WorldWideScience

Sample records for active oxygen control

  1. Fnr is involved in oxygen control of Herbaspirillum seropedicae N-truncated NifA protein activity in Escherichia coli.

    Science.gov (United States)

    Monteiro, Rose A; de Souza, Emanuel M; Yates, M Geoffrey; Pedrosa, Fabio O; Chubatsu, Leda S

    2003-03-01

    Herbaspirillum seropedicae is an endophytic diazotroph belonging to the beta-subclass of the class Proteobacteria, which colonizes many members of the Gramineae. The activity of the NifA protein, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through its N-terminal domain and by oxygen through mechanisms that are not well understood. Here we report that the NifA protein of H. seropedicae is inactive and more susceptible to degradation in an fnr Escherichia coli background. Both effects correlate with oxygen exposure and iron deprivation. Our results suggest that the oxygen sensitivity and iron requirement for H. seropedicae NifA activity involve the Fnr protein.

  2. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    Science.gov (United States)

    2017-08-01

    were used for this study and were connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen...connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen based on the oxygen saturation...2017-4119, 28 Aug 2017. oximetry (SpO2) and intermittent arterial blood sampling for arterial oxygen tension (partial pressure of oxygen [PaO2]) and

  3. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action

    DEFF Research Database (Denmark)

    Zhai, L; Chen, M; Blom, J

    1999-01-01

    Our previous studies have shown that licochalcone A, an oxygenated chalcone, has antileishmanial and antimalarial activities, and alters the ultrastructure and function of the mitochondria of Leishmania spp. parasites. The present study was designed to investigate the antileishmanial activity...... resulted in a significant reduction of parasite load in the liver and the spleen compared with untreated control animals. The oxygenated chalcones also inhibited the respiration of the parasite and the activity of mitochondrial dehydrogenases. Electron microscopic studies illustrated that they altered...... the ultrastructure of the mitochondria of L. major promastigote. The data clearly indicate that this group of oxygenated chalcones has a strong antileishmanial activity and might be developed into a new antileishmanial drug. The antileishmanial activity of oxygenated chalcones might be the result of interference...

  4. Changed activation, oxygenation, and pain response of chronically painful muscles to repetitive work after training interventions: a randomized controlled trial

    DEFF Research Database (Denmark)

    Søgaard, Karen; Blangsted, Anne Katrine; Nielsen, Pernille Kofoed

    2012-01-01

    The aim of this randomized controlled trial was to assess changes in myalgic trapezius activation, muscle oxygenation, and pain intensity during repetitive and stressful work tasks in response to 10 weeks of training. In total, 39 women with a clinical diagnosis of trapezius myalgia were randomly...... levels of pain. SST lowered the relative EMG amplitude by 36%, and decreased pain during resting and working conditions by 52 and 38%, respectively, without affecting trapezius oxygenation. In conclusion, GFT performed as leg-bicycling decreased pain development during repetitive work tasks, possibly due...... assigned to: (1) general fitness training performed as leg-bicycling (GFT); (2) specific strength training of the neck/shoulder muscles (SST) or (3) reference intervention without physical exercise. Electromyographic activity (EMG), tissue oxygenation (near infrared spectroscopy), and pain intensity were...

  5. Controlling Oxygen Mobility in Ruddlesden–Popper Oxides

    Directory of Open Access Journals (Sweden)

    Dongkyu Lee

    2017-03-01

    Full Text Available Discovering new energy materials is a key step toward satisfying the needs for next-generation energy conversion and storage devices. Among the various types of oxides, Ruddlesden–Popper (RP oxides (A2BO4 are promising candidates for electrochemical energy devices, such as solid oxide fuel cells, owing to their attractive physicochemical properties, including the anisotropic nature of oxygen migration and controllable stoichiometry from oxygen excess to oxygen deficiency. Thus, understanding and controlling the kinetics of oxygen transport are essential for designing optimized materials to use in electrochemical energy devices. In this review, we first discuss the basic mechanisms of oxygen migration in RP oxides depending on oxygen nonstoichiometry. We then focus on the effect of changes in the defect concentration, crystallographic orientation, and strain on the oxygen migration in RP oxides. We also briefly review their thermal and chemical stability. Finally, we conclude with a perspective on potential research directions for future investigation to facilitate controlling oxygen ion migration in RP oxides.

  6. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation.

    Science.gov (United States)

    Xie, Zhi; Ding, Sheng-quan; Shen, Ya-fang

    2014-11-14

    In this study, we explored the cytoprotective potential of silibinin against oxygen-glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    Directory of Open Access Journals (Sweden)

    Dor Vadas

    2017-09-01

    Full Text Available Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking, the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities.Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking. Participants were randomized to perform the tasks in two environments: (a normobaric air (1 ATA 21% oxygen (b HBO (2 ATA 100% oxygen. Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance.Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both. Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part.Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  8. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    Science.gov (United States)

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  9. Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.

    Science.gov (United States)

    Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya

    2018-05-01

    TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.

  10. Oxygen activity measurements in simulated converter matte

    CSIR Research Space (South Africa)

    Tshilombo, KG

    2007-01-01

    Full Text Available to the composition of the gas atmosphere over the melt. The measured oxygen activity was generally close to that predicted by FactSage calculations. This indicates that such oxygen activity measurements could be useful to monitor iron removal during converting...

  11. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alfica Sehgal

    2007-08-01

    Full Text Available Retrotransposons are mobile genetic elements that proliferate through an RNA intermediate. Transposons do not encode transcription factors and thus rely on host factors for mRNA expression and survival. Despite information regarding conditions under which elements are upregulated, much remains to be learned about the regulatory mechanisms or factors controlling retrotransposon expression. Here, we report that low oxygen activates the fission yeast Tf2 family of retrotransposons. Sre1, the yeast ortholog of the mammalian membrane-bound transcription factor sterol regulatory element binding protein (SREBP, directly induces the expression and mobilization of Tf2 retrotransposons under low oxygen. Sre1 binds to DNA sequences in the Tf2 long terminal repeat that functions as an oxygen-dependent promoter. We find that Tf2 solo long terminal repeats throughout the genome direct oxygen-dependent expression of adjacent coding and noncoding sequences, providing a potential mechanism for the generation of oxygen-dependent gene expression.

  12. Control and monitoring of oxygen content in molten metals. Application to lead and lead-bismuth melts

    International Nuclear Information System (INIS)

    Ghetta, V.; Fouletier, J.; Henault, M.; Le Moulec, A.

    2002-01-01

    The sources of error in potentiometric measurements of the oxygen activity in molten metals and the methods proposed to reduce these measurements errors are described. Specific constraints related to low temperature measurements are emphasized. Two set-ups for control of the oxygen activity in molten lead and lead-bismuth were developed. They involve zirconia-based cells, i.e., an oxygen pump and an oxygen probe. The performance of the set-ups was characterized attempts to reduce the working temperature (T<450 deg C) are discussed. (authors)

  13. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    Science.gov (United States)

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  14. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  15. Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies.

    Science.gov (United States)

    Liguzinski, Piotr; Korzeniewski, Bernard

    2006-12-01

    It has been postulated previously that a direct activation of all oxidative phosphorylation complexes in parallel with the activation of ATP usage and substrate dehydrogenation (the so-called each-step activation) is the main mechanism responsible for adjusting the rate of ATP production by mitochondria to the current energy demand during rest-to-work transition in intact skeletal muscle in vivo. The present in silico study, using a computer model of oxidative phosphorylation developed previously, analyzes the impact of the each-step-activation mechanism on the distribution of control (defined within Metabolic Control Analysis) over the oxygen consumption flux among the components of the bioenergetic system in intact oxidative skeletal muscle at different energy demands. It is demonstrated that in the absence of each-step activation, the oxidative phosphorylation complexes take over from ATP usage most of the control over the respiration rate and oxidative ATP production at higher (but still physiological) energy demands. This leads to a saturation of oxidative phosphorylation, impossibility of a further acceleration of oxidative ATP synthesis, and dramatic drop in the phosphorylation potential. On the other hand, the each-step-activation mechanism allows maintenance of a high degree of the control exerted by ATP usage over the ATP turnover and oxygen consumption flux even at high energy demands and thus enables a potentially very large increase in ATP turnover. It is also shown that low oxygen concentration shifts the metabolic control from ATP usage to cytochrome oxidase and thus limits the oxidative ATP production.

  16. Characterization and re-activation of oxygen sensors for use in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kurata, Yuji; Abe, Yuji; Futakawa, Masatoshi; Oigawa, Hiroyuki

    2010-01-01

    Control of oxygen concentration in liquid lead-bismuth is one of the most important tasks to develop accelerator driven systems. In order to improve the reliability of oxygen sensors, re-activation treatments were investigated as well as characterization of oxygen sensors for use in liquid lead-bismuth. The oxygen sensor with a solid electrolyte of yttria-stabilized zirconia and a Pt/gas reference electrode showed almost the same electromotive force values in gas and liquid lead-bismuth, respectively, as the theoretical ones at temperatures above 400 deg. C or 450 deg. C. After long-term use of 6500 h, the outputs of the sensor became incorrect in liquid lead-bismuth. The state of the sensor that indicated incorrect outputs could not be recovered by cleaning with a nitric acid. However, it was found that the oxygen sensor became a correct sensor indicating theoretical values in liquid lead-bismuth after re-activation by the Pt-treatment of the outer surface of the sensor.

  17. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    Science.gov (United States)

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  18. Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Saikat [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Wang, Bo [Pennsylvania State Univ., University Park, PA (United States).Dept. of Materials Science and Engineering; Cao, Ye [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Inst. for; Rae Cho, Myung [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Jae Shin, Yeong [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Mo Yang, Sang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Sookmyung Women' s Univ., Seoul (Republic of Korea). Dept. of Physics; Wang, Lingfei [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Kim, Minu [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Inst. for Functional Imaging of Materials; Chen, Long-Qing [Pennsylvania State Univ., University Park, PA (United States).Dept. of Materials Science and Engineering; Noh, Tae Won [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy

    2017-09-20

    Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. Finally, the ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.

  19. Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Chunzhen Yang

    2017-05-01

    Full Text Available Triggering the redox reaction of oxygens has become essential for the development of (electro catalytic properties of transition metal oxides, especially for perovskite materials that have been envisaged for a variety of applications such as the oxygen evolution or reduction reactions (OER and ORR, respectively, CO or hydrocarbons oxidation, NO reduction and others. While the formation of ligand hole for perovskites is well-known for solid state physicists and/or chemists and has been widely studied for the understanding of important electronic properties such as superconductivity, insulator-metal transitions, magnetoresistance, ferroelectrics, redox properties etc., oxygen electrocatalysis in aqueous media at low temperature barely scratches the surface of the concept of oxygen ions oxidation. In this review, we briefly explain the electronic structure of perovskite materials and go through a few important parameters such as the ionization potential, Madelung potential, and charge transfer energy that govern the oxidation of oxygen ions. We then describe the surface reactivity that can be induced by the redox activity of the oxygen network and the formation of highly reactive surface oxygen species before describing their participation in catalytic reactions and providing mechanistic insights and strategies for designing new (electro catalysts. Finally, we give a brief overview of the different techniques that can be employed to detect the formation of such transient oxygen species.

  20. Controlling the bond scission sequence of oxygenates for energy applications

    Science.gov (United States)

    Stottlemyer, Alan L.

    intermediates was observed on the Pt and Pt/WC surfaces. For CH3OH decomposition, DFT calculations suggested that the bond scission sequence could be controlled using monolayer coverage of Pt on WC. The Ni/Pt bimetallic system was studied as an example for using oxygenates as a hydrogen source. There are two well characterized surface structures for the Ni/Pt system: the surface configuration, in which the Ni atoms reside primarily on the surface of the Pt bulk, and the subsurface configuration, in which the second atomic layer is enriched in Ni atoms and the surface is enriched in Pt atoms. These configurations are denoted NiPtPt and PtNiPt, respectively. DFT results revealed that trends established for the Ni/Pt(111) system extend to the Ni/Pt(100) analogue. TPD studies revealed that the NiPtPt surface was more active for oxygenate reforming than the Pt or PtNiPt surfaces. HREELS confirmed the presence of strongly bound reaction intermediates, including aldehyde-like species, and suggested that the first decomposition step was likely O-H bond scission. Thus, the binding energies of the deprotonated reaction intermediates are important parameters in controlling the decomposition pathways of oxygenates. These studies have demonstrated that the bond scission sequence of oxygenate decomposition can be controlled using bimetallic and transition metal carbide catalysts. While this study has focused on oxygenate decomposition for energy applications, the principles and methodology applied herein are universally applicable to the development of novel and marketable value-added products. The value in such a methodology is in the combination of both calculations to predict catalytic and chemical properties, and experiments to fine-tune theoretical predictions.

  1. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline SI engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron generator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe. The goal in this work was to investigate the asymmetric distribution of activity in flow measurements with pulsed neutron activation (PNA) in a laboratory piping system. Earlier investigations had shown a discrepancy between the measured velocity of the activated water by PNA and the true mean velocity in the pipe. This discrepancy decreased with larger distances from the activation point. It was speculated that the induced activity in the pipe did not distribute homogeneously. With inhomogeneous radial distribution of activity in combination with a velocity profile in the pipe, the activated water may not have the same velocity as the mean velocity of water in the pipe. To study this phenomenon, a water-soluble colour was injected into a transparent pipe for simulation of the transport of the activated water. The radial concentration of the colour, at different distances from the activation point, was determined. The result

  2. Some Applications of Fast Neutron Activation Analysis of Oxygen

    International Nuclear Information System (INIS)

    Owrang, Farshid

    2003-01-01

    In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline SI engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron generator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe. The goal in this work was to investigate the asymmetric distribution of activity in flow measurements with pulsed neutron activation (PNA) in a laboratory piping system. Earlier investigations had shown a discrepancy between the measured velocity of the activated water by PNA and the true mean velocity in the pipe. This discrepancy decreased with larger distances from the activation point. It was speculated that the induced activity in the pipe did not distribute homogeneously. With inhomogeneous radial distribution of activity in combination with a velocity profile in the pipe, the activated water may not have the same velocity as the mean velocity of water in the pipe. To study this phenomenon, a water-soluble colour was injected into a transparent pipe for simulation of the transport of the activated water. The radial concentration of the colour, at different distances from the activation point, was determined. The result

  3. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  4. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  5. Efficient oxygen electrocatalysis on special active sites

    DEFF Research Database (Denmark)

    Halck, Niels Bendtsen

    throughout this thesis to understand these local structure effects and their influence on surface reactions. The concept of these special active sites is used to explain how oxygen evolution reaction (OER) catalysts can have activities beyond the limits of what was previously thought possible. The concept...... stored in these bonds in an eco-friendly fashion in fuel cells. This thesis explores catalysts for oxygen electrocatalysis and how carefully designed local structures on catalysts surfaces termed special active sites can influence the activity. Density functional theory has been used as a method...... is used to explain the increase in activity observed for the OER catalyst ruthenium dioxide when it is mixed with nickel or cobalt. Manganese and cobalt oxides when in the vicinity of gold also display an increase in OER activity which can be explained by locally created special active sites. Density...

  6. Oxygen potential of uranium--plutonium oxide as determined by controlled-atmosphere thermogravimetry

    International Nuclear Information System (INIS)

    Swanson, G.C.

    1975-10-01

    The oxygen-to-metal atom ratio, or O/M, of solid solution uranium-plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide crucible at 1200 0 C and oxidizing with moist He at 250 0 C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300 0 C and the equilibrated O/M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations. (auth)

  7. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro

    Directory of Open Access Journals (Sweden)

    Karl Schoknecht

    2017-09-01

    Full Text Available Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control than interictal activity (~15% above control. Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  8. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  9. Photoirradiation system with depth optical dosimetry control in initial oxygen saturation measurement

    International Nuclear Information System (INIS)

    Quintanar, L.; Stolik, S.; Rosa, J. de la; Moreno, E.

    2012-01-01

    Photodynamic Therapy is a technique in which a photosensitizing substance is applied that is activated by light and it generates reactive oxygen species which cause selective cell destruction. The efficiency of the therapy is affected by the parameters dose. In this work it is shown a photo-irradiation system for superficial Photodynamic Therapy, using as a light source a light emitting diode with an automatic control of optical power based on a model of the distribution of light in depth that was tested in tissue phantoms. It also has a reflective pulse oximeter for the measurement of the initial oxygen saturation. (Author)

  10. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    Science.gov (United States)

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  11. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    Science.gov (United States)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  12. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  13. Formation of Two-Dimensional Homologous Faults and Oxygen Electrocatalytic Activities in a Perovskite Nickelate.

    Science.gov (United States)

    Bak, Jumi; Bae, Hyung Bin; Kim, Jaehoon; Oh, Jihun; Chung, Sung-Yoon

    2017-05-10

    Atomic-scale direct probing of active sites and subsequent elucidation of the structure-activity relationship are important issues involving oxide-based electrocatalysts to achieve better electrochemical conversion efficiency. By generating Ruddlesden-Popper (RP) two-dimensional homologous faults via simple control of the cation nonstoichiometry in LaNiO 3 thin films, we demonstrate that strong tetragonal distortion of [NiO 6 ] octahedra is induced by more than 20% elongation of Ni-O bonds in the faults. In addition to direct visualization of the elongation by scanning transmission electron microscopy, we identify that the distorted [NiO 6 ] octahedra in the faults show considerably higher electrocatalytic activities than other surface sites during the electrochemical oxygen evolution reaction. This unequivocal evidence of the octahedral distortion and its impact on electrocatalysis in LaNiO 3 suggests that the formation of RP-type faults can provide an efficient way to control the octahedral geometry and thereby remarkably enhance the oxygen catalytic performance of perovskite oxides.

  14. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Yin, Y [Shandong Cancer Hospital, Jinan, Shandong (China)

    2014-06-01

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group, 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.

  15. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  16. A 3D-Printed Oxygen Control Insert for a 24-Well Plate.

    Directory of Open Access Journals (Sweden)

    Martin D Brennan

    Full Text Available 3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture.

  17. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles

    Science.gov (United States)

    Berman-Frank, I.; Chen, Y.-B.; Gerchman, Y.; Dismukes, G. C.; Falkowski, P. G.

    2005-03-01

    Cyanobacterial N2-fixation supplies the vast majority of biologically accessible inorganic nitrogen to nutrient-poor aquatic ecosystems. The process, catalyzed by the heterodimeric protein complex, nitrogenase, is thought to predate that of oxygenic photosynthesis. Remarkably, while the enzyme plays such a critical role in Earth's biogeochemical cycles, the activity of nitrogenase in cyanobacteria is markedly inhibited in vivo at a post-translational level by the concentration of O2 in the contemporary atmosphere leading to metabolic and biogeochemical inefficiency in N2 fixation. We illustrate this crippling effect with data from Trichodesmium spp. an important contributor of "new nitrogen" to the world's subtropical and tropical oceans. The enzymatic inefficiency of nitrogenase imposes a major elemental taxation on diazotrophic cyanobacteria both in the costs of protein synthesis and for scarce trace elements, such as iron. This restriction has, in turn, led to a global limitation of fixed nitrogen in the contemporary oceans and provides a strong biological control on the upper bound of oxygen concentration in Earth's atmosphere.

  18. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1980-06-01

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO 2 gels and UO 2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO 2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author) [pt

  19. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    International Nuclear Information System (INIS)

    Tritsaris, Georgios A.; Norskov, Jens K.; Rossmeisl, Jan

    2011-01-01

    Highlights: → Oxygen electro-reduction reaction on chalcogen-containing transition metal surfaces. → Evaluation of catalytic performance with density functional theory. → Ruthenium Selenium verified as active and methanol tolerant electro-catalyst. → Water boils at -10000 K. - Abstract: We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated.

  20. Kinetic of the Oxygen Control System (OCS) for stagnant lead-bismuth systems

    International Nuclear Information System (INIS)

    Lefhalm, C.H.; Knebel, J.U.; Mack, K.J.

    2001-09-01

    Within the framework of the HGF strategy fund project 99/16 ''Thermalhydraulic and Material Specific Investigations into the Realization of an accelerator driven system (ADS) to Transmute Minor Actinides'' at the institute for nuclear and energy technology (IKET) investigations on the cooling of thermally high-loaded surfaces with liquid lead bismuth (Pb-Bi) are carried out. To operate a Pb-Bi loop safety, for example in order to cool a spallation target or a blanket of an accelerator driven system (ADS), the control of the oxygen concentration within the liquid metal is an inalienable prerequisite to prevent or minimize corrosion at the structure material. In this report the kinetic behaviour of the oxygen control system (OCS), which was developed at Forschungszentrum Karlsruhe, is examined. The OCS controls the chemical potential of oxygen in the liquid metal by regulating the oxygen content in the gas phase which flows over the free surface of the liquid metal. In this work the experimental facility KOCOS (kinetics of oxygen control system) in the karlsruhe lead laboratory (KALLA) was built. A physical diffusion model was utilised and extended to describe the exchange of oxygen between the gas and the liquid metal. The theoretical calculations are in very good agreement to the experimental findings. The OCS allows to control reversibly the oxygen concentration in the liquid metal. According to the observed kinetics of the process one can extrapolate that the control of large volumes, as they are necessary to operate an ADS demonstrator, is possible. Therefore, further experiments in liquid metal loop systems are suggested. (orig.)

  1. Intervention of oxygen-control ability to radiation sensitivity, cell aging and cell transformation

    International Nuclear Information System (INIS)

    Yoshii, Hanako; Watanabe, Masami

    2009-01-01

    Oxygen is essential for life, and cells have therefore developed numerous adaptive responses to oxygen change. Here, we examined the difference in oxygen-control functions of human (HE), mouse (ME), and Syrian hamster embryo (SHE) cells cultured under different oxygen conditions (0.5%, 2% and 20%), and also examined whether oxygen tensions contributed to cellular lifespan and transformation. HE cells had their replicative lifespan slightly extended under hypoxic (0.5% and 2% oxygen) conditions, but were not immortalized under any of the oxygen concentrations. On the other hand, although ME cells cultured under 20% oxygen tension decreased their proliferation potency temporarily at early stage, all rodent cells were immortalized and acquired anchorage-independency, regardless of oxygen tension. These results suggest that cellular oxygen control function is related to sensitivities cellular immortalization and transformation. To understand intervention of oxygen control ability on cellular immortalization and transformation, we examined the intracellular oxidative level, mitochondria functions and radiation sensitivity. Intracellular oxidative levels of hypoxically cultured rodent cells were significantly enhanced. Mitochondrial membrane potential was altered depend on oxygen tensions, but the change was not parallel to mitochondria number in rodent cells. ME cells were particularly sensitive to oxygen change, and showed a clear oxygen effect on the X-ray survival. However, there was no difference in frequency of radiation-induced micronuclei between HE and ME cells. These results suggest that the response to oxygen change differs markedly in HE and rodent cells. (author)

  2. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sibag, Mark [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Choi, Byeong-Gyu [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-ro, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Suh, Changwon [Energy Lab, Environment Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Kwan Hyung; Lee, Jae Woo [Department of Environmental Engineering and Program in Environmental Technology and Policy, Korea University, Sejong 339-700 (Korea, Republic of); Maeng, Sung Kyu [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Cho, Jinwoo, E-mail: jinwoocho@sejong.edu [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-02-11

    Highlights: • Silica nanoparticles (SNP) inhibit total oxygen uptake in activated sludge. • Relatively smaller SNP are inhibitorier than larger SNP. • SNP alters C15:0, C16:0 and C18:0 in activated sludge fatty acid methyl ester profile. - Abstract: Nanoparticle toxicity to biological activities in activated sludge is largely unknown. Among the widely used nanoparticles, silica nanoparticles (SNP) have a limited number of studies associated with inhibition to the activated sludge process (ASP). We demonstrated SNP inhibition of activated sludge respiration through oxygen uptake rate (OUR) measurement. Based on the percentage inhibition of total oxygen consumption (I{sub T}), we observed that smaller SNPs (12 nm, I{sub T} = 33 ± 3%; 151 nm, I{sub T} = 23 ± 2%) were stronger inhibitors than larger SNPs (442 and 683 nm, I{sub T} = 5 ± 1%). Transmission electron micrographs showed that some of the SNPs were adsorbed on and/or apparently embedded somewhere in the microbial cell membrane. Whether SNPs are directly associated with the inhibition of total oxygen uptake warrants further studies. However, it is clear that SNPs statistically significantly altered the composition of microbial membrane lipids, which was more clearly described by principal component analysis and weighted Euclidian distance (PCA-ED) of the fatty acid methyl ester (FAME) data. This study suggests that SNPs potentially affect the biological activity in activated sludge through the inhibition of total oxygen uptake.

  3. Oxygen introduction during extraction and the improvement of antioxidant activity of essential oils of basil, lemon and lemongrass

    Directory of Open Access Journals (Sweden)

    Daniele de Freitas Ferreira

    Full Text Available ABSTRACT: Essential oil extraction is commonly carried out by using the hydrodistillation method, which is described in official compendia of food quality control and medicinal plants. Despite the widespread use of this method, few studies have evaluated the effect of the atmosphere change during extraction on the composition and antioxidant activity of essentials oils. Therefore, a study of oxygen introduction influence during the extraction of essential oils from basil, lemongrass and lemon by hydrodistillation was performed. Total amount of oxygenated compounds (e.g., linalool, camphor, α-terpineol, neral, geranial, eugenol and α-muurolol increased for all essential oils extracted under oxygen flow. Antioxidant activity evaluated by using the ORAC method significantly increased (P<0.0001 with oxygen from 618 to 906, 355 to 613 and 72 to 262µmol Trolox g-1 oil for basil, lemongrass and lemon, respectively. Therefore, the simple modification proposed could be considered a suitable alternative to obtain essential oils with higher antioxidant activity.

  4. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  5. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems.

    Science.gov (United States)

    Lee-Montiel, Felipe T; George, Subin M; Gough, Albert H; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing

    2017-10-01

    This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we

  6. Molecular controls of the oxygenation and redox reactions of hemoglobin.

    Science.gov (United States)

    Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L

    2013-06-10

    The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.

  7. Physiological closed-loop control in intelligent oxygen therapy: A review.

    Science.gov (United States)

    Sanchez-Morillo, Daniel; Olaby, Osama; Fernandez-Granero, Miguel Angel; Leon-Jimenez, Antonio

    2017-07-01

    Oxygen therapy has become a standard care for the treatment of patients with chronic obstructive pulmonary disease and other hypoxemic chronic lung diseases. In current systems, manually continuous adjustment of O 2 flow rate is a time-consuming task, often unsuccessful, that requires experienced staff. The primary aim of this systematic review is to collate and report on the principles, algorithms and accuracy of autonomous physiological close-loop controlled oxygen devices as well to present recommendations for future research and studies in this area. A literature search was performed on medical database MEDLINE, engineering database IEEE-Xplore and wide-raging scientific databases Scopus and Web of Science. A narrative synthesis of the results was carried out. A summary of the findings of this review suggests that when compared to the conventional manual practice, the closed-loop controllers maintain higher saturation levels, spend less time below the target saturation, and save oxygen resources. Nonetheless, despite of their potential, autonomous oxygen therapy devices are scarce in real clinical applications. Robustness of control algorithms, fail-safe mechanisms, limited reliability of sensors, usability issues and the need for standardized evaluating methods of assessing risks can be among the reasons for this lack of matureness and need to be addressed before the wide spreading of a new generation of automatic oxygen devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Active oxygen doctors the evidence

    Science.gov (United States)

    Castelló, Ana; Francès, Francesc; Corella, Dolores; Verdú, Fernando

    2009-02-01

    Investigation at the scene of a crime begins with the search for clues. In the case of bloodstains, the most frequently used reagents are luminol and reduced phenolphthalein (or phenolphthalin that is also known as the Kastle-Meyer colour test). The limitations of these reagents have been studied and are well known. Household cleaning products have evolved with the times, and new products with active oxygen are currently widely used, as they are considered to be highly efficient at removing all kinds of stains on a wide range of surfaces. In this study, we investigated the possible effects of these new cleaning products on latent bloodstains that may be left at a scene of a crime. To do so, various fabrics were stained with blood and then washed using cleaning agents containing active oxygen. The results of reduced phenolphthalein, luminol and human haemoglobin tests on the washed fabrics were negative. The conclusion is that these new products alter blood to such an extent that it can no longer be detected by currently accepted methods employed in criminal investigations. This inability to locate bloodstains means that highly important evidence (e.g. a DNA profile) may be lost. Consequently, it is important that investigators are aware of this problem so as to compensate for it.

  9. Determination of oxygen content in steel using activation analysis with 14 MeV neutron

    International Nuclear Information System (INIS)

    Calado, C.E.

    1978-01-01

    In the quantitative analysis of oxygen in steel by fast neutron activation analysis the oxygen content is evaluated from the measured activity of 16 N produced. Steel s mples are irradiated in 14 MeV neutron flux. After irradiation the samples are pneumatically transfered to the counting terminal where activity is measured. Oxygen concentrations, are obtained by comparison with standards of specified oxygen content [pt

  10. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  11. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo

    DEFF Research Database (Denmark)

    Jessen, Sanne Barsballe; Brazhe, Alexey; Lind, Barbara Lykke

    2015-01-01

    Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect...... of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent...... cytosolic Ca2+ transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca2+ activities in neurons and astrocytes. Intermediate and high...

  12. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  13. Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin

    Science.gov (United States)

    Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.

    2013-01-01

    Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874

  14. Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD+ levels.

    Science.gov (United States)

    Baker, J L; Derr, A M; Karuppaiah, K; MacGilvray, M E; Kajfasz, J K; Faustoferri, R C; Rivera-Ramos, I; Bitoun, J P; Lemos, J A; Wen, Z T; Quivey, R G

    2014-06-01

    NADH oxidase (Nox, encoded by nox) is a flavin-containing enzyme used by the oral pathogen Streptococcus mutans to reduce diatomic oxygen to water while oxidizing NADH to NAD(+). The critical nature of Nox is 2-fold: it serves to regenerate NAD(+), a carbon cycle metabolite, and to reduce intracellular oxygen, preventing formation of destructive reactive oxygen species (ROS). As oxygen and NAD(+) have been shown to modulate the activity of the global transcription factors Spx and Rex, respectively, Nox is potentially poised at a critical junction of two stress regulons. In this study, microarray data showed that either addition of oxygen or loss of nox resulted in altered expression of genes involved in energy metabolism and transport and the upregulation of genes encoding ROS-metabolizing enzymes. Loss of nox also resulted in upregulation of several genes encoding transcription factors and signaling molecules, including the redox-sensing regulator gene rex. Characterization of the nox promoter revealed that nox was regulated by oxygen, through SpxA, and by Rex. These data suggest a regulatory loop in which the roles of nox in reduction of oxygen and regeneration of NAD(+) affect the activity levels of Spx and Rex, respectively, and their regulons, which control several genes, including nox, crucial to growth of S. mutans under conditions of oxidative stress. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Guo, Y; Yin, Y [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2016-06-15

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  16. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    International Nuclear Information System (INIS)

    Gong, G; Guo, Y; Yin, Y

    2016-01-01

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  17. Oxygen and animal evolution: Did a rise of atmospheric oxygen trigger the origin of animals?

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Canfield, Donald Eugene

    2014-01-01

    Recent studies challenge the classical view that the origin of animal life was primarily controlled by atmospheric oxygen levels. For example, some modern sponges, representing early-branching animals, can live under 200 times less oxygen than currently present in the atmosphere - levels commonly...... thought to have been maintained prior to their origination. Furthermore, it is increasingly argued that the earliest animals, which likely lived in low oxygen environments, played an active role in constructing the well-oxygenated conditions typical of the modern oceans. Therefore, while oxygen is still...

  18. Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches

    NARCIS (Netherlands)

    Hou, Lili; Zhang, Xiaoyan; Pijper, Thomas C.; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the

  19. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  20. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Science.gov (United States)

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation

    DEFF Research Database (Denmark)

    Madsen, P L; Hasselbalch, S G; Hagemann, L P

    1995-01-01

    fraction of the activation-induced excess glucose uptake. These data confirm earlier reports that brain activation can induce resetting of the cerebral oxygen/glucose consumption ratio, and indicate that the resetting persists for a long period after cerebral activation has been terminated and physiologic......Global cerebral blood flow (CBF), global cerebral metabolic rates for oxygen (CMRO2), and for glucose (CMRglc), and lactate efflux were measured during rest and during cerebral activation induced by the Wisconsin card sorting test. Measurements were performed in healthy volunteers using the Kety......-Schmidt technique. Global CMRO2 was unchanged during cerebral activation, whereas global CBF and global CMRglc both increased by 12%, reducing the molar ratio of oxygen to glucose consumption from 6.0 during baseline conditions to 5.4 during activation. Data obtained in the period following cerebral activation...

  2. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  3. Study of oxygen scavenging PET-based films activated by water

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy)

    2016-05-18

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  4. Study of oxygen scavenging PET-based films activated by water

    Science.gov (United States)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  5. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.

  6. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  7. Control of Herbaspirillum seropedicae NifA Activity by Ammonium Ions and Oxygen

    Science.gov (United States)

    Souza, E. M.; Pedrosa, F. O.; Drummond, M.; Rigo, L. U.; Yates, M. G.

    1999-01-01

    The activity of a truncated form of Herbaspirillum seropedicae NifA in different genetic backgrounds showed that its regulatory domain is involved in nitrogen control but not in O2 sensitivity or Fe dependence. The model for nitrogen control involving PII could thus apply to the proteobacteria at large. NifA may have a role in controlling ADP-ribosylation of nitrogenase in Azospirillum brasilense. PMID:9882688

  8. Effect of Carbon Monoxide on Active Oxygen Metabolism of Postharvest Jujube

    OpenAIRE

    Shaoying Zhang; Qin Li; Yulan Mao

    2014-01-01

    To prolong the shelf life postharvest jujube, the effect of carbon monoxide (CO) on senescence of postharvest jujube in relation to active oxygen metabolism was investigated. Jujubes were fumigated with CO gas at 5, 10, 20 or 40μmol/L for 1 h, and then stored for 30 days at room temperature. Changes in membrane permeability, malonaldehyde (MDA), H2O2, O2•− content, and activities of active oxygen metabolism associated enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase...

  9. Improved oxygen-activation method for determining water flow behind casing

    International Nuclear Information System (INIS)

    McKeon, D.C.; Scott, H.D.; Olesen, J.R.; Patton, G.L.; Mitchell, R.J.

    1991-01-01

    This paper reports on impulse activation which is a new oxygen-activation technique developed to detect vertical water flow and to provide a quantitative measure of water flow velocity and flow rate. Flow-loop measurements made over a wide range of water velocities are in good agreement with theoretical predictions. Measurements of up- and downward channel flow were made at the U.S. Environmental Protection Agency (EPA) leak test well in Ada, OK, to demonstrate the technique in a controlled environment and to confirm that EPA requirements have been met. A major advantage of this method over previous procedures is that a measurement is a known zero-flow zone is not required. The impulse-activation technique has improved sensitivity to both low and high flow rates. In the EPA leak test well, the technique successfully discriminated between 0- and 1.4 ft/min flow conditions. The lowest quantified velocity was 1.8 ft/min or 10 BWPD, significantly below the EPA requirement of 3 ft/min. The upper limit of detection has not been determined by exceeds 137 ft/min. The water flow log (WFL SM ) measurement uses the impulse-activation technique and a Dual-Bust SM , thermal-decay-time (TDT SM ) tool to detect water flow behind casing. An important application of this measurement is testing for fluid migration in the wellbore as part of the mechanical integrity testing process for Class I and II disposal wells. The new oxygen-activation measurement was used in numerous production wells to identify the presence of water flow behind casing. Additional applications include the identification of open fractures in horizontal wells and the quantification of water flow in the tubing/casing annulus in injection and production wells

  10. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    Science.gov (United States)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  11. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  12. Ultralow oxygen treatment for postharvest control of Nasonovia ribisnigri (Homoptera: Aphididae) on iceberg lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2005-12-01

    The aphid Nasonovia ribisnigri (Mosley) is a common pest of lettuce in the United States. It hinders export of U.S. lettuce to the overseas market such as Japan where it is a quarantined pest. Ultralow oxygen treatments were studied for control of the insect on iceberg lettuce. Small-scale ultralow oxygen treatments in plastic jars were conducted at 1, 5, and 10 degrees C for different durations to determine effective treatment against nymphs and alates of N. ribisnigri. At oxygen levels of 0.015-0.025%, N. ribisnigri can be controlled in 3 d at 1 degrees C, 2 d at 5 degrees C, and 1 d at 10 degrees C. Large-scale ultralow oxygen treatments were conducted in bulk container treatment chambers with commercial iceberg lettuce heads for 2 d at 6 degrees C with oxygen levels of 0.015 and 0.025% and for 3 d at 3 degrees C with oxygen level of 0.015%. All treatments achieved complete control of N. ribisnigri. No negative impact on lettuce quality was detected after 2 wk of posttreatment storage. Therefore, the selected treatments have potential to be commercially developed for postharvest control of N. ribisnigri on iceberg lettuce.

  13. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  14. Determination of oxygen in coals by activation analysis with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Arbildo, A.; Espinosa, R; Poma, C.; Eyzaguirre, J.; Hinostroza, H.

    1989-01-01

    A method for non-destructive oxygen determination in coals was developed. It is based on O-16(n,p)N-16 nuclear reaction with 14 MeV neutrons produced in an AID-J 25 neutron generator. This analysis was possible because of the interface development to control the whole irradiation process and subsequent measures of N-16 produced activity from a microcomputer this method was additionally automated by the software development to treat the recorded spectrum in a multiscalimeter analyser. It is described our computer programs and it is shown the results for coal samples from different origins. It is estimated the organic carbon coal in samples from the oxygen analysis. And it is suggested a correlatian between such content and volatile material. Irradiating, decreasing and counting time added up 45 seconds, giving a fast analysis and obtaining accuracy between 1 and 3

  15. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors.

    Science.gov (United States)

    Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark

    2012-11-15

    The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.

  16. Magnetic susceptibility of oxygen adsorbed on the surface of spherical and fibrous activated carbon.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kawamura

    2009-02-01

    Full Text Available The magnetic susceptibilities of oxygen adsorbed on the surface of bead-shaped activated carbon and activated carbon fibers were evaluated as a function of temperature between 4.2 K and 300 K, and found to exhibit a sharp peak at around 50 K. This implies that the adsorbed oxygen molecules form an antiferromagnetic state. The relation between the susceptibility and the adsorbed mass suggest that the thickness of the adsorbed oxygen is thin enough to consider a two-dimensional structure for bead–shaped activated carbon and carbon fibers across the fiber axis but thick enough to regard it as three-dimensional along the fiber axis. The result is discussed with reference to the study on one-dimensional oxygen array.

  17. Modification of WS2 nanosheets with controllable layers via oxygen ion irradiation

    Science.gov (United States)

    Song, Honglian; Yu, Xiaofei; Chen, Ming; Qiao, Mei; Wang, Tiejun; Zhang, Jing; Liu, Yong; Liu, Peng; Wang, Xuelin

    2018-05-01

    As one kind of two-dimensional materials, WS2 nanosheets have drawn much attention with different kinds of research methods. Yet ion irradiation method was barely used for WS2 nanosheets. In this paper, the structure, composition and optical band gap (Eg) of the multilayer WS2 films deposited by chemical vapor deposition (CVD) method on sapphire substrates before and after oxygen ion irradiation with different energy and fluences were studied. Precise tailored layer-structures and a controllable optical band gap of WS2 nanosheets were achieved after oxygen ion irradiation. The results shows higher energy oxygen irradiation changed the shape from triangular shaped grains to irregular rectangle shape but did not change 2H-WS2 phase structure. The intensity of E2g1 (Г) and A1g (Г) modes decreased and have small shifts after oxygen ion irradiation. The peak frequency difference between the E2g1 (Г) and A1g (Г) modes (Δω) decreased after oxygen ion irradiation, and this result indicates the number of layers decreased after oxygen ion irradiation. The Eg decreased with the increase of the energy and the fluence of oxygen ions. The number of layers, thickness and optical band gap changed after ion irradiation with different ion fluences and energies. The results proposed a new strategy for precise control of multilayer nanosheets and demonstrated the high applicability of ion irradiation in super-capacitors, field effect transistors and other applications.

  18. Oxygen requirements for formation and activity of the squalene expoxidase in Saccharomyces cerevisiae

    Science.gov (United States)

    Jahnke, L.; Klein, H. P.

    1983-01-01

    The effect of oxygen on squalene epoxidase activity in Saccharomyces cerevisiae was investigated. In cells grown in standing cultures, the epoxidase was localized mainly in the 'mitochondrial' fraction. Upon aeration, enzyme activity increased and the newly formed enzyme was associated with the 'microsomal' fraction. At 0.03 percent (vol/vol) oxygen, epoxidase levels doubled, whereas the ergosterol level was only slightly increased. Cycloheximide inhibited the increase in epoxidase under these conditions. An apparent K sub m for oxygen of 0.38 percent (vol/vol) was determined from a crude particulate preparation for the epoxidase.

  19. Central Hemodynamics and Oxygen Transport in Various Activation of Patients Operated On Under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Ye. V. Dzybinskaya

    2009-01-01

    Full Text Available Objective: to study central hemodynamics, the determinants of myocardial oxygen balance, and the parameters of oxygen transport in various activation of patients after surgery under extracorporeal circulation. Subjects and methods. Thirty-four patients aged 57.8±2.5 years who had coronary heart disease were divided into 2 groups: 1 those with late activation (artificial ventilation time 157±9 min and 2 those with immediate activation (artificial ventilation time 33±6 min. Group 2 patients were, if required, given fentanyl, midazolam, or myorelaxants. Results. During activation, there were no intergroup differences in the mean levels of the major parameters of cardiac pump function, in the determinants of coronary blood flow (coronary perfusion gradients and myocardial oxygen demand (the product of heart rate by systolic blood pressure, and in the parameters of oxygen transport, including arterial lactatemia. After tracheal extubation, the left ventricular pump coefficient was increased considerably (up to 3.8±0.2 and 4.4±0.2 gm/mm Hg/m2 in Groups 1 and 2, respectively; p<0.05 with minimum inotropic support (dopamine and/or dobutamine being used at 2.7±0.3 and 2.4±0.3 mg/kg/min, respectively. In both groups, there were no close correlations between the indices of oxygen delivery and consumption at all stages of the study, which was indicative of no transport-dependent oxygen uptake. Conclusion. When the early activation protocol was followed up, the maximum acceleration of early activation, including that using specific antagonists of anesthetics, has no negative impact on central hemodynamics, the determinants of myocardial oxygen balance and transport in patients operated on under extracorporeal circulation. Key words: early activation, surgery under extracorporeal circulation, tracheal extubation in the operating-room, central hemodynamics, oxygen transport.

  20. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction

    Science.gov (United States)

    Yang, Xiaoyun; Mo, Qijie; Guo, Yulin; Chen, Nana; Gao, Qingsheng

    2018-03-01

    Controlled N-doping is feasible to engineer the surface stoichiometry and the electronic configuration of metal-oxide electrocatalysts toward efficient oxygen reduction reactions (ORR). Taking reduced graphene oxide supported tantalum-oxides (TaOx/RGO) for example, this work illustrated the controlled N-doping in both metal-oxides and carbon supports, and the contribution to the improved ORR activity. The active N-doped TaOx/RGO electrocatalysts were fabricated via SiO2-assisted pyrolysis, in which the amount and kind of N-doping were tailored toward efficient electrocatalysis. The optimal nanocomposites showed a quite positive half-wave potential (0.80 V vs. RHE), the excellent long-term stability, and the outstanding tolerance to methanol crossing. The improvement in ORR was reasonably attributed to the synergy between N-doped TaOx and N-doped RGO. Elucidating the importance of controlled N-doping for electrocatalysis, this work will open up new opportunities to explore noble-metal-free materials for renewable energy applications.

  1. Oxygen uptake rate (OUR) control strategy for improving avermectin B

    African Journals Online (AJOL)

    Glucose metabolism plays a crucial role in the process of avermectin B1a biosynthesis. Controlling glucose feeding based on oxygen uptake rate (OUR) was established to improve the efficiency of avermectin B1a production. The result showed that avermectin B1a production was greatly enhanced by OUR control strategy.

  2. DMPD: NF-kappaB activation by reactive oxygen species: fifteen years later. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16723122 NF-kappaB activation by reactive oxygen species: fifteen years later. Gloi...svg) (.html) (.csml) Show NF-kappaB activation by reactive oxygen species: fifteen years later. PubmedID 167...23122 Title NF-kappaB activation by reactive oxygen species: fifteen years later.

  3. Design and control of the oxygen partial pressure of UO2 in TGA using the humidification system

    International Nuclear Information System (INIS)

    Lee, S.; Knight, T.W.; Roberts, E.

    2015-01-01

    Highlights: • We focus on measurement of oxygen partial pressure and change of O/M ratio under specific conditions produced by the humidification system. • This shows that the humidification system is stable, accurate, and reliable enough to be used for experiments of the oxygen partial pressure measurement for the oxide fuels. • The humidification system has benefits of easy control and flexibility for producing various oxygen partial pressures with fixed hydrogen gas flow rate. - Abstract: The oxygen to uranium (O/U) ratio of UO 2±x is determined by the oxygen content of the sample and is affected by oxygen partial pressure (pO 2 ) of the surrounding gas. Oxygen partial pressure is controllable by several methods. A common method to produce different oxygen partial pressures is the use of equilibria of different reaction gases. There are two common methods: H 2 O/H 2 reaction and CO 2 /CO reaction. In this work, H 2 O/H 2 reaction using a humidifier was employed and investigated to ensure that this humidification system for oxygen partial pressure is stable and accurate for use in Thermogravimetric Analyzer (TGA) experiments with UO 2 . This approach has the further advantage of flexibility to make a wide range of oxygen partial pressure with fixed hydrogen gas flow rate only by varying temperature of water in the humidifier. The whole system for experiments was constructed and includes the humidification system, TGA, oxygen analyzer, and gas flow controller. Uranium dioxide (UO 2 ) samples were used for experiments and oxygen partial pressure was measured at the equilibrium state of stoichiometric UO 2.0 . Oxygen partial pressures produced by humidification (wet gas) system were compared to the approach using mixed dry gases (without humidification system) to demonstrate that the humidification system provides for more stable and accurate oxygen partial pressure control. This work provides the design, method, and analysis of a humidification system for

  4. A Natural Component-Based Oxygen Indicator with In-Pack Activation for Intelligent Food Packaging.

    Science.gov (United States)

    Won, Keehoon; Jang, Nan Young; Jeon, Junsu

    2016-12-28

    Intelligent food packaging can provide consumers with reliable and correct information on the quality and safety of packaged foods. One of the key constituents in intelligent packaging is a colorimetric oxygen indicator, which is widely used to detect oxygen gas involved in food spoilage by means of a color change. Traditional oxygen indicators consisting of redox dyes and strong reducing agents have two major problems: they must be manufactured and stored under anaerobic conditions because air depletes the reductant, and their components are synthetic and toxic. To address both of these serious problems, we have developed a natural component-based oxygen indicator characterized by in-pack activation. The conventional oxygen indicator composed of synthetic and artificial components was redesigned using naturally occurring compounds (laccase, guaiacol, and cysteine). These natural components were physically separated into two compartments by a fragile barrier. Only when the barrier was broken were all of the components mixed and the function as an oxygen indicator was begun (i.e., in-pack activation). Depending on the component concentrations, the natural component-based oxygen indicator exhibited different response times and color differences. The rate of the color change was proportional to the oxygen concentration. This novel colorimetric oxygen indicator will contribute greatly to intelligent packaging for healthier and safer foods.

  5. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...... is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  6. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    Science.gov (United States)

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts

    Science.gov (United States)

    Oh, Taeseob; Kim, Myeongjin; Park, Dabin; Kim, Jooheon

    2018-05-01

    Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.

  8. Oxygen fugacity control in piston-cylinder experiments: a re-evaluation

    Science.gov (United States)

    Jakobsson, Sigurdur; Blundy, Jon; Moore, Gordon

    2014-06-01

    Jakobsson (Contrib Miner Petrol 164(3):397-407, 2012) investigated a double capsule assembly for use in piston-cylinder experiments that would allow hydrous, high-temperature, and high-pressure experiments to be conducted under controlled oxygen fugacity conditions. Using a platinum outer capsule containing a metal oxide oxygen buffer (Ni-NiO or Co-CoO) and H2O, with an inner gold-palladium capsule containing hydrous melt, this study was able to compare the oxygen fugacity imposed by the outer capsule oxygen buffer with an oxygen fugacity estimated by the AuPdFe ternary system calibrated by Barr and Grove (Contrib Miner Petrol 160(5):631-643, 2010). H2O loss or gain, as well as iron loss to the capsule walls and carbon contamination, is often observed in piston-cylinder experiments and often go unexplained. Only a few have attempted to actually quantify various aspects of these changes (Brooker et al. in Am Miner 83(9-10):985-994, 1998; Truckenbrodt and Johannes in Am Miner 84:1333-1335, 1999). It was one of the goals of Jakobsson (Contrib Miner Petrol 164(3):397-407, 2012) to address these issues by using and testing the AuPdFe solution model of Barr and Grove (Contrib Miner Petrol 160(5):631-643, 2010), as well as to constrain the oxygen fugacity of the inner capsule. The oxygen fugacities of the analyzed melts were assumed to be equal to those of the solid Ni-NiO and Co-CoO buffers, which is incorrect since the melts are all undersaturated in H2O and the oxygen fugacities should therefore be lower than that of the buffer by 2 log.

  9. Observer-based Coal Mill Control using Oxygen Measurements

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; S., Tom

    2006-01-01

    This paper proposes a novel approach to coal flow estimation in pulverized coal mills, which utilizes measurements of oxygen content in the flue gas. Pulverized coal mills are typically not equipped with sensors that detect the amount of coal injected into the furnace. This makes control...... of the coal flow difficult, causing stability problems and limits the plant's load following capabilities. To alleviate this problem without having to rely on expensive flow measurement equipment, a novel observer-based approach is investigated. A Kalman filter based on measurements of combustion air flow led...... into the furnace and oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate, it becomes possible to close an inner loop around the coal mill itself, thus giving a better disturbance rejection capability. The approach is validated against...

  10. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    Science.gov (United States)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  11. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2013-01-01

    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  12. The effects of transit time heterogeneity on brain oxygenation during rest and functional activation

    Science.gov (United States)

    Rasmussen, Peter M; Jespersen, Sune N; Østergaard, Leif

    2015-01-01

    The interpretation of regional blood flow and blood oxygenation changes during functional activation has evolved from the concept of ‘neurovascular coupling', and hence the regulation of arteriolar tone to meet metabolic demands. The efficacy of oxygen extraction was recently shown to depend on the heterogeneity of capillary flow patterns downstream. Existing compartment models of the relation between tissue metabolism, blood flow, and blood oxygenation, however, typically assume homogenous microvascular flow patterns. To take capillary flow heterogeneity into account, we modeled the effect of capillary transit time heterogeneity (CTH) on the ‘oxygen conductance' used in compartment models. We show that the incorporation of realistic reductions in CTH during functional hyperemia improves model fits to dynamic blood flow and oxygenation changes acquired during functional activation in a literature animal study. Our results support earlier observations that oxygen diffusion properties seemingly change during various physiologic stimuli, and posit that this phenomenon is related to parallel changes in capillary flow patterns. Furthermore, our results suggest that CTH must be taken into account when inferring brain metabolism from changes in blood flow- or blood oxygenation-based signals . PMID:25492112

  13. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    International Nuclear Information System (INIS)

    Yamada, Y.; Kawase, Y.

    2006-01-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%

  14. Controlling factors of the oxygen balance in the Arabian Sea's OMZ

    Directory of Open Access Journals (Sweden)

    L. Resplandy

    2012-12-01

    Full Text Available The expansion of OMZs (oxygen minimum zones due to climate change and their possible evolution and impacts on the ecosystems and the atmosphere are still debated, mostly because of the unability of global climate models to adequatly reproduce the processes governing OMZs. In this study, we examine the factors controlling the oxygen budget, i.e. the equilibrium between oxygen sources and sinks in the northern Arabian Sea OMZ using an eddy-resolving biophysical model.

    Our model confirms that the biological consumption of oxygen is most intense below the region of highest productivity in the western Arabian Sea. The oxygen drawdown in this region is counterbalanced by the large supply of oxygenated waters originated from the south and advected horizontally by the western boundary current. Although the biological sink and the dynamical sources of oxygen compensate on annual average, we find that the seasonality of the dynamical transport of oxygen is 3 to 5 times larger than the seasonality of the biological sink. In agreement with previous findings, the resulting seasonality of oxygen concentration in the OMZ is relatively weak, with a variability of the order of 15% of the annual mean oxygen concentration in the oxycline and 5% elsewhere. This seasonality primarily arises from the vertical displacement of the OMZ forced by the monsoonal reversal of Ekman pumping across the basin. In coastal areas, the oxygen concentration is also modulated seasonally by lateral advection. Along the western coast of the Arabian Sea, the Somali Current transports oxygen-rich waters originated from the south during summer and oxygen-poor waters from the northeast during winter. Along the eastern coast of the Arabian Sea, we find that the main contributor to lateral advection in the OMZ is the Indian coastal undercurrent that advects southern oxygenated waters during summer and northern low-oxygen waters during winter. In this region, our model indicates that

  15. Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Cross-Coupling of Organolithium Reagents

    NARCIS (Netherlands)

    Heijnen, Dorus; Tosi, Filippo; Vila, Carlos; Stuart, Marc C. A.; Elsinga, Philip H.; Szymanski, Wiktor; Feringa, Ben L.

    2017-01-01

    The discovery of an ultrafast cross-coupling of alkyland aryllithium reagents with a range of aryl bromides is presented. The essential role of molecular oxygen to form the active palladium catalyst was established; palladium nanoparticles that are highly active in cross-coupling reactions with

  16. Simple method to enhance positive bias stress stability of In-Ga-Zn-O thin-film transistors using a vertically graded oxygen-vacancy active layer.

    Science.gov (United States)

    Park, Ji Hoon; Kim, Yeong-Gyu; Yoon, Seokhyun; Hong, Seonghwan; Kim, Hyun Jae

    2014-12-10

    We proposed a simple method to deposit a vertically graded oxygen-vacancy active layer (VGA) to enhance the positive bias stress (PBS) stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). We deposited a-IGZO films by sputtering (target composition; In2O3:Ga2O3:ZnO = 1:1:1 mol %), and the oxygen partial pressure was varied during deposition so that the front channel of the TFTs was fabricated with low oxygen partial pressure and the back channel with high oxygen partial pressure. Using this method, we were able to control the oxygen vacancy concentration of the active layer so that it varied with depth. As a result, the turn-on voltage shift following a 10 000 s PBS of optimized VGA TFT was drastically improved from 12.0 to 5.6 V compared with a conventional a-IGZO TFT, without a significant decrease in the field effect mobility. These results came from the self-passivation effect and decrease in oxygen-vacancy-related trap sites of the VGA TFTs.

  17. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  18. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    Science.gov (United States)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  19. Theoretical basis of oxygen pressure control in liquid Pb-Bi using YSZ

    International Nuclear Information System (INIS)

    Jung, S. H.; Hwang, I. S.; Park, B. K.

    2002-01-01

    To develop a liquid Pb-Bi cooled reactor, it is necessary to solve the structural material corrosion problem caused by Pb-Bi. This experiment examine the fundamental behaviors to practically test the oxide film formation on the surface of structural material known as solution of corrosion inhibition in liquid Pb-Bi. The corrosion inhibition through oxide film formation is to prevent metals from dissolving into liquid Pb-Bi though not forming coolants slug resulted from oxidation. In this paper, we examined the oxygen pressure controllability using YSZ in cover gas, and theoretically derived the relationship between oxygen cover gas pressure and dissolved oxygen in liquid Pb-Bi

  20. Reaction of oxygen with the respiratory chain in cells and tissues.

    Science.gov (United States)

    Chance, B

    1965-09-01

    This paper considers the way in which the oxygen reaction described by Dr. Nicholls and the ADP control reactions described by Dr. Racker could cooperate to establish a purposeful metabolic control phenomenon in vivo. This has required an examination of the kinetic properties of the respiratory chain with particular reference to methods for determinations of oxygen affinity (K(m)). The constant parameter for tissue respiration is k(1), the velocity constant for the reaction of oxygen with cytochrome oxidase. Not only is this quantity a constant for a particular tissue or mitochondria; it appears to vary little over a wide range of biological material, and for practical purposes a value of 5 x 10(7) at 25 degrees close to our original value (20) is found to apply with adequate accuracy for calculation of K(m) for mammalia. The quantity which will depend upon the tissue and its metabolic state is the value of K(m) itself, and K(m) may be as large as 0.5 microM and may fall to 0.05 microM or less in resting, controlled, or inhibited states. The control characteristic for ADP may depend upon the electron flux due to the cytochrome chain (40); less ADP is required to activate the slower electron transport at lower temperatures than at higher temperatures. The affinity constants for ADP control appear to be less dependent upon substrate supplied to the system. The balance of ADP and oxygen control in vivo is amply demonstrated experimentally and is dependent on the oxygen concentration as follows. In the presence of excess oxygen, control may be due to the ADP or phosphate (or substrate), and the kinetics of oxygen utilization will be independent of the oxygen concentration. As the oxygen concentration is diminished, hemoglobin becomes disoxygenated, deep gradients of oxygen concentration develop in the tissue, and eventually cytochrome oxidase becomes partially and then completely reduced. DPN at this point will become reduced and the electron flow diminished. The rate

  1. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  2. Controlling factors of the oxygen balance in the Arabian Sea's OMZ

    Digital Repository Service at National Institute of Oceanography (India)

    Resplandy, L.; Levy, M.; Bopp, L.; Echevin, V.; Pous, S.; Sarma, V.V.S.S.; Kumar, M.D.

    , 5095–5109, 2012 www.biogeosciences.net/9/5095/2012/ doi:10.5194/bg-9-5095-2012 © Author(s) 2012. CC Attribution 3.0 License. Biogeosciences Controlling factors of the oxygen balance in the Arabian Sea’s OMZ L. Resplandy1, M. Le´vy2, L. Bopp1, V. Echevin.... Resplandy et al.: Oxygen balance in the Arabian Sea OMZ OMZs are carefully examined for their possible interactions with the climate system and impacts on ecosystems. They could modulate atmospheric concentrations of major green- house gases such as CO2...

  3. Controlled oxygen vacancy induced p-type conductivity in HfO{sub 2-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Mueller, Mathis M.; Kleebe, Hans-Joachim; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, 15236 Frankfurt/Oder (Germany)

    2011-09-12

    We have synthesized highly oxygen deficient HfO{sub 2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10{sup 21} charge carriers per cm{sup 3}. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.

  4. Observer-Based Fuel Control Using Oxygen Measurement

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; Mortensen, Jan Henrik

    is constructed and validated against data obtained at the plant. A Kalman filter based on measurements of combustion air flow led into the furnace and oxygen concentration in the flue gas is designed to estimate the actual coal flow. With this estimate, it becomes possible to close an inner loop around the coal......This report describes an attempt to improve the existing control af coal mills used at the Danish power plant Nordjyllandsværket Unit 3. The coal mills are not equipped with coal flow sensors; thus an observer-based approach is investigated. A nonlinear differential equation model of the boiler...

  5. Activated carbon oxygen content influence on water and surfactant adsorption.

    Science.gov (United States)

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  6. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.; Alnajjar, Mohammad Ahmad; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  7. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  8. Inhibition of fungal growth with extreme low oxygen levels

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Haasum, Iben

    1998-01-01

    Fungal spoilage of foods is effectively controlled by removal of oxygen from the package, especially if this is combined with elevated carbon dioxide (CO2) levels. However, great uncertainty exist on just how low the residual oxygen levels in the package must be especially when carbon dioxide lev...... food with low CO2 levels. Active packaging with oxygen absorbers may be considered for these products. The packaging solution must also reflect the micro flora of the product.......Fungal spoilage of foods is effectively controlled by removal of oxygen from the package, especially if this is combined with elevated carbon dioxide (CO2) levels. However, great uncertainty exist on just how low the residual oxygen levels in the package must be especially when carbon dioxide...... Penicillia and Aspergilli were also inhibited by oxygen levels less than 0.5%, but less than 0.01% was required to efficiently inhibit these fungi. Most resistant to very low oxygen levels was the Fusarium species.These results shows that very low oxygen levels are required to avoid fungal growth in package...

  9. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark

    2015-01-01

    Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically...... and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results...

  10. Control systems for the dissolved oxygen concentration in condensate- and feed-water systems in nuclear power plants

    International Nuclear Information System (INIS)

    Mikajiri, Motohiko; Hosaka, Seiichi.

    1981-01-01

    Purpose: To surely prevent the generation of corrosion products and contaminations in the systems thereby decreasing the exposure dose to operators in BWR type nuclear power plants. Constitution: Dissolved oxygen concentration in condensates is measured by a dissolved oxygen concentration meter disposed to the pipeway down stream of the condensator and the measured value is sent to an injection amount control mechanism for heater drain water. The control mechanism controls the injection amount from the injection mechanism that injection heater drain water from a feed-water heater to the liquid phase in the hot wall of the condensator. Thus, heater drawin water at high dissolved oxygen is injected to the condensates in the condensator which is de-airated and reduced with dissolved oxygen concentration, to maintain the dissolved oxygen concentration at a predetermined level, whereby stable oxide films are formed to the inner surface of the pipeways to prevent the generation of corrosion products such as rusts. (Furukawa, Y.)

  11. Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction

    Science.gov (United States)

    Ai, Kelong; Li, Zelun; Cui, Xiaoqiang

    2017-11-01

    Heat-treated metal-nitrogen-carbon (M-N-C) materials are emerging as promising non-precious catalysts to replace expensive Pt-based materials for oxygen reduction reaction (ORR) in energy conversion and storage devices. Despite recent progress, their activity and durability are still far from satisfactory. The activity site and particle size are among the most important factors for the ORR activity of M-N-C catalysts. Extensive efforts have been made to reveal the correlation of active site and activity. However, it remains unclear to what extent the particle size will influence the ORR activity of M-N-C materials. Moreover, to the best of our knowledge, controllable synthesis of M-N-C catalysts with high-density activity sites remains elusive. Herein, we develop a straightforward method to produce a monodisperse and size-controlled Co-N-C (Nano-P-ZIF-67) electrocatalyst, and systemically investigate its catalytic mechanisms. Only by optimizing the particle size, Nano-P-ZIF-67 outperforms the commercial 20 wt% Pt/C regarding all evaluating indicators for ORR catalysts in alkaline media including higher catalytic activity, durability, and stronger methanol tolerance. Nano-P-ZIF-67 is assembled into a cell, and the cell shows a power density of 45.5 mW/cm2, which is the highest value among currently studied cathode catalysts. We expect Nano-P-ZIF-67 to be a highly interesting candidate for the next generation of ORR catalysts.

  12. The effect of the oxygen dissolved in the adsorption of gold in activated carbon

    International Nuclear Information System (INIS)

    Navarro, P.; Wilkomirsky, I.

    1999-01-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs

  13. LIN-32/Atonal Controls Oxygen Sensing Neuron Development in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Romanos, Teresa Rojo; Pladevall-Morera, David; Langebeck-Jensen, Kasper

    2017-01-01

    HLH) family of transcription factors has multiple functions in neurogenesis. Here, we identified the LIN-32/Atonal bHLH transcription factor as a key regulator of URXL/R oxygen-sensing neuron development in Caenorhabditis elegans. When LIN-32/Atonal expression is lost, the expression of URX specification......Development of complex nervous systems requires precisely controlled neurogenesis. The generation and specification of neurons occur through the transcriptional and post-Transcriptional control of complex regulatory networks. In vertebrates and invertebrates, the proneural basic-helix-loop-helix (b...... and terminal differentiation genes is abrogated. As such, lin-32 mutant animals are unable to respond to increases in environmental oxygen. The URX neurons are generated from a branch of the cell lineage that also produces the CEPDL/R and URADL/R neurons. We found development of these neurons is also defective...

  14. Biochar activated by oxygen plasma for supercapacitors

    Science.gov (United States)

    Gupta, Rakesh Kumar; Dubey, Mukul; Kharel, Parashu; Gu, Zhengrong; Fan, Qi Hua

    2015-01-01

    Biochar, also known as black carbon, is a byproduct of biomass pyrolysis. As a low-cost, environmental-friendly material, biochar has the potential to replace more expensive synthesized carbon nanomaterials (e.g. carbon nanotubes) for use in future supercapacitors. To achieve high capacitance, biochar requires proper activation. A conventional approach involves mixing biochar with a strong base and baking at a high temperature. However, this process is time consuming and energy inefficient (requiring temperatures >900 °C). This work demonstrates a low-temperature (characteristics are studied. Significant enhancement of the capacitance is achieved: 171.4 F g-1 for a 5-min oxygen plasma activation, in comparison to 99.5 F g-1 for a conventional chemical activation and 60.4 F g-1 for untreated biochar. This enhancement of the charge storage capacity is attributed to the creation of a broad distribution in pore size and a larger surface area. The plasma activation mechanisms in terms of the evolution of the biochar surface and microstructure are further discussed.

  15. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    International Nuclear Information System (INIS)

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  16. Oxygen concentration diffusion analysis of lead-bismuth-cooled, natural-circulation reactor

    International Nuclear Information System (INIS)

    Ito, Kei; Sakai, Takaaki

    2001-11-01

    The feasibility study on fast breeder reactors in Japan has been conducted at JNC and related organizations. The Phase-I study has finished in March, 2001. During the Phase-I activity, lead-bismuth eutectic coolant has been selected as one of the possible coolant options and a medium-scale plant, cooled by a lead-bismuth natural circulation flow was studied. On the other side, it is known that lead-bismuth eutectic has a problem of structural material corrosiveness. It was found that oxygen concentration control in the eutectic plays an important role on the corrosion protection. In this report, we have developed a concentration diffusion analysis code (COCOA: COncentration COntrol Analysis code) in order to carry out the oxygen concentration control analysis. This code solves a two-dimensional concentration diffusion equation by the finite differential method. It is possible to simulate reaction of oxygen and hydrogen by the code. We verified the basic performance of the code and carried out oxygen concentration diffusion analysis for the case of an oxygen increase by a refueling process in the natural circulation reactor. In addition, characteristics of the oxygen control system was discussed for a different type of the control system as well. It is concluded that the COCOA code can simulate diffusion of oxygen concentration in the reactor. By the analysis of a natural circulation medium-scale reactor, we make clear that the ON-OFF control and PID control can well control oxygen concentration by choosing an appropriate concentration measurement point. In addition, even when a trouble occurs in the oxygen emission or hydrogen emission system, it observes that control characteristic drops away. It is still possible, however, to control oxygen concentration in such case. (author)

  17. Longitudinal Changes in Physical Activity Level, Body Mass Index, and Oxygen Uptake Among Norwegian Adolescents

    Directory of Open Access Journals (Sweden)

    Pål Lagestad

    2018-03-01

    Full Text Available Several studies have investigated activity levels among adolescents, but no study has examined longitudinal changes in physical activity (PA level, body mass, and oxygen uptake among the same adolescents from the age of 14 to 19 years. The present study examined data from a research project that included a group of randomly selected students (N = 116 with objective measurements of PA (accelerometer data, self-reported PA level, and body mass and oxygen uptake during a 5-year period. The results show a significant decrease in the accelerometer-based PA level over time, from age 14 to 19. At 14 years of age, the minutes of moderate and/or vigorous PA was 66.7 min·day−1, but was less than half, at only 24.4 min·day−1, at 19 years of age. The self-reported activity data show a decrease in girls’ general activity level over time, while boys’ activity level during school breaks decreased strongly during the period: at age 14, 61% of the boys were classified as active, while at age 19, only 11% were physically active. Furthermore, body mass index increased during the period for both genders, while oxygen uptake decreased. Since both BMI and maximal oxygen uptake are important risk factors for future CVD, these findings point toward the importance of maintaining a high activity level during childhood and adolescence, in order to keep fit later in life.

  18. Design and development of microbioreactors for long-term cell culture in controlled oxygen microenvironments.

    Science.gov (United States)

    Abaci, Hasan E; Devendra, Raghavendra; Smith, Quinton; Gerecht, Sharon; Drazer, German

    2012-02-01

    The ability to control the oxygen level to which cells are exposed in tissue culture experiments is crucial for many applications. Here, we design, develop and test a microbioreactor (MBR) for long-term cell culture studies with the capability to accurately control and continuously monitor the dissolved oxygen (DO) level in the cell microenvironment. In addition, the DO level can be controlled independently from other cues, such as the viscous shear-stress acting on the cells. We first analyze the transport of oxygen in the proposed device and determine the materials and dimensions that are compatible with uniform oxygen tension and low shear-stress at the cell level. The device is also designed to culture a statistically significant number of cells. We use fully transparent materials and the overall design of the device is compatible with live-cell imaging. The proposed system includes real-time read-out of actual DO levels, is simple to fabricate at low cost, and can be easily expanded to control the concentration of other microenvironmental solutes. We performed control experiments in the absence of cells to demonstrate that the MBR can be used to accurately modulate DO levels ranging from atmospheric level to 1%, both under no flow and perfusion conditions. We also demonstrate cancer cell attachment and viability within the MBR. The proposed MBR offers the unprecedented capability to perform on-line measurement and analysis of DO levels in the microenvironment of adherent cultures and to correlate them with various cellular responses.

  19. Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS.

    Science.gov (United States)

    Leitch, Jeffry M; Jensen, Laran T; Bouldin, Samantha D; Outten, Caryn E; Hart, P John; Culotta, Valeria C

    2009-08-14

    Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.

  20. Reactive oxygen species inhibit catalytic activity of peptidylarginine deiminase

    DEFF Research Database (Denmark)

    Damgaard, Dres; Bjørn, Mads Emil; Jensen, Peter Østrup

    2017-01-01

    on calcium and reducing conditions. However, reactive oxygen species (ROS) have been shown to induce citrullination of histones in granulocytes. Here we examine the ability of H2O2 and leukocyte-derived ROS to regulate PAD activity using citrullination of fibrinogen as read-out. H2O2 at concentrations above...... from stimulated leukocytes was unaffected by exogenously added H2O2 at concentrations up to 1000 µM. The role of ROS in regulating PAD activity may play an important part in preventing hypercitrullination of proteins....

  1. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression.

    Science.gov (United States)

    Pontier, J-M; Lambrechts, K

    2014-06-01

    We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.

  2. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  4. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Yin, Jun-Jie [Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740 (United States); Zheng, Zhi, E-mail: zhengzhi99999@gmail.com [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  5. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    International Nuclear Information System (INIS)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-01-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors

  6. Neutron activation determination of oxygen in ceramic materials on the basis of yttrium, barium and copper

    International Nuclear Information System (INIS)

    Goldshtein, M.M.; Yudelevich, I.G.

    1991-01-01

    A procedure of determining oxygen in superconducting materials on the basis of yttrium, barium and copper oxides with the application of 14 MeV-neutron activation was developed. The method is based on determining the relation between oxygen and yttrium in the compounds investigated. In order to minimize systematic errors, expressions accounting for spectrometer dead time under conditions of varying component activity are proposed. The procedure ensures determination of the relation between oxygen and yttrium with a relative error of 0.4% with NAA using a neutron generator. (author) 4 refs.; 1 fig

  7. Effects of salinity and pH on the activity and oxygen consumption of Brachionus plicatilis (rotatoria)

    Energy Technology Data Exchange (ETDEWEB)

    Epp, R.W.; Winston, P.W.

    1978-01-01

    Activity and respiratory rates of the rotifer, Brachionus plicatilis, were determined following exposure to pH values of 6.5, 7.5 and 8.5 and to concentrations of 10, 50 and 100 mosm. Changes in the hydrogen-ion concentration had no detectable effect on either activity or metabolism. Acute reduction in osmolarity of the medium resulted in a reduction in oxygen consumption and activity. Both activity and oxygen consumption increased upon acclimatization to osmolarities of 50 and 100 mosm.

  8. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    Science.gov (United States)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  9. Charge transfer induced activity of graphene for oxygen reduction

    International Nuclear Information System (INIS)

    Shen, Anli; Xia, Weijun; Dou, Shuo; Wang, Shuangyin; Zhang, Lipeng; Xia, Zhenhai

    2016-01-01

    Tetracyanoethylene (TCNE), with its strong electron-accepting ability, was used to dope graphene as a metal-free electrocatalyst for the oxygen reduction reaction (ORR). The charge transfer process was observed from graphene to TCNE by x-ray photoelectron spectroscopy and Raman characterizations. Our density functional theory calculations found that the charge transfer behavior led to an enhancement of the electrocatalytic activity for the ORR. (paper)

  10. Oxygen control systems and impurity purification in LBE: Learning from DEMETRA project

    Energy Technology Data Exchange (ETDEWEB)

    Brissonneau, L., E-mail: laurent.brissonneau@cea.fr [CEA/DEN, Cadarache, DTN/STPA/LIPC, F-13108 Saint-Paul-lez-Durance (France); Beauchamp, F.; Morier, O. [CEA/DEN, Cadarache, DTN/STPA/LIPC, F-13108 Saint-Paul-lez-Durance (France); Schroer, C.; Konys, J. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Materialforschung III, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kobzova, A.; Di Gabriele, F. [NRI, UJV Husinec-Rez 130, Rez 25068 (Czech Republic); Courouau, J.-L. [CEA/DEN, Saclay, DPC/SCCME/LECNA, F-919191 Gif-sur-Yvette (France)

    2011-08-31

    Operating a system using Lead-Bismuth Eutectic (LBE) requires a control of the dissolved oxygen concentration to avoid corrosion of structural materials and oxide build-up in the coolant. Reliable devices are therefore needed to monitor and adjust the oxygen concentration and to remove impurities during operation. In this article, we describe the learning gained from experiments run in the framework of the DEMETRA project (IP-EUROTRANS 6th FP contract) on the oxygen supply in LBE and on impurity filtration and management in different European facilities. An oxygen control device should supply oxygen in LBE at sufficient rate to compensate loss by surface oxidation, otherwise local dissolution of oxide layers might lead to the loss of steel protection against dissolution. Oxygen can be supplied by gas phase H{sub 2}O or O{sub 2}, or by solid phase, PbO dissolution. Each of these systems has substantial advantages and drawbacks. Considerations are given on devices for large scale facilities. The management of impurities (lead oxides and corrosion products) is also a crucial issue as their presence in the liquid phase or in the aerosols is likely to impair the facility, instrumentation and mechanical devices. To avoid impurity build-up on the long-term, purification of LBE is required to keep the impurity inventory low by trapping oxide and metallic impurities in specific filter units. On the basis of impurities characterisation and experimental results gained through filtration tests in different loops, this paper gives a description of the state-of-art knowledge of LBE purification with different filter media. It is now understood that the nature and behaviour of impurities formed in LBE will change according to the operating modes as well as the method to propose to remove impurities. This experience can be used to validate the basis filtration process, define the operating procedures and evaluate perspectives for the design of purification units for long

  11. Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali‑oxygen black liquor.

    Science.gov (United States)

    Jiang, Bo; Zhang, Yu; Gu, Lihui; Wu, Wenjuan; Zhao, Huifang; Jin, Yongcan

    2018-05-17

    Alkali‑oxygen cooking of lignocellulose offers lignin many structural properties and bioactivities for biorefinery. In this work, milled wood lignin (MWL) and alkali‑oxygen lignin (AOL) were isolated from rice straw and alkali‑oxygen black liquor, respectively. The lignin structure was characterized by spectroscopy and wet chemistry. Antioxidant activity of lignins was assessed by DPPH·and ABTS scavenging ability assay. Results showed the oxidization and condensation of lignin occurred during alkali‑oxygen cooking. The p-hydroxyphenyl was more easily removed from rice straw than guaiacyl and syringyl units. The ester or ether linkages derived from hydroxycynnamic acids, and the main interunit linkages, i.e. β-O-4' bonds, were mostly cleaved. Lignin-xylan complex had high reactivity under alkali‑oxygen condition. Tricin, incorporated into lignin, was detected in MWL but was absent in AOL. Nitrobenzene oxidation showed MWL can well represent the protolignin of rice straw, and the products yield decreased dramatically after alkali‑oxygen cooking. AOL had higher radical scavenging ability than MWL indicating alkali‑oxygen cooking was an effective pathway for the enhancement of antioxidant activity of lignin. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Kinetics of oxygen uncoupling of a copper based oxygen carrier

    International Nuclear Information System (INIS)

    Hu, Wenting; Donat, Felix; Scott, S.A.; Dennis, J.S.

    2016-01-01

    Highlights: • The kinetics of a Cu-based oxygen carrier was determined using a TGA. • A diffusion model was applied to remove mass transfer effects from rate parameters. • Thermodynamics are separated from kinetics, usually difficult for the CLOU reaction. • The rate parameters correctly described the behaviour in a fluidised bed. • The rate parameters can be used to predict performance of large CLOU systems. - Abstract: Here, an oxygen carrier consisting of 60 wt% CuO supported on a mixture of Al_2O_3 and CaO (23 wt% and 17 wt% respectively) was synthesised by wet-mixing powdered CuO, Al(OH)_3 and Ca(OH)_2, followed by calcination at 1000 °C. Its suitability for chemical looping with oxygen uncoupling (CLOU) was investigated. After 25 repeated redox cycles in either a thermogravimetric analyser (TGA) or a laboratory-scale fluidised bed, (with 5 vol% H_2 in N_2 as the fuel, and air as the oxidant) no significant change in either the oxygen uncoupling capacity or the overall oxygen availability of the carrier was found. In the TGA, it was found that the rate of oxygen release from the material was controlled by intrinsic chemical kinetics and external transfer of mass from the surface of the particles to the bulk gas. By modelling the various resistances, values of the rate constant for the decomposition were obtained. The activation energy of the reaction was found to be 59.7 kJ/mol (with a standard error of 5.6 kJ/mol) and the corresponding pre-exponential factor was 632 m"3/mol/s. The local rate of conversion within a particle was assumed to occur either (i) by homogeneous chemical reaction, or (ii) in uniform, non-porous grains, each reacting as a kinetically-controlled shrinking core. Upon cross validation against a batch fluidised bed experiment, the homogeneous reaction model was found to be more plausible. By accurately accounting for the various artefacts (e.g. mass transfer resistances) present in both TGA and fluidised bed experiments, it was

  13. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  14. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  15. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    International Nuclear Information System (INIS)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-01-01

    Highlights: → Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). → ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. → ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. → Exposure of human adipocytes to fatty acids and (TNFα) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator-activated

  16. Controls of oxygen isotope ratios of nitrate formed during nitrification in soils

    International Nuclear Information System (INIS)

    Mayer, B.; Bollwerk, S.M.; Vorhoff, B.; Mansfeldt, T.; Veizer, J.

    1999-01-01

    The isotopic composition of nitrate is increasingly used to determine sources and transformations of nitrogen in terrestrial and aquatic ecosystems. Oxygen isotope ratios of nitrate appear to be particularly useful, since they allow the differentiation between nitrate from atmospheric deposition (δ 18 O nitrate between +25 and +70 per mille), nitrate from fertilizers (δ 18 O nitrate +23 per mille), and nitrate derived from nitrification processes in soils (δ 18 O nitrate 3 molecule derive from H 2 O (with negative δ 18 O values dependent upon location) and one oxygen derives from atmospheric O 2 (δ 18 O = +23.5 per mille).. The objective of this study was to experimentally determine the extent to which water oxygen controls the δ 18 O value of nitrate, which is formed during nitrification in soils

  17. A microfluidic-based lid device for conventional cell culture dishes to automatically control oxygen level.

    Science.gov (United States)

    Lee, Seung Yeob; Yang, Sung

    2018-04-25

    Most conventional hypoxic cell culture systems undergo reoxygenation during experimental manipulations, resulting in undesirable effects including the reduction of cell viability. A lid device was developed herein for conventional cell culture dishes to resolve this limitation. The integration of multilayered microfluidic channels inside a thin membrane was designed to prevent the reoxygenation caused by reagent infusion and automatically control the oxygen level. The experimental data clearly show the reducibility of the dissolved oxygen in the infusing reagent and the controllability of the oxygen level inside the dish. The feasibility of the device for hypoxia studies was confirmed by HIF-1α experiments. Therefore, the device could be used as a compact and convenient hypoxic cell culture system to prevent reoxygenation-related issues.

  18. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.

    Science.gov (United States)

    Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-08-01

    To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO 2 (etCO 2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO 2 fluctuations of ≥5  mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO 2 increase and 70 episodes of etCO 2 decrease. During etCO 2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nielsen, Jannie; Overgaard, M

    2010-01-01

    Maximal exercise may be limited by central fatigue defined as an inability of the central nervous system to fully recruit the involved muscles. This study evaluated whether a reduction in the cerebral oxygen-to-carbohydrate index (OCI) and in the cerebral mitochondrial oxygen tension relate to th...... indicating that reduced cerebral oxygenation may play a role in the development of central fatigue and may be an exercise capacity limiting factor.......Maximal exercise may be limited by central fatigue defined as an inability of the central nervous system to fully recruit the involved muscles. This study evaluated whether a reduction in the cerebral oxygen-to-carbohydrate index (OCI) and in the cerebral mitochondrial oxygen tension relate...... of perceived exertion (RPE), arm maximal voluntary force (MVC), and voluntary activation of elbow flexor muscles assessed with transcranial magnetic stimulation. Low intensity exercise did not produce any indication of central fatigue or marked cerebral metabolic deviations. Exercise in hypoxia (0.10) reduced...

  20. Control of oxygen impurity and hydrogen recycling in the compact helical system (CHS)

    International Nuclear Information System (INIS)

    Noda, N.; Okamura, S.; Aoki, T.; Yamada, H.; Tsuzuki, K.; Matsuoka, K.; Iguchi, H.; Hosokawa, M.; Kaneko, O.; Kubo, S.; Morita, S.; Nishimura, K.; Sagara, A.; Shoji, T.; Takahashi, C.; Takeiri, Y.; Takita, Y.; Amemiya, H.; Okazaki, K.; Oyama, Y.; Shimizu, K.; Yano, K.

    1990-01-01

    In order to reduce oxygen impurity and hydrogen recycling, ECR discharge cleaning with hydrogen, glow discharge with helium, and titanium gettering have been applied. The ECR discharge cleaning was found to be effective in reducing oxygen impurities in ECRH discharges. However, it was not sufficiently effective to give a wide operational density range in NBI heated discharges. Titanium gettering is essential for this purpose, and controllable discharges have been achieved in the density range 1-10x10 19 m -3 , with discharge length more than 850 ms with the aid of titanium gettering. Both helium-glow discharge and Ti gettering are useful to control hydrogen recycling even with a stainless steel wall. (orig.)

  1. Oxygen titration after resuscitation from out-of-hospital cardiac arrest: a multi-centre, randomised controlled pilot study (the EXACT pilot trial).

    Science.gov (United States)

    Bray, Janet E; Hein, Cindy; Smith, Karen; Stephenson, Michael; Grantham, Hugh; Finn, Judith; Stub, Dion; Cameron, Peter

    2018-04-20

    Recent studies suggest the administration of 100% oxygen to hyperoxic levels following return-of-spontaneous-circulation (ROSC) post-cardiac arrest may be harmful. However, the feasibility and safety of oxygen titration in the prehospital setting is unknown. We conducted a multi-centre, phase-2 study testing whether prehospital titration of oxygen results in an equivalent number of patients arriving at hospital with oxygen saturations SpO2 ≥ 94%. We enrolled unconscious adults with: sustained ROSC; initial shockable rhythm; an advanced airway; and an SpO2 ≥ 95%. Initially (Sept 2015-March 2016) patients were randomised 1:1 to either 2 litres/minute (L/min) oxygen (titrated) or >10 L/min oxygen (control) via a bag-valve reservoir. However, one site experienced a high number of desaturations (SpO2 titrated arm and this arm was changed (April 2016) to an initial reduction of oxygen to 4 L/min then, if tolerated, to 2 L/min, and the desaturation limit was decreased to titrated (n = 37: 2L/min = 20 and 2-4 L/min = 17) oxygen or control (n = 24). Patients allocated to titrated oxygen were more likely to desaturate compared to controls ((SpO2 titrated: 90% vs. control: 100%) and all patients had a SpO2 ≥ 90%. One patient (control) re-arrested. Survival to hospital discharge was similar. Oxygen titration post-ROSC is feasible in the prehospital environment, but incremental titration commencing at 4L/min oxygen flow may be needed to maintain an oxygen saturation >90% (NCT02499042). Copyright © 2018. Published by Elsevier B.V.

  2. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films

    KAUST Repository

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blü gel, Stefan; Manchon, Aurelien

    2016-01-01

    ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore

  3. Oxygen permeation through oxygen ion oxide-noble metal dual phase composites

    NARCIS (Netherlands)

    Chen, C.S.; Chen, C.S.; Kruidhof, H.; Bouwmeester, Henricus J.M.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1996-01-01

    Oxygen permeation behaviour of three composites, yttria-stabilized zirconia-palladium, erbia-stabilized bismuth oxidenoble metal (silver, gold) was studied. Oxygen permeation measurements were performed under controlled oxygen pressure gradients at elevated temperatures. Air was supplied at one side

  4. Genetic control of yeast cell radiosensitivity modification by oxygen and hypoxic sensitizers

    International Nuclear Information System (INIS)

    Zhuranovskaya, G.P.; Petin, V.G.

    1984-01-01

    Diploid yeast cells Saccharomyces cerevisiae ''of the wild type'', individual mutants, homozygous in rad 2 and rad 54 and double mutants, containing both these loci in homozygous state are considered to prove genetic determination of radiosensitivity modification of hypoxic cells by oxygen and electron acceptor compounds previously demonstrated on yeast cells of other genotypes. It is shown that both ''oxygen effect'' and the effect of hypoxic sensitizers depend on the activity of repair systems. The possible mechanism of participation of post-radiation restoration processes in the modification of cell radiosensitivity, is discussed

  5. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  6. Children’s Oxygen Administration Strategies Trial (COAST:  A randomised controlled trial of high flow versus oxygen versus control in African children with severe pneumonia [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Kathryn Maitland

    2018-01-01

    Full Text Available Background: In Africa, the clinical syndrome of pneumonia remains the leading cause of morbidity and mortality in children in the post-neonatal period. This represents a significant burden on in-patient services. The targeted use of oxygen and simple, non-invasive methods of respiratory support may be a highly cost-effective means of improving outcome, but the optimal oxygen saturation threshold that results in benefit and the best strategy for delivery are yet to be tested in adequately powered randomised controlled trials. There is, however, an accumulating literature about the harms of oxygen therapy across a range of acute and emergency situations that have stimulated a number of trials investigating permissive hypoxia. Methods: In 4200 African children, aged 2 months to 12 years, presenting to 5 hospitals in East Africa with respiratory distress and hypoxia (oxygen saturation or = 80% (permissive hypoxia; and High flow using AIrVO2TM compared with low flow delivery (routine care. Discussion: The overarching objective is to address the key research gaps in the therapeutic use of oxygen in resource-limited setting in order to provide a better evidence base for future management guidelines. The trial has been designed to address the poor outcomes of children in sub-Saharan Africa, which are associated with high rates of in-hospital mortality, 9-10% (for those with oxygen saturations of 80-92% and 26-30% case fatality for those with oxygen saturations <80%. Clinical trial registration: ISRCTN15622505 Trial status: Recruiting

  7. Mechanism of dark decomposition of iodine donor in the active medium of a pulsed chemical oxygen - iodine laser

    International Nuclear Information System (INIS)

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, A I; Sorokin, Vadim N

    2002-01-01

    A scheme is proposed that describes the dark decomposition of iodide - the donor of iodine - and the relaxation of singlet oxygen in the chlorine-containing active medium of a pulsed chemical oxygen - iodine laser (COIL). For typical compositions of the active media of pulsed COILs utilising CH 3 I molecules as iodine donors, a branching chain reaction of the CH 3 I decomposition accompanied by the efficient dissipation of singlet oxygen is shown to develop even at the stage of filling the active volume. In the active media with CF 3 I as the donor, a similar chain reaction is retarded due to the decay of CF 3 radicals upon recombination with oxygen. The validity of this mechanism is confirmed by a rather good agreement between the results of calculations and the available experimental data. The chain decomposition of alkyliodides accompanied by an avalanche production of iodine atoms represents a new way of efficient chemical production of iodine for a COIL. (active media)

  8. Blood gases and oxygen saturation response to active cycle of breathing techniques in COPD patients during phase I of cardiac rehabilitation

    International Nuclear Information System (INIS)

    Sheraz, S.; Siddiqi, F.A.

    2015-01-01

    Objective: To determine the effectiveness of active cycle of breathing techniques (ACBTs) on arterial blood gases (ABG), oxygen saturation and other vitals including chest expansion, heart rate, and respiratory rate in COPD patients during phase I of cardiac rehabilitation program after open heart surgery. Methodology: In this experimental study, sample size chosen was 100 patients, randomly divided into experimental (n=50) and control (n=50) groups. Pre-test values of ABG, oxygen saturation, chest expansion, respiratory rate, and heart rate of the participants were taken. Then, conventional physical therapy including spirometry was performed 2 hourly by the control group whereas the experimental group performed ACBTs along with spirometry twice a day for a period of one week. Participants were re-assessed after one week treatment. Results: There was highly significant difference (p<0.01) in pre-test and post-test values of PCO/sub 2/ and oxygen saturation in experimental group as compared to control group. The results of bicarbonate values, base excess and heart rate were statistically significant (p<0.01) in control group and there was no significant difference (p>0.05) in experimental group. The values of pH, chest expansion and respiratory rate were highly significant (p<0.01) in both control as well as experimental group. Conclusion: ACBT was more effective to decrease post CABG complication as compared to conventional chest physical therapy. Some parameters like bicarbonate values, base excess and heart rate did not show improvement with ACBT. (author)

  9. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    Science.gov (United States)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  10. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    International Nuclear Information System (INIS)

    Romer, E.W.J.

    2001-01-01

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10 -8 mol/cm 2 s at a layer thickness between 3-50 μm. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment, the two

  11. Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence

    Directory of Open Access Journals (Sweden)

    Majid Ebrahimizadeh Abrishami

    2016-11-01

    Full Text Available An improved understanding of the correlation between the electronic properties of Mn-O bonds, activity and stability of electro-catalysts for the oxygen evolution reaction (OER is of great importance for an improved catalyst design. Here, an in-depth study of the relation between lattice structure, electronic properties and catalyst performance of the perovskite Ca1−xPrxMnO3 and the first-order RP-system Ca2−xPrxMnO4 at doping levels of x = 0, 0.25 and 0.5 is presented. Lattice structure is determined by X-ray powder diffraction and Rietveld refinement. X-ray absorption spectroscopy of Mn-L and O-K edges gives access to Mn valence and covalency of the Mn-O bond. Oxygen evolution activity and stability is measured by rotating ring disc electrode studies. We demonstrate that the highest activity and stability coincidences for systems with a Mn-valence state of +3.7, though also requiring that the covalency of the Mn-O bond has a relative minimum. This observation points to an oxygen evolution mechanism with high redox activity of Mn. Covalency should be large enough for facile electron transfer from adsorbed oxygen species to the MnO6 network; however, it should not be hampered by oxidation of the lattice oxygen, which might cause a crossover to material degradation. Since valence and covalency changes are not entirely independent, the introduction of the energy position of the eg↑ pre-edge peak in the O-K spectra as a new descriptor for oxygen evolution is suggested, leading to a volcano-like representation of the OER activity.

  12. The scavenger activities of tea polyphenol and quercetin against oxygen radicals

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiecheng; Dong Jirong; Wang Wenfeng; Lin nianyun

    1992-01-01

    Studies of free radical biology and medicine have shown that carcinogenesis, vascular diseases of heart and brain, radiation injuries, ageing etc are strictly correlated with free radical injury of tissues. Thus, pharmacologists and biologists are focusing attention on searching for scavengers, especially naturally occurring antioxidant of oxidizing free radicals. Previous studies have indicated that phenolic antioxidants have efficient scavenger activities. Utilizing following methods including chemical luminescence, ESR spectroscopy and pulse radiolysis techniques the scavenger activities of tea polyphenols and quercetin against active species of oxygen have been studied

  13. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  14. Examples of detection of water flow by oxygen activation on pulsed neutron logs

    International Nuclear Information System (INIS)

    de Rosset, W.H.M.

    1986-01-01

    Upward flow of water in cased wellbores may be detected with pulsed neutron capture (PNC) and gamma ray (GR) tools. Water entering tubing, casing and flowing behind pipe may similarly be evaluated qualitatively. Gamma ray background anomalies in PNC data and elevation of GR tool response occur when water is flowing above threshold velocities and volumes. The technique requires logging the well under static and flow conditions or logging at different tools speeds in a flowing well. Oxygen activation results in increased gamma ray count rates at each detector. PNC far detector and GR well log curves from each log run (flowing well, static well) are overlain. The increases for each curve are offset from the point of water entry by a distance similar to tool source-detector spacing. These offsets in gamma increase are 15-20 ft. higher for the GR than for the PNC far detector and distinguish oxygen activation due to flowing water from common hot spots. The amount of gamma ray increase is controlled by the velocity of upward flow of water past the tool, the amount of water flowing, and the distance of the flow from the tool. Prior planning is important to gain usable information in flowing wells. The upward relative velocity imposes maximal and minimal tool speeds to produce significant gamma increases, and tool speed must be adjusted to optimize gamma changes. Use of the technique to answer actual production problems is illustrated with examples. Insight was gained which led to the correction of the problem in each case

  15. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    DEFF Research Database (Denmark)

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall

    2016-01-01

    -PCR, immunocytochemistry and western blot. RESULTS AND CONCLUSIONS: We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET......, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch...... and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β...

  16. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose; Ahn, Sung-Jin; Crumlin, Ethan; Orikasa, Yuki; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  17. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  18. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath

    2017-05-31

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  19. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath; Almahdali, Sarah; Vu, Khanh B.; Zapsas, Georgios; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2017-01-01

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  20. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons

    Science.gov (United States)

    Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.

    2017-01-01

    In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the , , and orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377

  1. In-reactor performance of methods to control fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Weber, E.T.; Gibby, R.L.; Wilson, C.N.; Lawrence, L.A.; Adamson, M.G.

    1979-01-01

    Inner surface corrosion of austenitic stainless steel cladding by oxygen and reactive fission product elements requires a 50 μm wastage allowance in current FBR reference oxide fuel pin design. Elimination or reduction of this wastage allowance could result in better reactor efficiency and economics through improvements in fuel pin performance and reliability. Reduction in cladding thickness and replacement of equivalent volume with fuel result in improved breeding capability. Of the factors affecting fuel-cladding chemical interaction (FCCI), oxygen activity within the fuel pin can be most readily controlled and/or manipulated without degrading fuel pin performance or significantly increasing fuel fabrication costs. There are two major approaches to control oxygen activity within an oxide fuel pin: (1) control of total oxygen inventory and chemical activity (Δ anti GO 2 ) by use of low oxygen-to-metal ratio (O/M) fuel; and (2) incorporation of a material within the fuel pin to provide in-situ control of oxygen activity (Δ anti GO 2 ) and fixation of excess oxygen prior to, or in preference to reaction with the cladding. The paper describes irradiation tests which were conducted in EBR-II and GETR incorporating oxygen buffer/getter materials and very low O/M fuel to control oxygen activity in sealed fuel pins

  2. Evaluation and Enhancement of the Oxygen Reduction Reaction Activity on Hafnium Oxide Nanoparticles Assisted by L(+)-lysine

    International Nuclear Information System (INIS)

    Chisaka, Mitsuharu; Itagaki, Noriaki

    2016-01-01

    Evaluation of the oxygen reduction reaction (ORR) on oxide compounds is difficult owing to the insulating nature of oxides. In this study, various amounts of L(+)-lysine were added to the precursor dispersion for the hydrothermal synthesis of hafnium oxide nanoparticles on reduced graphene oxide sheets (HfO_x–rGO) to coat the HfO_x catalysts with layers of carbon, thereby increasing the conductivity and number of active sites. When the mass ratio of L(+)-lysine to GO, R, was above 26, carbon layers were formed and the amount monotonically increased with increasing R, as noted by cyclic voltammogrametry. X-ray photoelectron spectroscopy and rotating disk electrode analyses revealed that pyrolysis produced ORR-active oxygen defects, whose formation was proposed to involve carbothermal reduction. When 53 ≤ R ≤ 210, HfO_x–rGO contained a similar amount of oxygen defects and ORR activity, as represented by an onset potential of 0.9 V versus the reversible hydrogen electrode in 0.1 mol dm"−"3 H_2SO_4. However, the number of active sites depended on R due to the amount of L(+)-lysine-derived carbon layers that increased both the number of active sites and resistivity towards oxygen diffusion.

  3. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  4. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    Science.gov (United States)

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Exhaustive Exercise-induced Oxidative Stress Alteration of Erythrocyte Oxygen Release Capacity.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Wang, Yueming; Zhao, Yajin; Li, Yaojin; Ren, Yang; Wang, Ruofeng; Zhao, Mingzi; Hao, Yitong; Liu, Haibei; Wang, Xiang

    2018-05-24

    The aim of the present study is to explore the effect of exhaustive running exercise (ERE) in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control (C), moderate running exercise (MRE) and exhaustive running exercise groups. The thermodynamics and kinetics properties of the erythrocyte oxygen release process of different groups were tested. We also determined the degree of band-3 oxidative and phosphorylation, anion transport activity and carbonic anhydrase isoform II(CAII) activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in TBARS and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II(CAII) activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamics and kinetics properties of RBCs oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive running induced alterations in erythrocytes oxygen release thermodynamics and kinetics properties.

  6. Ketogenic diet for high partial pressure oxygen diving.

    Science.gov (United States)

    Valadao, Jason M; Vigilante, John A; DiGeorge, Nicholas W; O'Connor, Sunila E; Bear, Alexandria; Kenyon, Jeffrey; Annis, Heather; Dituri, Joseph; Dituri, Amy E; Whelan, Harry T

    2014-01-01

    A ketogenic diet (KD) may decrease central nervous system oxygen toxicity symptoms in divers, and in view of this implication a feasibility/ toxicity pilot study was performed to demonstrate tolerance of KD while performing normal diving profiles. The exact mechanism of neuroprotection from the KD remains unknown; however, evidence to support the efficacy of the KD in reducing seizures is present in epilepsy and oxygen toxicity studies, and may provide valuable insight in diving activities. Three divers (two males and one female ages 32-45 with a history of deep diving and high pO2 exposure) on the KD made dives to varying depths in Hawaii using fully closed-circuit MK-15 and Inspiration rebreathers. These rebreathers have an electronically controlled set point, allowing the divers to monitor and control the oxygen level in the breathing loop, which can be varied manually by the divers. Oxygen level was varied during descent, bottom depth and ascent (decompression). Divers fasted for 12-18 hours before diet initiation. The ketosis level was verified by urinating on a Ketostix (reagent strips for urinalysis). Ketosis was achieved and was easily monitored with Ketostix in the simulated operational environment. The KD did not interfere with the diving mission; no seizure activity or signs or symptoms of CNS toxicity were observed, and there were no adverse effects noted by the divers while on the KD.

  7. Correction of Pulmonary Oxygenizing Dysfunction in the Early Activation of Cardiosurgical Patients

    Directory of Open Access Journals (Sweden)

    I. A. Kozlov

    2009-01-01

    ventilation/perfusion ratio may be ensured via preoperative stimulating spirometry and an alveolar opening maneuver early after extracorporeal circulation if indicated. The comprehensive approach allows a reduction in the incidence of pulmonary oxygenizing dysfunction that prevents early activation in the operating suite from 40 to 5—7%. Key words: early activation, pulmonary oxygenizing function, myocardial revascularization, surgery under extracorporeal circulation, tracheal extubation in the operating-room.

  8. [Protective effects of luteolin on neurons against oxygen-glucose deprivation/reperfusion injury via improving Na+/K+ -ATPase activity].

    Science.gov (United States)

    Fang, Lumei; Zhang, Mingming; Ding, Yuemin; Fang, Yuting; Yao, Chunlei; Zhang, Xiong

    2010-04-01

    Luteolin, a flavone, has considerable neuroprotective effects by its anti-oxidative mechanism. However, it is still unclear whether luteolin can protect neurons against oxygen-glucose deprivation/reperfusion (OGD/R) induced injury. After 2 hours oxygen-glucose deprivation and 24 hours reperfusion treatment in primary cultured hippocampal neurons, the neuron viability, survival rate and apoptosis rate were evaluated by MTT assay, lactate dehydrogenase (LDH) leakage assay and Hoechst staining, respectively. The activity of Na+/K+ -ATPase was examined in cultured neurons or in the hippocampus of SD rats treated by 10 minutes global cerebral ischemia and followed 24 hours reperfusion. Treatment by OGD/R markedly reduced neuronal viability, increased LDH leakage rate and increased apoptosis rate. Application of luteolin (10-100 micromol x L(-1)) during OGD inhibited OGD/R induced neuron injury and apoptosis in a dose-dependent manner. Compared to the control group or OGP/R-treated neurons, the activity of Na+/K+ -ATPase was significantly suppressed in global ischemia/reperfusion group or OGD/R-treated neurons. Application of luteolin during ischemia or OGD preserved the Na+/K+ -ATPase activity. Furthermore, inhibition of Na+/K+ -ATPase with ouabain attenuated the protective effect afforded by luteolin. The data provide the evidence that luteolin has neuroprotective effect against OGD/R induced injury and the protective effect may be associated with its ability to improve Na+/K+ -ATPase activity after OGD/R.

  9. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties

    DEFF Research Database (Denmark)

    Bolumar Garcia, Jose Tomas; Lapena Gomez, David; Skibsted, Leif Horsfelt

    2016-01-01

    Three different packaging systems: vacuum packaging, rosemary active packaging, and oxygen scavenger packaging were compared for their ability to counteract lipid oxidation in pork patties upon storage at 5 °C for 60 days following high pressure processing (HPP) (700 MPa, 10 min, 5 °C). Lipid...... oxidation was studied at the surface and the inner part by measuring secondary lipid oxidation products (TBARs) and the tendency to form radicals by electron spin resonance (ESR) spectroscopy. Lipid oxidation was lower in the inner part than at the surface for all three packaging systems. Rosemary active...... packaging was the most effective method to protect pork patties from the HPP-induced lipid oxidation, while oxygen scavenger packaging was not effective since residual oxygen remained in the package in the initial period of storage. The kinetics of the oxygen trapping by oxygen scavengers appears...

  10. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia.

    Science.gov (United States)

    Banh, Robert S; Iorio, Caterina; Marcotte, Richard; Xu, Yang; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S; Koizumi, Akio; Wilkins, Sarah E; Kislinger, Thomas; Gygi, Steven P; Schofield, Christopher J; Dennis, James W; Wouters, Bradly G; Neel, Benjamin G

    2016-07-01

    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.

  11. The determination of trace oxygen in aluminium and aluminium-silicon alloy by helium-3 activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Goethals, P.; Kieffer, R.; Hoste, J.

    1975-01-01

    The determination of oxygen in aluminium and aluminium-silicon alloy by helium-3 activation is studied. The 18 F formed from oxygen is separated by distillation followed by precipitation of leadfluorochloride. The chemical yield is determined by activation in an isotopic neutron source. Concentrations of resp. 27 and 64 ng.g -1 with a precision for a single determination of resp. 30 and 13% are found in 99.5% aluminium and in aluminium-silicon (3%) alloy. (author)

  12. Fermentation process using specific oxygen uptake rates as a process control

    Science.gov (United States)

    Van Hoek, Pim [Minnetonka, MN; Aristidou, Aristos [Maple Grove, MN; Rush, Brian [Minneapolis, MN

    2011-05-10

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  13. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    Directory of Open Access Journals (Sweden)

    Elias Abdou

    2017-05-01

    Full Text Available For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL, were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work

  14. Control and homogenization of oxygen distribution in Si crystals by the novel technique: electromagnetic Czochralski method (EMCZ)

    Science.gov (United States)

    Watanabe, Masahito; Eguchi, Minoru; Hibiya, Taketoshi

    1999-07-01

    A novel method for control and homogenization oxygen distribution in silicon crystals by using electromagnetic force (EMF) to rotate the melt without crucible rotation has been developed. We call it electromagnetic Czochralski method. An EMF in the azimuthal direction is generated in the melt by the interaction between an electric current through the melt in the radial direction and a vertical magnetic field. (B). The rotation rate (ωm) of the silicon melt is continuously changed from 0 to over 105 rpm under I equals 0 to 8 A and B equals 0 to 0.1 T. Thirty-mm-diameter silicon single crystals free of dislocations could be grown under several conditions. The oxygen concentration in the crystals was continuously changed from 1 X 1017 to 1 X 1018 atoms/cm3 with increase of melt rotation by electromagnetic force. The homogeneous oxygen distributions in the radial directions were achieved. The continuous change of oxygen concentration and the homogenization of oxygen distribution along the radial direction are attributed to the control of the diffusion-boundary-layer at both the melt/crucible and crystal/melt by forced flow due to the EMF. This new method would be useful for growth of the large-diameter silicon crystals with a homogeneous distribution of oxygen.

  15. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling

    NARCIS (Netherlands)

    Liao, Zhaoliang; Huijben, Mark; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R.J.; van Aert, S.; Verbeeck, J.; van Tendeloo, G.; Held, K.; Sawatzky, G.A.; Koster, Gertjan; Rijnders, Augustinus J.H.M.

    2016-01-01

    Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized

  16. Clinical evidence on high flow oxygen therapy and active humidification in adults.

    Science.gov (United States)

    Gotera, C; Díaz Lobato, S; Pinto, T; Winck, J C

    2013-01-01

    Recently there has been growing interest in an alternative to conventional oxygen therapy: the heated, humidified high flow nasal cannula oxygen therapy (HFNC). A number of physiological effects have been described with HFNC: pharyngeal dead space washout, reduction of nasopharyngeal resistance, a positive expiratory pressure effect, an alveolar recruitment, greater humidification, more comfort and better tolerance by the patient, better control of FiO2 and mucociliary clearance. There is limited experience of HFNC in adults. There are no established guidelines or decision-making pathways to guide use of the HFNC therapy for adults. In this article we review the existing evidence of HFNC oxygen therapy in adult patients, its advantages, limitations and the current literature on clinical applications. Further research is required to determine the long-term effect of this therapy and identify the adult patient population to whom it is most beneficial. Copyright © 2013 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  17. Electrical features of an amorphous indium-gallium-zinc-oxide film transistor using a double active matrix with different oxygen contents

    International Nuclear Information System (INIS)

    Koo, Ja Hyun; Kang, Tae Sung; Hong, Jin Pyo

    2012-01-01

    The electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFTs) are systematically studied using a double a-IGZO active layer that is composed of a-IGZO x (oxygen-ion-poor region) and a-IGZO y (oxygen-ion-rich-region). An active layer is designed to have a serially-stacked bi-layer matrix with different oxygen contents, providing the formation of different electron conduction channels. Two different oxygen contents in the active layer are obtained by varying the O 2 partial pressure during sputtering. The a-IGZO TFT based on a double active layer exhibits a high mobility of 9.1 cm 2 /Vsec, a threshold voltage (V T ) of 16.5 V, and ΔV T shifts of less than 1.5 V under gate voltage stress. A possible electrical sketch for the double active layer channel is also discussed.

  18. The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity.

    Science.gov (United States)

    Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori

    2011-05-01

    This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.

  19. Muscle Oxygen Supply Impairment during Exercise in Poorly Controlled Type 1 Diabetes

    Science.gov (United States)

    TAGOUGUI, SEMAH; LECLAIR, ERWAN; FONTAINE, PIERRE; MATRAN, RÉGIS; MARAIS, GAELLE; AUCOUTURIER, JULIEN; DESCATOIRE, AURÉLIEN; VAMBERGUE, ANNE; OUSSAIDENE, KAHINA; BAQUET, GEORGES; HEYMAN, ELSA

    2015-01-01

    ABSTRACT Purpose Aerobic fitness, as reflected by maximal oxygen (O2) uptake (V˙O2max), is impaired in poorly controlled patients with type 1 diabetes. The mechanisms underlying this impairment remain to be explored. This study sought to investigate whether type 1 diabetes and high levels of glycated hemoglobin (HbA1c) influence O2 supply including O2 delivery and release to active muscles during maximal exercise. Methods Two groups of patients with uncomplicated type 1 diabetes (T1D-A, n = 11, with adequate glycemic control, HbA1c 8%) were compared with healthy controls (CON-A, n = 11; CON-I, n = 12, respectively) matched for physical activity and body composition. Subjects performed exhaustive incremental exercise to determine V˙O2max. Throughout the exercise, near-infrared spectroscopy allowed investigation of changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in the vastus lateralis. Venous and arterialized capillary blood was sampled during exercise to assess arterial O2 transport and factors able to shift the oxyhemoglobin dissociation curve. Results Arterial O2 content was comparable between groups. However, changes in total hemoglobin (i.e., muscle blood volume) was significantly lower in T1D-I compared with that in CON-I. T1D-I also had impaired changes in deoxyhemoglobin levels and increase during high-intensity exercise despite normal erythrocyte 2,3-diphosphoglycerate levels. Finally, V˙O2max was lower in T1D-I compared with that in CON-I. No differences were observed between T1D-A and CON-A. Conclusions Poorly controlled patients displayed lower V˙O2max and blunted muscle deoxyhemoglobin increase. The latter supports the hypotheses of increase in O2 affinity induced by hemoglobin glycation and/or of a disturbed balance between nutritive and nonnutritive muscle blood flow. Furthermore, reduced exercise muscle blood volume in poorly controlled patients may warn clinicians of microvascular dysfunction occurring even before overt

  20. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  1. Experience of the use of γ photon activation analysis for the determination of oxygen in sodium

    International Nuclear Information System (INIS)

    Hislop, J.S.; Wood, D.A.; Thompson, R.

    1981-01-01

    The use of γ photon activation analysis for determination of the oxygen content of sodium in an experimental rig used for evaluation of electrochemical oxygen meters is described. A sampling procedure has been developed, using a thin walled nickel tube to act both as the sample collector and irradiation container, which does not require the sophisticated sampling facilities necessary when using more conventional methods of analysis. Results have been obtained for oxygen content of sodium over the nominal temperature range 125-250 0 C and the resulting oxygen solubility relationship compared with literature values. Good agreement has been obtained with previous UK vacuum distillation data. (orig.)

  2. Prevention of alloimmunization by ultraviolet-B irradiation. Inactivation of leukocytes and the generation of active oxygen and radicals

    International Nuclear Information System (INIS)

    Takahashi, Tsuneo; Mogi, Yuko; Sekiguchi, Sadayoshi; Akasaka, Junichi; Kamo, Naoki; Kuwabara, Mikinori.

    1994-01-01

    UV-B irradiation of platelet concentrates (PC) has been tried in several institutes to inactivate leukocytes in PC and prevent alloimmunization on platelet transfusion. However, the mechanism of inactivation of leukocytes contaminating PC has not been fully understood. It is known that UV-B light is absorbed by photosensitizers in cells and produces active oxygen and radicals, such as singlet oxygen, superioxide anions and hydroxyl radicals. These active oxygen or radicals should injure cellular components and this could cause the suppression of cellular functions. In this study, we investigated the relationships among UV-B irradiation, free radical generation and leukocyte inactivation. We found the evidence that active oxygen and radicals were produced in peripheral blood mononuclear cells by UV-B irradiation. UV-B irradiation suppressed the stimulatory function of leukocytes in a mixed lymphocyte reaction (MLR), and the suppression depended on the dosage of UV-B. Even a low dosage of UV-B, 10 J/m 2 , could inhibit the MLR if the irradiated cells were incubated at 37degC for 24 hours before co-culture with responder cells. Treatments of cells with the exogenous singlet oxygen or superoxide anions also caused suppression of the stimulatory function in the MLR, inhibition of capping formation of HLA-DR antigens, and an increase of intracellular free Ca 2+ levels as did the UV-B treatment. These results indicate that the active oxygen or radicals generated in UV-B-irradiated leukocytes could be one of the causes of leukocyte inactivation. (author0

  3. From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Vegge, Tejs

    2017-01-01

    Layered oxyhydroxides (ox-hys) of Ni and Co are among the most active catalysts for oxygen evolution in alkaline media. Their activities can be further tuned by delamination into single-layer oxide sheets or by means of doping. The active site for the reaction and how doping and delamination...... investigate the role of terrace and edge sites and use stability, catalytic activity, and electronic conductivity as evaluation criteria to pinpoint the best catalysts. We arrive at several important conclusions: the ox-hy surface is fully oxidized under oxygen evolution conditions, bulk terraces...

  4. Can systemically generated reactive oxygen species help to monitor disease activity in generalized vitiligo? A pilot study

    Directory of Open Access Journals (Sweden)

    Richeek Pradhan

    2014-01-01

    Full Text Available Background: Generalized vitiligo is a disease with unpredictable bursts of activity, goal of treatment during the active phase being to stabilize the lesions. This emphasizes the need for a prospective marker for monitoring disease activity to help decide the duration of therapy. Aims and Objectives: In the present study, we examined whether reactive oxygen species (ROS generated in erythrocytes can be translated into a marker of activity in vitiligo. Materials and Methods: Level of intracellular ROS was measured flow cytometrically in erythrocytes from venous blood of 21 patients with generalized vitiligo and 21 healthy volunteers using the probe dichlorodihydrofluorescein diacetate. Results: The levels of ROS differed significantly between patients and healthy controls, as well as between active versus stable disease groups. In the active disease group, ROS levels were significantly lower in those being treated with systemic steroids than those that were not. ROS levels poorly correlated with disease duration or body surface area involved. Conclusion: A long-term study based on these findings can be conducted to further validate the potential role of ROS in monitoring disease activity vitiligo.

  5. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles

    DEFF Research Database (Denmark)

    Pérez Alonso, Francisco; McCarthy, David N; Nierhoff, Anders

    2012-01-01

    A matter of size: The particle size effect on the activity of the oxygen reduction reaction of size-selected platinum clusters was studied. The ORR activity decreased with decreasing Pt nanoparticle size, corresponding to a decrease in the fraction of terraces on the surfaces of the Pt nanopartic...

  6. The Effect of Size on the Oxygen Electroreduction Activity of Mass‐Selected Platinum Nanoparticles

    DEFF Research Database (Denmark)

    Pérez Alonso, Francisco; McCarthy, David Norman; Nierhoff, Anders Ulrik Fregerslev

    2012-01-01

    A matter of size: The particle size effect on the activity of the oxygen reduction reaction of size-selected platinum clusters was studied. The ORR activity decreased with decreasing Pt nanoparticle size, corresponding to a decrease in the fraction of terraces on the surfaces of the Pt nanopartic...

  7. Active packaged lamb with oxygen scavenger/carbon dioxide emitter sachet: physical-chemical and microbiological stability during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Marco Antonio Trindade

    2013-09-01

    Full Text Available Lamb meat has been commercialized in Brazil almost exclusively as a frozen product due to the longer shelf life provided by freezing when compared to refrigeration. However, as a result of the current trend of increased demand for convenience products, a need has emerged for further studies to facilitate the marketing of refrigerated lamb cuts. The aim of the present study was to evaluate the contribution of active packaging technology in extending the shelf life of lamb loins (Longissimus lumborum stored under refrigeration (1±1 ° C when compared to the traditional vacuum packaging. For this purpose, two kinds of sachets were employed: oxygen scavenger sachet and oxygen scavenger/carbon dioxide emitter sachet. Experiments were conducted in three treatments: 1 Vacuum (Control, 2 Vacuum + oxygen scavenger sachet and 3 Vacuum + oxygen scavenger/carbon dioxide emitter sachet. Microbiological (counts of anaerobic psychrotrophs, coliform at 45 ° C, coagulase-positive staphylococci, Salmonella and lactic acid bacteria and physical-chemical (thiobarbituric acid reactive substances, objective color, pH value, water loss from cooking and shear force analyses were carried out weekly for a total storage period of 28 days. The experiment was performed three times for all treatments. Results showed that the lamb meat remained stable with respect to the majority of the evaluated physical and chemical indexes and remained within the standards established by Brazilian legislation for pathogenic microorganisms throughout the storage period in all three packaging systems. However, all treatments presented elevated counts of anaerobic psychrotrophic microorganisms and lactic acid bacteria, reaching values above 10(7 CFU/g at 28 days of storage. Thus, under the conditions tested, neither the oxygen scavenger sachet nor the dual function sachet (oxygen scavenger/carbon dioxide emitter were able to extend the shelf life of refrigerated lamb loin when added to this

  8. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    International Nuclear Information System (INIS)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-01-01

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs

  9. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrifica......Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic...... denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically...

  10. Determination of oxygen and nitrogen in coal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hamrin, C.E. Jr.; Johannes, A.H.; James, W.D. Jr.; Sun, G.H.; Ehmann, W.D.

    1979-01-01

    The purpose of this study was to measure oxygen and nitrogen in coals using instrumental neutron activation analysis. For six U.S. coals total oxygen ranged from 9.4 to 28.7% and total nitrogen varied from 0.72 to 1.61%. To obtain values of organic oxygen and nitrogen either a low-temperature-ashing (LTA) method or an acid-treatment (AT) method was suitable for bituminous coals. The mean difference of the experimentally determined values (Osub(dmmf))sub(LTA) - (Osub(dmmf))sub(AT) = -0.82, s = 0.51, [dmmf = dry, mineral-matter-free basis], was found to be statistically significant at the 95% confidence level, but the comparable difference for nitrogen was not. By the LTA method oxygen and nitrogen on the dmmf basis for bituminous coals showed no statistically significant difference with calculated dmmf values. Nitrogen was detected in all the LTAs varying from 0.38 to 1.67%. Formation of insoluble CaF 2 in the acid-treatment method caused an interference in the nitrogen determination due to the 19 F (n, 2n) 18 F reaction but was correctable. In addition, recoil proton reactions on C and O leading to the formation of 13 N must be accounted for in all nitrogen determinations in the coal matrix. (author)

  11. Drug abusers have impaired cerebral oxygenation and cognition during exercise.

    Directory of Open Access Journals (Sweden)

    Kell Grandjean da Costa

    Full Text Available Individuals with Substance Use Disorder (SUD have lower baseline metabolic activity of the prefrontal cortex (PFC associated with impairment of cognitive functions in decision-making and inhibitory control. Aerobic exercise has shown to improve PFC function and cognitive performance, however, its effects on SUD individuals remain unclear.To verify the cognitive performance and oxygenation of the PFC during an incremental exercise in SUD individuals.Fourteen individuals under SUD treatment performed a maximum graded exercise test on a cycle ergometer with continuous measurements of oxygen consumption, PFC oxygenation, and inhibitory control (Stroop test every two minutes of exercise at different intensities. Fifteen non-SUD individuals performed the same protocol and were used as control group.Exercise increased oxyhemoglobin (O2Hb and total hemoglobin (tHb by 9% and 7%, respectively. However, when compared to a non-SUD group, this increase was lower at high intensities (p<0.001, and the inhibitory cognitive control was lower at rest and during exercise (p<0.007. In addition, PFC hemodynamics during exercise was inversely correlated with inhibitory cognitive performance (reaction time (r = -0.62, p = 0.001, and a lower craving perception for the specific abused substance (p = 0.0189 was reported immediately after exercise.Despite SUD individuals having their PFC cerebral oxygenation increased during exercise, they presented lower cognition and oxygenation when compared to controls, especially at elevated intensities. These results may reinforce the role of exercise as an adjuvant treatment to improve PFC function and cognitive control in individuals with SUD.

  12. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions

    International Nuclear Information System (INIS)

    Wang, Xueqian; Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei

    2012-01-01

    Highlights: ► Carbonyl sulfide can be catalytic oxidized by micro-oxygen in the off-gas. ► How to use the trace oxygen for the oxidation of carbonyl sulfide was a challenge. ► The SO 4 2− species in the adsorbent sample were generated by a catalytic oxidation process. - Abstract: Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO 3 ) 2 –CoPcS–KOH (denoted as Cu–Co–KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60 °S and 30% relative humidity with 1.0% oxygen is shown in Cu–Co–KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO 3 ) 2 –CoPcS–KOH appears to improve the COS removal capacity significantly, during which, SO 4 2− is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO 2 and COS are detected in the effluent gas generated from exhausted Cu–Co–KW (denoted Cu–Co–KWE). According to the current study results, the activated carbon impregnated with Cu(NO 3 ) 2 –CoPcS–KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  13. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xueqian, E-mail: wxqian3000@yahoo.com.cn [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Carbonyl sulfide can be catalytic oxidized by micro-oxygen in the off-gas. Black-Right-Pointing-Pointer How to use the trace oxygen for the oxidation of carbonyl sulfide was a challenge. Black-Right-Pointing-Pointer The SO{sub 4}{sup 2-} species in the adsorbent sample were generated by a catalytic oxidation process. - Abstract: Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO{sub 3}){sub 2}-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60 Degree-Sign S and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO{sub 3}){sub 2}-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO{sub 4}{sup 2-} is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO{sub 2} and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO{sub 3}){sub 2}-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  14. BWR startup and shutdown activity transport control

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, A.J., E-mail: jgiannelli@finetech.com, E-mail: ajarvis@finetech.com [Finetech, Inc., Parsippany, New Jersey (United States)

    2010-07-01

    This paper summarizes BWR industry experience on good practices for controlling the transport of corrosion product activity during shutdowns, particularly refueling outages, and for startup chemistry control to minimize IGSCC (intergranular stress corrosion cracking). For shutdown, overall goals are to minimize adverse impacts of crud bursts and the time required to remove activated corrosion products from the reactor coolant during the shutdown process prior to refueling, and to assist plants in predicting and controlling radiation exposure during outages. For startup, the overall goals are to highlight conditions during early heatup and startup when sources of reactor coolant oxidants are high, when there is a greater likelihood for chemical excursions associated with refueling outage work activities, and when hydrogen injection is not available to mitigate IGSCC due to system design limitations. BWR water chemistry has changed significantly in recent years with the adoption of hydrogen water chemistry, zinc addition and noble metal chemical applications. These processes have, in some instances, resulted in significant activity increases during shutdown evolutions, which together with reduced time for cleanup because of shorter outages, has consequently increased outage radiation exposure. A review several recent outages shows that adverse effects from these conditions can be minimized, leading to the set of good practice recommendations for shutdown chemistry control. Most plants lose the majority of their hydrogen availability hours during early startup because feedwater hydrogen injection systems were not originally designed to inject hydrogen below 20% power. Hydrogen availability has improved through modifications to inject hydrogen at lower power levels, some near 5%. However, data indicate that IGSCC is accelerated during early startup, when dissolved oxygen and hydrogen peroxide levels are high and reactor coolant temperatures are in the 300 to 400 {sup o

  15. Mesoporous Ruthenium/Ruthenium Oxide Thin Films: Active Electrocatalysts for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Kibsgaard, Jakob; Hellstern, Thomas R.; Choi, Shin-Jung

    2017-01-01

    We report the first synthesis of a fully contiguous large area supported thin film of highly ordered mesoporous Ru and RuO2 and investigate the electrocatalytic properties towards the oxygen evolution reaction (OER). We find that the nanoscale porous network of these catalysts provides significant...... enhancements in geometric OER activity without any loss in specific activity. This work demonstrates a strategy for engineering materials at the nanoscale that can simultaneously decrease precious metal loading and increase electrode activity....

  16. Correlating Structure and Oxygen Reduction Activity on Y/Pt(111) and Gd/Pt(111) Single Crystals

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Pedersen, Anders Filsøe; Johansson, Tobias Peter

    2015-01-01

    Polymer Electrolyte Membrane Fuel Cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the Oxygen Reduction Reaction (ORR) at the PEMFC cathode prevents the commercialisation of this tech......Polymer Electrolyte Membrane Fuel Cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the Oxygen Reduction Reaction (ORR) at the PEMFC cathode prevents the commercialisation...... of this technology. Improving the activity of Pt by alloying it with other metals could decrease the loading of Pt at the cathode to a level comparable to Pt-group metal loading in internal combustion engines. PtxY and PtxGd exhibit exceptionally high activity for oxygen reduction, both in the polycrystalline form...

  17. Electrochemical study on determination of diffusivity, activity and solubility of oxygen in liquid bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Rajesh [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gnanasekaran, T. [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: gnani@igcar.ernet.in; Srinivasa, Raman S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2006-06-15

    Diffusivity of oxygen in liquid bismuth was measured by potentiostatic method and is given bylg(D{sub O}{sup Bi}/cm{sup 2}.s{sup -1})(+/-0.042)=-3.706-1377/(TK{sup -1})(804Activity of oxygen in bismuth was determined by coulometric titrations and using the measured data standard free energy of dissolution of oxygen in liquid bismuth was derived for the reaction:1/2O{sub 2}(g)=[O]{sub Bi}(at.%)and is given by{delta}G{sub O(Bi)}{sup o}/(J.g-atomO{sup -1})(+/-720)=-108784+20.356TK{sup -1}(753oxygen in liquid bismuth was derived as a function of temperature and is given by the following expressions:lg(S/at%O)(+/-0.05)=-4476/TK{sup -1}+4.05(753oxygen in liquid bismuth is compared with the literature data.

  18. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    Science.gov (United States)

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  19. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    Science.gov (United States)

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  20. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Nutrient measurements indicate that 30-50% of the total nitrogen (N loss in the ocean occurs in oxygen minimum zones (OMZs. This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2 on anammox, NH(3 oxidation and NO(3(- reduction in (15N-labeling experiments with varying O(2 concentrations (0-25 µmol L(-1 in the Namibian and Peruvian OMZs. Our results show that O(2 is a major controlling factor for anammox activity in OMZ waters. Based on our O(2 assays we estimate the upper limit for anammox to be ~20 µmol L(-1. In contrast, NH(3 oxidation to NO(2(- and NO(3(- reduction to NO(2(- as the main NH(4(+ and NO(2(- sources for anammox were only moderately affected by changing O(2 concentrations. Intriguingly, aerobic NH(3 oxidation was active at non-detectable concentrations of O(2, while anaerobic NO(3(- reduction was fully active up to at least 25 µmol L(-1 O(2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2-sensitivity of anammox itself, and not by any effects of O(2 on the tightly coupled pathways of aerobic NH(3 oxidation and NO(3(- reduction. With anammox bacteria in the marine environment being active at O(2 levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.

  1. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  2. Accelerated ceria–zirconia solubilization by cationic diffusion inversion at low oxygen activity

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Ni, De Wei; Marani, Debora

    2016-01-01

    Fast elemental diffusion at the Gd-doped ceria/Y-stabilized zirconia interface occurs under reducing conditions at low oxygen activity (pO2 < 10−12 atm) and high temperature (1400 °C). This effect leads to formation of thick ceria–zirconia solid solution reaction layers in the micro-range vs. thi...

  3. Oxygen Consumption and Acoustic Activity of Adult Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae) during Hermetic Storage.

    Science.gov (United States)

    Njoroge, Anastasia W; Mankin, Richard W; Smith, Bradley W; Baributsa, Dieudonne

    2018-04-20

    Acoustic monitoring was applied to consider hermetic exposure durations and oxygen levels required to stop adult Callosobruchus maculatus activity and economic damage on cowpea. A 15-d study was conducted with six treatments of 25, 50, and 100 C. maculatus adults in 500 and 1000 mL jars using acoustic probes inserted through stoppers sealing the jars. Acoustic activity as a result of locomotion, mating, and egg-laying was measured by identifying sound impulses with frequency spectra representative of known insect sounds, and counting trains (bursts) of impulses separated by intervals of <200 ms, that typically are produced only by insects. By the end of the first week of storage in all treatments, oxygen levels declined to levels below 4%, which has been demonstrated to cause mortality in previous studies. Concomitantly, insect sound burst rates dropped below an acoustic detection threshold of 0.02 bursts s −1 , indicating that the insects had ceased feeding. Statistically significant relationships were obtained between two different measures of the acoustic activity and the residual oxygen level. Based on the experimental results, a simple equation can be used to estimate the time needed for oxygen to decline to levels that limit insect feeding damage and thus grain losses in hermetic storage containers of different insect population levels and various volumes.

  4. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    James, Garth A. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Ge Zhao, Alice [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Usui, Marcia [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Underwood, Robert A. [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Nguyen, Hung [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Beyenal, Haluk [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; deLancey Pulcini, Elinor [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Agostinho Hunt, Alessandra [Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing Michigan; Bernstein, Hans C. [Pacific Northwest National Laboratory, Chemical and Biological Signature Science, Richland Washington; Fleckman, Philip [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Olerud, John [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Williamson, Kerry S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Franklin, Michael J. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Stewart, Philip S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana

    2016-02-16

    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygen partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the

  5. Dissolved oxygen control in a coupled fluidized bed system

    International Nuclear Information System (INIS)

    Jones, R.M.; Melcer, H.

    1988-01-01

    The biological fluidized bed process is a modification of more conventional fixed film processes, such as the trickling filter, in which wastewater is passed upward through a bed of granular support medium, typically sand, at a sufficient velocity to expand or fluidize the medium. The granular medium provides a large surface area for the establishment of a biological film. The fluidized bed process was selected to investigate the treatment of coking plant wastewaters in view of the significant advantages offered in terms of reduced reactor volumes that result from the high biomass concentration maintained on the support medium. The technical feasibility of treating coal distillation condensates was evaluated during a 3-year study at Environment Canada's Wastewater Technology Centre (WTC). The feed to the pilot scale test system consisted of effluent from fixed and free leg ammonia stills at the by-product coke plant of Dofasco Inc. in Hamilton, Ontario. The pilot plant consisted of two fluidized bed reactors in series, coupled to provide carbon oxidation, nitrification and denitrification in the predenitrification operating mode. The anoxic denitrification reactor was 115 mm in diameter and the oxygenic nitrification reactor, 290 mm in diameter. The bed heights and reactor volumes were adjustable by relocation of the position of the sand/biomass wasting valve. The experimental objective of this research was to determine those operating conditions required to maintain stable nitrification and complete denitrification under both steady state and dynamic operating conditions. Details regarding operating, sampling and analytic procedures have been presented elsewhere. A specific operating problem existed relating to the control of the dissolved oxygen concentration in the oxygenic fluidized bed reactor, the solution of which forms the basis of the paper

  6. Temperature and oxygenation during organ preservation: friends or foes?

    Science.gov (United States)

    Gilbo, Nicholas; Monbaliu, Diethard

    2017-06-01

    The liberalization of donor selection criteria in organ transplantation, with the increased use of suboptimal grafts, has stimulated interest in ischemia-reperfusion injury prevention and graft reconditioning. Organ preservation technologies are changing considerably, mostly through the reintroduction of dynamic machine preservation. Here, we review the current evidence on the role of temperature and oxygenation during dynamic machine preservation. A large but complex body of evidence exists and comparative studies are few. Oxygenation seems to support an advantageous effect in hypothermic machine preservation and is mandatory in normothermic machine preservation, although in the latter, supraphysiological oxygen tensions should be avoided. High-risk grafts, such as suboptimal organs, may optimally benefit from oxygenated perfusion conditions that support metabolism and activate mechanisms of repair such as subnormothermic machine preservation, controlled oxygenated rewarming, and normothermic machine preservation. For lower risk grafts, oxygenation during hypothermic machine preservation may sufficiently reduce injuries and recharge the cellular energy to secure functional recovery after transplantation. The relationship between temperature and oxygenation in organ preservation is more complex than physiological laws would suggest. Rather than one default perfusion temperature/oxygenation standard, perfusion protocols should be tailored for specific needs of grafts of different quality.

  7. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Tae; Lopes, Pietro Papa; Park, Shin-Ae; Lee, A-Yeong; Lim, Jinkyu; Lee, Hyunjoo; Back, Seoin; Jung, Yousung; Danilovic, Nemanja; Stamenkovic, Vojislav; Erlebacher, Jonah; Snyder, Joshua; Markovic, Nenad M.

    2017-11-13

    The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factor of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.

  8. Simulation of Feedforward-Feedback Control of Dissolved Oxygen of Microbial Repeated Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Ling Gao

    2016-09-01

    Full Text Available Fed-batch culture is often used in industry, and dissolved oxygen (DO concentration control is important in fermentation process control. DO control is often applied by using feedback (FB control strategy. But, feedforward-feedback (FF-FB control has the advantage in dealing with the time-varying characteristics resulted from the cell growth during the fermentation process. Mathematical modeling and computer simulation is a useful tool in analysis of the control system.  In this research, the FF-FB DO control and FB substrate control of repeated fed-batch culture process is modeled and simulated. The results showed the feasibility of the control strategy. These results are useful for control system development and process analyses and optimization.

  9. Oxygen as a factor in eukaryote evolution - Some effects of low levels of oxygen on Saccharomyces cerevisiae

    Science.gov (United States)

    Jahnke, L.; Klein, H. P.

    1979-01-01

    A comparative study of the effects of varying levels of oxygen on some of the metabolic functions of the primitive eukaryote, Saccharomyces cerevisiae, has shown that these cells are responsive to very low levels of oxygen: the level of palmitoyl-Co A desaturase was greatly enhanced by only 0.03 vol % oxygen. Similarly, an acetyl-CoA synthetase associated predominantly with anaerobic growth was stimulated by as little as 0.1% oxygen, while an isoenzyme correlated with aerobic growth was maximally active at much higher oxygen levels (greater than 1%). Closely following this latter pattern were three mitochondrial enzymes that attained maximal activity only under atmospheric levels of oxygen.

  10. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriëtte; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michaël A.; Spronk, Peter E.

    2012-01-01

    Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated

  11. Mechanical control of magnetism in oxygen deficient perovskite SrTiO3.

    Science.gov (United States)

    Zhang, Yajun; Wang, Jie; Sahoo, M P K; Shimada, Takahiro; Kitamura, Takayuki

    2015-10-28

    Mechanical control of magnetism in perovskite oxides is an important and promising approach in spintronics. Based on the first-principles calculations, we demonstrate that a negative pressure leads to a great enhancement of magnetic moment in deficient SrTiO3 with oxygen vacancies, whereas a positive pressure results in the gradual disappearance of magnetism. Spin charge density, Bader charge analysis and electronic density of states successfully elucidate the origin and underlying physics of the enhancement and disappearance of magnetism. It is found that the split electronic states of dz(2), dyz and dzx in the 3d orbitals of Ti atoms remarkably contribute to the occupancy of majority spin states under negative pressure, which induces a large magnetic moment. Under positive pressure, however, the equal occupancy of both majority and minority t2g and eg states leads to the disappearance of magnetization. In addition, both negative and positive pressures can largely lower the vacancy formation enthalpy, suggesting that the oxygen vacancy is preferable with pressure. Our findings may provide a mechanism to achieve the pressure control of magnetization in nonmagnetic perovskite oxides.

  12. Prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  13. Determination of Oxygen in Zircaloy Surfaces by Means of Charged Particle Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, J; Brune, D

    1973-01-15

    Oxygen in zircaloy surfaces has been determined by means of charged particle activation analysis employing the following two reactions I. 16O (d, n) 17F ->(beta+decay) 17O Q = - 1.63 MeV; II. 16O (d, pgamma) 17O Q = + 1.05 MeV. The detection limits for oxygen in such surfaces has been investigated by measuring the promptly emitted 0.87 MeV gamma rays (reaction II) and also the 511 keV annihilation radiation which arises from beta-decay of 17F (reaction I). The correlation between the detection limit for oxygen in zircaloy, the particle energy and the surface thickness analyzed has been evaluated. At a deuteron energy of 3 MeV a detection limit of 0.7 x 10-7 g/cm2 was obtained from the measurement of the prompt gamma radiation arising from the second of these reactions. The analysis carried out by means of this technique is characterized by a high rapidity

  14. Quantification of photocatalytic oxygenation of human blood.

    Science.gov (United States)

    Subrahmanyam, Aryasomayajula; Thangaraj, Paul R; Kanuru, Chandrasekhar; Jayakumar, Albert; Gopal, Jayashree

    2014-04-01

    Photocatalytic oxygenation of human blood is an emerging concept based on the principle of photocatalytic splitting of water into oxygen and hydrogen. This communication reports: (i) a design of a photocatalytic cell (PC) that separates the blood from UV (incident) radiation source, (ii) a pH, temperature and flow controlled circuit designed for quantifying the oxygenation of human blood by photocatalysis and (iii) measuring the current efficacy of ITO/TiO2 nano thin films in oxygenating human blood in a dynamic circuit in real time. The average increase in oxygen saturation was around 5% above baseline compared to control (p<0.0005). We believe this is one of the first attempts to quantify photocatalytic oxygenation of human blood under controlled conditions. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    Science.gov (United States)

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  16. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Receptor for advanced glycation end products involved in lung ischemia reperfusion injury in cardiopulmonary bypass attenuated by controlled oxygen reperfusion in a canine model.

    Science.gov (United States)

    Rong, Jian; Ye, Sheng; Liang, Meng-ya; Chen, Guang-xian; Liu, Hai; Zhang, Jin-Xin; Wu, Zhong-kai

    2013-01-01

    Controlled oxygen reperfusion could protect the lung against ischemia-reperfusion injury in cardiopulmonary bypass (CPB) by downregulating high mobility group box 1 (HMGB1), a high affinity receptor of HMGB1. This study investigated the effect of controlled oxygen reperfusion on receptor for advanced glycation end products (RAGE) expression and its downstream effects on lung ischemia-reperfusion injury. Fourteen canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest followed by 90 minutes of reperfusion. Animals were randomized to receive 80% FiO2 during the entire procedure (control group) or to a test group receiving a controlled oxygen reperfusion protocol. Pathologic changes in lung tissues, RAGE expression, serum interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated. The lung pathologic scores after 25 and 90 minutes of reperfusion were significantly lower in the test group compared with the control group (p RAGE expression, TNF-α, and IL-6 were downregulated by controlled oxygen treatment (p RAGE might be involved in the lung ischemia-reperfusion injury in canine model of CPB, which was downregulated by controlled oxygen reperfusion.

  18. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    Science.gov (United States)

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  19. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    Science.gov (United States)

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  20. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.

    2012-01-01

    Objective:  The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design:  Prospective observational controlled study. Setting:  Nonacademic university-affiliated

  1. A control technique of oxygen contamination by Ga beam irradiation in InN MOMBE growth

    International Nuclear Information System (INIS)

    Isamoto, K.; Uesaka, Y.; Yamamoto, A.; Hashimoto, A.

    2006-01-01

    We have investigated about a control technique of oxygen contamination into the InN layers by simultaneous irradiation of Ga beam during RF-MOMBE growth using the combination of the TMIn and the RF-plasma nitrogen sources. Red shifts of the band gap energy and the improvement of the electrical properties have been achieved by the Ga beam irradiation. The suppression mechanism of the oxygen contamination has been discussed from the experimental results of the InN growth by the RF-MOMBE with the Ga beam irradiation. The present results strongly indicate that the simultaneous irradiation of the Ga beam would be useful to suppress the oxygen contamination into the InN layers during the growth. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    OpenAIRE

    Oyunbileg G; Batnyagt G; Enkhsaruul B; T Takeguchi

    2018-01-01

    The oxygen reduction reaction (ORR) is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs) and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM) and a transmission electron microscope (TEM) analyses confirm the ...

  3. Synthesis of surface oxygen-deficient BiPO{sub 4} nanocubes with enhanced visible light induced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Bingtao; Yin, Haoyong; Li, Tao; Gong, Jianying; Lv, Shumei; Nie, Qiulin, E-mail: yhy@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou (China)

    2017-05-15

    The visible light driven BiPO{sub 4} nanocubes with sufficient surface oxygen deficiency were fabricated by a hydrothermal process and subsequently ultrasonic assistant Fe reduction process. The products were characterized by XRD, DRS, XPS, SEM and TEM which showed that the BiPO{sub 4} had cuboid-like shape with a smooth surface and clear edges and the oxygen vacancies were successfully introduced on the surface of the BiPO{sub 4} nanocubes. The as prepared oxygen-deficient BiPO{sub 4} nanocubes showed greatly enhanced visible light induced photocatalytic activity in degradation of Rhodamine B. The enhanced photocatalytic performance and expanded visible light response of BiPO{sub 4} may be due to the introduction of surface oxygen vacancies which can generate the oxygen vacancies mid-gap states lower to the conduction band of BiPO{sub 4}. (author)

  4. Tracking Oxygen Vacancies in Thin Film SOFC Cathodes

    Science.gov (United States)

    Leonard, Donovan; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei; Shao-Horn, Yang; Crumlin, Ethan; Mutoro, Eva; Biegalski, Michael; Christen, Hans; Pennycook, Stephen; Borisevich, Albina

    2011-03-01

    Oxygen vacancies have been proposed to control the rate of the oxygen reduction reaction and ionic transport in complex oxides used as solid oxide fuel cell (SOFC) cathodes [1,2]. In this study oxygen vacancies were tracked, both dynamically and statically, with the combined use of scanned probe microscopy (SPM) and scanning transmission electron microscopy (STEM). Epitaxial films of La 0.8 Sr 0.2 Co O3 (L SC113) and L SC113 / LaSrCo O4 (L SC214) on a GDC/YSZ substrate were studied, where the latter showed increased electrocatalytic activity at moderate temperature. At atomic resolution, high angle annular dark field STEM micrographs revealed vacancy ordering in L SC113 as evidenced by lattice parameter modulation and EELS studies. The evolution of oxygen vacancy concentration and ordering with applied bias and the effects of bias cycling on the SOFC cathode performance will be discussed. Research is sponsored by the of Materials Sciences and Engineering Division, U.S. DOE.

  5. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    Science.gov (United States)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  6. Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co3O4 mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution

    DEFF Research Database (Denmark)

    Sun, Hongyu; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    in superior electrochemical properties when used as the anode materials for lithium-ion batteries and as an electrocatalyst for the oxygen evolution reaction. The excellent electrochemical performance is attributed to the synergistic effects of novel hierarchical morphology, crystal structure of the active...... materials, the improvement of intrinsic conductivity and inner surface area induced by the oxygen vacancies. The present strategy not only provides a facile method to assemble novel hierarchical architectures, but also paves a way to control surface structures (chemical composition and crystal defects...

  7. Determination of oxygen content in high T/sub c/ superconductors by a charged particle activation method

    International Nuclear Information System (INIS)

    Tao, Z.; Alburger, D.E.; Jones, K.W.; Yao, Y.D.; Kao, Y.H.

    1988-01-01

    A new method for determining the oxygen content in high T/sub c/ superconductors has been demonstrated using a charged particle activation technique. This method allows a measurement of the concentration of 16 O atoms in the superconducting material by detection of the 17 F produced with the 16 O(d,n) 17 F nuclear reaction. By way of example, this technique is applied to the determination of oxygen content in a series of high T/sub c/ Y-Ba-Cu-O samples in which the stoichiometry is varied by reducing the copper concentration. The stabilized oxygen content shows a nonlinear dependence on the copper deficiency in these specimens

  8. Nitrous oxide/oxygen mixture for analgesia in adult cancer patients with breakthrough pain: A randomized, double-blind controlled trial.

    Science.gov (United States)

    Liu, Q; Gao, L-L; Dai, Y-L; Li, Y-X; Wang, Y; Bai, C-F; Mu, G-X; Chai, X-M; Han, W-J; Zhou, L-J; Zhang, Y-J; Tang, L; Liu, J; Yu, J-Q

    2018-03-01

    The aim of this study was to assess the efficacy of a fixed nitrous oxide/oxygen mixture for the management of breakthrough cancer pain. A double-blind, placebo-controlled, randomized clinical trial was undertaken in the Medical ward of Tumor Hospital of General Hospital of Ningxia Medical University. 240 cancer patients with breakthrough pain were recruited and randomly received a standard pain treatment (morphine sulphate immediate release) plus a pre-prepared nitrous oxide/oxygen mixture, or the standard pain treatment plus oxygen. The primary endpoint measure was the numerical rating scale (NRS) score measured at baseline, 5 and 15 min after the beginning of treatment, and at 5 min post treatment. In all, analysis of pain score (NRS) at 5 min after the beginning of treatment shown a significant decrease in nitrous oxide/oxygen mixture treated patients with 2.8 ± 1.3 versus 5.5 ± 1.2 in controls (p nitrous oxide/oxygen was 2.0 ± 1.1 compared with 5.6 ± 1.3 for oxygen (p nitrous oxide/oxygen mixture was effective in reducing moderate to severe breakthrough pain among patients with cancer. The management of breakthrough cancer pain is always a challenge due to its temporal characteristics of rapid onset, moderate to severe in intensity, short duration (median 30-60 min). Our study find that self-administered nitrous oxide/oxygen mixture was effective in reducing moderate to severe breakthrough cancer pain. © 2017 European Pain Federation - EFIC®.

  9. Controlling exchange bias in Co-CoOx nanoparticles by oxygen content

    OpenAIRE

    Kovylina, Miroslavna; del Muro, Montserrat Garcia; Konstantinovic, Zorica; Varela, Manuel; Iglesias, Oscar; Labarta, Amilcar; Batlle, Xavier

    2009-01-01

    We report on the occurrence of exchange bias on laser-ablated granular thin films composed of Co nanoparticles embedded in amorphous zirconia matrix. The deposition method allows controlling the degree of oxidation of the Co particles by tuning the oxygen pressure at the vacuum chamber (from 2x10^{-5} to 10^{-1} mbar). The nature of the nanoparticles embedded in the nonmagnetic matrix is monitored from metallic, ferromagnetic (FM) Co to antiferromagnetic (AFM) CoOx, with a FM/AFM intermediate...

  10. Improved oxygenation during standing performance of deep breathing exercises with positive expiratory pressure after cardiac surgery: A randomized controlled trial.

    Science.gov (United States)

    Pettersson, Henrik; Faager, Gun; Westerdahl, Elisabeth

    2015-09-01

    Breathing exercises after cardiac surgery are often performed in a sitting position. It is unknown whether oxygenation would be better in the standing position. The aim of this study was to evaluate oxygenation and subjective breathing ability during sitting vs standing performance of deep breathing exercises on the second day after cardiac surgery. Patients undergoing coronary artery bypass grafting (n = 189) were randomized to sitting (controls) or standing. Both groups performed 3 × 10 deep breaths with a positive expiratory pressure device. Peripheral oxygen saturation was measured before, directly after, and 15 min after the intervention. Subjective breathing ability, blood pressure, heart rate, and pain were assessed. Oxygenation improved significantly in the standing group compared with controls directly after the breathing exercises (p < 0.001) and after 15 min rest (p = 0.027). The standing group reported better deep breathing ability compared with controls (p = 0.004). A slightly increased heart rate was found in the standing group (p = 0.047). After cardiac surgery, breathing exercises with positive expiratory pressure, performed in a standing position, significantly improved oxygenation and subjective breathing ability compared with sitting performance. Performance of breathing exercises in the standing position is feasible and could be a valuable treatment for patients with postoperative hypoxaemia.

  11. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    Science.gov (United States)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  12. Professor Howard Mason and oxygen activation

    International Nuclear Information System (INIS)

    Waterman, Michael R.

    2005-01-01

    Our understanding of the classification, function, mechanism, and structure of the enzymes which incorporate atoms of oxygen from atmospheric molecular oxygen during catalysis is based on the thoughtful and technically challenging experiments of two giants in the field of Biochemistry, Howard Mason and Osamu Hayaishi. This volume celebrates the 50th anniversary of the discovery and characterization of these 'oxygenase' enzymes and provides a broad view of how far this area of research has advanced. Professor Hayaishi describes herein his perspective on the background and major discoveries which led to the development of this field. Regrettably Howard Mason passed away at age 88 in 2003. I am indeed fortunate to have been a Ph.D. student with Howard and to have the opportunity to briefly review his role in the development of this field for this special commemorative issue of BBRC

  13. Diphosphoglycerate and Inosine Hexaphosphate Control of Oxygen Binding by Hemoglobin: A Theoretical Interpretation of Experimental Data*

    Science.gov (United States)

    Ling, Gilbert N.

    1970-01-01

    A theoretical equation is presented for the control of cooperative adsorption on proteins and other linear macromolecules by hormones, drugs, ATP, and other „cardinal adsorbents.” With reasonable accuracy, this equation describes quantitatively the control of oxygen binding to hemoglobin by 2,3-diphosphoglycerate and by inosine hexaphosphate. PMID:5272319

  14. Elimination of matrix effects in the determination of oxygen in some non-ferrous metals by activation with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Szopa, Z.; Sterlinski, S.; Tetteh, G.

    1981-01-01

    It is shown that the lower limit of detection and specificity of oxygen determination in strongly activated non-ferrous metals can be improved by means of the optimization of Pb-absorber thickness, cooling time and cyclic activation analysis. Some mathematical predictions are verified by oxygen determination in copper and yttrium. (author)

  15. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  16. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Liu, Zhi; Grass, Michael E.; Biegalski, Michael D.; Lee, Yueh-Lin; Morgan, Dane; Christen, Hans M.; Bluhm, Hendrik; Shao-Horn, Yang

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  17. Controlled temperature expansion in oxygen production by molten alkali metal salts

    Science.gov (United States)

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  18. Development of oxygen scavenger additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, B.D.; Demunshi, R.; Sharief, V.; Tian, D.; Teng, Y. [Duquesne Univ., Pittsburgh, PA (United States)

    1995-05-01

    Our current research program is in response to the US Air Force`s FY93 New Initiative entitled {open_quotes}Advanced Fuel Composition and Use.{close_quotes} The critical goal of this initiative is to develop aircraft fuels which can operate at supercritical conditions. This is a vital objective since future aircraft designs will transfer much higher heat loads into the fuel as compared with current heat loads. In this paper it is argued that the thermal stability of most jet fuels would be dramatically improved by the efficient in flight-removal of a fuel`s dissolved oxygen. It is proposed herein to stabilize the bulk fuel by the addition of an additive which will be judiciously designed and programmed to react with oxygen and produce an innocuous product. It is envisioned that a thermally activated reaction will occur, between the oxygen scavenging additive and dissolved oxygen, in a controlled and directed manner. Consequently formation of insoluble thermal degradation products will be limited. It is believed that successful completion of this project will result in the development of a new type of jet fuel additive which will enable current conventional jet fuels to obtain sufficient thermal stability to function in significantly higher temperature regimes. In addition, it is postulated that the successful development of thermally activated oxygen scavengers will also provide the sub-critical thermal stability necessary for future development of endothermic fuels.

  19. Effect of oxygen on inactivation of biologically active DNA by γ rays in vitro: influence of metalloporphyrins and enzymatic DNA repair

    International Nuclear Information System (INIS)

    van Hemmen, J.J.; Meuling, W.J.A.; Bleichrodt, J.F.

    1978-01-01

    Biologically active DNA dissolved in a bacterial extract shows a higher sensitivity to γ rays under oxygen than under anoxic conditions. This oxygen effect depends on the presence of dialyzable, probably organometallic, compounds in the extract. Metalloporphyrins mimic these cellular components with regard to the effect of oxygen on DNA irradiated in vitro. Anoxic irradiation leads to less double-strand breaks in the DNA than irradiation under oxygen, but the oxygen effect in vitro is mainly due to nucleotide damage. No oxygen effect is observed when the biological activity of the irradiated DNA is assayed on spheroplasts of a bacterial strain carrying a uvrA mutation, i.e., a deficiency in the excision repair system, and the sensitivity of the DNA is almost equal to that found for irradiation under oxygen and assay on a repair-proficient strain. It may be concluded, therefore, that the oxygen effect observed with DNA in cellular extracts or in the presence of metalloporphyrins results from more efficient cellular repair of the otherwise lethal nucleotide damage inflicted under anoxic conditions. Comparison of the oxygen effect on DNA in vitro with the radiosensitization of bacterial cells by oxygen shows that in bacteria part of the radiation damage may be similar to that induced in DNA in vitro, but, in addition, the cells sustain another type of damage which is subjected to an oxygen effect but not to excision repair

  20. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  1. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    Science.gov (United States)

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  2. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter [Department of Radiation Physics, Goeteborg University, Goeteborg 41345 (Sweden); Department of Oncology, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden); Department of Radiation Physics, Goeteborg University, Goeteborg, Sweden and Department of Nuclear Medicine, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden)

    2011-08-15

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods: Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2

  3. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Directory of Open Access Journals (Sweden)

    Yoon TH

    2012-03-01

    Full Text Available Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee11Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of KoreaBackground: Titanium dioxide (TiO2 has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70 together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein

  4. Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen

    International Nuclear Information System (INIS)

    Chen, L.F.; Gonzalez, G.; Wang, J.A.; Norena, L.E.; Toledo, A.; Castillo, S.; Moran-Pineda, M.

    2005-01-01

    For the first time, this work reports a surfactant-controlled synthetic method to obtain a nanophase of mesoporous ceria-zirconia solid solution containing cationic defects in the crystalline structure. The incorporation of a cationic surfactant (myristyltrimethylammonium bromide) into the ceria-zirconia solid network not only controlled the pore diameter distribution but also induced creation of the lattice defect. Ceria-zirconia solid solution showed crystal microstrain and structural distortion that varied with the calcination temperature. Compared to pure ceria, the addition of zirconium to the ceria promoted the bulk oxygen reducibility and enhanced the thermal stability of the solid. Hydrogen could be stored into or released from the PdO/Ce 0.6 Zr 0.4 O 2 catalyst during the TPR procedure, which is associated to the formation/decomposition of a PdH x phase, due to the hydrogen dissociation catalyzed by metallic Pd. At cool start of reaction, NO reduction by CO with excess oxygen over the Pd/Ce 0.6 Zr 0.4 O 2 catalyst showed selectivity around 100% to N 2 . A competition between NO reduction by CO and CO oxidation by O 2 was observed: at reaction temperatures below 200 deg. C, NO inhibited CO oxidation activity; however, at reaction temperatures above 200 deg. C, high activity of CO oxidation resulted in an inhibition effect on NO reduction

  5. [Oxidative power and intracellular distribution of mitochondria control cell oxygen regime when arterial hypoxemia occurs].

    Science.gov (United States)

    Liabakh, E G; Lissov, P N

    2012-01-01

    The regulatory impact of the mitochondria spatial distribution and enlargement in their oxidative power qO2 on the tissue oxygenation of skeletal muscle during hypoxia were studied. Investigations were performed by the mathematical modeling of 3D O2 diffusion-reaction in muscle fiber. The oxygen consumption rate VO2 and tissue pO2 were analyzed in response to a decrease in arterial blood oxygen concentration from 19.5 to 10 vol. % at a moderate load (3.5 ml/min per 100 g). The cells with evenly (case 1) and unevenly (case 2) distributed mitochondria were considered. According to calculations due to a rise in mitochondria oxidative power from 3.5 to 6.5 ml/min. per 100 g of tissue it is possible to maintain muscle oxygen V(O2) at constant level of 3.5 ml/min per 100 g despite a decrease in O2 delivery. Minimum value of tissue pO2 was about 0 and an area of hypoxia appeared inside the cell in case 1. But hypoxia disappeared and minimum value of pO2 increased from 0 to 4 mm Hg if mitochondria were distributed unevenly (case 2). It is shown that the possibilities of such regulation were limited and depended on the ratio of "the degree of hypoxemia--the level of oxygen delivery." It was assumed that an increase in mitochondria enzyme activity and mitochondria migration to the places of the greatest oxygen consumption rate can improve oxygen regime in the cells in terms of their adaptation to hypoxia. It is possible that changes in mitochondrial oxidative power and their intracellular redistribution may be considered as a new dimension in regulation of cell oxygen regime.

  6. Enhanced decomposition of dimethyl phthalate via molecular oxygen activated by Fe-Fe{sub 2}O{sub 3}/AC under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiling [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Zhang, Lizhi [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Microwave irradiation induces the electrons transferring from AC to Fe-Fe{sub 2}O{sub 3} and reacts with molecular oxygen. Black-Right-Pointing-Pointer Microwave heating accelerates the electron transferring from AC to Fe-Fe{sub 2}O{sub 3} to generate reactive oxygen species. Black-Right-Pointing-Pointer This environmental remediation method is feasible for aqueous organic pollutants treatment. - Abstract: In this study, we demonstrate that the decomposition of dimethyl phthalate under microwave irradiation could be greatly enhanced over Fe-Fe{sub 2}O{sub 3} nanowires supported on activated carbon (Fe-Fe{sub 2}O{sub 3}/AC). The great enhanced decomposition of dimethyl phthalate could be attributed to a unique microwave induced molecular oxygen activation process. Upon microwave irradiation, electrons could be transferred from activated carbon to zero-valent iron, and then react with molecular oxygen to form O{sub 2}{center_dot}{sup -} and {center_dot}OH radicals for the decomposition of dimethyl phthalate. The deactivation and the regeneration of Fe-Fe{sub 2}O{sub 3}/AC catalyst were systematically studied. We also found that microwave heating could accelerate the electron transferring from AC to Fe-Fe{sub 2}O{sub 3} to generate more reactive oxygen species for the decomposition of DMP than conventional oil bath heating. This novel molecular oxygen activation approach may find applications for wastewater treatment and drinking water purification.

  7. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  8. Elaboration of Copper-Oxygen Mediated C–H Activation Chemistry in Consideration of Future Fuel and Feedstock Generation

    Science.gov (United States)

    Lee, Jung Yoon; Karlin, Kenneth D

    2015-01-01

    To contribute solutions for current energy concerns, improvements in the efficiency of C-H bond cleavage chemistry, e.g., selective oxidation of methane to methanol, could minimize losses in natural gas usage or produce feedstocks for fuels. Oxidative C-H activation is also a component of polysaccharide degradation, affording alternative biofuels from abundant biomass. Thus, an understanding of active-site chemistry in copper monooxygenases, those activating strong C-H bonds is briefly reviewed. Then, recent advances in the synthesis-generation and study of various copper-oxygen intermediates are highlighted. Of special interest are cupric-superoxide, Cu-hydroperoxo and Cu-oxy complexes. Such investigations can contribute to an enhanced future application of C-H oxidation or oxygenation processes using air, as concerning societal energy goals. PMID:25756327

  9. Thiazolidinone prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  10. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    OpenAIRE

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ? 7 years) were compared to 25 healthy age- and gender-matched cont...

  11. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  12. Structure and catalytic properties of metal β-diketonate complexes with oxygen-containing compounds

    International Nuclear Information System (INIS)

    Nizel'skij, Yu.N.; Ishchenko, S.S.; Lipatova, T.Eh.

    1985-01-01

    The results of researches published in recent 15-20 years of complexes of metal β-diketonates (including Cr 3+ , VO 2+ , MoOΛ2 2+ , Co 3+ , Mn 3+ , Ni 2+ , Fe 3+ ) with oxygen-containing compounds (alcohols, glycols, phenols, hydroperoxides, aldehydes, esters, etc.) playing an important role in catalytic processes of oxidation, addition, polymerization and copolymerization are reviewed. Data on the nature of chemical bond of oxygen-containing reacting agents with metal β-diketonates, on structure of metal β-diketonate complexes with oxygen-containing reacting agents and thermodynamics of complexing as well as on activation of reacting agents in complexes and catalytic properties of metal β-diketonates are discussed. Stored materials make it possible to exercise directed control of metal β-diketonate activity

  13. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  14. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  16. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  17. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).

    Science.gov (United States)

    Pan, Yun-xiang; Liu, Chang-jun; Mei, Donghai; Ge, Qingfeng

    2010-04-20

    The effects of hydration and oxygen vacancy on CO(2) adsorption on the beta-Ga(2)O(3)(100) surface have been studied using density functional theory slab calculations. Adsorbed CO(2) is activated on the dry perfect beta-Ga(2)O(3)(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga(2)O(3)(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga(2)O(3)(100) surface. Adsorption of CO(2) on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slightly repulsive interaction when H(2)O and CO(2) are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H(2)O to a bicarbonate species, making the CO(2) adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO(2) adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga(2)O(3)(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O(2) molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO(2). In the most stable CO(2) adsorption configuration on the dry defective beta-Ga(2)O(3)(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO(2) occupies the oxygen vacancy site, and the CO(2) adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that, when water and CO(2) are present in the adsorption system simultaneously, water will compete with CO(2) for the oxygen vacancy sites and impact CO(2) adsorption and conversion negatively.

  18. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    Science.gov (United States)

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  19. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Science.gov (United States)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  20. Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation.

    Science.gov (United States)

    Powers, Daryl E; Millman, Jeffrey R; Bonner-Weir, Susan; Rappel, Michael J; Colton, Clark K

    2010-01-01

    Oxygen level in mammalian cell culture is often controlled by placing culture vessels in humidified incubators with a defined gas phase partial pressure of oxygen (pO(2gas)). Because the cells are consuming oxygen supplied by diffusion, a difference between pO(2gas) and that experienced by the cells (pO(2cell)) arises, which is maximal when cells are cultured in vessels with little or no oxygen permeability. Here, we demonstrate theoretically that highly oxygen-permeable silicone rubber membranes can be used to control pO(2cell) during culture of cells in monolayers and aggregates much more accurately and can achieve more rapid transient response following a disturbance than on polystyrene and fluorinated ethylene-propylene copolymer membranes. Cell attachment on silicone rubber was achieved by physical adsorption of fibronectin or Matrigel. We use these membranes for the differentiation of mouse embryonic stem cells to cardiomyocytes and compare the results with culture on polystyrene or on silicone rubber on top of polystyrene. The fraction of cells that are cardiomyocyte-like increases with decreasing pO(2) only when using oxygen-permeable silicone membrane-based dishs, which contract on silicone rubber but not polystyrene. The high permeability of silicone rubber results in pO(2cell) being equal to pO(2gas) at the tissue-membrane interface. This, together with geometric information from histological sections, facilitates development of a model from which the pO(2) distribution within the resulting aggregates is computed. Silicone rubber membranes have significant advantages over polystyrene in controlling pO(2cell), and these results suggest they are a valuable tool for investigating pO(2) effects in many applications, such as stem cell differentiation. Copyright 2009 American Institute of Chemical Engineers

  1. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    Science.gov (United States)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  2. Investigations of a zirconia solid electrolyte oxygen sensor in liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Rivai, Abu Khalid, E-mail: rivai.abukhalid@jaea.go.j [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Takahashi, Minoru, E-mail: mtakahas@nr.titech.ac.j [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-03-15

    Investigations of a magnesia-stabilized zirconia solid electrolyte oxygen sensor for oxygen control measurement in liquid lead were carried out. The fluid of Bi/Bi{sub 2}O{sub 3} as a reference electrode and a molybdenum wire as a working electrode to detect the output signal of the sensor were used. The Nernst equation was used to estimate the electromotive force (EMF) values theoretically. The temperatures of liquid lead were 500, 550 and 600 deg. C. The results showed that the injection gas temperatures did not affect the detected EMF, the sensor responded well to quick changes of oxygen activity in liquid lead, and the discrepancy between the measured and theoretical EMF of the oxygen sensor output signal was higher at 500 deg. C than at 550 and 600 deg. C.

  3. Diffusivity, activity and solubility of oxygen in liquid lead and lead-bismuth eutectic alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Gnanasekaran, T.; Srinivasa, Raman S.

    2006-01-01

    The diffusivity of oxygen in liquid lead and lead-bismuth eutectic (LBE) alloy was measured by a potentiostatic method and is given by log(D O Pb /cm 2 s -1 )=-2.554-2384/T(+/-0.070), 818-1061K, and log(D O LBE /cm 2 s -1 )=-0.813-3612/T(+/-0.091), 811-980K. The activity of oxygen in lead and LBE was determined by coulometric titration experiments. Using the measured data, the standard free energy of dissolution of oxygen in liquid lead and LBE was derived and is given byG O(Pb) xs =-121349+16.906T(+/-560)J(gatomO) -1 ,815-1090K,G O(LBE) xs = -127398+27.938T(+/-717)J(gatomO) -1 ,812-1012K.Using the above data, the Gibbs energy of formation of PbO(s) and equilibrium oxygen pressures measured over the oxygen-saturated LBE alloy, the solubility of oxygen in liquid lead and LBE were derived. The solubility of oxygen in liquid lead and LBE are given by log(S/at.%O)=-5100/T+4.32 (+/-0.04), 815-1090K and log(S/at.%O)=-4287/T+3.53 (+/-0.06), 812-1012K respectively.

  4. Differences in breast tissue oxygenation following radiotherapy

    International Nuclear Information System (INIS)

    Dornfeld, Ken; Gessert, Charles E.; Renier, Colleen M.; McNaney, David D.; Urias, Rodolfo E.; Knowles, Denise M.; Beauduy, Jean L.; Widell, Sherry L.; McDonald, Bonita L.

    2011-01-01

    Tissue perfusion and oxygenation changes following radiotherapy may result from and/or contribute to the toxicity of treatment. Breast tissue oxygenation levels were determined in the treated and non-treated breast 1 year after radiotherapy for breast conserving treatment. Transcutaneous oxygenation varied between subjects in both treated and non-treated breast. Subjects without diabetes mellitus (n = 16) had an average oxygenation level of 64.8 ± 19.9 mmHg in the irradiated breast and an average of 72.3 ± 18.1 mmHg (p = 0.018) at the corresponding location in the control breast. Patients with diabetes (n = 4) showed a different oxygenation pattern, with lower oxygenation levels in control tissue and no decrease in the irradiated breast. This study suggests oxygenation levels in normal tissues vary between patients and may respond differently after radiotherapy.

  5. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    Science.gov (United States)

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  7. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  8. Variations in creatine kinase activity and reactive oxygen species levels are involved in capacitation of bovine spermatozoa.

    Science.gov (United States)

    Córdoba, M; Pintos, L; Beconi, M T

    2008-12-01

    The generation of reactive oxygen species (ROS) is associated with some factors such as oxidative substrate sources, mitochondrial function and NAD(P)H oxidase activity. In bovine spermatozoa, heparin capacitation produces a respiratory burst sensitive to diphenyleneiodonium (DPI). Creatine kinase (CK) is related to extramitochondrial ATP disponibility. Our purpose was to determine the variation in ROS level and its relation with NAD(P)H oxidase sensitive to DPI and CK participation, as factors involved in redox state and energy generation in capacitation. The chlortetracycline technique was used to evaluate capacitation. CK activity and ROS level were measured by spectrophotometry and spectrofluorometry respectively. The capacitation percentage was increased by heparin or quercetin treatment (P level as control (238.62 +/- 23.47 arbitrary units per 10(8) spermatozoa) (P > 0.05). CK activity decreased by 50% with heparin or quercetin (P level variations were observed in heparin- or quercetin-treated samples (P bovine spermatozoa, capacitation requires equilibrium between oxidative damage susceptibility and ROS levels. CK activity is associated with redox state variation and energy sources. In conclusion, capacitation induction depends on NADPH oxidase and the shuttle creatine-creatine phosphate, both sensitive to DPI.

  9. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students

    OpenAIRE

    SCHEER, KRISTA S.; SIEBRANT, SARAH M.; BROWN, GREGORY A.; SHAW, BRANDON S.; SHAW, INA

    2014-01-01

    Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, o...

  10. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH

    OpenAIRE

    Ling, Chen; Jia, Hongfei; Han, Binghong; Risch, Marcel; Lee, Yueh Lin; Shao-Horn, Yang

    2015-01-01

    Perovskite oxides (ABO[subscript 3]) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as hav...

  11. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Rong; Shao, Yuyan; Wang, Donghai; Engelhard, Mark H.; Kwak, Ja Hun; Wang, Jun; Viswanathan, Vilayanur V.; Wang, Chongmin; Lin, Yuehe; Wang, Yong; Liu, Jun [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Aksay, Ilhan A. [Department of Chemical Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-05-15

    Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with the commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets. (author)

  12. Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction

    Science.gov (United States)

    Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian

    2018-03-01

    The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal-air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.

  13. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  14. The scavenging effects of tea polyphenol and quercetin on active oxygen species

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiechen; Dong Jirong; Wang Wenfeng; Lin Nianyun

    1993-01-01

    The abilities of scavenging active oxygen species, O 2 free radical and OH., by tea polyphenols and quercetin have been studied by chemiluminescence, ESR and pulse radiolysis. Tea polyphenols and quercetin are all phenolic antioxidants. The synergetic studies show that both tea polyphenols and quercetin are strong free radical scavengers. Tea polyphenols are better than quercetin. the results from CL studies are in good accord with those from ESR and PR studies

  15. Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction

    International Nuclear Information System (INIS)

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; Wang, Haotian; Xie, Jin

    2017-01-01

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces and their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2 ) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.

  16. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    (loose contact) the rate constants for a number of catalytic materials outline a volcano curve when plotted against their heats of oxygen chemisorption. However, the optima of the volcanoes correspond to different heats of chemisorption for the two contact situations. In both cases the activation...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  17. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  18. Synthesis of Heteroaromatic Compounds by Oxidative Aromatization Using an Activated Carbon/Molecular Oxygen System

    Directory of Open Access Journals (Sweden)

    Masahiko Hayashi

    2009-08-01

    Full Text Available A variety of heteroaromatic compounds, such as substituted pyridines, pyrazoles, indoles, 2-substituted imidazoles, 2-substituted imidazoles, 2-arylbenzazoles and pyrimidin-2(1H-ones are synthesized by oxidative aromatization using the activated carbon and molecular oxygen system. Mechanistic study focused on the role of activated carbon in the synthesis of 2-arylbenzazoles is also discussed. In the final section, we will disclose the efficient synthesis of substituted 9,10-anthracenes via oxidative aromatization.

  19. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  20. Exercise training induces similar elevations in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle

    DEFF Research Database (Denmark)

    Blomstrand, Eva; Krustrup, Peter; Søndergaard, Hans

    2011-01-01

    During exercise involving a small muscle mass, peak oxygen uptake is thought to be limited by peripheral factors, such as the degree of oxygen extraction from the blood and/or mitochondrial oxidative capacity. Previously, the maximal activity of the Krebs cycle enzyme oxoglutarate dehydrogenase has...

  1. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  2. Changes in retinal venular oxygen saturation predict activity of proliferative diabetic retinopathy 3 months after panretinal photocoagulation.

    Science.gov (United States)

    Torp, Thomas Lee; Kawasaki, Ryo; Wong, Tien Yin; Peto, Tunde; Grauslund, Jakob

    2018-03-01

    Proliferative diabetic retinopathy (PDR) is a severe blinding condition. We investigated whether retinal metabolism, measured by retinal oximetry, may predict PDR activity after panretinal laser photocoagulation (PRP). We performed a prospective, interventional, clinical study of patients with treatment-naive PDR. Wide-field fluorescein angiography (OPTOS, Optomap) and global and focal retinal oximetry (Oxymap T1) were performed at baseline (BL), and 3 months (3M) after PRP. Angiographic findings were used to divide patients according to progression or non-progression of PDR after PRP. We evaluated differences in global and focal retinal oxygen saturation between patients with and without progression of PDR after PRP treatment. We included 45 eyes of 37 patients (median age and duration of diabetes were 51.6 and 20 years). Eyes with progression of PDR developed a higher retinal venous oxygen saturation than eyes with non-progression at 3M (global: +5.9% (95% CI -1.5 to 12.9), focal: +5.4%, (95% CI -4.1 to 14.8)). Likewise, progression of PDR was associated with a lower arteriovenular (AV) oxygen difference between BL and 3M (global: -6.1%, (95% CI -13.4 to -1.4), focal: -4.5% (95% CI -12.1 to 3.2)). In a multiple logistic regression model, increment in global retinal venular oxygen saturation (OR 1.30 per 1%-point increment, p=0.017) and decrement in AV oxygen saturation difference (OR 0.72 per 1%-point increment, p=0.016) at 3M independently predicted progression of PDR. Development of higher retinal venular and lower AV global oxygen saturation independently predicts progression of PDR despite standard PRP and might be a potential non-invasive marker of angiogenic disease activity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Controlling exchange bias in Co-CoOx nanoparticles by oxygen content

    International Nuclear Information System (INIS)

    Kovylina, Miroslavna; Muro, Montserrat GarcIa del; Konstantinovic, Zorica; Iglesias, Oscar; Labarta, AmIlcar; Batlle, Xavier; Varela, Manuel

    2009-01-01

    We report on the occurrence of exchange bias on laser-ablated granular thin films composed of Co nanoparticles embedded in an amorphous zirconia matrix. The deposition method allows one to control the degree of oxidation of the Co particles by tuning the oxygen pressure at the vacuum chamber (from 2 x 10 -5 to 10 -1 mbar). The nature of the nanoparticles embedded in the nonmagnetic matrix is monitored from metallic, ferromagnetic (FM) Co to antiferromagnetic (AFM) CoO x , with a FM/AFM intermediate regime for which the percentage of the AFM phase can be increased at the expense of the FM phase, leading to the occurrence of exchange bias in particles of about 2 nm in size. For an oxygen pressure of about 10 -3 mbar the ratio between the FM and AFM phases is optimum with an exchange bias field of about 900 Oe at 1.8 K. The mutual exchange coupling between the AFM and FM is also at the origin of the induced exchange anisotropy on the FM leading to high irreversible hysteresis loops, and the blocking of the AFM clusters due to proximity to the FM phase.

  4. Oxygen-to-metal ratio control during fabrication of mixed oxide fast breeder reactor fuel pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Benecke, M.W.; Jentzen, W.R.; McCord, R.B.

    1979-05-01

    Oxygen-to-metal ratio (O/M) of mixed oxide fuel pellets can be controlled during fabrication by proper selection of binder (type and content) and sintering conditions. Sintering condition adjustments involved the passing of Ar--8% H 2 sintering gas across a cryostat ice bath controlled to temperatures ranging from -5 to -60 0 C to control as-sintered pellet O/M ratio. As-sintered fuel pellet O/M decreased with increasing Sterotex binder and PuO 2 concentrations, increasing sintering temperature, and decreasing sintering gas dew point. Approximate relationships between Sterotex binder level and O/M were established for PuO 2 --UO 2 and PuO 2 --ThO 2 fuels. O/M was relatively insensitive to Carbowax binder concentration. Several methods of increasing O/M using post-sintering pellet heat treatments were demonstrated, with the most reliable being a two-step process of first raising the O/M to 2.00 (stoichiometric) at 650 0 C in Ar--8% H 2 bubbled through H 2 O, followed by hydrogen reduction to specification O/M in oxygen-gettered Ar-8% H 2 at temperatures ranging from 1200 to 1690 0 C

  5. Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Engelund

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative m...

  6. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption

    OpenAIRE

    Santos, Carla Santana; Kowaltowski, Alicia J.; Bertotti, Mauro

    2017-01-01

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in ox...

  7. Oxygenated Phosphine Fumigation for Control of Light Brown Apple Moth (Lepidoptera: Tortricidae) Eggs on Cut-Flowers.

    Science.gov (United States)

    Liu, Samuel S; Liu, Yong-Biao; Simmons, Gregory S

    2015-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), eggs were subjected to oxygenated phosphine fumigation treatments under 70% oxygen on cut flowers to determine efficacy and safety. Five cut flower species: roses, lilies, tulips, gerbera daisy, and pompon chrysanthemums, were fumigated in separate groups with 2,500 ppm phosphine for 72 h at 5°C. Egg mortality and postharvest quality of cut flowers were determined after fumigation. Egg mortalities of 99.7-100% were achieved among the cut flower species. The treatment was safe to all cut flowers except gerbera daisy. A 96-h fumigation treatment with 2,200 ppm phosphine of eggs on chrysanthemums cut flowers also did not achieve complete control of light brown apple moth eggs. A simulation of fumigation in hermetically sealed fumigation chambers with gerbera daisy showed significant accumulations of carbon dioxide and ethylene by the end of 72-h sealing. However, oxygenated phosphine fumigations with carbon dioxide and ethylene absorbents did not reduce the injury to gerbera daisy, indicating that it is likely that phosphine may directly cause the injury to gerbera daisy cut flowers. The study demonstrated that oxygenated phosphine fumigation is effective against light brown apple moth eggs. However, it may not be able to achieve the probit9 quarantine level of control and the treatment was safe to most of the cut flower species. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  8. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    range of PO2 values, resulting in a higher resolution. Use of suitable polymer alloys as indicator matrices can even enhance oxygen sensitivity; therefore, the application of optodes for trace analysis of oxygen might be possible, especially with regard to the application of highly oxygen-sensitive phosphorescent indicators. Finally, owing to the reversibility of fluorescence quenching, monitoring of oxygen by fluorescence optical sensors allows a continuous and remote control of biomedical parameters as well as regulation of biotechnological processes.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Transnasal humidified rapid insufflation ventilatory exchange for oxygenation of children during apnoea: a prospective randomised controlled trial.

    Science.gov (United States)

    Riva, T; Pedersen, T H; Seiler, S; Kasper, N; Theiler, L; Greif, R; Kleine-Brueggeney, M

    2018-03-01

    Transnasal humidified rapid insufflation ventilatory exchange (THRIVE) comprises the administration of heated, humidified, and blended air/oxygen mixtures via nasal cannula at rates of ≥2 litres kg -1  min -1 . The aim of this randomized controlled study was to evaluate the length of the safe apnoea time using THRIVE with two different oxygen concentrations (100% vs 30% oxygen) compared with standard low-flow 100% oxygen administration. Sixty patients, aged 1-6 yr, weighing 10-20 kg, undergoing general anaesthesia for elective surgery, were randomly allocated to receive one of the following oxygen administration methods during apnoea: 1) low-flow 100% oxygen at 0.2 litres kg -1  min -1 ; 2) THRIVE 100% oxygen at 2 litres kg -1  min -1 ; and 3) THRIVE 30% oxygen at 2 litres kg -1  min -1 . Primary outcome was time to desaturation to 95%. Termination criteria included SpO 2 decreased to 95%, transcutaneous CO 2 increased to 65 mmHg, or apnoea time of 10 min. The median (interquartile range) [range] apnoea time was 6.9 (5.7-7.8) [2.8-10.0] min for low-flow 100% oxygen, 7.6 (6.2-9.1) [5.2-10.0] min for THRIVE 100% oxygen, and 3.0 (2.4-3.7) [0.2-5.3] min for THRIVE 30% oxygen. No significant difference was detected between apnoea times with low-flow and THRIVE 100% oxygen administration (P=0.15). THRIVE with 30% oxygen demonstrated significantly shorter apnoea times (Prate of transcutaneous CO 2 increase was 0.57 (0.49-0.63) [0.29-8.92] kPa min -1 without differences between the 3 groups (P=0.25). High-flow 100% oxygen (2 litres kg -1  min -1 ) administered via nasal cannulas did not extend the safe apnoea time for children weighing 10-20 kg compared with low-flow nasal cannula oxygen (0.2 litres kg -1  min -1 ). No ventilatory effect was observed with THRIVE at 2.0 litres kg -1  min -1 . NCT02979067. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  10. Oxygen sensing” by Na,K-ATPase: these miraculous thiols

    Directory of Open Access Journals (Sweden)

    Anna Bogdanova

    2016-08-01

    Full Text Available Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its oxygen-sensitivity is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidised glutathione are the signalling messengers that make the Na,K-ATPase oxygen-sensitive. This very ancient signalling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the optimal level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterise the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summery on (i the sources of free radical production in hypoxic cells, (ii localisation of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzymes to a variety of stimuli (hypoxia, receptors’ activation control of the enzyme activity (iii redox-sensitive regulatory phosphorylation, and (iv the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate

  11. Oxygen Deficit: The Bio-energetic Pathophysiology

    Directory of Open Access Journals (Sweden)

    ABHAY KUMAR PANDEY

    2014-09-01

    Full Text Available Scarcity of oxygen in humans arises via three modes. The environment may have low oxygen to breath. There can be disease in respiratory system causing hindrance to uptake of oxygen from environment and the circulatory system may be sluggish to supply to body parts that starve for oxygen. Thirdly the chemico-cellular components of blood which carry oxygen may be lowered or defective. In reference to body cells several limiting sites and mechanisms affect the amount of oxygen delivered to them, and these are under regulatory control of several functional and metabolic systems.

  12. Correlating oxygen vacancies and phase ratio/interface with efficient photocatalytic activity in mixed phase TiO2

    International Nuclear Information System (INIS)

    Verma, Ranjana; Samdarshi, S.K.

    2015-01-01

    Graphical abstract: The correlation of interfacial behavior and oxygen vacancies in mixed phase titania nanoparticles on their performance as photocatalyst has been investigated to explain the impact of photoactivity under UV and visible irradiation compared to pristine counterparts. The defects at the junction effectively reduce the band gap as well decrease the carrier recombination to enhance the photocatalytic activity. - Highlights: • Pristine and mixed phases (A/R ratio) TiO 2 synthesized by sol gel route. • Photoactivity variation has been correlated with the changes in the phase ratio. • Enhanced UV and visible activity attributable to oxygen vacancy present at the interface. • Role of A/R ratio and oxygen vacancy in the photoactivity of mixed TiO 2 depicted through a model. - Abstract: The photocatalytic activity is a result of the synergy of a succession of phenomena-photogeneration, separation, and participation of the charge carriers in redox reaction at the catalyst surface. While the extent of photogeneration is assessable in terms of absorption spectrum (band gap), the redox reaction can be correlated to specific surface area. However the respective change in the photocatalytic activity has not been rationally and consistently correlated with the above mentioned parameters. A satisfactory explanation of suppression of recombination based on separation of carriers due to differential mobility/diffusivity in the material phase(s) and/or intrinsic potential barrier exists but its correlation with common identifiable parameter/characteristics is still elusive. This paper attempts to address this issue by correlating the carrier separation with the phase ratio (phase interface) in mixed phase titania and generalizing it with the presence of oxygen vacancy at the phase interface. It essentially appears to complete the quest for identifiable parameters in the sequence of phenomena, which endow a photocatalyst with an efficient activity level. It has

  13. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  14. Curcumin protects neurons against oxygen-glucose deprivation/reoxygenation-induced injury through activation of peroxisome proliferator-activated receptor-γ function.

    Science.gov (United States)

    Liu, Zun-Jing; Liu, Hong-Qiang; Xiao, Cheng; Fan, Hui-Zhen; Huang, Qing; Liu, Yun-Hai; Wang, Yu

    2014-11-01

    The turmeric derivative curcumin protects against cerebral ischemic injury. We previously demonstrated that curcumin activates peroxisome proliferator-activated receptor-γ (PPARγ), a ligand-activated transcription factor involved in both neuroprotective and anti-inflammatory signaling pathways. This study tested whether the neuroprotective effects of curcumin against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury of rat cortical neurons are mediated (at least in part) by PPARγ. Curcumin (10 μM) potently enhanced PPARγ expression and transcriptional activity following OGD/R. In addition, curcumin markedly increased neuronal viability, as evidenced by decreased lactate dehydrogenase release and reduced nitric oxide production, caspase-3 activity, and apoptosis. These protective effects were suppressed by coadministration of the PPARγ antagonist 2-chloro-5-nitrobenzanilide (GW9662) and by prior transfection of a small-interfering RNA (siRNA) targeting PPARγ, treatments that had no toxic effects on healthy neurons. Curcumin reduced OGD/R-induced accumulation of reactive oxygen species and inhibited the mitochondrial apoptosis pathway, as indicated by reduced release of cytochrome c and apoptosis-inducing factor and maintenance of both the mitochondrial membrane potential and the Bax/Bcl-2 ratio. Again, GW9662 or PPARγ siRNA transfection mitigated the protective effects of curcumin on mitochondrial function. Curcumin suppressed IκB kinase phosphorylation and IκB degradation, thereby inhibiting nuclear factor-κ B (NF-κB) nuclear translocation, effects also blocked by GW9662 or PPARγ siRNA. Immunoprecipitation experiments revealed that PPARγ interacted with NF-κB p65 and inhibited NF-κB activation. The present study provides strong evidence that at least some of the neuroprotective effects of curcumin against OGD/R are mediated by PPARγ activation. Copyright © 2014 Wiley Periodicals, Inc.

  15. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue.

    Science.gov (United States)

    Sakadžić, Sava; Mandeville, Emiri T; Gagnon, Louis; Musacchia, Joseph J; Yaseen, Mohammad A; Yucel, Meryem A; Lefebvre, Joel; Lesage, Frédéric; Dale, Anders M; Eikermann-Haerter, Katharina; Ayata, Cenk; Srinivasan, Vivek J; Lo, Eng H; Devor, Anna; Boas, David A

    2014-12-08

    What is the organization of cerebral microvascular oxygenation and morphology that allows adequate tissue oxygenation at different activity levels? We address this question in the mouse cerebral cortex using microscopic imaging of intravascular O2 partial pressure and blood flow combined with numerical modelling. Here we show that parenchymal arterioles are responsible for 50% of the extracted O2 at baseline activity, and the majority of the remaining O2 exchange takes place within the first few capillary branches. Most capillaries release little O2 at baseline acting as an O2 reserve that is recruited during increased neuronal activity or decreased blood flow. Our results challenge the common perception that capillaries are the major site of O2 delivery to cerebral tissue. The understanding of oxygenation distribution along arterio-capillary paths may have profound implications for the interpretation of blood-oxygen-level dependent (BOLD) contrast in functional magnetic resonance imaging and for evaluating microvascular O2 delivery capacity to support cerebral tissue in disease.

  16. Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

  17. Mechanisms controlling the oxygen consumption in experimentally induced hypochloremic alkalosis in calves.

    Science.gov (United States)

    Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal

    2002-01-01

    The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased

  18. Oxygen- and nitrogen-co-doped activated carbon from waste particleboard for potential application in high-performance capacitance

    International Nuclear Information System (INIS)

    Shang, Tong-Xin; Ren, Ru-Quan; Zhu, Yue-Mei; Jin, Xiao-Juan

    2015-01-01

    Graphical abstract: All electrodes showed excellent capacitance and retention versus discharge current density from 0.05 to 5 A/g. - Abstract: Oxygen- and nitrogen-co-doped activated carbons were obtained from phosphoric acid treated nitrogen-doped activated carbons which were prepared from waste particleboard bonded with urea-formaldehyde resin adhesives. The activated carbon samples obtained were tested as supercapacitors in two-electrode cell and extensive wetting 7 M KOH electrolytes. Their structural properties and surface chemistry, before the electrical testing, were investigated using elemental analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, Raman spectra, and adsorption of nitrogen. Activated carbon treated by 4 M phosphoric acid of the highest capacitance (235 F/g) was measured in spite of a relatively lower surface (1360 m 2 /g) than that of the activated carbon treated by 2 M phosphoric acid (1433 m 2 /g). The surface chemistry, and especially oxygen- and nitrogen-containing functional groups, was found of paramount importance for the capacitive behavior and for the effective pore space utilization by the electrolyte ions

  19. Oxygen diffusion through soil covers on sulphidic mine tailings

    International Nuclear Information System (INIS)

    Yanful, E.K.

    1993-01-01

    Engineered soil covers are being evaluated under Canada's Mine Environment Neutral Drainage (MEND) program for their effectiveness in preventing and controlling acid generation in sulfidic mill tailings. A critical parameter for predicting the performance of these covers is the diffusion coefficient of gaseous oxygen in the cover materials. Laboratory experiments conducted to determine the effective diffusion coefficient of a candidate cover material, a glacial till from an active mine site, are described. The diffusion coefficient is determined by fitting a semianalytic solution of the one-dimensional, transient diffusion equation to experimental gaseous oxygen concentration versus time graphs. Effective diffusion coefficients determined at high water saturations (85%--95%) were of the order of 8 x 10 -8 m 2 /s. The diffusion coefficients decreased with increase in water saturation as a result of the low diffusivity of gaseous oxygen in water relative to that in air and the low solubility of oxygen in water. Placement of soil covers in high saturation conditions would ensure that the flux of oxygen into tailings underneath such covers is low, resulting in low acid flux. This is confirmed by combined laboratory, field, and modeling studies

  20. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  1. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    Directory of Open Access Journals (Sweden)

    Oyunbileg G

    2018-02-01

    Full Text Available The oxygen reduction reaction (ORR is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM and a transmission electron microscope (TEM analyses confirm the formation of the star-shaped nanoparticles. Among the investigated nanostar catalysts, an AuNS5 with smaller size and a few branches showed the higher electrocatalytic activity towards ORR than other catalysts with a bigger size. In addition, the electron numbers transferred for all the catalysts are approximately two. The present study results infer that the size of the Au-based nanostars may influence greatly on their catalytic activity. The present study results show that the further improvement is needed for Au-based nanostar catalysts towards the ORR reaction.

  2. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    Science.gov (United States)

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  3. Oxygen delivery in irradiated normal tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, M.F.; Ansari, R. [Univ. of Tennessee Health Science Center, Memphis, TN (United States). School of Biomedical Engineering; Gaber, M.W. [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2003-03-01

    Ionizing radiation exposure significantly alters the structure and function of microvascular networks, which regulate delivery of oxygen to tissue. In this study we use a hamster cremaster muscle model to study changes in microvascular network parameters and use a mathematical model to study the effects of these observed structural and microhemodynamic changes in microvascular networks on oxygen delivery to the tissue. Our experimental observations indicate that in microvascular networks while some parameters are significantly affected by irradiation (e.g. red blood cell (RBC) transit time), others remain at the control level (e.g. RBC path length) up to 180 days post-irradiation. The results from our mathematical model indicate that tissue oxygenation patterns are significantly different in irradiated normal tissue as compared to age-matched controls and the differences are apparent as early as 3 days post irradiation. However, oxygen delivery to irradiated tissue was not found to be significantly different from age matched controls at any time between 7 days to 6 months post-irradiation. These findings indicate that microvascular late effects in irradiated normal tissue may be due to factors other than compromised tissue oxygenation. (author)

  4. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  5. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  6. Next Generation Life Support (NGLS): Variable Oxygen Regulator

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Variable Oxygen Regulator Element is to develop an oxygen-rated, contaminant-tolerant oxygen regulator to control suit pressure with a...

  7. Affect during incremental exercise: The role of inhibitory cognition, autonomic cardiac function, and cerebral oxygenation.

    Directory of Open Access Journals (Sweden)

    Weslley Quirino Alves da Silva

    Full Text Available Pleasure is a key factor for physical activity behavior in sedentary individuals. Inhibitory cognitive control may play an important role in pleasure perception while exercising, especially at high intensities. In addition, separate work suggests that autonomic regulation and cerebral hemodynamics influence the affective and cognitive responses during exercise.We investigated the effects of exercise intensity on affect, inhibitory control, cardiac autonomic function, and prefrontal cortex (PFC oxygenation.Thirty-seven sedentary young adults performed two experimental conditions (exercise and control in separate sessions in a repeated-measures design. In the exercise condition, participants performed a maximum graded exercise test on a cycle ergometer as we continuously measured oxygen consumption, heart rate variability (HRV, and PFC oxygenation. At each of 8 intensity levels we also measured inhibitory control (Stroop test, associative and dissociative thoughts (ADT, and affective/pleasure ratings. In the control condition, participants sat motionless on a cycle ergometer without active pedaling, and we collected the same measures at the same points in time as the exercise condition. We evaluated the main effects and interactions of exercise condition and intensity level for each measure using two-way repeated measures ANOVAs. Additionally, we evaluated the relationship between affect and inhibitory control, ADT, HRV, and PFC oxygenation using Pearson's correlation coefficients.For exercise intensities below and at the ventilatory threshold (VT, participants reported feeling neutral, with preservation of inhibitory control, while intensities above the VT were associated with displeasure (p<0.001, decreased inhibitory control and HRV (p<0.001, and increased PFC oxygenation (p<0.001. At the highest exercise intensity, pleasure was correlated with the low-frequency index of HRV (r = -0.34; p<0.05 and the low-frequency/high-frequency HRV ratio (r

  8. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet......, as well. Using this fact, we show the existence of a universal activity volcano to describe oxygen reduction electrocatalysis with a minimum overpotential, ηmin = 0.37 ± 0.1 V. Specifically, we find that the (100) facet of Pt is found to bind oxygen intermediates too strongly and is not active for oxygen...... reduction reaction (ORR). In contrast, Au(100) is predicted to be more active than Au(111) and comparable in activity to Pt alloys. Using this activity volcano, we further predict that Au alloys that bind OH more strongly could display improved ORR activity on the (100) facet. We carry out a computational...

  9. Control-Oriented Model of Molar Scavenge Oxygen Fraction for Exhaust Recirculation in Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2016-01-01

    the behavior of the scavenge oxygen fraction well over the entire envelope of load and blower speed range that are relevant for EGR. The simplicity of the new model makes it suitable for observer and control design, which are essential steps to meet the emission requirements for marine diesel engines that take...

  10. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  11. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, J.; Domen, K.

    2013-01-01

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine

  12. Oxygen consumption rate and Na+/K+-ATPase activity in early developmental stages of the sea urchin Paracentrotus lividus Lam.

    Science.gov (United States)

    Tomšić, Sanja; Stanković, Suzana; Lucu, Čedomil

    2011-09-01

    Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein-1 h-1 in unfertilized eggs to 0.38 μmol O2 mg protein-1 h-1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h-1 mg protein-1 in the late blastula stage and slightly lower values in the early and late pluteus stages.

  13. Oxygen plasma etching of graphene: A first-principles dynamical inspection of the reaction mechanisms and related activation barriers

    Science.gov (United States)

    Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi; Dept. of Applied Physics Team; Institute of Physics and Chemistry of Strasbourg (IPCMS) Collaboration; Department Of Materials Engineering Science Collaboration

    2013-03-01

    Oxygen plasma etching is a crucial step in the fabrication of electronic circuits and has recently received a renovated interest in view of the realization of carbon-based nanodevices. In an attempt at unraveling the atomic-scale details and to provide guidelines for the control of the etching processes mechanisms, we inspected the possible reaction pathways via reactive first principles simulations. These processes involve breaking and formation of several chemical bonds and are characterized by different free-energy barriers. Free-energy sampling techniques (metadynamics and blue moon), used to enhance the standard Car-Parrinello molecular dynamics, provide us a detailed microscopic picture of the etching of graphene surfaces and a comprehensive scenario of the activation barriers involved in the various steps. MEXT, Japan - contract N. 22104005

  14. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro

    Institute of Scientific and Technical Information of China (English)

    Fang Su; An-Chen Guo; Wei-Wei Li; Yi-Long Zhao; Zheng-Yi Qu; Yong-Jun Wang; Qun Wang; Yu-Lan Zhu

    2017-01-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion;however,the underlying mechanism has not been elucidated.In the present study,we showed that expression of the neuronal large-conductance,Ca2+-activated K+ channel (BKCa) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivatior/reoxygenation (OGD/R) compared with controls.Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R,attenuated the OGD/R-induced elevation of cytosolic Ca2+ levels,and reduced the number of apoptotic neurons.Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax.The protective effect of ethanol preconditioning was antagonized by a BKCa channel inhibitor,paxilline.Inside-out patches in primary neurons also demonstrated the direct activation of the BKCa channel by 10 mmol/L ethanol.The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca2+ and preventing neuronal apoptosis,and this is mediated by BKCa channel activation.

  15. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro.

    Science.gov (United States)

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca 2+ -activated K + channel (BK Ca ) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca 2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BK Ca channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BK Ca channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca 2+ and preventing neuronal apoptosis, and this is mediated by BK Ca channel activation.

  16. The effects of dexamethasone on post-asphyxial cerebral oxygenation in the preterm fetal sheep

    Science.gov (United States)

    Lear, Christopher A; Koome, Miriam E; Davidson, Joanne O; Drury, Paul P; Quaedackers, Josine S; Galinsky, Robert; Gunn, Alistair J; Bennet, Laura

    2014-01-01

    Exposure to clinical doses of the glucocorticoid dexamethasone increases brain activity and causes seizures in normoxic preterm fetal sheep without causing brain injury. In contrast, the same treatment after asphyxia increased brain injury. We hypothesised that increased injury was in part mediated by a mismatch between oxygen demand and oxygen supply. In preterm fetal sheep at 0.7 gestation we measured cerebral oxygenation using near-infrared spectroscopy, electroencephalographic (EEG) activity, and carotid blood flow (CaBF) from 24 h before until 72 h after asphyxia induced by 25 min of umbilical cord occlusion. Ewes received dexamethasone intramuscularly (12 mg 3 ml–1) or saline 15 min after the end of asphyxia. Fetuses were studied for 3 days after occlusion. During the first 6 h of recovery after asphyxia, dexamethasone treatment was associated with a significantly greater fall in CaBF (P < 0.05), increased carotid vascular resistance (P < 0.001) and a greater fall in cerebral oxygenation as measured by the difference between oxygenated and deoxygenated haemoglobin (delta haemoglobin; P < 0.05). EEG activity was similarly suppressed in both groups. From 6 to 10 h onward, dexamethasone treatment was associated with a return of CaBF to saline control levels, increased EEG power (P < 0.005), greater epileptiform transient activity (P < 0.001), increased oxidised cytochrome oxidase (P < 0.05) and an attenuated increase in [delta haemoglobin] (P < 0.05). In conclusion, dexamethasone treatment after asphyxia is associated with greater hypoperfusion in the critical latent phase, leading to impaired intracerebral oxygenation that may exacerbate neural injury after asphyxia. PMID:25384775

  17. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  18. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    Science.gov (United States)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  19. Thermodynamics of oxygen in solid solution in vanadium and niobium--vanadium alloys

    International Nuclear Information System (INIS)

    Steckel, G.L.

    1977-01-01

    A thermodynamic study was made of the vanadium-oxygen and niobium-vanadium-oxygen systems utilizing the solid state galvanic cell technique. Investigations were made with a ThO 2 /Y 2 O 3 electrolyte over the temperature ranges 700 to 1200 0 C (973 to 1473 K) for the binary system and 650 to 1150 0 C (923 to 1423 K) for the ternary system. The activity of oxygen in vanadium obeys Henry's law for the temperatures of this investigation for concentrations up to 3.2 at. percent oxygen. For higher concentrations the activity coefficient shows positive deviations from Henry's law. The terminal solubility of oxygen in vanadium was determined. The activity of oxygen in Nb--V alloys obeys Henry's law for the temperatures of this study for oxygen concentrations less than approximately 2 at. percent. For certain Nb/V ratios Henry's law is obeyed for concentrations as high as 6.5 at. percent oxygen. First order entropy and enthalpy interaction coefficients have been determined to describe the effect on the oxygen activity of niobium additions to vanadium-rich alloys with dilute oxygen concentrations. Niobium causes relatively small decreases in the oxygen activity of V-rich alloys and increases the oxygen solubility limit. Vanadium additions to Nb-rich alloys also increases the oxygen solubility and causes substantial decreases in the dilute solution oxygen activities. The change in the thermodynamic properties when molecular oxygen dissolves in vanadium and niobium--vanadium alloys and the equilibrium oxygen pressure over the binary and ternary systems were also determined

  20. Oxygen consumption and cytochrome exidase activity of axolotl limbs muscle tissue in restoration of regenerative ability suprressed by X-irradiation

    International Nuclear Information System (INIS)

    Teplits, N.A.

    1975-01-01

    The rate of oxygen use and activity of cytochrome oxidase in a homogenate of mitochondria and nuclei of muscle tissue of axolotl limbs after suppression of their regenerative capability by x irradiation and their restoration was studied experimentally. With suppression of the regenative capability the use of oxygen was depressed. Cytochrome oxidase activity in the homogenate and mitochondria decreased compared to that of the intact limb, in the nuclei of muscle tissue it was the same or greater. With restoration of the regenerative capability of the limbs the respiration rate of the homogenate and the mitochondria increased, accompanied by increased cytochrome oxidase activity. In the nuclei the cytochrome oxidase activity did not change in the blastema stage and sharply decreased in the limb formation state. (E.T.)

  1. Oxygen consumption and cytochrome exidase activity of axolotl limbs muscle tissue in restoration of regenerative ability suppressed by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Teplits, N A [AN SSSR, Moscow. Inst. Biologii Razvitiya

    1975-01-01

    The rate of oxygen use and activity of cytochrome oxidase in a homogenate of mitochondria and nuclei of muscle tissue of axolotl limbs after suppression of their regenerative capability by x irradiation and their restoration was studied experimentally. With suppression of the regenative capability the use of oxygen was depressed. Cytochrome oxidase activity in the homogenate and mitochondria decreased compared to that of the intact limb, in the nuclei of muscle tissue it was the same or greater. With restoration of the regenerative capability of the limbs the respiration rate of the homogenate and the mitochondria increased, accompanied by increased cytochrome oxidase activity. In the nuclei the cytochrome oxidase activity did not change in the blastema stage and sharply decreased in the limb formation state.

  2. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial.

    Science.gov (United States)

    Ulrich, Silvia; Hasler, Elisabeth D; Saxer, Stéphanie; Furian, Michael; Müller-Mottet, Séverine; Keusch, Stephan; Bloch, Konrad E

    2017-04-14

    The purpose of the current trial was to test the hypothesis that breathing oxygen-enriched air increases exercise performance of patients with pulmonary arterial or chronic thrombo-embolic pulmonary hypertension (PAH/CTEPH) and to investigate involved mechanisms. Twenty-two patients with PAH/CTEPH, eight women, means ± SD 61 ± 14 years, resting mPAP 35 ± 9mmHg, PaO2 ambient air >7.3 kPa, underwent four bicycle ergospirometries to exhaustion on different days, while breathing oxygen-enriched (FiO2 0.50, hyperoxia) or ambient air (FiO2 0.21, normoxia) using progressively increased or constant load protocols (with 75% maximal work rate under FiO2 0.21), according to a randomized, sham-controlled, single-blind, cross-over design. ECG, pulmonary gas-exchange, arterial blood gases, cerebral and quadriceps muscle tissue oxygenation (CTO and QMTO) by near-infrared spectroscopy were measured. In ramp exercise, maximal work rate increased from 113 ± 38 W with normoxia to 132 ± 48 W with hyperoxia, mean difference 19.7 (95% CI 10.5-28.9) W, P endurance increased from 571 ± 443 to 1242 ± 514 s, mean difference 671 (95% CI 392-951) s, P < 0.001. At end-exercise with hyperoxia PaO2, CTO, QMTO, and PaCO2 were increased, and ventilatory equivalents for CO2 were reduced while the physiological dead space/tidal volume ratio remained unchanged. In patients with PAH/CTEPH, breathing oxygen-enriched air provides major increases in exercise performance. This is related to an improved arterial oxygenation that promotes oxygen availability in muscles and brain and to a reduction of the excessive ventilatory response to exercise thereby enhancing ventilatory efficiency. Patients with PAH/CTEPH may therefore benefit from oxygen therapy during daily physical activities and training. clinicaltrials.gov Identifier: NCT01748474. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions

  3. Low-level activity of the trunk extensor muscles causes electromyographic manifestations of fatigue in absence of decreased oxygenation

    NARCIS (Netherlands)

    Dieën, J.H. van; Westebring van der; Putten, E.P.; Kingma, I.; Looze, M.P. de

    2009-01-01

    This study was designed to determine whether trunk extensor fatigue occurs during low-level activity and whether this is associated with a drop in muscle tissue oxygenation. Electromyography (EMG) feedback was used to impose constant activity in a part of the trunk extensor muscles. We hypothesized

  4. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow. Activity-dependent rises in CMRO2 fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca2+ stimulate oxidative metabolism vi...

  5. Determination of active oxygen content in rare earth peroxides

    International Nuclear Information System (INIS)

    Queiroz, Carlos A.S.; Abrao, Alcidio

    1993-01-01

    The content of active oxygen in rare earth peroxides have been determined after the dissolution of the samples with hydrocloridic acid in the presence of potassium iodide. The free generated iodine is titrated with sodium thiosulfate using starch as indicator. The oxidation of iodide to the free iodine indicates the presence of a higher valence state rare earth oxide, until now specifically recognized for the oxides of cerium (Ce O 2 ), praseodymium (Pr 6 O 1 1) and terbium (TB 4 O 7 ). recently the authors synthesized a new series of rare earth compounds, the peroxides. These new compounds were prepared by precipitating the rare earth elements complexed with carbonate ion by addition of hydrogen peroxide. the authors demonstrated that all rare earth elements, once solubilized by complexing with carbonate ion, are quantitatively precipitated as peroxide by addition of hydrogen peroxide. (author)

  6. Premature Senescence Induced by Ionizing Radiation Requires AKT Activity and Reactive Oxygen Species in Glioma

    International Nuclear Information System (INIS)

    Lee, Je Jung; Kim, Bong Cho; Yoo, Hee Jung; Lee, Jae Seon

    2010-01-01

    Loss of PTEN, a tumor suppressor gene has frequently observed in human gliomas, which conferred AKT activation and resistance to ionizing radiation (IR) and anti-cancer drugs. Recent reports have shown that AKT activation induces premature senescence through increase of oxygen consumption and inhibition of expression of ROS scavenging enzymes. In this study, we compared cellular response to IR in the PTEN-deficient U87, U251, U373 or PTEN-proficient LN18, LN428 glioma cells

  7. Structural characterization of lignin in the process of cooking of cornstalk with solid alkali and active oxygen.

    Science.gov (United States)

    Yang, Qiulin; Shi, Jianbin; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Xie, Tujun; Liu, Ying

    2012-05-09

    A novel, efficient, and environmentally friendly technology is used in cornstalk cooking, active oxygen (O₂ and H₂O₂) cooking with solid alkali (MgO). After the cooking, the milled wood lignin in the raw material and pulp and the water-soluble and insoluble lignin in the yellow liquor were all characterized by attenuated total reflectance Fourier transform infrared spectroscopy and two-dimensional heteronuclear single-quantum coherence NMR. The results showed that the cooking procedure with solid alkali and active oxygen had a high selectivity for delignification, which could remove 85.5% of the lignin from the raw material. The syringyl (S/S'/S') units could be dissolved preferentially because of their high reactivity, and a novel guaiacyl unit with a carbonyl group (G') was generated in the cooking process. Moreover, during the cooking, the β-O-4' (A/A'/A″) structures as the main side-chain linkages in all the lignins could be partly broken and the β-O-4' (A') with a ring-conjugated structure was readily attacked by oxygen, whereas the H unit and β-5' and β-β' structures were found to stay stable without characteristic reaction.

  8. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivation in neurons.

    Science.gov (United States)

    Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun

    2014-09-25

    The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  10. Effects of oxygen partial pressure on Li-air battery performance

    Science.gov (United States)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  11. Blood conservation with membrane oxygenators and dipyridamole.

    Science.gov (United States)

    Teoh, K H; Christakis, G T; Weisel, R D; Madonik, M M; Ivanov, J; Wong, P Y; Mee, A V; Levitt, D; Benak, A; Reilly, P

    1987-07-01

    Cardiopulmonary bypass induces platelet activation and dysfunction, which result in platelet deposition and depletion. Reduced platelet numbers and abnormal platelet function may contribute to postoperative bleeding. A membrane oxygenator may preserve platelets and reduce bleeding more than a bubble oxygenator, and the antiplatelet agent dipyridamole may protect platelets intraoperatively and reduce bleeding postoperatively. A prospective randomized trial was performed in 44 patients undergoing elective coronary artery bypass grafting to assess the effects of the membrane oxygenator and dipyridamole on platelet counts, platelet activation products, and postoperative bleeding. Patients who were randomized to receive a bubble oxygenator and no dipyridamole had the lowest postoperative platelet counts, the greatest blood loss, and the most blood products transfused. Platelet counts were highest and blood loss was least in patients randomized to receive a membrane oxygenator and dipyridamole (p less than .05). A bubble oxygenator with dipyridamole and a membrane oxygenator without dipyridamole resulted in intermediate postoperative platelet counts and blood loss. Arterial thromboxane B2 and platelet factor 4 concentrations were elevated on cardiopulmonary bypass in all groups. Both the membrane oxygenator and dipyridamole were independently effective (by multivariate analysis) in preserving platelets. Optimal blood conservation was achieved with a membrane oxygenator and dipyridamole.

  12. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  13. Improved thrombogenicity on oxygen etched Ti6Al4V surfaces

    International Nuclear Information System (INIS)

    Riedel, Nicholas A.; Smith, Barbara S.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO 2 peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V. - Highlights: ►Oblique angle oxygen ion etching creates a high quality, uniform oxide surface. ►Oxygen etched substrates showed fewer adhered platelets. ►Platelet activation was reduced by the improved oxide surface. ►Oxygen etched substrates exhibited increased whole blood clotting times. ►Although clotting reductions were seen, protein adsorption remained similar.

  14. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  15. Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun

    2017-06-28

    Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.

  16. Kinetics of the high temperature oxygen exchange reaction on 238PuO2 powder

    International Nuclear Information System (INIS)

    Whiting, Christofer E.; Du, Miting; Felker, L. Kevin; Wham, Robert M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2015-01-01

    Oxygen exchange reactions performed on PuO 2 suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO 2 . Previous CeO 2 surrogate studies exhibit similar behavior, confirming that CeO 2 is a good qualitative surrogate for PuO 2 , in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO 2 oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO 2 Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  17. An fMRI study on variation of visuospatial cognitive performance of young male due to highly concentrated oxygen administration

    Science.gov (United States)

    Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.

  18. Lyoluminescence of irradiated carbohydrates - the role of dissolution rate and oxygen

    International Nuclear Information System (INIS)

    Baugh, P.J.; Laflin, P.

    1980-01-01

    The lyoluminescent emission from γ-irradiated carbohydrates is shown to be strictly controlled by the rate of dissolution of the solid and the availability of oxygen for reaction during dissolution. These effects are explained in terms of oxidation of trapped radicals diffusing from the dissolving carbohydrate which react in an 'active volume' set up at the onset of dissolution at the crystal-water interface. At irradiation doses greater than 82.5 krad for mannose there is a suppression of the emission which results from an incomplete oxidation of the diffusing radicals due to insufficient O 2 in the active volume leading to a reaction involving unoxidised radicals and peroxyl radicals which are believed to be the precursors of the emission. This reaction is suppressed when the oxygen supply to the 'active volume' is increased. This can be achieved by increasing the oxygen content of the injector gas and indirectly by decreasing the solubility of the carbohydrate. Under these conditions the linear dose range of the lyoluminescence response is extended to ca. 330 krad close to the dose at which trapped radicals saturate in the irradiated solid carbohydrate. Although lyoluminescence is a liquid surface-layer effect as expected the generation of the emission is greatly influenced by oxygen present in the injection atmosphere. Quenching of lyoluminescence by adding peroxyl radical quenchers Cu(II) ions and hydroquinone, suggests that the reaction involving these quenchers also occurs in the 'active volume'. The results generally can be interpreted in terms of a diffusion model. (author)

  19. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.

    2000-01-01

    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  20. Fractional-Order Control of a Nonlinear Time-Delay System: Case Study in Oxygen Regulation in the Heart-Lung Machine

    Directory of Open Access Journals (Sweden)

    S. J. Sadati

    2012-01-01

    Full Text Available A fractional-order controller will be proposed to regulate the inlet oxygen into the heart-lung machine. An analytical approach will be explained to satisfy some requirements together with practical implementation of some restrictions for the first time. Primarily a nonlinear single-input single-output (SISO time-delay model which was obtained previously in the literature is introduced for the oxygen generation process in the heart-lung machine system and we will complete it by adding some new states to control it. Thereafter, the system is linearized using the state feedback linearization approach to find a third-order time-delay dynamics. Consequently classical PID and fractional order controllers are gained to assess the quality of the proposed technique. A set of optimal parameters of those controllers are achieved through the genetic algorithm optimization procedure through minimizing a cost function. Our design method focuses on minimizing some famous performance criterions such as IAE, ISE, and ITSE. In the genetic algorithm, the controller parameters are chosen as a random population. The best relevant values are achieved by reducing the cost function. A time-domain simulation signifies the performance of controller with respect to a traditional optimized PID controller.

  1. Non-Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts.

    Science.gov (United States)

    Hirai, Shigeto; Yagi, Shunsuke; Chen, Wei-Tin; Chou, Fang-Cheng; Okazaki, Noriyasu; Ohno, Tomoya; Suzuki, Hisao; Matsuda, Takeshi

    2017-10-01

    The oxygen evolution reaction (OER) plays a key role in emerging energy conversion technologies such as rechargeable metal-air batteries, and direct solar water splitting. Herein, a remarkably low overpotential of ≈150 mV at 10 mA cm -2 disk in alkaline solutions using one of the non-Fermi liquids, Hg 2 Ru 2 O 7 , is reported. Hg 2 Ru 2 O 7 displays a rapid increase in current density and excellent durability as an OER catalyst. This outstanding catalytic performance is realized through the coexistence of localized d-bands with the metallic state that is unique to non-Fermi liquids. The findings indicate that non-Fermi liquids could greatly improve the design of highly active OER catalysts.

  2. Stunted PFC activity during neuromuscular control under stress with obesity.

    Science.gov (United States)

    Mehta, Ranjana K

    2016-02-01

    Obesity is an established risk factor for impaired cognition, which is primarily regulated by the prefrontal cortex (PFC). However, very little is known about the neural pathways that underlie obesity-related declines in neuromuscular control, particularly under stress. The purpose of this study was to determine the role of the PFC on neuromuscular control during handgrip exertions under stress with obesity. Twenty non-obese and obese young adults performed submaximal handgrip exertions in the absence and presence of a concurrent stressful task. Primary dependent measures included oxygenated hemoglobin (HbO2: a measure of PFC activity) and force fluctuations (an indicator of neuromuscular control). Higher HbO2 levels in the PFC were observed in the non-obese compared to the obese group (P = 0.009). In addition, higher HbO2 levels were observed in the stress compared to the control condition in the non-obese group; however, this trend was reversed in the obese group (P = 0.043). In general, force fluctuations increased by 26% in the stress when compared to the control condition (P = 0.001) and obesity was associated with 39% greater force fluctuation (P = 0.024). Finally, while not significant, obesity-related decrements in force fluctuations were magnified under stress (P = 0.063). The current study provides the first evidence that neuromuscular decrements with obesity were associated with impaired PFC activity and this relationship was augmented in stress conditions. These findings are important because they provide new information on obesity-specific changes in brain function associated with neuromuscular control since the knowledge previously focused largely on obesity-specific changes in peripheral muscle capacity.

  3. Solubility and diffusion coefficient of oxygen in silicon

    International Nuclear Information System (INIS)

    Itoh, Yoshiko; Nozaki, Tadashi

    1985-01-01

    The solubility and diffusion coefficient of oxygen in silicon between 1000 0 C and 1375 0 C were examined by charged particle activation analysis with the 16 O( 3 He,p) 18 F reaction, in which oxygen was activated with an equal probability over the depth of up to 250μm by a specially devised apparatus. Silicon wafers of known histories were heated in oxygen or argon for 12 to 473 hours, and the resultant oxygen depth profiles were determined by the activation, subsequent stepwise etching and 18 F activity measurement. The solubility thus obtained is given as 9.3 x 10 21 exp[-27.6kcal mol -1 /RT] at.cm -3 ; the diffusion coefficient has been found to be approximated as 3.2 exp[-67.1kcal mol -1 /RT] cm 2 s -1 over 1150 0 C, under which the apparent activation energy seems to decrease with decrease of temperature. (author)

  4. Effect of oxygen potential on sulphur dioxide activation of oil sands fluid coke and characteristics of activated coke in mercury adsorption

    International Nuclear Information System (INIS)

    Morris, E.A.; Jia, C.Q.; Tong, S.

    2007-01-01

    A sulphur-impregnated activated carbon (SIAC) technology was modified for use in copper smelters in order to mitigate mercury and sulphur dioxide (SO 2 ) emissions. Elemental sulphur was captured as a co-product. The study examined the feasibility of reducing levels of SO 2 using fluid coke in the copper smelter flue. SIAC properties were optimized in order to capture vapour phase mercury. Raw fluid coke samples were used to measure SO 2 flow rates. Gas composition was varied to mimic concentrations found during normal operation of copper converters. Gas chromatography was used to analyze reactions products and to prove the hypothesis that mercury capacity is influenced by the oxygen potential of the activation gas due to changes in surface sulphur types developed from reduced sulphur species. Results of the study showed that oxygen levels at 5 per cent did not play a significant role in pore development. It was concluded that increased residence times contributed to reductions in SO 2 and elemental S yields. 13 refs., 1 tab., 7 figs

  5. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen

    International Nuclear Information System (INIS)

    Xia Xinghui; Li Gongchen; Yang Zhifeng; Chen Yumin; Huang, Gordon H.

    2009-01-01

    With an Xe arc lamp house as simulated sunlight, the influences of fulvic acid (FA) concentration and origins on photodegradation of acenaphthene, fluorine, phenanthrene, fluoranthene and pyrene in aqueous solution have been studied. Similar effects of FAs, collected from five places around China, on polycyclic aromatic hydrocarbon (PAH) photodegradation have been observed. Active oxygen was of significance in PAH photodegradation with the presence of FAs. For systems with 1.25 mg L -1 FAs, the contributions of ·OH to PAH photodegradation rates were from 33% to 69%. FAs had two opposite effects, i.e., stimulating the generation of active oxygen and advancing PAH photodegradation; competing with PAHs for energy and photons and restraining PAH photodegradation. Generally, photodegradation rates of the 5 PAHs decreased with the increase of FAs concentration; except fluoranthene and pyrene were advanced in solutions with low FA concentration. The influences of FA concentration on PAH photodegradation were more significant than FA origin. - Influences of fulvic acid (FA) concentration on PAH photodegradation were more significant than FA origin, and active oxygen played an important role in PAH photodegradation

  6. Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution

    Czech Academy of Sciences Publication Activity Database

    Busch, M.; Halck, N. B.; Kramm, U. I.; Siehrostami, S.; Krtil, Petr; Rossmeisl, J.

    2016-01-01

    Roč. 29, NOV 2016 (2016), s. 126-135 ISSN 2211-2855 Institutional support: RVO:61388955 Keywords : hydrogen evolution * catalytic-activity * Electrocatalysis * Oxygen reduction * Oxygen evolution * Volcano * Density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.343, year: 2016

  7. Student Responses to a Hands-On Kinesthetic Lecture Activity for Learning about the Oxygen Carrying Capacity of Blood

    Science.gov (United States)

    Breckler, Jennifer; Yu, Justin R.

    2011-01-01

    This article describes a new hands-on, or "kinesthetic," activity for use in a physiology lecture hall to help students comprehend an important concept in cardiopulmonary physiology known as oxygen carrying capacity. One impetus for designing this activity was to address the needs of students who have a preference for kinesthetic…

  8. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Gong, Xia [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Dafang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhang, Jun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2016-12-15

    Graphical abstract: Ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities (NDs) catalysts, are successfully synthesized by using a facile method. The as-obtained ternary catalysts manifest superior catalytic activity and stability both in terms of surface and mass specific activities toward the methanol oxidation and oxygen reduction reactions, as compared to the binary catalysts and the commercial Pt/C catalysts. - Highlights: • Ternary RuMPt catalysts are synthesized by using a facile method. • The catalysts manifest superior catalytic activity towards the MOR and ORR. • High activities are attributed to enhanced electron density and synergistic effects. - Abstract: The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg{sup −1}) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  9. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    Science.gov (United States)

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Report on the FY 1999 investigational survey on the activation of oxygen electrode by ion implantation; 1999 nendo ion chunyuho ni yoru sanso denkyoku no kasseika ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The oxygen electrode is important as the base electrode for water electrolysis and fuel cell, but to move it, overvoltage (activated energy) in addition to equilibrium voltage is necessary, which leads to the lowering of energy efficiency. By forming the active spot by ion implantation, the lowering of overvoltage was studied. The implantation of Ru{sup +} ion in Ruthenium dioxide thin film electrode reduced the oxygen generating overvoltage by 15-20mV. Even in the oxygen reduction, activity was also increased. The chemical composition of thin film does not change by ion implantation. The increase in activity is based on a physical change which is called the surface defect formation. The layer of ion implantation is composed of microcrystals, which is thought to contribute to the formation of any active spot. Ions were implanted in Pt electrode as a practical use material, and even in the oxygen reduction of Pt, a possibility of heightening activity by ion implantation was admitted even in the oxygen reduction of Pt. The generation of high activity oxygen by ion plantation and development of oxygen reduction electrode were established as one method as a rule. (NEDO)

  11. Mars oxygen production system design

    Science.gov (United States)

    Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.

    1989-01-01

    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.

  12. Oxygen therapy for cluster headache

    DEFF Research Database (Denmark)

    Petersen, Anja S; Barloese, Mads Cj; Lund, Nunu Lt

    2017-01-01

    -controlled, crossover inpatient study, and 102 CH attacks were treated with 100% oxygen delivered by demand valve oxygen (DVO), O2ptimask or simple mask (15 liters/min) or placebo delivered by DVO for 15 minutes. Primary endpoint: Two-point decrease of pain on a five-point rating scale within 15 minutes. Results Only...

  13. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  14. Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition.

    Science.gov (United States)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin

    2017-12-27

    In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.

  15. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-01-01

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts

  16. Investigation of the electrocatalytic activity for oxygen reduction of sputter deposited mixed metal films

    International Nuclear Information System (INIS)

    Schumacher, L.C.; Holzheuter, I.B.; Nucara, M.C.; Dignam, M.J.

    1989-01-01

    Sputter-deposited films of silver with lead, manganese and nickel have been studied as possible oxygen reduction electrocatalysts using cyclic voltammetry, rotating disc studies, steady-state polarization and Auger analysis. In general, the Ag-Pb and Ag-Mn films display superior electrocatalytic activity for O 2 reduction, while the Ag-Ni films' performance is inferior to that of pure Ag. For the Ag-Pb films, which show the highest electrocatalytic activity, the mixed metal films display oxidation-reduction behavior which is not simply a superposition of that of the separate metals, and suggests a mechanism for the improved behavior

  17. Novel Co3O4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction (OER)

    Science.gov (United States)

    Yang, Xiaobing; Chen, Juan; Chen, Yuqing; Feng, Pingjing; Lai, Huixian; Li, Jintang; Luo, Xuetao

    2018-03-01

    Herein, Co3O4 nanoparticles/nitrogen-doped carbon (Co3O4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precursors, which were then pyrolyzed in air to obtain Co3O4/NPC composites. When applied as catalysts for the oxygen evolution reaction (OER), the M-Co3O4/NPC composites derived from the flower-like ZIF-67 showed superior catalytic activities than those derived from the rhombic dodecahedron and hollow spherical ZIF-67. The former M-Co3O4/NPC composite displayed a small over-potential of 0.3 V, low onset potential of 1.41 V, small Tafel slope of 83 mV dec-1, and a desirable stability. (94.7% OER activity was retained after 10 h.) The excellent performance of the flower-like M-Co3O4/NPC composite in the OER was attributed to its favorable structure. [Figure not available: see fulltext.

  18. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Clinical evidence on high flow oxygen therapy and active humidification in adults

    Directory of Open Access Journals (Sweden)

    C. Gotera

    2013-09-01

    Full Text Available Recently there has been growing interest in an alternative to conventional oxygen therapy: the heated, humidified high flow nasal cannula oxygen therapy (HFNC. A number of physiological effects have been described with HFNC: pharyngeal dead space washout, reduction of nasopharyngeal resistance, a positive expiratory pressure effect, an alveolar recruitment, greater humidification, more comfort and better tolerance by the patient, better control of FiO2 and mucociliary clearance. There is limited experience of HFNC in adults. There are no established guidelines or decision-making pathways to guide use of the HFNC therapy for adults. In this article we review the existing evidence of HFNC oxygen therapy in adult patients, its advantages, limitations and the current literature on clinical applications. Further research is required to determine the long-term effect of this therapy and identify the adult patient population to whom it is most beneficial. Resumo: Recentemente, uma alternativa à oxigenoterapia convencional tem recebido atenção crescente: trata-se da oxigenoterapia humidificada de alto débito com cânulas nasais (HFNC. Um número de efeitos fisiológicos têm sido descritos: «lavagem» do espaço morto faríngeo, redução da resistência da nasofarige, efeito tipo «CPAP», recrutamento alveolar, maior humidificação, maior conforto e melhor tolerância do doente, melhor controle do FiO2 e do «clearance» mucociliar. A experiência com HFNC em adultos ainda é limitada e de momento não há «guidelines» para o seu uso. Neste artigo revemos a evidência existente do uso da HFNC em adultos, as suas vantagens, limitações e a literatura mais recente sobre as suas aplicações clínicas. Mais investigação será necessária para determinar os efeitos a longo prazo desta terapêutica e identificar quais as populações em que é mais benéfica. Keywords: High flow nasal cannula, Non-invasive ventilation, Gas exchange, Respiratory

  20. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  1. Negative impact of oxygen molecular activation on Cr(VI) removal with core–shell Fe@Fe2O3 nanowires

    International Nuclear Information System (INIS)

    Mu, Yi; Wu, Hao; Ai, Zhihui

    2015-01-01

    Highlights: • The presence of oxygen inhibited Cr(VI) removal efficiency with nZVI by near 3 times. • Cr(VI) removal with nZVI was related to adsorption, reduction, co-precipitation, and adsorption reactions. • Molecular oxygen activation competed donor electrons from Fe 0 core and surface bound Fe(II) of nZVI. • Thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell of nZVI leaded to the electron transfer inhibition. - Abstract: In this study, we demonstrate that the presence of oxygen molecule can inhibit Cr(VI) removal with core–shell Fe@Fe 2 O 3 nanowires at neutral pH of 6.1. 100% of Cr(VI) removal was achieved by the Fe@Fe 2 O 3 nanowires within 60 min in the anoxic condition, in contrast, only 81.2% of Cr(VI) was sequestrated in the oxic condition. Removal kinetics analysis indicated that the presence of oxygen could inhibit the Cr(VI) removal efficiency by near 3 times. XRD, SEM, and XPS analysis revealed that either the anoxic or oxic Cr(VI) removal was involved with adsorption, reduction, co-precipitation, and re-adsorption processes. More Cr(VI) was bound in a reduced state of Cr(III) in the anoxic process, while a thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell, leading to inhibiting the electron transfer, was found under the oxic process. The negative impact of oxygen molecule was attributed to the oxygen molecular activation which competed with Cr(VI) adsorbed for the consumption of donor electrons from Fe 0 core and ferrous ions bound on the iron oxides surface under the oxic condition. This study sheds light on the understanding of the fate and transport of Cr(VI) in oxic and anoxic environment, as well provides helpful guide for optimizing Cr(VI) removal conditions in real applications

  2. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products.

    Science.gov (United States)

    Bernatchez, Stéphanie F; Tucker, Joseph; Chiffoleau, Gwenael

    2017-11-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed.

  3. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    Science.gov (United States)

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  5. Influence of gamma radiation for controlling Brevipalpus phoenicis (Acari: Tenuipalpidae) (Geijskes, 1939) in oxygen atmosphere

    International Nuclear Information System (INIS)

    Machi, Andre R.; Arthur, Valter

    2013-01-01

    Brevipalpus phoenicis mite are controlled across of solutions acaricides, which are chemicals and leave residues in addition there is the difficulty of an effective pulverization due to the small size of the mite, the objective of this study was to evaluate of the influence of oxygen combined with gamma radiation on B.phoenicis as alternative control. Were used 70 mites per arena in 9 reps on 3 treatments at doses of 0 (control), 200 and 300 Gy. For irradiation, the leaves containing the mites, were cut and placed on bottles with bladder tied with ribbons and strings, before was put pure oxygen and the bottle was then sealed, these were taken to a gamma irradiator of Cobalt 60-type Gammacell 220, under a dose rate of 0.381 kGy/hour located in the CENA/USP. Was evaluated daily (eggs, nymphs and adults) of the mites observed viability, fertility and mortality across of the analysis of variance design with completely randomized design using the Statistical Analysis System (SAS) version 9.2® and by the Tukey test, the verification of means. After 22 days of irradiation the hatchability in 200 Gy dose was 41% after 3 days and 57% in control dose, this differed statistically of the other doses, where the nymphs arrived to the adult stage, which did not occurred in the 200 Gy dose and higher due to mutations, generated by the gamma radiation. In 300 Gy not was observed the presence of nymphs and eggs, being the sterilizing dose for all stages of the B.phoenicis. (author)

  6. Influence of gamma radiation for controlling Brevipalpus phoenicis (Acari: Tenuipalpidae) (Geijskes, 1939) in oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Andre R., E-mail: rica_machi@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN- SP), Sao Paulo, SP (Brazil); Arthur, Valter, E-mail: arthur@cena.usp.br [Centro de Energia na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Brevipalpus phoenicis mite are controlled across of solutions acaricides, which are chemicals and leave residues in addition there is the difficulty of an effective pulverization due to the small size of the mite, the objective of this study was to evaluate of the influence of oxygen combined with gamma radiation on B.phoenicis as alternative control. Were used 70 mites per arena in 9 reps on 3 treatments at doses of 0 (control), 200 and 300 Gy. For irradiation, the leaves containing the mites, were cut and placed on bottles with bladder tied with ribbons and strings, before was put pure oxygen and the bottle was then sealed, these were taken to a gamma irradiator of Cobalt 60-type Gammacell 220, under a dose rate of 0.381 kGy/hour located in the CENA/USP. Was evaluated daily (eggs, nymphs and adults) of the mites observed viability, fertility and mortality across of the analysis of variance design with completely randomized design using the Statistical Analysis System (SAS) version 9.2® and by the Tukey test, the verification of means. After 22 days of irradiation the hatchability in 200 Gy dose was 41% after 3 days and 57% in control dose, this differed statistically of the other doses, where the nymphs arrived to the adult stage, which did not occurred in the 200 Gy dose and higher due to mutations, generated by the gamma radiation. In 300 Gy not was observed the presence of nymphs and eggs, being the sterilizing dose for all stages of the B.phoenicis. (author)

  7. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.

    2003-01-01

    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  8. Oxygen sensitivity of krypton and Lyman-alpha hygrometers

    NARCIS (Netherlands)

    Dijk, van A.; Kohsiek, W.; Bruin, de H.A.R.

    2003-01-01

    The oxygen sensitivity of krypton and Lyman-¿ hygrometers is studied. Using a dewpoint generator and a controlled nitrogen/oxygen flow the extinction coefficients of five hygrometers associated with the third-order Taylor expansion of the Lambert¿Beer law around reference conditions for oxygen and

  9. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    OpenAIRE

    Laurent Chazalviel; Jean-Eric Blatteau; Nicolas Vallée; Jean-Jacques Risso; Stéphane Besnard; Jacques H Abraini

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxy...

  10. Inorganic Polyphosphates Regulate Hexokinase Activity and Reactive Oxygen Species Generation in Mitochondria of Rhipicephalus (Boophilus) microplus Embryo

    Science.gov (United States)

    Fraga, Amanda; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Menezes, Jackson; da Silva Vaz Jr, Itabajara; Logullo, Carlos; da Fonseca, Rodrigo Nunes; Campos, Eldo

    2013-01-01

    The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos. PMID:23983617

  11. Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Hypoxia-inducible factors (HIFs play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.

  12. Impact of hypothalamic reactive oxygen species in the control of energy metabolism and food intake

    Directory of Open Access Journals (Sweden)

    Anne eDrougard

    2015-02-01

    Full Text Available Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC and agouti-related protein (AgRP/neuropeptide Y (NPY neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,..., neurotransmitters and nutrients (glucose, lipids,.... The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes.In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  13. Determination of oxygen impurity in high purity materials by charged particle activation analysis using alpha projectiles

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Pal, S.; Arunachalam, J.; Verma R.; Gangadharan, S.

    1992-01-01

    40 MeV α-particles have been used to determine oxygen impurity at ppm levels in silicon, copper, and stainless steel, through the radiochemical separation of 18 F from the matrix. The separation of 18 F has been carried out by two techniques, viz. distillation of H 2 SiF 6 and precipitation of KBF 4 and some modification has been applied in the separation, depending on the nature of interferences from the matrix. Instrumental approach was also carried out to determine the oxygen impurity at ≥ 100 ppm in Si matrix because this approach is not possible in Cu and stainless steel samples due to matrix activity. (author) 10 refs.; 1 fig.; 5 tabs

  14. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays

    Directory of Open Access Journals (Sweden)

    Purva D. Bhatter

    2016-01-01

    Full Text Available Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome, Ocimum sanctum L. (leaf, Piper nigrum L. (seed, and Pueraria tuberosa DC. (tuber were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549 infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous and A. calamus (aqueous and ethanol extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity.

  15. Molecular and Cell Mechanisms of Singlet Oxygen Effect on Biosystems

    OpenAIRE

    Martusevich А.А.; Peretyagin S.P.; Martusevich А.К.

    2012-01-01

    There has been considered a poorly studied form of activated oxygen — singlet oxygen. Its physicochemical properties (electron configuration of a molecule, reactive capacity, features) are analyzed, and enzymic and nonenzymic ways of singlet oxygen generation in body are specified. There are shown in detail biological effects of the compound as a regulator of cell activity including that determining the mechanism of apoptosis initiation. The relation of singlet oxygen and photodynamic effect ...

  16. The transition from day-to-night activity is a risk factor for the development of CNS oxygen toxicity in the diurnal fat sand rat (Psammomys obesus).

    Science.gov (United States)

    Eynan, Mirit; Biram, Adi; Mullokandov, Michael; Kronfeld-Schor, Noga; Paz-Cohen, Rotem; Menajem, Dvir; Arieli, Yehuda

    2017-01-01

    Performance and safety are impaired in employees engaged in shift work. Combat divers who use closed-circuit oxygen diving apparatus undergo part of their training during the night hours. The greatest risk involved in diving with such apparatus is the development of central nervous system oxygen toxicity (CNS-OT). We investigated whether the switch from day-to-night activity may be a risk factor for the development of CNS-OT using a diurnal animal model, the fat sand rat (Psammomys obesus). Animals were kept on a 12:12 light-dark schedule (6 a.m. to 6 p.m. at 500 lx). The study included two groups: (1) Control group: animals were kept awake and active during the day, between 09:00 and 15:00. (2) Experimental group: animals were kept awake and active during the night, between 21:00 and 03:00, when they were exposed to dim light in order to simulate the conditions prevalent during combat diver training. This continued for a period of 3 weeks, 5 days a week. On completion of this phase, 6-sulphatoxymelatonin (6-SMT) levels in urine were determined over a period of 24 h. Animals were then exposed to hyperbaric oxygen (HBO). To investigate the effect of acute melatonin administration, melatonin (50 mg/kg) or its vehicle was administered to the animals in both groups 20 min prior to HBO exposure. After the exposure, the activity of superoxide dismutase, catalase and glutathione peroxidase was measured, as were the levels of neuronal nitric oxide synthase (nNOS) and overall nitrotyrosylation in the cortex and hippocampus. Latency to CNS-OT was significantly reduced after the transition from day-to-night activity. This was associated with alterations in the level of melatonin metabolites secreted in the urine. Acute melatonin administration had no effect on latency to CNS-OT in either of the groups. Nevertheless, the activity of superoxide dismutase and catalase, as well as nitrotyrosine and nNOS levels, were altered in the hippocampus following melatonin

  17. Activated Macrophages as a Novel Determinant of Tumor Cell Radioresponse: The Role of Nitric Oxide-Mediated Inhibition of Cellular Respiration and Oxygen Sparing

    International Nuclear Information System (INIS)

    Jiang Heng; De Ridder, Mark; Verovski, Valeri N.; Sonveaux, Pierre; Jordan, Benedicte F.; Law, Kalun; Monsaert, Christinne; Van den Berge, Dirk L.; Verellen, Dirk; Feron, Olivier; Gallez, Bernard; Storme, Guy A.

    2010-01-01

    Purpose: Nitric oxide (NO), synthesized by the inducible nitric oxide synthase (iNOS), is known to inhibit metabolic oxygen consumption because of interference with mitochondrial respiratory activity. This study examined whether activation of iNOS (a) directly in tumor cells or (b) in bystander macrophages may improve radioresponse through sparing of oxygen. Methods and Materials: EMT-6 tumor cells and RAW 264.7 macrophages were exposed to bacterial lipopolysaccharide plus interferon-γ, and examined for iNOS expression by reverse transcription polymerase chain reaction, Western blotting and enzymatic activity. Tumor cells alone, or combined with macrophages were subjected to metabolic hypoxia and analyzed for radiosensitivity by clonogenic assay, and for oxygen consumption by electron paramagnetic resonance and a Clark-type electrode. Results: Both tumor cells and macrophages displayed a coherent picture of iNOS induction at transcriptional/translational levels and NO/nitrite production, whereas macrophages showed also co-induction of the inducible heme oxygenase-1, which is associated with carbon monoxide (CO) and bilirubin production. Activation of iNOS in tumor cells resulted in a profound oxygen sparing and a 2.3-fold radiosensitization. Bystander NO-producing, but not CO-producing, macrophages were able to block oxygen consumption by 1.9-fold and to radiosensitize tumor cells by 2.2-fold. Both effects could be neutralized by aminoguanidine, a metabolic iNOS inhibitor. An improved radioresponse was clearly observed at macrophages to tumor cells ratios ranging between 1:16 to 1:1. Conclusions: Our study is the first, as far as we are aware, to provide evidence that iNOS may induce radiosensitization through oxygen sparing, and illuminates NO-producing macrophages as a novel determinant of tumor cell radioresponse within the hypoxic tumor microenvironment.

  18. Control of nitrification and denitrification by means of oxygen measurement in activated sludge; Steuerung der Nitrifikation und Denitrifikation mittels Sauerstoffmessung im Belebungsbecken

    Energy Technology Data Exchange (ETDEWEB)

    Svardal, K; Kroiss, H

    1998-12-31

    As the simulation results show, controlling nitrification/denitrification by means of the oxygen content is a very effective method. Its big advantage is that the concentration of O{sub 2} can be very reliably measured. In comparison with online analysis units, O{sub 2} probes demand little maintenance and are inexpensive; so, each measuring point can be supplied with its own probe. O{sub 2} measurement is indispensable also with other control strategies. It would make sense, at least at larger plants, to monitor additionally the concentration of ammonium, a parameter which makes for a higher safety margin. (orig./SR) [Deutsch] Die Simulationsergebnisse zeigen, dass die Steuerung der Nitrifikation/Denitrifikation nach dem Sauerstoffgehalt sehr gute Resultate ergibt. Der grosse Vorteil dieser Art der Steuerung besteht darin, dass die O{sub 2}-Konzentration sich sehr zuverlaessig messen laesst. O{sub 2}-Sonden sind im Vergleich zu online-Analysatoren wartungsarm und preisguenstig, so dass auch eine reduntante Ausfuehrung jeder Messstelle vertretbar ist. Auf die O{sub 2}-Messung kann auch bei anderen Steuerstrategien nicht verzichtet werden. Eine sinnvolle Ergaenzung waere zumindest bei groesseren Anlagen eine Ueberwachung der Ammoniumkonzentration wobei dieser Messwert vor allen Dingen der Sicherheit dient. (orig./SR)

  19. Control of nitrification and denitrification by means of oxygen measurement in activated sludge; Steuerung der Nitrifikation und Denitrifikation mittels Sauerstoffmessung im Belebungsbecken

    Energy Technology Data Exchange (ETDEWEB)

    Svardal, K.; Kroiss, H.

    1997-12-31

    As the simulation results show, controlling nitrification/denitrification by means of the oxygen content is a very effective method. Its big advantage is that the concentration of O{sub 2} can be very reliably measured. In comparison with online analysis units, O{sub 2} probes demand little maintenance and are inexpensive; so, each measuring point can be supplied with its own probe. O{sub 2} measurement is indispensable also with other control strategies. It would make sense, at least at larger plants, to monitor additionally the concentration of ammonium, a parameter which makes for a higher safety margin. (orig./SR) [Deutsch] Die Simulationsergebnisse zeigen, dass die Steuerung der Nitrifikation/Denitrifikation nach dem Sauerstoffgehalt sehr gute Resultate ergibt. Der grosse Vorteil dieser Art der Steuerung besteht darin, dass die O{sub 2}-Konzentration sich sehr zuverlaessig messen laesst. O{sub 2}-Sonden sind im Vergleich zu online-Analysatoren wartungsarm und preisguenstig, so dass auch eine reduntante Ausfuehrung jeder Messstelle vertretbar ist. Auf die O{sub 2}-Messung kann auch bei anderen Steuerstrategien nicht verzichtet werden. Eine sinnvolle Ergaenzung waere zumindest bei groesseren Anlagen eine Ueberwachung der Ammoniumkonzentration wobei dieser Messwert vor allen Dingen der Sicherheit dient. (orig./SR)

  20. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  1. Technical Update: Johnson Space Center system using a solid electrolytic cell in a remote location to measure oxygen fugacities in CO/CO2 controlled-atmosphere furnaces

    Science.gov (United States)

    Jurewicz, A. J. G.; Williams, R. J.; Le, L.; Wagstaff, J.; Lofgren, G.; Lanier, A.; Carter, W.; Roshko, A.

    1993-01-01

    Details are given for the design and application of a (one atmosphere) redox-control system. This system differs from that given in NASA Technical Memorandum 58234 in that it uses a single solid-electrolytic cell in a remote location to measure the oxygen fugacities of multiple CO/CO2 controlled-atmosphere furnaces. This remote measurement extends the range of sample-furnace conditions that can be measured using a solid-electrolytic cell, and cuts costs by extending the life of the sensors and by minimizing the number of sensors in use. The system consists of a reference furnace and an exhaust-gas manifold. The reference furnace is designed according to the redox control system of NASA Technical Memorandum 58234, and any number of CO/CO2 controlled-atmosphere furnaces can be attached to the exhaust-gas manifold. Using the manifold, the exhaust gas from individual CO/CO2 controlled atmosphere furnaces can be diverted through the reference furnace, where a solid-electrolyte cell is used to read the ambient oxygen fugacity. The oxygen fugacity measured in the reference furnace can then be used to calculate the oxygen fugacity in the individual CO/CO2 controlled-atmosphere furnace. A BASIC computer program was developed to expedite this calculation.

  2. Integration of oxygen signaling at the consensus HRE.

    Science.gov (United States)

    Wenger, Roland H; Stiehl, Daniel P; Camenisch, Gieri

    2005-10-18

    The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.

  3. Surfactant-controlled synthesis of Pd/Ce{sub 0.6}Zr{sub 0.4}O{sub 2} catalyst for NO reduction by CO with excess oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.F. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico); Departamento de Ingenieria Quimica, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Gonzalez, G. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico); Wang, J.A. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico)]. E-mail: jwang@ipn.mx; Norena, L.E. [Departamento de Ingenieria Quimica, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Toledo, A. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Castillo, S. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Moran-Pineda, M. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico)

    2005-04-30

    For the first time, this work reports a surfactant-controlled synthetic method to obtain a nanophase of mesoporous ceria-zirconia solid solution containing cationic defects in the crystalline structure. The incorporation of a cationic surfactant (myristyltrimethylammonium bromide) into the ceria-zirconia solid network not only controlled the pore diameter distribution but also induced creation of the lattice defect. Ceria-zirconia solid solution showed crystal microstrain and structural distortion that varied with the calcination temperature. Compared to pure ceria, the addition of zirconium to the ceria promoted the bulk oxygen reducibility and enhanced the thermal stability of the solid. Hydrogen could be stored into or released from the PdO/Ce{sub 0.6}Zr{sub 0.4}O{sub 2} catalyst during the TPR procedure, which is associated to the formation/decomposition of a PdH{sub x} phase, due to the hydrogen dissociation catalyzed by metallic Pd. At cool start of reaction, NO reduction by CO with excess oxygen over the Pd/Ce{sub 0.6}Zr{sub 0.4}O{sub 2} catalyst showed selectivity around 100% to N{sub 2}. A competition between NO reduction by CO and CO oxidation by O{sub 2} was observed: at reaction temperatures below 200 deg. C, NO inhibited CO oxidation activity; however, at reaction temperatures above 200 deg. C, high activity of CO oxidation resulted in an inhibition effect on NO reduction.

  4. Oxygen - A Four Billion Year History

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    The air we breathe is twenty-one percent oxygen, an amount higher than on any other known world. While we may take our air for granted, Earth was not always an oxygenated planet. How did it become this way? Oxygen is the most current account of the history of atmospheric oxygen on Earth. Donald...... Canfield--one of the world's leading authorities on geochemistry, earth history, and the early oceans--covers this vast history, emphasizing its relationship to the evolution of life and the evolving chemistry of the Earth. With an accessible and colorful first-person narrative, he draws from a variety...... of fields, including geology, paleontology, geochemistry, biochemistry, animal physiology, and microbiology, to explain why our oxygenated Earth became the ideal place for life. Describing which processes, both biological and geological, act to control oxygen levels in the atmosphere, Canfield traces...

  5. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Jensen, Marlene Mark; Contreras, Sergio

    2011-01-01

    Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ,0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact...... at non-detectable concentrations of O2, while anaerobic NO3 2 reduction was fully active up to at least 25 mmol L21 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily...... controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3 2 reduction. With anammox bacteria in the marine environment being active at O2 levels ,20 times higher than those known to inhibit their cultured counterparts...

  6. Quantitative evaluation of the mitochondrial proteomes of Drosophila melanogaster adapted to extreme oxygen conditions.

    Directory of Open Access Journals (Sweden)

    Songyue Yin

    Full Text Available Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively, examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ. A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.

  7. Adsorption of volatile sulphur compounds onto modified activated carbons: Effect of oxygen functional groups

    International Nuclear Information System (INIS)

    Vega, Esther; Lemus, Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Palomar, José; Martin, María J.

    2013-01-01

    Highlights: • HNO 3 oxidation incorporates a higher amount of functionalities than O 3 oxidation. • The loss of porosity is compensated by the massive incorporation of oxygen groups. • HNO 3 oxidation increases OH groups in AC and the ETM and DMS adsorption capacities. • The oxygen functional groups in the AC surface did not affect the DMDS adsorption. • COSMO-RS predicts the important role of OH groups for VSC adsorption. -- Abstract: The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions

  8. Adsorption of volatile sulphur compounds onto modified activated carbons: Effect of oxygen functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Esther, E-mail: esther@lequia.udg.cat [LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Girona, Catalonia E-17071 (Spain); Lemus, Jesús [Universidad de Madrid, Sección de Ingeniería Química, Cantoblanco, Madrid E-28049 (Spain); Anfruns, Alba; Gonzalez-Olmos, Rafael [LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Girona, Catalonia E-17071 (Spain); Palomar, José [Universidad de Madrid, Sección de Ingeniería Química, Cantoblanco, Madrid E-28049 (Spain); Martin, María J. [LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Girona, Catalonia E-17071 (Spain)

    2013-08-15

    Highlights: • HNO{sub 3} oxidation incorporates a higher amount of functionalities than O{sub 3} oxidation. • The loss of porosity is compensated by the massive incorporation of oxygen groups. • HNO{sub 3} oxidation increases OH groups in AC and the ETM and DMS adsorption capacities. • The oxygen functional groups in the AC surface did not affect the DMDS adsorption. • COSMO-RS predicts the important role of OH groups for VSC adsorption. -- Abstract: The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions.

  9. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  10. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  11. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  12. Control of oxygen octahedral rotation in BiFeO3 films using modulation of SrRuO3 bottom electrode layer

    Science.gov (United States)

    Lee, Sungsu; Jo, Ji Young

    2015-03-01

    Oxygen octahedral rotation of multiferroic BiFeO3 (BFO) has attracted great attention due to changes of electrical and magnetic properties. Coupling of octahedral rotation in BFO-bottom electrode layer interface remains unexplored. Recently, there have been reported the control of octahedral rotation in SrRuO3 (SRO) film on SrTiO3 (001) substrate by coherently controlling the oxygen pressure during growth and interfacial coupling. Here we demonstrate that the octahedral rotation of BFO film is changed using tetragonal a0a0c- tilted-SRO bottom electrodes. In this work, BFO/SRO heterostructure is fabricated to SrTiO3 (001) single crystal substrates by pulsed laser deposition at different oxygen partial pressures. The rotation pattern of FeO6 and the structural symmetry are identified from half-integer reflections using high-resolution X-ray diffraction. The effects depending on octahedral tilting of BFO films on the magnetic and ferroelectric properties will be presented.

  13. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  14. Formation and Migration of Oxygen Vacancies in SrCoO3 and their effect on Oxygen Evolution Reactions

    KAUST Repository

    Tahini, Hassan A.; Tan, Xin; Schwingenschlö gl, Udo; Smith, Sean C.

    2016-01-01

    Perovskite SrCoO3 is a potentially useful material for promoting the electrocatalytic oxygen evolution reaction, with high activities predicted theoretically and observed experimentally for closely related doped perovskite materials. However, complete stoichiometric oxidation is very difficult to realize experimentally – in almost all cases there are significant fractions of oxygen vacancies present. Here, using first principles calculations we study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic and kinetic points of view. We find that an oxygen vacancy donates two electrons to neighboring Co sites in the form of localized charge. The formation energy of a single vacancy is very low and estimated to be 1.26 eV in the dilute limit. We find that a vacancy is quite mobile with a migration energy of ~0.5 eV. Moreover, we predict that oxygen vacancies exhibit a tendency towards clustering which is in accordance with the material’s ability to form a variety of oxygen-deficient structures. These vacancies have a profound effect on the material’s ability to facilitate OER, increasing the overpotential from ~0.3 V for the perfect material to ~0.7 for defective surfaces. A moderate compressive biaxial strain (2%) is predicted here to increase the surface oxygen vacancy formation energy by ca. 30%, thus reducing the concentration of surface vacancies and thereby preserving the OER activity of the material.

  15. Formation and Migration of Oxygen Vacancies in SrCoO3 and their effect on Oxygen Evolution Reactions

    KAUST Repository

    Tahini, Hassan A.

    2016-07-18

    Perovskite SrCoO3 is a potentially useful material for promoting the electrocatalytic oxygen evolution reaction, with high activities predicted theoretically and observed experimentally for closely related doped perovskite materials. However, complete stoichiometric oxidation is very difficult to realize experimentally – in almost all cases there are significant fractions of oxygen vacancies present. Here, using first principles calculations we study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic and kinetic points of view. We find that an oxygen vacancy donates two electrons to neighboring Co sites in the form of localized charge. The formation energy of a single vacancy is very low and estimated to be 1.26 eV in the dilute limit. We find that a vacancy is quite mobile with a migration energy of ~0.5 eV. Moreover, we predict that oxygen vacancies exhibit a tendency towards clustering which is in accordance with the material’s ability to form a variety of oxygen-deficient structures. These vacancies have a profound effect on the material’s ability to facilitate OER, increasing the overpotential from ~0.3 V for the perfect material to ~0.7 for defective surfaces. A moderate compressive biaxial strain (2%) is predicted here to increase the surface oxygen vacancy formation energy by ca. 30%, thus reducing the concentration of surface vacancies and thereby preserving the OER activity of the material.

  16. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  17. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  18. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.

    2013-11-13

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine oxide nanoparticles exhibited a distinctively high onset potential different from that of the bulky oxide particles.

  19. Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions

    Directory of Open Access Journals (Sweden)

    Farideh Sharifipour

    2013-01-01

    Full Text Available Purpose: To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods: This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V. Results: Mean aqueous PO2 in groups I, II and III was 112.3±6.2, 141.1±20.4, and 170.1±27 mmHg, respectively (P values <0.001 and mean arterial PO2 was 85.7±7.9, 184.6±46, and 379.1±75.9 mmHg, respectively (P values <0.001. Aqueous PO2 was 77.2±9.2 mmHg in group IV and 152.3±10.9 mmHg in group V (P values <0.001. There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001. The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion: Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels.

  20. Improved thrombogenicity on oxygen etched Ti6Al4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Nicholas A. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Smith, Barbara S. [School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Williams, John D. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Popat, Ketul C., E-mail: ketul.popat@colostate.edu [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 (United States)

    2012-07-01

    Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO{sub 2} peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V. - Highlights: Black-Right-Pointing-Pointer Oblique angle oxygen ion etching creates a high quality, uniform oxide surface. Black-Right-Pointing-Pointer Oxygen etched substrates showed fewer adhered platelets. Black-Right-Pointing-Pointer Platelet activation was reduced by the improved oxide surface. Black-Right-Pointing-Pointer Oxygen etched substrates exhibited increased whole blood clotting times. Black-Right-Pointing-Pointer Although clotting reductions were

  1. Activity-Dependent Calcium, Oxygen, and Vascular Responses in a Mouse Model of Familial Hemiplegic Migraine Type 1

    DEFF Research Database (Denmark)

    Khennouf, Lila; Gesslein, Bodil; Lind, Barbara Lykke

    2016-01-01

    it with assessment of local field potentials by electrophysiological recordings, cerebral blood flow by laser Doppler flowmetry, and oxygen consumption with measurement of the oxygen tissue tension. Results: During spreading depression, the evoked increase in cytosolic Ca2+ was larger and faster in FHM1 mice than...... wild-type (WT) mice. It was accompanied by larger increases in oxygen consumption in FHM1 mice, leading to tissue anoxia, but moderate hypoxia, in WT mice. In comparison, before CSD, Ca2+ and hemodynamic responses to somatosensory stimulations were smaller in FHM1 mice than WT mice and almost abolished...... after CSD. The CSD-induced Ca2+ changes were mitigated by the CaV2.1 gating modifier, tert-butyl dihydroquinone. Interpretation: Our findings suggest that tissue anoxia might be a mechanism for prolonged aura in FHM1. Reduced Ca2+ signals during normal network activity in FHM1 as compared to WT mice may...

  2. Influence of glutamate-evoked pain and sustained elevated muscle activity on blood oxygenation in the human masseter muscle.

    Science.gov (United States)

    Suzuki, Shunichi; Arima, Taro; Kitagawa, Yoshimasa; Svensson, Peter; Castrillon, Eduardo

    2017-12-01

    This study aimed to investigate the effect of glutamate-evoked masseter muscle pain on intramuscular oxygenation during rest and sustained elevated muscle activity (SEMA). Seventeen healthy individuals participated in two sessions in which they were injected with glutamate and saline in random order. Each session was divided into three, 10-min periods. During the first (period 1) and the last (period 3) 10-min periods, participants performed five intercalated 1-min bouts of masseter SEMA with 1-min periods of 'rest'. At onset of the second 10-min period, glutamate (0.5 ml, 1 M; Ajinomoto, Tokyo, Japan) or isotonic saline (0.5 ml; 0.9%) was injected into the masseter muscle and the participants kept the muscle relaxed in a resting position for 10 min (period 2). The hemodynamic characteristics of the masseter muscle were recorded simultaneously during the experiment by a laser blood-oxygenation monitor. The results demonstrated that glutamate injections caused significant levels of self-reported pain in the masseter muscle; however, this nociceptive input did not have robust effects on intramuscular oxygenation during rest or SEMA tasks. Interestingly, these findings suggest an uncoupling between acute nociceptive activity and hemodynamic parameters in both resting and low-level active jaw muscles. Further studies are needed to explore the pathophysiological significance of blood-flow changes for persistent jaw-muscle pain conditions. © 2017 Eur J Oral Sci.

  3. Synthesis of mixed-valent {alpha}- and {beta}-NaFe{sub 2}O{sub 3} polymorphs under controlled partial oxygen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Shaun R.; Blakely, Colin K. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Poltavets, Viktor V., E-mail: poltavets@chemistry.msu.edu [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2012-08-15

    Synthesis of mixed valent compounds, especially when multiple polymorphs exist, requires careful control of the preparation conditions. {alpha}- and {beta}-NaFe{sub 2}O{sub 3} polymorphs were synthesized under controlled partial oxygen pressure (pO{sub 2}). pO{sub 2} regions of stability at 850 Degree-Sign C were determined for both phases for the first time. A modified oxygen buffer method was developed for the facile preparation of mixed valent oxides under controlled pO{sub 2}. {beta}-NaFe{sub 2}O{sub 3} is the only known n=2 member of the AM{sub n}O{sub n+1} (A=alkali metal, M=3d metal) rock-salt related homolog series with layered cation ordering. The possibility of new members of the homolog series with other 3d metals is considered. - Graphical abstract: Schematic section of phase composition vs. partial O{sub 2} pressure diagram at 850 Degree-Sign C for Na/Fe=1/2 and structure models of {alpha}- and {beta}-NaFe{sub 2}O{sub 3}. Highlights: Black-Right-Pointing-Pointer {alpha}- and {beta}-NaFe{sub 2}O{sub 3} polymorphs were synthesized under controlled oxygen pressure. Black-Right-Pointing-Pointer {beta}-NaFe{sub 2}O{sub 3} has rock-salt related structure with layered cation ordering. Black-Right-Pointing-Pointer Existence of the rock-salt related homolog series AM{sub n}O{sub n+1} is discussed.

  4. Oxygen control in solid fuel fired heating systems with zirconium oxide cells. Iltstyring af fastbraendselsfyrede anlaeg med zirkoniumoxidcelle

    Energy Technology Data Exchange (ETDEWEB)

    Zielke, U.

    1988-10-15

    During the heating season 87-88 the Jutland Technological Institute has carried out investigations of the zirconium oxygen meters of solid fuel heating units. The aim was to investigate whether the combustion of inflammable flue gas components on the surface of the oxygen meter cell is of any importance to the running and emissions of the units. The used zirconium oxide oxygen meters normally measure lower concentrations of oxygen as the paramagnetic comparator of the laboratory. The relative deviation is lowest at coal fired units (5.5% and highest at straw fired units (20%)). At several units there is a clear tendency towards increasing development of CO at an increasing surplus of air. Because of too large a surplus of air, and in consequence of this the formation of CO, the chimney waste of the units is increased by up to 6%. Both the surplus of air and the concentration of CO have been included as long term average values. Especially at the straw fired units, periodically very high concentrations of non-inflammable flue gas components can be found, resulting in an undesirable influence on the environment. The development of improved control systems and regulation equipment is recommended.

  5. The significance of oxygen as oxides and hydroxides in controlling the abundance and residence times of elements in seawater

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    A model is presented which signifies the role of oxygen (as oxides and hydroxides) in controlling the composition of seawater. respective concentration and residence times for the unknown elements can be estimated. Geometric and statistical indices...

  6. Oxygen depletion of bismuth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L.K.; Howe, R.F.; Keulks, G.W.; Hall, W.K.

    1978-05-01

    Pure ..cap alpha..-phase bismuth molybdate (Bi/sub 2/Mo/sub 3/O/sub 12/), which is known to be weakly active for selective oxidation, and pure ..gamma..-phase bismuth molybdate (Bi/sub 2/MoO/sub 6/), which has good activity, were subjected to oxidation-reduction cycles with known amounts of hydrogen and oxygen, at 300/sup 0/-570/sup 0/C and with evacuation steps between treatments. The volume of oxygen consumed during reoxidation was equal to half the hydrogen consumed during the reduction on the ..cap alpha..-phase, which indicated that no hydrogen was retained during reduction. For the ..gamma..-phase, the oxygen consumption was greater than half of the hydrogen consumption and it increased with extent of reduction. The excess oxygen was apparently consumed by filling anion vacancies formed during outgassing subsequent to the reduction step. ESR spectroscopy and temperature-programed oxidation-reduction indicated that lattice oxide ions which bridge between bismuth and molybdenum layers of the koechlinite structure become more labile when the catalyst is in a partially reduced state, and that this effect is greater in the ..gamma..- than the ..cap alpha..-phase. Table and 15 references.

  7. Role of active oxygen and NOx species in N2O decomposition over Fe-ferrierite

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk; Tabor, Edyta; Nováková, Jana; Sathu, Naveen Kumar; Závěta, K.

    2012-01-01

    Roč. 289, MAY 2012 (2012), s. 164-170 ISSN 0021-9517 R&D Projects: GA AV ČR KAN100400702; GA ČR GA203/09/1627; GA ČR GAP106/11/0624 Institutional research plan: CEZ:AV0Z40400503 Keywords : N2O decomposition * iron ferrierite * active oxygen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.787, year: 2012

  8. Kinetics of the high temperature oxygen exchange reaction on {sup 238}PuO{sub 2} powder

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Christofer E., E-mail: chris.whiting@udri.udayton.edu [University of Dayton – Research Institute, 300 College Park, Dayton, OH 45469-0172 (United States); Du, Miting; Felker, L. Kevin; Wham, Robert M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barklay, Chadwick D.; Kramer, Daniel P. [University of Dayton – Research Institute, 300 College Park, Dayton, OH 45469-0172 (United States)

    2015-12-15

    Oxygen exchange reactions performed on PuO{sub 2} suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO{sub 2}. Previous CeO{sub 2} surrogate studies exhibit similar behavior, confirming that CeO{sub 2} is a good qualitative surrogate for PuO{sub 2}, in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO{sub 2} oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO{sub 2} Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  9. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Science.gov (United States)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  10. Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules

    Science.gov (United States)

    Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten

    2016-05-01

    Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.

  11. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China)

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  12. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-01-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca 2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging

  13. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  14. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    International Nuclear Information System (INIS)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-01-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au 3 + and Ag 3 + clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au 3 + the cluster itself acts as reactive species that facilitates the formation of CO 2 from N 2 O and CO, for silver the oxidized clusters Ag 3 O x + (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N 2 O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  15. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    Science.gov (United States)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au3+ and Ag3+ clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au3+ the cluster itself acts as reactive species that facilitates the formation of CO2 from N2O and CO, for silver the oxidized clusters Ag3Ox+ (n = 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N2O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  16. Barley seed ageing: genetics behind the dry elevated pressure of oxygen ageing and moist controlled deterioration

    Directory of Open Access Journals (Sweden)

    Manuela eNagel

    2016-03-01

    Full Text Available Experimental seed ageing approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the elevated partial pressure of oxygen (EPPO approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed ageing under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of ageing with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom (OWB-D, carrying dominant alleles, is more sensitive to ageing in comparison to the population mean and in most cases to the parent Rec (OWB-R, carrying recessive alleles. Quantitative trait locus (QTL analyses using 2,832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD treatment (aged at higher moisture level and temperature revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions.

  17. Oxygen - A Four Billion Year History

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    of fields, including geology, paleontology, geochemistry, biochemistry, animal physiology, and microbiology, to explain why our oxygenated Earth became the ideal place for life. Describing which processes, both biological and geological, act to control oxygen levels in the atmosphere, Canfield traces...... guides readers through the various lines of scientific evidence, considers some of the wrong turns and dead ends along the way, and highlights the scientists and researchers who have made key discoveries in the field. Showing how Earth's atmosphere developed over time, Oxygen takes readers...

  18. Enhancement of Cellulase and Xylanase Production Using pH-Shift and Dissolved Oxygen Control Strategy with Streptomyces griseorubens JSD-1.

    Science.gov (United States)

    Zhang, Dan; Luo, Yanqing; Chu, Shaohua; Zhi, Yuee; Wang, Bin; Zhou, Pei

    2016-01-01

    In this study, the production of cellulase and xylanase by Streptomyces griseorubens JSD-1 was improved by integrating the pH-shift and dissolved oxygen (DO)-constant control strategies. The pH-shift control strategy was carried out by analyzing the specific cell growth rate (μ) and specific enzyme formation rate (Q p) of S. griseorubens JSD-1. The pH was controlled at 8.0 during the first 48 h to maintain high cell growth, which then shifted to 7.5 after 48 h to improve the production of cellulase and xylanase. Using this method, the maximum activities of cellulase, xylanase, and filter paper enzyme (FPase) increased by 47.9, 29.5, and 113.6 %, respectively, compared to that obtained without pH control. On the basis of pH-shift control, the influence of DO concentrations on biomass and enzyme production was further investigated. The maximum production of cellulase, xylanase, and FPase reached 114.38 ± 0.96 U mL(-1), 330.57 ± 2.54 U mL(-1), and 40.11 ± 0.38 U mL(-1), which were about 1.6-fold, 0.6-fold, and 3.2-fold higher than that of neutral pH without DO control conditions. These results supplied a functional approach for improving cellulase and xylanase production.

  19. Experimental evaluation of the oxygen transfer in bubble aeration systems. Full scale experiences in lengthened activated sludge reactors

    International Nuclear Information System (INIS)

    Andreottola, G.; Ragazzi, M.; Tatano, F.

    1999-01-01

    The results of some full-scale oxygen transfer measurements conduced at the lengthened activate sludge tanks of two WWTPs of Trentino Region, are presented and discussed. As far at the tests in clean water are concerned, the non-liner regression method seems non accurate; important conclusion on the correlation between oxygen transfer process and typical parameters (i.e., fine-bubble diffusers, specific air flux) are derived. As far as the test in the wastewater is concerned, an increase of α-value from the inlet to the end of aeration tanks has been observed in the 'Andalo' WWTP [it

  20. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  1. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.

    Science.gov (United States)

    Blokhina, Olga; Fagerstedt, Kurt V

    2010-04-01

    Plant mitochondria differ from their mammalian counterparts in many respects, which are due to the unique and variable surroundings of plant mitochondria. In green leaves, plant mitochondria are surrounded by ample respiratory substrates and abundant molecular oxygen, both resulting from active photosynthesis, while in roots and bulky rhizomes and fruit carbohydrates may be plenty, whereas oxygen levels are falling. Several enzymatic complexes in mitochondrial electron transport chain (ETC) are capable of reactive oxygen species (ROS) formation under physiological and pathological conditions. Inherently connected parameters such as the redox state of electron carriers in the ETC, ATP synthase activity and inner mitochondrial membrane potential, when affected by external stimuli, can give rise to ROS formation via complexes I and III, and by reverse electron transport (RET) from complex II. Superoxide radicals produced are quickly scavenged by superoxide dismutase (MnSOD), and the resulting H(2)O(2) is detoxified by peroxiredoxin-thioredoxin system or by the enzymes of ascorbate-glutathione cycle, found in the mitochondrial matrix. Arginine-dependent nitric oxide (NO)-releasing activity of enzymatic origin has been detected in plant mitochondria. The molecular identity of the enzyme is not clear but the involvement of mitochondria-localized enzymes responsible for arginine catabolism, arginase and ornithine aminotransferase has been shown in the regulation of NO efflux. Besides direct control by antioxidants, mitochondrial ROS production is tightly controlled by multiple redundant systems affecting inner membrane potential: NAD(P)H-dependent dehydrogenases, alternative oxidase (AOX), uncoupling proteins, ATP-sensitive K(+) channel and a number of matrix and intermembrane enzymes capable of direct electron donation to ETC. NO removal, on the other hand, takes place either by reactions with molecular oxygen or superoxide resulting in peroxynitrite, nitrite or nitrate

  2. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    Science.gov (United States)

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  3. The effect of the controlled oxygen on the incineration of radio contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Hoshino, Akira.

    1982-02-01

    It is very important to resolve the method of safety storage and the reduction of volume of radio contaminated waste for utilization of atomic energies. Presently, the amounts of radio contaminated organic compounds such as ion exchange resin, vinyl chloride resin and so on are increased year by year. These compounds are very difficult to burning because of the occurrence of soot or flying ash, so that the waste are solidified using with cement or asphalt. But the burning of these compounds are most efficient method for reduction of volume of the wastes. The present work is an attempt to evaluate the effect of controlled oxygen on the incineration of these compounds, using by differential thermoelectrobalance. The given off gas from these compounds are mixture of hydrocarbon and free carbon examined by mass spectrography. As the result of this study, these compounds are decomposed perfectly under 5 - 10% of oxygen gas flow at about 650 0 C and the off gas from the compounds is disappeared contact with heated copper oxide without soot or flying ash. (author)

  4. Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalysts

    DEFF Research Database (Denmark)

    Chakthranont, Pongkarn; Kibsgaard, Jakob; Gallo, Alessandro

    2017-01-01

    We systematically investigate the effects of Au substrates on the oxygen evolution activities of cathodically electrodeposited nickel oxyhydroxide (NiOOH), nickel–iron oxyhydroxide (NiFeOOH), and nickel–cerium oxyhydroxide (NiCeOOH) at varying loadings from 0 to 2000 nmol of metal/cm2. We determi...... high geometric current densities on flat substrates. By investigating the mass and site specific activities as a function of loading, we bridge the practical geometric activity to the fundamental intrinsic activity....

  5. Testing of a Liquid Oxygen/Liquid Methane Reaction Control Thruster in a New Altitude Rocket Engine Test Facility

    Science.gov (United States)

    Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.

    2012-01-01

    A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.

  6. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  7. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode.

    Science.gov (United States)

    Fernández, José L; Bard, Allen J

    2003-07-01

    The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.

  8. Influence of Hypoxic Interval Training and Hyperoxic Recovery on Muscle Activation and Oxygenation in Connection with Double-Poling Exercise.

    Directory of Open Access Journals (Sweden)

    Christoph Zinner

    Full Text Available Here, we evaluated the influence of breathing oxygen at different partial pressures during recovery from exercise on performance at sea-level and a simulated altitude of 1800 m, as reflected in activation of different upper body muscles, and oxygenation of the m. triceps brachii. Ten well-trained, male endurance athletes (25.3±4.1 yrs; 179.2±4.5 cm; 74.2±3.4 kg performed four test trials, each involving three 3-min sessions on a double-poling ergometer with 3-min intervals of recovery. One trial was conducted entirely under normoxic (No and another under hypoxic conditions (Ho; FiO2 = 0.165. In the third and fourth trials, the exercise was performed in normoxia and hypoxia, respectively, with hyperoxic recovery (HOX; FiO2 = 1.00 in both cases. Arterial hemoglobin saturation was higher under the two HOX conditions than without HOX (p<0.05. Integrated muscle electrical activity was not influenced by the oxygen content (best d = 0.51. Furthermore, the only difference in tissue saturation index measured via near-infrared spectroscopy observed was between the recovery periods during the NoNo and HoHOX interventions (P<0.05, d = 0.93. In the case of HoHo the athletes' Pmean declined from the first to the third interval (P < 0.05, whereas Pmean was unaltered under the HoHOX, NoHOX and NoNo conditions. We conclude that the less pronounced decline in Pmean during 3 x 3-min double-poling sprints in normoxia and hypoxia with hyperoxic recovery is not related to changes in muscle activity or oxygenation. Moreover, we conclude that hyperoxia (FiO2 = 1.00 used in conjunction with hypoxic or normoxic work intervals may serve as an effective aid when inhaled during the subsequent recovery intervals.

  9. Oxidative stress in deep scattering layers: Heat shock response and antioxidant enzymes activities of myctophid fishes thriving in oxygen minimum zones

    Science.gov (United States)

    Lopes, Ana Rita; Trübenbach, Katja; Teixeira, Tatiana; Lopes, Vanessa M.; Pires, Vanessa; Baptista, Miguel; Repolho, Tiago; Calado, Ricardo; Diniz, Mário; Rosa, Rui

    2013-12-01

    Diel vertical migrators, such as myctophid fishes, are known to encounter oxygen minimum zones (OMZ) during daytime in the Eastern Pacific Ocean and, therefore, have to cope with temperature and oxidative stress that arise while ascending to warmer, normoxic surface waters at night-time. The aim of this study was to investigate the antioxidant defense strategies and heat shock response (HSR) in two myctophid species, namely Triphoturus mexicanus and Benthosema panamense, at shallow and warm surface waters (21 kPa, 20-25 °C) and at hypoxic, cold (≤1 kPa, 10 °C) mesopelagic depths. More specifically, we quantified (i) heat shock protein concentrations (HSP70/HSC70) (ii) antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], and (iii) lipid peroxidation [malondialdehyde (MDA) levels]. HSP70/HSC70 levels increased in both myctophid species at warmer, well-oxygenated surface waters probably to prevent cellular damage (oxidative stress) due to increased oxygen demand under elevated temperatures and reactive oxygen species (ROS) formation. On the other hand, CAT and GST activities were augmented under hypoxic conditions, probably as preparatory response to a burst of oxyradicals during the reoxygenation phase (while ascending). SOD activity decreased under hypoxia in B. panamense, but was kept unchanged in T. mexicanus. MDA levels in B. panamense did not change between the surface and deep-sea conditions, whereas T. mexicanus showed elevated MDA and HSP70/HSC70 concentrations at warmer surface waters. This indicated that T. mexicanus seems to be not so well tuned to temperature and oxidative stress associated to diel vertical migrations. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how different species might respond to the impacts of environmental stressors (e.g. expanding mesopelagic hypoxia

  10. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  11. Fine-tuning the activity of oxygen evolution catalysts

    DEFF Research Database (Denmark)

    Paoli, Elisa Antares; Masini, Federico; Frydendal, Rasmus

    2016-01-01

    Water splitting is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). The choice of materials for this reaction in acid is limited to the platinum group metals; high loading required of these scarce and expensive elements severely limit the scalability of such technology...

  12. Improved activity of SnO for the photocatalytic oxygen evolution

    Directory of Open Access Journals (Sweden)

    S. Kaizra

    2018-01-01

    Full Text Available SnO prepared by soft chemistry exhibits a black color and semiconducting properties. The X-ray diffraction indicates a tetragonal symmetry (SG: P4/nmm with nano crystallites of an average size of 85 nm. The forbidden band, determined from the diffuse reflectance is found to be 1.46 eV. The electrical conductivity occurs by polaron hopping and follows an Arrhenius type law with activation energy of 0.21 eV, the change in the slope at 526 K is attributed to the oxidation to SnO2. The photo-electrochemical study shows n type conduction with a flat band potential of −0.45 V, close to the photocurrent onset potential (−0.40 V. The electrochemical impedance spectroscopy shows the bulk contribution of SnO (Rb = 1.7 kΩ cm2 and decreases down to 1.89 kΩ cm2 under illumination. The photocatalytic properties have been evaluated for the first time for to the oxygen evolution. The valence band, deriving from Sn2+: 5p orbital with a potential (−0.80 VSCE/5.55 eV, is suitably positioned with respect to O2/H2O level (∼0.6 VSCE, leading to water oxidation under visible light. The best performance occurs at pH ∼ 7 with an oxygen liberation rate of 23 µmol mL h−1 (mg catalyst−1 and a quantum efficiency of 1.2%. An improvement of ∼13% is observed on the system SnO/clay.

  13. Common catabolic enzyme patterns in a microplankton community of the Humboldt Current System off northern and central-south Chile: Malate dehydrogenase activity as an index of water-column metabolism in an oxygen minimum zone

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2009-07-01

    An extensive subsurface oxygen minimum zone off northern and central-south Chile, associated with the Peru-Chile undercurrent, has important effects on the metabolism of the organisms inhabiting therein. Planktonic species deal with the hypoxic and anoxic environments by relying on biochemical as well as physiological processes related to their anaerobic metabolisms. Here we characterize, for the first time, the potential enzymatic activities involved in the aerobic and anaerobic energy production pathways of microplanktonic organisms (oxygen concentration and microplanktonic biomass in the oxygen minimum zone and adjacent areas of the Humboldt Current System water column. Our results demonstrate significant potential enzymatic activity of catabolic pathways in the oxygen minimum zone. Malate dehydrogenase had the highest oxidizing activity of nicotinamide adenine dinucleotide (reduced form) in the batch of catabolic enzymatic activities assayed, including potential pyruvate oxidoreductases activity, the electron transport system, and dissimilatory nitrate reductase. Malate dehydrogenase correlated significantly with almost all the enzymes analyzed within and above the oxygen minimum zone, and also with the oxygen concentration and microplankton biomass in the water column of the Humboldt Current System, especially in the oxygen minimum zone off Iquique. These results suggest a possible specific pattern for the catabolic activity of the microplanktonic realm associated with the oxygen minimum zone spread along the Humboldt Current System off Chile. We hypothesize that malate dehydrogenase activity could be an appropriate indicator of microplankton catabolism in the oxygen minimum zone and adjacent areas.

  14. Vascular smooth muscle modulates endothelial control of vasoreactivity via reactive oxygen species production through myoendothelial communications.

    Directory of Open Access Journals (Sweden)

    Marie Billaud

    Full Text Available BACKGROUND: Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC/smooth muscle cells (SMC crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone. METHODOLOGY/PRINCIPAL FINDINGS: In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 ((37,43Gap27 (1 reduced contractile and calcium responses to serotonin (5-HT simultaneously recorded in pulmonary arteries and (2 abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H(2O(2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production.

  15. The role of tissue oxygen tension in the control of local blood flow in the microcirculation of skeletal muscles

    DEFF Research Database (Denmark)

    Ngo, Thuc Anh

    2010-01-01

    In the microcirculation blood flow is highly regulated dependent on the metabolic activity of the tissues. Among several mechanisms, mechanisms involved in the coupling of changes in tissue oxygen tension due to changes in the metabolic activity of the tissue play an important role. In the systemic...... (inhibitor of KATP channels) in the superfusate abolished both vasodilatation and constriction to low and high oxygen superfusate, indicating that KATP channels are involved in both hypoxic vasodilatation and hyperoxic vasoconstriction. Red blood cells (RBCs) have been proposed to release ATP and...... as in the intact blood-perfused arteriole. This indicates that RBCs are not essential for hypoxic vasodilatation. In addition several potential pathways were evaluated. Application of DPCPX (inhibitor of adenosine A1 and A2 receptors) and L-NAME (inhibitor of NO-synthase) did not affect vasomotor responses to low...

  16. Oxygen therapy devices and portable ventilators for improved physical activity in daily life in patients with chronic respiratory disease.

    Science.gov (United States)

    Furlanetto, Karina Couto; Pitta, Fabio

    2017-02-01

    Patients with hypoxemia and chronic respiratory failure may need to use oxygen therapy to correct hypoxemia and to use ventilatory support to augment alveolar ventilation, reverse abnormalities in blood gases (in particular hypercapnia) and reduce the work of breathing. Areas covered: This narrative review provides an overview on the use of oxygen therapy devices or portable ventilators for improved physical activity in daily life (PADL) as well as discusses the issue of lower mobility in daily life among stable patients with chronic respiratory disease who present indication for long-term oxygen therapy (LTOT) or home-based noninvasive ventilation (NIV). A literature review of these concepts was performed by using all related search terms. Expert commentary: Technological advances led to the development of light and small oxygen therapy devices and portable ventilators which aim to facilitate patients' mobility and ambulation. However, the day-by-day dependence of a device may reduce mobility and partially impair patients' PADL. Nocturnal NIV implementation in hypercapnic patients seems promising to improve PADL. The magnitude of their equipment-related physical inactivity is underexplored up to this moment and more long-term randomized clinical trials and meta-analysis examining the effects of ambulatory oxygen and NIV on PADL are required.

  17. Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase

    DEFF Research Database (Denmark)

    Malacrida, Paolo; Escribano, Maria Escudero; Verdaguer Casadevall, Arnau

    2014-01-01

    Three different Pt-lanthanide metal alloys (Pt5La, Pt5Ce and Pt3La) have been studied as oxygen reduction reaction (ORR) electrocatalysts. Sputter-cleaned polycrystalline Pt5La and Pt5Ce exhibit more than a 3-fold activity enhancement compared to polycrystalline Pt at 0.9 V, while Pt3La heavily c......, suggesting that these alloys hold promise as cathode catalysts in Proton Exchange Membrane Fuel Cells (PEMFCs)....

  18. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    Science.gov (United States)

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  19. PERK pathway is involved in oxygen-glucose-serum deprivation-induced NF-kB activation via ROS generation in spinal cord astrocytes.

    Science.gov (United States)

    Liu, Jinbo; Du, Lijian

    2015-11-13

    Mitochondrial dysfunction is a direct target of hypoxic/ischemic stress in astrocytes, which results in the increased production of reactive oxygen species (ROS). Previous reports showed that ROS can activate NF-kB in spinal cord astrocytes, which occurs as a secondary injury during the pathological process of spinal cord injury (SCI). Protein kinase RNA (PKR)-like ER kinase (PERK) plays an important role in mitochondrial dysfunction. To elucidate the specific role of PERK in hypoxic/ischemic-induced NF-kB activation in spinal astrocytes, we utilized an in vitro oxygen-glucose deprivation (OGD) model, which showed an enhanced formation of ROS and NF-kB activation. Knockdown of PERK resulted in reduced activation of PERK and ROS generation in astrocytes under OGD conditions. Notably, the knockdown of PERK also induced NF-kB activation in astrocytes. These data suggest that PERK is required for the hypoxic/ischemic-induced-dependent regulation of ROS and that it is involved in NF-kB activation in the astrocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  1. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  2. Physical Controls on Oxygen Distribution and Denitrification Potential in the North West Arabian Sea

    Science.gov (United States)

    Queste, Bastien Y.; Vic, Clément; Heywood, Karen J.; Piontkovski, Sergey A.

    2018-05-01

    At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6-12 to water across the Gulf of Oman and waters exported to the wider Arabian Sea.

  3. Oxygen partial pressure control during in-situ high temperature X-ray diffraction on cerium dioxide

    International Nuclear Information System (INIS)

    Strach, M.; Belin, R.C.; Richaud, J-C.; Rogez, J.

    2014-01-01

    Cerium dioxide is widely used as a surrogate for plutonium dioxide in the studies of MOX type nuclear fuel. Thus, obtaining an accurate description of the structures present in this system in a range of temperatures is of importance to the development of fuel for the IV. generation of nuclear reactors. However, such a study requires appropriate scientific tools, in particular regarding the control and monitoring of the oxygen partial pressure (pO 2 ). Here we discuss several in-situ X-ray diffraction experiments performed to determine the phases present in the hypo-stoichiometric CeO 2-x region of the phase diagram and clearly demonstrate the need for controlling the pO 2 . (authors)

  4. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate

    Science.gov (United States)

    Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun

    2016-12-01

    Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC

  5. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  6. Oxygen diffusion in monazite

    Science.gov (United States)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  7. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    International Nuclear Information System (INIS)

    O'Toole, Timothy E.; Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca 2+ ] i ), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca 2+ ] I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca 2+ ] I , leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  8. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    Science.gov (United States)

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  9. Apparatus for the automatic determination of oxygen consumption in ...

    African Journals Online (AJOL)

    An apparatus is described which permits the automatic determination of the oxygen consumption of three fish and a control for 24 hours per day. This is made possible by an electrical control system operating four three-way valves which allow water from one of four respiration chambers at a time to flow past an oxygen ...

  10. Condensate treatment and oxygen control in power plants

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Iida, Kei; Ohashi, Shinichi.

    1997-01-01

    In thermal and nuclear power stations, the steam that operated turbines is cooled and condensed with condensers. The condensate is heated again with boilers, nuclear reactors or steam generators, but if corrosion products or impurities are contained in the condensate, corrosion and scale formation occur in boilers and others. The filtration facility and the desalting facility for condensate are installed to remove impurities, but water quality control is different in thermal, BWR and PWR plants, therefore, the treatment facilities corresponding to respective condensates have been adopted. In order to reduce the amount of clud generation, the treatment of injecting a small quantity of oxygen into condensate has been adopted. In thermal power plants, all volatile treatment is carried out, in which corrosion is prevented by the addition of ammonia and hydrazine to boiler feedwater. The condensate filters of various types and the NH 4 type condensate desalter for thermal power plants are described. In BWR power plants, steam is generated in nuclear reactors, therefore, the addition of chemicals into water is never carried out, and high purity neutral water is used. In PWR power plants, the addition of chemicals to water is done in the primary system, and AVT is adopted in the secondary system. Also the condensate treatment facilities are different for both reactors. (K.I.)

  11. Active vibration control by robust control techniques

    International Nuclear Information System (INIS)

    Lohar, F.A.

    2001-01-01

    This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)

  12. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  13. Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries.

    Science.gov (United States)

    Jiang, Yetao; Zeng, Xianhai; Luque, Rafael; Tang, Xing; Sun, Yong; Lei, Tingzhou; Liu, Shijie; Lin, Lu

    2017-10-23

    Lignocellulosic biomass, a matrix of biopolymers including cellulose, hemicellulose, and lignin, has gathered increasing attention in recent years for the production of chemicals, fuels, and materials through biorefinery processes owing to its renewability and availability. The fractionation of lignocellulose is considered to be the fundamental step to establish an economical and sustainable lignocellulosic biorefinery. In this Minireview, we summarize a newly developed oxygen delignification for lignocellulose fractionation called cooking with active oxygen and solid alkali (CAOSA), which can fractionate lignocellulose into its constituents and maintain its processable form. In the CAOSA approach, environmentally friendly chemicals are applied instead of undesirable chemicals such as strong alkalis and sulfides. Notably, the alkali recovery for this process promises to be relatively simple and does not require causticizing or sintering. These features make the CAOSA process an alternative for both lignocellulose fractionation and biomass pretreatment. The advantages and challenges of CAOSA are also discussed to provide a comprehensive perspective with respect to existing strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Singlet oxygen oxygenation of enol ethers; the synthesis of optically active 1,2-dioxetanes. II

    NARCIS (Netherlands)

    Meijer, E.W.; Wynberg, H.

    1979-01-01

    (+)-(Methoxymethylene)fenchane I (R = H, R1 = OMe) on singlet O oxidn. gave dioxetanes II and III, which on thermal decompn. underwent chemiluminescence in which (+)-fenchone was the only chemiluminescent species at lmax 420 nm. Photosensitized oxygenation of I (R = OMe, R1 = H) also gave 2 isomeric

  15. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.

    2013-06-03

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts in microbial fuel cells (MFCs). AC powders were characterized in terms of surface chemistry and porosity, and their kinetic activities were compared to carbon black and platinum catalysts in rotating disk electrode (RDE) tests. Cathodes using the coal-derived AC had the highest power densities in MFCs (1620 ± 10 mW m-2). Peat-based AC performed similarly in MFC tests (1610 ± 100 mW m-2) and had the best catalyst performance, with an onset potential of Eonset = 0.17 V, and n = 3.6 electrons used for oxygen reduction. Hardwood based AC had the highest number of acidic surface functional groups and the poorest performance in MFC and catalysis tests (630 ± 10 mW m-2, Eonset = -0.01 V, n = 2.1). There was an inverse relationship between onset potential and quantity of strong acid (pKa < 8) functional groups, and a larger fraction of microporosity was negatively correlated with power production in MFCs. Surface area alone was a poor predictor of catalyst performance, and a high quantity of acidic surface functional groups was determined to be detrimental to oxygen reduction and cathode performance. © 2013 American Chemical Society.

  16. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    Science.gov (United States)

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  17. Determination of oxygen, nitrogen, and silicon in Nigerian fossil fuels by 14 MeV neutron activation analysis

    International Nuclear Information System (INIS)

    Hannan, M.A.; Oluwole, A.F.; Kehinde, L.O.; Borisade, A.B.

    2003-01-01

    Classification, assessment, and utilization of coal and crude oil extracts are enhanced by analysis of their oxygen content. Values of oxygen obtained 'by difference' from chemical analysis have proved inaccurate. The oxygen, nitrogen, and silicon content of Nigerian coal samples, crude oils, bitumen extracts, and tar sand samples were measured directly using instrumental fast neutron activation analysis (FNAA). The total oxygen in the coal ranges from 5.20% to 23.3%, in the oil and extracts from 0.14% to 1.08%, and in the tar sands from 38% to 47%. The nitrogen content in the coal ranges from 0.54% to 1.35%, in the crude oil and bitumen extracts from ≤ 0.014% to 0.490%, and in the tar sands from 0.082% to 0.611%. The silicon content in the coal ranges from 1.50% to 8.86%; in the oil and the bitumen extracts it is <1%, and in the tar sands between 25.1% and 37.5%. The results show that Nigerian coals are mostly sub-bituminous. However, one of the samples showed bituminous properties as evidenced by the dry ash-free (daf) percent of carbon obtained. This same sample indicated a higher ash content resulting in a comparatively high percentage of silicon. In oils and tar sands from various locations, a comparison of elements is made. (author)

  18. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films

    KAUST Repository

    Belabbes, Abderrezak

    2016-04-22

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases.

  19. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  20. The Reduction Reaction of Dissolved Oxygen in Water by Hydrazine over Platinum Catalyst Supported on Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Moon, J.S. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    The reduction reaction of dissolved oxygen (DO) by hydrazine was investigated on activated carbon fiber (ACF) and Pt/ACF catalysts using a batch reactor with an external circulating loop. The ACF itself showed catalytic activity and this was further improved by supporting platinum on ACF. The catalytic role platinum is ascribed to its acceleration of hydrazine decomposition, based on electric potential and current measurements as well as the kinetic study. (author). 15 refs., 13 figs.

  1. Surface Wettability of Oxygen Plasma Treated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2014-01-01

    Full Text Available Oxygen plasma treatment on porous silicon (p-Si surfaces was studied as a practical and effective means to modify wetting properties of as-fabricated p-Si surfaces, that is, contact angles of the p-Si materials. P-Si samples spanning a wide range of surface nanostructures have been fabricated which were subjected to a series of oxygen plasma treatments. Reduction of the p-Si surface contact angles has been systematically observed, and the surface activation rate constant as a function of different pore geometries has been analyzed to achieve an empirical equation. The underlying diffusion mechanisms have been discussed by taking into account of different pore diameters of p-Si samples. It is envisaged that such an approach as well as the corresponding empirical equation may be used to provide relevant process guidance in order to achieve precise control of p-Si contact angles, which is essential for many p-Si applications especially in biosensor areas.

  2. Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel; Rao, Reshma R.; Frydendal, Rasmus; Qiao, Liang; Wang, Xiao Renshaw; Halck, Niels Bendtsen; Rossmeisl, Jan; Hansen, Heine A.; Vegge, Tejs; Stephens, Ifan E. L.; Koper, Marc T. M.; Shao-Horn, Yang

    2017-03-15

    RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.

  3. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    International Nuclear Information System (INIS)

    Wilshusen, J.H.; Hettiaratchi, J.P.A.; Visscher, A. de; Saint-Fort, R.

    2004-01-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity

  4. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  5. Toxin detection using a tyrosinase-coupled oxygen electrode.

    Science.gov (United States)

    Smit, M H; Rechnitz, G A

    1993-02-15

    An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.

  6. The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Bligaard, Thomas

    2014-01-01

    We present first principle investigation of the influence of platinum nanoparticle shape and size on the oxygen reduction reaction activity. We compare the activities of nanoparticles with specific shapes (tetrahedron, octahedron, cube and truncated octahedron) with that of equilibrium particle s...

  7. An Alternative to the Human Hemoglobin Test in the Investigation of Bloodstains Treated with Active Oxygen: The Human Glycophorin A Test

    Directory of Open Access Journals (Sweden)

    Ana Castelló

    2011-01-01

    Full Text Available In criminal investigations, there are three stages involved when studying bloodstains: search and orientation, confirmation, and individualization. Confirmatory tests have two aims: to show that the stain contains a human biological fluid and to confirm the type of biological fluid. The need to determine the nature of the evidence is reflected in the latest bibliography, where the possibility of employing mRNA and miRNA markers for this purpose is proposed. While these new proposals are being investigated, the kits for determining human hemoglobin currently provide a simple solution for resolving this issue. With these kits, the possibility of obtaining false positives and false negatives is well known. However, recently, a new problem has been detected. This involves the interference caused by new cleaning products that contain sodium percarbonate (or active oxygen when determining human hemoglobin. With the aim to resolve this problem, this work studied the ability of the human glycophorin A test to determine human blood in samples that have been treated with active oxygen. Our results show that the human glycophorin A test has a greater resistance to the destructive effect of the new detergents containing active oxygen; consequently, it provides an alternative to be taken into consideration in the confirmatory diagnoses of bloodstains.

  8. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    Science.gov (United States)

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Leaching-resistant carrageenan-based colorimetric oxygen indicator films for intelligent food packaging.

    Science.gov (United States)

    Vu, Chau Hai Thai; Won, Keehoon

    2014-07-23

    Visual oxygen indicators can give information on the quality and safety of packaged food in an economic and simple manner by changing color based on the amount of oxygen in the packaging, which is related to food spoilage. In particular, ultraviolet (UV)-activated oxygen indicators have the advantages of in-pack activation and irreversibility; however, these dye-based oxygen indicator films suffer from dye leaching upon contact with water. In this work, we introduce carrageenans, which are natural sulfated polysaccharides, to develop UV-activated colorimetric oxygen indicator films that are resistant to dye leakage. Carrageenan-based indicator films were fabricated using redox dyes [methylene blue (MB), azure A, and thionine], a sacrificial electron donor (glycerol), an UV-absorbing photocatalyst (TiO2), and an encapsulation polymer (carrageenan). They showed even lower dye leakage in water than conventional oxygen indicator films, owing to the electrostatic interaction of anionic carrageenan with cationic dyes. The MB/TiO2/glycerol/carrageenan oxygen indicator film was successfully bleached upon UV irradiation, and it regained color very rapidly in the presence of oxygen compared to the other waterproof oxygen indicator films.

  10. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    Directory of Open Access Journals (Sweden)

    Laurent Chazalviel

    2016-01-01

    Full Text Available Normobaric oxygen (NBO and hyperbaric oxygen (HBO are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO 2 = 1 atmospheres absolute (ATA = 0.1 MPa and HBO (pO 2 = 2.5 ATA = 0.25 MPa through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  11. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    Science.gov (United States)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  12. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhu, Jianbin; Lv, Qing

    2015-01-01

    Cost-effective, active and stable electrocatalysts for the oxygen reduction reaction (ORR) are highly desirable for the wide-spread adoption of technologies such as fuel cells and metal-air batteries. Among the already reported non-precious metal catalysts, carbon-supported transition metal...... to that for the undoped Fe-N/C catalyst. The activity and durability of the catalysts are demonstrated in direct methanol fuel cells....

  13. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  14. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    International Nuclear Information System (INIS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-01-01

    Oxygen vacancy (OV) controlled TiO 2 nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH 4 F and ethylene glycol with selective H 2 O content. The structural evolution of TiO 2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO 2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO 2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  15. Trauma hemostasis and oxygenation research position paper on remote damage control resuscitation: definitions, current practice, and knowledge gaps.

    Science.gov (United States)

    Jenkins, Donald H; Rappold, Joseph F; Badloe, John F; Berséus, Olle; Blackbourne, Lorne; Brohi, Karim H; Butler, Frank K; Cap, Andrew P; Cohen, Mitchell Jay; Davenport, Ross; DePasquale, Marc; Doughty, Heidi; Glassberg, Elon; Hervig, Tor; Hooper, Timothy J; Kozar, Rosemary; Maegele, Marc; Moore, Ernest E; Murdock, Alan; Ness, Paul M; Pati, Shibani; Rasmussen, Todd; Sailliol, Anne; Schreiber, Martin A; Sunde, Geir Arne; van de Watering, Leo M G; Ward, Kevin R; Weiskopf, Richard B; White, Nathan J; Strandenes, Geir; Spinella, Philip C

    2014-05-01

    The Trauma Hemostasis and Oxygenation Research Network held its third annual Remote Damage Control Resuscitation Symposium in June 2013 in Bergen, Norway. The Trauma Hemostasis and Oxygenation Research Network is a multidisciplinary group of investigators with a common interest in improving outcomes and safety in patients with severe traumatic injury. The network's mission is to reduce the risk of morbidity and mortality from traumatic hemorrhagic shock, in the prehospital phase of resuscitation through research, education, and training. The concept of remote damage control resuscitation is in its infancy, and there is a significant amount of work that needs to be done to improve outcomes for patients with life-threatening bleeding secondary to injury. The prehospital phase of resuscitation is critical in these patients. If shock and coagulopathy can be rapidly identified and minimized before hospital admission, this will very likely reduce morbidity and mortality. This position statement begins to standardize the terms used, provides an acceptable range of therapeutic options, and identifies the major knowledge gaps in the field.

  16. Active Control Of Structure-Borne Noise

    Science.gov (United States)

    Elliott, S. J.

    1994-11-01

    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  17. Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity.

    Science.gov (United States)

    Oliveira, Marco A S; Baura, Valter A; Aquino, Bruno; Huergo, Luciano F; Kadowaki, Marco A S; Chubatsu, Leda S; Souza, Emanuel M; Dixon, Ray; Pedrosa, Fábio O; Wassem, Roseli; Monteiro, Rose A

    2009-01-01

    Herbaspirillum seropedicae is an endophytic diazotrophic bacterium that associates with economically important crops. NifA protein, the transcriptional activator of nif genes in H. seropedicae, binds to nif promoters and, together with RNA polymerase-sigma(54) holoenzyme, catalyzes the formation of open complexes to allow transcription initiation. The activity of H. seropedicae NifA is controlled by ammonium and oxygen levels, but the mechanisms of such control are unknown. Oxygen sensitivity is attributed to a conserved motif of cysteine residues in NifA that spans the central AAA+ domain and the interdomain linker that connects the AAA+ domain to the C-terminal DNA binding domain. Here we mutagenized this conserved motif of cysteines and assayed the activity of mutant proteins in vivo. We also purified the mutant variants of NifA and tested their capacity to bind to the nifB promoter region. Chimeric proteins between H. seropedicae NifA, an oxygen-sensitive protein, and Azotobacter vinelandii NifA, an oxygen-tolerant protein, were constructed and showed that the oxygen response is conferred by the central AAA+ and C-terminal DNA binding domains of H. seropedicae NifA. We conclude that the conserved cysteine motif is essential for NifA activity, although single cysteine-to-serine mutants are still competent at binding DNA.

  18. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  19. Application effect of hyperbaric oxygen in the patients with optic atrophy and influence for the hemodynamic parameters

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2015-01-01

    Full Text Available AIM: To observe the application effect of hyperbaric oxygen in the patients with optic atrophy and influence degree for the hemodynamic parameters.METHODS: Fifty patients with optic atrophy in our hospital from January 2012 to January 2014 were objected, they were randomly divided into control group(conventional optic atrophy treatment groupand observation group(conventional treatment and hyperbaric oxygen treatment group, each group was 25 cases. Statistical analysis of two group before and after treatment eyesight, vision acuity, visual field defect and ophthalmic artery, central retinal artery blood flow parameters were undergone.RESULTS: The sight, visual field sensitivity and field vision defect of observation group were all better than those of control group at first, second and third course after the treatment, arteriae ophthalmica and arteriae centralis retinae EDV and PSV were all higher than those of control group, PI and RI were all lower than those of control group were all significant differences(PCONCLUSION: The application effect of hyperbaric oxygen in the patients with optic atrophy is better, and the influence of treatment method for the ocular hemodynamic parameters are more active.

  20. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    Science.gov (United States)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic

  1. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  2. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn2O3 and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V...

  3. Uptake of vaporized molybdenum and cesium tracers by molten oxide mixtures as function of free oxygen ion activity

    International Nuclear Information System (INIS)

    Carmon, B.

    1975-11-01

    Molten mixtures of oxides containing Ca, Fe, Al, Na and Si were exposed to vaporized Mo-99 and Cs-137 tracers at 1100 and 1300 deg C. Uptake values at 1300 deg C were extrapolated to short heating times. The obtained ''attachment coefficients'' for that temperature are shown to have the relationship (Mo) approximately equal to (Cs)sup(-1/2). The chemical composition of the melts and their oxygen to metal ratio found to affect the uptake of both tracers. This is associated with the cationic field strengths and the free oxygen ion activities in the mixtures. Molybdenum and cesium apparently behave like glass-network forming and glass-network modifying species, respectively. (author)

  4. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  5. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man

    International Nuclear Information System (INIS)

    Jones, T.; Chesler, D.A.; Ter-Pogossian, M.M.

    1976-01-01

    A non-invasive steady-state method for studying the regional accumulation of oxygen in the brain by continuously inhaling oxygen-15 has been investigated. Oxygen respiration by tissue results in the formation of water of metabolism which may be considered as the 'exhaust product' of respiration. In turn the steady-state distribution of this product may be related to that of oxygen utilization. It has been found in monkeys than an appreciable component of the signal, recorded over the head during the inhalation of 15 O 2 , was attributable to the local production of 15 O-labelled water of metabolism. In man the distribution of radioactivity recorded over the head during 15 O 2 inhalation clearly related to active cerebal tissue. Theoretically the respiration product is linearly dependent on the oxygen extraction ratio of the tissue, and at normal cerebal perfusion it is less sensitive to changes in blood flow. At low rates of perfusion a more linear dependence on flow is shown. The dual dependence on blood flow and oxygen extraction limited the interpretation of the cerebal distribution obtained with this technique. Means for obtaining more definitive measurements with this approach are discussed. (author)

  6. Semiconductors and semimetals oxygen in silicon

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Shimura, Fumio

    1994-01-01

    This volume reviews the latest understanding of the behavior and roles of oxygen in silicon, which will carry the field into the ULSI era from the experimental and theoretical points of view. The fourteen chapters, written by recognized authorities representing industrial and academic institutions, cover thoroughly the oxygen related phenomena from the crystal growth to device fabrication processes, as well as indispensable diagnostic techniques for oxygen.Key Features* Comprehensive study of the behavior of oxygen in silicon* Discusses silicon crystals for VLSI and ULSI applications* Thorough coverage from crystal growth to device fabrication* Edited by technical experts in the field* Written by recognized authorities from industrial and academic institutions* Useful to graduate students, scientists in other disciplines, and active participants in the arena of silicon-based microelectronics research* 297 original line drawings

  7. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    Science.gov (United States)

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange

    DEFF Research Database (Denmark)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel

    2017-01-01

    the potential involvement of lattice oxygen in the OER mechanism with online electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous...... work, suggesting lattice oxygen is not exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by density functional theory, where more active facets bind oxygen more weakly. This new...

  9. A distributed chemosensory circuit for oxygen preference in C. elegans.

    Directory of Open Access Journals (Sweden)

    Andy J Chang

    2006-09-01

    Full Text Available The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf and naturally isolated npr-1(215F animals avoid high oxygen and aggregate in the presence of food; npr-1(215V animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-beta homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen.

  10. The effect of the oxygen dissolved in the adsorption of gold in activated carbon; Efecto del oxigeno disuelto en la adsorcion de oro en carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P. [Universidad de Santiago. Chile (Chile); Wilkomirsky, I. [Universidad de Concepcion. Chile (Chile)

    1999-07-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs.

  11. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity

    Science.gov (United States)

    Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun

    2018-06-01

    In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.

  12. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  13. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  14. Effect of NaN3 on oxygen-dependent lethality of UV-A in Escherichia coli mutants lacking active oxygen-defence and DNA-repair systems

    International Nuclear Information System (INIS)

    Yamada, Kazumasa; Ono, Tetsuyoshi; Nishioka, Hajime

    1996-01-01

    Escherichia coli mutants which lack defence systems against such active oxygen forms as OxyR (ΔoxyR), superoxide dismutase (SOD) (sodA and sodB) and catalase (katE and katG) are sensitive to UV-A lethality under aerobic conditions, whereas OxyR- and SOD-mutants have resistance under anaerobic conditions and in the presence of sodium azide (NaN 3 ) during irradiation. UV-A induces lipid peroxidation in the ΔoxyR mutant, which is suppressed by NaN 3 . These results suggest that UV-A generates 1 O 2 or the hydroxyl radical to produce lipid peroxides intracellularly in the ΔoxyR mutant and that O 2 - stress may be generated in the sodAB mutant after 8 hr of exposure to UV-A. The sensitivities of such DNA repair-deficient mutants as recA ind- and uvrA to UV-A also were examined and compared. These mutants are sensitive to UV-A lethality under aerobic conditions but show only slight resistance under anaerobic conditions or in the presence of NaN 3 during irradiation. We conclude that NaN 3 protects these mutant cells from oxygen-dependent UV-A lethality. (author)

  15. Oxygen reduction and evolution at single-metal active sites

    DEFF Research Database (Denmark)

    Calle-Vallejo, F.; Martínez, J.I.; García Lastra, Juan Maria

    2013-01-01

    A worldwide spread of clean technologies such as low-temperature fuel cells and electrolyzers depends strictly on their technical reliability and economic affordability. Currently, both conditions are hardly fulfilled mainly due to the same reason: the oxygen electrode, which has large overpotent...

  16. Experimental studies on radiation effects under high pressure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, E [Osaka Univ. (Japan). School of Dentistry

    1974-06-01

    The effect of oxygen tension on the radiosensitivity of tumor cells is well known, but its clinical application for radiotherapy is not yet established. Rabbits with V x 2 carcinoma in the maxilla were irradiated by /sup 60/Co under high pressure oxygen (experimental group), and compared with those treated in air (control group). For the purpose of examining the clinical effects of high pressure oxygen, an experiment was made in vivo. The following items were compared respectively: a) Tumor regression effect b) Tumor clearance rate c) Survival days d) Half size reduction time e) Inhibition of DNA synthesis in the tumor tissue. Results obtained were as follows: a) 56 per cent of animals showed tumor regression in the experimental group, whereas it occured 26 per cent in the control group. b) 53 per cent of animals showed tumor disappearance in the experimental group, while it was observed only in 13 per cent in the control group. c) Only 2 of 30 rabbits irradiated in air survived over 180 days, whereas 11 of 30 rabbits survived meanwhile in the group irradiated under high pressure oxygen. d) About 11 days were necessary to reduce the tumor size by half after irradiation in the group under high pressure oxygen, while it took 17 days in the group treated in normal air. e) DNA synthesis was inhibited more prominently in the group irradiated under high pressure oxygen in normal air.

  17. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  18. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  19. Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Libochant, J.A.; Blom, C.W.P.M.; Laanbroek, H.J.

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria, The oxygen- releasing, aerenchymatous emergent macrophyte Glycerin maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and

  20. Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Libochant, J.A.; Blom, C.W.P.M.; Laanbroek, H.J.

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria. The oxygen-releasing, aerenchymatous emergent macrophyte Glyceria maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and