A(+ genes, but not at the EAGs of core histone genes. The differential genome-wide Pol II occupancy profiles 3' of the EAGs have also been confirmed in mouse embryonic stem (mES cells, indicating that Pol II pauses genome-wide downstream of the EAGs in mammalian cells. Moreover, in mES cells the sharp drop of Pol II signal at the EAG of core histone genes seems to be independent of the phosphorylation status of the C-terminal domain of the large subunit of Pol II. Thus, our study uncovers a potential link between different mRNA 3' end processing mechanisms and consequent Pol II transcription termination processes.

  6. Code-Switching and Pausing: An Interdisciplinary Study

    Science.gov (United States)

    Gardner-Chloros, Penelope; McEntee-Atalianis, Lisa; Paraskeva, Marilena

    2013-01-01

    This study considers code-switching (CS) and pausing in two sociolinguistically distinct groups in London and Cyprus, bilingual in Greek-Cypriot Dialect (GCD) and English. The characteristics of their speech are examined both in monolingual and bilingual modes (Grosjean, 2001). It was hypothesised that in London Greek-Cypriots, where CS is a…

  7. Transient pauses of the bacterial flagellar motor at low load

    Science.gov (United States)

    Nord, A. L.; Pedaci, F.; Berry, R. M.

    2016-11-01

    The bacterial flagellar motor (BFM) is the molecular machine responsible for the swimming and chemotaxis of many species of motile bacteria. The BFM is bidirectional, and changes in the rotation direction of the motor are essential for chemotaxis. It has previously been observed that many species of bacteria also demonstrate brief pauses in rotation, though the underlying cause of such events remains poorly understood. We examine the rotation of Escherichia coli under low mechanical load with high spatial and temporal resolution. We observe and characterize transient pauses in rotation in a strain which lacks a functional chemosensory network, showing that such events are a phenomenon separate from a change in rotational direction. Rotating at low load, the BFM of E. coli exhibits about 10 pauses s-1, lasting on average 5 ms, during which time the rotor diffuses with net forwards rotation. Replacing the wild type stators with Na+ chimera stators has no substantial effect on the pausing. We discuss possible causes of such events, which are likely a product of a transient change in either the stator complex or the rotor.

  8. Pause, Prompt, and Praise: The Need for More Research.

    Science.gov (United States)

    Goyen, Judith D.; McClelland, David J.

    1994-01-01

    Finds that the effectiveness of the "Pause, Prompt, and Praise" procedure varied according to the method of analysis used: subjective interpretation of gain scores indicated that the procedure was the most effective treatment for both tutees and tutors; the ANOVA indicated that the tutoring experience was effective; whereas the more rigorous…

  9. Pause, Prompt, and Praise: The Need for More Research.

    Science.gov (United States)

    Goyen, Judith D.; McClelland, David J.

    1994-01-01

    Finds that the effectiveness of the "Pause, Prompt, and Praise" procedure varied according to the method of analysis used: subjective interpretation of gain scores indicated that the procedure was the most effective treatment for both tutees and tutors; the ANOVA indicated that the tutoring experience was effective; whereas the more rigorous…

  10. Induced activation in accelerator components

    Directory of Open Access Journals (Sweden)

    Cristian Bungau

    2014-08-01

    Full Text Available The residual activity induced in particle accelerators is a serious issue from the point of view of radiation safety as the long-lived radionuclides produced by fast or moderated neutrons and impact protons cause problems of radiation exposure for staff involved in the maintenance work and when decommissioning the facility. This paper presents activation studies of the magnets and collimators in the High Energy Beam Transport line of the European Spallation Source due to the backscattered neutrons from the target and also due to the direct proton interactions and their secondaries. An estimate of the radionuclide inventory and induced activation are predicted using the GEANT4 code.

  11. Management of paroxysmal ectopic atrial tachycardia with long sinus pauses in a teenager.

    Science.gov (United States)

    Balaji, Seshadri

    2015-01-01

    Sinus pauses in the setting of supraventricular tachycardia is rare in children. We describe an asymptomatic teen with irregular heart rate detected during an incidental exam who was found to have short runs of a slow ectopic atrial tachycardia on electrocardiogram and prolonged sinus pauses on routine ambulatory ECG. Successful catheter ablation of the ectopic atrial tachycardia led to resolution of the sinus pauses.

  12. CHD1 regulates cell fate determination by activation of differentiation-induced genes

    DEFF Research Database (Denmark)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq

    2017-01-01

    . Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close......The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start...... to the TSS, but not at enhancer regions. These findings reveal a novel role for CHD1 during osteoblast differentiation and provide further insights into the intricacies of epigenetic regulatory mechanisms controlling cell fate determination....

  13. Pauses in theatrical interpretation: delimitation of prosodic constituents

    Directory of Open Access Journals (Sweden)

    Lourenço Chacon

    2014-07-01

    Full Text Available We intend to observe the function of a linguistic resource – the pause – in theatrical interpretation. Connected to the field of speech therapy, we search for theoretical support in the Linguistics field, mainly in prosodic phonology – specifically, we highlight intonational phrase and phonological utterance, prosodic constituents –, proposing a dialogue between these fields, regarding the work with actors. In speech therapy literature, the work with actors focuses, centrally, in organic issues involved in the vocal process, such as “misuse” or “voice abuse”. To a smaller extent, we find, in this literature, researches that emphasize issues regarding interpretation and expressive resources, besides a few emphasizing the importance of linguistic resources in interpretation. Differently, in linguistics literature, the pause is approached, to a larger extent, from the phonetic perspective, related to several language levels. In this research, we analyzed audio recordings of four actors from a same theatrical group, acting the theatrical text Brutas flores, focused on these aims: (1 detect the place where pauses happen in the interpretation of a single text by four actors; (2 survey physical characteristics of length of these pauses; (3 check to what extent the length of a pause is related to the place where it happens, regarding the prosodic limits of intonational phrases (I and phonological utterance (U. We could observe that, although the interpretation is characterized by the subjectivity of the actor, the interpretation is constructed based in the possibilities offered by the prosodic organization of the text itself, being more or less flexible.We were also able to confirm, by considering the length of VVs units containing pauses, the prosodic hierarchy proposed by Nespor & Vogel, once the length of these units in U's limits was significantly higher than the length in I's limits. Thus, our results reinforce the premise that a

  14. Active biofeedback changes the spatial distribution of upper trapezius muscle activity during computer work

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2010-01-01

    The aim of this study was to investigate the spatio-temporal effects of advanced biofeedback by inducing active and passive pauses on the trapezius activity pattern using high-density surface electromyography (HD-EMG). Thirteen healthy male subjects performed computer work with superimposed...

  15. Responsible gambling tools: pop-up messages and pauses on video lottery terminals.

    Science.gov (United States)

    Cloutier, Martin; Ladouceur, Robert; Sévigny, Serge

    2006-09-01

    The authors examined the effect of messages and pauses, presented on video lottery terminal screens, on erroneous beliefs and persistence to play. At posttest, the strength of erroneous beliefs was lower for participants who received messages conveying information about randomness in gambling as compared to those who received pauses. Pauses also diminished the strength of erroneous beliefs, and there was no difference between the effects of pauses and messages on the number of games played. The authors discuss these results in terms of the use of messages and pauses on video lottery terminals as a strategy for promoting responsible gambling.

  16. Transcriptional regulation: effects of promoter proximal pausing on speed, synchrony and reliability.

    Directory of Open Access Journals (Sweden)

    Alistair N Boettiger

    2011-05-01

    Full Text Available Recent whole genome polymerase binding assays in the Drosophila embryo have shown that a substantial proportion of uninduced genes have pre-assembled RNA polymerase-II transcription initiation complex (PIC bound to their promoters. These constitute a subset of promoter proximally paused genes for which mRNA elongation instead of promoter access is regulated. This difference can be described as a rearrangement of the regulatory topology to control the downstream transcriptional process of elongation rather than the upstream transcriptional initiation event. It has been shown experimentally that genes with the former mode of regulation tend to induce faster and more synchronously, and that promoter-proximal pausing is observed mainly in metazoans, in accord with a posited impact on synchrony. However, it has not been shown whether or not it is the change in the regulated step per se that is causal. We investigate this question by proposing and analyzing a continuous-time Markov chain model of PIC assembly regulated at one of two steps: initial polymerase association with DNA, or release from a paused, transcribing state. Our analysis demonstrates that, over a wide range of physical parameters, increased speed and synchrony are functional consequences of elongation control. Further, we make new predictions about the effect of elongation regulation on the consistent control of total transcript number between cells. We also identify which elements in the transcription induction pathway are most sensitive to molecular noise and thus possibly the most evolutionarily constrained. Our methods produce symbolic expressions for quantities of interest with reasonable computational effort and they can be used to explore the interplay between interaction topology and molecular noise in a broader class of biochemical networks. We provide general-purpose code implementing these methods.

  17. Prolonging the postcomplex spike pause speeds eyeblink conditioning.

    Science.gov (United States)

    Maiz, Jaione; Karakossian, Movses H; Pakaprot, Narawut; Robleto, Karla; Thompson, Richard F; Otis, Thomas S

    2012-10-09

    Climbing fiber input to the cerebellum is believed to serve as a teaching signal during associative, cerebellum-dependent forms of motor learning. However, it is not understood how this neural pathway coordinates changes in cerebellar circuitry during learning. Here, we use pharmacological manipulations to prolong the postcomplex spike pause, a component of the climbing fiber signal in Purkinje neurons, and show that these manipulations enhance the rate of learning in classical eyelid conditioning. Our findings elucidate an unappreciated aspect of the climbing fiber teaching signal, and are consistent with a model in which convergent postcomplex spike pauses drive learning-related plasticity in the deep cerebellar nucleus. They also suggest a physiological mechanism that could modulate motor learning rates.

  18. A time to pause and ponder

    DEFF Research Database (Denmark)

    Daugbjerg, Peer; Spencer, Christopher

    2017-01-01

    to the ‘Reflective Learning and Teaching for Thinking’ TIG @ ETEN 2016 (https://www.ucviden.dk/portal/da/activities/preservice-teachers-working-with-narrative-inquiry(03a5e643-2d4f-4408-9abb-897ad31cbc6c).html) Frankl V., 2014: Man's search for meaning, Beacon Press. Spencer, C. (2015): “Teacher Educator, Go Measure...

  19. Analysis of Pause Occurrence in Three Kinds of Modified Speech: Public Address, Caretaker Talk, and Foreigner Talk.

    Science.gov (United States)

    Osada, Nobuko

    2003-01-01

    Analyzes the occurrence of silent pauses n monologues, especially in modified speech, such as in public address, caretaker talk, and foreigner talk. Discusses speech rate, articulation rate, pause unit length, individual pause length, and pause percentage to overall speech time. (Author/VWL)

  20. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex

    Directory of Open Access Journals (Sweden)

    Ping Xie

    2015-10-01

    Full Text Available Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA. It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by “hungry” codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  1. Manipulation of KLF4 Expression Generates iPSCs Paused at Successive Stages of Reprogramming

    Directory of Open Access Journals (Sweden)

    Ken Nishimura

    2014-11-01

    Full Text Available The detailed mechanism of reprogramming somatic cells into induced pluripotent stem cells (iPSCs remains largely unknown. Partially reprogrammed iPSCs are informative and useful for understanding the mechanism of reprogramming but remain technically difficult to generate in a predictable and reproducible manner. Using replication-defective and persistent Sendai virus (SeVdp vectors, we analyzed the effect of decreasing the expression levels of OCT4, SOX2, KLF4, and c-MYC and found that low KLF4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of KLF4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path toward pluripotency. Paused iPSCs with different KLF4 expression levels remain at distinct intermediate stages of reprogramming. This SeVdp-based stage-specific reprogramming system (3S reprogramming system is applicable for both mouse and human somatic cells and will facilitate the mechanistic analysis of reprogramming.

  2. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    Science.gov (United States)

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; Williams, Christopher A.; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-11-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  3. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  4. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology.

    Science.gov (United States)

    Schmidt, Robert; Berke, Joshua D

    2017-04-19

    Many studies have implicated the basal ganglia in the suppression of action impulses ('stopping'). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a 'Go' process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary 'Stop' process, there appear to be separate, complementary 'Pause' and 'Cancel' mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time-in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed-accuracy trade-offs.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.

  5. Barack Obama’s pauses and gestures in humorous speeches

    DEFF Research Database (Denmark)

    Navarretta, Costanza

    2017-01-01

    and they emphasise the speech segment which they follow or precede. We also found a highly significant correlation between Obama’s speech pauses and audience response. Obama produces numerous head movements, facial expressions and hand gestures and their functions are related to both discourse content and structure....... Characteristics for these speeches is that Obama points to individuals in the audience and often smiles and laughs. Audience response is equally frequent in the two events, and there are no significant changes in speech rate and frequency of head movements and facial expressions in the two speeches while Obama...

  6. Comparison of pausing behavior in children who stutter and children who have Asperger syndrome.

    Science.gov (United States)

    Beltrame, Jessica Monique; Viera, Renata Alves Torello; Tamanaha, Ana Carina; Arcuri, Cláudia Fassin; Osborn, Ellen; Perissinoto, Jacy; Schiefer, Ana Maria

    2011-12-01

    The objective of this research was to compare the number and types of grammatical and non-grammatical silent pauses presented by stutterers and subjects with Asperger syndrome in their narratives. Ten children who stutter and four participants with Asperger syndrome (mean ages of both groups 10 years) were assessed at the Speech and Language Disorders Department of the Universidade Federal de São Paulo/Brasil. They narrated a story based on a pre-selected sequence of pictures. They were filmed and their productions were analyzed using version 5.0.47 of Praat (http://www.fon.hum.uva.nl/praat/download_win.html). Silent intervals in the speech that ranged from 0.25 to 4s were considered pauses. The pauses were classified as grammatical and non-grammatical, depending on the words that preceded and followed them. Both groups presented grammatical and non-grammatical pauses and the former predominated. The children with Asperger syndrome produced a greater number of pauses than the stutterers. The reader will be able to: (1) characterize the use of pauses in the oral narrative; (2) distinguish a grammatical pause from a non-grammatical pause regarding the use and function; (3) recognize the pattern of pause found in the two populations. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans

    Science.gov (United States)

    Adelman, Karen; Lis, John T.

    2013-01-01

    Recent years have witnessed a sea change in our understanding of transcription regulation: whereas traditional models focused solely on the events that brought RNA polymerase II (Pol II) to a gene promoter to initiate RNA synthesis, emerging evidence points to the pausing of Pol II during early elongation as a widespread regulatory mechanism in higher eukaryotes. Current data indicate that pausing is particularly enriched at genes in signal-responsive pathways. Here the evidence for pausing of Pol II from recent high-throughput studies will be discussed, as well as the potential interconnected functions of promoter-proximally paused Pol II. PMID:22986266

  8. Model of the pathway of −1 frameshifting: Long pausing

    Directory of Open Access Journals (Sweden)

    Ping Xie

    2016-03-01

    Full Text Available It has been characterized that the programmed ribosomal −1 frameshifting often occurs at the slippery sequence on the presence of a downstream mRNA pseudoknot. In some prokaryotic cases such as the dnaX gene of Escherichia coli, an additional stimulatory signal—an upstream, internal Shine–Dalgarno (SD sequence—is also necessary to stimulate the efficient −1 frameshifting. However, the molecular and physical mechanism of the −1 frameshifting is poorly understood. Here, we propose a model of the pathway of the −1 translational frameshifting during ribosome translation of the dnaX −1 frameshift mRNA. With the model, the single-molecule fluorescence data (Chen et al. (2014 [29] on the dynamics of the shunt either to long pausing or to normal translation, the tRNA transit and sampling dynamics in the long-paused rotated state, the EF-G sampling dynamics, the mean rotated-state lifetimes, etc., are explained quantitatively. Moreover, the model is also consistent with the experimental data (Yan et al. (2015 [30] on translocation excursions and broad branching of frameshifting pathways. In addition, we present some predicted results, which can be easily tested by future optical trapping experiments.

  9. "Pause-2-Play": a pilot schoolbased obesity prevention program "Pause-2-Play": um programa piloto escolar de prevenção de obesidade

    Directory of Open Access Journals (Sweden)

    Gregory Killough

    2010-09-01

    Full Text Available OBJECTIVES: "Pause-2-Play" is an obesity prevention program targeting screen-related sedentary behaviours and increasing physical activity among elementary school students. The program consisted of a Behavioural Modification Curriculum and a Health Promoting Afterschool Program. This pilot study reports program feasibility, practicability, and impact. METHODS: the 12-week pilot program was implemented with 32 grade five and six students. Program feasibility and practicability were assessed using a qualitative approach. Intervention effects were assessed by comparing pre-post changes in BMI, body composition, fitness scores, screen time, and cognitive variables related to screening viewing behaviours. RESULTS: "Pause-2-Play" was perceived as a useful, fun program with numerous benefits including: children trying new snacks, feeling fitter and better about one's own body shape, and becoming more aware of a healthy lifestyle. The intervention resulted in a statistically significant reduction in percent body fat and an increase in fat-free mass index in overweight children; a decrease in waist circumference and an increase in fat-free mass index were observed in normal weight children. The intervention also statistically improved fitness scores in both normal weight and overweight children. CONCLUSIONS: "Pause-2-Play" was feasible, practical, and favourably changed body composition and fitness level.OBJETIVOS: "Pause-2-Play" é um programa de prevenção da obesidade direcionado aos comportamentos sedentários relacionados ao uso de monitores de computador e televisores, visando promover a atividade física entre estudantes de escolas de educação básica. O programa trata-se de um currículo de modificação comportamental e um programa extracurricular de promoção de saúde. Este estudo-piloto relata sobre a viabilidade, praticidade e impacto do programa. MÉTODOS: o programa de doze semanas foi implementado com 32 alunos escolares do quinto e

  10. Reducing Vocalized Pauses in Public Speaking Situations Using the VP Card

    Science.gov (United States)

    Ramos Salazar, Leslie

    2014-01-01

    This article describes a speaking problem very common in today's world--"vocalized pauses" (VP). Vocalized pauses are defined as utterances such as "uh," "like," and "um" that occur between words in oral sentences. This practice of everyday speech can affect how a speaker's intentions are…

  11. What 50 Years of Research Tell Us about Pausing under Ratio Schedules of Reinforcement

    Science.gov (United States)

    Schlinger, H. D.; Derenne, A.; Baron, A.

    2008-01-01

    Textbooks in learning and behavior commonly describe performance on fixed-ratio schedules as "break and run," indicating that after reinforcement subjects typically pause and then respond quickly to the next reinforcement. Performance on variable-ratio schedules, on the other hand, is described as steady and fast, with few long pauses. Beginning…

  12. A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization

    Science.gov (United States)

    Cau, Julien; Faure, Sandrine; Comps, Michel; Delsert, Claude; Morin, Nathalie

    2001-01-01

    Coordination of the different cytoskeleton networks in the cell is of central importance for morphogenesis, organelle transport, and motility. The Rho family proteins are well characterized for their effects on the actin cytoskeleton, but increasing evidence indicates that they may also control microtubule (MT) dynamics. Here, we demonstrate that a novel Cdc42/Rac effector, X-p21-activated kinase (PAK)5, colocalizes and binds to both the actin and MT networks and that its subcellular localization is regulated during cell cycle progression. In transfected cells, X-PAK5 promotes the formation of stabilized MTs that are associated in bundles and interferes with MTs dynamics, slowing both the elongation and shrinkage rates and inducing long paused periods. X-PAK5 subcellular localization is regulated tightly, since coexpression with active Rac or Cdc42 induces its shuttling to actin-rich structures. Thus, X-PAK5 is a novel MT-associated protein that may communicate between the actin and MT networks during cellular responses to environmental conditions. PMID:11733543

  13. Contextual Interaction Design: The Case of Pause Buddy

    Science.gov (United States)

    Keyson, David V.; Doff-Ottens, Hannah J.

    This paper describes a range of design techniques which have been elaborated upon by Industrial Designers to create novel interactive products in which context and social interaction play a central role in the user experience. The techniques described here can be broadly grouped under Context Mapping and Research through Design. The methods are presented as part of a design process, from "fuzzy front end" to a working field prototype. To illustrate how the methods can be applied, the design of a prototype product that was developed to reduce office stress by stimulating short breaks and social interaction pauses is described. The results of a field study are reported following by a reflection on the value of applied design methods.

  14. Pre-shock chest compression pause effects on termination of ventricular fibrillation/tachycardia and return of organized rhythm within mechanical and manual cardiopulmonary resuscitation

    NARCIS (Netherlands)

    Olsen, J.A.; Brunborg, C.; Steinberg, M.; Persse, D.; Sterz, F.; Lozano, M., Jr.; Westfall, M.; Travis, D.T.; Lerner, E.B.; Brouwer, M.A.; Wik, L.

    2015-01-01

    BACKGROUND: Shorter manual chest compression pauses prior to defibrillation attempts is reported to improve the defibrillation success rate. Mechanical load-distributing band (LDB-) CPR enables shocks without compression pause. We studied pre-shock pause and termination of ventricular

  15. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning.

    Science.gov (United States)

    Brown, Matthew T C; Tan, Kelly R; O'Connor, Eoin C; Nikonenko, Irina; Muller, Dominique; Lüscher, Christian

    2012-12-20

    The ventral tegmental area (VTA) and nucleus accumbens (NAc) are essential for learning about environmental stimuli associated with motivationally relevant outcomes. The task of signalling such events, both rewarding and aversive, from the VTA to the NAc has largely been ascribed to dopamine neurons. The VTA also contains GABA (γ-aminobutyric acid)-releasing neurons, which provide local inhibition and also project to the NAc. However, the cellular targets and functional importance of this long-range inhibitory projection have not been ascertained. Here we show that GABA-releasing neurons of the VTA that project to the NAc (VTA GABA projection neurons) inhibit accumbal cholinergic interneurons (CINs) to enhance stimulus-outcome learning. Combining optogenetics with structural imaging and electrophysiology, we found that VTA GABA projection neurons selectively target NAc CINs, forming multiple symmetrical synaptic contacts that generated inhibitory postsynaptic currents. This is remarkable considering that CINs represent a very small population of all accumbal neurons, and provide the primary source of cholinergic tone in the NAc. Brief activation of this projection was sufficient to halt the spontaneous activity of NAc CINs, resembling the pause recorded in animals learning stimulus-outcome associations. Indeed, we found that forcing CINs to pause in behaving mice enhanced discrimination of a motivationally important stimulus that had been associated with an aversive outcome. Our results demonstrate that VTA GABA projection neurons, through their selective targeting of accumbal CINs, provide a novel route through which the VTA communicates saliency to the NAc. VTA GABA projection neurons thus emerge as orchestrators of dopaminergic and cholinergic modulation in the NAc.

  16. Predicting pauses in L1 and L2 speech: the effects of utterance boundaries and word frequency

    NARCIS (Netherlands)

    de Jong, N.H.

    2016-01-01

    This paper compares the distribution of silent and filled pauses in first (L1) and second language (L2) speech. The occurrence of pauses of 52 L2 and 18 L1 Dutch speakers was evaluated with respect to utterance boundaries and word frequency. We found that L2 speakers paused more often than L1

  17. Predicting pauses in L1 and L2 speech: the effects of utterance boundaries and word frequency

    NARCIS (Netherlands)

    de Jong, N.H.

    2016-01-01

    This paper compares the distribution of silent and filled pauses in first (L1) and second language (L2) speech. The occurrence of pauses of 52 L2 and 18 L1 Dutch speakers was evaluated with respect to utterance boundaries and word frequency. We found that L2 speakers paused more often than L1 speake

  18. Pol II Docking and Pausing at Growth and Stress Genes in C. elegans

    OpenAIRE

    Colin S. Maxwell; William S. Kruesi; Leighton J. Core; Nicole Kurhanewicz; Colin T. Waters; Caitlin L. Lewarch; Igor Antoshechkin; John T. Lis; Barbara J. Meyer; L. Ryan Baugh

    2014-01-01

    Fluctuations in nutrient availability profoundly impact gene expression. Previous work revealed postrecruitment regulation of RNA polymerase II (Pol II) during starvation and recovery in Caenorhabditis elegans, suggesting that promoter-proximal pausing promotes rapid response to feeding. To test this hypothesis, we measured Pol II elongation genome wide by two complementary approaches and analyzed elongation in conjunction with Pol II binding and expression. We confirmed bona fide pausing dur...

  19. Pausing Behavior of End -Users in Online Searching - A Case Study of National Taiwan University

    Directory of Open Access Journals (Sweden)

    Mu-hsuan Huang

    1998-12-01

    Full Text Available This article analyzes the pausing behavior of end-users. The subjects are real end-users from National Taiwan University. This article uses the Dialog command language as its searching tool. It attempts to investigate the characteristics of pausing behavior. In addition, it tries to compare the behavior difference between the Chinese and American end-users. [Article content in Chinese

  20. An investigation into the correlation of cue phrases, unfilled pauses and the structuring of spoken discourse

    CERN Document Server

    Cahn, J E

    1992-01-01

    Expectations about the correlation of cue phrases, the duration of unfilled pauses and the structuring of spoken discourse are framed in light of Grosz and Sidner's theory of discourse and are tested for a directions-giving dialogue. The results suggest that cue phrase and discourse structuring tasks may align, and show a correlation for pause length and some of the modifications that speakers can make to discourse structure.

  1. Detecting sequence dependent transcriptional pauses from RNA and protein number time series

    Directory of Open Access Journals (Sweden)

    Emmert-Streib Frank

    2012-06-01

    Full Text Available Abstract Background Evidence suggests that in prokaryotes sequence-dependent transcriptional pauses affect the dynamics of transcription and translation, as well as of small genetic circuits. So far, a few pause-prone sequences have been identified from in vitro measurements of transcription elongation kinetics. Results Using a stochastic model of gene expression at the nucleotide and codon levels with realistic parameter values, we investigate three different but related questions and present statistical methods for their analysis. First, we show that information from in vivo RNA and protein temporal numbers is sufficient to discriminate between models with and without a pause site in their coding sequence. Second, we demonstrate that it is possible to separate a large variety of models from each other with pauses of various durations and locations in the template by means of a hierarchical clustering and a random forest classifier. Third, we introduce an approximate likelihood function that allows to estimate the location of a pause site. Conclusions This method can aid in detecting unknown pause-prone sequences from temporal measurements of RNA and protein numbers at a genome-wide scale and thus elucidate possible roles that these sequences play in the dynamics of genetic networks and phenotype.

  2. Detecting sequence dependent transcriptional pauses from RNA and protein number time series.

    Science.gov (United States)

    Emmert-Streib, Frank; Häkkinen, Antti; Ribeiro, Andre S

    2012-06-28

    Evidence suggests that in prokaryotes sequence-dependent transcriptional pauses affect the dynamics of transcription and translation, as well as of small genetic circuits. So far, a few pause-prone sequences have been identified from in vitro measurements of transcription elongation kinetics. Using a stochastic model of gene expression at the nucleotide and codon levels with realistic parameter values, we investigate three different but related questions and present statistical methods for their analysis. First, we show that information from in vivo RNA and protein temporal numbers is sufficient to discriminate between models with and without a pause site in their coding sequence. Second, we demonstrate that it is possible to separate a large variety of models from each other with pauses of various durations and locations in the template by means of a hierarchical clustering and a random forest classifier. Third, we introduce an approximate likelihood function that allows to estimate the location of a pause site. This method can aid in detecting unknown pause-prone sequences from temporal measurements of RNA and protein numbers at a genome-wide scale and thus elucidate possible roles that these sequences play in the dynamics of genetic networks and phenotype.

  3. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2011-03-01

    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  4. Stresslets induced by active swimmers

    CERN Document Server

    Lauga, Eric

    2016-01-01

    Active particles disturb the fluid around them as force dipoles, or stresslets, which govern their collective dynamics. Unlike swimming speeds, the stresslets of active particles are rarely determined due to the lack of a suitable theoretical framework for arbitrary geometry. We propose a general method, based on the reciprocal theorem of Stokes flows, to compute stresslets as integrals of the velocities on the particle's surface, which we illustrate for spheroidal chemically-active particles. Our method will allow tuning the stresslet of artificial swimmers and tailoring their collective motion in complex environments.

  5. Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Carbonell, Albert; Raha, Debasish; Snyder, Michael; Serras, Florenci; Corominas, Montserrat

    2011-06-01

    An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.

  6. How long is too long? How pause features after requests affect the perceived willingness of affirmative answers

    DEFF Research Database (Denmark)

    Kohtz, Lea Susan; Niebuhr, Oliver

    2017-01-01

    A perception experiment involving 28 German listeners is presented. It investigates – for sequences of request, pause, and affirmative answer – the effect of pause duration on the answerer's perceived willingness to comply with the request. Replicating earlier results on American English, perceiv......) on perceived willingness judgments. The overall results picture is discussed with respect to the origin of the "tolerance threshold", the status of breathing in speech, and the function of pauses in communication....

  7. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.

    Science.gov (United States)

    Perdrizet, George A; Artsimovitch, Irina; Furman, Ran; Sosnick, Tobin R; Pan, Tao

    2012-02-28

    Riboswitches are cis-acting elements that regulate gene expression by affecting transcriptional termination or translational initiation in response to binding of a metabolite. A typical riboswitch is made of an upstream aptamer domain and a downstream expression platform. Both domains participate in the folding and structural rearrangement in the absence or presence of its cognate metabolite. RNA polymerase pausing is a fundamental property of transcription that can influence RNA folding. Here we show that pausing plays an important role in the folding and conformational rearrangement of the Escherichia coli btuB riboswitch during transcription by the E. coli RNA polymerase. This riboswitch consists of an approximately 200 nucleotide, coenzyme B12 binding aptamer domain and an approximately 40 nucleotide expression platform that controls the ribosome access for translational initiation. We found that transcriptional pauses at strategic locations facilitate folding and structural rearrangement of the full-length riboswitch, but have minimal effect on the folding of the isolated aptamer domain. Pausing at these regulatory sites blocks the formation of alternate structures and plays a chaperoning role that couples folding of the aptamer domain and the expression platform. Pausing at strategic locations may be a general mechanism for coordinated folding and conformational rearrangements of riboswitch structures that underlie their response to environmental cues.

  8. The history of research on the filled pause as evidence of the written language bias in linguistics (Linell, 1982).

    Science.gov (United States)

    O'Connell, Daniel C; Kowal, Sabine

    2004-11-01

    Erard's (2004) publication in the New York Times of a journalistic history of the filled pause serves as the occasion for this critical review of the past half-century of research on the filled pause. Historically, the various phonetic realizations or instantiations of the filled pause have been presented with an odd recurrent admixture of the interjection ah. In addition, the filled pause has been consistently associated with both hesitation and disfluency. The present authors hold that such a mandatory association of the filled pause with disfluency is the product of The written language bias in linguistics [Linell, 1982] and disregards much cogent evidence to the contrary. The implicit prescriptivism of well formedness--a demand derived from literacy--must be rejected; literate well formedness is not a necessary or even typical property of spontaneous spoken discourse; its structures and functions--including those of the filled pause--are very different from those of written language The recent work of Clark and Fox Tree (2002) holds promise for moving the status of the filled pause not only toward that of a conventional word, but also toward its status as an interjection. This latter development is also being fostered by lexicographers. Nonetheless, in view of ongoing research regarding the disparate privileges of occurrence and functions of filled pauses in comparison with interjections, the present authors are reluctant to categorize the filled pause as an interjection.

  9. Clues cue the smooze: rhyme, pausing and prediction help children learn new words from storybooks

    Directory of Open Access Journals (Sweden)

    Kirsten eRead

    2014-02-01

    Full Text Available Rhyme, which is ubiquitous in the language experiences of young children, may be especially facilitative to vocabulary learning because of how it can support active predictions about upcoming words. In two experiments, we tested whether rhyme, when used to help children anticipate new words would make those words easier to learn. Two- to 4-year-old children heard rhyming stanzas naming novel monsters under three conditions: A non-rhyme condition in which novel monster names appeared as unrhymed elements within a rhymed stanza, a non-predictive rhyme condition in which the novel names were the rhymed element in the first line of a stanza, and a predictive rhyme condition in which the monster name came as the rhymed element in the last line of the stanza after a description of the features that distinguished him. In tests of retention and identification children showed greatest novel name learning in the predictive rhyme condition in both between-subjects (Experiment 1 and within-subjects (Experiment 2 comparisons. Additionally, when parents acted as the storybook readers in Experiment 2, many of them distinctly paused before target words in the predictive rhyme condition and for their children a stronger predictive rhyme advantage surfaced. Thus rhyme is not only facilitative for learning, but when the novel vocabulary is specifically in a position where it is predictable from the rhymes, it is most accessible.

  10. GSK3β is involved in the relief of mitochondria pausing in a Tau-dependent manner.

    Directory of Open Access Journals (Sweden)

    María Llorens-Martín

    Full Text Available Mitochondrial trafficking deficits have been implicated in the pathogenesis of several neurological diseases, including Alzheimer's disease (AD. The Ser/Thre kinase GSK3β is believed to play a fundamental role in AD pathogenesis. Given that GSK3β substrates include Tau protein, here we studied the impact of GSK3β on mitochondrial trafficking and its dependence on Tau protein. Overexpression of GSK3β in neurons resulted in an increase in motile mitochondria, whereas a decrease in the activity of this kinase produced an increase in mitochondria pausing. These effects were dependent on Tau proteins, as Tau (-/- neurons did not respond to distinct GSK3β levels. Furthermore, differences in GSK3β expression did not affect other parameters like mitochondria velocity or mitochondria run length. We conclude that GSK3B activity regulates mitochondrial axonal trafficking largely in a Tau-dependent manner.

  11. Cold Water and Pauses in Illumination Reduces Pain During Photodynamic Therapy: A Randomized Clinical Study

    DEFF Research Database (Denmark)

    Wiegell, S.R.; Haedersdal, M.; Wulf, H.C.

    2009-01-01

    symmetrical areas and cooled with either cold-water-spray or cold-water-pack (Coo]Pack). Treatment areas were cooled during either the first or second period of illumination, which were separated by a 3-min pause in illumination. Pain intensity was scored from 0 to 10. Water-spray reduced the mean pain score...... by 1.2 points (p=0.030) and CoolPack by 1.3 points (p=0.007) during the first half of the illumination. Pain intensity decreased during the pause by 3.7 points in water-spray patients (p

  12. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  13. Madagascine Induces Vasodilatation via Activation of AMPK

    Science.gov (United States)

    Chen, Dapeng; Lv, Bochao; Kobayashi, Sei; Xiong, Yongjian; Sun, Pengyuan; Lin, Yuan; Genovese, Salvatore; Epifano, Francesco; Hou, Shanshan; Tang, Fusheng; Ji, Yunyan; Yu, Dandan

    2016-01-01

    Madagascine (3-isopentenyloxyemodin) can be chemically synthesized or purified from several Rhamnus species, and it is found to have more potent biological activities than the parent compound emodin. The aim of this study is to characterize the vasodilatory effect of madagascine on vasoconstriction and sphingosylphosphorylcholine induced vasospasm in ex vivo and reveal the potential mechanisms in vitro. The effects of madagascine on vasoconstriction of rat mesenteric resistance arteries (MRAs) induced by K+, methoxamine, and endothelin-1 were, respectively, studied. The cholesterol-enriched porcine coronary vascular smooth muscle (VSM) strips were used to investigate the effects of madagascine on abnormal constriction induced by sphingosylphosphorylcholine (SPC) which has a pivotal role in vasospasm. The vasodilatory effect was induced by madagascine (0.3–100 μM) in isolated rat MRAs and the vasodilatory effect was blocked by NO synthase inhibitor L-NAME and AMPK inhibitor compound C. Madagascine (10 μM) also significantly relaxed the abnormal constriction in porcine VSM induced by SPC and the effect was abolished by compound C. Madagascine significantly increased the phosphorylation of endothelial nitric oxide synthase (eNOS) in endothelial cells while decreasing the phosphorylation of myosin phosphatase target subunit 1 (MYPT1) in VSM cells. Madagascine-induced vasodilatation was abrogated using small interfering RNA knockdown of AMPK. In summary, madagascine exerted vasodilatation through activating AMPK, leading to the activation of eNOS in endothelium and inhibition of ROCK/MYPT1 in VSM. This study suggests the potential value of madagascine in amelioration of vasospasm related cardiovascular diseases. PMID:27932979

  14. Ionic changes during experimentally induced seizure activity.

    Science.gov (United States)

    Lux, H D; Heinemann, U

    1978-01-01

    Changes in intra- and extracellular ionic activity and their relation to generation and termination of seizure phenomena can be studied with the help of ion-selective microelectrodes. Transient changes in extracellular potassium activity (aK) of the cortex regularly accompany paroxysmal activity induced by electrical stimulation and pentylenetetrazol injections or occur within active penicillin and aluminum foci. A rise of aK from baseline levels of about 3 mmoles/l up to ceiling levels of 8--12 mmoles/l, followed by subnormal K activity, is typically found during seizure discharge. Extracellular K accumulation during seizures facilitates the spread into extrafocal regions. Ceiling levels of extracellular aK are characterized by pronounced K reabsorption which is probably a limiting mechanism for the rise in extracellular aK. It may be a consequence of a simultaneous rise in intracellular Na activity that an electrogenic Na--K exchange process is involved in the termination of ictal activity. Seizures are also accompanied by significant reductions in extracellular Ca2+ activity (aCa) to as low as 0.7 mmoles/l (resting aCa 1.25 mmoles/l). There is no critical level of lowered aCa at which a seizure ultimately results. However, unlike changes in aK reductions in aCa can precede ictal activity. Thus, a fall of aCa occurs before the onset of paroxysmal periods during cyclical spike driving in a penicillin focus and before seizures induced by pentylenetetrazol. Ca2+-dependent mechanisms may contribute to seizure generation. In addition to changes in aK and aCa, intracellular chloride activity (aCl) can increase during seizure activity, as a result of an impaired chloride extrusion mechanism, which would lead to a reduced efficacy of inhibitory synaptic transmission and, therefore, to facilitation of seizure generation.

  15. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA.

    Science.gov (United States)

    Sydow, Jasmin F; Brueckner, Florian; Cheung, Alan C M; Damsma, Gerke E; Dengl, Stefan; Lehmann, Elisabeth; Vassylyev, Dmitry; Cramer, Patrick

    2009-06-26

    We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.

  16. The pause on avian H5N1 influenza virus transmission research should be ended

    NARCIS (Netherlands)

    R.A.M. Fouchier (Ron); A. García-Sastre (Adolfo); Y. Kawaoka (Yoshihiro)

    2012-01-01

    textabstractA voluntary 60-day pause on avian H5N1 influenza virus transmission research was announced in January 2012 by the international community of influenza scientists engaged in this work to provide time to explain the benefits of such work and the risk mitigation measures in place. Subsequen

  17. Pause and Utterance Duration in Child-Directed Speech in Relation to Child Vocabulary Size

    Science.gov (United States)

    Marklund, Ulrika; Marklund, Ellen; Lacerda, Francisco; Schwarz, Iris-Corinna

    2015-01-01

    This study compares parental pause and utterance duration in conversations with Swedish speaking children at age 1;6 who have either a large, typical, or small expressive vocabulary, as measured by the Swedish version of the McArthur-Bates CDI. The adjustments that parents do when they speak to children are similar across all three vocabulary…

  18. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    Science.gov (United States)

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  19. Computer work duration and its dependence on the used pause definition.

    Science.gov (United States)

    Richter, Janneke M; Slijper, Harm P; Over, Eelco A B; Frens, Maarten A

    2008-11-01

    Several ergonomic studies have estimated computer work duration using registration software. In these studies, an arbitrary pause definition (Pd; the minimal time between two computer events to constitute a pause) is chosen and the resulting duration of computer work is estimated. In order to uncover the relationship between the used pause definition and the computer work duration (PWT), we used registration software to record usage patterns of 571 computer users across almost 60,000 working days. For a large range of Pds (1-120 s), we found a shallow, log-linear relationship between PWT and Pds. For keyboard and mouse use, a second-order function fitted the data best. We found that these relationships were dependent on the amount of computer work and subject characteristics. Comparison of exposure duration from studies using different pause definitions should take this into account, since it could lead to misclassification. Software manufacturers and ergonomists assessing computer work duration could use the found relationships for software design and study comparison.

  20. Pause and Utterance Duration in Child-Directed Speech in Relation to Child Vocabulary Size

    Science.gov (United States)

    Marklund, Ulrika; Marklund, Ellen; Lacerda, Francisco; Schwarz, Iris-Corinna

    2015-01-01

    This study compares parental pause and utterance duration in conversations with Swedish speaking children at age 1;6 who have either a large, typical, or small expressive vocabulary, as measured by the Swedish version of the McArthur-Bates CDI. The adjustments that parents do when they speak to children are similar across all three vocabulary…

  1. Writing profiles: the effect of the writing mode on pausing and revision patterns of experienced writers

    NARCIS (Netherlands)

    Van Waes, Luuk; Schellens, Peter Jan

    2003-01-01

    We investigated how writing processes are affected by physical aspects of the task environment, specifically the use of a word processor, with respect to patterns of pausing and revision. Consistent with the tradition of cognitive writing research, the writing processes of experienced writers were e

  2. An Exploratory Study of Pauses in Computer-Assisted EFL Writing

    Science.gov (United States)

    Xu, Cuiqin; Ding, Yanren

    2014-01-01

    The advance of computer input log and screen-recording programs over the last two decades has greatly facilitated research into the writing process in real time. Using Inputlog 4.0 and Camtasia 6.0 to record the writing process of 24 Chinese EFL writers in an argumentative task, this study explored L2 writers' pausing patterns in…

  3. Modified pause schemes and working days for more volume flexibility in manufactering

    NARCIS (Netherlands)

    Rhijn, G.; Looze, M. de; Bosch, T.

    2005-01-01

    The effects of two measures to increase the volume flexibility, namely the introduction of an alternating pause scheme and the elongation of the working day, were evaluated in two manufacturing companies. Both measures led to an increase in volume output of about 16% at relatively low costs. The

  4. Comparison of Pausing Behavior in Children Who Stutter and Children Who Have Asperger Syndrome

    Science.gov (United States)

    Beltrame, Jessica Monique; Viera, Renata Alves Torello; Tamanaha, Ana Carina; Arcuri, Claudia Fassin; Osborn, Ellen; Perissinoto, Jacy; Schiefer, Ana Maria

    2011-01-01

    Purpose: The objective of this research was to compare the number and types of grammatical and non-grammatical silent pauses presented by stutterers and subjects with Asperger syndrome in their narratives. Method: Ten children who stutter and four participants with Asperger syndrome (mean ages of both groups 10 years) were assessed at the Speech…

  5. Cues-Pause-Point Language Training: Teaching Echolalics Functional Use of Their Verbal Labeling Repertoires.

    Science.gov (United States)

    McMorrow, Martin J.; And Others

    1987-01-01

    A cues-pause-point procedure was used to train two severely retarded females to remain quiet before, during, and briefly after the presentation of questions and then to verbalize on the basis of environmental cues whose labels represented the correct responses. Echolalia was rapidly replaced by correct responding on the trained stimuli. (Author/JW)

  6. Impact of Typical Aging and Parkinson's Disease on the Relationship among Breath Pausing, Syntax, and Punctuation

    Science.gov (United States)

    Huber, Jessica E.; Darling, Meghan; Francis, Elaine J.; Zhang, Dabao

    2012-01-01

    Purpose: The present study examines the impact of typical aging and Parkinson's disease (PD) on the relationship among breath pausing, syntax, and punctuation. Method: Thirty young adults, 25 typically aging older adults, and 15 individuals with PD participated. Fifteen participants were age- and sex-matched to the individuals with PD.…

  7. High frequency of pauses during intermittent locomotion of small South American gymnophthalmid lizards (Squamata, Gymnophthalmidae

    Directory of Open Access Journals (Sweden)

    Elizabeth Höfling

    2004-12-01

    Full Text Available We studied the locomotor behavior of two closely-related species of Gymnophthalmini lizards, Vanzosaura rubricauda and Procellosaurinus tetradactylus, that was imaged under laboratory conditions at a rate of 250 frames/s with a high-speed video camera (MotionScope PCI 1000 on four different substrates with increasing degrees of roughness (smooth perspex, cardboard, glued sand, and glued gravel. Vanzosaura rubricauda and P. tetradactylus are both characterized by intermittent locomotion, with pauses occurring with high frequency and having a short duration (from 1/10 to 1/3 s, and taking place in rhythmic locomotion in an organized fashion during all types ofgaits and on different substrates. The observed variations in duration and frequency of pauses suggest that in V. rubricauda mean pause duration is shorter and pause frequency is higher than in P. tetradactylus. The intermittent locomotion observed in V.rubricauda and P. tetradactylus imaging at 250 frames/s is probably of interest for neurobiologists. In the review of possible determinants, the phylogenetic relationships among the species of the tribe Gymnophthalmini are focused. Keywords: .

  8. Profiling Speech and Pausing in Amyotrophic Lateral Sclerosis (ALS and Frontotemporal Dementia (FTD.

    Directory of Open Access Journals (Sweden)

    Yana Yunusova

    Full Text Available This study examines reading aloud in patients with amyotrophic lateral sclerosis (ALS and those with frontotemporal dementia (FTD in order to determine whether differences in patterns of speaking and pausing exist between patients with primary motor vs. primary cognitive-linguistic deficits, and in contrast to healthy controls.136 participants were included in the study: 33 controls, 85 patients with ALS, and 18 patients with either the behavioural variant of FTD (FTD-BV or progressive nonfluent aphasia (FTD-PNFA. Participants with ALS were further divided into 4 non-overlapping subgroups--mild, respiratory, bulbar (with oral-motor deficit and bulbar-respiratory--based on the presence and severity of motor bulbar or respiratory signs. All participants read a passage aloud. Custom-made software was used to perform speech and pause analyses, and this provided measures of speaking and articulatory rates, duration of speech, and number and duration of pauses. These measures were statistically compared in different subgroups of patients.The results revealed clear differences between patient groups and healthy controls on the passage reading task. A speech-based motor function measure (i.e., articulatory rate was able to distinguish patients with bulbar ALS or FTD-PNFA from those with respiratory ALS or FTD-BV. Distinguishing the disordered groups proved challenging based on the pausing measures.This study demonstrated the use of speech measures in the identification of those with an oral-motor deficit, and showed the usefulness of performing a relatively simple reading test to assess speech versus pause behaviors across the ALS-FTD disease continuum. The findings also suggest that motor speech assessment should be performed as part of the diagnostic workup for patients with FTD.

  9. Profiling Speech and Pausing in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)

    Science.gov (United States)

    Yunusova, Yana; Graham, Naida L.; Shellikeri, Sanjana; Phuong, Kent; Kulkarni, Madhura; Rochon, Elizabeth; Tang-Wai, David F.; Chow, Tiffany W.; Black, Sandra E.; Zinman, Lorne H.; Green, Jordan R.

    2016-01-01

    Objective This study examines reading aloud in patients with amyotrophic lateral sclerosis (ALS) and those with frontotemporal dementia (FTD) in order to determine whether differences in patterns of speaking and pausing exist between patients with primary motor vs. primary cognitive-linguistic deficits, and in contrast to healthy controls. Design 136 participants were included in the study: 33 controls, 85 patients with ALS, and 18 patients with either the behavioural variant of FTD (FTD-BV) or progressive nonfluent aphasia (FTD-PNFA). Participants with ALS were further divided into 4 non-overlapping subgroups—mild, respiratory, bulbar (with oral-motor deficit) and bulbar-respiratory—based on the presence and severity of motor bulbar or respiratory signs. All participants read a passage aloud. Custom-made software was used to perform speech and pause analyses, and this provided measures of speaking and articulatory rates, duration of speech, and number and duration of pauses. These measures were statistically compared in different subgroups of patients. Results The results revealed clear differences between patient groups and healthy controls on the passage reading task. A speech-based motor function measure (i.e., articulatory rate) was able to distinguish patients with bulbar ALS or FTD-PNFA from those with respiratory ALS or FTD-BV. Distinguishing the disordered groups proved challenging based on the pausing measures. Conclusions and Relevance This study demonstrated the use of speech measures in the identification of those with an oral-motor deficit, and showed the usefulness of performing a relatively simple reading test to assess speech versus pause behaviors across the ALS—FTD disease continuum. The findings also suggest that motor speech assessment should be performed as part of the diagnostic workup for patients with FTD. PMID:26789001

  10. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites.

    Science.gov (United States)

    Ammerman, Michelle L; Presnyak, Vladimir; Fisk, John C; Foda, Bardees M; Read, Laurie K

    2010-11-01

    TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.

  11. Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence

    National Research Council Canada - National Science Library

    Bernardi, L; Porta, C; Sleight, P

    To assess the potential clinical use, particularly in modulating stress, of changes in the cardiovascular and respiratory systems induced by music, specifically tempo, rhythm, melodic structure, pause...

  12. The effect of pause time upon the communicative interactions of young people who use augmentative and alternative communication.

    Science.gov (United States)

    Mathis, Hilary; Sutherland, Dean; McAuliffe, Megan

    2011-10-01

    This study investigated the effect of variation in partner-initiated pause time on the expressive communication of young people who use Augmentative and Alternative Communication (AAC). Eight participants aged 8;11-20;08 years (mean 16;02 years) participated in the study. Three pause time conditions (2, 10, and 45 seconds) were trialled during a scripted shared storybook reading task. A total of 27 turn opportunities were provided for participants during the task. Participant interactions were analysed for the percentage of responses made to a turn opportunity, mean length of utterance in words (MLU), percentage of assertive conversational acts made, and the modes of communication used. Findings indicated that participants were more likely to respond to a turn opportunity when their communication partner provided a longer pause time. Additionally, a longer pause time resulted in longer MLUs. Participants did not use more assertive conversational acts and continued to use a variety of communication modes when provided with a longer pause time. Results indicate that increasing pause time is an effective strategy to support the development of expressive communication for young people who use AAC. This suggests the need for professionals providing AAC services to encourage communication partners to provide extended pauses during interactions.

  13. Translational pauses during the synthesis of proteins and mRNA structure.

    Science.gov (United States)

    Zama, M

    1997-01-01

    Translational pauses are observed during a spider fibroin synthesis (1,2). The spider major ampullate (dragline) silk of the spider Nephila clavipes is composed of multiple proteins. The amino acid sequences of the partial cDNA clones for the two major dragline silk fibroin components (Spidroin 1 and 2) exhibit repetitive motifs (3,4). Our detailed inspection of the nucleotide sequences of the repetitive motifs revealed highly selective site-specific codon usage patterns within a motif, suggesting that the secondary structure of the spider fibroin mRNA is optimized by the nucleotide sequence of the fibroin gene. The results, combined with our preceding results on silk fibroin from Bombyx mori (5) suggest that translational pauses of spider silk are interpreted in terms of the mRNA secondary structure.

  14. Time for a Strategic and Intellectual Pause in Afghanistan

    Science.gov (United States)

    2010-01-01

    difficult to discern how the Hearts-and-Minds enhances government legitimacy. The lavish provision of goods and services, the frenetic activity of...very little popular support, even in the southern region, which is considered their base . To suggest that the Taliban shadow governments compete for...down fleeing insurgents, uncovering their bases and caches, and providing a quick reaction force. In Afghanistan, the narcotics trade has to be

  15. Scalability Performance of MANET Routing Protocols with Reference to Variable Pause Time

    Directory of Open Access Journals (Sweden)

    Asha Ambhaikar

    2010-12-01

    Full Text Available As mobile networking continues to experience increasing popularity, the need to connect large numbers of wireless devices will become more prevalent. Many recent proposals for ad hoc routing have certain characteristics. A mobile ad hoc network is a collection of autonomous mobile nodes that communicate with each other over wireless links. Such networks does play important role in civilian and military settings, being useful for providing communication support where no fixed infrastructure exists or the deployment of a fixed infrastructure is possible. It is a crucial part in the performance evaluation of MANET to select suitable mobility model and routing protocols. Therefore, a number of routing protocols as well as mobility models have been proposed for ad hoc wireless networks based on different scenarios. In this paper, we study and compare the performance of the two reactive routing protocols AODV and DSR with reference to varying Pause Time. For experimental purposes, we have considered increasing Pause Time from 5 sec to 40 sec and illustrate the performance of the routing protocol across Packet Delivery Ratio parameter. Our simulation result shows that both AODV & DSR is performing equally good until the Pause Time cross a certain limit.

  16. Balloon Dilatation of Pediatric Subglottic Laryngeal Stenosis during the Artificial Apneic Pause: Experience in 5 Children

    Directory of Open Access Journals (Sweden)

    J. Lisý

    2014-01-01

    Full Text Available Introduction. Balloon dilatation is a method of choice for treatment of laryngeal stenosis in children. The aim of procedure in apneic pause is to avoid new insertion of tracheostomy cannula. Patients and Methods. The authors performed balloon dilatation of subglottic laryngeal strictures (SGS in 5 children (3 girls and 2 boys without tracheotomy. Two of them with traumatic and inflammatory SGS had a tracheal cannula removed in the past. The other 3 children with postintubation SGS had never had a tracheostomy before. The need for tracheostomy due to worsening stridor was imminent for all of them. Results. The total of seven laryngeal dilatations by balloon esophagoplasty catheter in apneic pause was performed in the 5 children. The procedure averted the need for tracheostomy placement in 4 of them (80%. Failure of dilatation in girl with traumatic stenosis and concomitant severe obstructive lung disease led to repeated tracheostomy. Conclusion. Balloon dilatation of laryngeal stricture could be done in the absence of tracheostomy in apneic pause. Dilatation averted threatening tracheostomy in all except one case. Early complication after the procedure seems to be a negative prognostic factor for the outcome of balloon dilatation.

  17. Putting a Pause in Pain, A personal journey for this teen | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... please turn JavaScript on. Feature: Pain Management Putting a Pause in Pain, A personal journey for this teen Winter 2017 Table ... Northern Kentucky with an extra confidence and bounce. A fan of Chilean poet Pablo Neruda, she's working ...

  18. P-TEFb, the super elongation complex and mediator regulate a subset of non-paused genes during early Drosophila embryo development.

    Directory of Open Access Journals (Sweden)

    Olle Dahlberg

    2015-02-01

    Full Text Available Positive Transcription Elongation Factor b (P-TEFb is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II into active elongation. It can assemble into a larger Super Elongation Complex (SEC consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3' end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos.

  19. Reelin induces EphB activation

    Institute of Scientific and Technical Information of China (English)

    Elisabeth Bouché; Mario I Romero-Ortega; Mark Henkemeyer; Timothy Catchpole; Jost Leemhuis; Michael Frotscher; Petra May

    2013-01-01

    The integration of newborn neurons into functional neuronal networks requires migration of cells to their final position in the developing brain,the growth and arborization of neuronal processes and the formation of synaptic contacts with other neurons.A central player among the signals that coordinate this complex sequence of differentiation events is the secreted glycoprotein Reelin,which also modulates synaptic plasticity,learning and memory formation in the adult brain.Binding of Reelin to ApoER2 and VLDL receptor,two members of the LDL receptor family,initiates a signaling cascade involving tyrosine phosphorylation of the intracellular cytoplasmic adaptor protein Disabled-l,which targets the neuronal cytoskeleton and ultimately controls the positioning of neurons throughout the developing brain.However,it is possible that Reelin signals interact with other receptor-mediated signaling cascades to regulate different aspects of brain development and plasticity.EphB tyrosine kinases regulate cell adhesion and repulsion-dependent processes via bidirectional signaling through ephrin B transmembrane proteins.Here,we demonstrate that Reelin binds to the extracellular domains of EphB transmembrane proteins,inducing receptor clustering and activation of EphB forward signaling in neurons,independently of the ‘classical' Reelin receptors,ApoER2 and VLDLR.Accordingly,mice lacking EphB1 and EphB2 display a positioning defect of CA3 hippocampal pyramidal neurons,similar to that in Reelin-deficient mice,and this cell migration defect depends on the kinase activity of EphB proteins.Together,our data provide biochemical and functional evidence for signal integration between Reelin and EphB forward signaling.

  20. Analog self-powered harvester achieving switching pause control to increase harvested energy

    Science.gov (United States)

    Makihara, Kanjuro; Asahina, Kei

    2017-05-01

    In this paper, we propose a self-powered analog controller circuit to increase the efficiency of electrical energy harvesting from vibrational energy using piezoelectric materials. Although the existing synchronized switch harvesting on inductor (SSHI) method is designed to produce efficient harvesting, its switching operation generates a vibration-suppression effect that reduces the harvested levels of electrical energy. To solve this problem, the authors proposed—in a previous paper—a switching method that takes this vibration-suppression effect into account. This method temporarily pauses the switching operation, allowing the recovery of the mechanical displacement and, therefore, of the piezoelectric voltage. In this paper, we propose a self-powered analog circuit to implement this switching control method. Self-powered vibration harvesting is achieved in this study by attaching a newly designed circuit to an existing analog controller for SSHI. This circuit aims to effectively implement the aforementioned new switching control strategy, where switching is paused in some vibration peaks, in order to allow motion recovery and a consequent increase in the harvested energy. Harvesting experiments performed using the proposed circuit reveal that the proposed method can increase the energy stored in the storage capacitor by a factor of 8.5 relative to the conventional SSHI circuit. This proposed technique is useful to increase the harvested energy especially for piezoelectric systems having large coupling factor.

  1. Elongation Factor P Interactions with the Ribosome Are Independent of Pausing.

    Science.gov (United States)

    Tollerson, Rodney; Witzky, Anne; Ibba, Michael

    2017-08-01

    Bacterial elongation factor P (EF-P) plays a pivotal role in the translation of polyproline motifs. To stimulate peptide bond formation, EF-P must enter the ribosome via an empty E-site. Using fluorescence-based single-molecule tracking, Mohapatra et al. (S. Mohapatra, H. Choi, X. Ge, S. Sanyal, and J. C. Weisshaar, mBio 8:e00300-17, 2017, https://doi.org/10.1128/mBio.00300-17) monitored the cellular distribution of EF-P and quantified the frequency of association between EF-P and the ribosome under various conditions. Findings from the study showed that EF-P has a localization pattern that is strikingly similar to that of ribosomes. Intriguingly, EF-P was seen to bind ribosomes more frequently than the estimated number of pausing events, indicating that E-site vacancies occur even when ribosomes are not paused. The study provides new insights into the mechanism of EF-P-dependent peptide bond formation and the intricacies of translation elongation. Copyright © 2017 Tollerson et al.

  2. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...

  3. Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase

    Science.gov (United States)

    Forde, Nancy R.; Izhaky, David; Woodcock, Glenna R.; Wuite, Gijs J. L.; Bustamante, Carlos

    2002-09-01

    Escherichia coli RNA polymerase translocates along the DNA discontinuously during the elongation phase of transcription, spending proportionally more time at some template positions, known as pause and arrest sites, than at others. Current models of elongation suggest that the enzyme backtracks at these locations, but the dynamics are unresolved. Here, we study the role of lateral displacement in pausing and arrest by applying force to individually transcribing molecules. We find that an assisting mechanical force does not alter the translocation rate of the enzyme, but does reduce the efficiency of both pausing and arrest. Moreover, arrested molecules cannot be rescued by force, suggesting that arrest occurs by a bipartite mechanism: the enzyme backtracks along the DNA followed by a conformational change of the ternary complex (RNA polymerase, DNA and transcript), which cannot be reversed mechanically.

  4. Mass-transfer induced activity in galaxies

    Science.gov (United States)

    Shlosman, Isaac

    Current research on the origin and evolution of active galaxies is comprehensively surveyed in this collaborative volume. Both of the proposed types of central activity --- active galactic nuclei and nuclear starbursts --- are analyzed with a particular emphasis on their relationship to the large-scale properties of the host galaxy. The crucial question is what triggers and fuels nuclear activity now and at earlier epochs. The topics covered here are gas flows near to massive black holes, the circumnuclear galactic regions, and the large-scale bars in disk galaxies. Aspects of nuclear bursts of star formation and the relationship between central activity and the gas and stellar dynamics of the host galaxy are addressed as well. The contributors of this book for professionals and graduate students are world experts on galaxy evolution.

  5. The effect of filled pauses on the processing of the surface form and the establishment of causal connections during the comprehension of spoken expository discourse.

    Science.gov (United States)

    Cevasco, Jazmín; van den Broek, Paul

    2016-05-01

    The purpose of this study was to examine the effect of filled pauses (uh) on the verification of words and the establishment of causal connections during the comprehension of spoken expository discourse. With this aim, we asked Spanish-speaking students to listen to excerpts of interviews with writers, and to perform a word-verification task and a question-answering task on causal connectivity. There were two versions of the excerpts: filled pause present and filled pause absent. Results indicated that filled pauses increased verification times for words that preceded them, but did not make a difference on response times to questions on causal connectivity. The results suggest that, as signals of delay, filled pauses create a break with surface information, but they do not have the same effect on the establishment of meaningful connections.

  6. An Investigation of Read Speech of Arabic Students Learning Turkish as a Second Language in Terms of Stress and Pause

    Science.gov (United States)

    Derman, Serdar; Bardakçi, Mehmet; Öztürk, Mustafa Serkan

    2017-01-01

    Suprasegmental features are essential in conveying meaning; however, they are one of the neglected topics in teaching Turkish as a foreign/second language. This paper aims to examine read speech by Arabic students learning Turkish as a second language and describe their read speech in terms of stress and pause. Within this framework, 34 Syrian…

  7. A Diagnostic Marker to Discriminate Childhood Apraxia of Speech from Speech Delay: IV. the Pause Marker Index

    Science.gov (United States)

    Shriberg, Lawrence D.; Strand, Edythe A.; Fourakis, Marios; Jakielski, Kathy J.; Hall, Sheryl D.; Karlsson, Heather B.; Mabie, Heather L.; McSweeny, Jane L.; Tilkens, Christie M.; Wilson, David L.

    2017-01-01

    Purpose: Three previous articles provided rationale, methods, and several forms of validity support for a diagnostic marker of childhood apraxia of speech (CAS), termed the pause marker (PM). Goals of the present article were to assess the validity and stability of the PM Index (PMI) to scale CAS severity. Method: PM scores and speech, prosody,…

  8. Interventions for Echolalic Behaviour for Children with Autism: A Review of Verbal Prompts and the Cues Pause Point Procedure.

    Science.gov (United States)

    Kavon, Nicole M.; McLaughlin, T. F.

    1995-01-01

    This paper examines behavior interventions for echolalic behavior in children with autism, including verbal prompting (focusing on the echolalic behavior itself) and the cues-pause-point procedure (which employs the child's prerequisite skills to teach correct verbal responses). A review of the literature indicated that both techniques were…

  9. Speech and Pause Characteristics Associated with Voluntary Rate Reduction in Parkinson’s disease and Multiple Sclerosis

    Science.gov (United States)

    Tjaden, Kris; Wilding, Greg

    2011-01-01

    The primary purpose of this study was to investigate how speakers with Parkinson’s disease (PD) and Multiple Sclerosis (MS) accomplish voluntary reductions in speech rate. A group of talkers with no history of neurological disease was included for comparison. This study was motivated by the idea that knowledge of how speakers with dysarthria voluntarily accomplish a reduced speech rate would contribute toward a descriptive model of speaking rate change in dysarthria. Such a model has the potential to assist in identifying rate control strategies to receive focus in clinical treatment programs and also would advance understanding of global speech timing in dysarthria. All speakers read a passage in Habitual and Slow conditions. Speech rate, articulation rate, pause duration, and pause frequency were measured. All speaker groups adjusted articulation time as well as pause time to reduce overall speech rate. Group differences in how voluntary rate reduction was accomplished were primarily one of quantity or degree. Overall, a slower-than-normal rate was associated with a reduced articulation rate, shorter speech runs that included fewer syllables, and longer more frequent pauses. Taken together, these results suggest that existing skills or strategies used by patients should be emphasized in dysarthria training programs focusing on rate reduction. Results further suggest that a model of voluntary speech rate reduction based on neurologically normal speech shows promise as being applicable for mild to moderate dysarthria. PMID:21767851

  10. Mechanisms of macrophage activation in obesity-induced insulin resistance

    OpenAIRE

    Odegaard, Justin I.; Chawla, Ajay

    2008-01-01

    Chronic inflammation is now recognized as a key step in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes mellitus. This low-grade inflammation is mediated by the inflammatory (classical) activation of recruited and resident macrophages that populate metabolic tissues, including adipose tissue and liver. These findings have led to the concept that infiltration and activation of adipose tissue macrophages is causally linked to obesity-induced insulin resistance. Studie...

  11. RNAP II processivity is a limiting step for HIV-1 transcription independent of orientation to and activity of endogenous neighboring promoters.

    Science.gov (United States)

    Kaczmarek Michaels, Katarzyna; Wolschendorf, Frank; Schiralli Lester, Gillian M; Natarajan, Malini; Kutsch, Olaf; Henderson, Andrew J

    2015-12-01

    Since HIV-1 has a propensity to integrate into actively expressed genes, transcriptional interference from neighboring host promoters has been proposed to contribute to the establishment and maintenance HIV-1 latency. To gain insights into how endogenous promoters influence HIV-1 transcription we utilized a set of inducible T cell lines and characterized whether there were correlations between expression of endogenous genes, provirus and long terminal repeat architecture. We show that neighboring promoters are active but have minimal impact on HIV-1 transcription, in particular, expression of the endogenous gene did not prevent expression of HIV-1 following induction of latent provirus. We also demonstrate that releasing paused RNAP II by diminishing negative elongation factor (NELF) is sufficient to reactivate transcriptionally repressed HIV-1 provirus regardless of the integration site and orientation of the provirus suggesting that NELF-mediated RNAP II pausing is a common mechanism of maintaining HIV-1 latency.

  12. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways.

    Science.gov (United States)

    Lee, Dae-Hee; Sung, Ki Sa; Guo, Zong Sheng; Kwon, William Taehyung; Bartlett, David L; Oh, Sang Cheul; Kwon, Yong Tae; Lee, Yong J

    2016-05-01

    It is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response. Human colorectal carcinoma HCT116 cells were treated with TRAIL and the ER stress-induced signal transduction pathway was investigated. During TRAIL treatment, expression of ER stress marker genes, in particular the BiP (binding immunoglobulin protein) gene, was increased and activation of the PERK (PKR-like ER kinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP (CCAAT-enhancer-binding protein homologous protein) apoptotic signal transduction pathway occurred. Experimental data from use of a siRNA (small interfering RNA) technique, caspase inhibitor, and caspase-3-deficient cell line revealed that TRAIL-induced caspase activation is a prerequisite for the TRAIL-induced ER stress response. TRAIL-induced ER stress was triggered by caspase-8-mediated cleavage of BAP31 (B cell receptor-associated protein 31). The involvement of the proapoptotic PERK-CHOP pathway in TRAIL-induced apoptosis was verified by using a PERK knockout (PERK(-/-)) mouse embryo fibroblast (MEF) cell line and a CHOP(-/-) MEF cell line. These results suggest that TRAIL-induced the activation of ER stress response plays a role in TRAIL-induced apoptotic death.

  13. c-Myc-Induced Extrachromosomal Elements Carry Active Chromatin

    Directory of Open Access Journals (Sweden)

    Greg Smith

    2003-03-01

    Full Text Available Murine Pre-13 lymphocytes with experimentally activated MycER show both chromosomal and extrachromosomal gene amplification. In this report, we have elucidated the size, structure, functional components of c-Myc-induced extrachromosomal elements (EEs. Scanning electron microscopy revealed that EEs isolated from MycER-activated Pre-B+ cells are an average of 10 times larger than EEs isolated from non-MycER-activated control Pre-B- cells. We demonstrate that these large c-Myc-induced EEs are associated with histone proteins, whereas EEs of non-MycER-activated Pre B- cells are not. Immunohistochemistry and Western blot analyses using pan -histone-specific, histone H3 phosphorylation-specific, histone H4 acetylation-specific antibodies indicate that a significant proportion of EEs analyzed from MycER-activated cells harbors transcriptionally competent and/or active chromatin. Moreover, these large, c-Myc-induced EEs carry genes. Whereas the total genetic make-up of these c-Myc-induced EEs is unknown, we found that 30.2% of them contain the dihydrofolate reductase (DHFR gene, whereas cyclin C (CCNC was absent. In addition, 50% of these c-Myc-activated Pre-B+ EEs incorporated bromodeoxyuridine (BrdU, identifying them as genetic structures that self-propagate. In contrast, EEs isolated from non-Myc-activated cells neither carry the DHFR gene nor incorporate BrdU, suggesting that c-Myc deregulation generates a new class of EEs.

  14. Regulation of Activation Induced Deaminase (AID) by Estrogen.

    Science.gov (United States)

    Pauklin, Siim

    2016-01-01

    Regulation of Activation Induced Deaminase (AID) by the hormone estrogen has important implications for understanding adaptive immune responses as well as the involvement of AID in autoimmune diseases and tumorigenesis. This chapter describes the general laboratory techniques for analyzing AID expression and activity induced by estrogen, focusing on the isolation and preparation of cells for hormone treatment and the subsequent analysis of AID responsiveness to estrogen at the RNA level and for determining the regulation of AID activity via estrogen by analyzing Ig switch circle transcripts and mutations in switch region loci.

  15. Activation of Nrf2 protects against triptolide-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Jia Li

    Full Text Available Triptolide, the major active component of Tripterygium wilfordii Hook f. (TWHF, has a wide range of pharmacological activities. However, the toxicities of triptolide, particularly the hepatotoxicity, limit its clinical application. The hepatotoxicity of triptolide has not been well characterized yet. The aim of this study was to investigate the role of NF-E2-related factor 2 (Nrf2 in triptolide-induced toxicity and whether activation of Nrf2 could protect against triptolide-induced hepatotoxicity. The results showed that triptolide caused oxidative stress and cell damage in HepG2 cells, and these toxic effects could be aggravated by Nrf2 knockdown or be counteracted by overexpression of Nrf2. Treatment with a typical Nrf2 agonist, sulforaphane (SFN, attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and decrease in antioxidant enzymes in BALB/C mice. Moreover, the hepatoprotective effect of SFN on triptolide-induced liver injury was associated with the activation of Nrf2 and its downstream targets. Collectively, these results indicate that Nrf2 activation protects against triptolide-induced hepatotoxicity.

  16. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  17. Feedback activation of neurofibromin terminates growth factor-induced Ras activation

    OpenAIRE

    Hennig, Anne; Markwart, Robby; Wolff, Katharina; Schubert, Katja; Cui, Yan; Ian A Prior; Manuel A Esparza-Franco; Ladds, Graham; Rubio, Ignacio

    2016-01-01

    This is the final published version. It first appeared at http://biosignaling.biomedcentral.com/articles/10.1186/s12964-016-0128-z. Background Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleo...

  18. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  19. Mucin-like peptides from Echinococcus granulosus induce antitumor activity.

    Science.gov (United States)

    Noya, Verónica; Bay, Sylvie; Festari, María Florencia; García, Enrique P; Rodriguez, Ernesto; Chiale, Carolina; Ganneau, Christelle; Baleux, Françoise; Astrada, Soledad; Bollati-Fogolín, Mariela; Osinaga, Eduardo; Freire, Teresa

    2013-09-01

    There is substantial evidence suggesting that certain parasites can have antitumor properties. We evaluated mucin peptides derived from the helminth Echinococcus granulosus (denominated Egmuc) as potential inducers of antitumor activity. We present data showing that Egmuc peptides were capable of inducing an increase of activated NK cells in the spleen of immunized mice, a fact that was correlated with the capacity of splenocytes to mediate killing of tumor cells. We demonstrated that Egmuc peptides enhance LPS-induced maturation of dendritic cells in vitro by increasing the production of IL-12p40p70 and IL-6 and that Egmuc-treated DCs may activate NK cells, as judged by an increased expression of CD69. This evidence may contribute to the design of tumor vaccines and open new horizons in the use of parasite-derived molecules in the fight against cancer.

  20. Aldehyde-induced xanthine oxidase activity in raw milk.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  1. Borrelia burgdorferi Spirochetes Induce Mast Cell Activation and Cytokine Release

    Science.gov (United States)

    Talkington, Jeffrey; Nickell, Steven P.

    1999-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-α release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-α-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells. PMID:10024550

  2. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continued presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.

  3. Low-dose effect of ethanol on locomotor activity induced by activation of the mesolimbic system.

    Science.gov (United States)

    Milton, G V; Randall, P K; Erickson, C K

    1995-06-01

    Four experiments were designed to study the ability of 0.5 g/kg ethanol (EtOH) intraperitoneally to modify locomotor activity induced by drugs that interact with different sites in the mesolimbic system (MLS) of male Sprague-Dawley rats. Locomotor activity was measured in a doughnut-shaped circular arena after various treatments. EtOH alone did not alter locomotor activity in any of the experiments. Amphetamine (AMP, intraperitoneally or intraaccumbens) increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated AMP-induced locomotor activity. Bilateral infusion of GABAA antagonist picrotoxin (PIC) into the ventral tegmental area also increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated PIC-induced locomotor activity. On the other hand, the interaction between bilateral infusion of mu-receptor agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol (DAGO) and EtOH on locomotor activity is complex. The highest dose of DAGO that significantly increased locomotor activity was not affected by the presence of EtOH. But, with lower doses of DAGO that either had no effect or a small increase in locomotor activity, the combination of EtOH and DAGO increased and attenuated locomotor activity, respectively. Results from this study support our hypothesis that a low dose of EtOH that does not modify behavior can interact with neurotransmitter systems in the brain and modify drug-induced locomotor activity. Modification of this drug-induced locomotor activity by a low dose of EtOH is dependent on the rate of ongoing locomotor behavior induced by drug and the neurotransmitter substrate that the drug modified to induce locomotor behavior.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Ethnic classification in primary dental care and dental health services research: time to pause for thought.

    Science.gov (United States)

    Buck, D J; Malik, S; Murphy, N; Patel, V; Singh, S; Syed, B; Vora, N

    2001-04-01

    'Ethnicity' is an important concept in dental health services research and in enabling general dental practitioners to gain insight into their patients values and expectations. Since more health services research is being undertaken in primary dental care settings it is becoming an important issue for dental professionals and researchers in primary care to be aware of. Ethnicity is thought to be related to dental health inequalities and access and is often used as a stratifying variable in many dental studies. The meaning and use of the term however differs among researchers and among the public. It is clear that researchers and professionals need to pause for thought when considering what this often bandied about term actually means and the impact of different definitions. This is illustrated using examples from the authors' own research and published papers in the medical and dental literature. There is also much debate about whether ethnicity--however defined--is an important predictor of differences in dental health in itself or is merely a marker for other factors such as social deprivation or the impact of 'place' on dental health. While the jury on this debate is out we suggest guidelines on the reporting of ethnicity should be outlined in the dental literature--perhaps updating those published in 1996 in the British Medical Journal.

  5. Getting from how to why: a pause for reflection on professional life.

    Science.gov (United States)

    McEntyre, M C

    1997-12-01

    In the course of institutional life, many may lose their sense of purpose. The daily demands of both medicine and teaching--small defeats, time pressures, bureaucratic obstacles, and chronic overload--can erode the sense of purpose and clarity of desire that infuse work with spirit and energy. One antidote for this drained state is time for renewal--not long periods of rest and relaxation, valuable though these may be, but rather a "particular kind of stopping . . . the pause for a poem." The author describes how stopping in the middle of the day to read and reflect on a poem can defamiliarize the familiar, giving the reader a fresh outlook on the ordinary day. She describes how poetry also can awaken a sense of play, a childlike openness and sense of curiosity, and a renewed awareness of feelings. To honor feeling can provide a needed corrective to the conventionalized response that has become thoughtless or bloodless or tired. The kind of play poems engage readers in can also provide a connection to the sacred, restoring the wider vision and deeper purposes without which the practice of medicine might diminish to something less lifegiving for both patient and physician than it ought to be. In her discussion of the restorative power of poetry, the author quotes several poems in full and invites readers to consider the fresh perspectives they offer.

  6. Filled pause refinement based on the pronunciation probability for lecture speech.

    Science.gov (United States)

    Long, Yan-Hua; Ye, Hong

    2015-01-01

    Nowadays, although automatic speech recognition has become quite proficient in recognizing or transcribing well-prepared fluent speech, the transcription of speech that contains many disfluencies remains problematic, such as spontaneous conversational and lecture speech. Filled pauses (FPs) are the most frequently occurring disfluencies in this type of speech. Most recent studies have shown that FPs are widely believed to increase the error rates for state-of-the-art speech transcription, primarily because most FPs are not well annotated or provided in training data transcriptions and because of the similarities in acoustic characteristics between FPs and some common non-content words. To enhance the speech transcription system, we propose a new automatic refinement approach to detect FPs in British English lecture speech transcription. This approach combines the pronunciation probabilities for each word in the dictionary and acoustic language model scores for FP refinement through a modified speech recognition forced-alignment framework. We evaluate the proposed approach on the Reith Lectures speech transcription task, in which only imperfect training transcriptions are available. Successful results are achieved for both the development and evaluation datasets. Acoustic models trained on different styles of speech genres have been investigated with respect to FP refinement. To further validate the effectiveness of the proposed approach, speech transcription performance has also been examined using systems built on training data transcriptions with and without FP refinement.

  7. Performance Evaluation of Aodv&DSR with Varying Pause Time & Node Density Over TCP&CBR Connections in Vanet

    CERN Document Server

    Paul, Bijan; Bikas, Md Abu Naser

    2012-01-01

    Vehicular ad hoc network is formed by cars which are called nodes; allow them to communicate with one another without using any fixed road side unit. It has some unique characteristics which make it different from other ad hoc network as well as difficult to define any exact mobility model and routing protocols because of their high mobility and changing mobility pattern. Hence performance of routing protocols can vary with the various parameters such as speed, pause time, node density and traffic scenarios. In this research paper, the performance of two on-demand routing protocols AODV & DSR has been analyzed by means of packet delivery ratio, loss packet ratio & average end-to-end delay with varying pause time and node density under TCP & CBR connection.

  8. Performance Evaluation of AODV & DSR with Varying Pause Time & Speed Time Over TCP & CBR Connections in VANET

    CERN Document Server

    Paul, Bijan; Bikas, Md Abu Naser

    2012-01-01

    VANET (Vehicular Ad-hoc Network) is a new technology which has taken enormous attention in the recent years. Vehicular ad hoc network is formed by cars which are called nodes; allow them to communicate with one another without using any fixed road side unit. It has some unique characteristics which make it different from other ad hoc network as well as difficult to define any exact mobility model and routing protocols because of their high mobility and changing mobility pattern. Hence performance of routing protocols can vary with the various parameters such as speed, pause time, node density and traffic scenarios. In this research paper, the performance of two on-demand routing protocols AODV & DSR has been analyzed by means of packet delivery ratio, loss packet ratio & average end-to-end delay with varying pause time, speed time and node density under TCP & CBR connection.

  9. Adolescent girls in Denmark use oral contraceptives at an increasingly young age, and with more pauses and shifts

    DEFF Research Database (Denmark)

    Løkkegaard, Ellen; Nielsen, Anne Kristine

    2014-01-01

    , adolescent girls have more pauses and shifts between types of hormonal contraceptives. Since 2010 there has been a shift toward use of second generation oral contraceptives away from third and fourth generation contraceptives. CONCLUSION: Adolescent girls tend to initiate their use of oral contraceptives...... at a younger age than the older cohorts do. Furthermore, they have more pauses and shift between products more frequently than older cohorts. The type of oral contraceptive used has shifted since 2010 towards older products with second generation progestins. FUNDING: The study was funded by salaries from North......INTRODUCTION: Use of hormonal contraceptives for birth control is commonplace in the Western World. In Europe, there is considerable variety in the frequency of use of hormonal contraceptives and in the age at which these contraceptives are initiated. The purpose of the present study...

  10. Performance Evaluation of AODV and DSR with Varying Pause Time and Speed Time Over TCP and CBR Connections in VANET

    Directory of Open Access Journals (Sweden)

    Bijan Paul

    2012-01-01

    Full Text Available VANET (Vehicular Ad-hoc Network is a new technology which has taken enormous attention in the recent years. Vehicular ad hoc network is formed by cars which are called nodes; allow them to communicate with one another without using any fixed road side unit. It has some unique characteristics which make it different from other ad-hoc network as well as difficult to define any exact mobility model and routing protocols because of their high mobility and changing mobility pattern. Hence performance of routing protocols can vary with the various parameters such as speed, pause time, node density and traffic scenarios. In this research paper, the performance of two on-demand routing protocols AODV and DSR has been analyzed by means of packet delivery ratio, loss packet ratio average end-to-end delay with varying pause time, speed time and node density under TCP and CBR connection.

  11. 从双语词汇通达的角度看二语输出中的停顿现象%An Analysis of the Pause in Second Language Oral Production --Based on Bilingual Lexical Access Mechanism

    Institute of Scientific and Technical Information of China (English)

    陈曦

    2012-01-01

    停顿现象经常出现在二语学习者的口语输出中,停顿的频率越高,时长越长,口语表达的流畅性则越低,交流也会受到阻碍。本文从心理语言学中双语词汇通达的角度讨论了二语输出中的停顿现象,分析发现停顿源于在概念表征层面对母语和二语词汇层的同时激活,母语词汇层参与了目标词的选择竞争。为了减少母语在口语输出中的干扰。二语学习者应该充分利用一些学习技巧以增强二语的激活,同时加强对母语的抑制。%The frequency and length of pause have become one of the essential measurements of oral fluency,which influences the process of oral communication. This paper aims to analyze the pause in second language oral produc- tion based on bilingual lexical access theory in psychological linguistics. It is found that the pause results from the simultaneous activation of lexical presentations in the two languages and that the first language participates in the se- lection process. In order to improve oral fluency, second language learners should learn to strengthen the activation of the second language and the inhibition of the first language.

  12. 从双语词汇通达的角度看二语输出中的停顿现象%An Analysis of Pause in Second Language Oral Production Based on Bilingual Lexical Access Mechanism

    Institute of Scientific and Technical Information of China (English)

    陈曦

    2012-01-01

    停顿现象经常出现在二语学习者的口语输出中,停顿的频率越高,时长越长,口语表达的流畅性则越低,交流也会受到阻碍。从心理语言学中双语词汇通达的角度讨论二语输出中的停顿现象,分析发现停顿源于在概念表征层面对母语和二语词汇层的同时激活,母语词汇层参与了目标词的选择竞争。为了减少母语在口语输出中的干扰,二语学习者应该充分利用一些学习技巧以增强二语的激活,同时加强对母语的抑制。%The frequency and length of pause have become one of the essential measurements of oral fluency, which influences the process of oral communication. Pause in second language oral production was analyzed based on bilingual lexieal access theo- ry in psychological linguistics. It was found that pause is resulted from the simultaneous activation of lexical presentations in two languages, and that tile first language participates in the selection process. In order to improve oral fluency, second language learners should learn to strengthen the activation of the second language and the inhibition of the first language.

  13. Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing.

    Science.gov (United States)

    Bremer, H; Ehrenberg, M

    1995-05-17

    A recently reported comparison of stable RNA (rRNA, tRNA) and mRNA synthesis rates in ppGpp-synthesizing and ppGpp-deficient (delta relA delta spoT) bacteria has suggested that ppGpp inhibits transcription initiation from stable RNA promoters, as well as synthesis of (bulk) mRNA. Inhibition of stable RNA synthesis occurs mainly during slow growth of bacteria when cytoplasmic levels of ppGpp are high. In contrast, inhibition of mRNA occurs mainly during fast growth when ppGpp levels are low, and it is associated with a partial inactivation of RNA polymerase. To explain these observations it has been proposed that ppGpp causes transcriptional pausing and queuing during the synthesis of mRNA. Polymerase queuing requires high rates of transcription initiation in addition to polymerase pausing, and therefore high concentrations of free RNA polymerase. These conditions are found in fast growing bacteria. Furthermore, the RNA polymerase queues lead to a promoter blocking when RNA polymerase molecules stack up from the pause site back to the (mRNA) promoter. This occurs most frequently at pause sites close to the promoter. Blocking of mRNA promoters diverts RNA polymerase to stable RNA promoters. In this manner ppGpp could indirectly stimulate synthesis of stable RNA at high growth rates. In the present work a mathematical analysis, based on the theory of queuing, is presented and applied to the global control of transcription in bacteria. This model predicts the in vivo distribution of RNA polymerase over stable RNA and mRNA genes for both ppGpp-synthesizing and ppGpp-deficient bacteria in response to different environmental conditions. It also shows how small changes in basal ppGpp concentrations can produce large changes in the rate of stable RNA synthesis.

  14. Activation-induced force enhancement in human adductor pollicis.

    Science.gov (United States)

    Oskouei, Ali E; Herzog, Walter

    2009-10-01

    It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n=10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.

  15. Induced starburst and nuclear activity: Faith, facts, and theory

    Science.gov (United States)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  16. Antidiabetic activity of Rheum emodi in Alloxan induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Radhika.R

    2010-09-01

    Full Text Available The present study was carried out to evaluate the antidiabetic effect of Rheum emodi rhizome extract and to study the activities of hexokinase, aldolase and phosphoglucoisomerase, and gluconeogenic enzymes such as glucose-6- phosphatase and fructose 1,6-diphosphatase in liver and kidney of normal and alloxan induced diabetic rats. Oral administration of 75 % ethanolic extract of R. emodi (250 mg/kg body weight for 30 days, resulted in decrease inthe activities of glucose-6-phosphatase, fructose-1,6-disphosphatase, aldolase and an increase in the activity of phosphoglucoisomerase and hexokinase in tissues. The study clearly shows that the R.emodi possesses antidiabetic activity.

  17. Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils.

    Science.gov (United States)

    Inoue, Yoshinari; Matsuwaki, Yoshinori; Shin, Seung-Heon; Ponikau, Jens U; Kita, Hirohito

    2005-10-15

    Eosinophils and their products are probably important in the pathophysiology of allergic diseases, such as bronchial asthma, and in host immunity to certain organisms. An association between environmental fungal exposure and asthma has been long recognized clinically. Although products of microorganisms (e.g., lipopolysaccharides) directly activate certain inflammatory cells (e.g., macrophages), the mechanism(s) that triggers eosinophil degranulation is unknown. In this study we investigated whether human eosinophils have an innate immune response to certain fungal organisms. We incubated human eosinophils with extracts from seven environmental airborne fungi (Alternaria alternata, Aspergillus versicolor, Bipolaris sorokiniana, Candida albicans, Cladosporium herbarum, Curvularia spicifera, and Penicillium notatum). Alternaria and Penicillium induced calcium-dependent exocytosis (e.g., eosinophil-derived neurotoxin release) in eosinophils from normal individuals. Alternaria also strongly induced other activation events in eosinophils, including increases in intracellular calcium concentration, cell surface expression of CD63 and CD11b, and production of IL-8. Other fungi did not induce eosinophil degranulation, and Alternaria did not induce neutrophil activation, suggesting specificity for fungal species and cell type. The Alternaria-induced eosinophil degranulation was pertussis toxin sensitive and desensitized by preincubating cells with G protein-coupled receptor agonists, platelet-activating factor, or FMLP. The eosinophil-stimulating activity in Alternaria extract was highly heat labile and had an M(r) of approximately 60 kDa. Thus, eosinophils, but not neutrophils, possess G protein-dependent cellular activation machinery that directly responds to an Alternaria protein product(s). This innate response by eosinophils to certain environmental fungi may be important in host defense and in the exacerbation of inflammation in asthma and allergic diseases.

  18. Enhanced surface plasmon polariton propagation induced by active dielectrics

    OpenAIRE

    Athanasopoulos, C.; Mattheakis, M.; Tsironis, G. P.

    2013-01-01

    We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL multiphysics software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a root in the imaginary part of the propagation constant leading to infinite propagation of the surface pl...

  19. The influence of experimentally induced pain on shoulder muscle activity

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Winther, A.; Dyhre-Poulsen, P.

    2009-01-01

    muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper...... in a way that protects the painful structure. Further, the changes in muscle activity following subacromial pain induction tend to expand the subacromial space and thereby decrease the load on the painful structures Udgivelsesdato: 2009/4...

  20. The influence of experimentally induced pain on shoulder muscle activity

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Winther, Annika; Dyhre-Poulsen, Poul

    2009-01-01

    . EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper trapezius...... the painful structure. Further, the changes in muscle activity following subacromial pain induction tend to expand the subacromial space and thereby decrease the load on the painful structures....

  1. Activation-Induced Cytidine Deaminase Links Ovulation-Induced Inflammation and Serous Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Stav Sapoznik

    2016-02-01

    Full Text Available In recent years, the notion that ovarian carcinoma results from ovulation-induced inflammation of the fallopian tube epithelial cells (FTECs has gained evidence. However, the mechanistic pathway for this process has not been revealed yet. In the current study, we propose the mutator protein activation-induced cytidine deaminase (AID as a link between ovulation-induced inflammation in FTECs and genotoxic damage leading to ovarian carcinogenesis. We show that AID, previously shown to be functional only in B lymphocytes, is expressed in FTECs under physiological conditions, and is induced in vitro upon ovulatory-like stimulation and in vivo in carcinoma-associated FTECs. We also report that AID activity results in epigenetic, genetic and genomic damage in FTECs. Overall, our data provides new insights into the etiology of ovarian carcinogenesis and may set the ground for innovative approaches aimed at prevention and early detection.

  2. Lotus hairy roots expressing inducible arginine decarboxylase activity.

    Science.gov (United States)

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H

    2004-05-01

    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  3. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    Science.gov (United States)

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  4. Early autophagy activation inhibits podocytes from apoptosis induced by aldosterone

    Institute of Scientific and Technical Information of China (English)

    王文琰

    2013-01-01

    Objective To explore the protection of early autoph-agy activation on podocyte injury induced by aldosterone.Methods In vitro cultured mouse podocyte clones(MPC5) were treated with aldosterone for 6,12,24,48 hrespectively. Apoptosis of podocytes was detected by

  5. Relationship between ascorbyl radical intensity and apoptosis-inducing activity.

    Science.gov (United States)

    Sakagami, H; Satoh, K; Ohata, H; Takahashi, H; Yoshida, H; Iida, M; Kuribayashi, N; Sakagami, T; Momose, K; Takeda, M

    1996-01-01

    Ascorbic acid and its related compounds were compared for their ascorbyl radical intensity and apoptosis-inducing activity. Sodium L-ascorbate, L-ascorbic acid, D-isoascorbic acid, sodium 6-beta-O-galactosyl-L-ascorbate and sodium 5,6-benzylidene-L-ascorbate, at the concentration of 1-10 mM, induced apoptotic cell death characterized by cell shrinkage, nuclear fragmentation and internucleosomal DNA cleavage in human promyelocytic leukemic HL-60 cells. On the other hand, L-ascorbic acid-2-phosphate magnesium salt and L-ascorbic acid 2-sulfate did not induce any of these apoptosis-associated characteristics. ESR measurements revealed that all the active compounds were progressively degraded, producing the ascorbyl radical (g = 2.0064, hfc = 0.17 mT) in culture medium, whereas the inactive compounds were stable and did not produce the ascorbyl radical. Cytotoxicity began to appear when the radical intensity exceeded a certain threshold level. In the presence of N-acetyl-L-cysteine, both ascorbyl radical intensity and apoptosis-inducing activity were significantly reduced. These data suggest the possible involvement of the ascorbyl radical in apoptosis induction by ascorbic acid-related compounds. Exposure of HL-60 cells to ascorbic acid or its active derivatives resulted in the rapid elevation of intracellular Ca2+ concentration, which might serve as the initial signal leading to the cell death pathway.

  6. Lipoprotein-induced phenoloxidase-activity in tarantula hemocyanin.

    Science.gov (United States)

    Schenk, Sven; Schmidt, Juliane; Hoeger, Ulrich; Decker, Heinz

    2015-08-01

    Phenoloxidases play vital roles in invertebrate innate immune reactions, wound closure and sclerotization processes in arthropods. In chelicerates, where phenoloxidases are lacking, phenoloxidase-activity can be induced in the oxygen carrier hemocyanin in vitro by proteolytic cleavage, incubation with the artificial inducer SDS, or lipids. The role of protein-protein interaction has up to now received little attention. This is remarkable, as lipoproteins - complexes of proteins and lipids - are present at high concentrations in arthropod hemolymph. We characterized the three lipoproteins present in tarantula hemolymph, two high-density lipoproteins and one very high-density lipoprotein, and show that the two high-density lipoproteins have distinct structures: the more abundant high-density lipoprotein is an ellipsoid particle with axes of ~22.5 nm and ~16.8 nm, respectively. The second high-density lipoprotein, present only in trace amount, is a large discoidal lipoprotein with a diameter of ~38.4 nm and an on-edge thickness of ~7.1 nm. We further demonstrate that the interaction between lipoproteins and hemocyanin induces phenoloxidase activity in hemocyanin, and propose that this activation is due to protein-protein interaction rather than protein-lipid interaction, as neither lipid micelles nor lipid monomers were found to be activating. Activation was strongest in the presence of high-density lipoproteins; very high-density lipoproteins were found to be non-activating. This is the first time that the ability of lipoproteins to induce phenoloxidase activity of hemocyanin has been demonstrated, thus adding novel aspects to the function of lipoproteins apart from their known role in nutrient supply. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed.

  8. Antimicrobial Activity of UV-Induced Phenylamides from Rice Leaves

    Directory of Open Access Journals (Sweden)

    Hye Lin Park

    2014-11-01

    Full Text Available Rice produces a wide array of phytoalexins in response to pathogen attacks and UV-irradiation. Except for the flavonoid sakuranetin, most phytoalexins identified in rice are diterpenoid compounds. Analysis of phenolic-enriched fractions from UV-treated rice leaves showed that several phenolic compounds in addition to sakuranetin accumulated remarkably in rice leaves. We isolated two compounds from UV-treated rice leaves using silica gel column chromatography and preparative HPLC. The isolated phenolic compounds were identified as phenylamide compounds: N-trans-cinnamoyltryptamine and N-p-coumaroylserotonin. Expression analysis of biosynthetic genes demonstrated that genes for arylamine biosynthesis were upregulated by UV irradiation. This result suggested that phenylamide biosynthetic pathways are activated in rice leaves by UV treatment. To unravel the role of UV-induced phenylamides as phytoalexins, we examined their antimicrobial activity against rice fungal and bacterial pathogens. N-trans-Cinnamoyltryptamine inhibited the growth of rice brown spot fungus (Bipolaris oryzae. In addition to the known antifungal activity to the blast fungus, sakuranetin had antimicrobial activity toward B. oryzae and Rhizoctonia solani (rice sheath blight fungus. UV-induced phenylamides and sakuranetin also had antimicrobial activity against rice bacterial pathogens for grain rot (Burkholderia glumae, blight (Xanthomonas oryzae pv. oryzae and leaf streak (X. oryzae pv. oryzicola diseases. These findings suggested that the UV-induced phenylamides in rice are phytoalexins against a diverse array of pathogens.

  9. Calciumreleasing activity induced by nuclei of mouse fertilized early embryos

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    At fertilization, repetitive transient rises of intracellular calcium concentration occur in all mammals studied so far. It has been shown that calcium rises could be induced when mouse fertilized 1-, 2-cell nuclei were transplanted into unfertilized eggs and that the reconstituted embryo could be activated. However, whether the capability of inducing calcium rises occurs in all stages of mammalian embryos remains unknown. In this study, by using the nuclear transplantation technique and measurement of intracellular calcium rises in living cells, we showed that only the nuclei from mouse fertilized 1-cell and 2-cell embryos, neither the nuclei from 4-, 8-cell and ethanol activated parthenogenetic embryos nor 2 or 3 nuclei of electrofused 4-cell stage syncytium, have calcium-releasing activity when they were transferred into unfertilized mature oocytes. Our results indicate that the calcium-releasing activity in nuclei of 1-, 2-cell embryos is produced during fertilization and exists at the special stage of fertilized early embryos. These suggested that the capacity of inducing calcium release activity in fertilized early embryos is important for normal embryonic development.

  10. Characteristics of induced activity from medical linear accelerators.

    Science.gov (United States)

    Wang, Yi Zhen; Evans, Michael D C; Podgorsak, Ervin B

    2005-09-01

    A study of the induced activity in a medical linear accelerator (linac) room was carried out on several linac installations. Higher beam energy, higher dose rate, and larger field size generally result in higher activation levels at a given point of interest, while the use of multileaf collimators (MLC) can also increase the activation level at the isocenter. Both theoretical and experimental studies reveal that the activation level in the morning before any clinical work increases from Monday to Saturday and then decreases during the weekend. This weekly activation picture keeps stable from one week to another during standard clinical operation of the linac. An effective half-life for a given point in the treatment room can be determined from the measured or calculated activity decay curves. The effective half-life for points inside the treatment field is longer than that for points outside of the field in the patient plane, while a larger field and longer irradiation time can also make the effective half-life longer. The activation level reaches its practical saturation value after a 30 min continuous irradiation, corresponding to 12 000 MU at a "dose rate" of 400 MU/min. A "dose" of 300 MU was given 20 times in 15 min intervals to determine the trends in the activation level in a typical clinical mode. As well, a long-term (85 h over a long weekend) decay curve was measured to evaluate the long-term decay of room activation after a typical day of clinical linac use. A mathematical model for the activation level at the isocenter has been established and shown to be useful in explaining and predicting the induced activity levels for typical clinical and experimental conditions. The activation level for a 22 MeV electron beam was also measured and the result shows it is essentially negligible.

  11. Acupuncture inhibits cue-induced heroin craving and brain activation

    Institute of Scientific and Technical Information of China (English)

    Xinghui Cai; Xiaoge Song; Chuanfu Li; Chunsheng Xu; Xiliang Li; Qi Lu

    2012-01-01

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues.Craving is an important trigger of heroin relapse,and acupuncture may inhibit craving.In this study,we performed functional MRI in heroin addicts and control subjects.We compared differences in brain activation between the two groups during heroin cue exposure,heroin cue exposure plus acupuncture at the Zusanli point(ST36)without twirling of the needle,and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle.Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri.Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure,but significantly changed the extent of the activation in the heroin addicts group.Acupuncture at the Zusanli.point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle.These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions,which are involved in reward,learning and memory,cognition and emotion.Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving,supporting its potential as an intervention for drug craving.

  12. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  13. Ionizing radiation induces astrocyte gliosis through microglia activation.

    Science.gov (United States)

    Hwang, So-Young; Jung, Jae-Seob; Kim, Tae-Hyun; Lim, Soo-Jeong; Oh, Eok-Soo; Kim, Joo-Young; Ji, Kyung-Ae; Joe, Eun-Hye; Cho, Kwan-Ho; Han, Inn-Oc

    2006-03-01

    The aim of this study was to investigate the role of microglia in radiation-induced astrocyte gliosis. We found that a single dose of 15 Gy radiation to a whole rat brain increased immunostaining of glial fibrillary acidic protein in astrocytes 6 h later, and even more so 24 h later, indicating the initiation of gliosis. While irradiation of cultured rat astrocytes had little effect, irradiation of microglia-astrocyte mixed-cultures displayed altered astrocyte phenotype into more processed, which is another characteristic of gliosis. Experiments using microglia-conditioned media indicated this astrocyte change was due to factors released from irradiated microglia. Irradiation of cultured mouse microglial cells induced a dose-dependent increase in mRNA levels for cyclooxygenase-2 (COX-2), interleukin (IL)-1beta, IL-6, IL-18, tumor necrosis factor-alpha and interferon-gamma-inducible protein-10, which are usually associated with microglia activation. Consistent with these findings, irradiation of microglia activated NF-kappaB, a transcription factor that regulates microglial activation. Addition of prostaglandin E2 (PGE2: a metabolic product of the COX-2 enzyme) to primary cultured rat astrocytes resulted in phenotypic changes similar to those observed in mixed-culture experiments. Therefore, it appears that PGE(2) released from irradiated microglia is a key mediator of irradiation-induced gliosis or astrocyte phenotype change. These data suggest that radiation-induced microglial activation and resultant production of PGE2 seems to be associated with an underlying cause of inflammatory complications associated with radiation therapy for malignant gliomas.

  14. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize.

    Science.gov (United States)

    Schmelz, Eric A; Kaplan, Fatma; Huffaker, Alisa; Dafoe, Nicole J; Vaughan, Martha M; Ni, Xinzhi; Rocca, James R; Alborn, Hans T; Teal, Peter E

    2011-03-29

    Phytoalexins constitute a broad category of pathogen- and insect-inducible biochemicals that locally protect plant tissues. Because of their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses, which include insect-inducible monoterpene and sesquiterpene volatiles. Rice also produces a complex array of pathogen-inducible diterpenoid phytoalexins. Despite the demonstration of fungal-induced ent-kaur-15-ene production in maize over 30 y ago, the identity of functionally analogous maize diterpenoid phytoalexins has remained elusive. In response to stem attack by the European corn borer (Ostrinia nubilalis) and fungi, we observed the induced accumulation of six ent-kaurane-related diterpenoids, collectively termed kauralexins. Isolation and identification of the predominant Rhizopus microsporus-induced metabolites revealed ent-kaur-19-al-17-oic acid and the unique analog ent-kaur-15-en-19-al-17-oic acid, assigned as kauralexins A3 and B3, respectively. Encoding an ent-copalyl diphosphate synthase, fungal-induced An2 transcript accumulation precedes highly localized kauralexin production, which can eventually exceed 100 μg · g(-1) fresh weight. Pharmacological applications of jasmonic acid and ethylene also synergize the induced accumulation of kauralexins. Occurring at elevated levels in the scutella of all inbred lines examined, kauralexins appear ubiquitous in maize. At concentrations as low as 10 μg · mL(-1), kauralexin B3 significantly inhibited the growth of the opportunistic necrotroph R. microsporus and the causal agent of anthracnose stalk rot, Colletotrichum graminicola. Kauralexins also exhibited significant O. nubilalis antifeedant activity. Our work establishes the presence of diterpenoid defenses in maize and enables a more detailed analysis of their biosynthetic pathways, regulation, and crop defense function.

  15. Different activation signals induce distinct mast cell degranulation strategies

    Science.gov (United States)

    Sibilano, Riccardo; Marichal, Thomas; Reber, Laurent L.; Cenac, Nicolas; McNeil, Benjamin D.; Dong, Xinzhong; Hernandez, Joseph D.; Sagi-Eisenberg, Ronit; Hammel, Ilan; Roers, Axel; Valitutti, Salvatore; Tsai, Mindy

    2016-01-01

    Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P–dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation. PMID:27643442

  16. The influence of experimentally induced pain on shoulder muscle activity.

    Science.gov (United States)

    Diederichsen, Louise Pyndt; Winther, Annika; Dyhre-Poulsen, Poul; Krogsgaard, Michael R; Nørregaard, Jesper

    2009-04-01

    Muscle function is altered in painful shoulder conditions. However, the influence of shoulder pain on muscle coordination of the shoulder has not been fully clarified. The aim of the present study was to examine the effect of experimentally induced shoulder pain on shoulder muscle function. Eleven healthy men (range 22-27 years), with no history of shoulder or cervical problems, were included in the study. Pain was induced by 5% hypertonic saline injections into the supraspinatus muscle or subacromially. Seated in a shoulder machine, subjects performed standardized concentric abduction (0 degrees -105 degrees) at a speed of approximately 120 degrees/s, controlled by a metronome. During abduction, electromyographic (EMG) activity was recorded by intramuscular wire electrodes inserted in two deeply located shoulder muscles and by surface-electrodes over six superficially located shoulder muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper trapezius and the infraspinatus and an increase in activity of lower trapezius and latissimus dorsi muscles. Following subacromial injection a significantly increased muscle activity was seen in the lower trapezius, the serratus anterior and the latissimus dorsi muscles. In conclusion, this study shows that acute pain both subacromially and in the supraspinatus muscle modulates coordination of the shoulder muscles during voluntary movements. During painful conditions, an increased activity was detected in the antagonist (latissimus), which support the idea that localized pain affects muscle activation in a way that protects the painful structure. Further, the changes in muscle activity following subacromial pain induction tend to expand the subacromial space and thereby decrease the load

  17. Etoposide Induces ATM-Dependent Mitochondrial Biogenesis through AMPK Activation

    Science.gov (United States)

    Lyu, Yi Lisa; Liu, Leroy F.; Qi, Haiyan

    2008-01-01

    Background DNA damage such as double-stranded DNA breaks (DSBs) has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated). Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the α subunit of AMP-activated protein kinase (AMPK), which senses AMP/ATP ratio in cells, and can be activated by upstream kinases. Here we provide evidence for a novel role of ATM in mitochondrial biogenesis through AMPK activation in response to etoposide-induced DNA damage. Methodology/Principal Findings Three pairs of human ATM+ and ATM- cells were employed. Cells treated with etoposide exhibited an ATM-dependent increase in mitochondrial mass as measured by 10-N-Nonyl-Acridine Orange and MitoTracker Green FM staining, as well as an increase in mitochondrial DNA content. In addition, the expression of several known mitochondrial biogenesis regulators such as the major mitochondrial transcription factor NRF-1, PGC-1α and TFAM was also elevated in response to etoposide treatment as monitored by RT-PCR. Three pieces of evidence suggest that etoposide-induced mitochondrial biogenesis is due to ATM-dependent activation of AMPK. First, etoposide induced ATM-dependent phosphorylation of AMPK α subunit at Thr172, indicative of AMPK activation. Second, inhibition of AMPK blocked etoposide-induced mitochondrial biogenesis. Third, activation of AMPK by AICAR (an AMP analogue) stimulated mitochondrial biogenesis in an ATM-dependent manner, suggesting that ATM may be an upstream kinase of AMPK in the mitochondrial biogenesis pathway. Conclusions/Significance These results suggest that activation of ATM by etoposide can lead to mitochondrial biogenesis through AMPK activation. We propose that ATM-dependent mitochondrial

  18. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation.

    Directory of Open Access Journals (Sweden)

    Xuan Fu

    Full Text Available BACKGROUND: DNA damage such as double-stranded DNA breaks (DSBs has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated. Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the alpha subunit of AMP-activated protein kinase (AMPK, which senses AMP/ATP ratio in cells, and can be activated by upstream kinases. Here we provide evidence for a novel role of ATM in mitochondrial biogenesis through AMPK activation in response to etoposide-induced DNA damage. METHODOLOGY/PRINCIPAL FINDINGS: Three pairs of human ATM+ and ATM- cells were employed. Cells treated with etoposide exhibited an ATM-dependent increase in mitochondrial mass as measured by 10-N-Nonyl-Acridine Orange and MitoTracker Green FM staining, as well as an increase in mitochondrial DNA content. In addition, the expression of several known mitochondrial biogenesis regulators such as the major mitochondrial transcription factor NRF-1, PGC-1alpha and TFAM was also elevated in response to etoposide treatment as monitored by RT-PCR. Three pieces of evidence suggest that etoposide-induced mitochondrial biogenesis is due to ATM-dependent activation of AMPK. First, etoposide induced ATM-dependent phosphorylation of AMPK alpha subunit at Thr172, indicative of AMPK activation. Second, inhibition of AMPK blocked etoposide-induced mitochondrial biogenesis. Third, activation of AMPK by AICAR (an AMP analogue stimulated mitochondrial biogenesis in an ATM-dependent manner, suggesting that ATM may be an upstream kinase of AMPK in the mitochondrial biogenesis pathway. CONCLUSIONS/SIGNIFICANCE: These results suggest that activation of ATM by etoposide can lead to mitochondrial biogenesis through AMPK activation. We propose that ATM

  19. Protein kinase C-associated kinase regulates NF-κB activation through inducing IKK activation.

    Science.gov (United States)

    Kim, Sang-Woo; Schifano, Matthew; Oleksyn, David; Jordan, Craig T; Ryan, Daniel; Insel, Richard; Zhao, Jiyong; Chen, Luojing

    2014-10-01

    Activation of the transcription factor NF-κB induced by extracellular stimuli requires IKKα and IKKβ kinase activity. How IKKα and IKKβ are activated by various upstream signaling molecules is not fully understood. We previously showed that protein kinase C-associated kinase (PKK, also known as DIK/RIP4), which belongs to the receptor-interacting protein (RIP) kinase family, mediates the B cell activating factor of the TNF family (BAFF)-induced NF-κB activation in diffuse large B cell lymphoma (DLBCL) cell lines. Here we have investigated the mechanism underlying NF-κB activation regulated by PKK. Our results suggest that PKK can activate both the classical and the alternative NF-κB activation pathways. PKK associates with IKKα and IKKβ in mammalian cells and induces activation of both IKKα and IKKβ via phosphorylation of their serine residues 176/180 and 177/181, respectively. Unlike other members of the RIP family that activate NF-κB through a kinase-independent pathway, PKK appears to activate IKK and NF-κB mainly in a kinase-dependent manner. Suppression of PKK expression by RNA interference inhibits phosphorylation of IKKα and IKKβ as well as activation of NF-κB in human cancer cell lines. Thus, PKK regulates NF-κB activation by modulating activation of IKKα and IKKβ in mammalian cells. We propose that PKK may provide a critical link between IKK activation and various upstream signaling cascades, and may represent a potential target for inhibiting abnormal NF-κB activation in human cancers.

  20. Acetaminophen induces human neuroblastoma cell death through NFKB activation.

    Directory of Open Access Journals (Sweden)

    Inmaculada Posadas

    Full Text Available Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-x(L did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.

  1. Tau oligomers and fibrils induce activation of microglial cells.

    Science.gov (United States)

    Morales, Inelia; Jiménez, José M; Mancilla, Marcela; Maccioni, Ricardo B

    2013-01-01

    Neuroinflammation is a process related to the onset of several neurodegenerative disorders, including Alzheimer's disease (AD). Increasing sets of evidence support the major role of deregulation of the interaction patterns between glial cells and neurons in the pathway toward neuronal degeneration, a process we are calling neuroimmunomodulation in AD. On the basis of the hypothesis that pathological tau aggregates induce microglial activation with the subsequent events of the neuroinflammatory cascade, we have studied the effects of tau oligomeric species and filamentous structures over microglial cells in vitro. Tau oligomers and fibrils were induced by arachidonic acid and then their actions assayed upon addition to microglial cells. We showed activation of the microglia, with significant morphological alterations as analyzed by immunofluorescence. The augmentation of nitrites and the proinflammatory cytokine IL-6 was evaluated in ELISA assays. Furthermore, conditioned media of stimulated microglia cells were exposed to hippocampal neurons generating altered patterns in these cells, including shortening of neuritic processes and cytoskeleton reorganization.

  2. Evidence for Planet-induced Chromospheric Activity on HD 179949

    CERN Document Server

    Shkolnik, E; Bohlender, D A; Shkolnik, Evgenya; Walker, Gordon A.H.; Bohlender, David A.

    2003-01-01

    We have detected the synchronous enhancement of Ca II H & K emission with the short-period planetary orbit in HD 179949. High-resolution spectra taken on three observing runs extending more than a year show the enhancement coincides with phi ~ 0 (the sub-planetary point) of the 3.093-day orbit with the effect persisting for more than 100 orbits. The synchronous enhancement is consistent with planet-induced chromospheric heating by magnetic rather than tidal interaction. Something which can only be confirmed by further observations. Independent observations are needed to determine whether the stellar rotation is sychronous with the planet's orbit. Of the five 51 Peg-type systems monitored, HD 179949 shows the greatest chromospheric H & K activity. Three others show significant nightly variations but the lack of any phase coherence prevents us saying whether the activity is induced by the planet. Our two standards, tau Ceti and the Sun, show no such nightly variations.

  3. Antioxidant activity of simvastatin prevents ifosfamide-induced nephrotoxicity.

    Science.gov (United States)

    Mhaidat, Nizar Mahmoud; Ali, Reem Mustafa; Shotar, Ali Muhammad; Alkaraki, Almuthanna Khalaf

    2016-03-01

    Ifosfamide is an anticancer agent used largely in treatment of solid tumors. The mainstay dose-limiting toxicity of ifosfamide is nephrotoxicity. This is largely believde to be a result of ifosfamide-induced oxidative stress. In this study, we investigated the antioxidant activity of simvastatin and the possible protective role of simvastatin against ifosfamide induced nephrotoxicity. Thirty Sprague-Dawely rats were divided into five groups and given orally different drug combinations. Group I and II were regarded as control groups and received 0.1% DMSO and normal saline, respectively. Group III received ifosfamide at 50 mg/kg, group IV received simvastatin at 0.3 mg/kg and group V received both ifosfamide and simvastatin. All animals were decapitated 2 days after the last ifosfamide administration. Findings revealed that ifosfamide induced nephrotoxicity as indicated by a significant increase in plasma creatinine and lipid per oxidation. This increase was significantly inhibited in animals pretreated with simvastatin. Histopathological observations were in correlation with the biochemical parameters in that simvastatin minimized ifosfamide-induced renal tubular damage. The above results promote a future use of simvastatin in combination with ifosfamide in treatment of cancer patients to indicate that simvastatin protectics against ifosfamide-induced nephrotoxicity in terms of oxidative stress and might be given in combination.

  4. Overinhibition of Mitogen-Activated Protein Kinase Inducing Tau Hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    LI Hong-lian; CHEN Juan; LIU Shi-jie; ZHANG Jia-yu; WANG Qun; WANG Jian-zhi

    2005-01-01

    To reveal the relationship between mitogen-activated protein kinase (MAPK) and tau phosphorylation, we used different concentration of PD98059, an inhibitor of MEK (MAPK kinase), to treat mice neuroblastma (N2a) cell line for 6 h. It showed that the activity of MAPK decreased in a dose-dependent manner. But Western blot and immunofluorescence revealed that just when the cells were treated with 16 μmol/L PD98059, tau was hyperphosphorylated at Ser396/404 and Ser199/202 sites. We obtained the conclusion that overinhibited MAPK induced tau hyperphosphorylation at Ser396/404 and Ser199/202 sites.

  5. Activation-induced cell death in B lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Upon encountering the antigen (Ag), the immune system can either develop a specific immune response or enter a specific state of unresponsiveness, tolerance. The response of B cells to their specific Ag can be activation and proliferation, leading to the immune response, or anergy and activation-induced cell death (AICD), leading to tolerance. AICD in B lymphocytes is a highly regulated event initiated by crosslinking of the B cell receptor (BCR). BCR engagement initiates several signaling events such as activation of PLCγ, Ras, and PI3K, which generally speaking, lead to survival However, in the absence of survival signals (CD40 or IL-4R engagement), BCR crosslinking can also promote apoptotic signal transduction pathways such as activation of effector caspases, expression of pro-apoptotic genes, and inhibition of pro-survival genes. The complex interplay between survival and death signals determines the B cell fate and, consequently, the immune response.

  6. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages.

    Science.gov (United States)

    Stolfi, Carmine; Caruso, Roberta; Franzè, Eleonora; Sarra, Massimiliano; De Nitto, Daniela; Rizzo, Angelamaria; Pallone, Francesco; Monteleone, Giovanni

    2011-01-01

    Interleukin-25 (IL-25), a T helper type 2 (Th2) -related factor, inhibits the production of inflammatory cytokines by monocytes/macrophages. Since Th2 cytokines antagonize classically activated monocytes/macrophages by inducing alternatively activated macrophages (AAMs), we here assessed the effect of IL-25 on the alternative activation of human monocytes/macrophages. The interleukins IL-25, IL-4 and IL-13 were effective in reducing the expression of inflammatory chemokines in monocytes. This effect was paralleled by induction of AAMs in cultures added with IL-4 or IL-13 but not with IL-25, regardless of whether cells were stimulated with lipopolysaccharide or interferon-γ. Moreover, pre-incubation of cells with IL-25 did not alter the ability of both IL-4 and IL-13 to induce AAMs. Both IL-4 and IL-13 activated signal transducer and activator of transcription 6 (STAT6), and silencing of this transcription factor markedly reduced the IL-4/IL-13-driven induction of AAMs. In contrast, IL-25 failed to trigger STAT6 activation. Among Th2 cytokines, only IL-25 and IL-10 were able to activate p38 mitogen-activated protein kinase. These results collectively indicate that IL-25 fails to induce AAMs and that Th2-type cytokines suppress inflammatory responses in human monocytes by activating different intracellular signalling pathways.

  7. The Effect of Compressor-Administered Defibrillation on Peri-shock Pauses in a Simulated Cardiac Arrest Scenario

    Directory of Open Access Journals (Sweden)

    Joshua Glick

    2014-03-01

    Full Text Available Introduction: Coordination of the tasks of performing chest compressions and defibrillation can lead to communication challenges that may prolong time spent off the chest. The purpose of this study was to determine whether defibrillation provided by the provider performing chest compressions led to a decrease in peri-shock pauses as compared to defibrillation administered by a second provider, in a simulated cardiac arrest scenario. Methods: This was a randomized, controlled study measuring pauses in chest compressions for defibrillation in a simulated cardiac arrest model. We approached hospital providers with current CPR certification for participation between July, 2011 and October, 2011. Volunteers were randomized to control (facilitator-administered defibrillation or experimental (compressor-administered defibrillation groups. All participants completed one minute of chest compressions on a mannequin in a shockable rhythm prior to administration of defibrillation. We measured and compared pauses for defibrillation in both groups. Results: Out of 200 total participants, we analyzed data from 197 defibrillations. Compressor-initiated defibrillation resulted in a significantly lower pre-shock hands-off time (0.57 s; 95% CI: 0.47-0.67 compared to facilitator-initiated defibrillation (1.49 s; 95% CI: 1.35-1.64. Furthermore, compressor-initiated defibrillation resulted in a significantly lower peri-shock hands-off time (2.77 s; 95% CI: 2.58-2.95 compared to facilitator-initiated defibrillation (4.25 s; 95% CI: 4.08-4.43. Conclusion: Assigning the responsibility for shock delivery to the provider performing compressions encourages continuous compressions throughout the charging period and decreases total time spent off the chest. However, as this was a simulation-based study, clinical implementation is necessary to further evaluate these potential benefits. [West J Emerg Med. 2014;15(2:246–250.

  8. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Directory of Open Access Journals (Sweden)

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  9. Bullous pemphigoid autoantibodies directly induce blister formation without complement activation.

    Science.gov (United States)

    Ujiie, Hideyuki; Sasaoka, Tetsumasa; Izumi, Kentaro; Nishie, Wataru; Shinkuma, Satoru; Natsuga, Ken; Nakamura, Hideki; Shibaki, Akihiko; Shimizu, Hiroshi

    2014-11-01

    Complement activation and subsequent recruitment of inflammatory cells at the dermal/epidermal junction are thought to be essential for blister formation in bullous pemphigoid (BP), an autoimmune blistering disease induced by autoantibodies against type XVII collagen (COL17); however, this theory does not fully explain the pathological features of BP. Recently, the involvement of complement-independent pathways has been proposed. To directly address the question of the necessity of the complement activation in blister formation, we generated C3-deficient COL17-humanized mice. First, we show that passive transfer of autoantibodies from BP patients induced blister formation in neonatal C3-deficient COL17-humanized mice without complement activation. By using newly generated human and murine mAbs against the pathogenic noncollagenous 16A domain of COL17 with high (human IgG1, murine IgG2), low (murine IgG1), or no (human IgG4) complement activation abilities, we demonstrate that the deposition of Abs, and not complements, is relevant to the induction of blister formation in neonatal and adult mice. Notably, passive transfer of BP autoantibodies reduced the amount of COL17 in lesional mice skin, as observed in cultured normal human keratinocytes treated with the same Abs. Moreover, the COL17 depletion was associated with a ubiquitin/proteasome pathway. In conclusion, the COL17 depletion induced by BP autoantibodies, and not complement activation, is essential for the blister formation under our experimental system. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells.

    Science.gov (United States)

    Staszewski, Ori; Baker, Richard E; Ucher, Anna J; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E J

    2011-01-21

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.

  11. Passive vs. active touch-induced activity in the developing whisker pathway.

    Science.gov (United States)

    Mosconi, Tony; Woolsey, Thomas A; Jacquin, Mark F

    2010-10-01

    The mouse trigeminal (V) system undergoes significant postnatal structural and functional developmental changes. Histological modules (barrelettes, barreloids and barrels) in the brainstem, thalamus and cortex related to actively moved (whisking) tactile hairs (vibrissae) on the face allow detailed studies of development. High-resolution [(3) H]2-deoxyglucose (2DG) emulsion autoradiography with cytochrome oxidase histochemistry was used to analyze neuronal activity changes related to specific whisker modules in the developing and mature mouse V system provoked by passive (experimenter-induced) and active (animal-induced) displacements of a single whisker (D4). We tested the hypothesis that neuronal activity patterns change in relation to the onset of active touch (whisking) on postnatal day (P)14. Quantitative image analyses revealed: (i) on P7, when whisker-like patterns of modules are clear, heightened 2DG activity in all appropriate modules in the brainstem, thalamus and cortex; (ii) on P14, a transitory activity pattern coincident with the emergence of whisking behavior that presages (iii) strong labeling of the spinal V subnucleus interpolaris and barrel cortex produced by single-whisker-mediated active touch in adults and (iv) at all above-listed ages and structures, significant suppression of baseline activity in some modules surrounding those representing the stimulated whisker. Differences in activity patterns before and after the onset of whisking behavior may be caused by neuronal activity induced by whisking, and by strengthening of modulatory projections that alter the activity of subcortical inputs produced by whisking behavior during active touch. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. GP130 activation induces myeloma and collaborates with MYC

    Science.gov (United States)

    Dechow, Tobias; Steidle, Sabine; Götze, Katharina S.; Rudelius, Martina; Behnke, Kerstin; Pechloff, Konstanze; Kratzat, Susanne; Bullinger, Lars; Fend, Falko; Soberon, Valeria; Mitova, Nadya; Li, Zhoulei; Thaler, Markus; Bauer, Jan; Pietschmann, Elke; Albers, Corinna; Grundler, Rebekka; Schmidt-Supprian, Marc; Ruland, Jürgen; Peschel, Christian; Duyster, Justus; Rose-John, Stefan; Bassermann, Florian; Keller, Ulrich

    2014-01-01

    Multiple myeloma (MM) is a plasma cell neoplasm that results from clonal expansion of an Ig-secreting terminally differentiated B cell. Advanced MM is characterized by tissue damage that involves bone, kidney, and other organs and is typically associated with recurrent genetic abnormalities. IL-6 signaling via the IL-6 signal transducer GP130 has been implicated as an important driver of MM pathogenesis. Here, we demonstrated that ectopic expression of constitutively active GP130 (L-GP130) in a murine retroviral transduction-transplantation model induces rapid MM development of high penetrance. L-GP130–expressing mice recapitulated all of the characteristics of human disease, including monoclonal gammopathy, BM infiltration with lytic bone lesions, and protein deposition in the kidney. Moreover, the disease was easily transplantable and allowed different therapeutic options to be evaluated in vitro and in vivo. Using this model, we determined that GP130 signaling collaborated with MYC to induce MM and was responsible and sufficient for directing the plasma cell phenotype. Accordingly, we identified Myc aberrations in the L-GP130 MM model. Evaluation of human MM samples revealed recurrent activation of STAT3, a downstream target of GP130 signaling. Together, our results indicate that deregulated GP130 activity contributes to MM pathogenesis and that pathways downstream of GP130 activity have potential as therapeutic targets in MM. PMID:25384216

  13. Ginsenoside Rb1 attenuates activated microglia-induced neuronal damage

    Institute of Scientific and Technical Information of China (English)

    Lining Ke; Wei Guo; Jianwen Xu; Guodong Zhang; Wei Wang; Wenhua Huang

    2014-01-01

    The microglia-mediated inlfammatory reaction promotes neuronal damage under cerebral isch-emia/hypoxia conditions. We therefore speculated that inhibition of hypoxia-induced microglial activation may alleviate neuronal damage. To test this hypothesis, we co-cultured ginsenoside Rb1, an active component of ginseng, and cortical neurons. Ginsenoside Rb1 protected neuronal morphology and structure in a single hypoxic culture system and in a hypoxic co-culture system with microglia, and reduced neuronal apoptosis and caspase-3 production. The protective effect was observable prior to placing in co-culture. Additionally, ginsenoside Rb1 inhibited levels of tumor necrosis factor-αin a co-culture system containing activated N9 microglial cells. Ginse-noside Rb1 also signiifcantly decreased nitric oxide and superoxide production induced by N9 microglia. Our ifndings indicate that ginsenoside Rb1 attenuates damage to cerebral cortex neu-rons by downregulation of nitric oxide, superoxide, and tumor necrosis factor-αexpression in hypoxia-activated microglia.

  14. Copper is required for cobalt-induced transcriptional activity of hypoxia-inducible factor-1.

    Science.gov (United States)

    Qiu, Liying; Ding, Xueqin; Zhang, Zhen; Kang, Y James

    2012-08-01

    Cobalt inhibits prolyl hydroxylases, leading to the accumulation of hypoxia-inducible factor-1α (HIF-1α) and a concomitant increase in the transcriptional activity of HIF-1. Therefore, cobalt has been under development as a drug for activating HIF-1 under some disease conditions. However, it has been shown that ischemic conditions resulted in the loss of copper, and the activation of HIF-1 would not occur unless copper was supplemented. The present study was undertaken to test the hypothesis that copper is also required for the cobalt activation of HIF-1 transcriptional activity. Human umbilical vein endothelial cells subjected to treatment with cobalt chloride (CoCl(2)) at concentrations above 25 μM for 2 h resulted in an accumulation of HIF-1α, which was determined by Western blot analysis, and an increase in the expression of vascular endothelial growth factor (VEGF), which was determined by real-time reverse transcription-polymerase chain reaction analysis for mRNA levels and enzyme-linked immunosorbent assay analysis for protein levels. The copper chelator tetraethylenepentamine at 25 μM did not significantly affect the accumulation of HIF-1α but blocked increases in VEGF mRNA and protein levels, an effect that could be reversed by the addition of 25 μM copper sulfate (CuSO(4)). In addition, gene silencing of the copper chaperone for Cu,Zn-superoxide dismutase blocked VEGF expression with little effect on cobalt-induced HIF-1α accumulation. The present study thus demonstrates that copper was required for cobalt-activated transcriptional activity of HIF-1, although copper did not affect cobalt-induced accumulation of HIF-1α in the cells.

  15. Platelet-Activating Factor Induces Th17 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Anne-Marie Drolet

    2011-01-01

    Full Text Available Th17 cells have been implicated in a number of inflammatory and autoimmune diseases. The phospholipid mediator platelet-activating factor (PAF is found in increased concentrations in inflammatory lesions and has been shown to induce IL-6 production. We investigated whether PAF could affect the development of Th17 cells. Picomolar concentrations of PAF induced IL-23, IL-6, and IL-1β expression in monocyte-derived Langerhans cells (LCs and in keratinocytes. Moreover, when LC were pretreated with PAF and then cocultured with anti-CD3- and anti-CD28-activated T cells, the latter developed a Th17 phenotype, with a significant increase in the expression of the transcriptional regulator RORγt and enhanced expression of IL-17, IL-21, and IL-22. PAF-induced Th17 development was prevented by the PAF receptor antagonist WEB2086 and by neutralizing antibodies to IL-23 and IL-6R. This may constitute a previously unknown stimulus for the development and persistence of inflammatory processes that could be amenable to pharmacologic intervention.

  16. CREB is activated in EPO induced HEL cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    cAMP response element binding protein (CREB) is a transcription factor in nucleus. The activating CREB can specifically bind to the cAMP response element (CRE). The present result showed that erythropoietin (EPO) could induce the phosphorylation of CREB on Serine133(Pser133), as detected by Western blot analysis. In addition, the EPO-dependent activation of CREB binding to CRE element was demonstrated by electrophoretic mobility shift assay. However, the binding of CREB to CRE element could be inhibited by anti-CREB-Pser133antibody. The data obtained suggested that the EPO-mediated CREB phosphorylation might be critical to both the binding of CREB to the CRE element and the activation of the CREB transcription factor.

  17. Activity changes of the cat paraventricular hypothalamus during phasic respiratory events

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Poe, G R; Rector, D M;

    1997-01-01

    We monitored the spatiotemporal organization of cellular activity in the medial paraventricular hypothalamus during spontaneously-occurring periods of increased inspiratory effort followed by prolonged respiratory pauses (sigh/apnea) in the freely-behaving cat. Paraventricular hypothalamic activity...

  18. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  19. Electron beam induced surface activation of oxide surfaces for nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Vollnhals, Florian; Seiler, Steffen; Walz, Marie-Madeleine; Steinrueck, Hans-Peter; Marbach, Hubertus [Lehrstuhl fuer Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Woolcot, Tom; Thornton, Geoff [London Centre for Nanotechnology and Department of Chemistry, University College London (United Kingdom)

    2012-07-01

    The controlled fabrication of structures on the nanoscale is a major challenge in science and engineering. Direct-write techniques like Electron Beam Induced Deposition (EBID) were shown to be suitable tools in this context. Recently, Electron Beam Induced Surface Activation (EBISA) has been introduced as a new focused electron beam technique. In EBISA, a surface, e.g. SiO{sub 2}, is irradiated by a focused electron beam, resulting in an activation of the exposed area. The activated area can then react and decompose precursor gases like iron pentacarbonyl, Fe(CO){sub 5}. This leads to a primary deposit, which continues to grow autocatalytically as long as Fe(CO){sub 5} is supplied, resulting in pure (> 90 % at.), crystalline iron nanostructures. We expand the use of this concept by exploring EBISA to produce metallic nanostructures on TiO{sub 2}(110) in UHV; atomistic insight into the process is obtained via Scanning Tunneling Microscopy (STM) and chemical insight via Auger Electron Spectroscopy (AES).

  20. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Haramizu, Satoshi; Hase, Tadashi

    2009-07-01

    Catechins are abundant in green tea and induce a variety of biologic actions, including anti-cancer, anti-obesity, and anti-diabetes effects, and their clinical application has been widely investigated. To clarify the underlying molecular mechanisms of these actions, we examined the effect of catechins on AMP-activated protein kinase (AMPK) in cultured cells and in mice. In Hepa 1-6, L6, and 3T3-L1 cells, epigallocatechin gallate (EGCG) induced increases in AMPKalpha and the downstream target acetyl-CoA carboxylase (ACC) phosphorylation, and AMPKalpha activity. Analysis of the molecular specificity of eight naturally occurring catechins revealed that catechins with a gallocatechin moiety or a galloyl residue act as AMPK activators. In addition, phosphorylation of LKB1, which is a tumor-suppressor protein and a major AMPK-kinase, was increased by catechin treatment. EGCG-induced phosphorylation of LKB1 and AMPKalpha was suppressed by treatment with catalase, suggesting that reactive oxygen species are involved in EGCG-induced activation of the LKB1/AMPK pathway. Oral administration of EGCG (200mg/kg body weight) to BALB/c mice induced an increase in AMPKalpha activity in the liver concomitant with a significant increase in AMPKalpha and ACC phosphorylation. EGCG administration also increased oxygen consumption and fat oxidation, as determined by indirect calorimetry. These findings suggest that multiple effects of catechins, including anti-obesity and anti-cancer effects, are mediated, at least in part, by the activation of LKB1/AMPK in various tissues, and that these effects vary according to the catechin structure.

  1. Mutational Pressure in Zika Virus: Local ADAR-Editing Areas Associated with Pauses in Translation and Replication

    Science.gov (United States)

    Khrustalev, Vladislav V.; Khrustaleva, Tatyana A.; Sharma, Nitin; Giri, Rajanish

    2017-01-01

    Zika virus (ZIKV) spread led to the recent medical health emergency of international concern. Understanding the variations in virus system is of utmost need. Using available complete sequences of ZIKV we estimated directions of mutational pressure along the length of consensus sequences of three lineages of the virus. Results showed that guanine usage is growing in ZIKV RNA plus strand due to adenine to guanine transitions, while adenine usage is growing due to cytosine to adenine transversions. Especially high levels of guanine have been found in two-fold degenerated sites of certain areas of RNA plus strand with high amount of secondary structure. The usage of cytosine in two-fold degenerated sites shows direct dependence on the amount of secondary structure in 52% (consensus sequence of East African ZIKV lineage)—32% (consensus sequence of epidemic strains) of the length of RNA minus strand. These facts are the evidences of ADAR-editing of both strands of ZIKV genome during pauses in replication. RNA plus strand can also be edited by ADAR during pauses in translation caused by the appearance of groups of rare codons. According to our results, RNA minus strand of epidemic ZIKV strain has lower number of points in which polymerase can be stalled (allowing ADAR-editing) compared to other strains. The data on preferable directions of mutational pressure in epidemic ZIKV strain is useful for future vaccine development and understanding the evolution of new strains. PMID:28275585

  2. The Effects of Computer-assisted Pronunciation Readings on ESL Learners’ Use of Pausing, Stress, Intonation, and Overall Comprehensibility

    Directory of Open Access Journals (Sweden)

    Mark Tanner

    2001-10-01

    Full Text Available With research showing the benefits of pronunciation instruction aimed at suprasegmentals (Derwing, Munro, & Wiebe, 1997, 1998; Derwing & Rossiter, 2003; Hahn, 2004; McNerney and Mendelsohn, 1992, more materials are needed to provide learners opportunities for self-directed practice. A 13-week experimental study was performed with 75 ESL learners divided into control and treatment groups. The treatment group was exposed to 11 weeks of self-directed computer-assisted practice using Cued Pronunciation Readings (CPRs. In the quasi-experimental pre-test/post-test design, speech perception and production samples were collected at Time 1 (week one of the study and Time 2 (week 13. Researchers analyzed the treatment’s effect on the learners’ perception and production of key suprasegmental features (pausing, word stress, and sentence-final intonation, and the learners’ level of perceived comprehensibility. Results from the statistical tests revealed that the treatment had a significant effect on learners’ perception of pausing and word stress and controlled production of stress, even with limited time spent practicing CPRs in a self-directed environment.

  3. Survivin S81A Enhanced TRAIL's Activity in Inducing Apoptosis

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2010-12-01

    Full Text Available BACKGROUND: Survivin is rarely expressed in normal healthy adult tissues, however, it is upregulated in the majority of cancers. Survivin, which belongs to IAPs family, has been widely reported to protect cells from apoptosis by inhibiting caspases pathway. Survivin’s mitotic activity is modulated by many kinases, and its phosphor status can also influence its ability to inhibit apoptosis. There are several important survivin’s phosphorylation sites, such as S20 and T34. We have continued our investigation on other potential survivin’s phosphorylation sites that could be important site for regulating survivin’s cyto-protection. METHODS: By assuming that S81 could be a potential target to modify activity of survivin, wild-type survivin (Survivin, antisense survivin (Survivin-AS, mutated-survivin Thr34Ala (Survivin-T34A and mutated-survivin Ser81Ala (Survivin-S81A were constructed and inserted into pMSCV-IRES-GFP vector with cytomegalovirus (CMV promoter. Each retroviral product was produced in BOSC23 cells. LY294002 pretreatment and TRAIL treatment along with infection of retroviral products were performed in murine fibrosarcoma L929 cells. For analysis, flow cytometric apoptosis assay and western blot were performed. RESULTS: In our present study, survivin for providing cytoprotection was regulated by PI3K. The results showed that LY294002, an inhibitor of PI3K, effectively suppressed survivin-modulated cytoprotection in a TRAIL-induced apoptotic model. In addition, mutated survivin S81A showed marked suppression on survivin’s cytoprotection. Along with that, TRAIL’s apoptotic activity was enhanced for inducing apoptosis. CONCLUSIONS: We suggested that survivin could inhibit apoptosis through PI3K and S81A could be another potential target in order to inhibit Survivin-modulated cytoprotection as well as to sensitize efficacy of TRAIL or other related apoptotic inducers. KEYWORDS: apoptosis, survivin, TRAIL, S81A, L929, LY294002.

  4. New classification of landslide-inducing anthropogenic activities

    Science.gov (United States)

    Michoud, C.; Jaboyedoff, M.; Derron, M.-H.; Nadim, F.; Leroi, E.

    2012-04-01

    Although landslides are usually considered typical examples of natural hazards, they can be influenced by human activities. Many examples can be found in the literature about slope instabilities induced by anthropogenic activities, ranging from small superficial landslides to rock avalanches. Research on this topic is of primary importance for understanding and mitigation of landslide risk. Indeed, slope stabilities influenced by human actions contribute significantly to the risk level because, by definition, they are located where elements at risk and people are present. Within the framework of the European project SafeLand "Living with Landslide Risk in Europe", the authors analyzed the landslides induced by anthropogenic factors in Europe and elsewhere (SafeLand deliverable D1.6). During the bibliographical research, it appeared that a complete and illustrated classification on human activities influencing slope stabilities does not yet exist. Therefore, a new classification was introduced by Michoud et al. (2011) about anthropogenic activities affecting slope stability conditions. This classification takes into account conceptual processes leading to landslides (Terzaghi, 1950; Jaboyedoff and Derron, 2005) and the distinction between destabilization factors and triggering factors (Vaunat et al., 1994; Leroueil et al., 1996). The classification was tested and improved through fifty-eight well-documented case studies, even lots of large landslides, such as Elm, Aberfan, Namsos and Rissa landslides, etc. Furthermore, the boundary between natural and "anthropogenic" landslide triggers (e.g. water run-off modified by new land-uses, creating landslides some km farther), and the time during which changes and reactions are to be considered as direct consequences of human activities were highlighted. Finally, anthropogenic influences can also be positive and examples of (non-voluntary) positive human impacts on slope stability are presented. Jaboyedoff, M. and Derron, M

  5. Neutron distribution and induced activity inside a Linac treatment room.

    Science.gov (United States)

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2015-01-01

    Induced radioactivity and photoneutron contamination inside a radiation therapy bunker of a medical linear accelerator (Linac) is investigated in this work. The Linac studied is an Elekta Precise electron accelerator which maximum treatment photon energy is 15 MeV. This energy exceeds the photonuclear reaction threshold (around 7 MeV for high atomic number metals). The Monte Carlo code MCNP6 has been used for quantifying the neutron contamination inside the treatment room for different gantry rotation configuration. Walls activation processes have also been simulated. The approach described in this paper is useful to prevent the overexposure of patients and medical staff.

  6. Activation-Induced Cell Death in T Cells and Autoimmunity

    Institute of Scientific and Technical Information of China (English)

    Jian Zhang; Xuemei Xu; Yong Liu

    2004-01-01

    Activation-induced cell death (AICD), which results from the interaction between Fas and Fas ligand, is responsible for maintaining tolerance to self-antigen. A defect in AICD may lead to development of autoimmunity. During the last several years, much progress has been made in understanding the mechanism(s) of AICD and its potential role in the pathogenesis of autoimmune diseases. In this review, we summarize the most recent progress on the regulation of the susceptibility of T cells to AICD and its possible involvement in autoimmune diseases.

  7. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    Science.gov (United States)

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  8. Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward

    Directory of Open Access Journals (Sweden)

    Mark R. Hutchinson

    2007-01-01

    Full Text Available This review will introduce the concept of toll-like receptor (TLR–mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward. Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models and to reduce the development of opioid tolerance. Here we demonstrate that selective acute antagonism of TLR4 results in reversal of neuropathic pain as well as potentiation of opioid analgesia. Attenuating central nervous system glial activation was also found to reduce the development of opioid dependence, and opioid reward at a behavioral (conditioned place preference and neurochemical (nucleus accumbens microdialysis of morphine-induced elevations in dopamine level of analysis. Moreover, a novel antagonism of TLR4 by (+- and (˗-isomer opioid antagonists has now been characterized, and both antiallodynic and morphine analgesia potentiating activity shown. Opioid agonists were found to also possess TLR4 agonistic activity, predictive of glial activation. Targeting glial activation is a novel and as yet clinically unexploited method for treatment of neuropathic pain. Moreover, these data indicate that attenuation of glial activation, by general or selective TLR antagonistic mechanisms, may also be a clinical method for separating the beneficial (analgesia and unwanted (tolerance, dependence, and reward actions of opioids, thereby improving the safety and efficacy of their use.

  9. Fission and spallation data evaluation using induced-activity method

    CERN Document Server

    Karapetyan, G S

    2015-01-01

    The induced-activity investigations in off-line analysis performed in different experiments, concerning pre-actinide and actinide nuclei, are here presented and discussed. Generalized expressions for the determination of independent yields/cross sections of radioactive nuclei, formed in the targets, are derived and analysed. The fragment mass distribution from U-238, Th-232 and Ta-181 photofission at the bremsstrahlung end-point energies of 50 and 3500 MeV, and from Am-241, U-238 and Np-237 fission induced by 660-MeV protons, are scrutinized from the point of view of the multimodal fission approach. The results of these studies are hence compared with theoretical model calculations using the CRISP code. We subsequently discuss the complex particle-induced reaction, such as heavy-ions and deuterons, by using the thick-target thick-catcher technique and the two-step vector model framework as well. This is accomplished in order to present the investigation of the main processes (fission, spallation and (multi)fr...

  10. Angiotensin-converting enzyme inhibitor captopril prevents activation-induced apoptosis by interfering with T cell activation signals

    Science.gov (United States)

    Odaka, C; Mizuochi, T

    2000-01-01

    Captopril is an orally active inhibitor of angiotensin-converting enzyme (ACE) which is widely used as an anti-hypertensive agent. In addition to its ability to reduce blood pressure, captopril has a number of other biological activities. Recently the drug was shown to inhibit Fas-induced apoptosis in human activated peripheral T cells and human lung epithelial cells. In this study, we investigated whether captopril blocks activation-induced apoptosis in murine T cell hybridomas, and found that captopril inhibited IL-2 synthesis and apoptotic cell death upon activation with anti-CD3 antibody. In addition, captopril inhibited an inducible caspase-3-like activity during activation-induced apoptosis. On the other hand, captopril did not interfere with Fas signalling, since anti-Fas antibody-induced apoptosis in Fas+ Jurkat cells was unaffected by the drug. Furthermore, we examined whether captopril blocks activation-induced apoptosis by interfering with expression of Fas, Fas ligand (FasL), or both on T cell hybridomas. FasL expression on activated T cells was significantly inhibited by captopril, whereas up-expression of Fas was partially inhibited, as assessed by cell surface staining. Taking all data together, we conclude that captopril prevents activation-induced apoptosis in T cell hybridomas by interfering with T cell activation signals. Captopril has been reported to induce systemic lupus erythematosus syndrome, and our findings may be useful for elucidating the mechanism of captopril-induced autoimmunity. PMID:10971519

  11. Mitigating Induced Seismicity Through Active Pressure Management in Numerical Simulations

    Science.gov (United States)

    Kroll, K.; Richards-Dinger, K. B.; White, J. A.

    2016-12-01

    The recent upturn of seismicity rates in the Central and Eastern United States and Canada has been attributed to industrial operations such as waste-water disposal, hydraulic fracturing, and subsurface carbon storage. We couple the 3D, physics-based earthquake simulator, RSQSim, to a reservoir model to investigate the space-time characteristics of earthquakes induced by pore-fluid pressure increases and/or poroelastic stresses during injection. RSQSim employs rate-state friction, which gives rise to spatiotemporal earthquake clustering. The simulator generates long catalogs of seismicity based on stress changes due to fault interaction and external stress perturbations with great computational efficiency, allowing for multiple simulations to systematically explore the parameters that control induced seismicity. These simulations provide physics-based statistical data that may contribute to the formalization of optimal injection operations designed to minimize risk of seismicity at a given industrial site. Industrial operators may modify injection rates as an active seismicity mitigation tool to either reduce the total number of earthquakes or attempt to reduce the likelihood of future large events. To explore the efficacy of this approach, we use RSQSim to explore how sequences of induced earthquakes respond to changes in injection schedule. We simulate induced seismicity on a single optimally oriented fault with fractally distributed initial shear stresses and compare results from models with/without along-strike fault permeability and poroelastic stress changes. We investigate the seismic response to several injection schedules that lie between two end-member scenarios, 1) constant injection at low rates, and 2) periodic injection at high rates. We evaluate the cumulative number of events, total seismic moment release, and the spatio-temporal characteristics of seismicity including the time/location of the next large event after adjusting injection rates

  12. Hyaluronic acid induces activation of the κ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  13. Active Control Does Not Eliminate Motion-Induced Illusory Displacement

    Directory of Open Access Journals (Sweden)

    Ian M. Thornton

    2011-05-01

    Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.

  14. Activation of phospholipase D activity in transforming growth factor—beta—induced cell growth inhibition

    Institute of Scientific and Technical Information of China (English)

    ZHOUBINGHONG; JUNSONGCHEN; 等

    2000-01-01

    Cells regulate phospholipase D(PLD) activity in response to numerous extracellular signals.Here,we investigated the involvement of PLD activity in transforming growth factor-β(TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1 inhibits the growth of MDCK,Mv1Lu,and A-549 cells.In the presence of 0.4% butanol,TGF-β1 induces an increase in the formation of phosphatidylbutanol,a unique product catalyzed by PLD.TGF-β1 also induces an increase in phosphatidic acid (PA) level in A-549 and MDCK cells.TGF-β1 induces an increase in the levels of DAG labeled with [3H]-myristic acid in A-549 and MDCK cells but not in Mv1Lu cells.No increase of DAG was observed in cells prelabeled with [3H]-arachidonic acid.The data presented suggest that PLD activation is involved in the TGF-β1-induced cell growth inhibition.

  15. Experimental autoimmune prostatitis induces microglial activation in the spinal cord

    Science.gov (United States)

    Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen

    2014-01-01

    Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093

  16. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

    Science.gov (United States)

    Um, Min Young; Hwang, Kwang Hyun; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Curcumin is a well-known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high-fat/cholesterol diet (HFD)-induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body-weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (p cholesterol, fasting glucose and insulin in serum were decreased, and HFD-induced impairment of insulin sensitivity was improved by curcumin supplementation (p Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP-activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator-activated receptor alpha. By contrast, curcumin suppressed the HFD-mediated increases in sterol regulatory element-binding protein-1, acetyl-CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD-induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.

  17. Photonic activation of plasminogen induced by low dose UVB.

    Directory of Open Access Journals (Sweden)

    Manuel Correia

    Full Text Available Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm. Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å. Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760-765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the

  18. Paclitaxel-induced activation of murine peritoneal macrophage in vitro

    Institute of Scientific and Technical Information of China (English)

    Li Zhongxiang; Wang Fufeng; Qiao Yuhuan

    2004-01-01

    Objective: To study the effects of paclitaxel on macrophage activation. Methods:Mouse macrophages were isolated by peritoneal lavage and cultured in RPMI 1640 medium according to the following groups: paclitaxel (5μmol/L) group, IFN-γ (5U/L) group, paclitaxel (5μmol/L) and IFN-γ (5U/L) combination group, and control group(without paclitaxel and IFNγ) .24 hours later, supematants were collected for nitric oxide(NO) assessment using the Griess reagent, and ttanor necrosis factor-α(TNF-α) assessment using the enzyme linked immunosorbent assay. Antibody-dependent cell-mediated cytotoxicity(ADCC) of the macrophages was assessed using the method of hemoglobin-enzyme release assay (Hb-ERA). Results: Paclitaxel induced the production of higher levels of NO(8.86 ± 1.16μmol/L) and TNF-α(120.2 ± 10.2pg/ml) ,and enhanced the ADCC of macrophages[ (20.61 + 1.13)% ]. The differences were significant compared with the control group[no NO and TNF-α detected,ADCC (15.37 + 1.93)% ](P < 0.01). Paclitaxel and IFN-γ in combination induced the production of higher levels of NO(22.85 ± 0.91μmol/L) and TNF-α(358.6 ± 27 .5pg/ml), and enhanced the ADCC of macrophages[ (42.49 + 3.09) % ]. The differences were significant compared with paclitaxel or IFN-γ[NO 8.09 ± 1.13μmol/L, TNF-α1 24.8 + 9.6pg/ml, ADCC(23.32 ± 2.63) % ] alone (P<0.01). Conclusion: These findings indicate that paclitaxel can promote NO and TNF-α production,enhance ADCC of macrophages, and induce macrophage activation. The active effects are more significant with paclitaxel and IFN-γcombination.

  19. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  20. Biological function of activation-induced cytidine deaminase (AID).

    Science.gov (United States)

    Kumar, Ritu; DiMenna, Lauren J; Chaudhuri, Jayanta; Evans, Todd

    2014-01-01

    Activation-induced Cytidine Deaminase (AID) is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  1. Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3.

    Science.gov (United States)

    St Germain, Carly; Niknejad, Nima; Ma, Laurie; Garbuio, Kyla; Hai, Tsonwin; Dimitroulakos, Jim

    2010-07-01

    The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3) as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogen-activated protein kinase (MAPK) pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) resulted in decreased ATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/- murine embryonic fibroblasts (MEFs) were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin's cytotoxic effects.

  2. Mechanism of Hydrophilicity by Radiation-Induced Surface Activation

    Science.gov (United States)

    Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji

    When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

  3. Load-Induced Confinement Activates Diamond Lubrication by Water

    Science.gov (United States)

    Zilibotti, G.; Corni, S.; Righi, M. C.

    2013-10-01

    Tribochemical reactions are chemical processes, usually involving lubricant or environment molecules, activated at the interface between two solids in relative motion. They are difficult to be monitored in situ, which leaves a gap in the atomistic understanding required for their control. Here we report the real-time atomistic description of the tribochemical reactions occurring at the interface between two diamond films in relative motion, by means of large scale ab initio molecular dynamics. We show that the load-induced confinement is able to catalyze diamond passivation by water dissociative adsorption. Such passivation decreases the energy of the contacting surfaces and increases their electronic repulsion. At sufficiently high coverages, the latter prevents surface sealing, thus lowering friction. Our findings elucidate effects of the nanoscale confinement on reaction kinetics and surface thermodynamics, which are important for the design of new lubricants.

  4. Active tunable plasmonically induced polarization conversion in the THz regime

    Science.gov (United States)

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-01-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications. PMID:27734912

  5. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  6. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  7. The Impact of Promoting Transcription on Early Text Production: Effects on Bursts and Pauses, Levels of Written Language, and Writing Performance

    Science.gov (United States)

    Alves, Rui A.; Limpo, Teresa; Fidalgo, Raquel; Carvalhais, Lénia; Pereira, Luísa Álvares; Castro, São Luís

    2016-01-01

    Writing development seems heavily dependent upon the automatization of transcription. This study aimed to further investigate the link between transcription and writing by examining the effects of promoting handwriting and spelling skills on a comprehensive set of writing measures (viz., bursts and pauses, levels of written language, and writing…

  8. A Diagnostic Marker to Discriminate Childhood Apraxia of Speech From Speech Delay: III. Theoretical Coherence of the Pause Marker with Speech Processing Deficits in Childhood Apraxia of Speech.

    Science.gov (United States)

    Shriberg, Lawrence D; Strand, Edythe A; Fourakis, Marios; Jakielski, Kathy J; Hall, Sheryl D; Karlsson, Heather B; Mabie, Heather L; McSweeny, Jane L; Tilkens, Christie M; Wilson, David L

    2017-04-14

    Previous articles in this supplement described rationale for and development of the pause marker (PM), a diagnostic marker of childhood apraxia of speech (CAS), and studies supporting its validity and reliability. The present article assesses the theoretical coherence of the PM with speech processing deficits in CAS. PM and other scores were obtained for 264 participants in 6 groups: CAS in idiopathic, neurogenetic, and complex neurodevelopmental disorders; adult-onset apraxia of speech (AAS) consequent to stroke and primary progressive apraxia of speech; and idiopathic speech delay. Participants with CAS and AAS had significantly lower scores than typically speaking reference participants and speech delay controls on measures posited to assess representational and transcoding processes. Representational deficits differed between CAS and AAS groups, with support for both underspecified linguistic representations and memory/access deficits in CAS, but for only the latter in AAS. CAS-AAS similarities in the age-sex standardized percentages of occurrence of the most frequent type of inappropriate pauses (abrupt) and significant differences in the standardized occurrence of appropriate pauses were consistent with speech processing findings. Results support the hypotheses of core representational and transcoding speech processing deficits in CAS and theoretical coherence of the PM's pause-speech elements with these deficits.

  9. Postreinforcement Pause Duration Varies within a Session and with a Variable Response Requirement but Not as a Function of Prior Revolutions

    Science.gov (United States)

    Belke, Terry W.

    2011-01-01

    The current study examined the variables that influence postreinforcement pause (PRP) duration in rats when wheel running serves as the reinforcing consequence. The relationship between revolutions and PRP duration when revolutions were manipulated within a session and the effect of changing the response requirement from fixed to variable on PRP…

  10. Neuronal activity-induced regulation of Lingo-1.

    Science.gov (United States)

    Trifunovski, Alexandra; Josephson, Anna; Ringman, Andreas; Brené, Stefan; Spenger, Christian; Olson, Lars

    2004-10-25

    Axonal regeneration after injury can be limited in the adult CNS by the presence of inhibitory proteins such as Nogo. Nogo binds to a receptor complex that consists of Nogo receptor (NgR), p75NTR, and Lingo-1. Nogo binding activates RhoA, which inhibits axonal outgrowth. Here we assessed Lingo-1 and NgR mRNA levels after delivery of BDNF into the rat hippocampal formation, Lingo-1 mRNA levels in rats subjected to kainic acid (KA) and running in running wheels. Lingo-1 mRNA was not changed by running. However, we found that Lingo-1 mRNA was strongly up-regulated while NgR mRNA was down-regulated in the dentate gyrus in both the BDNF and the KA experiments. Our data demonstrate inverse regulation of NgR and Lingo-1 in these situations, suggesting that Lingo-1 up-regulation is one characteristic of activity-induced neural plasticity responses.

  11. RIP3 induces apoptosis independent of pronecrotic kinase activity.

    Science.gov (United States)

    Mandal, Pratyusha; Berger, Scott B; Pillay, Sirika; Moriwaki, Kenta; Huang, Chunzi; Guo, Hongyan; Lich, John D; Finger, Joshua; Kasparcova, Viera; Votta, Bart; Ouellette, Michael; King, Bryan W; Wisnoski, David; Lakdawala, Ami S; DeMartino, Michael P; Casillas, Linda N; Haile, Pamela A; Sehon, Clark A; Marquis, Robert W; Upton, Jason; Daley-Bauer, Lisa P; Roback, Linda; Ramia, Nancy; Dovey, Cole M; Carette, Jan E; Chan, Francis Ka-Ming; Bertin, John; Gough, Peter J; Mocarski, Edward S; Kaiser, William J

    2014-11-20

    Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.

  12. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity

    Science.gov (United States)

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin

    2017-01-01

    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  13. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  14. Light-induced self-assembly of active rectification devices.

    Science.gov (United States)

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  15. Thioredoxin interacting protein inhibits hypoxia-inducible factor transcriptional activity

    Science.gov (United States)

    Farrell, Michael R; Rogers, Lynette K; Liu, Yusen; Welty, Stephen E; Tipple, Trent E

    2010-01-01

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. To test this hypothesis, we first examined the levels of VEGF and Txnip protein in the lungs of 1 day-old newborn and E19 embryos and detected a significant inverse correlation. To elucidate the mechanisms underlying this relationship, we studied the effects of Txnip overexpression on HIF-mediated transcription using murine lung epithelial (MLE-12) cells. Overexpression of Txnip inhibited HIF-mediated reporter activity in both hypoxia and room air. Suppression of HIF activity by Txnip appeared to be independent of the ability of Txnip to bind to thioredoxin. Thus, our studies support a model in which Txnip is a potentially critical regulator of HIF-mediated gene transcription in the murine lung. Alterations in Txnip expression could alter lung VEGF expression in prematurely born human infants and contribute to the development of BPD. PMID:20692333

  16. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation.

    Science.gov (United States)

    Li, L; Huang, Z; Gillespie, M; Mroz, P M; Maier, L A

    2014-12-01

    Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (pBeSO₄-stimulation. BeSO₄ induced p38MAPK phosphorylation, while IκB-α was degraded in Be-stimulated moDCs. The p38 MAPK inhibitor SB203580 blocked Be-induced NF-κB activation in moDCs, suggesting that p38MAPK and NF-κB are dependently activated by BeSO₄. Furthermore, in BeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases.

  17. Methoxychlor induces atresia by altering Bcl2 factors and inducing caspase activity in mouse ovarian antral follicles in vitro.

    Science.gov (United States)

    Basavarajappa, Mallikarjuna S; Karman, Bethany N; Wang, Wei; Gupta, Rupesh K; Flaws, Jodi A

    2012-12-01

    Methoxychlor (MXC) is an organochlorine pesticide widely used in many countries against various species of insects that attack crops and domestic animals. MXC reduces fertility by increasing atresia (death) of antral follicles in vivo. MXC also induces atresia of antral follicles after 96 h in vitro. The current work tested the hypothesis that MXC induces morphological atresia at early time points (24 and 48 h) by altering pro-apoptotic (Bax, Bok, Casp3, and caspase activity) and anti-apoptotic (Bcl2 and Bcl-xL) factors in the follicles. The results indicate that at 24 h, MXC increased Bcl-xL and Bax mRNA levels and increased the ratio of Bax/Bcl2. At 48-96 h, MXC induced morphological atresia. At 24-96 h, MXC increased caspase activities. These data suggest that MXC may induce atresia by altering Bcl2 factors and inducing caspase activities in antral follicles.

  18. Pressure-related activation of inducible nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A lot of reports suggested that inducible nitric oxide synthase (iNOS) has a very different nature from constitutive NOS including endothelial NOS (eNOS) and neural NOS (nNOS). When exposed to cytokines or bacterial products, iNOS could be greatly activated and produces hundreds or thousands fold more NO than it does usually. Whether iNOS activation is arterial pressure related is not clear. In the present experiment, we studied three groups(n=6) of Sprague Dawley (SD) rats with implanted aorta and venous catheters that were maintained on 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake respectively. Pulsatile arterial pressure signals from the amplifier were sent to a digital computer and the urine samples were taken every other day for nitrate/nitrite excretion (UNOx) assay using Greiss Reaction. After 6 days infusion, the rats were euthanized with an overdose of sodium pentobarbital, and the renal medullas were rapidly removed and frozen on dry ice for iNOS activity assay. Morever separate groups of hypertensive rats including spontaneously hypertensive rat (SHR, n=6) and High NaCl-induced hypertensive rat (NaHR, n=6) were used to measure renal iNOS protein by Western Blotting. The results showed that the mean arterial pressure (MAP) were significantly increased with the increase intake of sodium, the MAP (mmHg) at day 6 were 99.6±3.5,116.65±4.2 and 125.43±4.5, and the iNOS activity (nmol*g-1 protein*min-1) were 122.3±23.4, 342.4±35.6 and 623.9±65.4 in 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake-rats respectively. At the same time, UNOx at day 6 were also increased, in turn, to 5 865.6±343.0 (for 12.5 mEq/d intake-rats) and (9 642.8±1 045.3) (for 25 mEq/d sodium intake-rats) nmol/d from (3 834.9±234.8) nmol/d of 1 mEq/d sodium intake-rats respectively. Western blotting showed that the renal medullary iNOS protein in SHR and NaHR were increased by 178%±13% and 104%±9% of normal Wistar rats. The data indicates that elevated arterial pressure

  19. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  20. Differential activities of glucocorticoid-induced leucine zipper protein isoforms.

    Science.gov (United States)

    Soundararajan, Rama; Wang, Jian; Melters, Daniël; Pearce, David

    2007-12-14

    Glucocorticoid-induced leucine zipper protein (GILZ) is expressed in both epithelial and immune tissues and modulates a variety of cellular functions, including proliferation and epithelial sodium channel (ENaC) activity. A number of reports have described various GILZ activities, focusing on a single isoform with molecular mass of approximately 17 kDa, now termed GILZ1. In GILZ immunoblots using a newly developed antiserum, we detected multiple species in extracts from cultured kidney cells. Mass spectrometric analysis revealed that one of these represented a previously uncharacterized distinct isoform of GILZ, GILZ2. Rapid amplification of cDNA ends was used to clone cDNAs corresponding to four isoforms, which, in addition to GILZ1 and GILZ2, included new isoforms GILZ3 and GILZ4. Heterologous expression of these four GILZ isoforms in cultured cells revealed striking functional differences. Notably, GILZ1 was the only isoform that significantly stimulated ENaC-mediated Na+ current in a kidney collecting duct cell line, although GILZ2 and GILZ3 also stimulated ENaC surface expression in HEK 293 cells. GILZ1 and GILZ3, and to a lesser extent GILZ2, inhibited ERK phosphorylation. Interestingly, GILZ4, which had no effect on either ENaC or ERK, potently suppressed cellular proliferation, as did GILZ1, but not GILZ2 or GILZ3. Finally, rat and mouse tissues all expressed multiple GILZ species but varied in the relative abundance of each. These data suggest that multiple GILZ isoforms are expressed in most cells and tissues and that these play distinct roles in regulating key cellular functions, including proliferation and ion transport. Furthermore, GILZ inhibition of ERK appears to play an essential role in stimulation of cell surface ENaC but not in inhibition of proliferation.

  1. Mitogen-Activated Protein Kinases Regulate Susceptibility to Ventilator-Induced Lung Injury

    OpenAIRE

    2008-01-01

    BACKGROUND: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2)-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during ...

  2. Electrophysiological correlates of competitor activation predict retrieval-induced forgetting.

    Science.gov (United States)

    Hellerstedt, Robin; Johansson, Mikael

    2014-06-01

    The very act of retrieval modifies the accessibility of memory for knowledge and past events and can also cause forgetting. A prominent theory of such retrieval-induced forgetting (RIF) holds that retrieval recruits inhibition to overcome interference from competing memories, rendering these memories inaccessible. The present study tested a fundamental tenet of the inhibitory-control account: The competition-dependence assumption. Event-related potentials (ERPs) were recorded while participants engaged in a competitive retrieval task. Competition levels were manipulated within the retrieval task by varying the cue-item associative strength of competing items. In order to temporally separate ERP correlates of competitor activation and target retrieval, memory was probed with the sequential presentation of 2 cues: A category cue, to reactivate competitors, and a target cue. As predicted by the inhibitory-control account, competitors with strong compared with weak cue-competitor association were more susceptible to forgetting. Furthermore, competition-sensitive ERP modulations, elicited by the category cue, were observed over anterior regions and reflected individual differences in ensuing forgetting. The present study demonstrates ERP correlates of the reactivation of tightly bound associated memories (the competitors) and provides support for the inhibitory-control account of RIF.

  3. Trace elements induce predominance among methanogenic activity in anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Babett Wintsche

    2016-12-01

    Full Text Available Trace elements play an essential role in all organisms due to their functions in enzyme complexes. In anaerobic digesters, control and supplementation of trace elements lead to stable and more efficient methane production processes while trace element deficits cause process imbalances. However, the underlying metabolic mechanisms and the adaptation of the affected microbial communities to such deficits are not yet fully understood. Here, we investigated the microbial community dynamics and resulting process changes induced by trace element deprivation. Two identical lab-scale continuous stirred tank reactors fed with distiller’s grains and supplemented with trace elements (cobalt, molybdenum, nickel, tungsten and a commercial iron additive were operated in parallel. After 72 weeks of identical operation, the feeding regime of one reactor was changed by omitting trace element supplements and reducing the amount of iron additive. Both reactors were operated for further 21 weeks. Various process parameters (biogas production and composition, total solids and volatile solids, trace element concentration, volatile fatty acids, total ammonium nitrogen, total organic acids/alkalinity ratio, and pH and the composition and activity of the microbial communities were monitored over the total experimental time. While the methane yield remained stable, the concentrations of hydrogen sulfide, total ammonia nitrogen, and acetate increased in the trace element-depleted reactor compared to the well-supplied control reactor. Methanosarcina and Methanoculleus dominated the methanogenic communities in both reactors. However, the activity ratio of these two genera was shown to depend on trace element supplementation explainable by different trace element requirements of their energy conservation systems. Methanosarcina dominated the well-supplied anaerobic digester, pointing to acetoclastic methanogenesis as the dominant methanogenic pathway. Under trace element

  4. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  5. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Science.gov (United States)

    Tanida, Mamoru; Yamamoto, Naoki; Shibamoto, Toshishige; Rahmouni, Kamal

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  6. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogenactivated protein kinase (MAPK pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellularsignal-regulated kinase, and p38 resulted in decreasedATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-ylF2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/murine embryonic fibroblasts (MEFs were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin’s cytotoxic effects.

  7. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations.

    Science.gov (United States)

    Sawai, Yugo; Kodama, Yuzo; Shimizu, Takahiro; Ota, Yuji; Maruno, Takahisa; Eso, Yuji; Kurita, Akira; Shiokawa, Masahiro; Tsuji, Yoshihisa; Uza, Norimitsu; Matsumoto, Yuko; Masui, Toshihiko; Uemoto, Shinji; Marusawa, Hiroyuki; Chiba, Tsutomu

    2015-08-15

    Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.

  8. Photonic Activation of Plasminogen induced by low dose UVB

    DEFF Research Database (Denmark)

    Correia, Manuel Guiherme L.P. Marins; Snabe, Torben; Thiagarajan, Viruthachalam;

    2015-01-01

    Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity w...

  9. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway.

    Science.gov (United States)

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo

    2011-12-01

    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, pdaidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  10. Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor.

    Directory of Open Access Journals (Sweden)

    Lihong Wang

    Full Text Available Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE cells carrying the Apc(min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth.

  11. Speech and pause characteristics in multiple sclerosis: A preliminary study of speakers with high and low neuropsychological test performance

    Science.gov (United States)

    FEENAUGHTY, LYNDA; TJADEN, KRIS; BENEDICT, RALPH H.B.; WEINSTOCK-GUTTMAN, BIANCA

    2017-01-01

    This preliminary study investigated how cognitive-linguistic status in multiple sclerosis (MS) is reflected in two speech tasks (i.e. oral reading, narrative) that differ in cognitive-linguistic demand. Twenty individuals with MS were selected to comprise High and Low performance groups based on clinical tests of executive function and information processing speed and efficiency. Ten healthy controls were included for comparison. Speech samples were audio-recorded and measures of global speech timing were obtained. Results indicated predicted differences in global speech timing (i.e. speech rate and pause characteristics) for speech tasks differing in cognitive-linguistic demand, but the magnitude of these task-related differences was similar for all speaker groups. Findings suggest that assumptions concerning the cognitive-linguistic demands of reading aloud as compared to spontaneous speech may need to be re-considered for individuals with cognitive impairment. Qualitative trends suggest that additional studies investigating the association between cognitive-linguistic and speech motor variables in MS are warranted. PMID:23294227

  12. Replication fork progression is paused in two large chromosomal zones flanking the DNA replication origin in Escherichia coli.

    Science.gov (United States)

    Akiyama, Masahiro Tatsumi; Oshima, Taku; Chumsakul, Onuma; Ishikawa, Shu; Maki, Hisaji

    2016-08-01

    Although the speed of nascent DNA synthesis at individual replication forks is relatively uniform in bacterial cells, the dynamics of replication fork progression on the chromosome are hampered by a variety of natural impediments. Genome replication dynamics can be directly measured from an exponentially growing cell population by sequencing newly synthesized DNA strands that were specifically pulse-labeled with the thymidine analogue 5-bromo-2'-deoxyuridine (BrdU). However, a short pulse labeling with BrdU is impracticable for bacteria because of poor incorporation of BrdU into the cells, and thus, the genomewide dynamics of bacterial DNA replication remain undetermined. Using a new thymidine-requiring Escherichia coli strain, eCOMB, and high-throughput sequencing, we succeeded in determining the genomewide replication profile in bacterial cells. We also found that fork progression is paused in two ~200-kb chromosomal zones that flank the replication origin in the growing cells. This origin-proximal obstruction to fork progression was overcome by an increased thymidine concentration in the culture medium and enhanced by inhibition of transcription. These indicate that DNA replication near the origin is sensitive to the impediments to fork progression, namely a scarcity of the DNA precursor deoxythymidine triphosphate and probable conflicts between replication and transcription machineries.

  13. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Xiao-Rong Zhou; Zuo-Jiong Gong; Pin Zhang; Xiao-Mei Sun; Shi-Hua Zheng

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-KB (NF-кB) and tumor necrosis factor-α (TNF-α)expression in the liver.METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT)activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-KB p65, iNOS, eNOS and TNF-αprotein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR).RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-кB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-кB, and TNF-α mRNA expression.CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-KB and TNF-αexpression. eNOS activity is reduced, but its mRNA expression is not affected.

  14. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, Birgitte; Vendelbo, Mikkel H; Nielsen, Thomas S

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  15. Evidence of solar induced cycles of high seismic activity

    Science.gov (United States)

    Duma, G.

    2010-12-01

    100 with Kp. In terms of earthquake statistics, the changes of Kp imply that in N-America during Kp maxima there happen e.g. 1 event M7, 4 events M6 and 30 events M5 per year, instead of only 10 events M5 in years with lowest Kp. For S-America the number of events during Kp maxima is about twice that observed for N-America. It further turns out that in all three regions, the strongest earthquakes with magnitude 7 and even 8 occur during the Kp maxima. In the recent decade, several geophysical models have been tested at the ZAMG and in co-operation with institutes in USA and UK, to interpret the coupling between the solar induced geomagnetic variations and disturbances and its mechanic implications in the Earth’s lithosphere, i.e. in rupture zones. Two such models are briefly introduced, which fit well the observations and indicate high mechanic forces due to electromagnetic induction. The described solar-terrestrial effect significantly affects strong earthquake activity, as outlined above. It is a general geodynamic process which acts in nearly all main seismic regions on the globe. Thus, the results may essentially contribute to a better understanding of earthquake occurrence and hazard assessment.

  16. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  17. Peroxisome Proliferator-Activated Receptor α Activation Induces Hepatic Steatosis, Suggesting an Adverse Effect

    Science.gov (United States)

    Yan, Fang; Wang, Qi; Xu, Chao; Cao, Mingfeng; Zhou, Xiaoming; Wang, Tingting; Yu, Chunxiao; Jing, Fei; Chen, Wenbin; Gao, Ling; Zhao, Jiajun

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated receptor α (PPARα), leading to the reduction of serum triglyceride levels, the effects of these drugs on NAFLD remain controversial. Clinical studies have reported that PPARα activation does not improve hepatic steatosis. In the present study, we focused on exploring the effect and mechanism of PPARα activation on hepatic triglyceride accumulation and hepatic steatosis. Male C57BL/6J mice, Pparα-null mice and HepG2 cells were treated with fenofibrate, one of the most commonly used fibrate drugs. Both low and high doses of fenofibrate were administered. Hepatic steatosis was detected through oil red O staining and electron microscopy. Notably, in fenofibrate-treated mice, the serum triglyceride levels were reduced and the hepatic triglyceride content was increased in a dose-dependent manner. Oil red O staining of liver sections demonstrated that fenofibrate-fed mice accumulated abundant neutral lipids. Fenofibrate also increased the intracellular triglyceride content in HepG2 cells. The expression of sterol regulatory element-binding protein 1c (SREBP-1c) and the key genes associated with lipogenesis were increased in fenofibrate-treated mouse livers and HepG2 cells in a dose-dependent manner. However, the effect was strongly impaired in Pparα-null mice treated with fenofibrate. Fenofibrate treatment induced mature SREBP-1c expression via the direct binding of PPARα to the DR1 motif of the SREBP-1c gene. Taken together, these findings indicate the molecular mechanism by which PPARα activation increases liver triglyceride accumulation and suggest an adverse effect of

  18. The prediction of induced activity levels in and around NIMROD

    CERN Document Server

    Hack, R C

    1973-01-01

    Comparisons are reported between measured and predicted levels of induced radioactivity for a number of irradiation conditions. Good agreement was found between experimental measurements and fairly simple methods of prediction developed at CERN.

  19. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK signalling

    Directory of Open Access Journals (Sweden)

    Verena Christen

    2016-01-01

    Full Text Available Humans may be exposed to engineered silica nanoparticles (SiO2-NPs but potential adverse effects are poorly understood, in particular in relation to cellular effects and modes of action. Here we studied effects of SiO2-NPs on cellular function in human hepatoma cells (Huh7. Exposure for 24 h to 10 and 50 μg/ml SiO2-NPs led to induction of endoplasmic reticulum (ER stress as demonstrated by transcriptional induction of DNAJB9, GADD34, CHOP, as well as CHOP target genes BIM, CHAC-1, NOXA and PUMA. In addition, CHOP protein was induced. In addition, SiO2-NPs induced an inflammatory response as demonstrated by induction of TNF-α and IL-8. Activation of MAPK signalling was investigated employing a PCR array upon exposure of Huh7 cells to SiO2-NPs. Five of 84 analysed genes, including P21, P19, CFOS, CJUN and KSR1 exhibited significant transcriptional up-regulation, and 18 genes a significant down-regulation. Strongest down-regulation occurred for the proto-oncogene BRAF, MAPK11, one of the four p38 MAPK genes, and for NFATC4. Strong induction of CFOS, CJUN, FRA1 and CMYC was found after exposure to 50 μg/ml SiO2-NPs for 24 h. To analyse for effects derived from up-regulation of TNF-α, Huh7 cells were exposed to SiO2-NPs in the presence of the TNF-α inhibitor sauchinone, which reduced the induction of the TNF-α transcript by about 50%. These data demonstrate that SiO2-NPs induce ER stress, MAPK pathway and lead to inflammatory reaction in human hepatoma cells. Health implications of SiO2-NPs exposure should further be investigated for a risk assessment of these frequently used nanoparticles.

  20. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.

    Science.gov (United States)

    Breit, Andreas; Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-07-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction.

  1. Enterovirus 71 2B Induces Cell Apoptosis by Directly Inducing the Conformational Activation of the Proapoptotic Protein Bax.

    Science.gov (United States)

    Cong, Haolong; Du, Ning; Yang, Yang; Song, Lei; Zhang, Wenliang; Tien, Po

    2016-11-01

    To survive and replicate within a host, many viruses have evolved strategies that target crucial components within the apoptotic cascade, leading to either inhibition or induction of cell apoptosis. Enterovirus 71 (EV71) infections have been demonstrated to impact the mitochondrial apoptotic pathway and induce apoptosis in many cell lines. However, the detailed mechanism of EV71-induced apoptosis remains to be elucidated. In this study, we report that EV71 2B protein (2B) localized to the mitochondria and induced cell apoptosis by interacting directly with and activating the proapoptotic protein Bax. 2B recruited Bax to the mitochondria and induced Bax conformational activation. In addition, mitochondria isolated from 2B-expressing cells that were treated with a recombinant Bax showed increased Bax interaction and cytochrome c (Cyt c) release. Importantly, apoptosis in cells with either EV71 infection or 2B expression was dramatically reduced in Bax knockdown cells but not in Bak knockdown cells, suggesting that Bax played a pivotal role in EV71- or 2B-induced apoptosis. Further studies indicate that a hydrophobic region of 18 amino acids (aa) in the C-terminal region of 2B (aa 63 to 80) was responsible for the location of 2B in the mitochondria. A hydrophilic region of 14 aa in the N-terminal region of 2B was functional in Bax interaction and its subsequent activation. Moreover, overexpression of the antiapoptotic protein Bcl-XL abrogates 2B-induced release of Cyt c and caspase activation. Therefore, this study provides direct evidence that EV71 2B induces cell apoptosis and impacts the mitochondrial apoptotic pathway by directly modulating the redistribution and activation of proapoptotic protein Bax. EV71 infections are usually accompanied by severe neurological complications. It has also been postulated that the induction of cell apoptosis resulting from tissue damage is a possible process of EV71-related pathogenesis. In this study, we report that EV71 2B

  2. Press learning: The potential of podcasting through pause, record, play and stop

    Directory of Open Access Journals (Sweden)

    Tara Brabazon

    2016-09-01

    Full Text Available Podcasts are entering their second decade. However, this article does not present a chronological narrative of this history or focus groups exploring their effectiveness. Instead, this paper probes the enlivening capacity of podcasting when inserted into the much wider discourse of sonic media. My research probes the impact on teaching and learning when cutting away four of our five senses to focus on auditory culture, sonic media, hearing and listening. This research shows the value of ‘blind listening,’ cutting away the eyes and visual literacy, to activate more complex modes of learning.

  3. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Li, Xiao-Dong [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Hong, Mo-Na [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Chen, Qi-Zhi [Shanghai Institute of Hypertension, Shanghai (China); Han, Wei-Qing, E-mail: whan020@gmail.com [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Gao, Ping-Jin, E-mail: gaopingjin@sibs.ac.cn [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China)

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  4. Neuroprotective role of pseudoginsenoside-F11 on activated microgfia induced by lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Xiu-liBI; Jing-yuYANG; Ying-xuDONG; LiangYU; Chun-fuWU

    2004-01-01

    AIM: In the present study, the neuroprotective effect and its possible molecular mechanisms of pseudoginsenoside-F11 (PF11),a saponin existed in American ginseng, on activated N9 microglia induced by lipopolysaccharide (LPS) were studied. RESULTS:The results showed that PF11 inhibited the activation of p38 ,p42/44 mitogen-activated protein kinases (MAPKs), and the degradation of IkB alpha (IrBα) induced by LPS. However, it

  5. Glucocorticoid-induced impairment of macrophage antimicrobial activity: mechanisms and dependence on the state of activation.

    Science.gov (United States)

    Schaffner, A; Schaffner, T

    1987-01-01

    Experimental observations indicate that tissue macrophages deployed in great numbers at critical anatomic sites such as the liver, spleen, and lung are major targets for glucocorticoids compromising natural resistance of the host. Therapeutic concentrations of glucocorticoids appear to prevent destruction of microorganisms ingested by macrophages without interfering with phagocytosis, phagolysosomal fusion, and/or secretion of reactive oxygen intermediates. These findings indicate that at the cellular level the glucocorticoid target should be sought for in the nonoxidative armature of the phagocyte and that nonoxidative killing systems of resident tissue macrophages play an important role in natural resistance to opportunistic pathogens. Glucocorticoids do not prevent lymphokine-induced activation of oxidative killing systems. Thus, lymphokines such as interferon-gamma can restore the microbicidal activity of macrophages functionally impaired by glucocorticoids. Counterbalance of the suppressive effect of glucocorticoids by lymphokines might only be possible, however, for pathogens susceptible to oxidative killing and not for microorganisms that are more resistant to reactive oxygen intermediates such as Aspergillus spores and Nocardia, opportunists that appear to be particularly associated with hypercortisolism.

  6. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  7. ATM increases activation-induced cytidine deaminase activity at downstream S regions during class-switch recombination

    NARCIS (Netherlands)

    Khair, Lyne; Guikema, Jeroen E J; Linehan, Erin K; Ucher, Anna J; Leus, Niek G J; Ogilvie, Colin; Lou, Zhenkun; Schrader, Carol E; Stavnezer, Janet

    2014-01-01

    Activation-induced cytidine deaminase (AID) initiates Ab class-switch recombination (CSR) in activated B cells resulting in exchanging the IgH C region and improved Ab effector function. During CSR, AID instigates DNA double-strand break (DSB) formation in switch (S) regions located upstream of C

  8. Protease-Activated Receptor-2 Activation Contributes to House Dust Mite-Induced IgE Responses in Mice

    NARCIS (Netherlands)

    Post, Sijranke; Heijink, Irene; Petersen, A H; de Bruin, Harold G.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.

    2014-01-01

    Aeroallergens such as house dust mite (HDM), cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR)-2, on the airway epithelium,

  9. Protease-activated receptor-2 activation contributes to house dust mite-induced IgE responses in mice

    NARCIS (Netherlands)

    Post, Sijranke; Heijink, Irene H; Petersen, Arjen H; de Bruin, Harold G; van Oosterhout, Antoon J M; Nawijn, Martijn C

    2014-01-01

    Aeroallergens such as house dust mite (HDM), cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR)-2, on the airway epithelium,

  10. Structure-activity relationship study of dibenzocyclooctadiene lignans isolated from Schisandra chinensis on lipopolysaccharide-induced microglia activation.

    Science.gov (United States)

    Hu, Di; Han, Na; Yao, Xuechun; Liu, Zhihui; Wang, Yu; Yang, Jingyu; Yin, Jun

    2014-06-01

    To explore the relationship of the dibenzocyclooctadiene lignans from Schisandra chinensis to their anti-inflammatory activities, series of dibenzocyclooctadiene lignans were isolated and assessed by testing their inhibitory effects on nitric oxide production in lipopolysaccharide-induced BV2 mouse microglia. It was found, for the first time, that dibenzocyclooctadiene lignans which have S-biphenyl and methylenedioxy groups strongly inhibited LPS-induced microglia activation. The methoxy group on the cyclooctadiene introduced more effectiveness, but the presence of an acetyl group on the cyclooctadiene or hydroxyl group on C-7 decreased the inhibitory activity.

  11. Effects of Breath Training Pattern "End-Inspiratory Pause" on Respiratory Mechanics and Arterial Blood Gas of Patients with COPD

    Institute of Scientific and Technical Information of China (English)

    梁永杰; 蔡映云

    2002-01-01

    Objective:In order to explore the mechanism of Chinese traditional breath training, theeffects of end-inspiratory pause breathing (EIPB) on the respiratory mechanics and arterial blood gas werestudied in patients with chronic obstructive pulmonary disease (COPD). Methods: Ten patients in steadystage participating in the study had a breath training of regulating the respiration rhythm as to having apause between the deep and slow inspiration and the slow expiration. Effect of the training was observed byvisual feedback from the screen of the respiratory inductive plethysmograph. The dynamic change of par-tial pressure of oxygen saturation in blood (SpO2) was recorded with sphygmo-oximeter, the pulmonarymechanics and EIPB were determined with spirometer, and the data of arterial blood gases in tranquilizedbreathing and EIPB were analysed. Results: After EIPB training, SpO2 increased progressively, PaO2 in-creased and PaCO2 decreased, and the PaO2 increment was greater than the PaCO2 decrement. Further-more, the tidal volume increased and the frequency of respiration decreased significantly, both inspirationtime and expiration time were prolonged. There was no significant change in both mean inspiration flowrate (VT/Ti) and expiration flow rate (VT/Te). The baselines in spirogram during EIPB training had noraise. Conclusion: EIPB could decrease the ratio of the dead space and tidal volume (VD/VT), cause in-crease of PaO2 more than the decrease of PaCO2, suggesting that this training could improve both the func-tion of ventilation and gaseous exchange in the lung. EIPB training might be a breathing training patternfor rehabilitation of patients with COPD.

  12. Dual-induced multifractality of human online activity

    CERN Document Server

    Qin, Yuhao; Cai, Shimin; Gao, Liang

    2014-01-01

    Recent discoveries of human activity reveal the existence of long-term correlation and its relation with the fat-tailed distribution of inter-event times, which imply that there exists the fractality of human activity. However, works further analyzing the type of fractality and its origin still lack. Herein, DFA and MFDFA methods are applied in the analysis of time series of online reviewing activity from Movielens and Netflix. Results show the long-term correlation at individual and whole community level, while the strength of such correlation at individual level is restricted to activity level. Such long-term correlation reveals the fractality of online reviewing activity. In our further investigation of this fractality, we \\emph{first} demonstrate it is multifractality, which results from the dual effect of broad probability density function and long-term correlation of time series in online reviewing activity. This result is also verified by three synthesized series. Therefore, we conclude that the combin...

  13. Molecular mechanisms of cold-induced CYP1A activation in rat liver microsomes.

    Science.gov (United States)

    Perepechaeva, Maria; Kolosova, Natalia; Grishanova, Alevtina

    2011-12-01

    Cytochrome P4501A (the CYP1A1 and CYP1A2 enzymes) is known to metabolize anthropogenic xenobiotics to carcinogenic and mutagenic compounds. CYP1A1 transcriptional activation is regulated via the aryl hydrocarbon receptor (AhR)-dependent signal transduction pathway. CYP1A2 activation may occur through the AhR-dependent or AhR-independent signal transduction pathways. We used male Wistar rats to explore possible mechanisms of CYP1A activation induced by exposure to cold and the effects of the protein-tyrosine kinase inhibitors genistein, herbimycin A, and geldanamycin on the properties of hepatic CYP1A1 and CYP1A2 proteins following exposure to cold and to classic CYP1A inducers. The molecular mechanisms of cold-induced CYP1A1 and CYP1A2 activation are different. The CYP1A2 activation apparently occurs at the post-transcriptional level. The CYP1A1 activation, whether caused by exposure to cold or by classic CYP1A inducers, is AhR-dependent and occurs at the transcriptional level. Protein tyrosine kinase inhibitors have no effect on benzo(a)pyrene-induced CYP1A expression but alter cold-induced CYP1A1 activity and the CYP1A1 mRNA level. Thus, treatment with herbimycin A or geldanamycin leads to an increase in CYP1A1 activity, while treatment with genistein increases CYP1A1 mRNA expression and decreases CYP1A2 activity. These data elucidate the molecular mechanisms of cold-induced CYP1A activation and the role of protein kinases in the regulation of CYP1A during exposure to cold. Our results can also help identify the differences between the molecular mechanisms underlying the effects of the classic CYP1A inducers and the effects of cooling.

  14. BTZO-15, an ARE-activator, ameliorates DSS- and TNBS-induced colitis in rats.

    Science.gov (United States)

    Yukitake, Hiroshi; Kimura, Haruhide; Suzuki, Hirobumi; Tajima, Yasukazu; Sato, Yoshimi; Imaeda, Toshihiro; Kajino, Masahiro; Takizawa, Masayuki

    2011-01-01

    Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that are primarily represented by ulcerative colitis and Crohn's disease. The etiology of IBD is not well understood; however, oxidative stress is considered a potential etiological and/or triggering factor for IBD. We have recently reported the identification of BTZO-1, an activator of antioxidant response element (ARE)-mediated gene expression, which protects cardiomyocytes from oxidative stress-induced insults. Here we describe the potential of BTZO-15, an active BTZO-1 derivative for ARE-activation with a favorable ADME-Tox profile, for the treatment of IBD. BTZO-15 induced expression of heme oxygenase-1 (HO-1), an ARE-regulated cytoprotective protein, and inhibited NO-induced cell death in IEC-18 cells. Large intestine shortening, rectum weight gain, diarrhea, intestinal bleeding, and an increase in rectal myeloperoxidase (MPO) activity were observed in a dextran sulfate sodium (DSS)-induced colitis rat model. Oral administration of BTZO-15 induced HO-1 expression in the rectum and attenuated DSS-induced changes. Furthermore BTZO-15 reduced the ulcerated area and rectal MPO activity in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rats without affecting rectal TNF-α levels. These results suggest that BTZO-15 is a promising compound for a novel IBD therapeutic drug with ARE activation properties.

  15. BTZO-15, an ARE-activator, ameliorates DSS- and TNBS-induced colitis in rats.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yukitake

    Full Text Available Inflammatory bowel disease (IBD is a group of chronic inflammatory disorders that are primarily represented by ulcerative colitis and Crohn's disease. The etiology of IBD is not well understood; however, oxidative stress is considered a potential etiological and/or triggering factor for IBD. We have recently reported the identification of BTZO-1, an activator of antioxidant response element (ARE-mediated gene expression, which protects cardiomyocytes from oxidative stress-induced insults. Here we describe the potential of BTZO-15, an active BTZO-1 derivative for ARE-activation with a favorable ADME-Tox profile, for the treatment of IBD. BTZO-15 induced expression of heme oxygenase-1 (HO-1, an ARE-regulated cytoprotective protein, and inhibited NO-induced cell death in IEC-18 cells. Large intestine shortening, rectum weight gain, diarrhea, intestinal bleeding, and an increase in rectal myeloperoxidase (MPO activity were observed in a dextran sulfate sodium (DSS-induced colitis rat model. Oral administration of BTZO-15 induced HO-1 expression in the rectum and attenuated DSS-induced changes. Furthermore BTZO-15 reduced the ulcerated area and rectal MPO activity in 2,4,6-trinitrobenzene sulfonic acid (TNBS-induced colitis rats without affecting rectal TNF-α levels. These results suggest that BTZO-15 is a promising compound for a novel IBD therapeutic drug with ARE activation properties.

  16. Cholesterol-mediated activation of P-glycoprotein: distinct effects on basal and drug-induced ATPase activities.

    Science.gov (United States)

    Belli, Sara; Elsener, Priska M; Wunderli-Allenspach, Heidi; Krämer, Stefanie D

    2009-05-01

    Cholesterol promotes basal and verapamil-induced ATPase activity of P-glycoprotein (P-gp). We investigated whether these effects are related to each other and to the impact of the sterol on bilayer fluidity and verapamil membrane affinity. P-gp was reconstituted in egg-phosphatidylcholine (PhC) liposomes with or without cholesterol, 1,2-dipalmitoyl-phosphatidylcholine (DPPC), alpha-tocopherol (alpha-Toc) or 2,2,5,7,8-pentamethyl-6-chromanol (PMC). Basal and verapamil-induced ATPase activities were studied with an enzymatic assay. Membrane fluidity was characterized with diphenyl-hexatriene anisotropy measurements and membrane affinity by equilibrium dialysis. DPPC (70% mol/mol) decreased the fluidity of PhC bilayers to the same level as 20% cholesterol. PMC (20%) and alpha-Toc (20%) decreased the fluidity to lesser extents. alpha-Toc and PMC, but not DPPC increased the verapamil membrane affinity. While 20% cholesterol strikingly enhanced the basal ATPase activity, none of the other constituents had a similar effect. In contrast, verapamil stimulation of P-gp ATPase activity was not only enabled by cholesterol but also by alpha-Toc and DPPC. PMC had no effect. In conclusion, cholesterol exerts distinct effects on basal and verapamil-induced ATPase activity. The influence on basal ATPase activity is sterol-specific while its effect on verapamil-induced ATPase activity is unspecific and not related to its influence on membrane fluidity and on verapamil membrane affinity.

  17. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...

  18. Effect of montelukast on platelet activating factor- and tachykinin induced mucus secretion in the rat

    Directory of Open Access Journals (Sweden)

    Groneberg David A

    2008-02-01

    Full Text Available Abstract Background Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. Methods The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. Results Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. Conclusion Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists.

  19. Cold Suppresses Agonist-induced Activation of TRPV1

    OpenAIRE

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppress...

  20. Oligomerization of Vibrio cholerae Hemolysin Induces CXCR3 Upregulation and Activation of B-1a Cell

    Institute of Scientific and Technical Information of China (English)

    Gayatri Mukherjee; Kalyan K Banerjee; Tapas Biswas

    2008-01-01

    The hemolysin oligomer promotes the proliferation of B-1a cells and the expression of CD25, which is indicative of cell activation, on B-1a cells. The upregulation of CD86 induced by the oligomer showed its selective bias for the B7-2 member of B7 family while the monomer failed to induce these effects. The oligomer induced the expression of CXCR3, associated with B cell activation, while the monomer induced the expression of CXCL4, a powerful angiostatic chemokine. In conclusion, we found that B-1a cells responded to the apoptogenic monomer by expressing CXCL4, whereas oligomerization of the immunogen induced CXCR3 to shift the response towards activation. Cellular & Molecular Immunology. 2008;5(3):231-234.

  1. Activation of Signal Transducer and Activator of Transcription 5 (STAT5) in Splenocyte Proliferation of Asthma Mice Induced by Ovalbumin

    Institute of Scientific and Technical Information of China (English)

    Guoping Li; Zhigang Liu; Peixing Ran; Jing Qiu; Nanshan Zhong

    2004-01-01

    To investigate the role of signal transducer and transcriptional activator 5 (STAT5) activated in ovalbumin (OVA)-induced splenocyte proliferation of asthma mice, an asthma mouse model was set up by intraperitoneal injection and aspiration of OVA with nebulizer. The proliferation of splenocytes isolated from the asthma mice was detected by [3H] thymidine incorporation. The phosphorytation of STAT5 was examined by Western blotting and STAT5-DNA binding was measured by electrophoretic mobility shift assay (EMSA). OVA could pronouncedly induce the splenocyte proliferation of asthma mice in a dose-dependent manner compared with control groups. Phosphorylation of STAT5 and STAT5-DNA binding were observed in splenocytes from asthma mice induced by OVA at 1 h and 3 h. These results indicated that STAT5 signal pathway played an important role in lymphocyte proliferation of asthma mice induced by OVA. Cellular & Molecular Immunology.2004;1(6):471-474.

  2. STAT5 activation induced by diabetic LDL depends on LDL glycation and occurs via src kinase activity.

    Science.gov (United States)

    Brizzi, Maria Felice; Dentelli, Patrizia; Gambino, Roberto; Cabodi, Sara; Cassader, Maurizio; Castelli, Ada; Defilippi, Paola; Pegoraro, Luigi; Pagano, Gianfranco

    2002-11-01

    Advanced glycation end products (AGEs) have been implicated in the accelerated vascular injury occurring in diabetes. We recently reported that LDL prepared from type 2 diabetic patients (dm-LDL), but not normal LDL (n-LDL) triggered signal transducers and activators of transcription STAT5 activation and p21(waf) expression in endothelial cells (ECs). The aims of the present study were to investigate the role of LDL glycation in dm-LDL- mediated signals and to analyze the molecular mechanisms leading to STAT5 activation. We found that glycated LDL (gly-LDL) triggered STAT5 activation, the formation of a prolactin inducible element (PIE)-binding complex containing STAT5, and increased p21(waf) expression through the activation of the receptor for AGE (RAGE). We also demonstrated that dm-LDL and gly-LDL, but not n-LDL treatment induced the formation of a stable complex containing the activated STAT5 and RAGE. Moreover, gly-LDL triggered src but not JAK2 kinase activity. Pretreatment with the src kinase inhibitor PP1 abrogated both STAT5 activation and the expression of p21(waf) induced by gly-LDL. Consistently, gly-LDL failed to activate STAT5 in src(-/-) fibroblasts. Collectively, our results provide evidence for the role of glycation in dm-LDL-mediated effects and for a specific role of src kinase in STAT5-dependent p21(waf) expression.

  3. Mechanisms of Ca2+-dependent calcineurin activation in mechanical stretch-induced hypertrophy.

    Science.gov (United States)

    Zobel, Carsten; Rana, Obaida R; Saygili, Erol; Bölck, Birgit; Saygili, Esra; Diedrichs, Holger; Reuter, Hannes; Frank, Konrad; Müller-Ehmsen, Jochen; Pfitzer, Gabriele; Schwinger, Robert H G

    2007-01-01

    Pressure overload is the major stimulus for cardiac hypertrophy. Accumulating evidence suggests an important role for calcium-induced activation of calcineurin in mediating hypertrophic signaling. Hypertrophy is an important risk factor for cardiovascular morbidity and mortality. We therefore employed an in vitro mechanical stretch model of cultured neonatal cardiomyocytes to evaluate proposed mechanisms of calcium-induced calcineurin activation in terms of inhibition of calcineurin activity and hypertrophy. The protein/DNA ratio and ANP gene expression were used as markers for stretch-induced hypertrophy. Stretch increased the calcineurin activity, MCIP1 gene expression and DNA binding of NFATc as well as the protein/DNA ratio and ANP mRNA in a significant manner. The specific inhibitor of calcineurin, cyclosporin A, inhibited the stretch-induced increase in calcineurin activity, MCIP1 gene expression and hypertrophy. The L-type Ca2+ channel blocker nifedipine and a blocker of the Na+/H+ exchanger (cariporide) both suppressed stretch-dependent enhanced calcineurin activity and hypertrophy. Also application of a blocker of the Na+/Ca2+ exchanger (KB-R7943) was effective in preventing calcineurin activation and increases in the protein/DNA ratio. Inhibition of capacitative Ca2+ entry with SKF 96365 was also sufficient to abrogate calcineurin activation and hypertrophy. The blocker of stretch-activated ion channels, streptomycin, was without effect on stretch-induced hypertrophy and calcineurin activity. The present work suggests that of the proposed mechanisms for the calcium-induced activation of calcineurin (L-type Ca2+ channels, capacitative Ca2+ entry, Na+/H+ exchanger, Na+/Ca2+ exchanger and stretch-activated channels) all but stretch-activated channels are possible targets for the inhibition of hypertrophy. 2007 S. Karger AG, Basel

  4. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  5. cAMP Modulates Macrophage Development by Suppressing M-CSF-Induced MAPKs Activation

    Institute of Scientific and Technical Information of China (English)

    Ning Zhu; Jian Cui; Chunxia Qiao; Yan Li; Yuanfang Ma; Jiyan Zhang; Beifen Shen

    2008-01-01

    M-CSF is a key cytokine in macrophage development by inducing MAPKs activation, and cAMP can inhibit MAPKs activation induced by inflammatory stimuli. To explore the effects of cAMP on M-CSF-induced MAPKs activation and on macrophage development, the model of bone marrow-derived murine macrophages (BMMs) was used. The effects of cAMP on M-CSF-induced MAPKs activation were analyzed by Western blotting assay, and the effects of cAMP on CD14 and F4/80 expression during macrophage development were examined by FACS analysis.Macrophage morphology showed the successful establishment of the model of macrophage development. Western blotting assay revealed that M-CSF activated ERK, JNK and p38 in both mature and immature macrophages, and cAMP inhibited M-CSF-induced ERK, JNK and p38 activation in a time-dependent manner. FACS analysis revealed that macrophage development was impaired with cAMP pretreatment. In conclusion, cAMP modulates macrophage development by suppressing M-CSF-induced MAPKs activation.

  6. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  7. Complement activation contributes to ventilator-induced lung injury in rats

    NARCIS (Netherlands)

    B. Petersen; T. Busch; J. Gaertner; J.J. Haitsma (Jack); S.C. Krabbendam (Stefan); M. Ebsen (Michael); B.F. Lachmann (Burkhard); U.X. Kaisers

    2016-01-01

    textabstractThe complement system contributes to ventilator induced lung injury (VILI). We hypothesized that pretreatment with the C1 esterase inhibitor (C1INH) Berinert® constrains complement activation consecutively inducing improvements in arterial oxygenation and histological pulmonary damage. A

  8. Exercise-induced AMPK activity in skeletal muscle

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Mortensen, Brynjulf; Pehmøller, Christian

    2013-01-01

    The energy/fuel sensor 5'-AMP-activated protein kinase (AMPK) is viewed as a master regulator of cellular energy balance due to its many roles in glucose, lipid, and protein metabolism. In this review we focus on the regulation of AMPK activity in skeletal muscle and its involvement in glucose me...... metabolism, including glucose transport and glycogen synthesis. In addition, we discuss the plausible interplay between AMPK and insulin signaling regulating these processes.......The energy/fuel sensor 5'-AMP-activated protein kinase (AMPK) is viewed as a master regulator of cellular energy balance due to its many roles in glucose, lipid, and protein metabolism. In this review we focus on the regulation of AMPK activity in skeletal muscle and its involvement in glucose...

  9. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo

    National Research Council Canada - National Science Library

    Budhraja, Amit; Gao, Ning; Zhang, Zhuo; Son, Young-Ok; Cheng, Senping; Wang, Xin; Ding, Songze; Hitron, Andrew; Chen, Gang; Luo, Jia; Shi, Xianglin

    2012-01-01

    In this study, we investigated the functional role of Akt and c-jun-NH(2)-kinase (JNK) signaling cascades in apigenin-induced apoptosis in U937 human leukemia cells and anti-leukemic activity of apigenin in vivo...

  10. Catalase activity as a biomarker for mild-stress-induced robustness in Bacillus weihenstephanensis

    NARCIS (Netherlands)

    Besten, den H.M.W.; Effraimidou, S.; Abee, T.

    2013-01-01

    Microorganisms are able to survive and grow in changing environments by activating stress adaptation mechanisms which may enhance bacterial robustness. Stress-induced enhanced robustness complicates the predictability of microbial inactivation. Using psychrotolerant Bacillus weihenstephanensis strai

  11. Study of antihyperglycaemic activity of medicinal plant extracts in alloxan induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Anoja P Attanayake

    2013-01-01

    C onclusion: The aqueous extract of G. arborea, S. pinnata, K. zeylanica, S. caryophyllatum, S. dulcis, S. alnifolia, L. galanga and C. grandis possess potent acute antihyperglycaemic activity in alloxan induced diabetic rats.

  12. Etoposide Induces ATM-Dependent Mitochondrial Biogenesis through AMPK Activation

    OpenAIRE

    Xuan Fu; Shan Wan; Yi Lisa Lyu; Liu, Leroy F.; Haiyan Qi

    2008-01-01

    BACKGROUND: DNA damage such as double-stranded DNA breaks (DSBs) has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated). Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the alpha subunit of AMP-activated protein k...

  13. Microwave-induced thermogenetic activation of single cells

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, N. A. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Fedotov, I. V. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V. [M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997 (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Zheltikov, A. M. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Kurchatov Institute National Research Center, Moscow 123182 (Russian Federation)

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  14. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    Science.gov (United States)

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-05

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM.

  15. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases.

    Science.gov (United States)

    Bae, Gi-Sang; Kim, Min-Sun; Jeong, Jinsu; Lee, Hye-Youn; Park, Kyoung-Chel; Koo, Bon Soon; Kim, Byung-Jin; Kim, Tae-Hyeon; Lee, Seung Ho; Hwang, Sung-Yeon; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2011-07-01

    Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP.

  16. Force-Induced H2S by PDLSCs Modifies Osteoclastic Activity during Tooth Movement.

    Science.gov (United States)

    Liu, F; Wen, F; He, D; Liu, D; Yang, R; Wang, X; Yan, Y; Liu, Y; Kou, X; Zhou, Y

    2017-06-01

    Hydrogen sulfide (H2S), a gasotransmitter, has been recently linked to mesenchymal stem cell (MSC) function and bone homeostasis. Periodontal ligament stem cells (PDLSCs) are the main MSCs in PDL, which respond to mechanical force to induce physiological activities during orthodontic tooth movement (OTM). However, it is unknown whether mechanical force might induce endogenous H2S production by PDLSCs to regulate alveolar bone homeostasis. Here, we used a mouse OTM model to demonstrate that orthodontic force-induced endogenous H2S production in PDL tissue was associated with macrophage accumulation and osteoclastic activity in alveolar bone. Then, we showed that mechanical force application induced cystathionine β-synthase (CBS) expression and endogenous H2S production by PDLSCs. Moreover, blocking endogenous H2S or systemically increasing H2S levels could decrease or enhance force-induced osteoclastic activities to control tooth movement. We further revealed how force-induced H2S production by PDLSCs contributed to the secretion of monocyte chemoattractant protein-1 (MCP-1) and the expression of receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) system by PDLSCs. The secretion and expression of these factors controlled macrophage migration and osteoclast differentiation. This study demonstrated that PDLSCs produced H2S to respond to and transduce force signals. Force-induced gasotransmitter H2S production in PDLSCs therefore regulated osteoclastic activities in alveolar bone and controlled the OTM process through the MCP-1 secretion and RANKL/OPG system.

  17. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK

    OpenAIRE

    Budhraja, Amit; Gao, Ning; Zhang, Zhuo; Son, Young-Ok; Cheng, Senping; Wang, Xin; Ding, Songze; Hitron, Andrew; Chen, Gang; Luo, Jia; Shi, Xianglin

    2011-01-01

    In this study, we investigated the functional role of Akt and JNK signaling cascades in apigenin-induced apoptosis in U937 human leukemia cells and anti-leukemic activity of apigenin in vivo. Apigenin-induced apoptosis by inactivation of Akt with a concomitant activation of JNK, Mcl-1 and Bcl-2 down-regulation, cytochrome c release from mitochondria and activation of caspases. Constitutively active myristolated Akt prevented apigenin-induced JNK, caspases activation, and apoptosis. Conversely...

  18. Resveratrol Induces Hepatic Mitochondrial Biogenesis Through the Sequential Activation of Nitric Oxide and Carbon Monoxide Production

    OpenAIRE

    Kim, Seul-Ki; Joe, Yeonsoo; Min ZHENG; Kim, Hyo Jeong; Yu, Jae-Kyoung; Cho, Gyeong Jae; Chang, Ki Churl; Kim, Hyoung Kyu; Han, Jin; Ryter, Stefan W.; Chung, Hun Taeg

    2014-01-01

    Aims: Nitric oxide (NO) can induce mitochondrial biogenesis in cultured cells, through increased guanosine 3′,5′-monophosphate (cGMP), and activation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). We sought to determine the role of NO, heme oxygenase-1 (HO-1), and its reaction product (carbon monoxide [CO]) in the induction of mitochondrial biogenesis by the natural antioxidant resveratrol. Results: S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, induced ...

  19. ANTIDIABETIC AND HYPOLIPIDEMIC ACTIVITY OF GYMNEMA SYLVESTRE IN DEXAMETHASONE INDUCED INSULIN RESISTANCE IN ALBINO RATS

    OpenAIRE

    Hemanth Kumar V, Nagendra Nayak IM , Shobha V Huilgol, Saeed M Yendigeri , Narendar K

    2015-01-01

    Background: Gymnema sylvestre plant was widely used for medicinal purpose. The plant leaves were traditionally used to treat diabetes. Aim: To determine the antidiabetic and hypolipidemic activity of Gymnema sylvestre in dexamethasone induced insulin resistance in Albino rats. Objectives: The present study was undertaken to evaluate antidiabetic and hypolipidemic activity of Gymnema sylvestre leaf aqueous extract against dexamethasone induced insulin resistance in Albino rats. Materials and M...

  20. Apoptosis-inducing activity of a driselase digest fraction of green tea residue.

    Science.gov (United States)

    Katsuno, Y; Koyama, Y; Saeki, K; Sazuka, M; Ookawa, K; Isemura, M

    2001-01-01

    We enzymatically digested green tea residue with Driselase, a crude preparation containing cellulase, pectinase and proteases, in order to examine the potential usefulness of the residue. A fraction of the digest soluble in 70% ethanol was found to induce the death of U937 human histiocytic lymphoma cells by apoptosis. Other enzyme preparations gave similar products with cell death-inducing activity of varing potency. The green tea residue may therefore be a useful source of potential agents with anti-cancer activity.

  1. The marine toxin, Yessotoxin, induces apoptosis and increases mitochondrial activity

    Directory of Open Access Journals (Sweden)

    Andrea Fernandez-Araujo

    2014-06-01

    Discussion: Colorimetric MTT assay is widely used as a viability measurement method (McHale and L., 1988;Chiba et al., 1998. But after YTX treatment, MTT assay had shown problems to detect a cell viability decrease. In this sense, in primary cardiac cell cultures, a false increment of the proliferation rate opposite to Sulforhodamine B assay (SRB results was reported after YTX treatment (Dell'Ovo et al., 2008. Also the same effect was obtained in different cancer cell lines after assaying anticancer therapies (Ulukaya et al., 2004. In our study, an increase in cell viability using MTT was observed when the number of cells was high, while by using the LDH assay a significant viability decrease was measured. In these conditions, YTX is activating extrinsic apoptosis cell death by increasing caspase 8 activity and caspase 3 levels. The explanation for this increase was found when the mitochondrial activity was quantified cell by cell in a cytometer. In these conditions a significant increment of mitochondrial activity was detected. Since the cell population is too high, the increase in mitochondrial activity that detects the MTT test disguised the decrease of signal due to the cell death and point to a false proliferation increase. In this sense, a mitochondrial activity decrease was observed after 48 hours YTX treatment in BE(2-M17 neuroblastoma cell line (Leira et al., 2002. However, this study was done in a microplate reader with a small number of cells (Leira et al., 2002. Therefore, to measure the viability by MTT assay is very important to take into account the number of cells per condition when the experiment is designed. Alternative assays, such as LDH test, independently of the direct mitochondrial activity, can be used.

  2. Active tuning of stroke-induced vibrations by tennis players.

    Science.gov (United States)

    Chadefaux, Delphine; Rao, Guillaume; Androuet, Philippe; Berton, Eric; Vigouroux, Laurent

    2017-08-01

    This paper investigates how tennis players control stroke-induced vibration. Its aim is to characterise how a tennis player deals with entering vibration waves or how he/she has the ability to finely adjust them. A specific experimental procedure was designed, based on simultaneously collecting sets of kinematic, vibration and electromyographic data during forehand strokes using various commercial rackets and stroke intensities. Using 14 expert players, a wide range of excitations at spectral and temporal levels were investigated. Energetic and spectral descriptors of stroke-induced vibration occurring at the racket handle and at the player's wrist and elbow were computed. Results indicated that vibrational characteristics are strongly governed by grip force and to a lower extent by the racket properties. Grip force management drives the amount of energy, as well as its distribution, into the forearm. Furthermore, hand-grip can be assimilated to an adaptive filter which can significantly modify the spectral parameters propagating into the player's upper limb. A significant outcome is that these spectral characteristics are as much dependent on the player as on the racket. This contribution opens up new perspectives in equipment manufacture by underlining the need to account for player/racket interaction in the design process.

  3. Temperature-induced activation of freshwater Cyanophage AS-1 prophage.

    Science.gov (United States)

    Chu, Tin-Chun; Murray, Sean R; Hsu, Shi-Fang; Vega, Quinn; Lee, Lee H

    2011-05-01

    Synechococcus sp. IU 625 is one of the freshwater cyanobacteria responsible for harmful algal blooms (HAB). Cyanophages can serve as natural control agents and may be responsible for algal bloom prevention and disappearance. Cyanophage AS-1, which infects Synechococcus sp. IU 625 (Anacystis nidulans) and Synechococcus cedrorum, plays an important role in the environment, significantly altering the numbers of its hosts. Since seasonal (temperature-dependent) lytic induction of cyanobacterial prophage has been proposed to affect seawater algal blooms, we investigated if the AS-1 lytic cycle could be induced by a shift to high temperature. Our hypothesis was confirmed, as more phages were released at 35°C than at 24°C, with maximal induction observed with a shift from 24 to 35°C. Furthermore, transmission electron microscopy (TEM) images provide direct evidence of lysogenic to lytic conversion with temperature shift. Thus, temperature is an important inducer for AS-1 conversion from lysogenic to lytic cycle and could have applications in terms of modulating cyanobacterial populations in freshwater aquatic environments. The study gives insight into the effect of climate change on the interaction between cyanophage and cyanobacteria in freshwater ecosystems.

  4. Practice induces function-specific changes in brain activity.

    Directory of Open Access Journals (Sweden)

    Tamar R van Raalten

    Full Text Available BACKGROUND: Practice can have a profound effect on performance and brain activity, especially if a task can be automated. Tasks that allow for automatization typically involve repeated encoding of information that is paired with a constant response. Much remains unknown about the effects of practice on encoding and response selection in an automated task. METHODOLOGY: To investigate function-specific effects of automatization we employed a variant of a Sternberg task with optimized separation of activity associated with encoding and response selection by means of m-sequences. This optimized randomized event-related design allows for model free measurement of BOLD signals over the course of practice. Brain activity was measured at six consecutive runs of practice and compared to brain activity in a novel task. PRINCIPAL FINDINGS: Prompt reductions were found in the entire cortical network involved in encoding after a single run of practice. Changes in the network associated with response selection were less robust and were present only after the third run of practice. CONCLUSIONS/SIGNIFICANCE: This study shows that automatization causes heterogeneous decreases in brain activity across functional regions that do not strictly track performance improvement. This suggests that cognitive performance is supported by a dynamic allocation of multiple resources in a distributed network. Our findings may bear importance in understanding the role of automatization in complex cognitive performance, as increased encoding efficiency in early stages of practice possibly increases the capacity to otherwise interfering information.

  5. Reduced PKC α Activity Induces Senescent Phenotype in Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rukmini B. Govekar

    2012-01-01

    Full Text Available The molecular mechanism mediating expression of senescent cell antigen-aggregated or cleaved band 3 and externalized phosphatidylserine (PS on the surface of aged erythrocytes and their premature expression in certain anemias is not completely elucidated. The erythrocytes with these surface modifications undergo macrophage-mediated phagocytosis. In this study, the role of protein kinase C (PKC isoforms in the expression of these surface modifications was investigated. Inhibition of PKC α by 30 μM rottlerin (R30 and 2.3 nM Gö 6976 caused expression of both the senescent cell marker-externalized PS measured by FACS analysis and aggregated band 3 detected by western blotting. In contrast to this observation, but in keeping with literature, PKC activation by phorbol-12-myristate-13-acetate (PMA also led to the expression of senescence markers. We explain this antithesis by demonstrating that PMA-treated cells show reduction in the activity of PKC α, thereby simulating inhibition. The reduction in PKC α activity may be attributed to the known downregulation of PMA-activated PKC α, caused by its membrane translocation and proteolysis. We demonstrate membrane translocation of PKC α in PMA-treated cells to substantiate this inference. Thus loss of PKC α activity either by inhibition or downregulation can cause surface modifications which can trigger erythrophagocytosis.

  6. Expression and activities of three inducible enzymes in the healing of gastric ulcers in rats

    Institute of Scientific and Technical Information of China (English)

    Jin-Sheng Guo; Chi-Hin Cho; Wei-Ping Wang; Xi-Zhong Shen; Chuen-Lung Cheng; Marcel Wing Leung Koo

    2003-01-01

    AIM: To explore the roles of nitric oxide synthase (NOS),heme oxygenase (HO) and cyclooxygenase (COX) in gastric ulceration and to investigate the relationships of the expression and activities of these enzymes at different stages of gastric ulceration.METHODS: Gastric ulcers (kissing ulcers) were induced by luminal application of acetic acid. Gastric tissue samples were obtained from the ulcer base, ulcer margin, and nonulcerated area around the ulcer margin at different time intervals after ulcer induction. The mRNA expression and protein levels of inducible and constitutive isoforms of NOS,HO and COX were analyzed with RT-PCR and Western blotting methods. The activities of the total NOS, inducible NOS (iNOS), HO, and COX were also determined.RESULTS: Differential expression of inducible iNOS, HO-1and COX-2 and enzyme activities of NOS, HO and COX were found in the gastric ulcer base. High iNOS expression and activity were observed on day 1 to day 3 in severely inflamed ulcer tissues. Maximum expressions of HO-1 and COX-2 and enzyme activities of HO and COX lagged behind that of iNOS,and remained at high levels during the healing phase.CONCLUSION: The expression and activities of inducible NOS, HO-1 and COX-2 are found to be correlated to different stages of gastric ulceration. Inducible NOS may contribute to ulcer formation while HO-1 and COX-2 may promote ulcer healing.

  7. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1.

    Science.gov (United States)

    Staal, Jens; Driege, Yasmine; Bekaert, Tine; Demeyer, Annelies; Muyllaert, David; Van Damme, Petra; Gevaert, Kris; Beyaert, Rudi

    2011-05-04

    The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) is central to lymphocyte activation and lymphomagenesis. MALT1 mediates antigen receptor signalling to NF-κB by acting as a scaffold protein. Furthermore, MALT1 has proteolytic activity that contributes to optimal NF-κB activation by cleaving the NF-κB inhibitor A20. Whether MALT1 protease activity is involved in other signalling pathways, and the identity of the relevant substrates, is unknown. Here, we show that T-cell receptors (TCR) activation, as well as overexpression of the oncogenic API2-MALT1 fusion protein, results in proteolytic inactivation of CYLD by MALT1, which is specifically required for c-jun N-terminal kinase (JNK) activation and the inducible expression of a subset of genes. These results indicate a novel role for MALT1 proteolytic activity in TCR-induced JNK activation and reveal CYLD cleavage as the underlying mechanism.

  8. Anticonvulsive effects of nimodipine on penicillin-induced epileptiform activity.

    Science.gov (United States)

    Bağirici, Faruk; Bostanci, M Omer

    2006-01-01

    The common features of all types of epilepsy are synchronized and uncontrolled discharges of nerve cell assemblies. It is believed that calcium ions play an important role in the generation of epileptic activity. Excessive calcium influx into neurons is the first step toward a seizure. The aim of the present study is to investigate whether the calcium channel blocker nimodipine has anticonvulsive effects. The left cerebral cortex was exposed by craniotomy in anaesthetized rats. An epileptic focus was produced by injection of penicillin G potassium (500 units) into the somatomotor cortex. After the epileptiform activity reached maximum frequency and amplitude; nimodipine was injected into the same area. Application of nimodipine caused an inhibition in the electrocorticograms (ECoG). Solvent alone did not affect the epileptiform activity. The results of this study indicate that nimodipine may have anticonvulsant effects.

  9. Physical activity moderates stressor-induced rumination on cortisol reactivity

    Science.gov (United States)

    Puterman, Eli; O’Donovan, Aoife; Adler, Nancy E.; Tomiyama, A. Janet; Kemeny, Margaret; Wolkowitz, Owen M.; Epel, Elissa

    2011-01-01

    Objective Physically active individuals have lower rates of morbidity and mortality, and recent evidence indicates that physical activity may be particularly beneficial to those experiencing chronic stress. The tendency to ruminate increases and prolongs physiological stress responses, including hypothalamic-pituitary adrenal (HPA) axis responses as indexed by cortisol reactivity to stressful experiences. We examined the association between ruminating in response to a laboratory stressor task and HPA axis reactivity and recovery, and whether a physically active lifestyle moderates the associations between rumination and cortisol output trajectories. Methods Forty-six post-menopausal women underwent the Trier Social Stress Test while salivary cortisol was repeatedly measured. Twenty-five minutes after the end of the stressor, participants reported level of rumination in response to the stress. Results Findings indicate that physical activity moderated the initial rate (B = −.10, SE = .04, p < .05) and curvature (B = −.03, SE = .01, p = .06) of the relationship between rumination and log-transformed cortisol trajectory. Among sedentary participants, those who responded to the stressor with higher levels of rumination had a more rapid initial increase in cortisol (0.26 vs 0.21, p < .001), a later peak (56 vs. 39 minutes), and a delayed recovery (curvature −0.07 vs. −0.08, p < .001) compared to those with lower levels of rumination. In active participants, cortisol trajectories were equivalent, regardless of level of rumination. Conclusions In sum, individuals who maintain a physically active lifestyle may be protected against the effects of rumination on HPA axis reactivity to and recovery from acute stress. PMID:21873586

  10. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.

  11. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia

    Science.gov (United States)

    Zhang, Qian; Doucet, Michele; Tomlinson, Ryan E; Han, Xiaobin; Quarles, L Darryl; Collins, Michael T; Clemens, Thomas L

    2016-01-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-1α (HIF-1α) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-1α mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-1α and FGF23 were co-localized in spindle-shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-1α protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-1α expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-1α inhibitors decreased HIF-1α and FGF23 protein accumulation and inhibited HIF-1α-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-1α consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-1α inhibitor. These results show for the first time that HIF-1α is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-1α activity in TIO contributes to the aberrant FGF23 production in these patients. PMID:27468359

  12. Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Angiotensin II–Induced Inflammation and Hypertension

    Science.gov (United States)

    Ebrahimian, Talin; Li, Melissa Wei; Lemarié, Catherine A.; Simeone, Stefania M.C.; Pagano, Patrick J.; Gaestel, Matthias; Paradis, Pierre; Wassmann, Sven; Schiffrin, Ernesto L.

    2015-01-01

    Vascular oxidative stress and inflammation play an important role in angiotensin II–induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase–activated protein kinase 2 (MK2), a downstream target of p38 mitogen–activated protein kinase, is involved in angiotensin II–induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II–induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II–induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II–induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II–induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II–induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II–induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and

  13. Activation of JNK/Bim/Bax pathway in UV-induced apoptosis

    Science.gov (United States)

    Liu, Lei; Hui, Li; Zhang, Zhen-zhen

    2011-03-01

    Cell apoptosis induced by UV irradiation is a highly complex process in which different molecular signaling pathways are involved. JNK has been proposed as an important regulator in UV irradiation-induced apoptosis. However, the molecular mechanism through which JNK regulates apoptosis, especially how JNK activates Bax in response to UV irradiation is still controversial. In this study, using real-time single-cell analysis, we studied the machinery of Bax activation during UV-induced apoptosis. UV treatment resulted in a series of events: phosphorylation of JNK, mitochondrial translocation of Bim, and subsequent activation of Bax. The activation of Bim and Bax could be inhibited in the presence of SP600125 (a specific inhibitor of JNK), suggesting that UV irradiation activated the JNK/Bim/Bax pathway.

  14. TELOMERASE ACTIVITY DURING 7, 12-DIMETHYLBENZ [a] ANTHRACENE-INDUCED HAMSTER BUCCAL POUCH CARCINOGENESIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the roles of telomerase activity (TA) in relation to hamster buccal pouch tumor progression. Methods: male hamster were treated three times weekly with 0.5% of 7, 12-dimethyl- benzanthracene (DMBA) over a 15 weeks experimental period. Hamsters were sacrificed at 3, 6, 9, 12 and 15 weeks after treatment. Telomerase activity of hamster buccal pouch tissue were measured along with the analyses of the formation of DMBA-induced hamster buccal pouch tumors. Results: DMBA-induced squamous cell carcinomas were found at the 6th week after dosing. Telomerase activity elevation began at the 3rd week and was increasing to a plateau at the 12th week. Conclusion: Our results show that telomerase activity in the target tissue may be detected at the early stage of the DMBA-induced hamster buccal pouch tumor formation and suggests that telomerase activity may be used as a biomarker for an early clinical detection of buccal pouch cancer.

  15. High hydrostatic pressure treatment of porcine oocytes induces parthenogenetic activation

    DEFF Research Database (Denmark)

    Lin, Lin; Pribenszky, Csaba; Molnár, Miklós

    2010-01-01

    An innovative technique called high hydrostatic pressure (HHP) treatment has recently been reported to improve the cryosurvival of gametes and embryos in certain mammalian species, including the mouse, pig, and cattle. In the present study the parthenogenetic activation (PA) of pig oocytes caused...

  16. Activation of endothelial β-catenin signaling induces heart failure

    Science.gov (United States)

    Nakagawa, Akito; Naito, Atsuhiko T.; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P.; Adams, Ralf H.; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  17. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    Science.gov (United States)

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  18. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts

    Directory of Open Access Journals (Sweden)

    Bost Kenneth L

    2003-04-01

    Full Text Available Abstract Background Staphylococcus aureus infection of normal osteoblasts induces expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Results Normal osteoblasts were incubated in the presence of purified bacterial products over a range of concentrations. Results demonstrate that purified surface structures and a selected superantigen present in the extracellular environment are not capable of inducing TRAIL expression by osteoblasts. Osteoblasts were co-cultured with S. aureus at various multiplicities of infection utilizing cell culture chamber inserts. Results of those experiments suggest that direct contact between bacteria and osteoblasts is necessary for optimal TRAIL induction. Finally, S. aureus infection of osteoblasts in the presence of anti-TRAIL antibody demonstrates that TRAIL mediates caspase-8 activation and apoptosis of infected cells. Conclusions Collectively, these findings suggest a mechanism whereby S. aureus mediates bone destruction via induction of osteoblast apoptosis.

  19. LSD-induced entropic brain activity predicts subsequent personality change.

    Science.gov (United States)

    Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L

    2016-09-01

    Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. P38 activation is more important than ERK activation in lung injury induced by prolonged hyperbaric oxygen.

    Science.gov (United States)

    Ma, Jun; Fang, Yi-Qun; Gu, Ai-Mei; Wang, Fang-Fang; Zhang, Shi; Li, Kai-Cheng

    2013-01-01

    Prolonged exposure to hyperbaric oxygen can cause pulmonary and nerve system toxicity. Although hyperbaric oxygen treatment has been used for a broad spectrum of ailments, the mechanisms of prolonged hyperbaric oxygen-induced lung injury are not fully understood. The purpose of the present work was to investigate the roles of ERK, p38, and caspase-3 in rat lung tissue exposed to hyperbaric oxygen at 2.3 atmospheres absolute (atm abs) for two, six and 10 hours. The results showed that the ERK and p38 were phosphorylated at two hours and reached a peak at six hours into exposure to hyperbaric oxygen. While the phosphorylation level of ERK decreased, p38 remained at a high level of activation at 10 hours. The activation of ERK and p38 was down-regulated when rats were exposed to normoxic hyperbaric nitrogen for 10 hours. However, caspase-3 was activated at six hours and 10 hours into exposure to hyperbaric oxygen. These results demonstrated different changes of activation of ERK and p38 during lung injury induced by prolonged exposure to hyperbaric oxygen. The time course changes of activated caspase-3 were similar to the process of p38 activation upon exposure to hyperbaric oxygen. In this way, activation of p38, not ERK, seems to be a mechanism associated with prolonged hyperbaric oxygen-induced lung injury.

  1. On the Rhythm of Chinese Poetry of the Syllable Pause System%论音顿体系的汉语诗歌节奏

    Institute of Scientific and Technical Information of China (English)

    孙则鸣

    2013-01-01

    Given that the rhythm of some Chinese new metrical poems is not so beautiful, this paper traces back to the origin of western music rhythm and meter system and finds that Chinese poetry has a typical syllable-pause system rhythm rather than a sound foot system rhythm. However, "the theory of neat pauses”and“the theory of foot symmetry“of Chinese new poetry are influenced by the Western foot theory, because of which, the beauty of the rhythm of some poems is not so obvious. Chinese poetry must revert to syllable-pause system, in order to per⁃fectly realize the beautiful rhythm of Chinese poetry. The creation of poems in Chinese syllable-pause system forms a specific pattern, which can serve as a reference for writers.%  鉴于部分格律体新诗作品节奏美并不强的现实,本文追溯了西方音顿体系节奏和音步体系节奏的本源,发现汉语诗歌是典型的音顿体系节奏而不是音步体系节奏,而我国新诗格律的“顿数整齐论”和“音步对称论”是受西方音步理论影响而形成的,因而导致了部分作品节奏美不强;汉语诗歌必须回归音顿体系的正轨,才能完备地实现汉语诗歌节奏美。汉语音顿体系诗歌在创作中形成了具体形式法度,可供创作者借鉴。

  2. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo.

    Science.gov (United States)

    Budhraja, Amit; Gao, Ning; Zhang, Zhuo; Son, Young-Ok; Cheng, Senping; Wang, Xin; Ding, Songze; Hitron, Andrew; Chen, Gang; Luo, Jia; Shi, Xianglin

    2012-01-01

    In this study, we investigated the functional role of Akt and c-jun-NH(2)-kinase (JNK) signaling cascades in apigenin-induced apoptosis in U937 human leukemia cells and anti-leukemic activity of apigenin in vivo. Apigenin induced apoptosis by inactivation of Akt with a concomitant activation of JNK, Mcl-1 and Bcl-2 downregulation, cytochrome c release from mitochondria, and activation of caspases. Constitutively active myristolated Akt prevented apigenin-induced JNK, caspase activation, and apoptosis. Conversely, LY294002 and a dominant-negative construct of Akt potentiated apigenin-induced apoptosis in leukemia cells. Interruption of the JNK pathway showed marked reduction in apigenin-induced caspase activation and apoptosis in leukemia cells. Furthermore, in vivo administration of apigenin resulted in attenuation of tumor growth in U937 xenografts accompanied by inactivation of Akt and activation of JNK. Attenuation of tumor growth in U937 xenografts by apigenin raises the possibility that apigenin may have clinical implications and can be further tested for incorporating in leukemia treatment regimens. ©2011 AACR.

  3. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  4. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release.

    Science.gov (United States)

    Thornton, Peter; Pinteaux, Emmanuel; Gibson, Rosemary M; Allan, Stuart M; Rothwell, Nancy J

    2006-07-01

    Interleukin (IL)-1 expression is induced rapidly in response to diverse CNS insults and is a key mediator of experimentally induced neuronal injury. However, the mechanisms of IL-1-induced neurotoxicity are unknown. The aim of the present study was to examine the toxic effects of IL-1 on rat cortical cell cultures. Treatment with IL-1beta did not affect the viability of pure cortical neurones. However, IL-1 treatment of cocultures of neurones with glia or purified astrocytes induced caspase activation resulting in neuronal death. Neuronal cell death induced by IL-1 was prevented by pre-treatment with the IL-1 receptor antagonist, the broad spectrum caspase inhibitor Boc-Asp-(OMe)-CH(2)F or the antioxidant alpha-tocopherol. The NMDA receptor antagonist dizolcipine (MK-801) attenuated cell death induced by low doses of IL-1beta but the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) had no effect. Inhibition of inducible nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester had no effect on neuronal cell death induced by IL-1beta. Thus, IL-1 activates the IL-1 type 1 receptor in astrocytes to induce caspase-dependent neuronal death, which is dependent on the release of free radicals and may contribute to neuronal cell death in CNS diseases.

  5. Cucurbitacin E Induces Autophagy via Downregulating mTORC1 Signaling and Upregulating AMPK Activity.

    Directory of Open Access Journals (Sweden)

    Qing-Bing Zha

    Full Text Available Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity.

  6. Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Yan-Qin Zhang; Xiao-Qing Tang; Li Sun; Lin Dong; Yong Qin; Hua-Qing Liu; Hong Xia; Jian-Guo Cao

    2007-01-01

    AIM: To examine whether and how rosiglitazone enhances apoptosis induced by fluorouracil in human colon cancer (HT-29) cells.METHODS: Human colon cancer HT-29 cells were cultured in vitro and treated with fluorouracil and/or rosiglitazone. Proliferation and growth of HT-29 cells were evaluated by MTT assay and trypan blue exclusion methods, respectively. The apoptosis of HT-29 cells was determined by acridine orange/ethidium bromide staining and flow cytometry using PI fluorescence staining. The expressions of peroxisome proliferator-activated receptor y (PPARy), Bcl-2 and Bax in HT-29 cells were analyzed by Western blot.RESULTS: Although rosiglitazone at the concentration below 30 umol/L for 72 h exerted almost no inhibitory effect on proliferation and growth of HT-29 cells, it could significantly enhance fluorouracil-induced HT-29 cell proliferation and growth inhibition. Furthermore, 10 umol/L rosilitazone did not induce apoptosis of HT-29 cells but dramatically enhanced fluorouracil-induced apoptosis of HT-29 cells. However, rosiglitazone did not improve apoptosis induced by fluorouracil in HT-29 cells pretreated with GW9662, a PPARy antagonist. Meanwhile, the expression of Bax and PPARy was up-regulated, while the expression of Bcl-2 was down regulated in HT-29 cells treated with rosiglitazone in a time-dependent manner. However, the effect of rosiglitazone on Bcl-2 and Bax was blocked or diminished in the presence of GW9662.CONCLUSION: Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating PPARγ.

  7. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  8. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  9. TRPM2 contributes to LPC-induced intracellular Ca(2+) influx and microglial activation.

    Science.gov (United States)

    Jeong, Heejin; Kim, Yong Ho; Lee, Yunsin; Jung, Sung Jun; Oh, Seog Bae

    2017-02-20

    Microglia are the resident immune cells which become activated in some pathological conditions in central nervous system (CNS). Lysophosphatidylcholine (LPC), an endogenous inflammatory phospholipid, is implicated in immunomodulatory function of glial cells in the CNS. Although several studies uncovered that LPC induces intracellular Ca(2+) influx and morphologic change in microglia, there is still no direct evidence showing change of phosphorylation of mitogen-activated protein kinase (MAPK) p38 (p-p38), a widely used microglia activation marker, by LPC. Furthermore, the cellular mechanism of LPC-induced microglia activation remains unknown. In this study, we found that LPC induced intracellular Ca(2+) increase in primary cultured microglia, which was blocked in the presence of Gd(3+), non-selective transient receptor potential (TRP) channel blocker. RT-PCR and whole cell patch clamp recordings revealed molecular and functional expression of TRP melastatin 2 (TRPM2) in microglia. Using western blotting, we also observed that LPC increased phosphorylation of p38 MAPK, and the increase of p-p38 expression is also reversed in TRPM2-knockout (KO) microglia. Moreover, LPC induced membrane trafficking of TRPM2 and intrathecal injection of LPC increased Iba-1 immunoreactivity in the spinal cord, which were significantly reduced in KO mice. In addition, LPC-induced intracellular Ca(2+) increase and inward currents were abolished in TRPM2-KO microglia. Taken together, our results suggest that LPC induces intracellular Ca(2+) influx and increases phosphorylation of p38 MAPK via TRPM2, which in turn activates microglia.

  10. Parallel activation of Ca(2+)-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress.

    Science.gov (United States)

    Chiong, M; Parra, V; Eisner, V; Ibarra, C; Maldonado, C; Criollo, A; Bravo, R; Quiroga, C; Contreras, A; Vicencio, J M; Cea, P; Bucarey, J L; Molgó, J; Jaimovich, E; Hidalgo, C; Kroemer, G; Lavandero, S

    2010-08-01

    Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.

  11. The structure of Doppler peaks induced by active perturbations

    CERN Document Server

    Magueijo, J; Ferreira, P; Coulson, D; Magueijo, Joao; Albrecht, Andreas; Ferreira, Pedro; Coulson, David

    1996-01-01

    We investigate how the qualitative structure of Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy is affected by basic assumptions going into theories of structure formation. We define the concepts of ``coherent'' and ``incoherent'' fluctuations, and also of ``active'' and ``passive'' fluctuations. In these terms inflationary fluctuations are passive and coherent while topological defects are active incoherent fluctuations. Causality and scale invariance are shown to have different implementations in theories differing in the above senses. We then extend the formalism of Hu and Sugiyama to treat models with cosmic defects. Using this formalism we show that the existence or absence of secondary Doppler peaks and the rough placing of the primary peak are very sensitive to the fundamental properties defined. We claim therefore that even a rough measurement of the angular power spectrum C_l shape at 100

  12. Knockdown of FOXO3 induces primordial oocyte activation in pigs.

    Science.gov (United States)

    Moniruzzaman, Mohammad; Lee, Jibak; Zengyo, Mai; Miyano, Takashi

    2010-02-01

    Mammalian ovaries are endowed with a large number of primordial follicles, each containing a nongrowing oocyte. Only a small population of primordial oocytes (oocytes in primordial follicles) is activated to enter the growth phase throughout a female's reproductive life. Little is known about the mechanism regulating the activation of primordial oocytes. Here, we found that the primordial oocytes from infant pigs (10- to 20-day-old) grew to full size at 2 months after xenografting to immunodeficient mice, whereas those from prepubertal pigs (6-month-old) survived without initiation of their growth even after 4 months; thereafter, they started to grow and reached full size after 6 months. These results suggest that the mechanism regulating the activation of primordial oocytes in prepubertal pigs is different from that in infant pigs. In this regard, the involvement of FOXO3, a forkhead transcription factor, was studied. In prepubertal pigs, FOXO3 was detected in almost all (94+/-2%) primordial oocyte nuclei, and in infant pigs, 42+/-7% primordial oocytes were FOXO3 positive. At 4 months after xenografting, the percentage of FOXO3-positive primordial oocytes from prepubertal pigs had decreased to the infant level. Further, siRNA was designed to knock down porcine FOXO3. FOXO3-knockdown primordial follicles from prepubertal pigs developed to the antral stage accompanied by oocyte growth at 2 months after xenografting. These results suggest that primordial oocytes are dormant in prepubertal pigs by a FOXO3-related mechanism to establish a nongrowing oocyte pool in the ovary, and that a transient knockdown of the FOXO3 activates the primordial oocytes to enter the growth phase.

  13. HIV-induced immune activation - pathogenesis and clinical relevance

    Directory of Open Access Journals (Sweden)

    Stellbrink HJ

    2010-01-01

    Full Text Available Abstract This manuscript is communicated by the German AIDS Society (DAIG http://www.daignet.de. It summarizes a series of presentations and discussions during a workshop on immune activation due to HIV infection. The workshop was held on November 22nd 2008 in Hamburg, Germany. It was organized by the ICH Hamburg under the auspices of the German AIDS Society (DAIG e.V..

  14. Hypolipidemic activity of Semecarpus anacardium in Streptozotocin induced diabetic rats.

    Science.gov (United States)

    Jaya, Aseervatham; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2010-08-01

    Alterations in lipid metabolism and lipoprotein disturbances have played an important role in increasing the risk of cardiovascular mortality and morbidity in diabetes. A drug that has hypoglycemic activity can be used for the treatment of hyperlipidemia also. The present study was carried out to evaluate the hypolipidemic activity of Semecarpus anacardium. Male Wister rats weighing 250-270 g were injected with Streptozotocin at a dose of 50 mg/kg body weight and administered with S. anacardium (300 mg/kg body weight) and Metformin (500 mg/kg body weight) for 21 days. Control and drug control groups were also included in the study. After the experimental duration, serum was collected, liver and kidney were excised and used for the analysis of lipid and lipid metabolizing enzymes. The results of the study revealed that S. anacardium administration was able to decrease the levels of LDL, cholesterol, VLDL, TG, phospholipid and free fatty acid and increase the HDL levels and favorably modulate the lipid metabolizing enzymes in the liver and kidney. These results show that S. anacardium exerts hypolipidemic activity in diabetic rats.

  15. Disappearance of a coronal hole induced by a filament activation

    CERN Document Server

    Lin, Ma; Xiao-Li, Yan; Zhi-Ke, Xue

    2014-01-01

    We present a rare observation of direct magnetic interaction between an activating filament and a coronal hole (CH). The filament was a quiescent one located at the northwest of the CH. It underwent a nonradial activation, during which filament material constantly fell and intruded into the CH. As a result, the CH was clearly destroyed by the intrusion. Brightenings appeared at the boundaries and in the interior of the CH, meanwhile, its west boundaries began to retreat and the area gradually shrank. It is noted that the CH went on shrinking after the end of the intrusion and finally disappeared entirely. Following the filament activation, three coronal dimmings (D1-D3) were formed, among which D1 and D2 persisted throughout the complete disappearance of the CH. The derived coronal magnetic configuration shows that the filament was located below an extended loop system which obviously linked D1 to D2. By comparison with this result of extrapolation, our observations imply that the interaction between the fila...

  16. Smoking-Cue Induced Brain Activation In Adolescent Light Smokers

    Science.gov (United States)

    Rubinstein, Mark L.; Luks, Tracy L.; Moscicki, Anna-Barbara; Dryden, Wendy; Rait, Michelle A.; Simpson, Gregory V.

    2010-01-01

    Purpose Using fMRI, we examined whether or not adolescents with low levels of nicotine exposure (light smokers) display neural activation in areas shown to be involved with addiction in response to smoking-related stimuli. Design/Setting/Participants Twelve adolescent light smokers (aged 13 to17, smoked 1 to 5 cigarettes per day) and 12 non-smokers (ages 13 to 17, never smoked a cigarette) from the San Francisco Bay Area underwent fMRI scanning. During scanning they viewed blocks of photographic smoking and control cues. Smoking cues consisted of pictures of people smoking cigarettes and smoking-related objects such as lighters and ashtrays. Neutral cues consisted of everyday objects and people engaged in everyday activities. Findings For smokers, smoking cues elicited greater activation than neutral cues in the mesolimbic reward circuit (left anterior cingulate (T=7.88, pbrain regions seen in adult and heavy teen smokers suggests that even at low levels of smoking, adolescents exhibit heightened reactivity to smoking cues. This paper adds to the existing literature suggesting that nicotine dependence may begin with exposure to low levels of nicotine, underscoring the need for early intervention among adolescent smokers. PMID:21185518

  17. Bactericidal activity of titanium dioxide ultraviolet-induced films

    Energy Technology Data Exchange (ETDEWEB)

    Pleskova, S.N., E-mail: pleskova@mail.ru [Laboratory of Biochemistry and Molecular Biology, Tomsk State University, ave. Lenina 36, Tomsk 634050 (Russian Federation); Golubeva, I.S., E-mail: golubmay@mail.ru [Institute of applied biotechnology of Nizhny Novgorod, Yablonevaya Street 22, Nizhny Novgorod 603093 (Russian Federation); Verevkin, Y.K., E-mail: verevkin@appl.sci-nnov.ru [Institute of applied physics of the Russian Academy of Science, Ul' yanov Street, 46, Nizhny Novgorod 603950 (Russian Federation)

    2016-02-01

    TiO{sub 2} films are used as a self-sterilization surface due to their property to form reactive oxygen species (ROS) when irradiated with ultraviolet light. These ROS attack bacteria and kill them. We present a new way to enhance the bactericidal activity of TiO{sub 2}-films: formation of nanopores on the surface by four-beam high-power laser irradiation. Such surfaces have significantly higher antibacterial activity as compared to conventional TiO{sub 2} surfaces after 15 and 60 min of UV irradiation. Study of the bacterial cell morphology by atomic force microscopy after 60 min irradiation showed that Staphylococcus aureus 956 and Escherichia coli 321–5 undergo significant morphological changes. S. aureus assume atypical elongated shapes after UV treatment alone and swollen forms with protrusions after UV treatment on TiO{sub 2} surface. E. coli exhibit oval or round forms after UV treatment alone, and round forms with small protrusions, and destroyed cells after incubation under UV on the TiO{sub 2} film. - Highlights: • Nanopores on the TiO{sub 2} surface enhance the bactericidal activity of films. • The bactericidal effect of TiO{sub 2} is strain-specific. • The bacterial morphology significantly changes after UV/TiO{sub 2} treatment.

  18. L1 cell adhesion molecule induces melanoma cell motility by activation of mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yi, Young-Su; Baek, Kwang-Soo; Cho, Jae Youl

    2014-06-01

    L1 cell adhesion molecule (L1CAM) is highly expressed in various types of cancer cells and has been implicated in the control of cell proliferation and motility. Recently, L1CAM was reported to induce the motility of melanoma cells, but the mechanism of this induction remains poorly understood. In this study, we investigated the molecular mechanisms by which L1CAM induces the motility of melanoma cells. Unlike other types of cancer cells, B16F10 melanoma cells highly expressed L1CAM at both the RNA and protein levels, and the expression of L1CAM induced AP-1 activity. In accordance to AP-1 activation, MAPK signaling pathways were activated by L1CAM. Inhibition of L1CAM expression by L1CAM-specific siRNA suppressed the activation of MAPKs such as ERK and p38. However, no significant change was observed in JNK activation. As expected, upstream MAP2K, MKK3/6, MAP3K, and TAK1 were also deactivated by the inhibition of L1CAM expression. L1CAM induced the motility of B16F10 cells. Inhibition of L1CAM expression suppressed migration and invasion of B16F10 cells, but no suppressive effect was observed on their proliferation and anti-apoptotic resistance. Treatment of B16F10 cells with U0126, an ERK inhibitor, or SB203580, a p38 inhibitor, suppressed the migration and invasion abilities of B16F10 cells. Taken together, our results suggest that L1CAM induces the motility of B16F10 melanoma cells via the activation of MAPK pathways. This finding provides a more detailed molecular mechanism of L1CAM-mediated induction of melanoma cell motility.

  19. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  20. RIG-I and dsRNA-induced IFNbeta activation.

    Directory of Open Access Journals (Sweden)

    Stéphane Hausmann

    Full Text Available Except for viruses that initiate RNA synthesis with a protein primer (e.g., picornaviruses, most RNA viruses initiate RNA synthesis with an NTP, and at least some of their viral (pppRNAs remain unblocked during the infection. Consistent with this, most viruses require RIG-I to mount an innate immune response, whereas picornaviruses require mda-5. We have examined a SeV infection whose ability to induce interferon depends on the generation of capped dsRNA (without free 5' tri-phosphate ends, and found that this infection as well requires RIG-I and not mda-5. We also provide evidence that RIG-I interacts with poly-I/C in vivo, and that heteropolymeric dsRNA and poly-I/C interact directly with RIG-I in vitro, but in different ways; i.e., poly-I/C has the unique ability to stimulate the helicase ATPase of RIG-I variants which lack the C-terminal regulatory domain.

  1. Mutations induced by dacarbazine activated with cytochrome P-450.

    Science.gov (United States)

    Mudipalli, A; Nadadur, S S; Maccubbin, A E; Gurtoo, H L

    1995-03-01

    The mutagenicity of the antitumor drug dacarbazine (DTIC) is due to alkylation of cellular DNA by metabolites resulting from the metabolism of this drug by the mixed function oxidase system. In the present study, we used an in vitro shuttle vector assay to study the base and sequence specificity of mutagenesis by DTIC. The shuttle vector plasmid pSP189 was treated with DTIC (1-2.5 mM) in vitro in a reconstituted cytochrome P-450 system at 37 degrees C for either 30 or 60 min. SupF tRNA gene insert contained in the plasmid was sequenced after replication of the drug-treated plasmid in human Ad 293 cells followed by amplification in indicator bacteria. Mutagenesis of DTIC in this system was dependent upon the presence of the cytochrome P-450 reconstituted system and NADPH. Mutations induced by DTIC included single base substitutions (35%), single base deletions (30.5%), single base insertions (19.4%) and large deletions (13.8%). Among the substitutions, transversions and transitions were in the ratio of 1:0.7. Base pairs 108 and 127 in the SupF tRNA of the pSP189 were identified as mutational hot spots.

  2. In vivo antioxidant activity of bark extract of Bixa orellana L. against acetaminophen- induced oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Smilin Bell Aseervatham G; Shamna R; Sangeetha B; Sasikumar JM

    2012-01-01

    Objective: To evaluate the in vivo activity of bark extract of Bixa orellana L. (B. orellana) against acetaminophen induced oxidative stress. Methods: In the present study, antioxidant activity ofB. orellana was evaluated by using normal and acetaminophen induced oxidative stressed rats at the dose of 100 mg/kg and 200 mg/kg p.o. oraly daily for 20 days. The animal's body weight was checked before and after treatment. Different biochemical parameters such as serum glutamate pyruvate transaminases, serum glutamate oxalo transaminases, alkaline phosphatase, total bilirubin, cholesterol, protein, lactate dehydrogenase, superoxide dismutase, catalase, ascorbic acid, lipid peroxide was performed. Histopathological analysis of the control and the hepatotoxicity induced rats were performed. Results: It was observed that the B. orellana bark extract showed significant protective activity against acetaminophen induced damage at 200 mg/kg dose level, while the 100 mg/kg dose showed moderate activity. Conclusions: From the result obtained in the present study suggest that B. orellana bark extract elicit protective activity through antioxidant activity on acetaminophen induced hepatic damage in rats.

  3. Cardiac hypertrophy induced by active Raf depends on Yorkie-mediated transcription.

    Science.gov (United States)

    Yu, Lin; Daniels, Joseph P; Wu, Huihui; Wolf, Matthew J

    2015-02-03

    Organ hypertrophy can result from enlargement of individual cells or from cell proliferation or both. Activating mutations in the serine-threonine kinase Raf cause cardiac hypertrophy and contribute to Noonan syndrome in humans. Cardiac-specific expression of activated Raf also causes hypertrophy in Drosophila melanogaster. We found that Yorkie (Yki), a transcriptional coactivator in the Hippo pathway that regulates organ size, is required for Raf-induced cardiac hypertrophy in flies. Although aberrant activation of Yki orthologs stimulates cardiac hyperplasia in mice, cardiac-specific expression of an activated mutant form of Yki in fruit flies caused cardiac hypertrophy without hyperplasia. Knockdown of Yki caused cardiac dilation without loss of cardiomyocytes and prevented Raf-induced cardiac hypertrophy. In flies, Yki-induced cardiac hypertrophy required the TEA domain-containing transcription factor Scalloped, and, in mammalian cells, expression of mouse Raf(L613V), an activated form of Raf with a Noonan syndrome mutation, increased Yki-induced Scalloped activity. Furthermore, overexpression of Tgi (a Tondu domain-containing Scalloped-binding corepressor) in the fly heart abrogated Yki- or Raf-induced cardiac hypertrophy. Thus, crosstalk between Raf and Yki occurs in the heart and can influence Raf-mediated cardiac hypertrophy.

  4. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Wojtaszewski, Jørgen; Viollet, Benoit

    2005-01-01

    We tested the hypothesis that 5'AMP-activated protein kinase (AMPK) plays an important role in regulating the acute, exercise-induced activation of metabolic genes in skeletal muscle, which were dissected from whole-body a2- and a1-AMPK knockout (KO) and wild-type (WT) mice at rest, after treadmi...

  5. Effect of high-pressure helium on latex-induced activated chemiluminescence of human blood leucocytes.

    Science.gov (United States)

    Tyurin-Kuz'min, A Yu; Vdovin, A V

    2003-09-01

    High-pressure helium reduces the latex-induced activated chemiluminescence of diluted human blood. This effect is more noticeable, when lucigenin rather than luminol is used as the activator of chemiluminescence. The effect lessens in the presence of Mg2+ but not Ca2+. The data suggest the association of this effect with actin polymerization in leucocytes phagocytosing the latex particles.

  6. Measurement and simulation of proton induced activation of LaBr3 : Ce

    NARCIS (Netherlands)

    Buis, E. J.; Beijers, H.; Brandenburg, S.; Bos, A. J. J.; Dathy, C.; Dorenbos, P.; Drozdowski, W.; Kraft, S.; Maddox, E.; Ostendorf, R. W.; Owens, A.; Quarati, F.

    2007-01-01

    To assess the suitability of LaBr3:Ce scintillators for space mission applications, proton induced activation of LaBr3 has been investigated. The crystals were irradiated using proton beams at several different energies to mimic the spectrum of a solar flare. We have measured the activation both int

  7. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting.

    Directory of Open Access Journals (Sweden)

    Estibaliz Castillero

    Full Text Available FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.

  8. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Indian Academy of Sciences (India)

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  9. Lipopolysaccharide (LPS-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR.

    Directory of Open Access Journals (Sweden)

    Christy E Trussoni

    Full Text Available Cholangiocytes (biliary epithelial cells actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells, or low passage normal human cholangiocytes (NHC, were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05 and proliferation (p<0.01. Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC livers exhibited increased phospho-EGFR (p<0.01. Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  10. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR).

    Science.gov (United States)

    Trussoni, Christy E; Tabibian, James H; Splinter, Patrick L; O'Hara, Steven P

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (pphospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  11. Electroless Plating on Plastic Induced by Selective Laser Activation

    DEFF Research Database (Denmark)

    Zhang, Yang; Tang, Peter Torben; Hansen, Hans Nørgaard

    2009-01-01

    This paper presents a new method for selective micro metallization of polymers. A Nd:YAG laser is employed to draw patterns on polymer surfaces that are submerged in a liquid (usually water). After subsequent activation with palladium chloride and followed by auto-catalytic electroless plating...... in width with 50μm between two tracks, but further optimization is expected in this field. Due to the porous and rough structure of the laser track, excellent adhesion between metallization and substrate is obtained. On top of the first copper layer, additional metal such as nickel, gold, palladium or tin...

  12. Resonant Activation Induced by Four-Value Noise

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; HAN Yin-Xia; HOU De-Fu; LI Jing-Hui; LI Jia-Rong

    2008-01-01

    The phenomenon of the resonant activation (RA) of a particle over a fluctuating potential barrier with a four-value noise is investigated. It is shown that the mean first passage time (MFPT) displays six minima as the function of the transition rates γ1, γ2, γ3, γ4,γ5, and γ6 of the four-value noise, respectively. In addition, the effect of other parameters of the system, such as the noise strength D of the additive Gaussian white noise and the parameter value a,b, c, and d of the four-value noise, on the RAs is also investigated.

  13. Chitosan-induced antiviral activity and innate immunity in plants.

    Science.gov (United States)

    Iriti, Marcello; Varoni, Elena Maria

    2015-02-01

    Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.

  14. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase.

    Science.gov (United States)

    Zhang, H-T; Chen, G G; Hu, B-G; Zhang, Z-Y; Yun, J-P; He, M-L; Lai, P B S

    2014-01-01

    Hepatitis B virus x protein (HBX), a product of hepatitis B virus (HBV), is a multifunctional protein that regulates viral replication and various cellular functions. Recently, HBX has been shown to induce autophagy; however, the responsible mechanism is not fully known. In this study, we established stable HBX-expressing epithelial Chang cells as the platform to study how HBX induced autophagy. The results showed that the overexpression of HBX resulted in starvation-induced autophagy. HBX-induced autophagy was related to its ability to dephosphorylate/activate death-associated protein kinase (DAPK). The block of DAPK by its siRNA significantly counteracted HBX-mediated autophagy, confirming the positive role of DAPK in this process. HBX also induced Beclin 1, which functions at the downstream of the DAPK-mediated autophagy pathway. Although HBX could activate JNK, a kinase known to participate in autophagy in certain conditions, the change in JNK failed to influence HBX-induced autophagy. In conclusion, HBX induces autophagy via activating DAPK in a pathway related to Beclin 1, but not JNK. This new finding should help us to understand the role of autophagy in HBX-mediated pathogenesis and thus may provide targets for intervening HBX-related disorders.

  15. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator.

    Science.gov (United States)

    Tsirka, S E; Gualandris, A; Amaral, D G; Strickland, S

    1995-09-28

    Neuronal degeneration in the hippocampus, a region of the brain important for acquisition of memory in humans, occurs in various pathological conditions, including Alzheimer's disease, brain ischaemia and epilepsy. When neuronal activity is stimulated in the adult rat and mouse hippocampus, tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to the active protease plasmin, is transcriptionally induced. The activity of tPA in neural tissue is correlated with neurite outgrowth, regeneration and migration, suggesting that it might be involved in neuronal plasticity. Here we show that tPA is produced primarily by microglia in the hippocampus. Using excitotoxins to induce neuronal cell loss, we demonstrate that tPA-deficient mice are resistant to neuronal degeneration. These mice are also less susceptible to pharmacologically induced seizures than wild-type mice. These findings identify a role for tPA in neuronal degeneration and seizure.

  16. Thrombin-induced apoptosis in neurons through activation of c-Jun-N-terminal kinase.

    Science.gov (United States)

    Bao, Lei; Zu, Jie; He, Qianqian; Zhao, Hui; Zhou, Su; Ye, Xinchun; Yang, Xinxin; Zan, Kun; Zhang, Zuohui; Shi, Hongjuan; Cui, Guiyun

    2017-01-01

    Studies have shown that thrombin activation played a central role in cell injuries associated with intracerebral hemorrhage (ICH). Here, our study investigated the cytotoxicity of thrombin on neurons, and determined the involvement of JNK pathways in thrombin-induced neuronal apoptosis. Primary cultured neurons were treated with different doses of thrombin. Some neurons were given either SP600125 or vehicle. LDH release assay and flow cytometry were used to measure neuronal apoptosis caused by thrombin. The activation of JNK and capases-3 were measured by Western blot. Our results showed large doses of thrombin that increased the LDH release, the level of cleaved caspase-3 and apoptosis rate of neurons. JNK was activated by thrombin in a time-dependent manner. Administration of SP600125 protects neurons from thrombin-induced apoptosis. These data indicate that the activation of JNK is crucial for thrombin-induced neuronal apoptosis, and inhibition of JNK may be a potential therapeutic target for ICH.

  17. Is Allelopathic Activity of Ipomoea murucoides Induced by Xylophage Damage?

    Science.gov (United States)

    Flores-Palacios, Alejandro; Corona-López, Angélica María; Rios, María Yolanda; Aguilar-Guadarrama, Berenice; Toledo-Hernández, Víctor Hugo; Rodríguez-López, Verónica; Valencia-Díaz, Susana

    2015-01-01

    Herbivory activates the synthesis of allelochemicals that can mediate plant-plant interactions. There is an inverse relationship between the activity of xylophages and the abundance of epiphytes on Ipomoea murucoides. Xylophagy may modify the branch chemical constitution, which also affects the liberation of allelochemicals with defense and allelopathic properties. We evaluated the bark chemical content and the effect of extracts from branches subjected to treatments of exclusion, mechanical damage and the presence/absence of epiphytes, on the seed germination of the epiphyte Tillandsia recurvata. Principal component analysis showed that branches without any treatment separate from branches subjected to treatments; damaged and excluded branches had similar chemical content but we found no evidence to relate intentional damage with allelopathy; however 1-hexadecanol, a defense volatile compound correlated positively with principal component (PC) 1. The chemical constitution of branches subject to exclusion plus damage or plus epiphytes was similar among them. PC2 indicated that palmitic acid (allelopathic compound) and squalene, a triterpene that attracts herbivore enemies, correlated positively with the inhibition of seed germination of T. recurvata. Inhibition of seed germination of T. recurvata was mainly correlated with the increment of palmitic acid and this compound reached higher concentrations in excluded branches treatments. Then, it is likely that the allelopathic response of I. murucoides would increase to the damage (shade, load) that may be caused by a high load of epiphytes than to damage caused by the xylophages. PMID:26625350

  18. Is Allelopathic Activity of Ipomoea murucoides Induced by Xylophage Damage?

    Directory of Open Access Journals (Sweden)

    Alejandro Flores-Palacios

    Full Text Available Herbivory activates the synthesis of allelochemicals that can mediate plant-plant interactions. There is an inverse relationship between the activity of xylophages and the abundance of epiphytes on Ipomoea murucoides. Xylophagy may modify the branch chemical constitution, which also affects the liberation of allelochemicals with defense and allelopathic properties. We evaluated the bark chemical content and the effect of extracts from branches subjected to treatments of exclusion, mechanical damage and the presence/absence of epiphytes, on the seed germination of the epiphyte Tillandsia recurvata. Principal component analysis showed that branches without any treatment separate from branches subjected to treatments; damaged and excluded branches had similar chemical content but we found no evidence to relate intentional damage with allelopathy; however 1-hexadecanol, a defense volatile compound correlated positively with principal component (PC 1. The chemical constitution of branches subject to exclusion plus damage or plus epiphytes was similar among them. PC2 indicated that palmitic acid (allelopathic compound and squalene, a triterpene that attracts herbivore enemies, correlated positively with the inhibition of seed germination of T. recurvata. Inhibition of seed germination of T. recurvata was mainly correlated with the increment of palmitic acid and this compound reached higher concentrations in excluded branches treatments. Then, it is likely that the allelopathic response of I. murucoides would increase to the damage (shade, load that may be caused by a high load of epiphytes than to damage caused by the xylophages.

  19. Hemolysis-induced lethality involves inflammasome activation by heme.

    Science.gov (United States)

    Dutra, Fabianno F; Alves, Letícia S; Rodrigues, Danielle; Fernandez, Patricia L; de Oliveira, Rosane B; Golenbock, Douglas T; Zamboni, Dario S; Bozza, Marcelo T

    2014-09-30

    The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K(+) efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.

  20. Is Allelopathic Activity of Ipomoea murucoides Induced by Xylophage Damage?

    Science.gov (United States)

    Flores-Palacios, Alejandro; Corona-López, Angélica María; Rios, María Yolanda; Aguilar-Guadarrama, Berenice; Toledo-Hernández, Víctor Hugo; Rodríguez-López, Verónica; Valencia-Díaz, Susana

    2015-01-01

    Herbivory activates the synthesis of allelochemicals that can mediate plant-plant interactions. There is an inverse relationship between the activity of xylophages and the abundance of epiphytes on Ipomoea murucoides. Xylophagy may modify the branch chemical constitution, which also affects the liberation of allelochemicals with defense and allelopathic properties. We evaluated the bark chemical content and the effect of extracts from branches subjected to treatments of exclusion, mechanical damage and the presence/absence of epiphytes, on the seed germination of the epiphyte Tillandsia recurvata. Principal component analysis showed that branches without any treatment separate from branches subjected to treatments; damaged and excluded branches had similar chemical content but we found no evidence to relate intentional damage with allelopathy; however 1-hexadecanol, a defense volatile compound correlated positively with principal component (PC) 1. The chemical constitution of branches subject to exclusion plus damage or plus epiphytes was similar among them. PC2 indicated that palmitic acid (allelopathic compound) and squalene, a triterpene that attracts herbivore enemies, correlated positively with the inhibition of seed germination of T. recurvata. Inhibition of seed germination of T. recurvata was mainly correlated with the increment of palmitic acid and this compound reached higher concentrations in excluded branches treatments. Then, it is likely that the allelopathic response of I. murucoides would increase to the damage (shade, load) that may be caused by a high load of epiphytes than to damage caused by the xylophages.

  1. Roscovitine in combination with calcium ionophore induces oocyte activation through reduction of M-phase promoting factor activity in mice.

    Science.gov (United States)

    Iba, Tomomi; Yano, Yuya; Umeno, Mayumi; Hinokio, Kenji; Kuwahara, Akira; Irahara, Minoru; Yamano, Shuji; Yasui, Toshiyuki

    2012-11-01

    The aim of the present study was to determine oocyte activation and change in M-phase promoting factor (MPF) activity induced by treatment with calcium ionophore and roscovitine in comparison with those induced by treatment with roscovitine alone and treatment with calcium ionophore and puromycin in mice. Freshly ovulated oocytes obtained from 6-8-week-old mice were divided into five groups (no activation treatment; 5 μM calcium ionophore A23187; 50 μM roscovitine; 5 μM calcium ionophore and 10 μg/ml puromycin; and 5 μM calcium ionophore and 50 μM roscovitine) and were incubated for 6 h. Oocyte activation, assessed by morphological changes, and changes in MPF activity in the five groups at 0, 2, 4 and 6 h of incubation were examined. Activated oocytes were defined as oocytes with at least one pronucleus. Oocytes treated with roscovitine alone were not activated during the 6-h incubation period. All of the oocytes in the calcium ionophore with puromycin group and in the calcium ionophore with roscovitine group were activated. The percentage activity of MPF in oocytes treated with roscovitine alone was decreased after 2 h and increased after 4 h of incubation. The percentage activity of MPF in oocytes treated with calcium ionophore and roscovitine was significantly decreased with suppression of MPF activity being maintained for 6 h, and this change was similar to that in oocytes treated with calcium ionophore and puromycin. Roscovitine with calcium ionophore is effective for induction of oocyte activation through suppression of MPF activity in mice.

  2. Gibberellins negatively regulate light-induced nitrate reductase activity in Arabidopsis seedlings.

    Science.gov (United States)

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Rongzhi; Wang, Liguang; Bi, Yurong

    2011-12-15

    In the present study, the role of phytohormone gibberellins (GAs) on regulating the nitrate reductase (NR) activity was tested in Arabidopsis seedlings. The NR activity in light-grown Col-0 seedlings was reduced by exogenous GA₃ (an active form of GAs), but enhanced by exogenous paclobutrazol (PAC, a gibberellin biosynthesis inhibitor), suggesting that GAs negatively regulate the NR activity in light-grown seedlings. Light is known to influence the NR activity through both photosynthesis and phytochromes. When etiolated seedlings were transferred to white or red light, both exogenously applied GA₃ and PAC were found to function on the NR activity only in the presence of sucrose, implying that GAs are not involved in light signaling-induced but negatively regulate photoproducts-induced NR activity. NR is regulated by light mainly at two levels: transcript level and post-translational level. Our reverse transcription (RT)-PCR assays showed that GAs did not affect the transcript levels of NIA1 and NIA2, two genes that encode NR proteins. But the divalent cations (especially Mg²⁺) were required for GAs negative regulation of NR activity, in view of the importance of divalent cations during the process of post-translational regulation of NR activity, which indicates that GAs very likely regulate the NR activity at the post-translational level. In the following dark-light shift analyses, GAs were found to accelerate dark-induced decrease, but retard light-induced increase of the NR activity. Furthermore, it was observed that application of G₃ or PAC could impair diurnal variation of the NR activity. These results collectively indicate that GAs play a negative role during light regulation of NR activity in nature.

  3. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  4. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    Science.gov (United States)

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  5. Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells.

    Science.gov (United States)

    He, Na; Zhu, Xuewei; He, Wei; Zhao, Shiwei; Zhao, Weiyan; Zhu, Chunlei

    2015-01-01

    Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.

  6. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  7. Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity.

    Science.gov (United States)

    Thornton, Peter; Pinteaux, Emmanuel; Allan, Stuart M; Rothwell, Nancy J

    2008-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases known to mediate acute neuronal injury, but it is unclear whether these proteases are induced by the primary insult or by inflammation associated with injury. We have reported recently that interleukin-1 (IL-1) induces neurotoxicity by an astrocyte-dependent mechanism. The aim of the present study was to test the hypothesis that MMPs mediate IL-1 neurotoxicity in rat, glial-neuronal cocultures. IL-1beta induced the release of astrocytic MMP-9 in cocultures, whilst an antagonist of MMP-9 inhibited IL-1beta-induced neuronal death. Urokinase plasminogen activator (uPA) was constitutively expressed on neuronal membrane fractions, and amiloride (an antagonist of uPA) or plasminogen activator inhibitor (PAI)-1 significantly reduced IL-1beta-induced neurotoxicity. Thus, neuronal uPA contributes to IL-1 neurotoxicity, and may be responsible for activating MMP-9 released from IL-1-primed astrocytes. In summary, IL-1-induced neurotoxicity is dependent on extracellular protease activity, and these mechanisms may contribute to neuronal cell death in CNS diseases.

  8. Bone-inducing Activity of Biological Piezoelectric Ceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To simulate the piezoelectric effect of nature bone, two kinds of biological piezoelectric composite ceramics consisted of hydroxyapatite ( HA ) and lithium sodium potassium riobate (LNK) ceramic of which the ratio of HA/ LNK was 1: 10 and 5:5( wt/ wt ) were prepared. Their piezoelectric property and growth of apatite crystal in the ceramics surface were investigated. With the increase of LNK amount, piezoelectric activity increased correspondingly. By immersing the poled piezoelectric ceramics in simulated body fluid (SBF) at 36.5 ℃ for 7,14, and 21 days, apatite crystal was formed on negatively charged surfaces. After 21 days immersion in SBF,the thickest apatite crystal on the negatively charged surfaces increased to 3.337μm. The novel biological piezoelectric ceramics show an excellent piezoelectric property and superior potential bioactivity.

  9. Does roflumilast induce phagocytic activity in COPD patients?

    Directory of Open Access Journals (Sweden)

    Ghosh B

    2015-09-01

    Full Text Available Baishakhi Ghosh,1,2 Nitin V Vanjare1 1Chest Research Foundation (CRF, Pune, Maharashtra, India; 2Faculty of Health and Biomedical Science (FOHBS, Symbiosis International University, Pune, Maharashtra, IndiaWe read the article by Porpodis et al1 with great interest. In this study, the authors have evaluated the effect of roflumilast on the phagocytic activity of systemic phagocytes in severe and very severe COPD patients by measuring the oxidative burst post-bacterial stimulation. The study group for this study involved 21 severe or very severe COPD patients who were administered roflumilast in addition to other COPD treatments such as long-acting beta-adrenoceptor agonists (LABA + inhaled corticosteroids (ICS + long-acting anti-muscarinic agent (LAMA or ICS + LABA.View original paper by Porpodis and colleagues.

  10. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    Science.gov (United States)

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation.

  11. Brain activity correlates with emotional perception induced by dynamic avatars.

    Science.gov (United States)

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics.

  12. Ginsenoside Rg1 Attenuates Isoflurane-induced Caspase-3 Activation via Inhibiting Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    MIAO Hui Hui; ZHEN Yu; DING Guan Nan; HONG Fang Xiao; XIE Zhong Cong; TIAN Ming

    2015-01-01

    Objective The inhalation anesthetic isoflurane has been shown to induce mitochondrial dysfunction and caspase activation, which may lead to learning and memory impairment. Ginsenoside Rg1 is reported to be neuroprotective. We therefore set out to determine whether ginsenoside Rg1 can attenuate isoflurane-induced caspase activation via inhibiting mitochondrial dysfunction. Methods We investigated the effects of ginsenoside Rg1 at concentrations of 12.5, 25, and 50 µmol/L and pretreatment times of 12 h and 24 h on isoflurane-induced caspase-3 activation in H4 naïve and stably transfected H4 human neuroglioma cells that express full-length human amyloid precursor protein (APP) (H4-APP cells). For mitochondrial dysfunction, we assessed mitochondrial permeability transition pore (mPTP) and adenosine-5’-triphosphate (ATP) levels. We employed Western blot analysis, chemiluminescence, and flowcytometry. Results Here we show that pretreatment with 50 µmol/L ginsenoside Rg1 for 12 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in H4-APP cells, while pretreatment with 25 and 50 µmol/L ginsenoside Rg1 for 24 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in both H4 naïve and H4-APP cells. Conclusion These data suggest that ginsenoside Rg1 may ameliorate isoflurane-induced caspase-3 activation by inhibiting mitochondrial dysfunction. Pending further studies, these findings might recommend the use of ginsenoside Rg1 in preventing and treating isoflurane-induced neurotoxicity.

  13. Radix Scrophulariae extracts (harpagoside) suppresses hypoxia-induced microglial activation and neurotoxicity

    OpenAIRE

    Sheu, Shiow-Yunn; Hong, Yi-Wen; Sun, Jui-Sheng; Liu, Man-Hai; Chen, Ching-Yun; Ke, Cherng-Jyh

    2015-01-01

    Background Hypoxia could lead to microglia activation and inflammatory mediators’ overproduction. These inflammatory molecules could amplify the neuroinflammatory process and exacerbate neuronal injury. The aim of this study is to find out whether harpagoside could reduce hypoxia-induced microglia activation. Methods In this study, primary microglia cells harvested from neonatal ICR mice were activated by exposure to hypoxia (1 % O2 for 3 h). Harpagoside had been shown to be no cytotoxicity o...

  14. Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages.

    Science.gov (United States)

    Jiménez-Garcia, Lidia; Herránz, Sandra; Luque, Alfonso; Hortelano, Sonsoles

    2015-01-01

    Alternative activation of macrophages plays an important role in a range of physiological and pathological processes. This alternative phenotype, also known as M2 macrophages, is induced by type 2 cytokines such as IL-4. The binding of IL-4 to its receptor leads to activation of two major signaling pathways: STAT-6 and PI3K. However, recent studies have described that p38 MAPK might play a role in IL-4-dependent signaling in some cells, although its role in macrophages is still controversial. In this study, we investigated whether p38 MAPK plays a role in the polarization of macrophages in mice. Our results reveal that IL-4 induces phosphorylation of p38 MAPK in thioglycollate-elicited murine peritoneal macrophages, in addition to STAT-6 and PI3K activation. Furthermore, p38 MAPK inactivation, by gene silencing or pharmacological inhibition, suppressed IL-4-induced typical M2 markers, indicating the involvement of p38 MAPK in the signaling of IL-4 leading to M2-macrophage polarization. Moreover, p38 MAPK inhibition blocked phosphorylation of STAT-6 and Akt, suggesting that p38 MAPK is upstream of these signaling pathways. Finally, we show that in an in vivo model of chitin-induced M2 polarization, p38 MAPK inhibition also diminished activation of M2 markers. Taken together, our data establish a new role for p38 MAPK during IL-4-induced alternative activation of macrophages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bisdemethoxycurcumin Induces Apoptosis in Activated Hepatic Stellate Cells via Cannabinoid Receptor 2

    Directory of Open Access Journals (Sweden)

    Phil Jun Lee

    2015-01-01

    Full Text Available Activated Hepatic Stellate Cells (HSCs, major fibrogenic cells in the liver, undergo apoptosis when liver injuries cease, which may contribute to the resolution of fibrosis. Bisdemethoxycurcumin (BDMC is a natural derivative of curcumin with anti-inflammatory and anti-cancer activities. The therapeutic potential of BDMC in hepatic fibrosis has not been studied thus far in the context of the apoptosis in activated HSCs. In the current study, we compared the activities of BDMC and curcumin in the HSC-T6 cell line and demonstrated that BDMC relatively induced a potent apoptosis. BDMC-induced apoptosis was mediated by a combinatory inhibition of cytoprotective proteins, such as Bcl2 and heme oxygenase-1 and increased generation of reactive oxygen species. Intriguingly, BDMC-induced apoptosis was reversed with co-treatment of sr144528, a cannabinoid receptor (CBR 2 antagonist, which was confirmed with genetic downregulation of the receptor using siCBR2. Additionally, incubation with BDMC increased the formation of death-induced signaling complex in HSC-T6 cells. Treatment with BDMC significantly diminished total intracellular ATP levels and upregulated ATP inhibitory factor-1. Collectively, the results demonstrate that BDMC induces apoptosis in activated HSCs, but not in hepatocytes, by impairing cellular energetics and causing a downregulation of cytoprotective proteins, likely through a mechanism that involves CBR2.

  16. Hepatoprotective and antioxidant activity of pentagamavunon-0 against carbon tetrachloride-induced hepatic injury in rats

    Institute of Scientific and Technical Information of China (English)

    Arief Nurrochmad; Supardjan Amir Margono; Sardjiman; Arief Rahman Hakim; Ernawati; Erna Kurniawati; Erva Fatmawati

    2013-01-01

    Objective: To investigate the hepatoprotective and antioxidant activity of pentagamavunon-0(PGV-0) against CCl4-induced hepatic injury in rats. Methods: The groups of animals were administered with PGV-0 at the doses 2.5, 5, 10, and 20 mg/kg b.w., p.o. once in a day for 6 days and at day 7 the animals were administrated with carbon tetrachloride (CCl4) (20%, 2 mL/kg b.w. in liquid paraffin (i.p.). The effect of PGV-0 on serum transaminase (SGPT), alkaline phosphates (ALP) and total bilirubin were determined in CCl4-induced hepatotoxicity in rats. Further, the effects of PGV-0 on glutathione (GSH) content, catalase (CAT) and NO free radical scavenging activity also were investigated. Results: The results demonstrated that PGV-0 significantly reduced the activity of SGPT, serum ALP and total bilirubin in CCl4 induced rat hepatotoxicity. PGV-0 has effect on the antioxidant and free radical defense system. It prevented the depletion level of GSH and decrease activity of CAT in CCl4-induced liver injury in rats. PGV-0 also demonstrated the free radical scavenger effects on NO free radical scavenging activity with ES value of 32.32 μM. Conculsion: All of our findings suggests that PGV-0 could protect the liver cells from CCl4-induced liver damages and the mechanism may through the antioxidative effect of PGV-0 to prevent the accumulation of free radicals and protect the liver damage.

  17. Role of CD59 in T cell activation induced by non-lethal complement attack

    Institute of Scientific and Technical Information of China (English)

    HAN Gen-cheng; BAI Yun; JIANG Man; LI Wan-ling; ZHU Xi-hua

    2001-01-01

    To study the mechanism ofT-cell activation induced by non-lethal complement attack and the role of CD59 in this process. Methods: Human CD59 and its transmembrane counterpart CD59TM cDNA were transfected into murine thymoma EL-4 cells. Activation and proliferation of EL-4 transfectants were observed with MTT assay.Results: Both CD59 and CD59 TM cDNA expressed on EL-4 cells effectively inhibited complement-mediated membrane damage. Cross-linking of CD59 with antibody induced activation of CD59/EL-4 cells but not CD59TM/EL-4cells. This effect was inhibited by Herbimycin A, a special protein tyrosine kinase (PTK) inhibitor. Non-lethal complement attack induced CD59/EL-4 but not CD59TM/EL-4 cell to proliferate, and this reaction was not blocked by Herbimycin A. Conclusion: CD59 takes part in T cell activation induced by non-lethal complement attack. The mechanisms of T cell activation induced by non-lethal complement attack are different from those by cross-linking of CD59.

  18. Paraptosis and NF-κB activation are associated with protopanaxadiol-induced cancer chemoprevention

    Directory of Open Access Journals (Sweden)

    Wang Chong-Zhi

    2013-01-01

    Full Text Available Abstract Background Protopanaxadiol (PPD is a triterpenoid that can be prepared from steamed ginseng. PPD possesses anticancer potential via caspase-dependent apoptosis. Whether paraptosis, a type of the caspase-independent cell death, is also induced by PPD has not been evaluated. Methods Cell death, the cell cycle and intracellular reactive oxygen species (ROS were analyzed by flow cytometry after staining with annexin V/PI, PI/RNase or H2DCFDA. We observed morphological changes by crystal violet staining assay. Mitochondrial swelling was measured by ultraviolet–visible spectrophotometry. The activation of NF-κB was measured by luciferase reporter assay. Results At comparable concentrations of 5-fluorouracil, PPD induced more cell death in human colorectal cancer cell lines HCT-116 and SW-480. We demonstrated that PPD induced paraptosis in these cancer cells. PPD treatment significantly increased the percentage of cancer cells with cytoplasmic vacuoles. After the cells were treated with PPD and cycloheximides, cytoplasmic vacuole generation was inhibited. The paraptotic induction effect of PPD was also supported by the results of the mitochondrial swelling assay. PPD induced ROS production in cancer cells, which activated the NF-κB pathway. Blockage of ROS by NAC or PS-1145 inhibited the activation of NF-κB signaling. Conclusions PPD induces colorectal cancer cell death in part by induction of paraptosis. The anticancer activity of PPD may be enhanced by antioxidants such as green tea, which also inhibit the activation of NF-κB signaling.

  19. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-02-01

    Melatonin, a naturally occurring neurohormone in the pineal gland, has been shown to exert antioxidant and anti-inflammatory effects. This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation.

  20. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase

    Directory of Open Access Journals (Sweden)

    Lin Yu-Hsin

    2010-04-01

    Full Text Available Abstract Photodynamic therapy (PDT has been developed as an anticancer treatment, which is based on the tumor-specific accumulation of a photosensitizer that induces cell death after irradiation of light with a specific wavelength. Depending on the subcellular localization of the photosensitizer, PDT could trigger various signal transduction cascades and induce cell death such as apoptosis, autophagy, and necrosis. In this study, we report that both AMP-activated protein kinase (AMPK and mitogen-activated protein kinase (MAPK signaling cascades are activated following 5-aminolevulinic acid (ALA-mediated PDT in both PC12 and CL1-0 cells. Although the activities of caspase-9 and -3 are elevated, the caspase inhibitor zVAD-fmk did not protect cells against ALA-PDT-induced cell death. Instead, autophagic cell death was found in PC12 and CL1-0 cells treated with ALA-PDT. Most importantly, we report here for the first time that it is the activation of AMPK, but not MAPKs that plays a crucial role in mediating autophagic cell death induced by ALA-PDT. This novel observation indicates that the AMPK pathway play an important role in ALA-PDT-induced autophagy.

  1. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells.

    Science.gov (United States)

    Kim, Hyung Gyun; Jin, Sun Woo; Kim, Yong An; Khanal, Tilak; Lee, Gi Ho; Kim, Se Jong; Rhee, Sang Dal; Chung, Young Chul; Hwang, Young Jung; Jeong, Tae Cheon; Jeong, Hye Gwang

    2017-08-01

    Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E2. Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Science.gov (United States)

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  3. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Directory of Open Access Journals (Sweden)

    Fernanda Palhano-Fontes

    Full Text Available The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN, a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN. Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC/Precuneus and the medial Prefrontal Cortex (mPFC. Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic, meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  4. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    Full Text Available BACKGROUND: Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and

  5. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID during Inflammation-Associated Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tsutomu Chiba

    2011-06-01

    Full Text Available Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID, a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.

  6. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Atsushi; Marusawa, Hiroyuki, E-mail: maru@kuhp.kyoto-u.ac.jp; Chiba, Tsutomu [Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)

    2011-06-22

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.

  7. Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-κB pathway

    Institute of Scientific and Technical Information of China (English)

    Yang XUE; Ying WANG; De-chun FENG; Bao-guo XIAO; Ling-yun XU

    2008-01-01

    Aim: Microglial activation has been implicated in many neurological diseases. In this study, we examined the effects of tetrandrine (TET), a major pharmacologi-cally-active compound of Chinese herb Stephania tetrandra S Moore on micro-glial activation. Methods: The microglia pretreated with or without TET were activated by lipoopolysaccharide (LPS) in vitro. Nitric oxide (NO) release, superox-ide anion (O2-) generation, as well as TNF-α and intedeukin-6 (IL-6) production by microglia were measured afterwards. Electrophoretic mobility shift assay was performed to determine whether NF-κB activity in microglia was affected by TET treatment. Results: We found that TET inhibited the LPS-induced activation of microglia by decreasing the production of NO and O2-, consequently affecting the release of TNF-α and IL-6 in LPS-induced microglial activation. Such suppressive effect was accompanied by inhibiting transcription factor NF-κB activation. Conclusion: Our results suggest that TET might modulate LPS-induced microglial activation by inhibiting the NF-κB-mediated release of inflammatory factors.

  8. Nerve Injury-Induced c-Jun Activation in Schwann Cells Is JNK Independent

    Directory of Open Access Journals (Sweden)

    Charlotta Lindwall Blom

    2014-01-01

    Full Text Available We investigated (a if activation of the mitogen activated protein kinase (MAPK pathway was linked to the stress activated protein kinase (SAPK pathway and (b if JNK was required for activation of c-Jun in Schwann cells of rat sciatic nerve following injury. To this aim, ERK1/2 and the transcription factors c-Jun and ATF-3 were studied by immunohistochemistry in segments of transected nerves. We utilized pharmacological inhibitors of both signal transduction pathways in vitro to determine the effects on downstream signalling events, such as c-Jun activation, and on Schwann cell survival and proliferation. A transection induces c-Jun and ATF-3 transcription in Schwann cells. These events are followed by Schwann cell activation of c-Jun in the injured nerve. The MAPK inhibitor U0126 blocked ERK1/2 activation and reduced Schwann cell proliferation as well as induction of c-Jun transcription. The JNK inhibitor SP600125 reduced Schwann cell proliferation, but did not affect the expression of ERK1/2 or injury-induced increases in c-Jun or ATF-3 levels. Importantly, nerve injury induces Schwann cell activation of c-Jun by phosphorylation, which, in contrast to in sensory neurons, is JNK independent. MAP kinases, other than JNK, can potentially activate c-Jun in Schwann cells following injury; information that is crucial to create new nerve reconstruction strategies.

  9. Does Infection-Induced Immune Activation Contribute to Dementia?

    Science.gov (United States)

    Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe

    2015-09-01

    The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders.

  10. Stress-Induced Out-of-Context Activation of Memory

    Science.gov (United States)

    Ježek, Karel; Lee, Benjamin B.; Kelemen, Eduard; McCarthy, Katharine M.; McEwen, Bruce S.; Fenton, André A.

    2010-01-01

    Inappropriate recollections and responses in stressful conditions are hallmarks of post-traumatic stress disorder and other anxiety and mood disorders, but how stress contributes to the disorders is unclear. Here we show that stress itself reactivates memories even if the memory is unrelated to the stressful experience. Forced-swim stress one day after learning enhanced memory recall. One-day post-learning amnestic treatments were ineffective unless administered soon after the swim, indicating that a stressful experience itself can reactivate unrelated consolidated memories. The swim also triggered inter-hemispheric transfer of a lateralized memory, confirming stress reactivates stable memories. These novel effects of stress on memory required the hippocampus although the memories themselves did not, indicating hippocampus-dependent modulation of extrahippocampal memories. These findings that a stressful experience itself can activate memory suggest the novel hypothesis that traumatic stress reactivates pre-trauma memories, linking them to memory for the trauma and pathological facilitation of post-traumatic recall. PMID:21203585

  11. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dimberg Lina Y

    2012-07-01

    Full Text Available Abstract Background Multiple myeloma (MM is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS. Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA, geldanamycin (17-AAG, doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6

  12. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    Science.gov (United States)

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  13. Serum thymic factor, FTS, attenuates cisplatin nephrotoxicity by suppressing cisplatin-induced ERK activation.

    Science.gov (United States)

    Kohda, Yuka; Kawai, Yoshiko; Iwamoto, Noriaki; Matsunaga, Yoshiko; Aiga, Hiromi; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to attenuate the bleomycin-induced pulmonary injury and also experimental pancreatitis and diabetes. In the present study, we investigated the effect of FTS on cis-diamminedichloroplatinum II (cisplatin)-induced nephrotoxicity. We have already demonstrated that cephaloridine, a nephrotoxic antibiotic, leads to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney, which probably contributes to cephaloridine-induced renal dysfunction. The aim of this study was to examine the effect of cisplatin on ERK activation in the rat kidney and also the effect of FTS on cisplatin-induced nephrotoxicity in rats. In vitro treatment of LLC-PK1 cells with FTS significantly ameliorated cisplatin-induced cell injury. Treatment of rats with intravenous cisplatin for 3 days markedly induced renal dysfunction and increased platinum contents in the kidney cortex. An increase in pERK was detected in the nuclear fraction prepared from the rat kidney cortex from days 1 to 3 after injection of cisplatin. FTS suppressed cisplatin-induced renal dysfunction and ERK activation in the kidney. FTS did not influence any Pt contents in the kidney after cisplatin administration. FTS has been shown to enhance the in vivo expression of heat shock protein (HSP) 70 in the kidney cortex. The beneficial role of FTS against cisplatin nephrotoxicity may be mediated in part by HSP70, as suggested by its up-regulation in the kidney cortex treated with FTS alone. Our results suggest that FTS participates in protection from cisplatin-induced nephrotoxicity by suppressing ERK activation caused by cisplatin.

  14. Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity : Differences between primary and cancer cells

    OpenAIRE

    Jangamreddy, Jaganmohan; Ghavami, Saeid; Grabarek, Jerzy; Kratz, Gunnar; Wiechec, Emilia; Fredriksson, Bengt-Arne; Rao, Rama K.; Cieślar-Pobuda, Artur; Panigrahi, Soumya; Łos, Marek

    2013-01-01

    The molecular mechanism of Salinomycin's toxicity is not fully understood. Various studies reported that Ca2 +, cytochrome c, and caspase activation play a role in Salinomycin-induced cytotoxicity. Furthermore, Salinomycin may target Wnt/β-catenin signaling pathway to promote differentiation and thus elimination of cancer stem cells. In this study, we show a massive autophagic response to Salinomycin (substantially stronger than to commonly used autophagic inducer Rapamycin) in prostrate-, br...

  15. 4-Hydroxy-2-nonenal induces endothelial cell injury via PKCdelta and biphasic JNK activation

    OpenAIRE

    Goya, Sho; Hirata, Haruhiko; Hoshino, Shigenori; Inoue, Koji; Kashiwa, Yozo; Kawase, Ichiro; Kijima, Takashi; Kumagai, Toru; Mayumi, Masahiko; Osaki, Tadashi; Suzuki, Mayumi; Tachibana, Isao; Takeda, Yoshito; Takimoto, Takayuki; Yano, Yukihiro

    2008-01-01

    4-Hydroxy-2-nonenal (4-HNE), a major product generated during oxidative stress, exhibits cytotoxic effects; however, the mechanisms of 4-HNE-induced endothelial cell injury are not well defined. To explore this issue, we examined how 4-HNE damages human umbilical vein endothelial cells (HUVECs) and found that 4-HNE induced biphasic activation of c-Jun N-terminal kinase (JNK). Both pre- and post-treatment of HUVECs with SP600125, a specific JNK inhibitor, significantly suppresse...

  16. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  17. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  18. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    OpenAIRE

    Acevedo, María Belén; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced rein...

  19. Mitogen-activated protein kinases regulate susceptibility to ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Tamás Dolinay

    Full Text Available BACKGROUND: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation. METHODOLOGY AND PRINCIPLE FINDINGS: C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3(-/- or c-Jun-NH(2-terminal kinase-1 (jnk1(-/- were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3(-/- or jnk1(-/- mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1(-/- mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild-type or jnk1(-/- mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8 and GADD45alpha. Functional characterization of MMP8 revealed that mmp8(-/- mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability. CONCLUSIONS: We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH(2-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage.

  20. Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alip Borthakur

    Full Text Available Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including inflammatory bowel diseases (IBD and necrotizing enterocolitis (NEC. Pathophysiology of IBD and NEC includes the production of diverse lipid mediators, including platelet-activating factor (PAF that mediate inflammatory responses in the disease. PAF is known to activate NF-κB, however, the mechanisms of PAF-induced inflammation are not fully defined. We have recently described a novel PAF-triggered pathway of NF-κB activation and IL-8 production in intestinal epithelial cells (IECs, requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent NF-κB activation and IL-8 production in IECs. PAF treatment (5 µM×24 h of NCM460 and Caco-2 cells significantly increased nuclear p65 NF-κB levels and IL-8 secretion (2-3-fold, P<0.05, compared to control, which were blocked by pretreatment of the cells for 6 h with L. acidophilus (LA or its culture supernatant (CS, followed by continued treatments with PAF for 24 h. LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced ubiquitination of IKKγ. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that soluble factor(s in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics counteract PAF-induced inflammation in IECs.

  1. Vitamin C Attenuates Isoflurane-Induced Caspase-3 Activation and Cognitive Impairment.

    Science.gov (United States)

    Cheng, Baiqi; Zhang, Yiying; Wang, Arthur; Dong, Yuanlin; Xie, Zhongcong

    2015-12-01

    Anesthetic isoflurane has been reported to induce caspase-3 activation. The underlying mechanism(s) and targeted intervention(s), however, remain largely to be determined. Vitamin C (VitC) inhibits oxidative stress and apoptosis. We therefore employed VitC to further determine the up-stream mechanisms and the down-stream consequences of the isoflurane-induced caspase-3 activation. H4 human neuroglioma cells overexpressed human amyloid precursor protein (H4-APP cells) and rat neuroblastoma cells were treated either with (1) 2% isoflurane or (2) with the control condition, plus saline or 400 μM VitC for 3 or 6 h. Western blot analysis and fluorescence assay were utilized at the end of the experiments to determine caspase-3 activation, levels of reactive oxygen species and ATP, and mitochondrial function. The interaction of isoflurane (1.4% for 2 h) and VitC (100 mg/kg) on cognitive function in mice was also assessed in the fear conditioning system. Here, we show for the first time that the VitC treatment attenuated the isoflurane-induced caspase-3 activation. Moreover, VitC mitigated the isoflurane-induced increases in the levels of reactive oxygen species, opening of mitochondrial permeability transition pore, reduction in mitochondrial membrane potential, and the reduction in ATP levels in the cells. Finally, VitC ameliorated the isoflurane-induced cognitive impairment in the mice. Pending confirmation from future studies, these results suggested that VitC attenuated the isoflurane-induced caspase-3 activation and cognitive impairment by inhibiting the isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels. These findings would promote further research into the underlying mechanisms and targeted interventions of anesthesia neurotoxicity.

  2. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries

    Science.gov (United States)

    Simplicio, Janaina A.; Hipólito, Ulisses Vilela; do Vale, Gabriel Tavares; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R.

    2016-01-01

    Background The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. Objective To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Methods Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Results Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Conclusion Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. PMID:27812679

  3. Eicosanoid signaling and vascular dysfunction: methylmercury-induced phospholipase D activation in vascular endothelial cells.

    Science.gov (United States)

    Sherwani, Shariq I; Pabon, Sheila; Patel, Rishi B; Sayyid, Muzzammil M; Hagele, Thomas; Kotha, Sainath R; Magalang, Ulysses J; Maddipati, Krishna R; Parinandi, Narasimham L

    2013-11-01

    Mercury, especially methylmercury (MeHg), is implicated in the etiology of cardiovascular diseases. Earlier, we have reported that MeHg induces phospholipase D (PLD) activation through oxidative stress and thiol-redox alteration. Hence, we investigated the mechanism of the MeHg-induced PLD activation through the upstream regulation by phospholipase A2 (PLA2) and lipid oxygenases such as cyclooxygenase (COX) and lipoxygenase (LOX) in the bovine pulmonary artery endothelial cells (BPAECs). Our results showed that MeHg significantly activated both PLA2 (release of [(3)H]arachidonic acid, AA) and PLD (formation of [(32)P]phosphatidylbutanol) in BPAECs in dose- (0-10 μM) and time-dependent (0-60 min) fashion. The cPLA2-specific inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), significantly attenuated the MeHg-induced [(3)H]AA release in ECs. MeHg-induced PLD activation was also inhibited by AACOCF3 and the COX- and LOX-specific inhibitors. MeHg also induced the formation of COX- and LOX-catalyzed eicosanoids in ECs. MeHg-induced cytotoxicity (based on lactate dehydrogenase release) was protected by PLA2-, COX-, and LOX-specific inhibitors and 1-butanol, the PLD-generated PA quencher. For the first time, our studies showed that MeHg activated PLD in vascular ECs through the upstream action of cPLA2 and the COX- and LOX-generated eicosanoids. These results offered insights into the mechanism(s) of the MeHg-mediated vascular endothelial cell lipid signaling as an underlying cause of mercury-induced cardiovascular diseases.

  4. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan, E-mail: liu-xiangyuan@263.net

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  5. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    DEFF Research Database (Denmark)

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Fink, Lisbeth Nielsen;

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing...... cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium...

  6. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    Science.gov (United States)

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,pemotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01).

  7. Progranulin promotes activation of microglia/macrophage after pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Zhu, Shanshan; Tai, Chao; Petkau, Terri L; Zhang, Si; Liao, Chengyong; Dong, Zhifang; Wen, Wendy; Chang, Qing; Tian Wang, Yu; MacVicar, Brian A; Leavitt, Blair R; Jia, William; Cynader, Max S

    2013-09-12

    Progranulin (PGRN) haploinsufficiency accounts for up to 10% of frontotemporal lobe dementia. PGRN has also been implicated in neuroinflammation in acute and chronic neurological disorders. Here we report that both protein and mRNA levels of cortical and hippocampal PGRN are significantly enhanced following pilocarpine-induced status epilepticus. We also identify intense PGRN immunoreactivity that colocalizes with CD11b in seizure-induced animals, suggesting that PGRN elevation occurs primarily in activated microglia and macrophages. To test the role of PGRN in activation of microglia/macrophages, we apply recombinant PGRN protein directly into the hippocampal formation, and observe no change in the number of CD11b(+) microglia/macrophages in the dentate gyrus. However, with pilocarpine-induced status epilepticus, PGRN application significantly increases the number of CD11b(+) microglia/macrophages in the dentate gyrus, without affecting the extent of hilar cell death. In addition, the number of CD11b(+) microglia/macrophages induced by status epilepticus is not significantly different between PGRN knockout mice and wildtype. Our findings suggest that status epilepticus induces PGRN expression, and that PGRN potentiates but is not required for seizure-induced microglia/macrophage activation.

  8. Snow-mold-induced apoplastic proteins in winter rye leaves lack antifreeze activity

    Science.gov (United States)

    Hiilovaara-Teijo; Hannukkala; Griffith; Yu; Pihakaski-Maunsbach

    1999-10-01

    During cold acclimation, winter rye (Secale cereale L.) plants secrete antifreeze proteins that are similar to pathogenesis-related (PR) proteins. In this experiment, the secretion of PR proteins was induced at warm temperatures by infection with pink snow mold (Microdochium nivale), a pathogen of overwintering cereals. A comparison of cold-induced and pathogen-induced proteins showed that PR proteins accumulated in the leaf apoplast to a greater level in response to cold. The PR proteins induced by cold and by snow mold were similar when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and examined by immunoblotting. Both groups of PR proteins contained glucanase-like, chitinase-like, and thaumatin-like proteins, and both groups exhibited similar levels of glucanase and chitinase activities. However, only the PR proteins induced by cold exhibited antifreeze activity. Our findings suggest that the cold-induced PR proteins may be isoforms that function as antifreeze proteins to modify the growth of ice during freezing while also providing resistance to the growth of low-temperature pathogens in advance of infection. Both functions of the cold-induced PR proteins may improve the survival of overwintering cereals.

  9. Activation of NR2A receptors induces ischemic tolerance through CREB signaling.

    Science.gov (United States)

    Terasaki, Yasukazu; Sasaki, Tsutomu; Yagita, Yoshiki; Okazaki, Shuhei; Sugiyama, Yukio; Oyama, Naoki; Omura-Matsuoka, Emi; Sakoda, Saburo; Kitagawa, Kazuo

    2010-08-01

    Previous exposure to a nonlethal ischemic insult protects the brain against subsequent harmful ischemia. N-methyl-D-aspartate (NMDA) receptors are a highly studied target of neuroprotection after ischemia. Recently, NMDA receptor subtypes were implicated in neuronal survival and death. We focused on the contribution of NR2A and cyclic-AMP response element (CRE)-binding protein (CREB) signaling to ischemic tolerance using primary cortical neurons. Ischemia in vitro was modeled by oxygen-glucose deprivation (OGD). Ischemic tolerance was induced by applying 45-mins OGD 24 h before 180-mins OGD. Sublethal OGD also induced cross-tolerance against lethal glutamate and hydrogen peroxide. After sublethal OGD, expression of phosphorylated CREB and CRE transcriptional activity were significantly increased. When CRE activity was inhibited by CREB-S133A, a mutant CREB, ischemic tolerance was abolished. Inhibiting NR2A using NVP-AAM077 attenuated preconditioning-induced neuroprotection and correlated with decreased CRE activity levels. Activating NR2A using bicuculline and 4-aminopiridine induced resistance to lethal ischemia accompanied by elevated CRE activity levels, and this effect was abolished by NVP-AAM077. Elevated brain-derived neurotrophic factor (BDNF) transcriptional activities were observed after sublethal OGD and administration of bicuculline and 4-aminopiridine. NR2A-containing NMDA receptors and CREB signaling have important functions in the induction of ischemic tolerance. This may provide potential novel therapeutic strategies to treat ischemic stroke.

  10. Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells.

    Directory of Open Access Journals (Sweden)

    Li Fang

    Full Text Available Albuminuria contributes to the progression of tubulointerstitial fibrosis. Although it has been demonstrated that ongoing albuminuria leads to tubular injury manifested by the overexpression of numerous proinflammatory cytokines, the mechanism remains largely unknown. In this study, we found that the inflammasome activation which has been recognized as one of the cornerstones of intracellular surveillance system was associated with the severity of albuminuria in the renal biopsies specimens. In vitro, bovine serum albumin (BSA could also induce the activation of NLRP3 inflammasome in the cultured kidney epithelial cells (NRK-52E. Since there was a significant overlap of NLRP3 with the ER marker calreticulin, the ER stress provoked by BSA seemed to play a crucial role in the activation of inflammasome. Here, we demonstrated that the chemical chaperone taurine-conjugated ursodeoxycholic acid (TUDCA which was proved to be an enhancer for the adaptive capacity of ER could attenuate the inflammasome activation induced by albuminuria not only in vitro but also in diabetic nephropathy. Taken together, these data suggested that ER stress seemed to play an important role in albuminuria-induced inflammasome activation, elimination of ER stress via TUDCA might hold promise as a novel avenue for preventing inflammasome activation ameliorating kidney epithelial cells injury induced by albuminuria.

  11. Protease-activated receptor-2 activation contributes to house dust mite-induced IgE responses in mice.

    Directory of Open Access Journals (Sweden)

    Sijranke Post

    Full Text Available Aeroallergens such as house dust mite (HDM, cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR-2, on the airway epithelium, thereby potentially inducing allergic sensitization at the expense of inhalation tolerance. We hypothesized that the proteolytic activity of allergens may play an important factor in the allergenicity to house dust mite and is essential to overcome airway tolerance. Here, we aimed to investigate the role of PAR-2 activation in allergic sensitization and HDM-induced allergic airway inflammation. In our study, Par-2 deficient mice were treated with two different HDM extracts containing high and low serine protease activities twice a week for a period of 5 weeks. We determined airway inflammation through quantification of percentages of mononuclear cells, eosinophils and neutrophils in the bronchial alveolar lavage fluid and measured total IgE and HDM-specific IgE and IgG1 levels in serum. Furthermore, Th2 and pro-inflammatory cytokines including IL-5, IL-13, Eotaxin-1, IL-17, KC, Chemokine (C-C motif ligand 17 (CCL17 and thymic stromal lymphopoietin (TSLP, were measured in lung tissue homogenates. We observed that independent of the serine protease content, HDM was able to induce elevated levels of eosinophils and neutrophils in the airways of both wild-type (WT and Par-2 deficient mice. Furthermore, we show that induction of pro-inflammatory cytokines by HDM exposure is independent of Par-2 activation. In contrast, serine protease activity of HDM does contribute to enhanced levels of total IgE, but not HDM-specific IgE. We conclude that, while Par-2 activation contributes to the development of IgE responses, it is largely dispensable for the HDM-induced induction of pro-inflammatory cytokines and airway inflammation in an experimental mouse model of HDM

  12. Roscovitine inhibits ERK1/2 activation induced by angiotensin II in vascular smooth muscle cells.

    Science.gov (United States)

    Li, Ai-Ying; Han, Mei; Zheng, Bin; Wen, Jin-Kun

    2008-01-23

    Roscovitine is a potent CDK inhibitor often used as a biological tool in cell-cycle studies, but its working mechanism and real targets in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we observed that ERK1/2 phosphorylation induced by Ang II was abrogated by pretreating VSMCs with roscovitine for 15h. Pretreating VSMCs with roscovitine also inhibited Ang II-induced c-Jun expression and phosphorylation. We further demonstrated that roscovitine could suppress the DNA binding activity of c-Jun and activation of angiotensinogen promoter by Ang II. These results suggest that roscovitine represses Ang II-induced angiotensinogen expression by inhibiting activation of ERK1/2 and c-Jun.

  13. Cognitive-enhancing activity of loganin isolated from Cornus officinalis in scopolamine-induced amnesic mice.

    Science.gov (United States)

    Lee, Ki Yong; Sung, Sang Hyun; Kim, Seung Hyun; Jang, Young Pyo; Oh, Tae Hwan; Kim, Young Choong

    2009-05-01

    We examined anti-amnesic activity of the methanolic extract of Cornus officinalis fruits (COT) and a major constituent, loganin using scopolamine-induced (1 mg/kg body weight, s.c.) amnesic mice with both passive avoidance and the Morris water maze tests. Oral treatment of mice with COT (100 mg/kg body weight) and loganin (1 and 2 mg/kg body weight) significantly mitigated scopolamine-induced memory deficits in passive avoidance test. In the Morris water maze test, oral treatment of loganin significantly ameliorated scopolamine-induced memory deficits showing the formation of long-term and/or short-term spatial memory. Moreover, loganin (2 mg/kg body weight) significantly inhibited acetylcholinesterase activity by as much as 45% of control in the mouse hippocampus. These results indicate that loganin may exert antiamnesic activity in in vivo through acetylcholinesterase inhibition.

  14. Activated Rho kinase mediates diabetes-induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: possible involvement of p38 MAPK activation.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Liao, James K; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-06-01

    Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1(Thr850), MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2(+/-) knockout (KO), and ROCK 2(+/-) KO + D mice. The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1(Thr850) and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Diabetes significantly reduced maximum relaxation (Emax ) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1(Thr850), phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2(+/-) KO + D mice for acetylcholine (Emax : 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2(+/-) KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented impairment of ACh- and nitrergic nerve-induced

  15. Caspase Inhibitors may Attenuate Opioid-induced Hyperalgesia and Tolerance via Inhibiting Microglial Activation and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Jiancheng Zhang

    2013-07-01

    Full Text Available Prolonged exposure to an opioid induces hyperalgesia and tolerance, which negatively affect pain management in turn and significantly hamper the application of opioids. A growing body of evidence has demonstrated that glial activation contributes to the development of these two side effects. Recent studies have demonstrated that morphine, binding to an accessory protein of Toll-like receptor 4 (TLR4, activates microglia and produces neuroinflammation in amanner parallel to lipopolysaccharide. Meanwhile, lipopolysaccharide activates microglia through TLR4/caspase signalling. Therefore, we hypothesise that morphine may activate microglia throughTLR4/caspase signalling and that caspase inhibitors may attenuate opioid-induced hyperalgesia and tolerance via inhibiting microglial activation and neuroinflammation

  16. NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures

    Science.gov (United States)

    Serrano, Faridis; Chang, Angela; Hernandez, Caterina; Pautler, Robia G; Sweatt, J David; Klann, Eric

    2009-01-01

    Background Previous studies have shown that beta amyloid (Aβ) peptide triggers the activation of several signal transduction cascades in the hippocampus, including the extracellular signal-regulated kinase (ERK) cascade. In this study we sought to characterize the cellular localization of phosphorylated, active ERK in organotypic hippocampal cultures after acute exposure to either Aβ (1-42) or nicotine. Results We observed that Aβ and nicotine increased the levels of active ERK in distinct cellular localizations. We also examined whether phospho-ERK was regulated by redox signaling mechanisms and found that increases in active ERK induced by Aβ and nicotine were blocked by inhibitors of NADPH oxidase. Conclusion Our findings indicate that NADPH oxidase-dependent redox signaling is required for Aβ-induced activation of ERK, and suggest a similar mechanism may occur during early stages of Alzheimer's disease. PMID:19804648

  17. Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors.

    Science.gov (United States)

    Kim, Kyung-Tai; Song, Mi-Ryoung

    2016-10-28

    Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.

  18. PKCε ACTIVATION PROMOTES FGF-2 EXOCYTOSIS AND INDUCES ENDOTHELIAL CELL PROLIFERATION AND SPROUTING

    Science.gov (United States)

    Monti, Martina; Donnini, Sandra; Morbidelli, Lucia; Giachetti, Antonio; Mochly-Rosen, Daria; Mignatti, Paolo; Ziche, Marina

    2013-01-01

    Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2−/− endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling. PMID:23880610

  19. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats.

  20. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  1. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    Science.gov (United States)

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR.

  2. MUC1 contributes to BPDE-induced human bronchial epithelial cell transformation through facilitating EGFR activation.

    Directory of Open Access Journals (Sweden)

    Xiuling Xu

    Full Text Available Although it is well known that epidermal growth factor receptor (EGFR is involved in lung cancer progression, whether EGFR contributes to lung epithelial cell transformation is less clear. Mucin 1 (MUC1 in human and Muc1 in animals, a glycoprotein component of airway mucus, is overexpressed in lung tumors; however, its role and underlying mechanisms in early stage lung carcinogenesis is still elusive. This study provides strong evidence demonstrating that EGFR and MUC1 are involved in bronchial epithelial cell transformation. Knockdown of MUC1 expression significantly reduced transformation of immortalized human bronchial epithelial cells induced by benzo[a]pyrene diol epoxide (BPDE, the active form of the cigarette smoke (CS carcinogen benzo(apyrene (BaPs. BPDE exposure robustly activated a pathway consisting of EGFR, Akt and ERK, and blocking this pathway significantly increased BPDE-induced cell death and inhibited cell transformation. Suppression of MUC1 expression resulted in EGFR destabilization and inhibition of the BPDE-induced activation of Akt and ERK and increase of cytotoxicity. These results strongly suggest an important role for EGFR in BPDE-induced transformation, and substantiate that MUC1 is involved in lung cancer development, at least partly through mediating carcinogen-induced activation of the EGFR-mediated cell survival pathway that facilitates cell transformation.

  3. Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System

    Science.gov (United States)

    Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

    2012-01-01

    Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2–/– mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae

  4. Stress and radiation-induced activation of multiple intracellular signaling pathways.

    Science.gov (United States)

    Dent, Paul; Yacoub, Adly; Contessa, Joseph; Caron, Ruben; Amorino, George; Valerie, Kristoffer; Hagan, Michael P; Grant, Steven; Schmidt-Ullrich, Rupert

    2003-03-01

    Exposure of cells to a variety of stresses induces compensatory activations of multiple intracellular signaling pathways. These activations can play critical roles in controlling cell survival and repopulation effects in a stress-specific and cell type-dependent manner. Some stress-induced signaling pathways are those normally activated by mitogens such as the EGFR/RAS/PI3K-MAPK pathway. Other pathways activated by stresses such as ionizing radiation include those downstream of death receptors, including pro-caspases and the transcription factor NFKB. This review will attempt to describe some of the complex network of signals induced by ionizing radiation and other cellular stresses in animal cells, with particular attention to signaling by growth factor and death receptors. This includes radiation-induced signaling via the EGFR and IGFI-R to the PI3K, MAPK, JNK, and p38 pathways as well as FAS-R and TNF-R signaling to pro-caspases and NFKB. The roles of autocrine ligands in the responses of cells and bystander cells to radiation and cellular stresses will also be discussed. Based on the data currently available, it appears that radiation can simultaneously activate multiple signaling pathways in cells. Reactive oxygen and nitrogen species may play an important role in this process by inhibiting protein tyrosine phosphatase activity. The ability of radiation to activate signaling pathways may depend on the expression of growth factor receptors, autocrine factors, RAS mutation, and PTEN expression. In other words, just because pathway X is activated by radiation in one cell type does not mean that pathway X will be activated in a different cell type. Radiation-induced signaling through growth factor receptors such as the EGFR may provide radioprotective signals through multiple downstream pathways. In some cell types, enhanced basal signaling by proto-oncogenes such as RAS may provide a radioprotective signal. In many cell types, this may be through PI3K, in others

  5. Inducible removal of UV-induced pyrimidine dimers from transcriptionally active and inactive genes of Saccharomyces cerevisiae.

    Science.gov (United States)

    Waters, R; Zhang, R; Jones, N J

    1993-05-01

    The prior UV irradiation of alpha haploid Saccharomyces cerevisiae with a UV dose of 25 J/m2 substantially increases the repairability of damage subsequently induced by a UV dose of 70 J/m2 given 1 h after the first irradiation. This enhancement of repair is seen at both the MAT alpha and HML alpha loci, which are, respectively, transcriptionally active and inactive in alpha haploid cells. The presence in the medium of the protein synthesis inhibitor, cycloheximide in the period between the two irradiations eliminated this effect. Enhanced repair still occurred if cycloheximide was present only after the final UV irradiation. This indicated that the first result is not due to cycloheximide merely blocking the synthesis of repair enzymes associated with a hypothetical rapid turnover of such molecules. The enhanced repairability is not the result of changes in chromatin accessibility without protein synthesis, merely caused by the repair of the damage induced by the prior irradiation. The data clearly show that a UV-inducible removal of pyrimidine dimers has occurred which involves the synthesis of new proteins. The genes known to possess inducible promoters, and which are involved in excision are RAD2, RAD7, RAD16 and RAD23. Studies with the rad7 and rad16 mutants which are defective in the ability to repair HML alpha and proficient in the repair of MAT alpha showed that in rad7, preirradiation enhanced the repair at MAT alpha, whereas in rad16 this increased repair of MAT alpha was absent. The preirradiation did not modify the inability to repair HML alpha in either strain. Thus RAD16 has a role in this inducible repair.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Rotationally Induced Surface Slope-Instabilities and the Activation of CO2 Activity on Comet 103P/Hartley 2

    CERN Document Server

    Steckloff, Jordan K; Hirabayashi, Toshi; Melosh, H Jay; Richardson, James

    2016-01-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ~45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ~11 [10-13] hours) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ~3-4 orbits prior to the DIXI flyby (~1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During...

  7. Colchicum autumnale agglutinin activates all murine T-lymphocytes but does not induce the proliferation of all activated cells.

    Science.gov (United States)

    Bemer, V; Van Damme, E J; Peumans, W J; Perret, R; Truffa-Bachi, P

    1996-08-25

    Plant lectins with mitogenic properties for T-lymphocytes have been particularly useful for the study of T-cell activation and effector functions. In the search for mitogenic lectins possessing activation features different from the ones associated with the already known mitogens, we found that an agglutinin isolated from Colchicum autumnale tubers, Colchicum autumnale agglutinin (CAA), possesses interesting properties. First, contrasting with the classical mitogens, CAA induces the proliferation of a fraction of the CD4+ and CD8+ mouse T-lymphocytes. Second, the CAA-induced proliferation requires MHC class II and CD4 molecules. Third, although only a fraction of T-cells enters into the cell cycle, all T-lymphocytes are activated and express high levels of the activation markers CD69 and CD44. Finally, CAA-stimulation is characterized by a particular pattern of the cytokine gene expression, reflected by the transcription of the IL2, IL5, and IFN-gamma genes, while the IL4 and IL10 genes remained silent. Taken together these data demonstrate that CAA activation does not conform to the pathway of T-cell triggering observed with classical mitogenes and represents a new tool for the analysis of T-cell activation.

  8. Effect of Tramadol on Rabbit Uterine Contractile Activity Induced in Late Pregnancy.

    Science.gov (United States)

    Yakovleva, A A; Nazarova, L A; Prokopenko, V M; Pavlova, N G

    2017-01-01

    Effect of Tramadol infusion (5 mg/ml) on oxytocin-induced uterine contractile activity was studied in chronic experiment on female rabbits with different degrees of biological readiness for parturition. In case of sufficient biological readiness for parturition, Tramadol did not change the number of uterine contractions, but increased the amplitude and duration of each contraction against the background of increased creatine phosphate consumption by the myometrium. At the same time, Tramadol infusion to females without biological readiness for partirition suppressed induced uterine contractile activity by reducing the amplitude of each uterine contraction.

  9. Tedisamil and lidocaine enhance each other's antiarrhythmic activity against ischaemia-induced arrhythmias in rats

    OpenAIRE

    Sarraf, Guilda; Barrett, Terrance D; Walker, Michael J A

    2003-01-01

    Combinations of the action potential-widening drug tedisamil (Class III antiarrhythmic activity), and the inactivated state sodium channel blocker lidocaine (Class Ib antiarrhythmic activity) were assessed for antiarrhythmic actions in a rat model of ischaemia-induced arrhythmias and for electrophysiological actions in normal rat myocardial tissue.Both tedisamil and lidocaine dose-dependently suppressed ischaemia-induced arrhythmias. The ED50 values were 3.0±1.3 and 4.9±0.6 μmol kg−1 min−1, r...

  10. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in this way induces leaf abscission in Kalanchoe blossfeldiana.

  11. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  12. Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats.

    Science.gov (United States)

    Leirão, Isabela P; Silva, Carlos A; Gargaglioni, Luciane H; da Silva, Glauber S F

    2017-08-03

    Expiratory muscles (abdominal and thoracic) can be recruited when respiratory drive increases under conditions of increased respiratory demand such as hypercapnia. Studying hypercapnia-induced active expiration in unanaesthetized rats importantly contributes to the understanding of how the control system is integrated in vivo in freely moving animals. In unanaesthetized rats, hypercapnia-induced active expiration was not always recruited either in wakefulness or in sleep, suggesting that additional factors influence the recruitment of active expiration. The pattern of abdominal muscle recruitment varied in a state-dependent manner with active expiration being more predominant in the sleep state than in quiet wakefulness. Pulmonary ventilation was enhanced in periods with active expiration compared to periods without it. Expiration is passive at rest but becomes active through recruitment of abdominal muscles under increased respiratory drive. Hypercapnia-induced active expiration has not been well explored in unanaesthetized rats. We hypothesized that (i) CO2 -evoked active expiration is recruited in a state-dependent manner, i.e. differently in sleep or wakefulness, and (ii) recruitment of active expiration enhances ventilation, hence having an important functional role in meeting metabolic demand. To test these hypotheses, Wistar rats (280-330 g) were implanted with electrodes for EEG and electromyography EMG of the neck, diaphragm (DIA) and abdominal (ABD) muscles. Active expiratory events were considered as rhythmic ABDEMG activity interposed to DIAEMG . Animals were exposed to room air followed by hypercapnia (7% CO2 ) with EEG, EMG and ventilation (V̇E) recorded throughout the experimental protocol. No active expiration was observed during room air exposure. During hypercapnia, CO2 -evoked active expiration was predominantly recruited during non-rapid eye movement sleep. Its increased occurrence during sleep was evidenced by the decreased DIA-to-ADB ratio

  13. Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease.

    Science.gov (United States)

    F Hernández, Ledia; Castela, Ivan; Ruiz-DeDiego, Irene; Obeso, Jose A; Moratalla, Rosario

    2017-04-01

    Long-term levodopa (l-dopa) treatment is associated with the development of l-dopa-induced dyskinesias in the majority of patients with Parkinson disease (PD). The etiopathogonesis and mechanisms underlying l-dopa-induced dyskinesias are not well understood. We used striatal optogenetic stimulation to induce dyskinesias in a hemiparkinsonian model of PD in rats. Striatal dopamine depletion was induced unilaterally by 6-hydroxydopamine injection into the medial forebrain bundle. For the optogenetic manipulation, we injected adeno-associated virus particles expressing channelrhodopsin to stimulate striatal medium spiny neurons with a laser source. Simultaneous optical activation of medium spiny neurons of the direct and indirect striatal pathways in the 6-hydroxydopamine lesion but l-dopa naïve rats induced involuntary movements similar to l-dopa-induced dyskinesias, labeled here as optodyskinesias. Noticeably, optodyskinesias were facilitated by l-dopa in animals that did not respond initially to the laser stimulation. In general, optodyskinesias lasted while the laser stimulus was applied, but in some instances remained ongoing for a few seconds after the laser was off. Postmortem tissue analysis revealed increased FosB expression, a molecular marker of l-dopa-induced dyskinesias, primarily in medium spiny neurons of the direct pathway in the dopamine-depleted hemisphere. Selective optogenetic activation of the dorsolateral striatum elicits dyskinesias in the 6-hydroxydopamine rat model of PD. This effect was associated with a preferential activation of the direct striato-nigral pathway. These results potentially open new avenues in the understanding of mechanisms involved in l-dopa-induced dyskinesias. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  14. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China); Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  15. Curcumin inhibits trinitrobenzene sulphonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Zhang, Ming; Deng, Changsheng; Zheng, Jiaju; Xia, Jian; Sheng, Dan

    2006-08-01

    Curcumin is a widely used spice with anti-inflammatory and anti-cancer properties. It has been reported that curcumin held therapeutic effects on experimental colitis by inhibition of nuclear factor kappa B (NF-kappaB). The peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor with anti-tumor and anti-inflammatory effects and its activation may inhibit the nuclear translocation of NF-kappaB. Several studies have shown that PPARgamma ligands had an important therapeutic effect in colitis. However there is no report about the alteration of PPARgamma in trinitrobenzene sulphonic acid (TNBS)-induced colitis treated with curcumin. In this study, we administered curcumin (30 mg/kg/day) by intraperitoneal injection immediately after colitis was induced and the injection lasted for two weeks. have evaluated the effects of curcumin on the colitis induced by trinitrobenzene sulphonic acid (TNBS). Curcumin (30 mg/kg d) was administered by intraperitoneal just after colitis was induced and lasted for two weeks. Therapeutic effects of dexamethasone (Dex, 2 mg/kg d) alone and the combined effects of curcumin+Dex were also examined. We found that curcumin improved long-term survival rate of disease-bearing rats, promoted rat body weight recovery, and decreased macroscopic scores of the colitis. The expression levels of PPARgamma, 15-deoxy-D12,14-prostaglandin J(2) (15d-PGJ(2)) and prostaglandin E(2) (PGE(2)) were all increased, but the expression level of cyclooxygenase-2 (COX-2) was decreased in rats after administration of curcumin. Treatment with Dex improved PPARgamma expression and inhibited the expression of COX-2, 15d-PGJ(2) and PGE(2). Combined effects of curcumin+Dex were similar to that of Dex. In summary, curcumin showed therapeutic effects on TNBS-induced colitis and the mechanisms by which curcumin exerts its effects may involve activation of PPARgamma and its ligands.

  16. Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage.

    Science.gov (United States)

    Lee, Kihyuk; Ochi, Eisuke; Song, Hongsun; Nakazato, Koichi

    2015-10-23

    AMP-activated protein kinase (AMPK) has been shown to regulate protein metabolism in skeletal muscle. We previously found that levels of Forkhead box proteins, FoxO1 and FoxO3a, and myostatin in rat gastrocnemius increased after exercise-induced muscle damage (EIMD). Eccentric muscle contractions (ECs), defined as elongation of muscle under tension, were used for inducing EIMD. The objective of this study was to clarify whether AMPK participates in activation and expression of FoxO proteins and myostatin in rat gastrocnemius muscle after EIMD. Wistar rats were randomly assigned into the following three groups; CON (n = 6), 180ECs group (ankle angular velocity, 180°/s; n = 6), and 30ECs group (ankle angular velocity, 30°/s; n = 6). 20 ECs were conducted with percutaneous electrical stimulation of gastrocnemius and simultaneous forced dorsiflexion of ankle joint (from 0° to 45°). To evaluate activation of AMPK, we measured the phosphorylated states of AMPK and acetyl CoA carboxylase. For evaluation of the direct relationships of AMPK and other proteins, we also examined contents of FoxOs and myostatin with stimulation of L6 myotube with AMPK agonist, 5 -aminoimidazole -4 -carboxamide -1-β-d-ribofuranoside (AICAR) (0.1, 0.5, 1, 1.5, and 2 mM). Western blotting was employed for protein analysis. Significant torque deficit was only observed in the 180ECs, suggesting EIMD. We also observed that phosphorylated AMPKα was induced in response to 180ECs (p muscle treated with 180ECs. Therefore, we conclude that activation of AMPK plays a key role in increasing the level of FoxO1, FoxO3a, and myostatin in gastrocnemius after EIMD.

  17. Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax.

    Science.gov (United States)

    Cheng, Senping; Gao, Ning; Zhang, Zhuo; Chen, Gang; Budhraja, Amit; Ke, Zunji; Son, Young-ok; Wang, Xin; Luo, Jia; Shi, Xianglin

    2010-12-01

    To investigate the in vivo antitumor efficacy of quercetin in U937 xenografts and the functional roles of Mcl-1 and Bax in quercetin-induced apoptosis in human leukemia. Leukemia cells were treated with quercetin, after which apoptosis, Mcl-1 expression, and Bax activation and translocation were evaluated. The efficacy of quercetin as well as Mcl-1 expression and Bax activation were investigated in xenografts of U937 cells. Administration of quercetin caused pronounced apoptosis in both transformed and primary leukemia cells but not in normal blood peripheral mononuclear cells. Quercetin-induced apoptosis was accompanied by Mcl-1 downregulation and Bax conformational change and mitochondrial translocation that triggered cytochrome c release. Knockdown of Bax by siRNA reversed quercetin-induced apoptosis and abrogated the activation of caspase and apoptosis. Ectopic expression of Mcl-1 attenuated quercetin-mediated Bax activation, translocation, and cell death. Conversely, interruption of Mcl-1 by siRNA enhanced Bax activation and translocation, as well as lethality induced by quercetin. However, the absence of Bax had no effect on quercetin-mediated Mcl-1 downregulation. Furthermore, in vivo administration of quercetin attenuated tumor growth in U937 xenografts. The TUNEL-positive apoptotic cells in tumor sections increased in quercetin-treated mice as compared with controls. Mcl-1 downregulation and Bax activation were also observed in xenografts. These data suggest that quercetin may be useful for the treatment of leukemia by preferentially inducing apoptosis in leukemia versus normal hematopoietic cells through a process involving Mcl-1 downregulation, which, in turn, potentiates Bax activation and mitochondrial translocation, culminating in apoptosis. ©2010 AACR.

  18. Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes.

    Science.gov (United States)

    Zapata-Martínez, J; Medina, M F; Gramajo-Bühler, M C; Sánchez-Toranzo, G

    2016-08-01

    Rhinella arenarum oocytes can be artificially activated, a process known as parthenogenesis, by a sesquiterpenic lactone of the guaianolide group, dehydroleucodine (DhL). Transient increases in the concentration of cytosolic Ca2+ are essential to trigger egg activation events. In this sense, the 1-4-5 inositol triphosphate receptors (IP3R) seem to be involved in the Ca2+ transient release induced by DhL in this species. We analyzed the involvement of phosphoinositide metabolism, especially the participation of phospholipase A2 (PLA2) and phospholipase C (PLC) in DhL-induced activation. Different doses of quinacrine, aristolochic acid (ATA) (PLA2 inhibitors) or neomycin, an antibiotic that binds to PIP2, thus preventing its hydrolysis, were used in mature Rhinella arenarum oocytes. In order to assay the participation of PI-PLC and PC- PLC we used U73122, a competitive inhibitor of PI-PLC dependent events and D609, an inhibitor of PC-PLC. We found that PLA2 inhibits quinacrine more effectively than ATA. This difference could be explained by the fact that quinacrine is not a specific inhibitor for PLA2 while ATA is specific for this enzyme. With respect to the participation of PLC, a higher decrease in oocyte activation was detected when cells were exposed to neomycin. Inhibition of PC-PLC with D609 and IP-PLC with U73122 indicated that the last PLC has a significant participation in the effect of DhL-induced activation. Results would indicate that DhL induces activation of in vitro matured oocytes of Rhinella arenarum by activation of IP-PLC, which in turn may induce IP3 formation which produces Ca2+ release.

  19. Propolis protects CYP 2E1 enzymatic activity and oxidative stress induced by carbon tetrachloride.

    Science.gov (United States)

    Bhadauria, Monika; Nirala, Satendra Kumar; Shukla, Sangeeta

    2007-08-01

    Induction of CYP 2E1 by carbon tetrachloride (CCl(4)) is one of the central pathways by which CCl(4) generates oxidative stress in hepatocytes. Experimental liver injury was induced in rats by CCl(4) to determine toxicological actions on CYP 2E1 by microsomal drug metabolizing enzymes. In this report, ethanolic extract of propolis at a dose of 200 mg/kg (po) was used after 24 h of toxicant administration to validate its protective potential. Intraperitoneal injection of CCl(4) (1.5 ml/kg) induced hepatotoxicity after 24 h of its administration that was associated with elevated malonyldialdehyde (index of lipid peroxidation), lactate dehydrogenase and gamma-glutamyl transpeptidase release (index of a cytotoxic effect). Hepatic microsomal drug metabolizing enzymes of CYP 2E1 showed sharp depletion as assessed by estimating aniline hydroxylase and amidopyrine N-demethylase activity after CCl(4) exposure. Toxic effect of CCl(4) was evident on CYP 2E1 activity by increased hexobarbitone induced sleep time and bromosulphalein retention. Propolis extract showed significant improvement in the activity of both enzymes and suppressed toxicant induced increase in sleep time and bromosulphalein retention. Choleretic activity of liver did not show any sign of toxicity after propolis treatment at a dose of 200 mg/kg (id). Histopathological evaluation of the liver revealed that propolis reduced the incidence of liver lesions including hepatocyte swelling and lymphocytic infiltrations induced by CCl(4). Electron microscopic observations also showed improvement in ultrastructure of liver and substantiated recovery in biochemical parameters. Protective activity of propolis at 200 mg/kg dose was statistically compared with positive control silymarin (50 mg/kg, po), a known hepatoprotective drug seems to be better in preventing hepatic CYP 2E1 activity deviated by CCl(4). These results lead us to speculate that propolis may play hepatoprotective role via improved CYP 2E1 activity and

  20. Cadmium induces vascular permeability via activation of the p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Fengyun [Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Guo, Fang [Department of Cardiology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021 (China); Li, Liqun [Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Guo, Ling; Hou, Yinglong; Hao, Enkui; Yan, Suhua [Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Allen, Thaddeus D. [G.W. Hooper Research Foundation, University of California at San Francisco, 513 Parnassus Ave., HSW1501, San Francisco, CA 94143-0552 (United States); Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China)

    2014-07-18

    Highlights: • Low-dose cadmium (Cd) induces vascular hyper-permeability. • p38 MAPK mediates Cd-induced disruption of endothelial cell barrier function. • SB203850 inhibits Cd-induced membrane dissociation of VE-cadherin and β-catenin. • SB203850 reduces Cd-induced expression and secretion of TNF-α. - Abstract: The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl{sub 2}) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl{sub 2} induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl{sub 2} was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl{sub 2}-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.

  1. Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes.

    Science.gov (United States)

    Sollberger, Gabriel; Strittmatter, Gerhard E; Grossi, Serena; Garstkiewicz, Martha; Auf dem Keller, Ulrich; French, Lars E; Beer, Hans-Dietmar

    2015-05-01

    Caspase-1 has a crucial role in innate immunity as the protease activates the proinflammatory cytokine prointerleukin(IL)-1β. Furthermore, caspase-1 induces pyroptosis, a lytic form of cell death that supports inflammation. Activation of caspase-1 occurs in multi-protein complexes termed inflammasomes, which assemble upon sensing of stress signals. In the skin and in skin-derived keratinocytes, UVB irradiation induces inflammasome-dependent IL-1 secretion and sunburn. Here we present evidence that caspase-1 and caspase-4 are required for UVB-induced apoptosis. In UVB-irradiated human primary keratinocytes, apoptosis occurs significantly later than inflammasome activation but depends on caspase-1 activity. However, it proceeds independently of inflammasome activation. By a proteomics approach, we identified the antiapoptotic Bap31 as a putative caspase-1 substrate. Caspase-1-dependent apoptosis is possibly a recent process in evolution as it was not detected in mice. These results suggest a protective role of caspase-1 in keratinocytes during UVB-induced skin cancer development through the induction of apoptosis.

  2. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats.

    Science.gov (United States)

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Parthasarathy, Chandrakesan

    2009-10-01

    N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.

  3. Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells

    Directory of Open Access Journals (Sweden)

    M Jamshidiha

    2010-06-01

    Full Text Available "n  "nBackground and the purpose of the study: Etoposide is an antineoplastic agent used in multiple cancers. It is known that etoposide induce cell death via interaction with topoisomerase II; however, the etopoisde cellular response is poorly understood. Upon etoposide induced DNA damage, many stress signaling pathways including JNK are activated. In response to DNA damage, it has been shown that WWOX, a recently introduced tumor suppressor, can be activated. In this study the activation of WWOX and JNK and their interaction following etoposide treatment were evaluated. "nMaterials and Methods:HEK293 cells treated with etoposide were lysed in a time course manner. The whole cell lysates were used to evaluate JNK and WWOX activation pattern using Phospho specific antibodies on western blots. The viability of cells treated with etoposide, JNK specific inhibitor and their combination was examined using MTT assay. "nResults:Findings of this study indicate that WWOX and JNK are activated in a simultaneous way in response to DNA damage. Moreover, JNK inhibition enhances etoposide induced cytotoxicity in HEK293. "nConclusion:Taken together, our results indicate that etoposide induces cytotoxicity and WWOX phosphorylation and the cytotoxicty is augmented by blocking JNK pathway.

  4. Role of Peroxisome Proliferator-Activated Receptor Gamma in Glucose-induced Insulin Secretion

    Institute of Scientific and Technical Information of China (English)

    Ze-Kuan XU; Neng-Guin CHEN; Chang-Yan MA; Zhuo-Xian MENG; Yu-Jie SUN; Xiao HAN

    2006-01-01

    Peroxisome proliferator-activated receptor (PPAR) isoforms (α and γ) are known to be expressed in pancreatic islets as well as in insulin-producing cell lines. Ligands of PPAR have been shown to enhance glucose-induced insulin secretion in rat pancreatic islets. However, their effect on insulin secretion is still unclear. To understand the molecular mechanism by which PPARγ exerts its effect on glucoseinduced insulin secretion, we examined the endogenous activity of PPAR isoforms, and studied the PPARγfunction and its target gene expression in INS-1 cells. We found that: (1) endogenous PPARγ was activated in a ligand-dependent manner in INS-1 cells; (2) overexpression of PPARγ in the absence of PPARγ ligands enhanced glucose-induced insulin secretion, which indicates that the increased glucose-induced insulin secretion is a PPARγ-mediated event; (3) the addition of both PPARγ and retinoid X receptor (RXR) ligands showed a synergistic effect on the augmentation of reporter activity, suggesting that the hetero-dimerization of PPARγand RXR is required for the regulation of the target genes; (4) PPARs upregulated both the glucose transporter 2 (GLUT2) and Cbl-associated protein (CAP) genes in INS-1 cells. Our findings suggest an important mechanistic pathway in which PPARγ enhances glucose-induced insulin secretion by activating the expression of GLUT2 and CAP genes in a ligand-dependent manner.

  5. Chitosan treatment abrogates hypercholesterolemia-induced erythrocyte’s arginase activation

    Directory of Open Access Journals (Sweden)

    Gamaleldin I. Harisa

    2017-01-01

    Full Text Available This study aimed to evaluate the protective effect of chitosan (CS against hypercholesterolemia (HC induced arginase activation and disruption of nitric oxide (NO biosynthesis using erythrocytes as cellular model. Human erythrocytes were isolated and classified into eight groups. Next, cells were treated with l-arginine (l-ARG, Nω-nitro-l-arginine methyl ester (l-NAME, CS or CS + l-ARG in the presence of normal plasma or cholesterol enriches plasma. Then, erythrocytes were incubated at 37 °C for 24 h. The present results revealed that, HC induced significant increase of cholesterol inclusion into erythrocytes membrane compared to control. Moreover, HC caused significant decrease in nitric oxide synthase (NOS activity similar to l-NAME; however, arginase activity and arginase/NOS ratio significantly increased compared to control. On contrast, treatment of HC with, l-arginine, CS or CS plus l-arginine prevents HC induced cholesterol loading into erythrocytes membrane, NOS inhibition and arginase activation. This study suggested that CS could be protective agent against HC induced disruption of erythrocyte’s oxidative status and arginase activation.

  6. Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR

    Directory of Open Access Journals (Sweden)

    Francisco J. Rios

    2013-01-01

    Full Text Available OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPARγ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF-β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF-β, arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.

  7. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study

    Directory of Open Access Journals (Sweden)

    Okujava Michael

    2001-11-01

    Full Text Available Abstract Background and Purpose It is not known whether carbamazepine (CBZ; a drug widely used in neurology and psychiatry influences the blood oxygenation level dependent (BOLD contrast changes induced by neuronal activation and measured by functional MRI (fMRI. We aimed to investigate the influence of CBZ on memory induced activation of the mesial temporal lobes in patients with symptomatic temporal lobe epilepsy (TLE. Material and Methods Twenty-one individual patients with refractory symptomatic TLE with different CBZ serum levels and 20 healthy controls were studied using BOLD fMRI. Mesial temporal lobe (MTL activation was induced by a task that is based on the retrieval of individually familiar visuo-spatial knowledge. The extent of significant MTL fMRI activation was measured and correlated with the CBZ serum level. Results In TLE patients, the extent of significant fMRI activation over both MTL was negatively correlated to the CBZ serum level (Spearman r = -0.654, P Conclusions In TLE patients, carbamazepine reduces the fMRI-detectable changes within the mesial temporal lobes as induced by effortful memory retrieval. FMRI appears to be suitable to study the effects of chronic drug treatment in patients with epilepsy.

  8. Streptococcus induces circulating CLA(+) memory T-cell-dependent epidermal cell activation in psoriasis.

    Science.gov (United States)

    Ferran, Marta; Galván, Ana B; Rincón, Catalina; Romeu, Ester R; Sacrista, Marc; Barboza, Erika; Giménez-Arnau, Ana; Celada, Antonio; Pujol, Ramon M; Santamaria-Babí, Luis F

    2013-04-01

    Streptococcal throat infection is associated with a specific variant of psoriasis and with HLA-Cw6 expression. In this study, activation of circulating psoriatic cutaneous lymphocyte-associated antigen (CLA)(+) memory T cells cultured together with epidermal cells occurred only when streptococcal throat extracts were added. This triggered the production of Th1, Th17, and Th22 cytokines, as well as epidermal cell mediators (CXCL8, CXCL9, CXCL10, and CXCL11). Streptococcal extracts (SEs) did not induce any activation with either CLA(-) cells or memory T cells cultured together with epidermal cells from healthy subjects. Intradermal injection of activated culture supernatants into mouse skin induced epidermal hyperplasia. SEs also induced activation when we used epidermal cells from nonlesional skin of psoriatic patients with CLA(+) memory T cells. Significant correlations were found between SE induced upregulation of mRNA expression for ifn-γ, il-17, il-22, ip-10, and serum level of antistreptolysin O in psoriatic patients. This study demonstrates the direct involvement of streptococcal infection in pathological mechanisms of psoriasis, such as IL-17 production and epidermal cell activation.

  9. Exacerbated cardiac fibrosis induced by β-adrenergic activation in old mice due to decreased AMPK activity.

    Science.gov (United States)

    Wang, Jingjing; Song, Yao; Li, Hao; Shen, Qiang; Shen, Jing; An, Xiangbo; Wu, Jimin; Zhang, Jianshu; Wu, Yunong; Xiao, Han; Zhang, Youyi

    2016-11-01

    Senescent hearts exhibit defective responses to β-adrenergic receptor (β-AR) over-activation upon stress, leading to more severe pathological cardiac remodelling. However, the underlying mechanisms remain unclear. Here, we investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in protecting against ageing-associated cardiac remodelling in mice upon β-AR over-activation. 10-week-old (young) and 18-month-old (old) mice were subcutaneously injected with the β-AR agonist isoproterenol (ISO; 5 mg/kg). More extensive cardiac fibrosis was found in old mice upon ISO exposure than in young mice. Meanwhile, ISO treatment decreased AMPK activity and increased β-arrestin 1, but not β-arrestin 2, expression, and the effects of ISO on AMPK and β-arrestin 1 were greater in old mice than in young mice. Similarly, young AMPKα2-knockout (KO) mice showed more extensive cardiac fibrosis upon ISO exposure than that was observed in age-matched wild-type (WT) littermates. The extent of cardiac fibrosis in WT old mice was similar to that in young KO mice. Additionally, AMPK activities were decreased and β-arrestin 1 expression increased in KO mice. In contrast, the AMPK activator metformin decreased β-arrestin 1 expression and attenuated cardiac fibrosis in both young and old mice upon ISO exposure. In conclusion, more severe cardiac fibrosis is induced by ISO in old mice than in young mice. A decrease in AMPK activity, which further increases β-arrestin 1 expression, is the central mechanism underlying the ageing-related cardiac fibrosis induced by ISO. The AMPK activator metformin is a promising therapeutic agent for treating ageing-related cardiac remodelling upon β-AR over-activation.

  10. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  11. Visualization of ligand-induced Gi-protein activation in chemotaxing cells.

    Science.gov (United States)

    Masuda, Kazuyuki; Kitakami, Jun-Ichi; Kozasa, Tohru; Kodama, Tatsuhiko; Ihara, Sigeo; Hamakubo, Takao

    2017-03-01

    Cell migration to chemoattractants is critically important in both normal physiology and the pathogenesis of many diseases. In GPCR-mediated chemotaxis, GPCRs transduce the gradient of an extracellular chemotactic ligand into intracellular responses via the activation of heterotrimeric G proteins. However, ligand-induced G-protein activation has not been directly imaged as yet in mammalian chemotaxing cells. We developed a Förster resonance energy transfer (FRET) probe, R10-Gi, by linking the Gi-protein α subunit to the regulator of G-protein signaling domain. The R10-Gi probe was coupled with a chemoattractant leukotriene B4 (LTB4) receptor 1 (BLT1) that induced the receptor to display a high-affinity ligand binding activity (Kd = 0.91 nM) in HEK293 cells. The R10-Gi probe exhibited an increased FRET signal in accord with the LTB4-dependent activation of Gi Furthermore, neutrophil-like differentiated human leukemia cell line 60 that expressed the intrinsic BLT1 displayed temporal Gi-protein activation in an area localized to the leading edge during chemotaxis in a shallow gradient of LTB4 These findings afford an opportunity to clarify the mechanisms underlying the subcellular regulation of Gi-protein activity, as well as GPCR-mediated ligand sensing, during chemotaxis in mammalian cells.-Masuda, K., Kitakami, J., Kozasa, T., Kodama, T., Ihara, S., Hamakubo, T. Visualization of ligand-induced Gi-protein activation in chemotaxing cells. © FASEB.

  12. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  13. Galangin potentiates human breast cancer to apoptosis induced by TRAIL through activating AMPK.

    Science.gov (United States)

    Song, Wei; Yan, Chong-Yang; Zhou, Qian-Qian; Zhen, Lin-Lin

    2017-03-06

    Breast cancer is reported as the most frequent tumor with limited treatments among the female worldwide. Galangin, a natural active compound 3, 5, 7-trihydroxyflavone, is a type of bioflavonoid isolated from the Alpinia galangal root and suggested to induce apoptosis in various cancers. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an effective anti-tumor agent for human breast cancer. Promoted expression of CHOP, a down-streaming transcription factor for endoplasmic reticulum stress (ER stress), enhanced death factor 4 (DR4) activity and accelerated reactive oxygen species (ROS) as well as cell death. Adenosine monophosphate-activated protein kinase (AMPK) is crucial for various cancers mortality. In the present study, galangin regulated ER stress to augment CHOP and DR4 expression levels, sensitizing TRAIL activity, leading to human breast cancer cell apoptosis through Caspase-3 activation, which was associated with AMPK phosphorylation. In addition, AMPK inhibition and silence reduced anti-cancer activity of galangin and TRAIL in combinational treatment. Hence, our study indicated that galangin could effectively stimulate human breast cancer cells to TRAIL-induced apoptosis through TRAIL/Caspase-3/AMPK signaling pathway. AMPK signaling pathway activation by galangin might be of benefit for promoting the effects of TRAIL-regulated anti-tumor therapeutic strategy.

  14. Platelet activating factor-induced expression of p21 is correlated with histone acetylation

    Science.gov (United States)

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Lege, Bree M.; Liu, Jingwei; Neelapu, Sattva S.; Ullrich, Stephen E.

    2017-01-01

    Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome. PMID:28157211

  15. PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation.

    Science.gov (United States)

    Chen, Hongen; Liu, Yan; Li, Di; Song, Jiayi; Xia, Min

    2016-02-01

    Inflammation of infiltrated macrophages in adipose tissue is a key contributor to the initiation of adipose insulin resistance. These macrophages are exposed to high local concentrations of free fatty acids (FFAs) and can be proinflammatory activated by saturated fatty acids (SFAs). However, the regulatory mechanisms on SFA-induced macrophage inflammation are still elusive. Peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) is a member of the PGC-1 family of transcriptional coactivators and has been reported to play a key role in SFAs metabolism and in the regulation of inflammatory signaling. However, it remains unclear whether PGC-1β is involved in SFA-induced macrophage inflammation. In this study, we found that PGC-1β expression was significantly decreased in response to palmitic acid (PA) in macrophages in a dose dependent manner. PGC-1β inhibited PA induced TNFα, MCP-1, and IL-1β mRNA and protein expressions. Furthermore, PGC-1β significantly antagonized PA induced macrophage nuclear factor-κB (NF-κB) p65 and JUN N-terminal kinase activation. Mechanistically, we revealed that TGF-β-activated kinase 1 (TAK1) and its adaptor protein TAK1 binding protein 1 (TAB1) played a dominant role in the regulatory effects of PGC-1β. We confirmed that PGC-1β inhibited downstream inflammatory signals via binding with TAB1 and thus preventing TAB1/TAK1 binding and TAK1 activation. Finally, we showed that PGC-1β overexpression in PA treated macrophages improved adipocytes PI3K-Akt insulin signaling in a paracrine fashion. Collectively, our results uncovered a novel mechanism on how macrophage inflammation induced by SFAs was regulated and suggest a potential target in the treatment of obesity induced insulin resistance.

  16. A preliminary census of engineering activities located in Sicily (Southern Italy) which may "potentially" induce seismicity

    Science.gov (United States)

    Aloisi, Marco; Briffa, Emanuela; Cannata, Andrea; Cannavò, Flavio; Gambino, Salvatore; Maiolino, Vincenza; Maugeri, Roberto; Palano, Mimmo; Privitera, Eugenio; Scaltrito, Antonio; Spampinato, Salvatore; Ursino, Andrea; Velardita, Rosanna

    2015-04-01

    The seismic events caused by human engineering activities are commonly termed as "triggered" and "induced". This class of earthquakes, though characterized by low-to-moderate magnitude, have significant social and economical implications since they occur close to the engineering activity responsible for triggering/inducing them and can be felt by the inhabitants living nearby, and may even produce damage. One of the first well-documented examples of induced seismicity was observed in 1932 in Algeria, when a shallow magnitude 3.0 earthquake occurred close to the Oued Fodda Dam. By the continuous global improvement of seismic monitoring networks, numerous other examples of human-induced earthquakes have been identified. Induced earthquakes occur at shallow depths and are related to a number of human activities, such as fluid injection under high pressure (e.g. waste-water disposal in deep wells, hydrofracturing activities in enhanced geothermal systems and oil recovery, shale-gas fracking, natural and CO2 gas storage), hydrocarbon exploitation, groundwater extraction, deep underground mining, large water impoundments and underground nuclear tests. In Italy, induced/triggered seismicity is suspected to have contributed to the disaster of the Vajont dam in 1963. Despite this suspected case and the presence in the Italian territory of a large amount of engineering activities "capable" of inducing seismicity, no extensive researches on this topic have been conducted to date. Hence, in order to improve knowledge and correctly assess the potential hazard at a specific location in the future, here we started a preliminary study on the entire range of engineering activities currently located in Sicily (Southern Italy) which may "potentially" induce seismicity. To this end, we performed: • a preliminary census of all engineering activities located in the study area by collecting all the useful information coming from available on-line catalogues; • a detailed compilation

  17. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.L. [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Durando, P.E. [Facultad de Ciencias Exactas, Fisicas y Naturales, Departamento de Biologia, Catedra de Fisiologia Animal, Universidad Nacional de San Juan, Complejo ' Islas Malvinas' , Av. Jose I. de la Roza y Meglioli, Rivadavia, San Juan (Argentina); Nores, M.L. [Facultad de Ciencias Medicas, Universidad Nacional de Cordoba-CONICET, Ciudad Universitaria, Cordoba (Argentina); Diaz, M.P. [Facultad de Ciencias Medicas, Catedra de Estadistica y Bioestadistica, Escuela de Nutricion, Universidad Nacional de Cordoba, Pabellon Chile, Ciudad Universitaria, 5000 Cordoba (Argentina); Bistoni, M.A., E-mail: mbistoni@com.uncor.ed [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Wunderlin, D.A. [Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica-CIBICI, Universidad Nacional de Cordoba-CONICET, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-05-15

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 mug L{sup -1} EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 mug L{sup -1} during 24 h, and measured the AchE activity in brain and muscle. At 0.072 mug L{sup -1} EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 mug L{sup -1} EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 mug L{sup -1}, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  18. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Science.gov (United States)

    Ghezali, Lamia; Liagre, Bertrand; Limami, Youness; Beneytout, Jean-Louis; Leger, David Yannick

    2014-01-01

    Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  19. Physical training induced resting bradycardia and its association with cardiac autonomic nervous activities.

    Science.gov (United States)

    Alom, M M; Bhuiyan, N I; Hossain, M M; Hoque, M F; Rozario, R J; Nessa, W

    2011-10-01

    Regular physical exercise causes resting bradycardia. This exercise-induced resting bradycardia may be associated with exercise-induced changes in Cardiac autonomic nervous activities (CANA). Power Spectral Analysis (PSA) of Heart rate variability (HRV) is one of the most promising new techniques to quantify CANA. Regular physical exercise induced bradycardia is associated with exercise-induced adaptation in CANA. To observe the HRV parameters by frequency domain method (PSA), in male adolescent athletes in order to find out the influence of regular physical exercise on resting heart rate (HR) and CANA. The cross sectional study was carried out on 62 adolescent male athletes aged 12-18 years (group B), in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University from 1st July 2007 to 30th June 2008. For comparison 30 age, sex and socioeconomic condition matched apparently healthy sedentary subjects (group A) were also studied. The study group was selected from the BKSP (Bangladesh Krira Shikka Prothistan, Savar, Dhaka) and the control from a residential school of Dhaka city. HRV parameters were assessed by Polygraph (Polyrite D, version 2.2). For statistical analysis Independent-Samples t-test was done as applicable. Resting mean HR was significantly (p<0.001) lower in the athletes. The mean value of Total (variance), VLF, LF and HF power was significantly (p<0.001) higher in athletes than that of non-athetes. Regular physical exercise-induced resting bradycardia is associated with exercise-induced adaptation in cardiac autonomic nervous activities.

  20. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Directory of Open Access Journals (Sweden)

    Lamia Ghezali

    Full Text Available Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  1. Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Cristian R Falcón

    Full Text Available The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh has not yet been fully described. Here, we demonstrated that Fh total extract (TE reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM, present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite.

  2. Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5'-AMP-activated protein kinase.

    Science.gov (United States)

    Lee, Sunyoung; Jeong, Seongkeun; Kim, Wooseong; Kim, Dohoon; Yang, Yejin; Yoon, Jeong-Hyun; Kim, Byung Joo; Min, Do Sik; Jung, Yunjin

    2017-01-29

    Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Asian dust particles induce macrophage inflammatory responses via mitogen-activated protein kinase activation and reactive oxygen species production.

    Science.gov (United States)

    Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor- α (TNF- α ) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10  μ m in diameter provoked a greater inflammatory response than soil dust samples containing particles >10  μ m. In addition, Asian dust particles-induced TNF- α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor- κ B and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  4. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Kazuma Higashisaka

    2014-01-01

    Full Text Available Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  5. Hepatoprotective activity of aqueous methanolic extract of Morus nigra against paracetamol-induced hepatotoxicity in mice

    Directory of Open Access Journals (Sweden)

    Tauqeer Hussain Mallhi

    2014-03-01

    Full Text Available Morus nigra (Family Moraceae is traditionally used injaundice, diabetes, hypertension, cough, fever and cancer. The current study was conducted to determine hepatoprotective activity of aqueous methanolic extract of leaves of M. nigra. Two doses of 250 mg/kg p.o and 500 mg/kg p.o showed that extract of M. nigra produced significant (p<0.001 reduction in liver enzymes (ALT, AST, ALP and total bilirubin induced by paracetamol and the results are comparable to silymarin (p<0.001. Results were supported by histopathologi-cal investigations, phytochemical screening and detection of active consti-tuents by HPLC. The current study showed that aqueous methanolic extract of M. nigra possess hepatoprotective activity that might be due to quercetin, luteolin and isorhamnetin. It was concluded from this study that M. nigra has hepatoprotective activity against paracetamol induced liver injury in mice.

  6. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  7. Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles.

    Science.gov (United States)

    Zhao, Biao; Deng, Jinrui; Deng, Jianping

    2016-04-01

    Optically active nano- and microparticles have constituted a significant category of advanced functional materials. However, constructing optically active particles derived from synthetic helical polymers still remains as a big challenge. In the present study, it is attempted to induce a racemic helical polymer (containing right- and left-handed helices in equal amount) to prefer one predominant helicity in aqueous media by using emulsifier in the presence of chiral additive (emulsification process). Excitingly, the emulsification process promotes the racemic helical polymer to unify the helicity and directly provides optically active nanoparticles constructed by chirally helical polymer. A possible mechanism is proposed to explain the emulsification-induced homohelicity effect. The present study establishes a novel strategy for preparing chirally helical polymer-derived optically active nanoparticles based on racemic helical polymers.

  8. Antidiarrheal activity of Pterocarpus erinaceus methanol leaf extract in experimentally-induced diarrhea.

    Science.gov (United States)

    Ezeja, I Maxwell; Ezeigbo, Ihechiluru I; Madubuike, Kelechi G; Udeh, Nkiru E; Ukweni, Iheanacho A; Akomas, Stella C; Ifenkwe, Daniel C

    2012-02-01

    To investigate the antidiarrheal activity of the methanol leaf extract of Pterocarpus erinaceus in vivo. The methanol leaf extract of Pterocarpus erinaceus was evaluated using different doses (100, 200 and 400 mg/kg body weight) orally for antidiarrheal activity using castor oil-induced diarrhea, charcoal meal transit time and castor oil-induced enteropooling in different groups of albino Wistar mice. The activity of the extract at different doses were compared to diphenoxylate (5 mg/kg) and atropine sulphate (3 mg/kg) which were used as standard reference drugs and also to the distilled water administered negative control group of mice. The extract at the doses used caused a significant (PPterocarpus erinaceus extract produced significant antidiarrheal activity and the action may attribute to inhibition of gastrointestinal movement and fluid secretion. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  9. Substrate-induced activation of a trapped IMC-mediated protein folding intermediate.

    Science.gov (United States)

    Inouye, M; Fu, X; Shinde, U

    2001-04-01

    While several unfolded proteins acquire native structures through distinct folding intermediates, the physiological relevance and importance of such states in the folding kinetics remain controversial. The intramolecular chaperone (IMC) of subtilisin was used to trap a partially folded, stable crosslinked intermediate conformer (CLIC) through a disulfide bond between mutated IMC and subtilisin. The trapped CLIC contains non-native interactions. Here we show that CLIC can be induced into a catalytically active form by incubating it with small peptide substrates. The structure and catalytic properties of the activated crosslinked intermediate conformer (A-CLIC) differ from those of the fully folded enzyme in that A-CLIC lacks any endopeptidase activity toward a large protein substrate. Our results show that a disulfide-linked partially folded protein can be induced to acquire catalytic activity with a substrate specificity that is different from completely folded subtilisin. These results also suggest that protein folding intermediates may also participate in catalytic reactions.

  10. MSX2 overexpression inhibits gemcitabine-induced caspase-3 activity in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shin Hamada; Kennichi Satoh; Kenji Kimura; Atsushi Kanno; Atsushi Masamune; Tooru Shimosegawa

    2005-01-01

    AIM: To evaluate the effect of MSX2 on gemcitabineinduced caspase-3 activation in pancreatic cancer cell line Panc-1.METHODS: Using V5-tagged MSX2 expression vector,stable transfectant of MSX2 was generated from Panc-1cells (Px14 cells). Cell viability under gemcitabine administration was determined by MTT assay relative to control cell line (empty-vector transfected Panc-1 cells;P-3EV cells). Hoechst staining was used for the detection of apoptotic cell. Activation of caspase-3 was assessed using Western blotting analysis and direct measurement of caspase-3 specific activities.RESULTS: MSX2 overexpression in Panc-1 cells resulted in decreased gemcitabine-induced caspase-3 activation and increased cell viability under gemcitabine treatment in Px14 cells.CONCLUSION: MSX2 exerts repressive effects on gemcitabine-induced apoptotic pathway. This novel apoptosis-regulating function of MSX2 may provide a new therapeutic target for pancreatic cancer.

  11. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  12. Stretch-activated channels in stretch-induced muscle damage: role in muscular dystrophy.

    Science.gov (United States)

    Yeung, Ella W; Allen, David G

    2004-08-01

    1. Stretch-induced muscle injury results in the damage that causes reduced force and increased membrane permeability. This muscle damage is caused, in part, by ionic entry through stretch-activated channels and blocking these channels with Gd3+ or streptomycin reduces the force deficit associated with damage. 2. Dystrophin-deficient muscles are more susceptible to stretch-induced muscle injury and the recovery from injury can be incomplete. We have found that Na+ entry associated with stretch-induced injury is enhanced in dystrophin-deficient muscles and that blockers of stretch-activated channels are capable of preventing ionic entry and reducing muscle damage. 3. A model is presented that proposes links between stretch-induced injury, opening of stretch-activated channels, increased levels of intracellular ions and various forms of muscle damage. Although changes in Na+ accompany stretch-induced muscle injury, we believe that changes in Ca2+ probably have a more central role in the damage process.

  13. Suppressed expression of mitogen-activated protein kinases in hyperthermia induced defective neural tube.

    Science.gov (United States)

    Zhang, Tianliang; Leng, Zhaoting; Liu, Wenjing; Wang, Xia; Yan, Xue; Yu, Li

    2015-05-06

    Neural tube defects (NTDs) are common congenital malformations. Mitogen-activated protein kinases (MAPKs) pathway is involved in many physiological processes. HMGB1 has been showed closely associated with neurulation and NTDs induced by hyperthermia and could activate MAPKs pathway. Since hyperthermia caused increased activation of MAPKs in many systems, the present study aims to investigate whether HMGB1 contributes to hyperthermia induced NTDs through MAPKs pathway. The mRNA levels of MAPKs and HMGB1 between embryonic day 8.5 and 10 (E8.5-10) in hyperthermia induced defective neural tube were detected by real-time quantitative polymerase chain reaction (qPCR). By immunofluorescence and western blotting, the expressions of HMGB1 and phosphorylated MAPKs (ERK1/2, JNK and p38) in neural tubes after hyperthermia were studied. The mRNA levels of MAPKs and HMGB1, as well as the expressions of HMGB1 along with phosphorylated JNK, p38 and ERK, were downregulated in NTDs groups induced by hyperthermia compared with control. The findings suggested that HMGB1 may contribute to hyperthermia induced NTDs formation through decreased cell proliferation due to inhibited phosphorylated ERK1/2 MAPK.

  14. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  15. The CXXC finger 5 protein is required for DNA damage-induced p53 activation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest,senescence,apoptosis,and DNA repair.The ataxia te-langiectasia mutated protein kinase(ATM) responds to DNA-damage stimuli and signals p53 stabiliza-tion and activation,thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity.In this study,we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway.CF5 induces p53 transcriptional activity and apoptosis in cells expressing wild type p53 but not in p53-deficient cells.Knockdown of CF5 in-hibits DNA damage-induced p53 activation as well as cell cycle arrest.Furthermore,CF5 physically interacts with ATM and is required for DNA damage-induced ATM phosphorylation but not its recruitment to chromatin.These findings suggest that CF5 plays a crucial role in ATM-p53 signaling in response to DNA damage.

  16. ARRHYTHMIA INDUCED BY NICOTINE ACTIVATING CARDIAC INTRINSIC NEURONS IN CANINE ATRIAL AND VENTRICULAR GANGLIAL PLEXUS

    Institute of Scientific and Technical Information of China (English)

    袁秉祥; 刘书勤; 李萍; 李新华

    2002-01-01

    Objective To study the arrhythmia induced by stimulation of nicotine-sensitive neurons in cardiac ganglial plexuses. Methods When nicotine (100μg) was injected into canine right atrial ganglial plexus (RAGP) and ganglial plexus between aorta and pulmonary artery (A-PGP) in 33 anesthetized open-chest dog, electrocardiogram, atrial force and ventricular intramyocardial pressures (IMP) were recorded. The responses were also recorded following administration of atropine or propranolol and after heart acute decentralization. Results Ventricular arrhythmia (VA) was induced by injections of nicotine into A-PGP, but not by injections of nicotine into RAGP in 13 dogs. Atrioventricilar (A-V) block was induced by nicotine activating RAGP in 10 dogs, but not by nicotine activating A-PGP. Propranolol could reduce the frequency of VA elicited by stimulating A-PGP, atropine could reduce the frequency of A-V block elicited by stimulating RAGP. After acute decentralization, VA was still induced by activation of A-PGP in 9 dogs, but A-V block elicited by stimulating RAGP was decreased. Conclusion VA is induced by stimulating N receptor in cardiac nicotine-sensitive efferent sympathetic neurons of ventricular ganglial plexus (A-PGP), and then modifying β receptor of ventricles. A-V block is elicited by stimulating N receptor in atrial ganglial plexus (RAGP), then modifying M receptor of A-V node not only via efferent parasympathetic neurons, but also via afferent pathway.

  17. Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility

    Institute of Scientific and Technical Information of China (English)

    Ming ZHENG; Rong HOU; Rui-ping XIAO

    2004-01-01

    AIM: To determine the possible role of pH in mediating activation of p38 mitogen-activated protein kinase (MAPK) and the consequent function of activated p38 MAPK in regulating cardiac contractility. METHODS: Adult rat cardiomyocytes were isolated and cultured. Low pH media was used to induce intracellular acidosis and contraction of single cardiomyocyte was measured. RESULTS: Phosphorylation of p38 MAPK was increased during ischemia, and pHi was decreased. Intracellular acidosis activated p38 MAPK to a similar level as ischemia. Inhibition of p38 MAPK activation by SB203580, a specific inhibitor of p38 MAPK, reversed acidosis-mediated reduction of myocyte contractility. CONCLUSION: In adult rat cardiomyocytes, intracellular acidification activated p38 MAPK and decreased cardiac contractility. Pretreatment of cardiomyocytes with SB203580 completely blocked p38 MAPK activation and partially reversed acidosis-mediated decline of cardiac contractility.

  18. Seleno-auranofin (Et3PAuSe-tagl): synthesis, spectroscopic (EXAFS, 197Au Mössbauer, 31P, 1H, 13C, and 77Se NMR, ESI-MS) characterization, biological activity, and rapid serum albumin-induced triethylphosphine oxide generation.

    Science.gov (United States)

    Hill, David T; Isab, Anvarhusein A; Griswold, Don E; DiMartino, Michael J; Matz, Elizabeth D; Figueroa, Angel L; Wawro, Joyce E; DeBrosse, Charles; Reiff, William M; Elder, Richard C; Jones, Benjamin; Webb, James W; Shaw, C Frank

    2010-09-06

    Seleno-auranofin (SeAF), an analogue of auranofin (AF), the orally active antiarthritic gold drug in clinical use, was synthesized and has been characterized by an array of physical techniques and biological assays. The Mössbauer and extended X-ray absorption fine structure (EXAFS) parameters of the solid compound demonstrate a linear P-Au-Se coordination environment at a gold(I) center, analogous to the structure of auranofin. The (31)P, (13)C, and (1)H NMR spectra of SeAF in chloroform solution closely resemble those of auranofin. The (77)Se spectrum consists of a singlet at 481 ppm, consistent with a metal-bound selenolate ligand. The absence of (2)J(PSe) coupling in the (31)P and (77)Se spectra may arise from dynamic processes occurring in solution or because the (2)J(PSe) coupling constants are smaller than the observed bandwidths. Electrospray ionization mass spectrometry (ESI-MS) spectra of SeAF in 50:50 methanol-water exhibited strong signals for [(Et(3)P)(2)Au](+), [(Et(3)PAu)(2)-mu-Se-tagl](+), and [Au(Se-tagl)(2)](-), which arise from ligand scrambling reactions. Three assays of the anti-inflammatory activity of SeAF allowed comparison to AF. SeAF exhibited comparable activity in the topically administered murine arachadonic acid-induced and phorbol ester-induced anti-inflammatory assays but was inactive in the orally administered carrageenan-induced assay in rats. However, in vivo serum gold levels were comparable in the rat, suggesting that differences between the in vivo metabolism of the two compounds, leading to differences in transport to the inflamed site, may account for the differential activity in the carrageenan-induced assay. Reactions of serum albumin, the principal transport protein of gold in the serum, demonstrated formation of AlbSAuPEt(3) at cysteine 34 and provided evidence for facile reduction of disulfide bonds at cysteine 34 and very rapid formation of Et(3)P=O, a known metabolite of auranofin.

  19. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  20. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg prot