WorldWideScience

Sample records for active monomolecular films

  1. Hydrolysis of mixed monomolecular films of triglyceride/lecithin by pancreatic lipase.

    Science.gov (United States)

    Pieroni, G; Verger, R

    1979-10-25

    The main purpose of this study was to describe the influence of lecithin upon lipolysis of mixed monomolecular films of trioctanoylglycerol/didodecanoylphosphatidycholine by pancreatic lipase in order to mimic some physiological situations. The quantity of enzyme adsorbed to the interface was simultaneously determined using 5-thio-2-nitro[14C]benzoyl lipase. Lipolytic activity was enhanced 3- to 4-fold in the presence of colipase, an effect which is attributed to increased enzyme turnover number. When a pure triglyceride film was progressively diluted with lecithin, the minimum specific activity of lipase exhibited a bell-shaped curve: a mixed film containing only 20% trioctanoylglycerol was hydrolyzed at the same rate as a monolayer of pure triglyceride.

  2. Efficacy of Aquatain, a Monomolecular Film, for the Control of Malaria Vectors in Rice Paddies

    NARCIS (Netherlands)

    Bukhari, S.T.; Takken, W.; Githeko, A.K.; Koenraadt, C.J.M.

    2011-01-01

    Background Rice paddies harbour a large variety of organisms including larvae of malaria mosquitoes. These paddies are challenging for mosquito control because their large size, slurry and vegetation make it difficult to effectively apply a control agent. Aquatain, a monomolecular surface film, can

  3. Efficacy of AquatainTM, a monomolecular surface film, against the malaria vectors Anopheles stephensi and An. gambiae s.s. in the laboratory

    NARCIS (Netherlands)

    Bukhari, S.T.; Knols, B.G.J.

    2009-01-01

    Monomolecular films are used for mosquito control because of their asphyxiating effect on larvae and pupae. Compared with other films, Aquatain mosquito formulation (AMFTM) has an improved spreading ability and flexibility on a water surface. In the laboratory, AMFTM showed larvicidal, pupicidal,

  4. Electrical characterization of single molecule and Langmuir–Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene derivative

    Directory of Open Access Journals (Sweden)

    Henrry M. Osorio

    2015-05-01

    Full Text Available Monolayer Langmuir–Blodgett (LB films of 1,4-bis(pyridin-4-ylethynylbenzene (1 together with the “STM touch-to-contact” method have been used to study the nature of metal–monolayer–metal junctions in which the pyridyl group provides the contact at both molecule–surface interfaces. Surface pressure vs area per molecule isotherms and Brewster angle microscopy images indicate that 1 forms true monolayers at the air–water interface. LB films of 1 were fabricated by deposition of the Langmuir films onto solid supports resulting in monolayers with surface coverage of 0.98 × 10−9 mol·cm−2. The morphology of the LB films that incorporate compound 1 was studied using atomic force microscopy (AFM. AFM images indicate the formation of homogeneous, monomolecular films at a surface pressure of transference of 16 mN·m−1. The UV–vis spectra of the Langmuir and LB films reveal that 1 forms two dimensional J-aggregates. Scanning tunneling microscopy (STM, in particular the “STM touch-to-contact” method, was used to determine the electrical properties of LB films of 1. From these STM studies symmetrical I–V curves were obtained. A junction conductance of 5.17 × 10−5 G0 results from the analysis of the pseudolinear (ohmic region of the I–V curves. This value is higher than that of the conductance values of LB films of phenylene-ethynylene derivatives contacted by amines, thiols, carboxylate, trimethylsilylethynyl or acetylide groups. In addition, the single molecule I–V curve of 1 determined using the I(s method is in good agreement with the I–V curve obtained for the LB film, and both curves fit well with the Simmons model. Together, these results not only indicate that the mechanism of transport through these metal–molecule–metal junctions is non-resonant tunneling, but that lateral interactions between molecules within the LB film do not strongly influence the molecule conductance. The results presented here

  5. Chemical reactions in organic monomolecular layers. Condensation of hydrazine on carbonyl functions

    International Nuclear Information System (INIS)

    Rosilio, Charles; Ruaudel-Teixier, Annie.

    1976-01-01

    Evidence is given for chemical reactions of hydrazine (NH 2 -NH 2 ) with different carbonyl functional groups of organic molecules in the solid state, in monomolecular layer structures. The condensation of hydrazine with these molecules leads to conjugated systems by bridging the N-N links, to cyclizations, and also to polycondensations. The reactions investigated were followed up by infrared spectrophotometry, by transmission and metallic reflection. These chemical reactions revealed in the solid phase constitute a polycondensation procedure which is valuable in obtaining organized polymers in monomolecular layers [fr

  6. ATR-IR spectroscopy for the detection of induced-phase transition in Langmuir-Blodgett monolayer film

    International Nuclear Information System (INIS)

    Widayati, Suci

    1996-01-01

    The rate at which a solid substrate is transferred through the Air/Water interface in the Langmuir-Blodgett process of preparing monomolecular films influences the final structure of the transferred film. This phenomenon has been observed from the attenuated total reflectance infra-red (ATR-IR) spectra of fatty acid monolayer transferred onto germanium substrate. This transfer-induced effect is most evidence when the monolayer is transferred from an expanded region of the surface-pressure-molecular area isotherm, but has limited influence on the hydrocarbon chain conformation of film molecules transferred in the condensed phases at high surface pressure. Such a conformational ordering may due to a kinetically limited phase transition taking place in the meniscus formed between the solid substrate and aqueous sub phase. In addition, these results suggest that the structure of the amphiphilic molecules may modulate the extent and nature of the dipping-speed-induced structural changes taking place in the monomolecular L-B film. In order to use monomolecular L-B films to accurately characterize the structure, orientation and phase properties of monolayers at the Air/Water interface, the L-B transfer must be performed at transfer speeds that minimize this structural phase transition

  7. Efficacy of aquatain, a monomolecular film, for the control of malaria vectors in rice paddies.

    Directory of Open Access Journals (Sweden)

    Tullu Bukhari

    Full Text Available BACKGROUND: Rice paddies harbour a large variety of organisms including larvae of malaria mosquitoes. These paddies are challenging for mosquito control because their large size, slurry and vegetation make it difficult to effectively apply a control agent. Aquatain, a monomolecular surface film, can be considered a suitable mosquito control agent for such breeding habitats due to its physical properties. The properties allow Aquatain to self-spread over a water surface and affect multiple stages of the mosquito life cycle. METHODOLOGY/PRINCIPAL FINDINGS: A trial based on a pre-test/post-test control group design evaluated the potential of Aquatain as a mosquito control agent at Ahero rice irrigation scheme in Kenya. After Aquatain application at a dose of 2 ml/m(2 on rice paddies, early stage anopheline larvae were reduced by 36%, and late stage anopheline larvae by 16%. However, even at a lower dose of 1 ml/m(2 there was a 93.2% reduction in emergence of anopheline adults and 69.5% reduction in emergence of culicine adults. No pupation was observed in treated buckets that were part of a field bio-assay carried out parallel to the trial. Aquatain application saved nearly 1.7 L of water in six days from a water surface of 0.2 m(2 under field conditions. Aquatain had no negative effect on rice plants as well as on a variety of non-target organisms, except backswimmers. CONCLUSIONS/SIGNIFICANCE: We demonstrated that Aquatain is an effective agent for the control of anopheline and culicine mosquitoes in irrigated rice paddies. The agent reduced densities of aquatic larval stages and, more importantly, strongly impacted the emergence of adult mosquitoes. Aquatain also reduced water loss due to evaporation. No negative impacts were found on either abundance of non-target organisms, or growth and development of rice plants. Aquatain, therefore, appears a suitable mosquito control tool for use in rice agro-ecosystems.

  8. Investigation of PTFE transfer films by infrared emission spectroscopy and phase-locked ellipsometry

    Science.gov (United States)

    Lauer, James L.; Bunting, Bruce G.; Jones, William R., Jr.

    1988-01-01

    When a PTFE sheet was rubbed unidirectionally over a smooth surface of stainless steel an essentially monomolecular transfer film was formed. by ellipsometric and emission infrared spectroscopic techniques it was shown that the film was 10 to 15 A thick and birefringent. From the intensity differences of infrared bands obtained with a polarizer passing radiation polarized in mutually perpendicular planes, it was possible to deduce transfer film orientation with the direction of rubbing. After standing in air for several weeks the transfer films apparently increased in thickness by as much as threefold. At the same time both the index of refraction and the absorption index decreased. Examination of the surfaces by optical and electron microscopies showed that the films had become porous and flaky. These observations were consistent with previous tribological measurements. The coefficients of friction decreased with the formation of the transfer film but increased again as the film developed breaks. The applicability of the ellipsometric and polarized infrared emission techniques to the identification of monomolecular tribological transfer films of polymers such as PTFE has been demonstrated.

  9. Organized organic ultrathin films fundamentals and applications

    CERN Document Server

    Ariga, Katsuhiko

    2012-01-01

    This handy reference is the first comprehensive book covering both fundamentals and recent developments in the field with an emphasis on nanotechnology. Written by a highly regarded author in the field, the book details state-of-the-art preparation, characterization and applications of thin films of organic molecules and biomaterials fabricated by wet processes and also highlights applications in nanotechnology The categories of films covered include monomolecular films (monolayers) both on a water surface and on a solid plate, Langmuir-Blodgett films (transferred multilayer films on a solid plate from a water surface), layer-by-layer films (adsorbed multilayer films on a solid support), and spontaneously assembled films in solution.

  10. Structure analysis of ultra-thin films. STM/AFM. Chousumaku no kozo kaiseki. STM/AFM

    Energy Technology Data Exchange (ETDEWEB)

    Nozoe, H; Yumura, M [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1994-03-30

    Fullerene (C60) and carbon nanotubes are expected as new carbon structures. This article describes the observation results of C60 and carbon nanotubes by means of STM (scanning tunnel microscope). The STM images of C60 thin films are illustrated, which have been obtained by annealing at 290 centigrade. It was confirmed that C60 monomolecular thin films are formed which conform to the substrate and have high regularity. The step height of C60 monomolecular thin films coincided with the step height of Cu (111) plane, which suggested that the step of films is reflected in that of Cu substrate. For the STM images under bias voltages, various images of C60 with three-fold axis of symmetry were observed. On the other hand, from STM observation of carbon nanotubes with diameter of about 30 nm which were separated and purified from the cathode deposits during the preparation process of C60, it was found that they have concentric multilayer structure. 18 refs., 7 figs.

  11. Enzyme-lipid complex. Koso-shishitsu fukugotai

    Energy Technology Data Exchange (ETDEWEB)

    Okahata, Y; Ijiro, K [Tokyo Inst. of Technology., Tokyo (Japan)

    1990-08-01

    Enzyme, as unstable against organic solvent, being to be designed not to be quenched, organic solvent was tried to be made soluble by making enzyme-lipid complex. By mixing aqueous solution of enzyme with aqueous dispersion liquid of lipid, white powder was obtaind. Enzyme has monomolecular film through which reaction substance passes. Lipase-lipid complex, of which monomolecular film is qualified by hydrogen and other soft linkages, homogeneously dissolves in organic solvent and has a high activity, not given by the conventional qualification method. That activity being applied, asymmetrical esterificating reaction of alcohol could be done in organic solvent, containing high concentration reactive substance. While substance selectivity, not known in water, was obtained. Through reaction of amine with amino acid dielectrics in isooctane solvent by {alpha}-chymotrypsin-lipid complex, was indicated an exact substance selectivity. Enzyme-lipid complex dissolving in organic solvent, monomolecular film can be formed without being quenched on aqueous surface, which film can be utilized as sensor film. 10 refs., 5 figs. 1 tab.

  12. Conductive Langmuir-Blodgett films. Doping with iodine or self-doping?

    International Nuclear Information System (INIS)

    Bourgoin, Jean-Philippe

    1991-01-01

    In this research thesis dealing with molecular architecture, the author reports the testing of two strategies aiming at reducing the importance of defects in conductive Langmuir-Blodgett films, and at enabling the production of conductive mono-molecular layer. According to the first strategy, conductive films are obtained after doping based on the use of iodine vapours of an insulating precursor film of molecules derived from BEDT-TTF. The so-produced films display a high conductivity and can be used as sensitive elements in gas sensors, but remain macroscopically insulating, probably because molecular reorganisation, as shown by a study based on different techniques (IR and UV linear dichroism, Raman spectroscopy, X ray diffraction), generates too many defects. The second strategy, self-doping, is based on a mixing of two derivatives of the same electro-active nucleus (the TCNQ, tetracyanoquinodimethane), an amphiphilic one and a semi-amphiphilic one. This strategy opens new perspectives in molecular engineering as it is a general way to produce conductive LB films from TCNQ [fr

  13. Ultrathin monomolecular films and robust assemblies based on cyclic catechols

    Czech Academy of Sciences Publication Activity Database

    Zieger, M. M.; Pop-Georgievski, Ognen; de los Santos Pereira, Andres; Verveniotis, E.; Preuss, C. M.; Zorn, M.; Reck, B.; Goldmann, A. S.; Rodriguez-Emmenegger, Cesar; Barner-Kowollik, C.

    2017-01-01

    Roč. 33, č. 3 (2017), s. 670-679 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GJ15-09368Y Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : cyclic catechols * ultrathin films * macromolecules monolayers Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.833, year: 2016

  14. Formation of a Molecular Wire Using the Chemically Adsorbed Monomolecular Layer Having Pyrrolyl Groups

    Directory of Open Access Journals (Sweden)

    Kazufumi Ogawa

    2011-01-01

    Full Text Available A molecular wire containing polypyrrolyl conjugate bonds has been prepared by a chemical adsorption technique using 1,1,1-trichloro-12-pyrrolyl-1-siladodecane (PNN and an electrooxidative polymerization technique, and the conductivity of the molecular wire without any dopant has been measured by using AFM/STM at room temperature. When sample dimension measured was about 0.3 nm (thickness of the conductive portion in the PNN monomolecular layer ×100 μm (the average width of an electric path ×2 mm (the distance between Pt positive electrode and the AFM tip covered with Au, the conductivity of the polymerized PNN molecular wire at room temperature was larger than 1.6 × 105 S/cm both in an atmosphere and in a vacuum chamber of 10−5 Torr. The activation energy obtained by Arrhenius' plots was almost zero in the temperature range between 320 and 450 K.

  15. Photo- and radiation-chemical stability of molecules. Reactions of monomolecular hydrogen atom splitting off

    International Nuclear Information System (INIS)

    Plotnikov, V.G.; Ovchinnikov, A.A.

    1978-01-01

    In the review of works published up to 1978 one of the main problems of radiation chemistry is discussed, namely the relationship between the structure of organic molecules and their resistance to the effect of ionizing radiation. Theoretical aspects of this problem are considered for reactions of monomolecular hydrogen atom splitting off. It is shown that the radical yield in low-temperature radiation-chemical experiments is connected with the position of lower triplet states of molecules, ionization potentials, polarity of medium and the energy of C-H bonds in cation radicals

  16. A novel three-input monomolecular logic circuit on a rhodamine inspired bio-compatible bi-compartmental molecular platform

    International Nuclear Information System (INIS)

    Mistri, Tarun; Bhowmick, Rahul; Katarkar, Atul; Chaudhuri, Keya; Ali, Mahammad

    2017-01-01

    Methodological synthesis of a new biocompatible bi-compartmental rhodamine based probe (L 3 ) provides a multi-inputs and multi-outputs molecular logic circuit based on simple chemosensing phenomena. Spectroscopic responses of Cu 2+ and Hg 2+ towards L 3 together with reversible binding of S 2- with L 3 -Cu 2+ and L 3 -Hg 2+ complexes help us to construct a thee-input molecular circuit on their control and sequential addition to a solution of L 3 in a mixed organo-aqueous medium. We have further successfully encoded binary digits out of these inputs and outputs which may convert a three-digit input string into a two-digit output string resulting a simple monomolecular logic circuit. Such a molecular ‘Boolean’ logic operation may improve the complexity of logic gate circuitry and computational speed and may be useful to employ in potential biocompatible molecular logic platforms. - Graphical abstract: A new bi-compartmental molecular system equipped with Rhodamine fluorophore unit provides a Multi-inputs and Multi-outputs Molecular Logic Circuit based on a very simple observation of chemosensing activities.

  17. The trypsin-catalyzed hydrolysis of monomolecular films of lysylphosphatidylglycerol

    NARCIS (Netherlands)

    Gould, R.M.; Dawson, R.M.C.

    1972-01-01

    The hydrolysis by trypsin of the bacterial phospholipid, lysylphosphatidyl-glycerol has been studied at the air-water interface. High specific activity [14C]-lysylphosphatidylglycerol was prepared biosynthetically and the trypsin action followed by measuring the loss of surface radioactivity from a

  18. An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly

    CERN Document Server

    Ulman, Abraham

    1991-01-01

    The development of oriented organic monomolecular layers by the Langmuir-Blodgett (LB) and self-assembly (SA) techniques has led researchers toward their goal of assembling individual molecules into highly ordered architectures. Thus the continually growing contribution of LB and SA systems to the chemistry and physics of thin organic films is widely recognized. Equally well-known is the difficulty in keeping up to date with the burgeoning multidisciplinary research in this area. Dr. Ulman provides a massive survey of the available literature. The book begins with a section on analytical tools

  19. Large-sized and highly radioactive 3H and 109Cd Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Shibata, S.; Kawakami, H.; Kato, S.

    1994-02-01

    A device for the deposition of a radioactive Langmuir-Blodgett (LB) film was developed with the use of: (1) a modified horizontal lifting method, (2) an extremely shallow trough, and (3) a surface pressure-generating system without piston oil. It made a precious radioactive subphase solution repeatedly usable while keeping its radioactivity concentration as high as possible. Any large-size thin films can be prepared by just changing the trough size. Two monomolecular-layers of Y-type films of cadmium [ 3 H] icosanoate and 109 Cd icosanoate were built up as 3 H and 109 Cd β-sources for electron spectroscopy with intensities of 1.5 GBq (40 mCi) and 7.4 MBq (200 μCi), respectively, and a size of 65x200 mm 2 . Excellent uniformity of the distribution of deposited radioactivity was confirmed by autoradiography and photometry. (author)

  20. A novel three-input monomolecular logic circuit on a rhodamine inspired bio-compatible bi-compartmental molecular platform

    Energy Technology Data Exchange (ETDEWEB)

    Mistri, Tarun; Bhowmick, Rahul [Department of Chemistry, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata 700032 (India); Katarkar, Atul; Chaudhuri, Keya [Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032 (India); Ali, Mahammad, E-mail: mali@chemistry.jdvu.ac.in [Department of Chemistry, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2017-05-15

    Methodological synthesis of a new biocompatible bi-compartmental rhodamine based probe (L{sup 3}) provides a multi-inputs and multi-outputs molecular logic circuit based on simple chemosensing phenomena. Spectroscopic responses of Cu{sup 2+} and Hg{sup 2+} towards L{sup 3} together with reversible binding of S{sup 2-} with L{sup 3}-Cu{sup 2+} and L{sup 3}-Hg{sup 2+} complexes help us to construct a thee-input molecular circuit on their control and sequential addition to a solution of L{sup 3} in a mixed organo-aqueous medium. We have further successfully encoded binary digits out of these inputs and outputs which may convert a three-digit input string into a two-digit output string resulting a simple monomolecular logic circuit. Such a molecular ‘Boolean’ logic operation may improve the complexity of logic gate circuitry and computational speed and may be useful to employ in potential biocompatible molecular logic platforms. - Graphical abstract: A new bi-compartmental molecular system equipped with Rhodamine fluorophore unit provides a Multi-inputs and Multi-outputs Molecular Logic Circuit based on a very simple observation of chemosensing activities.

  1. Interfacial polarization phenomena in organic molecular films

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Manaka, Takaaki

    2006-01-01

    Electrostatic phenomena occurring at the interface between metal/organic and organic/organic materials are discussed from the viewpoint of dielectrics physics. Focusing on two important origins of surface polarization phenomena, orientational ordering of polar molecules and displacement of excess charges at the interface, surface polarization phenomena of organic thin films are discussed. To define the orientational order of polar molecules, orientational order parameters are introduced, and surface polarization due to the alignment of dipoles is expressed. The generation of Maxwell displacement current (MDC) and optical second harmonic generation (SHG) that are specific for surface organic monomolecular films are discussed, and some experimental evidence are shown. As an extension of the concept of surface Fermi level introduced to discuss the electrostatic phenomena due to electron transfer at the interface between metal-organic insulators, the surface Fermi level is extended to the discussion on the electrostatic phenomena of organic semiconductor materials on metals. In this paper, some experimental evidence of surface polarization originating from polar molecules and displacement of excess charges are shown. After that, with consideration of these surface phenomena, single electron tunneling of organic films are briefly discussed in association with surface polarization phenomena

  2. Organization of lipids in the tear film: a molecular-level view.

    Directory of Open Access Journals (Sweden)

    Alicja Wizert

    Full Text Available Biophysical properties of the tear film lipid layer are studied at the molecular level employing coarse grain molecular dynamics (MD simulations with a realistic model of the human tear film. In this model, polar lipids are chosen to reflect the current knowledge on the lipidome of the tear film whereas typical Meibomian-origin lipids are included in the thick non-polar lipids subphase. Simulation conditions mimic those experienced by the real human tear film during blinks. Namely, thermodynamic equilibrium simulations at different lateral compressions are performed to model varying surface pressure, and the dynamics of the system during a blink is studied by non-equilibrium MD simulations. Polar lipids separate their non-polar counterparts from water by forming a monomolecular layer whereas the non-polar molecules establish a thick outermost lipid layer. Under lateral compression, the polar layer undulates and a sorting of polar lipids occurs. Moreover, formation of three-dimensional aggregates of polar lipids in both non-polar and water subphases is observed. We suggest that these three-dimensional structures are abundant under dynamic conditions caused by the action of eye lids and that they act as reservoirs of polar lipids, thus increasing stability of the tear film.

  3. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces

    DEFF Research Database (Denmark)

    Lösche, M.; Piepenstock, M.; Diederich, A.

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both...... in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of apprx 40 ANG . A systematic...... dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state...

  4. Electro-active bio-films: formation, characterization and mechanisms

    International Nuclear Information System (INIS)

    Parot, Sandrine

    2007-01-01

    Some bacteria, which are able to exchange electrons with a conductive material without mediator form on conductive surfaces electro-active bio-films. This bacterial property has been recently discovered (2001). Objectives of this work are to develop electro-active bio-films in various natural environments from indigenous flora, then through complementary electrochemical techniques (chrono-amperometry and cyclic voltammetry), to evaluate electro-activity of isolates coming from so-formed bio-films and to characterize mechanisms of electron transfer between bacteria and materials. First, electro-active bio-films have been developed under chrono-amperometry in garden compost and in water coming from Guyana mangrove. These bio-films were respectively able to use an electrode as electron acceptor (oxidation) or as electron donor (reduction). In compost, results obtained in chrono-amperometry and cyclic voltammetry suggest a two-step electron transfer: slow substrate consumption, then rapid electron transfer between bacteria and the electrode. Thereafter, the ability to reduce oxygen was demonstrated with cyclic voltammetry for facultative aerobic isolates from compost bio-films (Enterobacter spp. and Pseudomonas spp.) and for aerobic isolates obtained from marine electro-active bio-films (Roseobacter spp. in majority). Finally, bio-films inducing current increase in chrono-amperometry were developed in bioreactor with synthetic medium from a pure culture of isolates. Hence, for the first time, electro-activity of several anaerobic strains of Geobacter bremensis isolated from compost bio-films was highlighted. (author) [fr

  5. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  6. Photocatalytic Activity of Nanostructured Titanium Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Zdenek Michalcik

    2012-01-01

    Full Text Available The aim of this paper is to investigate the properties and photocatalytic activity of nanostructured TiO2 layers. The glancing angle deposition method with DC sputtering at low temperature was applied for deposition of the layers with various columnar structures. The thin-film structure and surface morphology were analyzed by XRD, SEM, and AFM analyses. The photocatalytic activity of the films was determined by the rate constant of the decomposition of the Acid Orange 7. In dependence on the glancing angle deposition parameters, three types of columnar structures were obtained. The films feature anatase/rutile and/or amorphous structures depending on the film architecture and deposition method. All the films give the evidence of the photocatalytic activity, even those without proved anatase or rutile structure presence. The impact of columnar boundary in perspective of the photocatalytic activity of nanostructured TiO2 layers was discussed as the possible factor supporting the photocatalytic activity.

  7. Charge carrier dynamics investigation of CuInS{sub 2} quantum dots films using injected charge extraction by linearly increasing voltage (i-CELIV): the role of ZnS Shell

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Ke; Sui, Ning; Zhang, Liquan; Wang, Yinghui, E-mail: yinghui-wang@outlook.com; Liu, Qinghui, E-mail: liuqinghui@jlu.edu.cn; Tan, Mingrui [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China); Zhou, Qiang [Jilin University, Key Laboratory of Superhard Materials, College of Physics (China); Zhang, Hanzhuang, E-mail: zhanghz@jlu.edu.cn [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China)

    2016-12-15

    The role of ZnS shell on the photo-physical properties within CuInS{sub 2}/ZnS quantum dots (QDs) is carefully studied in optoelectronic devices. Linearly increasing voltage technique has been employed to investigate the charge carrier dynamics of both CuInS{sub 2} and CuInS{sub 2}/ZnS QDs films. This study shows that charge carriers follow a similar behavior of monomolecular recombination in this film, with their charge transfer rate correlates to the increase of applied voltage. It turns out that the ZnS shell could affect the carrier diffusion process through depressing the trapping states and would build up a potential barrier.

  8. Thickness Dependent on Photocatalytic Activity of Hematite Thin Films

    Directory of Open Access Journals (Sweden)

    Yen-Hua Chen

    2012-01-01

    Full Text Available Hematite (Fe2O3 thin films with different thicknesses are fabricated by the rf magnetron sputtering deposition. The effects of film thicknesses on the photocatalytic activity of hematite films have been investigated. Hematite films possess a polycrystalline hexagonal structure, and the band gap decreases with an increase of film thickness. Moreover, all hematite films exhibit good photocatalytic ability under visible-light irradiation; the photocatalytic activity of hematite films increases with the increasing film thickness. This is because the hematite film with a thicker thickness has a rougher surface, providing more reaction sites for photocatalysis. Another reason is a lower band gap of a hematite film would generate more electron-hole pairs under visible-light illumination to enhance photocatalytic efficiency. Experimental data are well fitted with Langmuir-Hinshelwood kinetic model. The photocatalytic rate constant of hematite films ranges from 0.052 to 0.068 min-1. This suggests that the hematite film is a superior photocatalyst under visible-light irradiation.

  9. Concentration dependent carriers dynamics in CsPbBr3 perovskite nanocrystals film with transient grating

    Science.gov (United States)

    Wang, Yinghui; Wang, Yanting; Dev Verma, Sachin; Tan, Mingrui; Liu, Qinghui; Yuan, Qilin; Sui, Ning; Kang, Zhihui; Zhou, Qiang; Zhang, Han-Zhuang

    2017-05-01

    The concentration dependence of the carrier dynamics is a key parameter to describe the photo-physical properties of semiconductor films. Here, we investigate the carrier dynamics in the CsPbBr3 perovskite nanocrystal film by employing the transient grating (TG) technique with continuous bias light. The concentration of initial carriers is determined by the average number of photons per nanocrystals induced by pump light (⟨N⟩). The multi-body interaction would appear and accelerate the TG dynamics with ⟨N⟩. When ⟨N⟩ is more than 3.0, the TG dynamics slightly changes, which implies that the Auger recombination would be the highest order multi-body interaction in carrier recombination dynamics. The concentration of non-equilibrium carriers in the film is controlled by the average number of photons per nanocrystals excited by continuous bias light (⟨nne⟩). Increasing ⟨nne⟩ would improve the trapping-detrapping process by filling the trapping state, which would accelerate the carrier diffusion and add the complexity of the mono-molecular recombination mechanism. The results should be useful to further understand the mechanism of carrier dynamics in the CsPbBr3 perovskite nanocrystal film and of great importance for the operation of the corresponding optoelectronic devices.

  10. Plasmonics and single-molecule detection in evaporated silver-island films

    Energy Technology Data Exchange (ETDEWEB)

    Moula, G.; Aroca, R.F. [Materials and Surface Science Group, University of Windsor, Ontario (Canada); Rodriguez-Oliveros, R.; Sanchez-Gil, J.A. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Albella, P. [Centro de Fisica de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, San Sebastian (Spain)

    2012-11-15

    The plasmonic origin of surface-enhanced Raman scattering (SERS) leads to the concept of hotspots and plasmon coupling that can be realized in the interstitial regions, or on specially engineered, silver and gold nanostructures. It is also possible to achieve spatial locations of high local field or hotspots on silver-island films (SIF) allowing single-molecule detection (SMD). When a single monomolecular layer coating the SIFs contains dye molecules dispersed in it, single-molecule impurities, (with an average of one hundred dye molecules in 1 {mu}m{sup 2}, which is the field of view of the micro-Raman system), SMD is observed as a rare statistical event. Here, the SMD results for silver-island films are presented, with the same nominal mass thickness, but differing in the localized surface plasmon resonance that is a function of the temperature of substrate during deposition. A blue-shifted plasmon can be seen as a decrease in plasmon coupling for deposition at higher temperature. A simple two-particle model for localized plasmon resonance coupling calculations, including the shape and substrate effects seems to explain the trend of observations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging

    International Nuclear Information System (INIS)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio

    2015-01-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm"-"1 and 1165 cm"-"1 bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  12. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  13. Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time

    Energy Technology Data Exchange (ETDEWEB)

    Pithan, Linus; Weber, Christopher; Zykov, Anton; Sauer, Katrein; Opitz, Andreas; Kowarik, Stefan, E-mail: stefan.kowarik@physik.hu-berlin.de [Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Meister, Eduard; Brütting, Wolfgang [Institut für Physik, Universität Augsburg, 86135 Augsburg (Germany); Jin, Chenyu; Riegler, Hans [Max-Planck-Institut für Kolloid- und Grenzflächenforschung, 14476 Potsdam-Golm (Germany)

    2015-10-28

    We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C{sub 44}H{sub 90}) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.

  14. Development of a model to describe organic films on aerosol particles and cloud droplets. Final report; Entwicklung eines Modells zur Beschreibung organischer Filme auf Aerosolteilchen und Wolkentropfen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Forkel, R. (ed.); Seidl, W.

    2000-12-01

    Organic substances with polar groups are enriched on water surfaces and can form monomolecular surface films which can reduce the surface tension. A new model to describe surface films is presented, which describes in detail the film forming properties of fatty acids with up to 22 carbon atoms. The model is applied to measured concentrations of fatty acids (from the literature) in rain water and on aerosol particles and cloud droplets. An investigation of the sources of fatty acids has shown, that abrasion of the wax layer on leaves and needles is the main sources for surface film material in the western USA. Anthropogenic sources in urban areas are meat preparation and cigarette smoke. The agreement between model results and measurements when the model was applied to rain water confirms the original assumption that fatty acids are a main compound of surface films in rain water. For humid aerosol particles the application of the model on measured concentrations of fatty acids only showed strongly diluted films. Only for remote forest areas in western USA concentrated films were found, with the surface tension reduced by 20 to 30%. On cloud droplets the surface films is still more diluted than on aerosol particles. For all investigated cases the films was too much diluted to have an effect on the activation process of cloud droplets. (orig.) [German] Organische Substanzen mit polaren Gruppen reichern sich an der Wasseroberflaeche an und koennen monomolekulare Oberflaechenfilme bilden, die zu einer Verringerung der Oberflaechenspannung fuehren. Es wird ein neues Modell zur Beschreibung eines Oberflaechenfilms beschrieben, das detailliert die filmbildenden Eigenschaften der Fettsaeuren mit bis zu 22 Kohlenstoffatomen erfasst. Dieses Modell ist auf gemessene Konzentrationen von Fettsaeuren (Literaturdaten) in Regenwasser und auf atmosphaerischen Aerosolteilchen und Wolkentropfen angewandt worden. Eine Betrachtung der Quellen der Fettsaeuren zeigte, dass der Abrieb der

  15. Visible-light photocatalytic activity of nitrided TiO2 thin films

    International Nuclear Information System (INIS)

    Camps, Enrique; Escobar-Alarcon, L.; Camacho-Lopez, Marco Antonio; Casados, Dora A. Solis

    2010-01-01

    TiO 2 thin films have been applied in UV-light photocatalysis. Nevertheless visible-light photocatalytic activity would make this material more attractive for applications. In this work we present results on the modification of titanium oxide (anatase) sol-gel thin films, via a nitriding process using a microwave plasma source. After the treatment in the nitrogen plasma, the nitrogen content in the TiO 2 films varied in the range from 14 up to 28 at%. The titanium oxide films and the nitrided ones were characterized by XPS, micro-Raman spectroscopy and UV-vis spectroscopy. Photocatalytic activity tests were done using a Methylene Blue dye solution, and as catalyst TiO 2 and nitrided TiO 2 films. The irradiation of films was carried out with a lamp with emission in the visible (without UV). The results showed that the nitrided TiO 2 films had photocatalytic activity, while the unnitrided films did not.

  16. Realisation and study of poly-phthalocyanine thin films grafted on solid substrate

    International Nuclear Information System (INIS)

    Huc, Vincent

    1999-01-01

    The aim of this work is to develop thin films of phthalocyanines covalently grafted to solid substrates. These thin films are formed of successive monomolecular layers of macrocycles, deposited on the substrate by a 'Merrifield' sequential method. These phthalocyanines have in their centre a metallic ion (such as ruthenium) which ensures the bonding of phthalocyanines on the substrate and the assembling of monolayers consecutive together. The deposition of these monolayers is provided by a succession of two spontaneous exchange ligands reactions between the labile groups L initially bound to ruthenium and to those present on the substrate (preliminary functionalized). The repetition of these two steps allows to consider the controlled formation of phthalocyanines multilayers by self-assembling. The main substrates used are the silicon oxide and the gold. Their different characteristics have imposed the development of separate functionalization and characterization methods. The results obtained with these two substrates are separately described. A second method of construction of successive monolayers of phthalocyanines is described involving a chemical coupling between an amine function carried out by the substrate and an aldehyde function present on the ligands bound on ruthenium. (author) [fr

  17. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  18. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    International Nuclear Information System (INIS)

    Fu Jianxi; Wang Huajie; Zhou Yanqing; Wang Jinye

    2009-01-01

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 μm. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  19. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jianxi [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Huajie [College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zhou Yanqing [Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Jinye, E-mail: jywang@mail.sioc.ac.cn [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2009-05-05

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 {mu}m. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  20. Porous-ZnO-Nanobelt Film as Recyclable Photocatalysts with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Wang Min

    2010-01-01

    Full Text Available Abstract In this article, the porous-ZnO-nanobelt film was synthesized by oxidizing the ZnSe-nanobelt film in air. The experiment results show that the porous-ZnO-nanobelt film possesses enhanced photocatalytic activity compared with the ZnO-nanobelt film, and can be used as recyclable photocatalysts. The enhanced photocatalytic activity of the porous-ZnO-nanobelt film is attributed to the increased surface area. Therefore, turning the 1D-nanostructure film into porous one may be a feasible approach to meet the demand of photocatalyst application.

  1. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  2. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  3. Bactericidal activity of titanium dioxide ultraviolet-induced films

    Energy Technology Data Exchange (ETDEWEB)

    Pleskova, S.N., E-mail: pleskova@mail.ru [Laboratory of Biochemistry and Molecular Biology, Tomsk State University, ave. Lenina 36, Tomsk 634050 (Russian Federation); Golubeva, I.S., E-mail: golubmay@mail.ru [Institute of applied biotechnology of Nizhny Novgorod, Yablonevaya Street 22, Nizhny Novgorod 603093 (Russian Federation); Verevkin, Y.K., E-mail: verevkin@appl.sci-nnov.ru [Institute of applied physics of the Russian Academy of Science, Ul' yanov Street, 46, Nizhny Novgorod 603950 (Russian Federation)

    2016-02-01

    TiO{sub 2} films are used as a self-sterilization surface due to their property to form reactive oxygen species (ROS) when irradiated with ultraviolet light. These ROS attack bacteria and kill them. We present a new way to enhance the bactericidal activity of TiO{sub 2}-films: formation of nanopores on the surface by four-beam high-power laser irradiation. Such surfaces have significantly higher antibacterial activity as compared to conventional TiO{sub 2} surfaces after 15 and 60 min of UV irradiation. Study of the bacterial cell morphology by atomic force microscopy after 60 min irradiation showed that Staphylococcus aureus 956 and Escherichia coli 321–5 undergo significant morphological changes. S. aureus assume atypical elongated shapes after UV treatment alone and swollen forms with protrusions after UV treatment on TiO{sub 2} surface. E. coli exhibit oval or round forms after UV treatment alone, and round forms with small protrusions, and destroyed cells after incubation under UV on the TiO{sub 2} film. - Highlights: • Nanopores on the TiO{sub 2} surface enhance the bactericidal activity of films. • The bactericidal effect of TiO{sub 2} is strain-specific. • The bacterial morphology significantly changes after UV/TiO{sub 2} treatment.

  4. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers

    NARCIS (Netherlands)

    Demel, R.A.; Geurts van Kessel, W.S.M.; Zwaal, R.F.A.; Roelofsen, B.; Deenen, L.L.M. van

    1975-01-01

    The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from

  5. Low-level dosimetry based on activation analysis of badge film, 1

    International Nuclear Information System (INIS)

    Morikawa, Kaoru; Yamashita, Kazuya; Inamoto, Kazuo; Maeda, Masayuki; Sato, Takashi; Ono, Koichi.

    1988-01-01

    Underexposed badge film contains a minor quantity of silver which corresponds to the low radiation dose even after completion of the photographic densitometry ; however, it cannot be detected with a photographic densitometer. We intended to clarify the minor silver content based on radioactivation analysis with thermal neutrons at KUR (Kyoto University Research Reactor). The natural silver consists of two stable nuclides, i.e., 107 Ag and 109 Ag. These can be activated with irradiation of thermal neutrons to two radionuclides, i.e., 108 Ag and 110 Ag. In this paper, through the activation analysis of an underexposed badge film, methods of measurements are shown regarding both 108 Ag produced by the 107 Ag (n, γ) reaction and 110 Ag by the 109 Ag (n, γ). After underexposed badge films were irradiated with thermal neutrons, some gamma-rays emitted from the radionuclides in the activated films were measured with a high pure Ge detector or a NaI (Tl) scintillation detector. The following results were obtained: (1) several elements such as silver, iodine, gold, antimony, manganese and copper were detected by activation analyses of films exposed to low level 60 Co gamma-rays, (2) the exposure vs 108 Ag or 110 Ag activity curve was linear in the lower dose range of 60 Co gamma-rays. These data indicate that low level radiation doses, which is indeterminable by ordinary photographic densitometry, can be estimated by activation analysis of silver atoms in badge films. (author)

  6. Effect of caraway essential oil on the antioxidant and antimicrobial activity of chitosan film

    Directory of Open Access Journals (Sweden)

    Hromiš Nevena M.

    2015-01-01

    Full Text Available The aim of this study was to evaluate bioactivity of chitosan film with incorporated caraway essential oil by measuring antioxidant and antimicrobial activity. A Fourier transform infrared spectroscopy was used to determine the potential interaction of functional groups of chitosan film and incorporated caraway essential oil. New detected peaks and main shifts in the peaks of chitosan spectra are attributed mainly to presence of s-(+-carvone and limonene, the main components of caraway essential oil. The antioxidant activity of chitosan film was analyzed by DPPH method. Chitosan film without incorporated caraway essential oil showed the lowest scavenging ability (29.95%, after 24 h. The addition of different concentrations of caraway essential oil into chitosan film significantly enhanced antioxidant activity of pure chitosan film, reaching the maximum of 95%. ASTM E 2149 - 01 method was performed to evaluate the antimicrobial activity of chitosan films. The reduction of bacteria cell number in contact with examined films was tested on Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes and Gram-negative bacteria Escherichia coli and Salmonella Typhimurium. The most sensitive bacteria was Staphylococcus aureus and the most resistant bacteria was Salmonella Typhimurium for all tested films. These results suggested that incorporation of caraway essential oil into chitosan film significantly improved its antioxidant and antimicrobial activity. The film showed a great potential to be used as an active packaging material.

  7. Characterization of Langmuir and Langmuir–Blodgett films of an octasubstituted zinc phthalocyanine

    International Nuclear Information System (INIS)

    Torrent-Burgués, J.; Cea, P.; Giner, I.; Guaus, E.

    2014-01-01

    In this work we report the fabrication of Langmuir and Langmuir–Blodgett (LB) films of a substituted ZnPc (octakis(oxyoctyl)phthalocyanine of zinc), and their characterization by means of several techniques. These characterization techniques include surface pressure (π-A) and surface potential (ΔV-A) isotherms as well as UV–vis Reflection spectroscopy and Brewster Angle Microscopy (BAM) for the films at the air–water interface together with UV–vis absorption and IR spectroscopies and Atomic Force Microscopy (AFM) for the LB films. The π-A and ΔV-A isotherms and BAM images indicate a phase transition at a surface pressure of ca. 9 mN/m and a multilayer formation at surface pressures around 19–20 mN/m; at a surface pressure around 27 mN/m a disordered collapse of the film occurs. In addition, AFM images of LB films at π = 10 mN/m and π = 20 mN/m show a monomolecular and a multilayered film, respectively. The comparison of the UV–vis spectrum of ZnPc in solution, the reflection spectra of the Langmuir films and UV–vis spectra of LB films reveals a significant reduction in the Q band intensity for the films, indicative of an organization of ZnPc in the Langmuir and LB films versus the random distribution in solution. The UV–vis Reflection spectra are also consistent with multilayer formation at surface pressures around 19–20 mN/m. The relative intensities of the IR spectrum bands change from the KBr pellet to the LB film which is also attributable to orientation effects in the film. Cyclic voltammetric experiments of LB films incorporating the ZnPc derivative show peaks that can be correlated with redox processes occurring in the phthalocyanine ring. A small but significant influence of the surface pressure and the number of deposited layers in the electrochemical behaviour is observed. The electrochemical response of cast films exhibits some differences with respect to that of LB films which have been attributed to their different molecular

  8. Characterization of Langmuir and Langmuir–Blodgett films of an octasubstituted zinc phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Torrent-Burgués, J. [Department of Chemical Engineering, Universitat Politècnica de Catalunya (UPC), C/Colom 1, 08222 Terrassa, Barcelona (Spain); Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona (Spain); Cea, P. [Departamento de Química Orgánica y Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Nanociencia de Aragón (INA) y Laboratorio de Microscopias Avanzadas (LMA), Edificio i+d, Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50017 Zaragoza (Spain); Giner, I. [Departamento de Química Orgánica y Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Guaus, E. [Department of Chemical Engineering, Universitat Politècnica de Catalunya (UPC), C/Colom 1, 08222 Terrassa, Barcelona (Spain)

    2014-04-01

    In this work we report the fabrication of Langmuir and Langmuir–Blodgett (LB) films of a substituted ZnPc (octakis(oxyoctyl)phthalocyanine of zinc), and their characterization by means of several techniques. These characterization techniques include surface pressure (π-A) and surface potential (ΔV-A) isotherms as well as UV–vis Reflection spectroscopy and Brewster Angle Microscopy (BAM) for the films at the air–water interface together with UV–vis absorption and IR spectroscopies and Atomic Force Microscopy (AFM) for the LB films. The π-A and ΔV-A isotherms and BAM images indicate a phase transition at a surface pressure of ca. 9 mN/m and a multilayer formation at surface pressures around 19–20 mN/m; at a surface pressure around 27 mN/m a disordered collapse of the film occurs. In addition, AFM images of LB films at π = 10 mN/m and π = 20 mN/m show a monomolecular and a multilayered film, respectively. The comparison of the UV–vis spectrum of ZnPc in solution, the reflection spectra of the Langmuir films and UV–vis spectra of LB films reveals a significant reduction in the Q band intensity for the films, indicative of an organization of ZnPc in the Langmuir and LB films versus the random distribution in solution. The UV–vis Reflection spectra are also consistent with multilayer formation at surface pressures around 19–20 mN/m. The relative intensities of the IR spectrum bands change from the KBr pellet to the LB film which is also attributable to orientation effects in the film. Cyclic voltammetric experiments of LB films incorporating the ZnPc derivative show peaks that can be correlated with redox processes occurring in the phthalocyanine ring. A small but significant influence of the surface pressure and the number of deposited layers in the electrochemical behaviour is observed. The electrochemical response of cast films exhibits some differences with respect to that of LB films which have been attributed to their different molecular

  9. Probing Active Nematic Films with Magnetically Manipulated Colloids

    Science.gov (United States)

    Rivas, David; Chen, Kui; Henry, Robert; Reich, Daniel; Leheny, Robert

    We study microtubule-based extensile active nematic films using rod-like and disk-shaped magnetic colloids to probe the mechanical and hydrodynamic properties of this quasi-two dimensional out-of-equilibrium system. The active nematics are driven by molecular motors that hydrolyze ATP and cause sliding motion between microtubular bundles. This motion produces a dynamic nematic director field, which continuously creates pairs of +1/2 and -1/2 defects. In the absence of externally applied forces or torques, we observe that the magnetic rods in contact with the films align with the local director, indicating the existence of mechanical coupling between the film and probe. By applying known magnetic torques to the rods and observing their rotation with respect to the director, we gain insight into this coupling. We also find that by rotating magnetic microdisks using magnetic fields, hydrodynamic flows are produced that compete with the films' intrinsic flow, leading to significant effects on the director field and the defect landscape. At certain rotation rates, the disks produce a vortex-like structure in the director field and cause the creation and shedding of defects from the disk boundary.

  10. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging; Filme ativo de poli(cloreto de vinila)/prata: sintese, caracterizacao e avaliacao como embalagem ativa antimicrobiana

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio, E-mail: lilianrodribraga@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF, (Brazil)

    2015-07-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm{sup -1} and 1165 cm{sup -1} bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  11. The effect of dietary fat on the molecular species of lecithin from rat liver

    NARCIS (Netherlands)

    Golde, L.M.G. van; Deenen, L.L.M. van

    1966-01-01

    1. 1. Lecithins from the liver of rats maintained on diets devoid of essential fatty acids or supplemented with coconut oil or corn oil revealed significant differences in fatty acid composition, whilst monomolecular films of these lecithin samples exhibited only limited differences in force-area

  12. Activation of erbium films for hydrogen storage

    International Nuclear Information System (INIS)

    Brumbach, Michael T.; Ohlhausen, James A.; Zavadil, Kevin R.; Snow, Clark S.; Woicik, Joseph C.

    2011-01-01

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  13. Active films based on cocoa extract with antioxidant, antimicrobial and biological applications.

    Science.gov (United States)

    Calatayud, Marta; López-de-Dicastillo, Carolina; López-Carballo, Gracia; Vélez, Dinoraz; Hernández Muñoz, Pilar; Gavara, Rafael

    2013-08-15

    Novel films of ethylene-vinyl alcohol copolymer (EVOH) containing flavonoid-rich cocoa were developed. To understand their potential application as active packaging material, antioxidant and antimicrobial properties of the films were determined as well as the antioxidant activity of the release compounds in Caco-2 human epithelial colorectal adenocarcinoma cells. Exposure of the films to aqueous food simulant showed antioxidant capacity. The release of cocoa extract components was dependent on the antioxidant concentration incorporated in the film and on temperature. Cocoa extract and the fraction obtained after in vitro gastrointestinal digestion presented antioxidant activity against oxidative stress induced by hydrogen peroxide in Caco-2 cells. Films with 10%, 15%, and 20% cocoa extract produced bactericidal effect against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella enterica. The application of films to an infant milk formula, previously inoculated with L. monocytogenes, inhibited the growth of bacteria 1.5 log units the first day and showed sustained release, inhibiting 0.52 and 0.76 log units, respectively, by the sixth day, while cocoa powder added directly did not produce any effect. Published by Elsevier Ltd.

  14. Nanostructured porous ZnO film with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang Lina; Zheng Yingying; Li Xiaoyun; Dong Wenjun; Tang Weihua; Chen Benyong; Li Chaorong; Li Xiao; Zhang Tierui

    2011-01-01

    Well-defined ZnO nanostructured films have been fabricated directly on Zn foil via hydrothermal synthesis. During the fabrication of the ZnO nanostructured films, the Zn foil serves as the Zn source and also the substrate. Porous nanosheet-based, nanotube-based and nanoflower-based ZnO films can all be easily prepared by adjusting the alkali type, reaction time and reaction temperature. The composition, morphology and structure of ZnO films are characterized by X-ray diffraction, scanning electron microscope and high-resolution transmission electron microscope. The porous ZnO nanosheet-based film exhibits enhanced photocatalytic activity in the degradation of Rhodamine B under UV light irradiation. This can be attributed to the high surface area of the ZnO nanosheet and the large percentage of the exposed [001] facet. Moreover, the self-supporting, recyclable and stable ZnO photocatalytic film can be readily recovered and potentially applied for pollution disposal.

  15. A Key Role of Xanthophylls That Are Not Embedded in Proteins in Regulation of the Photosynthetic Antenna Function in Plants, Revealed by Monomolecular Layer Studies.

    Science.gov (United States)

    Welc, Renata; Luchowski, Rafal; Grudzinski, Wojciech; Puzio, Michal; Sowinski, Karol; Gruszecki, Wieslaw I

    2016-12-29

    The main physiological function of LHCII (light-harvesting pigment-protein complex of photosystem II), the largest photosynthetic antenna complex of plants, is absorption of light quanta and transfer of excitation energy toward the reaction centers, to drive photosynthesis. However, under strong illumination, the photosynthetic apparatus faces the danger of photodegradation and therefore excitations in LHCII have to be down-regulated, e.g., via thermal energy dissipation. One of the elements of the regulatory system, operating in the photosynthetic apparatus under light stress conditions, is a conversion of violaxanthin, the xanthophyll present under low light, to zeaxanthin, accumulated under strong light. In the present study, an effect of violaxanthin and zeaxanthin on the molecular organization and the photophysical properties of LHCII was studied in a monomolecular layer system with application of molecular imaging (atomic force microscopy, fluorescence lifetime imaging microscopy) and spectroscopy (UV-Vis absorption, FTIR, fluorescence spectroscopy) techniques. The results of the experiments show that violaxanthin promotes the formation of supramolecular LHCII structures preventing dissipative excitation quenching while zeaxanthin is involved in the formation of excitonic energy states able to quench chlorophyll excitations in both the higher (B states) and lower (Q states) energy levels. The results point to a strategic role of xanthophylls that are not embedded in a protein environment, in regulation of the photosynthetic light harvesting activity in plants.

  16. Structure of binary mixed polymer Langmuir layers

    NARCIS (Netherlands)

    Bernardini, C.

    2012-01-01

    The possibility of preparing 2D stable emulsions through mixing of homopolymers in a Langmuir monolayer is the core topic of this thesis. While colloid science has achieved well established results in the study of bulk dispersed systems, accounts on properties of mixed monomolecular films are

  17. Epitaxially Grown Ultra-Flat Self-Assembling Monolayers with Dendrimers

    Directory of Open Access Journals (Sweden)

    Takane Imaoka

    2018-02-01

    Full Text Available Mono-molecular films formed by physical adsorption and dendrimer self-assembly were prepared on various substrate surfaces. It was demonstrated that a uniform dendrimer-based monolayer on the subnanometer scale can be easily constructed via simple dip coating. Furthermore, it was shown that an epitaxially grown monolayer film reflecting the crystal structure of the substrate (highly ordered pyrolytic graphite (HOPG can also be formed by aligning specific conditions.

  18. Development of an active biodegradable film containing tocopherol and avocado peel extract

    Directory of Open Access Journals (Sweden)

    J.C.F. Fidelis

    2015-12-01

    Full Text Available Thermoplastic starch (TPS films and poly(butylene adipate co-terephthalate (PBAT (60/40 m/m containing TOCO-70 (tocopherol/soybean oil 70/30 m/m and avocado peel extract (ExA were produced using blown film extrusion. The formulations of the 5 films (FC/F1/F2/F3 and F4 were established through mixture design with constraints maintaining constant PBAT and TPS proportion, and varying the antioxidant concentrations. Adding antioxidants reduced the water vapour permeability (Kw of the films, with formulation F2 presenting higher decrease in relationto FC, 77.8%. The presence of ExA improved the mechanical properties of the films. The production of the films was determined to be viable after they presented good processability in a pilotextruder, as well as mechanical properties appropriate to production and utilization in industry.The presence of ExA and TOCO 70 provided the films with antioxidant activity; their application as active packaging requires further studies.

  19. Antimicrobial Films Based on Chitosan and Methylcellulose Containing Natamycin for Active Packaging Applications

    Directory of Open Access Journals (Sweden)

    Serena Santonicola

    2017-10-01

    Full Text Available Biodegradable polymers are gaining interest as antimicrobial carriers in active packaging. In the present study, two active films based on chitosan (1.5% w/v and methylcellulose (3% w/v enriched with natamycin were prepared by casting. The antimicrobial’s release behavior was evaluated by immersion of the films in 95% ethanol (v/v at different temperatures. The natamycin content in the food simulant was determined by reversed-high performance liquid chromatography with diode-array detection (HPLC-DAD. The apparent diffusion (DP and partition (KP/S coefficients were calculated using a mathematical model based on Fick’s Second Law. Results showed that the release of natamycin from chitosan based film (DP = 3.61 × 10−13 cm2/s was slower, when compared with methylcellulose film (DP = 3.20 × 10−8 cm2/s at the same temperature (p < 0.05. To evaluate the antimicrobial efficiency of active films, cheese samples were completely covered with the films, stored at 20 °C for 7 days, and then analyzed for moulds and yeasts. Microbiological analyses showed a significant reduction in yeasts and moulds (7.91 log CFU/g in samples treated with chitosan active films (p < 0.05. The good compatibility of natamycin with chitosan, the low Dp, and antimicrobial properties suggested that the film could be favorably used in antimicrobial packagings.

  20. Controlled morphologies and optical properties of ZnO films and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jingjing [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Liu Xiaoheng, E-mail: xhliu@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Han Qiaofeng [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Wang Xin, E-mail: wangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2011-09-15

    Highlights: > Gelatin acts as a capping reagent in the morphology synthesis of ZnO films. > The microstructures of ZnO films are hexagonal prisms, plates and rose-like crystals. > The hexagonal prisms and rose-like films exhibit excellent photocatalytic activities. - Abstract: ZnO films with three different microstructures including hexagonal prisms, plates and rose-like twinned crystals were fabricated using chemical bath deposition with different concentration of gelatin. The growth mechanisms of ZnO films were discussed, and the gelatin played a vital role as a polyelectrolyte capping the formation of microstructures. The photoluminescence and Raman properties were found sensitive to the crystal morphologies of ZnO films. Significantly, the photodegradation efficiencies of methylene blue under UV light irradiation in the presence of ZnO films consisted of hexagonal prisms and rose-like twinned crystals were 95% and 96%, respectively. The excellent photocatalytic activities can be ascribed to the high oxygen vacancies concentration and high percentage of polar planes, and this result was important in addressing the origin of high photocatalytic activity.

  1. Chitosan-caffeic acid-genipin films presenting enhanced antioxidant activity and stability in acidic media.

    Science.gov (United States)

    Nunes, Cláudia; Maricato, Élia; Cunha, Ângela; Nunes, Alexandra; da Silva, José A Lopes; Coimbra, Manuel A

    2013-01-02

    The use of chitosan films has been limited due to their high degradability in aqueous acidic media. In order to produce chitosan films with high antioxidant activity and insoluble in acid solutions caffeic acid was grafted to chitosan by a radical mechanism using ammonium cerium (IV) nitrate (60 mM). Genipin was used as cross-linker. This methodology originated films with 80% higher antioxidant activity than the pristine film. Also, these films only lost 11% of their mass upon seven days immersion into an aqueous solution at pH 3.5 under stirring. The films surface wettability (contact angle 105°), mechanical properties (68 MPa of tensile strength and 4% of elongation at break), and thermal stability for temperatures lower than 300 °C were not significantly influenced by the covalent linkage of caffeic acid and genipin to chitosan. Due to their characteristics, mainly higher antioxidant activity and lower solubility, these are promising materials to be used as active films. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Rocha Junior, Carlos da; Caseli, Luciano

    2017-01-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  3. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Rocha Junior, Carlos da; Caseli, Luciano, E-mail: lcaseli@unifesp.br

    2017-04-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  4. Control of lipid oxidation by nonmigratory active packaging films prepared by photoinitiated graft polymerization.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2012-08-08

    Transition metal-promoted oxidation impacts the quality, shelf life, and nutrition of many packaged foods. Metal-chelating active packaging therefore offers a means to protect foods against oxidation. Herein, we report the development and characterization of nonmigratory metal-chelating active packaging. To prepare the films, carboxylic acids were grafted onto the surfaces of polypropylene films by photoinitiated graft polymerization of acrylic acid. Attenuated total reflectance/Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, and iron-chelating assay were used to characterize film properties. Graft polymerization yielded a carboxylic acid density of 68.67 ± 9.99 nmol per cm(2) film, with ferrous iron-chelating activity of 71.07 ± 12.95 nmol per cm(2). The functionalized films extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion system from 2 to 9 days. The application of such nonmigratory active packaging films represents a promising approach to reduce additive use while maintaining food quality.

  5. Photocatalytic activity of galvanically synthesized nanostructure SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sumanta, E-mail: sumantajana85@gmail.com [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mitra, Bibhas Chandra [Department of Physics, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Bera, Pulakesh [Department of Chemistry, Panskura Banamali College, Purba Medinipur, Panskura 721152, WB (India); Sikdar, Moushumi [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mondal, Anup, E-mail: anupmondal2000@yahoo.co.in [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India)

    2014-07-25

    Graphical abstract: Nanostructured porous tin dioxide (SnO{sub 2}) thin films have been synthesized by simple and cost effective galvanic technique. The synthesized porous SnO{sub 2} thin films show excellent photocatalytic activity for degrading methyl orange (MO) dye under light irradiation. The porous morphological grain growth due to annealing is likely to play an active role for this degradation. - Highlights: • SnO{sub 2} thin films have been successfully synthesized by galvanic technique. • A drastic morphological change occurs after annealing as deposited SnO{sub 2} thin films. • Morphological advantage results enhanced photodegradation of dye. - Abstract: The study demonstrates an approach to synthesize nanostructure SnO{sub 2} thin films on TCO (transparent conducting oxide) coated glass substrates by galvanic technique. Aqueous solution of hydrated stannic chloride (SnCl{sub 4}⋅5H{sub 2}O) in potassium nitrate (KNO{sub 3}) solution was used as the working solution. The process involves no sophisticated reactor or toxic chemicals, and proceeds continuously under ambient condition; it provides an economic way of synthesizing nanostructure SnO{sub 2} semiconductor thin films. The influence of sintering temperature on crystalline structure, morphology, electrical and dielectric properties has been studied. A detail analysis of I−V, C−V and dielectrics for annealed SnO{sub 2} thin films have been carried out. The morphological advantage i.e. nanoporous flake like structure allows more efficient transport of reactant molecules to the active interfaces and results a strong photocatalytic activity for degrading methyl orange (MO) dye.

  6. Enhanced antioxidant activity of polyolefin films integrated with grape tannins.

    Science.gov (United States)

    Olejar, Kenneth J; Ray, Sudip; Kilmartin, Paul A

    2016-06-01

    A natural antioxidant derived from an agro-waste of the wine industry, grape tannin, was incorporated by melt blending into three different polyolefins (high-density polyethylene, linear low-density polyethylene and polypropylene) to introduce antioxidant functionality. Significant antioxidant activity was observed at 1% tannin inclusion in all polymer blends. The antioxidant activity was observed to increase steadily with a greater concentration of grape tannins, the highest increases being seen with polypropylene. The mechanical and thermal properties of the polymer films following antioxidant incorporation were minimally altered with up to 3% grape tannins. All of the polyolefin-grape tannin films successfully passed the leachability test following USP661 standard protocol. Superior antioxidant activity was established in polyolefin thin films by utilization of a bulk grape extract obtained from winery waste. Significant increases in antioxidant activity were seen with 1% extract inclusion. This not only demonstrates the potential for food packaging applications of the polyolefin blends, but also valorizes the agro-waste. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Study of oxygen scavenging PET-based films activated by water

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy)

    2016-05-18

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  8. Study of oxygen scavenging PET-based films activated by water

    Science.gov (United States)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  9. Investigation of the electrocatalytic activity for oxygen reduction of sputter deposited mixed metal films

    International Nuclear Information System (INIS)

    Schumacher, L.C.; Holzheuter, I.B.; Nucara, M.C.; Dignam, M.J.

    1989-01-01

    Sputter-deposited films of silver with lead, manganese and nickel have been studied as possible oxygen reduction electrocatalysts using cyclic voltammetry, rotating disc studies, steady-state polarization and Auger analysis. In general, the Ag-Pb and Ag-Mn films display superior electrocatalytic activity for O 2 reduction, while the Ag-Ni films' performance is inferior to that of pure Ag. For the Ag-Pb films, which show the highest electrocatalytic activity, the mixed metal films display oxidation-reduction behavior which is not simply a superposition of that of the separate metals, and suggests a mechanism for the improved behavior

  10. Active barrier films of PET for solar cell application: Processing and characterization

    International Nuclear Information System (INIS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2014-01-01

    A preliminary investigation was carried out on the possibility to improve the protective action offered by the standard multilayer structures used to encapsulate photovoltaic devices. With this aim, a commercial active barrier PET-based material, able to absorb oxygen when activated by liquid water, was used to produce flexible and transparent active barrier films, by means of a lab-scale film production plant. The obtained film, tested in terms of thermal, optical and oxygen absorption properties, shows a slow oxygen absorption kinetics, an acceptable transparency and an easy roll-to-roll processability, so proving itself as a good candidate for the development of protective coating for solar cells against the atmospheric degradation agents like the rain

  11. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2014-01-01

    Full Text Available Recent uses of titanium dioxide (TiO2 have involved various applications which include the food industry. This study aims to develop TiO2 nanoparticle-coated film for potential food packaging applications due to the photocatalytic antimicrobial property of TiO2. The TiO2 nanoparticles with varying concentrations (0–0.11 g/ 100 mL organic solvent were coated on food packaging film, particularly low density polyethylene (LDPE film. The antimicrobial activity of the films was investigated by their capability to inactivate Escherichia coli (E. coli in an actual food packaging application test under various conditions, including types of light (fluorescent and ultraviolet (UV and the length of time the film was exposed to light (one–three days. The antimicrobial activity of the TiO2 nanoparticle-coated films exposed under both types of lighting was found to increase with an increase in the TiO2 nanoparticle concentration and the light exposure time. It was also found that the antimicrobial activity of the films exposed under UV light was higher than that under fluorescent light. The developed film has the potential to be used as a food packaging film that can extend the shelf life, maintain the quality, and assure the safety of food.

  12. Protecting peroxidase activity of multilayer enzyme-polyion films using outer catalase layers.

    Science.gov (United States)

    Lu, Haiyun; Rusling, James F; Hu, Naifei

    2007-12-27

    Films constructed layer-by-layer on electrodes with architecture {protein/hyaluronic acid (HA)}n containing myoglobin (Mb) or horseradish peroxidase (HRP) were protected against protein damage by H2O2 by using outer catalase layers. Peroxidase activity for substrate oxidation requires activation by H2O2, but {protein/HA}n films without outer catalase layers are damaged slowly and irreversibly by H2O2. The rate and extent of damage were decreased dramatically by adding outer catalase layers to decompose H2O2. Comparative studies suggest that protection results from catalase decomposing a fraction of the H2O2 as it enters the film, rather than by an in-film diffusion barrier. The outer catalase layers controlled the rate of H2O2 entry into inner regions of the film, and they biased the system to favor electrocatalytic peroxide reduction over enzyme damage. Catalase-protected {protein/HA}n films had an increased linear concentration range for H2O2 detection. This approach offers an effective way to protect biosensors from damage by H2O2.

  13. Synthesis of amphiphilic macrocyclic molecules from family of aza-porphyrins and study in Langmuir-Blodgett films; Synthese de molecules macrocycliques amphiphiles de la famille des azaporphyrines et etude en films de Langmuir-Blodgett

    Energy Technology Data Exchange (ETDEWEB)

    Palacin, Serge

    1988-03-04

    The cellular automata, also called formal neurons, directly inspired by the knowledge concerning the nervous system, are able to mimic some basic processes of brain, as shape recognition, connecting memory, information sorting... This work aims to build a molecular structure able to fit the working rules of a bidimensional cellular automata. So, amphiphilic molecules belonging to the aza-porphyrin family are synthesized and organized into a planar paving by the Langmuir-Blodgett technique. The regular structure of the outcoming ultra-thin films is studied by linear dichroism and anisotropic electron spin resonance. The physico-chemical behaviour of the amphiphilic molecules is studied and brings about an explanation of the redox phenomena which are observed on the monomolecular film on the water surface. So are we able to outline the future chemical addressing ways of the bidimensional cellular automata. In the end of this dissertation, different ways likely to insure covalent bindings between the active sites and allow the transfer of information within the cellular network are discussed. (author) [French] Les reseaux d'automates, aussi appeles neurones formels, directement inspires par les connaissances nouvelles concernant le fonctionnement du systeme nerveux, sont a l'heure actuelle capables de reproduire certaines operations fondamentales du cerveau, telles que la reconnaissance de forme, la memoire associative, le tri d'information... Le travail a pour but de realiser une structure moleculaire susceptible d'obeir aux regles de fonctionnement d'un automate cellulaire bi-dimensionnel. Dans ce but, des molecules amphiphiles de la famille des azaporphyrines sont synthetisees et organisees en un pavage plan par la methode de Langmuir-Blodgett. La structure reguliere des films ultraminces obtenus est determinee par dichroisme lineaire et resonance paramagnetique electronique anisotrope. Les caracteristiques physico-chimiques des molecules amphiphiles sont etudiees

  14. Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, C.; Dorcioman, G.; Miroiu, F.M.; Socol, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Gittard, S.D.; Miller, P.R.; Narayan, R.J. [Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599-7575 (United States); Enculescu, M. [National Institute for Materials Physics, PO Box MG-7, Bucharest-Magurele (Romania); Chrisey, D.B. [Tulane University, Department of Physics and Engineering Physics, New Orleans, LA (United States)

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer–drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA–gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer–drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  15. Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish.

    Science.gov (United States)

    Jovanović, Gordana D; Klaus, Anita S; Nikšić, Miomir P

    2016-01-01

    The antibacterial activity of chitosan coatings prepared with acetic or lactic acid, as well as of composite chitosan-gelatin films prepared with essential oils, was evaluated in fresh shredded black radish samples inoculated with Listeria monocytogenes ATCC 19115 and L. monocytogenes ATCC 19112 during seven days of storage at 4°C. The chitosan coating prepared with acetic acid showed the most effective antibacterial activity. All tested formulations of chitosan films exhibited strong antimicrobial activity on the growth of L. monocytogenes on black radish, although a higher inhibition of pathogens was achieved at higher concentrations of chitosan. The antimicrobial effect of chitosan films was even more pronounced with the addition of essential oils. Chitosan-gelatin films with thyme essential oils showed the most effective antimicrobial activity. A reduction of 2.4log10CFU/g for L. monocytogenes ATCC 19115 and 2.1log10CFU/g for L. monocytogenes ATCC 19112 was achieved in the presence of 1% chitosan film containing 0.2% of thyme essential oil after 24h of storage. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Development of a Vsible-Light-Active Film for Direct Solar Energy Storage

    Science.gov (United States)

    Salazar, Audrey

    We conceived of a two-compartment photocatalytic assembly for direct storage of solar energy as chemical potential. Our approach was to maintain reductant and oxidant in separate compartments and develop a visible light (wavelength >400nm) photo-active film to effect an uphill photoreaction between compartments. A proton exchange membrane was included in the assembly to complete the electrical circuit. Towards obtaining a working prototype of the assembly, we developed a freeze-drying method to adhere visible-light photoactive nanoparticles to a self- standing, non-porous and conductive indium tin oxide-polyvinylidene difluoride (ITO-PVDF) support film, developed in-house. We explored the possibility of employing an iron-rich metal oxide as the photocatalytic component of the film and several were explored utilizing the sodium tartrate-assisted photoreduction of Cr(VI) to Cr(III). Although the Fe2O3-coated TiO2 nanoparticles were active for photoreduction, the initial reaction rate was modest and was slowed by substantial deactivation, making it unsuitable as a photo-active material for the composite film. A complete, two-compartment assembly was prepared using cadmium sulfide (CdS) and preliminarily examined for the Cr(VI) probe reaction, however, no catalytic activity was observed. To identify the reason(s) for this observation, further testing of the apparatus and the composite film is required.

  17. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit.

    Science.gov (United States)

    Kaewklin, Patinya; Siripatrawan, Ubonrat; Suwanagul, Anawat; Lee, Youn Suk

    2018-06-01

    The feasibility of active packaging from chitosan (CS) and chitosan containing nanosized titanium dioxide (CT) to maintain quality and extend storage life of climacteric fruit was investigated. The CT nanocomposite film and CS film were fabricated using a solution casting method and used as active packaging to delay ripening process of cherry tomatoes. Changes in firmness, weight loss, a*/b* color, lycopene content, total soluble solid, ascorbic acid, and concentration of ethylene and carbon dioxide of the tomatoes packaged in CT film, CS film, and control (without CT or CS films) were monitored during storage at 20°C. Classification of fruit quality as a function of different packaging treatments was visualized using linear discriminant analysis. Tomatoes packaged in the CT film evolved lower quality changes than those in the CS film and control. The results suggested that the CT film exhibited ethylene photodegradation activity when exposed to UV light and consequently delayed the ripening process and changes in the quality of the tomatoes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-07-01

    Carrageenan-based antimicrobial films were developed by incorporation of grape fruit seed extract (GSE) at different concentration into the polymer using a solvent casing method and their physical, mechanical, and antimicrobial properties were examined. The carrageenan/GSE composite films appeared yellowish tint due to the polyphenolic compounds in the GSE. SEM analysis showed rough surface with sponge like structures on the cross section of the films. FT-IR results indicated at GSE had good compatibility with carrageenan. The amorphous structure of polymer films was not changed by the incorporation of GSE. But, the addition of GSE increased moisture content, water vapor permeability, and surface hydrophilicity of the films. The tensile strength and elastic modulus decreased with increasing content of GSE, however, the elongation at break increased significantly up to 6.6μg/mL of GSE then decreased thereafter. Thermal stability of the films was not influenced by GSE incorporation. The carrageenan/GSE composite films exhibited great antibacterial activity against food borne pathogens. These results suggest that the carrageenan-based composite films have a high potential for being used as an antimicrobial or active food packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging.

    Science.gov (United States)

    Ashrafi, Azam; Jokar, Maryam; Mohammadi Nafchi, Abdorreza

    2018-03-01

    An active film composed of chitosan and kombucha tea (KT) was successfully prepared using the solvent casting technique. The effect of incorporation of KT at the levels 1%-3% w/w on the physical and functional properties of chitosan film was investigated. The antimicrobial activity of chitosan/KT film against Escherichia coli and Staphylococcus aureus was evaluated using agar diffusion test, and its antioxidant activity was determined using DPpH assay. The results revealed that incorporation of KT into chitosan films improved the water vapor permeability (from 256.7 to 132.1gcm -2 h -1 KPa -1 mm) and enhanced the antioxidant activity of the latter up to 59% DPpH scavenging activity. Moreover, the incorporation of KT into the chitosan film increased the protective effect of the film against ultra violet (UV). Fourier transform infrared spectroscopic analysis revealed the chemical interactions between chitosan and the polyphenol groups of KT. In a minced beef model, chitosan/KT film effectively served as an active packaging and extended the shelf life of the minced beef as manifested in the retardation of lipid oxidation and microbial growth from 5.36 to 2.11logcfugr -1 in 4days storage. The present work demonstrates that the chitosan/KT film not only maintains the quality of the minced beef but also, retards microbial growth significantly, extending the shelf life of the minced beef meat up to 3days; thus, chitosan/KT film is a potential material for active food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS

    OpenAIRE

    Dıblan, Sevgin; Kaya, Sevim

    2017-01-01

    Active packaging technology is one of the innovativemethods for preserving of food products, and antimicrobial packaging films is amajor branch and promising application of this technology. In order to controlmicrobial spoilage and also contamination of pathogen onto processed or fresh food,antimicrobial agent(s) is/are incorporated into food packaging structure.Polymer type as a carrier of antimicrobial can be petroleum-based plastic orbiopolymer: because of environmental concerns researcher...

  1. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    Science.gov (United States)

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  2. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  3. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin.

    Science.gov (United States)

    Balaguer, Mari Pau; Fajardo, Paula; Gartner, Hunter; Gomez-Estaca, Joaquin; Gavara, Rafael; Almenar, Eva; Hernandez-Munoz, Pilar

    2014-03-03

    Gliadin films cross-linked with cinnamaldehyde (1.5, 3, and 5%) and incorporated with natamycin (0.5%) were prepared by casting, and their antifungal activity, water resistance, and barrier properties were characterized. Incorporation of natamycin gave rise to films with greater water uptake, weight loss and diameter gain, and higher water vapor and oxygen permeabilities. These results may be associated to a looser packing of the protein chains as a consequence of the presence of natamycin. The different cross-linking degree of the matrices influenced the natamycin migration to the agar test media, increasing from 13.3 to 23.7 (μg/g of film) as the percentage of cinnamaldehyde was reduced from 5% to 1.5%. Antifungal activity of films was assayed against common food spoilage fungi (Penicillium species, Alternaria solani, Colletotrichum acutatum). The greatest effectiveness was obtained for films containing natamycin and treated with 5% of cinnamaldehyde. The level of cinnamaldehyde reached in the head-space of the test assay showed a diminishing trend as a function of time, which was in agreement with fungal growth and cinnamaldehyde metabolization. Developed active films were used in the packaging of cheese slices showing promising results for their application in active packaging against food spoilage. Copyright © 2013. Published by Elsevier B.V.

  4. Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Anna R. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Rajagopalan, Ramakrishnan [Department of Engineering, The Pennsylvania State University, Dubois, PA 15801 (United States); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Carter, Joshua D. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States)

    2014-04-01

    The good stability, cyclability and high specific capacitance of manganese oxide (MnO{sub x}) has recently promoted a growing interest in utilizing MnO{sub x} in asymmetric supercapacitor electrodes. Several literature reports have indicated that thin film geometries of MnO{sub x} provide specific capacitances that are much higher than bulk MnO{sub x} powders. Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of metal oxide thin films with high purity and controllable thickness. In this work, MnO{sub x} thin films deposited by PECVD from a methylcyclopentadienyl manganese tricarbonyl precursor are presented and the effect of processing conditions on the quality of MnO{sub x} films is described. The film purity and oxidation state of the MnO{sub x} films were studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Preliminary electrochemical testing of MnO{sub x} films deposited on carbon fiber electrodes in aqueous electrolytes indicates that the PECVD synthesized films are electrochemically active. - Highlights: • Plasma enhanced chemical vapor deposition of manganese oxide thin films. • Higher plasma power and chamber pressure increase deposition rate. • Manganese oxide thin films are electrochemically active. • Best electrochemical performance observed for pure film with low stress • Lower capacitance observed at higher scan rates despite thin film geometry.

  5. Effect of chemisorbed surface species on the photocatalytic activity of TiO2 nanoparticulate films

    International Nuclear Information System (INIS)

    Cao Yaan; Yang Wensheng; Chen Yongmei; Du Hui; Yue, Polock

    2004-01-01

    TiO 2 sols prepared in acidic and basic medium were deposited into films by a spin coating method. Photodegradation experiments showed that photocatalytic activity of the films prepared from acidic sol was much higher than that from basic sol. It is identified that there are more chemisorbed species of CO 2 on the surface of the TiO 2 films from the basic sol than on the surface of the TiO 2 films from the acidic sol. The chemisorbed species of CO 2 reduce the concentration of active species such as hydroxyl group and bridging oxygen on surface of the TiO 2 film and contribute to the formation of surface electron traps in the band gap which are detrimental to charge separation, thus lowering the photocatalytic activity

  6. Fullerene films and fullerene-dodecylamine adduct monolayers at air-water interfaces studied by neutron and x-ray reflection

    DEFF Research Database (Denmark)

    Wang, J.Y.; Vaknin, D.; Uphaus, R.A.

    1994-01-01

    Neutron and X-ray reflection measurements and surface pressure isotherms of spread films of the fullerene-dodecylamine adduct C60-[NH2(CH2)11CH3]x all indicate that this material may form monomolecular layers on water surfaces. The reflection data sets (neutron on both H2O and D2O) can be accounted...... for by a single model structure defined in terms of the dimensions of an average cell and its chemical composition. This model ascribes a total thickness of about 29 angstrom to the molecular interface layer with the following internal structure. The fullerenes (with several alkyl chains attached) form a central...... stratum and the remainder alkyl tails are located close to both the air and the water interfaces. The alkyl moieties close to the aqueous substrate are hydrated. The reflection experiments and the isotherms suggest that on average 8 +/- 3 dodecylamine molecules are present per fullerene, consistent within...

  7. Investigation on feasibility and detection limits for determination of coating film thickness by neutron activation analysis

    International Nuclear Information System (INIS)

    Yao Maoying; Xu Jiayun; Zhang Dida; Yang Zunyong; Yao Zhenqiang; Wang Mingqiu; Gao Dangzhong

    2010-01-01

    A method for the determination of coating film thickness by neutron activation was proposed in this paper. After Au, Al and Cu et al.films were activated with a Am-Be neutron source, the characteristic γ-rays emitted by the activated nuclides in the films were counted with a HPGe γ spectrometer. The detection limits of film thickness by using a nuclear reactor neutron source were deduced on the basis of the γ-ray counts and the Monte-Carlo simulated detection efficiencies. The possible detection limits are typically 4-5 orders of magnitude better than those by fluorescent X-ray method, which is currently widely used to determine coating film thickness. (authors)

  8. Wearable strain sensors based on thin graphite films for human activity monitoring

    Science.gov (United States)

    Saito, Takanari; Kihara, Yusuke; Shirakashi, Jun-ichi

    2017-12-01

    Wearable health-monitoring devices have attracted increasing attention in disease diagnosis and health assessment. In many cases, such devices have been prepared by complicated multistep procedures which result in the waste of materials and require expensive facilities. In this study, we focused on pyrolytic graphite sheet (PGS), which is a low-cost, simple, and flexible material, used as wearable devices for monitoring human activity. We investigated wearable devices based on PGSs for the observation of elbow and finger motions. The thin graphite films were fabricated by cutting small films from PGSs. The wearable devices were then made from the thin graphite films assembled on a commercially available rubber glove. The human motions could be observed using the wearable devices. Therefore, these results suggested that the wearable devices based on thin graphite films may broaden their application in cost-effective wearable electronics for the observation of human activity.

  9. COVALENT IMMOBILIZATION OF INVERTASE ON EPOXY-ACTIVATED POLYANILINE FILMS

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2013-08-01

    Full Text Available The growing interest in manufacturing and use of biosensors is their rapid and selective detection of the target analyte. The immobilization of the enzymes, onto the appropriate matrix is the key-step in the construction of biosensing devices, considerably affecting its performance. In this study, new polyaniline bearing epoxy groups was synthesized by electrochemical polymerization reactions, as adherent, green film deposited on electrode surface, and was further used as immobilization matrix for invertase enzyme. The immobilization was carried out by condensation reactions between the amino groups of the enzyme molecules and the epoxy groups of polyaniline film. The covalent attachment was achieved by simple immersing the epoxy-activated polyaniline in acetate buffer solution (10 mM, pH 6.0 containing 2mg/mL invertase, for 24 h at 4 ºC, by continuous stirring. The polyaniline films thus obtained were analyzed before and after the invertase attachment, by using FT-IR spectroscopy and SEM microscopy. The presence of the invertase was evaluated by measuring their activity, using UV-Vis spectroscopy, in the presence of a known amount of sucrose as a substrate. These tests, performed for three times under the same conditions, revealed that even after five washes of the polyaniline /invertase electrode to remove the unbounded enzyme, the enzyme remain attached on the polyaniline film, being able to hydrolyze the sucrose presented in the assay solutions.

  10. Impact of active layer thickness of nitrogen-doped In–Sn–Zn–O films on materials and thin film transistor performances

    Science.gov (United States)

    Li, Zhi-Yue; Yang, Hao-Zhi; Chen, Sheng-Chi; Lu, Ying-Bo; Xin, Yan-Qing; Yang, Tian-Lin; Sun, Hui

    2018-05-01

    Nitrogen-doped indium tin zinc oxide (ITZO:N) thin film transistors (TFTs) were deposited on SiO2 (200 nm)/p-Si〈1 0 0〉 substrates by RF magnetron sputtering at room temperature. The structural, chemical compositions, surface morphology, optical and electrical properties as a function of the active layer thickness were investigated. As the active layer thickness increases, Zn content decreases and In content increases gradually. Meanwhile, Sn content is almost unchanged. When the thickness of the active layer is more than 45 nm, the ITZO:N films become crystallized and present a crystal orientation along InN(0 0 2) plan. No matter what the thickness is, ITZO:N films always display a high transmittance above 80% in the visible region. Their optical band gaps fluctuate between 3.4 eV and 3.62 eV. Due to the dominance of low interface trap density and high carrier concentration, ITZO:N TFT shows enhanced electrical properties as the active layer thickness is 35 nm. Its field-effect mobility, on/off radio and sub-threshold swing are 17.53 cm2 V‑1 · s‑1, 106 and 0.36 V/dec, respectively. These results indicate that the suitable thickness of the active layer can enhance the quality of ITZO:N films and decrease the defects density of ITZO:N TFT. Thus, the properties of ITZO:N TFT can be optimized by adjusting the thickness of the active layer.

  11. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    Directory of Open Access Journals (Sweden)

    Ana Rešček

    2015-12-01

    Full Text Available This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such materials was studied. The results show that, in comparison to the neat PE and PE/PCL films, some of PE/PCL bilayer films with additives exhibit improved barrier properties i.e. decreased water vapour permeability. Higher thermal stability of modified PE/PCL material is obtained due to a modified mechanism of thermal degradation. The samples with the additive nanoparticles homogeneously dispersed in the polymer matrix showed good mechanical properties. Addition of higher ZnO content contributes to the enhanced antibacterial activity of a material.

  12. Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity

    KAUST Repository

    Duong, Phuoc H. H.

    2017-08-09

    Membranes containing a photosensitizer molecule as part of the selective layer are proposed with demonstrated anti-biofouling activity. For the membrane preparation, mixtures of an amine-functionalized photosensitizer molecule, (5,10,15,20-(tetra-4-aminophenyl)porphyrin) and m-phenylene diamine (MPD) reacted with trimesoyl chloride (TMC) by interfacial polymerization to form thin polyamide films on top of an asymmetric porous support. A highly permeable membrane (35.4 Lm−2h−1bar−1) with 99 % rejection of Brilliant Blue R (826 g/mol) was obtained using 0.25 wt% porphyrin and 0.75 wt% MPD as amine monomers. Under visible light exposure, singlet oxygen (1O2) is generated in the porphyrin containing-polyamide film, reaching the bacteria in the feed by diffusion and enhancing the biofouling resistance and anti-microbial activity. Anti-biofouling and anti-microbial photoactivity in solution are demonstrated on Staphylococcus aureus at different porphyrin concentrations and light exposure time.

  13. Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity

    KAUST Repository

    Duong, Phuoc H. H.; Hong, Pei-Ying; Musteata, Valentina-Elena; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2017-01-01

    Membranes containing a photosensitizer molecule as part of the selective layer are proposed with demonstrated anti-biofouling activity. For the membrane preparation, mixtures of an amine-functionalized photosensitizer molecule, (5,10,15,20-(tetra-4-aminophenyl)porphyrin) and m-phenylene diamine (MPD) reacted with trimesoyl chloride (TMC) by interfacial polymerization to form thin polyamide films on top of an asymmetric porous support. A highly permeable membrane (35.4 Lm−2h−1bar−1) with 99 % rejection of Brilliant Blue R (826 g/mol) was obtained using 0.25 wt% porphyrin and 0.75 wt% MPD as amine monomers. Under visible light exposure, singlet oxygen (1O2) is generated in the porphyrin containing-polyamide film, reaching the bacteria in the feed by diffusion and enhancing the biofouling resistance and anti-microbial activity. Anti-biofouling and anti-microbial photoactivity in solution are demonstrated on Staphylococcus aureus at different porphyrin concentrations and light exposure time.

  14. Simultaneous demonstration of gelatinolytic activity, morphology, and immunohistochemical reaction using zymography film.

    Science.gov (United States)

    Kanomata, Naoki; Hasebe, Takahiro; Moriya, Takuya; Ochiai, Atsushi

    2013-12-01

    In situ zymography has been used to assess gelatinolytic activity, which is mainly due to matrix metalloproteinases (MMPs) in cancer tissues. MMPs play an important role in cancer invasion and metastasis. Film in situ zymography (FIZ) enables the in situ evaluation of gelatinolytic activity with high reproducibility. In this article, we report a study of FIZ, in a case of breast cancer with an invasive carcinoma component showing clear gelatinolytic activity, and in a non-invasive carcinoma component showing little gelatinolytic activity. Immunohistochemistry on FIZ was also performed. The simultaneous detection of gelatinolytic activity and immunohistochemical reaction was established in a single film. Immunohistochemistry on FIZ may have good potential for the investigation of cancer microenvironment.

  15. Filmless versus film-based systems in radiographic examination costs: an activity-based costing method

    Directory of Open Access Journals (Sweden)

    Sase Yuji

    2011-09-01

    Full Text Available Abstract Background Since the shift from a radiographic film-based system to that of a filmless system, the change in radiographic examination costs and costs structure have been undetermined. The activity-based costing (ABC method measures the cost and performance of activities, resources, and cost objects. The purpose of this study is to identify the cost structure of a radiographic examination comparing a filmless system to that of a film-based system using the ABC method. Methods We calculated the costs of radiographic examinations for both a filmless and a film-based system, and assessed the costs or cost components by simulating radiographic examinations in a health clinic. The cost objects of the radiographic examinations included lumbar (six views, knee (three views, wrist (two views, and other. Indirect costs were allocated to cost objects using the ABC method. Results The costs of a radiographic examination using a filmless system are as follows: lumbar 2,085 yen; knee 1,599 yen; wrist 1,165 yen; and other 1,641 yen. The costs for a film-based system are: lumbar 3,407 yen; knee 2,257 yen; wrist 1,602 yen; and other 2,521 yen. The primary activities were "calling patient," "explanation of scan," "take photographs," and "aftercare" for both filmless and film-based systems. The cost of these activities cost represented 36.0% of the total cost for a filmless system and 23.6% of a film-based system. Conclusions The costs of radiographic examinations using a filmless system and a film-based system were calculated using the ABC method. Our results provide clear evidence that the filmless system is more effective than the film-based system in providing greater value services directly to patients.

  16. Filmless versus film-based systems in radiographic examination costs: an activity-based costing method.

    Science.gov (United States)

    Muto, Hiroshi; Tani, Yuji; Suzuki, Shigemasa; Yokooka, Yuki; Abe, Tamotsu; Sase, Yuji; Terashita, Takayoshi; Ogasawara, Katsuhiko

    2011-09-30

    Since the shift from a radiographic film-based system to that of a filmless system, the change in radiographic examination costs and costs structure have been undetermined. The activity-based costing (ABC) method measures the cost and performance of activities, resources, and cost objects. The purpose of this study is to identify the cost structure of a radiographic examination comparing a filmless system to that of a film-based system using the ABC method. We calculated the costs of radiographic examinations for both a filmless and a film-based system, and assessed the costs or cost components by simulating radiographic examinations in a health clinic. The cost objects of the radiographic examinations included lumbar (six views), knee (three views), wrist (two views), and other. Indirect costs were allocated to cost objects using the ABC method. The costs of a radiographic examination using a filmless system are as follows: lumbar 2,085 yen; knee 1,599 yen; wrist 1,165 yen; and other 1,641 yen. The costs for a film-based system are: lumbar 3,407 yen; knee 2,257 yen; wrist 1,602 yen; and other 2,521 yen. The primary activities were "calling patient," "explanation of scan," "take photographs," and "aftercare" for both filmless and film-based systems. The cost of these activities cost represented 36.0% of the total cost for a filmless system and 23.6% of a film-based system. The costs of radiographic examinations using a filmless system and a film-based system were calculated using the ABC method. Our results provide clear evidence that the filmless system is more effective than the film-based system in providing greater value services directly to patients.

  17. Material Properties and Antimicrobial Activity of Polyhydroxybutyrate (PHB) Films Incorporated with Vanillin.

    Science.gov (United States)

    Xavier, Janifer Raj; Babusha, Sudalaimuthu Thangaraj; George, Johnsy; Ramana, Karna Venkata

    2015-07-01

    Polyhydroxybutyrate (PHB) was produced by Bacillus mycoides DFC 1, isolated from garden soil. Antimicrobial (AM) films of PHB were prepared by incorporating vanillin (4-hydroxy-3-methoxybenzaldehyde) from 10 to 200 μg/g of PHB. The films were assessed for antimicrobial activity against foodborne pathogens and spoilage bacteria comprising of Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Staphylococcus aureus and fungi such as Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus parasiticus, Aspergillus ochraceus, Penicillium viridicatum, and Penicillium clavigerum. The minimum concentration of vanillin required to exhibit antimicrobial activity was ≥80 μg/g PHB for bacteria and ≥50 μg/g PHB for fungi. The PHB films with and without vanillin were studied for mechanical and thermal properties such as tensile strength, Young's modulus, percentage elongation to break, melting temperature, and heat of fusion. The thermal stability of the films was studied using thermogravimetric analysis. The release kinetics of vanillin into food matrices was also checked using food stimulants. The study is intended to find applications for PHB films containing vanillin to enhance the shelf life of foods in the form of biodegradable wrapper.

  18. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material.

    Science.gov (United States)

    Arfat, Yasir Ali; Ejaz, Mohammed; Jacob, Harsha; Ahmed, Jasim

    2017-02-10

    Guar gum (GG) based nanocomposite (NC) films were prepared by incorporating silver-copper alloy nanoparticles (Ag-Cu NPs) through solution casting method. Effect of NP loadings (0.5-2%) on the thermo-mechanical, optical, spectral, oxygen barrier and antimicrobial properties of the GG/Ag-Cu NC films were investigated. Tensile testing showed an improvement in the mechanical strength, and a decrease in elongation at break for all NP loadings. NP incorporation into GG films showed a marked influence on the color values. The NC films showed excellent UV, light and oxygen barrier capability. Thermal properties of the NC films were improved as evidenced from the differential scanning calorimetry and the thermal conductivity data. NC films became rough and coarse over neat GG film as visualized through the scanning electron microscopy. A strong antibacterial activity was exhibited by NC films against both Gram-positive and Gram-negative bacteria, and therefore, the film could be considered as an active food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Antibacterial Activity and Physical Properties of Fish Gelatin-Chitosan Edible Films Supplemented with D-Limonene

    Directory of Open Access Journals (Sweden)

    Yunzhen Yao

    2017-01-01

    Full Text Available Fish gelatin-chitosan edible films with D-limonene were successfully prepared, which exhibited exceptional mechanical properties and antimicrobial activity. It has been demonstrated that water-soluble chitosan, fish gelatin, and D-limonene could be a candidate precursor to prepare low cost and high-performance edible food packaging material. The results showed that D-limonene in the films could effectively resist the penetration of light and water because of its hydrophobicity. Moreover, the elongation at break (EAB increased with the addition of D-limonene, which indicated that D-limonene served as a strong plasticizer for the film. Microscopic characterization showed that D-limonene was uniformly distributed in the as-prepared film. And we found that the film exhibited strong antibacterial activity against Escherichia coli (E. coli. All the results indicate that the as-prepared film could be a promising food packaging.

  20. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  1. XPS analysis of the activation process in non-evaporable getter thin films

    CERN Document Server

    Lozano, M

    2000-01-01

    The surface activation process of sputter-coated non-evaporable getter (NEG) thin films based on Ti-Zr and Ti-Zr-V alloys has been studied in situ by means of X-ray photoelectron spectroscopy. After exposure of the NEG thin films to ambient air they become reactivated after a thermal treatment in an ultrahigh vacuum. In our case the films are heated up to ~250 degrees C for 2 h in a base pressure of ~10/sup -9/ Torr. (18 refs).

  2. Active biodegradable films produced with blends of rice flour and poly(butylene adipate co-terephthalate): effect of potassium sorbate on film characteristics.

    Science.gov (United States)

    Sousa, G M; Soares Júnior, M S; Yamashita, F

    2013-08-01

    The objective of work was to produce and characterize biodegradable films from rice flour, poly(butylene adipate co-terephthalate) (PBAT), glycerol and potassium sorbate, for application as active packaging for fresh lasagna pasta. The films were evaluated with respect to their optical, water vapor barrier, mechanical and microstructural properties. The mechanical properties and microstructure were evaluated after use as packaging material for fresh pasta for 45 days at 7°C. The blends of rice flour, PBAT, glycerol and potassium sorbate showed good processability and allowed for the pilot scale production of films by blow extrusion process. The addition of 1 to 5% potassium sorbate as plasticizer agent of films in place of glycerol did not alter the film mechanical properties and a sorbate concentration greater or equal than 3% reduced the opacity, although increasing the water vapor permeability. The films could be used as active packaging for fresh food pasta, since they remained integral and easy to handle after application. The rice flour was shown to be an excellent material for the formulation of biodegradable films, since it is a low-cost raw material from a renewable source. The addition of potassium sorbate did not affect the extrusion process, and could be used in the production of packaging for use with foods. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Optimization of the Method of Active Ingredients Adding to the Base of Medicinal Films Depending on Certain Variables

    Directory of Open Access Journals (Sweden)

    L. L. Davtian

    2018-03-01

    Full Text Available The influence of variables of pharmaceutical factors on the technological processes of drugs manufacturing is incredibly important. Thus, in the development of a new drug in the form of medicinal films, the relevance and necessity of determining the effect of the methods of active substances adding on the effectiveness of the drug was determined. The aim is rationalization of the method of the active pharmaceutical ingredients adding into the composition of the developed drug. Materials and methods. As experimental samples we used medicinal films, which were made using various methods of active ingredients adding. The quality of the samples was evaluated by the antimicrobial activity against Clostridium sporogenes and Staphylococcus aureus, which was determined by the diffusion method in agar. Results. The study of the antimicrobial activity of medicinal films with various methods of active ingredients adding showed that the adding of metronidazole as an aqueous solution increases the antimicrobial activity of the films by 21.23%, 16.89%, 28.59%, respectively, compared with films of similar composition, in which metronidazole was added as a suspension, and the remaining ingredients were added by the same way. The introduction of chlorhexidine bigluconate and glucosamine hydrochloride in the film-forming solution lastly together with the solution of metronidazole increases the antimicrobial activity by 24.67%, which is probably due to the absence of contact between thermolabile ingredients and solutions of film-forming substances having a high dissolution temperature. Conclusions. The most rational is adding of metronidazole to the medicinal films in the form of a 0.01% aqueous solution in a mixture with the chlorhexidine bigluconate and glucosamine hydrochloride solution to the final film-forming solution.

  4. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  5. Electrically aligned cellulose film for electro-active paper and its piezoelectricity

    International Nuclear Information System (INIS)

    Yun, Sungryul; Jang, Sangdong; Yun, Gyu-Young; Kim, Jaehwan

    2009-01-01

    Electrically aligned regenerated cellulose films were fabricated and the effect of applied electric field was investigated for the piezoelectricity of electro-active paper (EAPap). The EAPap was fabricated by coating gold electrodes on both sides of regenerated cellulose film. The cellulose film was prepared by dissolving cotton pulp in LiCl/N,N-dimethylacetamide solution followed by a cellulose chain regeneration process. During the regeneration process an external electric field was applied in the direction of mechanical stretching. Alignment of cellulose fiber chains was investigated as a function of applied electric field. The material characteristics of the cellulose films were analyzed by using an x-ray diffractometer, a field emission scanning electron microscope and a high voltage electron microscope. The application of external electric fields was found to induce formation of nanofibers in the cellulose, resulting in an increase in the crystallinity index (CI) values. It was also found that samples with higher CI values showed higher in-plane piezoelectric constant, d 31 , values. The piezoelectricity of the current EAPap films was measured to be equivalent or better than that of ordinary PVDF films. Therefore, an external electric field applied to a cellulose film along with a mechanical stretching during the regeneration process can enhance the piezoelectricity. (technical note)

  6. Multi-modal TiO2-LaFeO3 composite films with high photocatalytic activity and hydrophilicity

    International Nuclear Information System (INIS)

    Gao Kun; Li Shudan

    2012-01-01

    In this paper, a series of multi-modal TiO 2 -LaFeO 3 composite films have been successfully synthesized through a two-step method. The resultant films were characterized in detail by several testing techniques, such as X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), photoluminescence spectrum (PL), surface photovoltage spectroscopy (SPS) and water contact angle measurements. The photocatalytic activity of different films was evaluated for degrading Methylene Blue (MB) aqueous solution. Hydrophilicity of the obtained TiO 2 -LaFeO 3 composite films was also investigated. The results show that TL film and LT film exhibited superior photocatalytic activity and hydrophilicity.

  7. Surface functionalisation of polypyrrole films using UV light induced radical activation

    International Nuclear Information System (INIS)

    Lisboa, P.; Gilliland, D.; Ceccone, G.; Valsesia, A.; Rossi, F.

    2006-01-01

    Electrochemically deposited polypyrrole (PPy) films were functionalised with amine or carboxylic function. The functionalisation was done by grafting allylamine or acrylic acid (AAc) using UV light radical activation. The active groups of the surface were quantified by X-ray photoelectron spectroscopy (XPS) after chemical derivatisation with trifluoroethanol (TFE) or 4-trifluoromethylbenzaldehyde (TFBA), respectively. Grafting with AAc completely covered the PPy film introducing high levels of carboxylic function. In the case of allylamine grafting, a saturation point at low amine carbon level was achieved. Further characterisation of the surfaces was done by time of flight secondary ion mass spectroscopy (TOF-SIMS), atomic force microscope (AFM) and scanning electron microscope (SEM)

  8. Preparation and antibacterial activity of Ag–TiO2 composite film by ...

    Indian Academy of Sciences (India)

    WINTEC

    The stability of the Ag–TiO2 films was tested in a weather chamber (Atlas ... test. The antibacterial activity of the film after weathering was then compared to the one before weathering. 3. Results .... form the electron-cavity, the cavities oxidize the OH. – and ... in pharmaceutical and medical device factories, where the bacteria ...

  9. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    OpenAIRE

    Rešček, Ana; Kratofil Krehula, Ljerka; Katančić, Zvonimir; Hrnjak-Murgić, Zlata

    2015-01-01

    This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL) films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex) with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such m...

  10. Visible light active TiO2 films prepared by electron beam deposition of noble metals

    International Nuclear Information System (INIS)

    Hou Xinggang; Ma Jun; Liu Andong; Li Dejun; Huang Meidong; Deng Xiangyun

    2010-01-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  11. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents.

    Science.gov (United States)

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-04-01

    Significant interest has emerged in the introduction of food packaging materials manufactured from biodegradable polymers that have the potential to reduce the environmental impacts associated with conventional packaging materials. Current technologies in active packaging enable effective antimicrobial (AM) packaging films to be prepared from biodegradable materials that have been modified and/or blended with different compatible materials and/or plasticisers. A wide range of AM films prepared from modified biodegradable materials have the potential to be used for packaging of various food products. This review examines biodegradable polymers derived from polysaccharides and protein-based materials for their potential use in packaging systems designed for the protection of food products from microbial contamination. A comprehensive table that systematically analyses and categorizes much of the current literature in this area is included in the review.

  12. Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation.

    Science.gov (United States)

    Yoon, Soon-Do; Kim, Young-Mog; Kim, Boo Il; Je, Jae-Young

    2017-11-01

    Active blend films from chitosan-gallic acid (CGA) and polyvinyl alcohol (PVA) were prepared via a simple mixing and casting method through the addition of citric acid as a plasticizer. The CGA/PVA blend films were characterized using Fourier transform infrared spectroscopy (FT-IR). The mechanical properties including tensile strength (TS) and elongation at break (%E), degree of solubility (S) and swelling behavior (DS), water vapor adsorption, and antimicrobial activities of the CGA/PVA blend films with and without LED (light emitting diode)-UV irradiation were also investigated. The CGA/PVA blend films exposed to UV irradiation exerted a higher TS (43.5MPa) and lower %E (50.40), S (0.38) and DS (2.73) compared to the CGA/PVA blend films (TS=41.7MPa, %E=55.40, S=0.42, and DS=3.16) not exposed LED-UV irradiation, indicating that the cross-linkage between CGA and PVA had been strengthened by LED-UV irradiation. However, the water vapor adsorption in the CGA/PVA blend films increased due to the changes of surface roughness and pore volume after LED-UV irradiation, and all values increased by increasing the CGA concentrations in the CGA/PVA blend films. The antimicrobial activities of the CGA/PVA blend films showed that the efficient concentration of CGA in the CGA/PVA blend films was over 1.0%. Taken together, the CGA/PVA blend films have potential for use as food packing materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Properties and Antioxidant Action of Actives Cassava Starch Films Incorporated with Green Tea and Palm Oil Extracts

    Science.gov (United States)

    Perazzo, Kátya Karine Nery Carneiro Lins; Conceição, Anderson Carlos de Vasconcelos; dos Santos, Juliana Caribé Pires; Assis, Denilson de Jesus; Souza, Carolina Oliveira; Druzian, Janice Izabel

    2014-01-01

    There is an interest in the development of an antioxidant packaging fully biodegradable to increase the shelf life of food products. An active film from cassava starch bio-based, incorporated with aqueous green tea extract and oil palm colorant was developed packaging. The effects of additives on the film properties were determined by measuring mechanical, barrier and thermal properties using a response surface methodology design experiment. The bio-based films were used to pack butter (maintained for 45 days) under accelerated oxidation conditions. The antioxidant action of the active films was evaluated by analyzing the peroxide index, total carotenoids, and total polyphenol. The same analysis also evaluated unpacked butter, packed in films without additives and butter packed in LDPE films, as controls. The results suggested that incorporation of the antioxidants extracts tensile strength and water vapor barrier properties (15 times lower) compared to control without additives. A lower peroxide index (231.57%), which was significantly different from that of the control (pstarch films totally biodegradable and the use of these materials in active packaging of the fatty products. PMID:25251437

  14. A novel biological active multilayer film based on polyoxometalate with pendant support-ligand

    International Nuclear Information System (INIS)

    Ma Huiyuan; Peng Jun; Han Zhangang; Yu Xia; Dong Baoxia

    2005-01-01

    A novel nanosized biological active multilayer film composed of polyoxometalate (POM) anion α-[SiW 11 O 39 Co(H 2 PO 4 )] 7- (abbr. SiW 11 Co-PO 4 ) and poly(diallyldi methylammonium chloride) (abbr. PDDA) was fabricated by layer-by-layer self-assembly (LBL). The composition and growth processes of the films have been determined by X-ray photoelectron spectra (XPS) and ultraviolet-visible absorption spectra (UV). The composite film was formed by the alternate adsorption of SiW 11 Co-PO 4 and PDDA, and the deposition process was quantitative and highly reproducible from layer to layer. The morphology of the film was studied by atomic force microscopy (AFM), which showed that the film was relatively uniform and smooth, and POM anions aggregated into nanoclusters distributing on the surface uniformly. The film exhibited favorable electrochemical behavior of POM indicated by cyclic voltammetry (CV). The film can immobilize the DNA molecules via Mg 2+ -bridging medium

  15. Influence of non-migratory metal-chelating active packaging film on food quality: impact on physical and chemical stability of emulsions.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; McClements, D Julian; Goddard, Julie M

    2014-05-15

    Previously, we developed a novel metal-chelating packaging film (PP-g-PAA) by grafting acrylic acid (AA) monomer from polypropylene (PP) film surface, and demonstrated its potential in controlling iron-promoted lipid oxidation. Herein, we further established the industrial practicality of this active film. Specifically, the influence of film surface area-to-product volume ratio (SA/V) and product pH on the application of the film was investigated using an oil-in-water emulsion system. The films equally inhibited lipid oxidation throughout the range of SA/V ratios tested (2-8 cm(2)/ml). PP-g-PAA films were most effective at pH 7.0, and the activity decreased with decreasing pH. The particle size examination of emulsions indicated no adverse influence from the active film on the stability of this emulsion system. FTIR analysis suggested a non-migratory nature of PP-g-PAA films. These results provide fundamental knowledge that will facilitate the application of this effective and economical active packaging film in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors

    International Nuclear Information System (INIS)

    Choi, Yuri; Kim, Gun Hee; Jeong, Woong Hee; Kim, Hyun Jae; Chin, Byung Doo; Yu, Jae-Woong

    2010-01-01

    Characteristics of oxide semiconductor thin film transistor prepared by gravure printing technique were studied. This device had inverted staggered structure of glass substrate/MoW/SiNx/ printed active layer. The active layer was printed with precursor of indium gallium zinc oxide solution and then annealed at 550 o C for 2 h. Influences of printing parameters (i.e. speed and force) were studied. As the gravure printing force was increased, the thickness of printed film was decreased and the refractive index of printed active layer was increased. The best printed result in our study was obtained with printing speed of 0.4 m/s, printing force of 400 N and the thickness of printed active layer was 45 nm. According to AFM image, surface of printed active layer was quite smooth and the root-mean square roughness was approximately 0.5 nm. Gravure printed active layer had a field-effect mobility of 0.81 cm 2 /Vs and an on-off current ratio was 1.36 x 10 6 .

  17. New Poly(lactic acid Active Packaging Composite Films Incorporated with Fungal Melanin

    Directory of Open Access Journals (Sweden)

    Łukasz Łopusiewicz

    2018-04-01

    Full Text Available In this work, fungal melanin was used for the first time to prepare poly(lactic acid-based composites. The films of various melanin concentrations (0.025%, 0.05% and 0.2% w/w were prepared using an extrusion method. The mechanical, antioxidant, antimicrobial, water vapor and UV-Vis barrier properties, as well as available polyphenolics on the surface, were studied. FT-IR and Raman spectroscopy studies were carried out to analyze the chemical composition of the resulting films. The hydrophobicity, color response, thermal, optical properties, and opacity values were also determined. The results of this study show that the addition of fungal melanin to poly(lactic acid (PLA as a modifier influenced mechanical and water vapor barrier properties depending on melanin concentration. In low concentration, melanin enhanced the mechanical and barrier properties of the modified films, but in larger amounts, the properties were decreased. The UV-Vis barrier properties of PLA/melanin composites were marginally improved. Differential Scanning Calorimetry (DSC analysis indicated that crystallinity of PLA increased by the addition of melanin, but this did not affect the thermal stability of the films. Modified PLA/melanin films showed good antioxidant activity and were active against Enterococcus faecalis, Pseudomonas aeruginosa and Pseudomonas putida. The addition of melanin caused changes in color values, decreasing lightness and increasing the redness and yellowness of films. Based on the results of this study, fungal melanin has good potential to be exploited as a value-added modifier that can improve the overall properties of PLA.

  18. Photocatalytic Activity and Stability of Porous Polycrystalline ZnO Thin-Films Grown via a Two-Step Thermal Oxidation Process

    Directory of Open Access Journals (Sweden)

    James C. Moore

    2014-08-01

    Full Text Available The photocatalytic activity and stability of thin, polycrystalline ZnO films was studied. The oxidative degradation of organic compounds at the ZnO surface results from the ultraviolet (UV photo-induced creation of highly oxidizing holes and reducing electrons, which combine with surface water to form hydroxyl radicals and reactive oxygen species. Therefore, the efficiency of the electron-hole pair formation is of critical importance for self-cleaning and antimicrobial applications with these metal-oxide catalyst systems. In this study, ZnO thin films were fabricated on sapphire substrates via direct current sputter deposition of Zn-metal films followed by thermal oxidation at several annealing temperatures (300–1200 °C. Due to the ease with which they can be recovered, stabilized films are preferable to nanoparticles or colloidal suspensions for some applications. Characterization of the resulting ZnO thin films through atomic force microscopy and photoluminescence indicated that decreasing annealing temperature leads to smaller crystal grain size and increased UV excitonic emission. The photocatalytic activities were characterized by UV-visible absorption measurements of Rhodamine B dye concentrations. The films oxidized at lower annealing temperatures exhibited higher photocatalytic activity, which is attributed to the increased optical quality. Photocatalytic activity was also found to depend on film thickness, with lower activity observed for thinner films. Decreasing activity with use was found to be the result of decreasing film thickness due to surface etching.

  19. Protein interfacial structure and nanotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    White, John W. [Research School of Chemistry, Australian National University, Canberra (Australia)], E-mail: jww@rsc.anu.edu.au; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M. [Research School of Chemistry, Australian National University, Canberra (Australia)

    2009-02-21

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between {beta}-casein and {kappa}-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a {beta}-casein monolayer is attacked by a {kappa}-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a {beta}-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  20. Protein interfacial structure and nanotoxicology

    International Nuclear Information System (INIS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M.

    2009-01-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  1. Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag-Cu Nanoparticles and Essential Oil.

    Science.gov (United States)

    Ahmed, Jasim; Arfat, Yasir Ali; Bher, Anibal; Mulla, Mehrajfatema; Jacob, Harsha; Auras, Rafael

    2018-04-16

    Plasticized polylactide (PLA) composite films with multifunctional properties were created by loading bimetallic silver-copper (Ag-Cu) nanoparticles (NPs) and cinnamon essential oil (CEO) into polymer matrix via compression molding technique. Rheological, structural, thermal, barrier, and antimicrobial properties of the produced films, and its utilization in the packaging of chicken meat were investigated. PLA/PEG/Ag-Cu/CEO composites showed a very complex rheological system where both plasticizing and antiplasticizing effects were evident. Thermal properties of plasticized PLA film with polyethylene glycol (PEG) enhanced considerably with the reinforcement of NPs whereas loading of CEO decreased glass transition, melting, and crystallization temperature. The barrier properties of the composite films were reduced with the increase of CEO loading (P films were visualized by FTIR spectra. Rough and porous surfaces of the films were evident by scanning electron microscopy. The effectiveness of composite films was tested against Salmonella Typhimurium, Campylobacter jejuni and Listeria monocytogenes inoculated in chicken samples, and it was found that the films loaded with Ag-Cu NPs and 50% CEO showed maximum antibacterial action during 21 days at the refrigerated condition. The produced PLA/Ag-Cu/CEO composite films can be applied to active food packaging. The nanoparticles and essential oil loaded PLA composite films are capable of exhibiting antimicrobial effects against Gram (+) and (-) bacteria, and extend the shelf-life of chicken meat. The bionanocomposite films showed the potential to be manufactured commercially because of the thermal stability of the active components during the hot-press compression molding process. The developed bionanocomposites could have practical importance and open a new direction for the active food packaging to control the spoilage and the pathogenic bacteria associated with the fresh chicken meat. © 2018 Institute of Food

  2. Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells

    International Nuclear Information System (INIS)

    Wojcieszak, Damian; Kaczmarek, Danuta; Antosiak, Aleksandra; Mazur, Michal; Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata; Poniedzialek, Agata; Gamian, Andrzej; Szponar, Bogumila

    2015-01-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90 at.% of Cu and 10 at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu–Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10–15 nm and 25–35 nm size were present. High surface active area with a roughness of 8.9 nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. - Graphical abstract: Bactericidal and fungicidal effects of time contact with surface of Cu–Ti thin films. - Highlights: • Antimicrobial activity and cytotoxic effect (viability of L929 cell line) of metallic Cu–Ti films • Thin films were prepared by co-sputtering of Cu and Ti. • As-deposited Cu–Ti films were amorphous and homogenous. • Bactericidal and fungicidal effects even in short term-contact were observed

  3. Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, Damian, E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Kaczmarek, Danuta [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Antosiak, Aleksandra [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław (Poland); Mazur, Michal [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata [Department for Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Poniatowskiego 2, 50-326 Wroclaw (Poland); Poniedzialek, Agata [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Gamian, Andrzej; Szponar, Bogumila [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław (Poland)

    2015-11-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90 at.% of Cu and 10 at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu–Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10–15 nm and 25–35 nm size were present. High surface active area with a roughness of 8.9 nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. - Graphical abstract: Bactericidal and fungicidal effects of time contact with surface of Cu–Ti thin films. - Highlights: • Antimicrobial activity and cytotoxic effect (viability of L929 cell line) of metallic Cu–Ti films • Thin films were prepared by co-sputtering of Cu and Ti. • As-deposited Cu–Ti films were amorphous and homogenous. • Bactericidal and fungicidal effects even in short term-contact were observed.

  4. Images of Germany, Past and Present: A Film Collection. Series I, Instructional Activities.

    Science.gov (United States)

    Goethe House, New York, NY.

    This set of lessons accompanies a series of 30-minute films for teaching about Germany. Available to educators throughout the United States upon request, the 17 films and accompanying instructional activities focus on culture, politics, economics, society, and sports and are appropriate for middle and high school students. Permission is granted to…

  5. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Effect of illumination on mobility has been studied from the photocurrent decay characteristics of thermally evaporated CdSe thin films deposited on suitably cleaned glass substrate held at elevated substrate temperatures. The study indicates that the mobilities of the carriers of different trap levels are activated due to the ...

  6. Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusion-Blown Films: A Comparative Study with Heat-Pressed/Solution Cast Films.

    Science.gov (United States)

    Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal

    2016-05-01

    Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing. © 2016 Institute of Food Technologists®

  7. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging

    DEFF Research Database (Denmark)

    Ashrafi, Azam; Jokar, Maryam

    2018-01-01

    An active film composed of chitosan and kombucha tea (KT) was successfully prepared using the solvent casting technique. The effect of incorporation of KT at the levels 1%–3% w/w on the physical and functional properties of chitosan film was investigated. The antimicrobial activity of chitosan...

  8. Photocatalytically active Au/TiO2 films deposited by two-step spray pyrolysis

    International Nuclear Information System (INIS)

    Balashev, Konstantin; Georgiev, Petar; Simeonova, Sylvia; Stambolova, Irina; Blaskov, Vladimir; Vassilev, Sasho; Eliyas, Alexander

    2016-01-01

    Nanocrystalline TiO 2 and surface gold-modified films (Au/TiO 2 ) are obtained by two step spray pyrolysis process. Titanium tetrachloride (TiCl 4 ) was used as inorganic titanium precursor. The Au nanoparticles were deposited on the surface of sprayed TiO 2 films, obtained by the classical Turkevich method. The AFM analyses have revealed that the roughness of Au/TiO 2 is twice lower than that of the reference titania film. Some globular species are visible on the surface, which could be either individual Au nanoparticles or Au nanoparticles’ agglomerates embedded into the TiO 2 film. The photocatalytic activity in the oxidative degradation of Reactive Black 5 dye under visible light of the Au/TiO 2 films was estimated in a semi-batch reactor. Surface gold modified TiO 2 films revealed higher photocatalytic efficiency than the reference sample. Key words: Au nanoparticles, photocatalysis, azo dye, titania, nanosized

  9. Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Changzhu; Pu, Wenhong; Tan, Yuanbin; Yang, Kun; Zhang, Jingdong

    2014-01-01

    Highlights: • Liquid phase deposition is developed for preparing WO 3 /TiO 2 heterojunction films. • TiO 2 film provides an excellent platform for WO 3 deposition. • WO 3 expands the absorption band edge of TiO 2 film to visible light region. • WO 3 /TiO 2 heterojunction film shows high photoelectrocatalytic activity. - ABSTRACT: The heterojunction films of WO 3 /TiO 2 were prepared by liquid phase deposition (LPD) method via two-step processes. The scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopic analysis indicated that flower-like WO 3 film was successfully deposited on TiO 2 film with the LPD processes. The TiO 2 film provided an excellent platform for WO 3 deposition while WO 3 obviously expanded the absorption of TiO 2 film to visible light. As the result, the heterojunction film of WO 3 /TiO 2 exhibited higher photocurrent response to visible light illumination than pure TiO 2 or WO 3 film. The photoelectrocatalytic (PEC) activity of WO 3 /TiO 2 film was evaluated by degrading Rhodamin B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. The results showed that the LPD WO 3 /TiO 2 film possessed high PEC activity for efficient removal of various refractory organic pollutants

  10. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  11. Visible light active TiO{sub 2} films prepared by electron beam deposition of noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xinggang, E-mail: hou226@163.co [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Ma Jun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Liu Andong [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Dejun; Huang Meidong; Deng Xiangyun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China)

    2010-03-15

    TiO{sub 2} films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO{sub 2} films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO{sub 2} is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO{sub 2} films by this method is affected by the concentration of impregnating solution.

  12. Frequency dependence of the active impedance component of silicon thin-film resistors

    International Nuclear Information System (INIS)

    Belogurov, S.V.; Gostilo, V.V.; Yurov, A.S.

    1987-01-01

    A high-resistant resistor on the silicon thin-film substrate considerably superior in noise and frequency performance than commercial resistors is described. The frequency dependence of the active impedance component is tested for determining noise and frequency dependences of silicon thin-film resistors. The obtained results permit to calculate the energy equivalent of resistor noise in nuclear radiation detection units at any temperature according to its frequency characteristic at room temperature

  13. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  14. Images of Germany: Past and Present. A Film Collection, Series II Instructional Activities.

    Science.gov (United States)

    Blankenship, Glen; Hutcheson, Gwen

    This booklet offers classroom activities for use with 15 social studies-related films for teaching about Germany. The series of 25-minute films are made available by Deutsche Welle Television and Goethe House New York. Lessons in the booklet include: (1) "Germany Since 1945: A Focus on Berlin"; (2) "'I'll Get You All Out of Here!' A…

  15. The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid Films

    Directory of Open Access Journals (Sweden)

    Asier M. Salaberria

    2017-05-01

    Full Text Available As, in the market, poly (lactic acid (PLA is the most used polymer as an alternative to conventional plastics, and as functionalized chitin nanocrystals (CHNC can provide structural and bioactive properties, their combination sounds promising in the preparation of functional nanocomposite films for sustainable packaging. Chitin nanocrystals were successfully modified via acylation using anhydride acetic and dodecanoyl chloride acid to improve their compatibility with the matrix, PLA. The nanocomposite films were prepared by extrusion/compression approach using different concentrations of both sets of functionalized CHNC. This investigation brings forward that both sets of modified CHNC act as functional agents, i.e., they slightly improved the hydrophobic character of the PLA nanocomposite films, and, very importantly, they also enhanced their antifungal activity. Nonetheless, the nanocomposite films prepared with the CHNC modified with dodecanoyl chloride acid presented the best properties.

  16. Using "Journeys in Film" to Bring Authentic STEM Activities to the K-12 Classroom.

    Science.gov (United States)

    Rock, B. N.

    2017-12-01

    The "Journeys in Film" project brings important films and documentaries ("The Martian," "Hidden Figures," "River of Gold" and others) and curriculum-based, educational support activities to the classroom. Faculty from the University of New Hampshire, in partnership with selected local middle and high school teachers, developed a STEM Lesson Plan for Journeys in Film" focused on the soon-to-released documentary "River of Gold" which highlights tropical deforestation and illegal gold mining activities in the Peruvian jungles of the Amazon Basin. Using film clips (the Trailer) from the movie and the Lesson Plan, this approach allows pre-college students to learn how to use "Google Earth" to monitor chang-over-time and to quantify the areas of deforestation and mining using multi-date NOAA/USGS Landsat Thematic Mapper and ESA Copernicus satellite data. This approach will allow students to dconduct authentic hands-on science and mathematics to address a wide range of social and environmental issues associated with tropical deforestation in Peru.

  17. Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities.

    Science.gov (United States)

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; McHugh, T H; Levin, C E; Friedman, Mendel

    2009-09-01

    Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against L. monocytogenes than against the S. enterica. The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.

  18. CFD Activity at Aerojet Related to Seals and Fluid Film Bearing

    Science.gov (United States)

    Bache, George E.

    1991-01-01

    Computational Fluid Dynamics (CFD) activities related to seals and fluid film bearings are presented. Among the topics addressed are the following: Aerovisc Numeric and its capabilities; Recent Seal Applications; and Future Code Developments.

  19. Properties and antioxidant action of actives cassava starch films incorporated with green tea and palm oil extracts.

    Directory of Open Access Journals (Sweden)

    Kátya Karine Nery Carneiro Lins Perazzo

    Full Text Available There is an interest in the development of an antioxidant packaging fully biodegradable to increase the shelf life of food products. An active film from cassava starch bio-based, incorporated with aqueous green tea extract and oil palm colorant was developed packaging. The effects of additives on the film properties were determined by measuring mechanical, barrier and thermal properties using a response surface methodology design experiment. The bio-based films were used to pack butter (maintained for 45 days under accelerated oxidation conditions. The antioxidant action of the active films was evaluated by analyzing the peroxide index, total carotenoids, and total polyphenol. The same analysis also evaluated unpacked butter, packed in films without additives and butter packed in LDPE films, as controls. The results suggested that incorporation of the antioxidants extracts tensile strength and water vapor barrier properties (15 times lower compared to control without additives. A lower peroxide index (231.57%, which was significantly different from that of the control (p<0.05, was detected in products packed in film formulations containing average concentration of green tea extracts and high concentration of colorant. However, it was found that the high content of polyphenols in green tea extract can be acted as a pro-oxidant agent, which suggests that the use of high concentration should be avoided as additives for films. These results support the applicability of a green tea extract and oil palm carotenoics colorant in starch films totally biodegradable and the use of these materials in active packaging of the fatty products.

  20. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  1. Plasma-enhanced atomic layer deposition of silicon dioxide films using plasma-activated triisopropylsilane as a precursor

    International Nuclear Information System (INIS)

    Jeon, Ki-Moon; Shin, Jae-Su; Yun, Ju-Young; Jun Lee, Sang; Kang, Sang-Woo

    2014-01-01

    The plasma-enhanced atomic layer deposition (PEALD) process was developed as a growth technique of SiO 2 thin films using a plasma-activated triisopropylsilane [TIPS, ((iPr) 3 SiH)] precursor. TIPS was activated by an argon plasma at the precursor injection stage of the process. Using the activated TIPS, it was possible to control the growth rate per cycle of the deposited films by adjusting the plasma ignition time. The PEALD technique allowed deposition of SiO 2 films at temperatures as low as 50 °C without carbon impurities. In addition, films obtained with plasma ignition times of 3 s and 10 s had similar values of root-mean-square surface roughness. In order to evaluate the suitability of TIPS as a precursor for low-temperature deposition of SiO 2 films, the vapor pressure of TIPS was measured. The thermal stability and the reactivity of the gas-phase TIPS with respect to water vapor were also investigated by analyzing the intensity changes of the C–H and Si–H peaks in the Fourier-transform infrared spectrum of TIPS

  2. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham.

    Science.gov (United States)

    Theinsathid, Pornpun; Visessanguan, Wonnop; Kruenate, Jittiporn; Kingcha, Yutthana; Keeratipibul, Suwimon

    2012-02-01

    A novel type of environmentally friendly packaging with antibacterial activity was developed from lauric arginate (LAE)-coating of polylactic acid (PLA) films after surface activation using a corona discharge. Scanning electron microscopy (SEM)-based analysis of the LAE/PLA films confirmed the successful coating of LAE on the PLA surface. The mechanical properties of the LAE/PLA films with different levels of LAE-coating (0% to 2.6%[w/w]) were essentially the same as those of the neat PLA film. The antibacterial activity of the LAE/PLA films against Listeria monocytogenes and Salmonella enterica Serovar Typhimurium (S. Typhimurium) was confirmed by a qualitative modified agar diffusion assay and quantitative JIS Z 2801:2000 method. Using the LAE/PLA film as a food-contact antimicrobial packaging for cooked cured ham, as a model system, suggested a potential application to inhibit L. monocytogenes and S. Typhimurium on ham with a 0.07% (w/w) LAE coating on the PLA when high transparency is required, as evidenced from the 2 to 3 log CFU/tested film lower pathogen growth after 7 d storage but even greater antibacterial activity is obtained with a LAE coating level of 2.6% (w/w) but at the cost of a reduced transparency of the finished product. This article shows how we can simply develop functional green packaging of PLA for food with effective and efficient antimicrobial activity by use of LAE coating on the surface via corona discharge. The effectiveness of an innovative antimicrobial LAE-coated PLA film against foodborne pathogens was demonstrated. Importantly, the application of the LAE to form the LAE-coated PLA film can be customized within current film manufacturing lines. © 2012 Institute of Food Technologists®

  3. Natural polysaccharides as active biomaterials in nanostructured films for sensing.

    Science.gov (United States)

    Eiras, Carla; Santos, Amanda C; Zampa, Maysa F; de Brito, Ana Cristina Facundo; Leopoldo Constantino, Carlos J; Zucolotto, Valtencir; dos Santos, José R

    2010-01-01

    The search for natural, biocompatible and degradable materials amenable to be used in biomedical/analytical applications has attracted attention, either from the environmental or medical point of view. Examples are the polysaccharides extracted from natural gums, which have found applications in the food and pharmaceutical industries as stabilizers or thickening agent. In a previous paper, however, it was shown that a Brazilian natural gum, chicha (Sterculia striata), is suitable for application as building block for nanostructured film fabrication in conjunction with phthalocyanines. The films displayed electroactivity and could be used in sensing. In the present paper, we introduce the use of two different natural gums, viz., angico (Anadenanthera colubrina) and caraia (Sterculia urens), as active biomaterials to be used to modification layers, in the form of nanostructured thin films, including the study of dopamine detection. The multilayer films were assembled in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPC) and displayed good chemical and electrochemical stability, allowing their use as transducer elements in sensors for detection of specific neurotransmitters. It is suggested here that nanoscale manipulation of new biodegradable natural polymers opens up a variety of new opportunities for the use of these materials in advanced biomedical and analytical devices.

  4. Activation of Zr-Co-rare earth getter films: An XPS study

    International Nuclear Information System (INIS)

    Petti, D.; Cantoni, M.; Leone, M.; Bertacco, R.; Rizzi, E.

    2010-01-01

    Thin films of non-evaporable getters are employed in the field of electronic devices packaging, as they provide a simple and effective solution for pumping in sealed applications. In particular thin films of Zr-Co-rare earth alloys deposited by sputtering have been developed for this purpose and successfully employed in industrial applications. In this paper we present an X-ray photoelectron spectroscopy investigation of the effect of thermal activation of the getter from the point of view of the induced surface chemical modification as seen by such a surface sensitive technique. We find that the activation process reflects in a clear reduction of Zr, accompanied by a decrease of the oxygen concentration at surface, which is fully accomplished already at 350 deg. C; while at 450 deg. C there is a significant increase of the cobalt concentration at surface.

  5. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging.

    Science.gov (United States)

    Siqueira, Maria C; Coelho, Gustavo F; de Moura, Márcia R; Bresolin, Joana D; Hubinger, Silviane Z; Marconcini, José M; Mattoso, Luiz H C

    2014-07-01

    In this study, silver nanoparticles were prepared and incorporated into carboxymethylcellulose films to evaluate the antimicrobial activity for food packaging applications. The techniques carried out for material characterization were: infrared spectroscopy and thermal analysis for the silver nanoparticles and films, as well as particle size distribution for the nanoparticles and water vapor permeability for the films. The antimicrobial activity of silver nanoparticles prepared by casting method was investigated. The minimum inhibitory concentration (MIC) value of the silver nanoparticles to test Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) microorganisms was carried out by the serial dilution technique, tested in triplicate to confirm the concentration used. The results were developed using the Mcfarland scale which indicates that the presence or absence of turbidity tube demonstrates the inhibition of bacteria in relation to the substance inoculated. It was found that the silver nanoparticles inhibited the growth of the tested microorganisms. The carboxymethylcellulose film embedded with silver nanoparticles showed the best antimicrobial effect against Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria (0.1 microg cm(-3)).

  6. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    Science.gov (United States)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  7. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  8. Determination of oxide film thickness on aluminium using 14-MeV neutron activation and BET method

    International Nuclear Information System (INIS)

    Foerster, H.

    1983-01-01

    A new method is described for the determination of the mean film thickness of aluminium oxides by 14-MeV neutron activation analysis of the oxygen and by BET measurement of the surface area. The mean film thickness obtained is independent of the surface roughness. Stable oxide films consisting of only a few atomic layers of oxygen are detected on aluminium. (author)

  9. Bio-active nanocomposite films based on nanocrystalline cellulose reinforced styrylquinoxalin-grafted-chitosan: Antibacterial and mechanical properties.

    Science.gov (United States)

    Fardioui, Meriem; Meftah Kadmiri, Issam; Qaiss, Abou El Kacem; Bouhfid, Rachid

    2018-07-15

    In this study, active nanocomposite films based on cellulose nanocrystalline (NCC) reinforced styrylquinoxalin-grafted-chitosan are prepared by solvent-casting process. The structures of the two styrylquinoxaline derivatives were confirmed by FT-IR, 1 H, 13 C NMR spectral data and the study of the antibacterial activity against Escherichia coli (EC), Staphylococcus aureus (SA), Bacillus subtilis (BS) and Pseudomonas Aeruginosa (PA) exhibits that they have a good antibacterial activity against (PA). On their side, the styrylquinoxalin-g-chitosan films are able to inhibit the growth of (PA) through their contact area without being damaged by the antibacterial test conditions. The addition of 5wt% of NCCs as nano-reinforcements revealed no change at the level of antibacterial activity but led to an important improvement of the mechanical properties (more than 60% and 90% improvement in Young's modulus and tensile strength, respectively) of the modified-chitosan films. Thereby, the present nanocomposite films are prepared by a simple way and featured by good mechanical and antibacterial properties which enhance the possibility to use them as bio-based products for biomedical and food packaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Electrocatalytic activity mapping of model fuel cell catalyst films using scanning electrochemical microscopy

    International Nuclear Information System (INIS)

    Nicholson, P.G.; Zhou, S.; Hinds, G.; Wain, A.J.; Turnbull, A.

    2009-01-01

    Scanning electrochemical microscopy has been employed to spatially map the electrocatalytic activity of model proton exchange membrane fuel cell (PEMFC) catalyst films towards the hydrogen oxidation reaction (the PEMFC anode reaction). The catalyst films were composed of platinum-loaded carbon nanoparticles, similar to those typically used in PEMFCs. The electrochemical characterisation was correlated with a detailed physical characterisation using dynamic light scattering, transmission electron microscopy and field-emission scanning electron microscopy. The nanoparticles were found to be reasonably mono-dispersed, with a tendency to agglomerate into porous bead-type structures when spun-cast. The number of carbon nanoparticles with little or no platinum was surprisingly higher than would be expected based on the platinum-carbon mass ratio. Furthermore, the platinum-rich carbon particles tended to agglomerate and the clusters formed were non-uniformly distributed. This morphology was reflected in a high degree of heterogeneity in the film activity towards the hydrogen oxidation reaction.

  11. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  12. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs.

    Science.gov (United States)

    Balaguer, Mari Pau; Lopez-Carballo, Gracia; Catala, Ramon; Gavara, Rafael; Hernandez-Munoz, Pilar

    2013-09-16

    Gliadin films incorporating 1.5, 3 and 5% cinnamaldehyde (g/100g protein) were tested against food-spoilage fungi Penicillium expansum and Aspergillus niger in vitro, and were employed in an active food packaging system for sliced bread and cheese spread. Gliadin films incorporating cinnamaldehyde were highly effective against fungal growth. P. expansum and A. niger were completely inhibited after storage in vitro for 10 days in the presence of films incorporating 3% cinnamaldehyde. Indeed 1.5% cinnamaldehyde was sufficient in the case of P. expansum. The amount of cinnamaldehyde retained in films after storage for 45 days at 20 °C and 0% RH was also sufficient in most cases to prevent fungal growth in vitro. Active food packaging with gliadin films incorporating 5% cinnamaldehyde increased the shelf-life of both sliced bread and cheese spread. Mold growth was observed on sliced bread after 27 days of storage at 23 °C with active packaging, whereas in the control bread packaged without the active film fungal growth appeared around the fourth day. In the cheese spread, no fungi were observed after 26 days of storage at 4 °C when the product was packaged with the active film. However, growth of fungi was observed in control packaged cheese after 16 days of storage. This work demonstrates a noteworthy potential of these novel bioplastics incorporating natural antimicrobial compounds as innovative solutions to be used in active food packaging to extend shelf-life of food products. © 2013 Elsevier B.V. All rights reserved.

  13. Non-destructive photon activation analysis of carbon and nitrogen in thin films

    International Nuclear Information System (INIS)

    Shikano, Koji; Katoh, Masaaki; Masumoto, Kazuyoshi; Ohtsuki, Tsutomu

    1998-01-01

    Study was made on interference nuclear reactions with 12 C(γ,n) 11 C and 14 N(γ,n) 13 N reactions, interference radioactivity from the matrix, and prevention of contamination from the atmosphere. The following were made clear: Interference nuclear reactions can be neglected by controlling the radiation energy of bremsstrahlung below 30 MeV; radiation interference can be avoided by starting measurement 20-30 min after irradiation, though 29 Al is formed from Si substrate; and contamination from the atmosphere can be controlled by He gas replacement. With graphite and boron nitride used as the reference standards, carbon in silicon carbide film and nitrogen in silicon nitride film were determined with the result that their concentrations in the films were 37.03±1.28 μg/cm 2 and 52.97±2.97 μg/cm 2 , respectively. The determination limits of this method were 0.3 μg for carbon and 3 μg for nitrogen. The measurement of film thickness distribution revealed that these film samples could be used as light element reference standards for charged particle activation analysis. (N.H.)

  14. Novel alternating polymer adsorption/surface activation self-assembled film based on hydrogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongjun; Yang Shuguang; Guan Ying; Miao Xiaopeng; Cao Weixiao; Xu Jian

    2003-08-01

    By combining hydrogen bonding layer-by-layer self-assembly and the stepwise chemisorption method, a new alternating polymer adsorption/surface activation self-assembly method was developed. First a layer of diphenylamine-4-diazonium-formaldehyde resin (diazo resin or DR) is deposited on a substrate. In the following surface activation step, the diazonium groups on the surface couple with resorcin in the outside solution. The deposition of another layer of DR is feasible due to the formation of hydrogen bond between the diazonium group of DR and the hydroxy group of the resorcin moieties. The resulting film is photosensitive. After UV irradiation, the film becomes very stable towards polar organic solvents.

  15. Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil

    Directory of Open Access Journals (Sweden)

    Jiulin Wu

    2017-07-01

    Full Text Available Fish skin gelatin films incorporated with various concentrations of cinnamon essential oil (CEO were prepared and characterized. The results showed that tensile strength (TS, elongation at break (EAB, and water content (WC of the gelatin based film decreased with the increasing concentrations of CEO, but water vapor permeability (WVP increased. Addition of CEO improved light barrier property of the film. The Scanning electron microscope (SEM showed that the heterogeneous surface and porous formation appeared in gelatin-CEO films. Fourier transform infrared spectroscopy analyses (FTIR-ATR spectra indicated the interactions existed between gelatin and CEO. The gelatin-CEO films exhibited good inhibitory effects against the tested microorganisms (Escherichia coli, Staphylococcus aureus, Aspergillus niger, Rhizopus oryzae, and Paecilomyces varioti and their antifungal activity seemed to be more effective than the resistance to bacterial growth. In vitro release studies showed an initial burst effect of CEO release and that subsequently slowed down at 40 °C, but the initial burst release was not obvious at 4 °C. The obtained results suggested that incorporation of CEO as a natural antimicrobial agent into gelatin film has potential for developing as active food packaging.

  16. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Administrator

    3. Mobility activation in CdSe thin films. The trap depths were calculated by using the following simple decay law. It = Ioexp(–pt),. (1) where p is the probability of escape of an electron from the trap per second and is given by (Randall and Wilkins 1945) p = S exp (–E/kT),. (2) where E is the trap depth for electrons below the ...

  17. Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method.

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.

  18. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Simona Liliana Iconaru

    2014-01-01

    Full Text Available In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM with energy Dispersive X-ray attachment (X-EDS, Fourier transform infrared spectroscopy (FT-IR, and glow discharge optical emission spectroscopy (GDOES. These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with xAg=0.5 are effective against E. coli and S. aureus after 24 h.

  19. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630

  20. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications.

    Science.gov (United States)

    Liu, Bin; Xu, Han; Zhao, Huiying; Liu, Wei; Zhao, Liyun; Li, Yuan

    2017-02-10

    We have developed an intelligent starch/poly-vinyl alcohol (PVA) film that is capable of monitoring pH changes and inhibiting undesired microbial growth in foods. Starch and PVA polymers in the film were doubly cross-linked by sodium trimetaphosphate and boric acid to improve their water-resistance and mechanical strength. Anthocyanins (ANT) and limonene (LIM) were used to achieve simultaneous colorimetric indication and antimicrobial activity. Firstly, the characterization of surface morphology using SEM confirmed that the starch-PVA-ANT-LIM film possessed a smooth surface. Secondly, the results of the mechanical strength test showed that starch-PVA-ANT-LIM possesses the highest mechanical strength. Additionally, there was a distinguishable change of colors as the film was immersed in solutions of pH ranging from 1.0 to 14.0. Moreover, the film showed excellent antimicrobial activity for three typical undesired microorganisms in foods, Bacillus subtilis, Aspergillus niger, and Staphylococcus aureus. Finally, the film exhibited good color indication and antimicrobial activity on pasteurized milk. The results suggest that the intelligent film reported here shows good capability for both alerting and inhibiting food spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Instabilities and patterns in an active nematic film

    Science.gov (United States)

    Srivastava, Pragya; Marchetti, Cristina

    2015-03-01

    Experiments on microtubule bundles confined to an oil-water interface have motivated extensive theoretical studies of two-dimensional active nematics. Theoretical models taking into account the interplay between activity, flow and order have remarkably reproduced several experimentally observed features of the defect-dynamics in these ``living'' nematics. Here, we derive minimal description of a two-dimensional active nematic film confined between walls. At high friction, we eliminate the flow to obtain closed equations for the nematic order parameter, with renormalized Frank elastic constants. Active processes can render the ``Frank'' constants negative, resulting in the instability of the uniformly ordered nematic state. The minimal model yields emergent patterns of growing complexity with increasing activity, including bands and turbulent dynamics with a steady density of topological defects, as obtained with the full hydrodynamic equations. We report on the scaling of the length scales of these patterns and of the steady state number of defects with activity and system size. National Science Foundation grant DMR-1305184 and Syracuse Soft Matter Program.

  2. The Equilibrium Spreading Tension of Pulmonary Surfactant

    OpenAIRE

    Dagan, Maayan P.; Hall, Stephen B.

    2015-01-01

    Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γe) with the bulk phase from which they form. For individual phospholipids, γe is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γe therefo...

  3. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film

    International Nuclear Information System (INIS)

    Yang Changjun; Gong Chuqing; Peng Tianyou; Deng Kejian; Zan Ling

    2010-01-01

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO 2 nano-composite film was prepared by embedding VC modified nano-TiO 2 photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO 2 nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO 2 film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO 2 nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO 2 film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO 2 is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti IV -VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  4. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  5. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    International Nuclear Information System (INIS)

    Ekthammathat, Nuengruethai; Thongtem, Titipun; Thongtem, Somchai

    2013-01-01

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  6. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    Science.gov (United States)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  7. Antimicrobial and Antioxidant Activity of Chitosan/Hydroxypropyl Methylcellulose Film-Forming Hydrosols Hydrolyzed by Cellulase

    Directory of Open Access Journals (Sweden)

    Anna Zimoch-Korzycka

    2016-09-01

    Full Text Available The aim of this study was to evaluate the impact of cellulase (C on the biological activity of chitosan/hydroxypropyl methylcellulose (CH/HPMC film-forming hydrosols. The hydrolytic activity of cellulase in two concentrations (0.05% and 0.1% was verified by determination of the progress of polysaccharide hydrolysis, based on viscosity measurement and reducing sugar-ends assay. The 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging effect, the ferric reducing antioxidant power (FRAP, and microbial reduction of Pseudomonas fluorescens, Yersinia enterocolitica, Bacillus cereus, and Staphylococcus aureus were studied. During the first 3 h of reaction, relative reducing sugar concentration increased progressively, and viscosity decreased rapidly. With increasing amount of enzyme from 0.05% to 0.1%, the reducing sugar concentration increased, and the viscosity decreased significantly. The scavenging effect of film-forming solutions was improved from 7.6% at time 0 and without enzyme to 52.1% for 0.1% cellulase after 20 h of reaction. A significant effect of cellulase addition and reaction time on antioxidant power of the tested film-forming solutions was also reported. Film-forming hydrosols with cellulase exhibited a bacteriostatic effect on all tested bacteria, causing a total reduction.

  8. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    Science.gov (United States)

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  9. Activation of boron and phosphorus atoms implanted in polycrystalline silicon films at low temperatures

    International Nuclear Information System (INIS)

    Andoh, Nobuyuki; Sameshima, Toshiyuki; Andoh, Yasunori

    2005-01-01

    Phosphorus atoms implanted in laser crystallized polycrystalline silicon films were activated by a heat treatment in air at 260 deg. C for 1, 3 and 24 h. Analysis of ultraviolet reflectivity of phosphorus-doped silicon films implanted by ion doping method at 4 keV revealed that the thickness of the top disordered layer formed by ion bombardment was 6 nm. It is reduced to 4 nm by a 3 h heat treatment at 260 deg. C by recrystallization of disordered region. The electrical conductance of silicon films implanted increased to 1.7x10 5 S/sq after 3 h heat treatment

  10. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose; Ahn, Sung-Jin; Crumlin, Ethan; Orikasa, Yuki; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  11. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  12. Organic thin film transistors using a liquid crystalline palladium phthalocyanine as active layer

    Science.gov (United States)

    Jiménez Tejada, Juan A.; Lopez-Varo, Pilar; Chaure, Nandu B.; Chambrier, Isabelle; Cammidge, Andrew N.; Cook, Michael J.; Jafari-Fini, Ali; Ray, Asim K.

    2018-03-01

    70 nm thick solution-processed films of a palladium phthalocyanine (PdPc6) derivative bearing eight hexyl (-C6H13) chains at non-peripheral positions have been employed as active layers in the fabrication of bottom-gate bottom-contact organic thin film transistors (OTFTs) deposited on highly doped p-type Si (110) substrates with SiO2 gate dielectric. The dependence of the transistor electrical performance upon the mesophase behavior of the PdPc6 films has been investigated by measuring the output and transfer characteristics of the OTFT having its active layer ex situ vacuum annealed at temperatures between 500 °C and 200 °C. A clear correlation between the annealing temperature and the threshold voltage and carrier mobility of the transistors, and the transition temperatures extracted from the differential scanning calorimetric curves for bulk materials has been established. This direct relation has been obtained by means of a compact electrical model in which the contact effects are taken into account. The precise determination of the contact-voltage drain-current curves allows for obtaining such a relation.

  13. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Science.gov (United States)

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    Science.gov (United States)

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Dynamic Characteristics of Rotors on Passive and Active Thrust Fluid-film Bearings with Fixed Pads

    Directory of Open Access Journals (Sweden)

    Babin Alexander

    2018-01-01

    Full Text Available Application of fluid-film bearings in rotor machines in many cases could have no alternative due to obvious advantages when compared to roller element bearings. Integration of information technology in mechanical engineering resulting in emergence of a new field of research – mechatronic bearings which allowed tracking condition of the most important parts of a machine and adjusting operational parameters of the system. Application of servo valves to control the flow rate through a fluid-film bearing is the most universal and simple way of rotor’s position control due to relative simplicity of modelling and absence of need to radically change the design of conventional hydrodynamic bearings. In the present paper numerical simulations of passive (conventional as opposed to mechatronic and active hybrid thrust fluid-film bearings with a central feeding chamber are presented, that are parts of a mechatronic rotor-bearing node. Numerical model of an active thrust bearing is based on solution of equations of hydrodynamics, rotor dynamics and an additional model of a servo valve. Various types of control have been investigated: P, PI and PID control, and the dynamic behaviour of a system has been estimated under various loads, namely static, periodic and impulse. A design of a test rig has been proposed to study passive and active thrust fluid-film bearings aimed at, among other, validation of numerical results of active bearings simulation.

  16. Activation of visible up-conversion luminescence in transparent and conducting ZnO:Er:Yb films by laser annealing

    International Nuclear Information System (INIS)

    Lluscà, M.; López-Vidrier, J.; Lauzurica, S.; Sánchez-Aniorte, M.I.; Antony, A.; Molpeceres, C.; Hernández, S.; Garrido, B.; Bertomeu, J.

    2015-01-01

    Transparent and conducting ZnO:Er:Yb thin films with visible up-conversion (660-nm emission under 980-nm excitation) were fabricated by RF magnetron sputtering. The as-deposited films were found to be transparent and conducting and the activation of the Er ions in these films to produce up-conversion luminescence was achieved by different post-deposition annealing treatments in air, vacuum or by laser annealing using a Nd:YVO 4 laser. The structural, electrical and optical properties and the up-conversion efficiency of these films were found to be strongly influenced by the annealing method, and a detailed study is reported in this paper. It has been demonstrated that, although the air annealing was the most efficient in terms of up-conversion, laser annealing was the only method capable of activating Er ions while preserving the electrical conductivity of the doped films. It has been shown that a minimum energy was needed in laser annealing to optically activate the rare earth ions in the ZnO host material to produce up-conversion. Up-converting and transparent conducting ZnO:Er:Yb films with an electrical resistivity of 5×10 −2 Ω cm and transparency ~80% in the visible wavelength range has been achieved by laser annealing. - Highlights: • Transparent and conducting ZnO:Er:Yb films were grown via magnetron sputtering. • Post-annealing ZnO:Er:Yb is needed to optically activate Er ions. • Visible up-conversion emission at 660 nm is observed under 980 nm excitation. • A transparent and conducting up-converter is achieved by laser annealing

  17. Antioxidant activities of distiller dried grains with solubles as protein films containing tea extracts and their application in the packaging of pork meat.

    Science.gov (United States)

    Yang, Hyun-Ju; Lee, Ji-Hyeon; Won, Misun; Song, Kyung Bin

    2016-04-01

    Distiller dried grains with solubles (DDGS) as protein (DP) films were prepared. Additionally, to prepare anti-oxidant films, green tea extract (GTE), oolong tea extract (OTE), and black tea extract (BTE) were incorporated into the DP films. Consequently, the incorporation of the tea extracts did not alter the physical properties of the films much, whereas the antioxidant activities, such as ABTS and DPPH radical scavenging activities were observed. To apply the DP films containing tea extracts to food packaging, pork meat was wrapped with the films and stored at 4 °C for 10 d. During storage, the pork meat wrapped with the DP films containing GTE, OTE, and BTE had less lipid oxidation than did the control. Among the tea extracts, the DP film containing GTE had the greatest antioxidant activity. These results indicate that the DP films containing green tea extracts can be utilized as an anti-oxidative packaging material for pork meat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light

    International Nuclear Information System (INIS)

    Kaneva, Nina V.; Dimitrov, Dimitre T.; Dushkin, Ceco D.

    2011-01-01

    Nanostructured ZnO thin films with different concentrations of Ni 2+ doping (0, 1, 5, 10 and 15 wt.%) are prepared by the sol-gel method for the first time. The thin films are prepared from zinc acetate, 2-methoxyethanol and monoethanolamine on glass substrates by using dip coating method. The films comprise of ZnO nanocrystallites with hexagonal crystal structure, as revealed by X-ray diffraction. The film surface is with characteristic ganglia-like structure as observed by Scanning Electron Microscopy. Furthermore, the Ni-doped films are tested with respect to the photocatalysis in aqueous solutions of malachite green upon UV-light illumination, visible light and in darkness. The initial concentration of malachite green and the amount of catalyst are varied during the experiments. It is found that increasing of the amount of Ni 2+ ions with respect to ZnO generally lowers the photocatalytic activity in comparison with the pure ZnO films. Nevertheless, all films exhibit a substantial activity under both, UV and visible light and in darkness as well, which is promising for the development of new ZnO photocatalysts by the sol-gel method.

  19. Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

    OpenAIRE

    Burgos, Nuria; Armentano, Ilaria; Fortunati, Elena; Dominici, Franco; Luzi, Francesca; Fiori, Stefano; Cristofaro, Francesco; Visai, Livia; Jiménez, Alfonso; Kenny, José María

    2017-01-01

    Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous f...

  20. Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization

    International Nuclear Information System (INIS)

    Wang Yajun; Xu Jing; Zong Weizheng; Zhu Yongfa

    2011-01-01

    A Polyaniline (PANI)/TiO 2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO 2 , the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO 2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO 2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO 2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO 2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO 2 . This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities. - Graphical abstract: The effect of PANI content on 2,4-DCP degradation with initial concentration of 50 mg/L, external potential=1.5 V. Inset: degradation rate constants of various PANI/TiO 2 films. Highlights: → Polyaniline/TiO 2 film was prepared using the sol-gel method followed by chemisorption. → Photoelectrocatalytic degradation rate of 2,4-dichlorophenol was enhanced by 57.5%. → The modification of Polyaniline to TiO 2 film caused a rapid charge separation. → Best degradation efficiency was acquired at 1.5 V with 1 nm thick PANI.

  1. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  2. Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films

    International Nuclear Information System (INIS)

    Zengin, Huseyin; Kalayci, Guellue

    2010-01-01

    Polyaniline was synthesized via polyaniline/activated carbon (PANI/AC) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/AC composite films were prepared by drop-by-drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/AC composite films were measured according to the standard four-point-probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/AC composites were investigated by spectroscopic methods including UV-vis, FTIR and photoluminescence. UV-vis and FTIR studies showed that AC particles affect the quinoid units along the polymer backbone and indicate strong interactions between AC particles and quinoidal sites of PANI. The photoluminescence properties of PANI and PANI/AC composites were studied and the photoluminescence intensity of PANI/AC composites was higher than that of neat PANI. The increase of conductivity of PANI/AC composites may be partially due to the doping or impurity effect of AC, where the AC competes with chloride ions. The amount of weight loss and the thermostability of PANI and PANI/AC composites were determined from thermogravimetric analysis. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the AC particles were well dispersed and isolated in composite films.

  3. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    Science.gov (United States)

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay.

    Science.gov (United States)

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate . Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium . The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.

  5. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2017-01-01

    the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out......, enabling evaluation of the mechanical condition of the rotating machine. Using the lubricant fluid film as a non-invasive calibrated shaker is troublesome, once several transfer functions among mechanical, hydraulic and electronic components become necessary. In this framework the main original...

  6. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2016-01-01

    the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out......, enabling evaluation of the mechanical condition of the rotating machine.Using the lubricant fluid film as a non-invasive calibrated shaker is troublesome, once several transfer functions among mechanical, hydraulic and electronic components become necessary. In this framework the main original contribution...

  7. Visible-light active thin-film WO3 photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    Directory of Open Access Journals (Sweden)

    Nobuto Oka

    2015-10-01

    Full Text Available A process based on reactive gas flow sputtering (GFS for depositing visible-light active photocatalytic WO3 films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO3 films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH3CHO under visible light irradiation. The decomposition time for 60 ppm of CH3CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO3 films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH3CHO.

  8. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung; Hwang, Cheol Seong; Kim, Hyeong Joon, E-mail: thinfilm@snu.ac.kr [Department of Materials Science and Engineering with Inter-University Semiconductor Research Center (ISRC), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Ryu, Seung Wook, E-mail: tazryu78@gmail.com [Department of Electrical Engineering, Stanford University, Stanford, California 94305-2311 (United States); Cho, Seongjae [Department of Electronic Engineering and New Technology Component & Material Research Center (NCMRC), Gachon University, Seongnam-si, Gyeonggi-do 13120 (Korea, Republic of)

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.

  9. Thin film analysis by instrumental heavy ion activation analysis using distributed recoil ranges of isotopic products

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Guin, R.; Saha, S.K.; Sudersanan, M.

    2006-01-01

    Thin foils (0.1 to 10 μm), metallic or polymeric, are frequently used in nuclear physics and chemistry experiments using ion beams from an accelerator. Very often it is important to know the major, minor and trace element composition of the foil. Several nuclear analytical techniques, namely RBS, ERDA, etc. are available for the near surface analysis. We have applied heavy ion activation analysis (HIAA) to explore the bulk composition of thin films. One of the difficulties in this method of thin film analysis is that the product nuclides from nuclear reaction come out of the sample surface due to high recoil energy. In thick sample, the recoiled nuclides are absorbed in the sample itself. This effect has been used to employ heavy ion activation for the analysis of thin films

  10. Fabrication of SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films for enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsyi-En, E-mail: sean@mail.stust.edu.tw; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-28

    Highlights: • SnO{sub 2}-TiO{sub 2} core-shell nanopillar-arrays on ITO glass were successfully fabricated. • The 3D heterojunction solves the problem of low photocatalytic activity of TiO{sub 2} films. • SnO{sub 2} is more suitable than ITO for the core layer to separate electron-hole pairs. - Abstract: Immobilized or deposited thin film TiO{sub 2} photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO{sub 2} can be effectively improved by the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array structure which combines the benefits of SnO{sub 2}/TiO{sub 2} heterojunction and high reaction surface area. The SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO{sub 2} film was 45% improved by introducing a SnO{sub 2} film between TiO{sub 2} and ITO glass substrate and was 300% improved by using the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array structure. The 45% improvement by the SnO{sub 2} interlayer is attributed to the SnO{sub 2}/TiO{sub 2} heterojunction which separates the photogenerated electron-hole pairs in TiO{sub 2} for MB degradation, and the high photocatalytic activity of the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films is attributed to the three dimensional SnO{sub 2}/TiO{sub 2} heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  11. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols.

    Science.gov (United States)

    Riaz, Asad; Lei, Shicheng; Akhtar, Hafiz Muhammad Saleem; Wan, Peng; Chen, Dan; Jabbar, Saqib; Abid, Muhammad; Hashim, Malik Muhammad; Zeng, Xiaoxiong

    2018-07-15

    In the present study, apple peel polyphenols (APP) were incorporated into chitosan (CS) to develop a novel functional film. Scanning electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analyses were performed to study the structure, potential interaction and thermal stability of the prepared films. Physical properties including moisture content, density, color, opacity, water solubility, swelling ration and water vapor permeability were measured. The results revealed that addition of APP into CS significantly improved the physical properties of the film by increasing its thickness, density, solubility, opacity and swelling ratio whereas moisture content and water vapor permeability were decreased. Tensile strength and elongation at break of the CS-APP film with 1% APP was 16.48MPa and 13.33%, respectively, significantly lower than those for CS control film. Thermal stability of the prepared films was decreased while antioxidant and antimicrobial activities of the CS-based APP film were significantly increased. CS-APP film with 0.50% APP concentration exhibited good mechanical and antimicrobial properties, indicating that it could be developed as bio-composite food packaging material for the food industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Filming eugenics: teaching the history of eugenics through film.

    Science.gov (United States)

    Ooten, Melissa; Trembanis, Sarah

    2007-01-01

    In teaching eugenics to undergraduate students and general public audiences, film should he considered as a provocative and fruitful medium that can generate important discussions about the intersections among eugenics, gender, class, race, and sexuality. This paper considers the use of two films, A Bill of Divorcement and The Lynchburg Story, as pedagogical tools for the history of eugenics. The authors provide background information on the films and suggestions for using the films to foster an active engagement with the historical eugenics movement.

  13. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Li, Chao; Wang, Dan; Wang, Yan; Li, Guode; Hu, Guijuan; Wu, Shiwei; Cao, Zhongqiu; Zhang, Ke

    2018-08-15

    In this work, nanostructured Co-W-B films are successfully synthesized on the foam sponge by electroless plating method and employed as the catalysts with enhanced catalytic activity towards hydrogen evolution from the hydrolysis of ammonia borane (NH 3 BH 3 , AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3 nm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7 mL min -1 g cat -1 at 298 K. The activation energy of the hydrolysis reaction of AB is determined to be 32.2 kJ mol -1 . Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Effects of L-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films

    International Nuclear Information System (INIS)

    Liu Yun; Yang Yun; Wu Feng

    2010-01-01

    Surface modification of polyethylene terephthalate (PET) films was performed with L-arginine (L-Arg) to gain an improved anticoagulant surface. The surface chemistry changes of modified films were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The in vitro anticoagulant activities of the surface-modified PET films were evaluated by blood clotting test, hemolytic test, and the measurement of clotting time including plasma recalcification time (PRT), activated partial thromboplastin time (APTT), and prothrombin time (PT). The data of blood coagulation index (BCI) for L-arginine modified PET films (PET-Arg) was larger than that for PET at the same blood-sample contact time. The hemolysis ratio for PET-Arg was less than that for PET and within the accepted standard for biomaterials. The PRT and APTT for PET-Arg were significantly prolonged by 189 s and 25 s, respectively, compared to those for the unmodified PET. All results suggested that the currently described modification method could be a possible candidate to create antithrombogenic PET surfaces which would be useful for further medical applications.

  15. The electrochemical synthesis of polyaniline/polysulfone composite films and electrocatalytic activity for ascorbic acid oxidation

    International Nuclear Information System (INIS)

    Hu Zhongai; Shang Xiuli; Yang Yuying; Kong Chao; Wu Hongying

    2006-01-01

    Polyaniline (PANI)/polysulfone (PSF) composite films with asymmetric porous structure were successfully prepared by electropolymerization. The back face (in contact with the electrode) of the freestanding composite film is green while the outer face is white. The chemical component and the morphology of the surfaces were characterized by FTIR spectra and scanning electron microscopy, respectively. It was shown that replicate films gave reproducible voltammetry in 0.5 M H 2 SO 4 . The influence of the electrolyte and the acidic concentration on the redox peak currents of polyaniline were investigated in detail. The composite film electrode showed good electrocatalytic activity for ascorbic acid, which the anodic overpotential was evidently reduced compared with that obtained at bare Pt electrode. The diffusion coefficient of ascorbic acid was 1.38 x 10 -6 cm 2 s -1

  16. Effect of Etching on the Optical, Morphological Properties of Ag Thin Films for SERS Active Substrates

    Directory of Open Access Journals (Sweden)

    Desapogu Rajesh

    2013-01-01

    Full Text Available Structural, optical, and morphological properties of Ag thin films before and after etching were investigated by using X-ray diffraction, UV-Vis spectrophotometer, and field emission scanning electron microscopy (FESEM. The HNO3 roughened Ag thin films exhibit excellent enhancement features and better stability than pure Ag thin films. Further, the Ag nanostructures are covered with Rhodamine 6G (Rh6G and then tested with surface enhanced raman spectroscopy (SERS for active substrates. Etched Ag films were found to exhibit a strong SERS effect and excellent thermal stability. Hence, the present method is found to be useful in the development of plasmon-based analytical devices, especially SERS-based biosensors.

  17. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yang Changjun; Gong Chuqing; Peng Tianyou [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2010-06-15

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film was prepared by embedding VC modified nano-TiO{sub 2} photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO{sub 2} nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO{sub 2} film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO{sub 2} nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO{sub 2} film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO{sub 2} is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti{sup IV}-VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  18. Motivational and Effective Film Activities for the Language Lab Class.

    Science.gov (United States)

    Lin, Li-Yun

    Many teachers hesitate to integrate film into English-as-a-Second-Language (ESL) classrooms because of the uncertainty of the educational efficacy of viewing an entire film in class and the motivational value of the repeated use of short film clips. However, both short film clips and longer films can be used in class to motivate ESL students and…

  19. Evaluation of the Antimicrobial Activity of Different Antibiotics Enhanced with Silver-Doped Hydroxyapatite Thin Films

    Directory of Open Access Journals (Sweden)

    Daniela Predoi

    2016-09-01

    Full Text Available The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp, silver-doped hydroxyapatite (Ag:HAp and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp or ciprofloxacin (C-HAp and C-Ag:HAp have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR. The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM. In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX and glow discharge optical emission spectroscopy (GDOES measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO46(OH2 with xAg = 0 (HAp and xAg = 0.2 (Ag:HAp. On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers.

  20. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    Science.gov (United States)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  1. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  2. Mesoporous Ruthenium/Ruthenium Oxide Thin Films: Active Electrocatalysts for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Kibsgaard, Jakob; Hellstern, Thomas R.; Choi, Shin-Jung

    2017-01-01

    We report the first synthesis of a fully contiguous large area supported thin film of highly ordered mesoporous Ru and RuO2 and investigate the electrocatalytic properties towards the oxygen evolution reaction (OER). We find that the nanoscale porous network of these catalysts provides significant...... enhancements in geometric OER activity without any loss in specific activity. This work demonstrates a strategy for engineering materials at the nanoscale that can simultaneously decrease precious metal loading and increase electrode activity....

  3. Development of Anti-Insect Microencapsulated Polypropylene Films Using a Large Scale Film Coating System.

    Science.gov (United States)

    Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C

    2018-04-01

    Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.

  4. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios

    NARCIS (Netherlands)

    Fu, Donglong|info:eu-repo/dai/nl/412516918; Schmidt, Joel E.|info:eu-repo/dai/nl/413333736; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Chowdhury, Abhishek Dutta|info:eu-repo/dai/nl/412438003; Meirer, Florian; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films.

  5. Photocatalytic Activity of TiO2 Thin Films Obtained by the Sputtering RF in Wastewater

    Science.gov (United States)

    Cardona Bedoya, Jairo Armando; Sanchez Velandia, Wilmer Asmed; Delgado Rosero, Miguel Iban; Florido Cuellar, Alex Enrique; Zelaya Angel, Orlando; Mendoza Alvarez, Julio G.

    2011-03-01

    The photocatalytic activity of Ti O2 thin films in wastewater, under an UV irradiation, is studied. The films were prepared on corning glass substrates by the sputtering RF technique. We present evidence on the photocatalytic degradation, carried out by advanced oxidation processes (AOPs) in domestic wastewater pretreated with UASB (upflow anaerobic sludge blanket) reactors. Ti O2 films were illuminated with ultraviolet light during a time of 4 hours (λ ≅ 264 nm). We could see the effect of degraded operation in the absorbance measurement using UV-VIS spectrophotometry. The results show an increased rate of degradation of the wastewater by 30% compared to the values reflected biologically treated wastewater by anaerobic reactors.

  6. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    International Nuclear Information System (INIS)

    Gao, Xu; Mao, Bao-Hua; Wang, Sui-Dong; Lin, Meng-Fang; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito; Nabatame, Toshihide; Liu, Zhi

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O 2 /air. The device with a thick IGZO layer shows similar electron mobility in O 2 /air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O 2 /air due to the electron transfer to adsorbed gas molecules. The O 2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results. (paper)

  7. Phase transformation synthesis of TiO2/CdS heterojunction film with high visible-light photoelectrochemical activity

    Science.gov (United States)

    Liu, Canjun; Yang, Yahui; Li, Jie; Chen, Shu

    2018-06-01

    CdS/TiO2 heterojunction film used as a photoanode has attracted much attention in the past few years due to its good visible light photocatalytic activity. However, CdS/TiO2 films prepared by conventional methods (successive ionic layer adsorption and reaction, chemical bath deposition and electrodeposition) show numerous grain boundaries in the CdS layer and an imperfect contact at the heterojunction interface. In this study, we designed a phase transformation method to fabricate CdS/TiO2 nanorod heterojunction films. The characterization results showed that the CdS layer with fewer grain boundaries was conformally coated on the TiO2 nanorod surface and the formation mechanism has been explained in this manuscript. Moreover, the prepared CdS/TiO2 films show a high photocatalytic activity and the photocurrent density is as high as 9.65 mA cm‑2 at 0.80 V versus RHE. It may be attributed to fewer grain boundaries and a compact heterojunction contact, which can effectively improve charge separation and transportation.

  8. "Kuleshov on Film": A Spectator-Centered Film Theory.

    Science.gov (United States)

    Curran, Trisha

    This paper describes some of the theories of cinematography of Soviet film theorist and filmmaker Lev Kuleshov. It points out that for him, film was communication portraying people's activities emanating from the environment. It explains that he was especially interested in audience response, particularly that of the proletariat, and that he felt…

  9. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation

    International Nuclear Information System (INIS)

    Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi; Liu, Bin; Cao, Baocheng

    2014-01-01

    In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO 2 thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.

  10. Optical and Electrical Properties of Thin Films of CuS Nanodisks Ensembles Annealed in a Vacuum and Their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    J. Santos Cruz

    2013-01-01

    Full Text Available Effects on the optical, electrical, and photocatalytic properties of undoped CuS thin films nanodisks vacuum annealed at different temperatures were investigated. The chemical bath prepared CuS thin films were obtained at 40°C on glass substrates. The grain size of 13.5±3.5 nm was computed directly from high-resolution transmission electron microscopy (HRTEM images. The electrical properties were measured by means of both Hall effect at room temperature and dark resistivity as a function of the absolute temperature 100–330 K. The activation energy values were calculated as 0.007, 0.013, and 0.013 eV for 100, 150, and 200°C, respectively. The energy band gap of the films varied in the range of 1.98 up to 2.34 eV. The photocatalytic activity of the CuS thin film was evaluated by employing the degradation of aqueous methylene blue solution in the presence of hydrogen peroxide. The CuS sample thin film annealed in vacuum at 150°C exhibited the highest photocatalytic activity in presence of hydrogen peroxide.

  11. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO{sub 2} films prepared at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Elgh, Björn; Yuan, Ning; Palmqvist, Anders E. C. [Applied Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE 412 96 Göteborg (Sweden); Cho, Hae Sung; Terasaki, Osamu [Graduate School of EEWS (WCU), KAIST, Daejeon 305-701 (Korea, Republic of); Magerl, David; Philipp, Martine; Müller-Buschbaum, Peter [Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748 Garching (Germany); Roth, Stephan V. [DESY, Notkestrasse 85, 22603 Hamburg (Germany); Yoon, Kyung Byung [Department of Chemistry, Sogang University, Seoul 121-742 (Korea, Republic of)

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  12. Data on physicochemical properties of active films derived from plantain flour/PCL blends developed under reactive extrusion conditions

    Directory of Open Access Journals (Sweden)

    Tomy J. Gutiérrez

    2017-12-01

    Full Text Available The data given below relates to the research paper entitled: “Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst”, recently published by our research group [1]. This article provides information concerning the physicochemical properties of the above-mentioned film systems: thickness, density, opacity, moisture content and surface moisture. Keywords: Active films, Antimicrobial properties, Cross-linking, Poly(ε-caprolactone, Starchy

  13. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    International Nuclear Information System (INIS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A.V.; Oprea, A.E.; Grumezescu, A.M.; Chifiriuc, M.C.; Boehm, R.D.; Yamaleyeva, D.; Taylor, M.; Narayan, R.J.; Chrisey, D.B.

    2016-01-01

    Highlights: • We successfully deposited composite quercetin dehydrate-, resveratrol- and silver nanoparticle-polyvinylpyrrolidone thin coatings with chemical structure close to that of the starting materials by MAPLE. • Thin film morphology studies revealed a uniform surface without aggregates or grains on the top of the surface. • MAPLE-deposited thin films exhibited antibacterial activity against Gram-positive and Gram-negative bacterial strains. • We demonstrated the potential use of these hybrid systems and MAPLE deposition method for the development of new harmless, ecological antimicrobial strategies. - Abstract: The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF * excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  14. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma & Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Visan, A.; Socol, G. [National Institute for Lasers, Plasma & Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Surdu, A.V.; Oprea, A.E.; Grumezescu, A.M. [Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1–7 Polizu Street, Bucharest, 011061 Romania (Romania); Chifiriuc, M.C. [Microbiology Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest - ICUB, Bucharest, 77206 (Romania); Boehm, R.D.; Yamaleyeva, D.; Taylor, M.; Narayan, R.J. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC (United States); Chrisey, D.B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA (United States)

    2016-06-30

    Highlights: • We successfully deposited composite quercetin dehydrate-, resveratrol- and silver nanoparticle-polyvinylpyrrolidone thin coatings with chemical structure close to that of the starting materials by MAPLE. • Thin film morphology studies revealed a uniform surface without aggregates or grains on the top of the surface. • MAPLE-deposited thin films exhibited antibacterial activity against Gram-positive and Gram-negative bacterial strains. • We demonstrated the potential use of these hybrid systems and MAPLE deposition method for the development of new harmless, ecological antimicrobial strategies. - Abstract: The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF{sup *} excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  15. Exploding metal film active anode source experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.D.; Bordonaro, G.J.; Greenly, J.B.; Hammer, D.A.

    1989-01-01

    In this paper the authors report results using an extractor geometry magnetically insulated ion diode on the 0.5 TW LION accelerator. Experiments with an exploding metal film active anode plasma source (EMFAAPS) have shown that intense beams with significantly improved turn-on time compared to epoxy-filled-groove anodes can be produced. A new geometry, in which a plasma switch is used to provide the current path that explodes the thin film anode, has improved the ion efficiency (to typically 70%) compared with the previous scheme in which an electron collector on the anode provided this current. Leakage electron current is reduced when no collector is used

  16. Development of elastin-like recombinamer films with antimicrobial activity

    DEFF Research Database (Denmark)

    Costa, André; Machado, Raul; Ribeiro, Artur

    2015-01-01

    In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N......-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through...... the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against...

  17. Characterization of Active Packaging Films Made from Poly(Lactic Acid/Poly(Trimethylene Carbonate Incorporated with Oregano Essential Oil

    Directory of Open Access Journals (Sweden)

    Dong Liu

    2016-05-01

    Full Text Available Antimicromial and antioxidant bioactive films based on poly(lactic acid/poly(trimenthylene carbonate films incorporated with different concentrations of oregano essential oil (OEO were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05. The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends.

  18. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    Science.gov (United States)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  19. Interaction of a snake venom L-amino acid oxidase with different cell types membrane.

    Science.gov (United States)

    Abdelkafi-Koubaa, Zaineb; Aissa, Imen; Morjen, Maram; Kharrat, Nadia; El Ayeb, Mohamed; Gargouri, Youssef; Srairi-Abid, Najet; Marrakchi, Naziha

    2016-01-01

    Snake venom l-amino acid oxidases are multifunctional enzymes that exhibited a wide range of pharmacological activities. Although it has been established that these activities are primarily caused by the H2O2 generated in the enzymatic reaction, the molecular mechanism, however, has not been fully investigated. In this work, LAAO interaction with cytoplasmic membranes using different cell types and Langmuir interfacial monolayers was evaluated. The Cerastes cerastes venom LAAO (CC-LAAO) did not exhibit cytotoxic activities against erythrocytes and peripheral blood mononuclear cells (PBMC). However, CC-LAAO caused cytotoxicity on several cancer cell lines and induced platelet aggregation in dose-dependent manner. Furthermore, the enzyme showed remarkable effect against Gram-positive and Gram-negative bacteria. These activities were inhibited on the addition of catalase or substrate analogs, suggesting that H2O2 liberation× is required for these effects. Binding studies revealed that CC-LAAO binds to the cell surface and enables the production of highly localized concentration of H2O2 in or near the binding interfaces. On another hand, the interaction of CC-LAAO with a mimetic phospholipid film was evaluated, for the first time, using a monomolecular film technique. Results indicated that phospholipid/CC-LAAO interactions are not involved in their binding to membrane and in their pharmacological activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Preparation and antibacterial activity of Ag–TiO 2 composite film by ...

    Indian Academy of Sciences (India)

    From these analyses, it was found that silver ions were trapped in TiO2 matrix and their reduction could be achieved at 600°C annealing temperature. The antibacterial activity against S. aureus and . coli has been studied applying the so called antibacterial-drop test. The Ag–TiO2 thin films exhibited a high antibacterial ...

  1. Production of Antimicrobial Films by Incorporation of Partially Purified Lysozyme into Biodegradable Films of Crude Exopolysaccharides Obtained from Aureobasidium pullulans Fermentation

    Directory of Open Access Journals (Sweden)

    Nilay Kandemir

    2005-01-01

    Full Text Available Antimicrobial films were produced by incorporating partially purified lysozyme into films of crude exopolysaccharides (59 % pullulan obtained from Aureobasidium pullulans fermentation. After film making, the films containing lysozyme at 100, 260, 520 and 780 μg/cm2 showed 23 to 70 % of their expected enzyme activities. The highest recovery of enzyme activity (65–70 % after the film making was obtained in films prepared by incorporating lysozyme at 260 μg/cm2 (1409 U/cm2. The incorporation of disodium EDTA×2H2O and sucrose did not affect the initial lysozyme activity of the films significantly. With or without the presence of disodium EDTA×2H2O at 52 or 520 μg/cm2, lysozyme activity showed sufficient stability in the films during 21 days of cold storage. However, the presence of sucrose at 10 mg/cm2 in the films caused the destabilization of part of enzyme activity (almost 35 % at the end of storage. The combinational incorporation of lysozyme at 780 μg/cm2 (4227 U/cm2 and disodium EDTA×2H2O at 520 μg/cm2 gave antimicrobial films effective on Escherichia coli. However, in the studied lysozyme concentration range the films did not show any antimicrobial activity against Lactobacillus plantarum. This study clearly showed that the partially purified lysozyme and crude exopolysaccharides from Aureobasidium pullulans may be used to obtain antimicrobial films to increase the safety of foods.

  2. Highly Oriented Growth of Catalytically Active Zeolite ZSM‐5 Films with a Broad Range of Si/Al Ratios

    OpenAIRE

    Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M.

    2017-01-01

    Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞)...

  3. Chitosan films incorporated with nettle (Urtica Dioica L.) extract-loaded nanoliposomes: II. Antioxidant activity and release properties.

    Science.gov (United States)

    Almasi, Hadi; Zandi, Mohsen; Beigzadeh, Sara; Haghju, Sara; Mehrnow, Nazila

    2016-07-14

    Chitosan films were loaded with NE nettle (Urtica dioica L.) extract (NE) at concentrations of 0, 0.5, 1 and 1.5%w/w in the free or nanoliposomal form to obtain active and nanoactive films, respectively. The antioxidant potential of the films containing NE-loaded nanoliposomes was decreased in comparison of free NE incorporated films. Diffusion of NE to soybean oil was enough to delay the induction of the oxidation of soybean oil stored for 60 days in contact with chitosan based films. Release studies indicated that the release rate of NE in 95% ethanol simulant significantly decreased by the nanoencapsulation of NE. The diffusion coefficient (D) for chitosan films containing 1.5%w/w of free and encapsulated NE at 25 °C was 18.80 and 3.68 × 10 -7 cm 2  s -1 , respectively. Moreover, the formation of nanoliposomes diminished the increasing effect of temperature on the release rate as when storage temperature increased from 4 °C to 40 °C.

  4. Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment

    Directory of Open Access Journals (Sweden)

    Irene Ortega Blázquez

    2017-11-01

    Full Text Available The aim of the present study was to determine the efficacy of films activated with enterocin AS-48 plus thymol singly, or in combination with high-hydrostatic pressure (HHP on the inactivation of Listeria innocua in sea bream fillets and in fruit puree stored under refrigeration for 10 days. L. innocua proliferated in control fish fillets during storage. The activated film reduced viable Listeria counts in fillets by 1.76 log cycles and prevented growth of survivors until mid-storage. Application of HHP treatment to fillets packed in films without antimicrobials reduced Listeria counts by 1.83 log cycles, but did not prevent the growth of survivors during storage. The combined treatment reduced viable counts by 1.88 log cycles and delayed growth of survivors during the whole storage period. L. innocua survived in puree during storage. The activated film reduced Listeria counts by 1.80 and 2.0 log cycles at days 0 and 3. After that point, Listeria were below the detection limit. No viable Listeria were detected in the purees after application of HHP treatment singly, or in combination with the activated film. Results from the study indicate that the efficacy of activated films against Listeria is markedly influenced by the food type.

  5. Activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Gopalakrishnan, N.; Balasubramanian, T.

    2013-01-01

    Highlights: ► Room temperature ferromagnetism (RTFM) is observed in surface functionalized ZnO films. ► Surface functionalization is a new approach to make ZnO as ferromagnetic. ► The RTFM is attributed to the interaction between the adsorbates and the surface of ZnO. ► The oxygen vacancies are passivated upon surface functionalization. - Abstract: In this paper, we report the activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine. The pure and surface functionalized ZnO films have been examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements. XRD measurements show that all the films have single phase and (0 0 2) preferred orientation. The chemical bonding of ZnO with thiol and amine molecules has been confirmed by XPS measurements. The quenching of visible emission in PL spectra indicates that the surface defects are passivated by functionalization with thiol and amine. Surface functionalization of ZnO films with thiol and amine induces robust room temperature ferromagnetism in ZnO films as evidenced from VSM measurements. It is concluded that the observed ferromagnetic behavior in functionalized ZnO films is attributed to the different electronegativity of the atom in the thiol (or amine) and the surface of ZnO.

  6. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    Science.gov (United States)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction

  7. Eukaryotic expression system Pichia pastoris affects the lipase catalytic properties: a monolayer study.

    Directory of Open Access Journals (Sweden)

    Madiha Bou Ali

    Full Text Available Recombinant DNA methods are being widely used to express proteins in both prokaryotic and eukaryotic cells for both fundamental and applied research purposes. Expressed protein must be well characterized to be sure that it retains the same properties as the native one, especially when expressed protein will be used in the pharmaceutical field. In this aim, interfacial and kinetic properties of native, untagged recombinant and tagged recombinant forms of a pancreatic lipase were compared using the monomolecular film technique. Turkey pancreatic lipase (TPL was chosen as model. A kinetic study on the dependence of the stereoselectivity of these three forms on the surface pressure was performed using three dicaprin isomers spread in the form of monomolecular films at the air-water interface. The heterologous expression and the N-His-tag extension were found to modify the pressure preference and decrease the catalytic hydrolysis rate of three dicaprin isomers. Besides, the heterologous expression was found to change the TPL regioselectivity without affecting its stereospecificity contrary to the N-tag extension which retained that regioselectivity and changed the stereospecificity at high surface pressures. The study of parameters, termed Recombinant expression Effects on Catalysis (REC, N-Tag Effects on Catalysis (TEC, and N-Tag and Recombinant expression Effects on Catalysis (TREC showed that the heterologous expression effects on the catalytic properties of the TPL were more deleterious than the presence of an N-terminal tag extension.

  8. Highly antibacterial activity of N-doped TiO{sub 2} thin films coated on stainless steel brackets under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi [Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000 (China); Liu, Bin [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Cao, Baocheng, E-mail: caobch@lzu.edu.cn [Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000 (China)

    2014-08-01

    In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO{sub 2} thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.

  9. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    Science.gov (United States)

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  10. Electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine film modified electrode towards 6-mercaptopurine and 2-mercaptobenzimidazole

    OpenAIRE

    Fan, Jie-Ping; Zhang, Xiao-Min; Ying, Min

    2010-01-01

    The electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine (poly-CoTAPc) film modified on the glassy carbon electrode (GCE) towards 6-mercaptopurine (6MP) and 2-Mercaptobenzimidazole (MBI) was studied. Comparing with the case at the unmodified GCE, the poly-CoTAPc film decreased the overpotential of oxidation of 6MP (1.0 x 10-3 mol L-1) and MBI (1.0 x 10-3 mol L-1) by 335 and 189 mV, respectively, and increased the peak current by about 3 and 2 times, respectively, wh...

  11. Effect of flavones on rat brain and lung matrix metalloproteinase activity measured by film in-situ zymography.

    Science.gov (United States)

    Sasaki, K; Tateoka, N; Ando, H; Yoshizaki, F

    2005-04-01

    We have evaluated the inhibitory activity of flavone, nobiletin, and heptamethoxyflavone on matrix metalloproteinase (MMP) activity in the rat. MMP in 9000-g supernatant fraction of lung homogenate was activated by p-aminophenyl mercuric acetate (APMA), and gelatinolytic activity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Coomassie staining. This activity should be related to MMP-2 and/or MMP-9 and was confirmed by gelatin zymography. Fluorescent-conjugated collagen used as a substrate for collagenolytic activity wasinvestigated by SDS-PAGE also. The film in-situ zymography method was applied to rat brain and lung tissue in the same manner. Flavone and nobiletin inhibited the APMA-stimulated gelatinolytic activity and also the collagenolytic activity by more than 75%. The film in-situ zymography method indicated that these compounds might be potent inhibitors of MMP, suggesting the specific inhibition of localized MMP in brain hippocampus and/or lung terminal bronchioles, which may contribute to the prevention of some types of brain disease or cancer invasion and metastasis.

  12. High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt3Y

    DEFF Research Database (Denmark)

    Lindahl, Niklas; Zamburlini, Eleonora; Feng, Ligang

    2017-01-01

    Fuel cells have the potential to play an important role in sustainable energy systems, provided that catalysts with higher activity and stability are developed. In this work, it is found that thin alloy films of single-target cosputtered platinum-yttrium exhibit up to seven times higher specific...... additional chemical or thermal treatment. The films show an improvement in stability over the same materials in nanoparticulate form. Physical characterization shows that the thin films form a platinum overlayer supported on an underlying alloy. The high activity is likely related to compressive strain...... in that overlayer. As sputtering can be used to mass-produce fuel cell electrodes, the results open new possibilities for the preparation of platinum-rare earth metal alloy catalysts in commercial devices....

  13. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B. [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of); Pyun, Jae-Chul [Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul (Korea, Republic of); Hwang, Seong-Ju, E-mail: hwangsju@ewha.ac.kr [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of)

    2016-08-15

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize the loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.

  14. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  15. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  16. An intelligence ink for photocatalytic films.

    Science.gov (United States)

    Mills, Andrew; Wang, Jishun; Lee, Soo-Keun; Simonsen, Morten

    2005-06-07

    An ink is described which, when printed or coated onto a photocatalyst film, changes colour irreversibly and rapidly upon UV activation of the photocatalyst film and at a rate commensurate with its activity.

  17. Antioxidative activity, moisture retention, film formation, and viscosity stability of Auricularia fuscosuccinea, white strain water extract.

    Science.gov (United States)

    Liao, Wayne C; Hsueh, Chiu-Yen; Chan, Chin-Feng

    2014-01-01

    This study showed that both water extracts (WAF-W) and ethanol extracts (EAF-W) of Auricularia fuscosuccinea (Montagne) Farlow, white strain (AF-W) demonstrated significantly stronger antioxidative effects than did commercially available Tremella fuciformis sporocarp extracts (WSK; with the exception of EAF-W in terms of superoxide radical scavenging activity levels). The moisture retention capacity of WAF-W is as potent as that of sodium hyaluronate (SHA), but less than that of WSK. No corrugation or fissures were observed in WAF-W film; only the SHA and WSK films demonstrated such effects in low-moisture conditions. The WAF-W solution also exhibited stable viscosity at high temperatures, indicating that the WAF-W film was more stable compared with the SHA and WSK films. WAF-W induced no adverse effects when a hen's egg test was performed on the chorioallantoic membrane (CAM). This study demonstrated that WAF-W exhibits excellent potential as a topical material for skin moisturizing and anti-aging effects.

  18. Electrochemical preparation of photoelectrochemically active CuI thin films from room temperature ionic liquid

    International Nuclear Information System (INIS)

    Huang, Hsin-Yi; Chien, Da-Jean; Huang, Genin-Gary; Chen, Po-Yu

    2012-01-01

    Highlights: ► CuI film can be formed by anodization of Cu in ionic liquid containing iodide. ► Coordinating strength of anion in ionic liquid determine the formation of CuI. ► Photocurrent of the CuI film can be observed in aqueous solution and in ionic liquid. ► Cu layer coated on conductive substrates can be converted to CuI. - Abstract: Cuprous iodide (CuI) thin films with photoelectrochemical activity were prepared by anodizing copper wire or copper-electrodeposited tungsten wire in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF 6 RTIL) containing N-butyl-N-methylpyrrolidinium iodide (BMP-I). A copper coating was formed on the tungsten wire by potentiostatic electrodeposition in BMP-dicyanamide (BMP-DCA) RTIL containing copper chloride (CuCl). The CuI films formed using this method were compact, fine-grained and exhibited good adhesion. The characteristic diffraction signals of CuI were observed by powder X-ray diffractometry (XRD). X-ray photoelectron spectroscopy (XPS) also confirmed the formation of a CuI compound semiconductor. The CuI films demonstrated an apparent and stable photocurrent under white light illumination in aqueous solutions and in a RTIL. This method has enabled the electrochemical formation of CuI from a RTIL for the first time, and the first observation of a photocurrent produced from CuI in a RTIL. The coordinating strength of the anions of the RTIL is the key to the successful formation of the CuI thin film. If the coordinating strength of the anions of the RTIL is too strong, no CuI formation is observed.

  19. Fiscal 1993 report on technological results. R and D project for industrial science and technology (Assignment by NEDO/R and D of biochip); 1993 nendo bio soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    There were activities in the two fields of (1) general research study on biochips and (2) design, structure and evaluation technology of biochip prototypes, for the purpose of developing a new functional device by engineeringly elucidating biological information processing functions. In (1), a committee was operated, conducting survey of technological trend and survey/analysis on the state of progress of R and D. In (2), concerning a model of a biological high-order information processing function, a model was built capable of bringing out a three-dimensional object from a background, by expanding analysis to the case of vision by both eyes. As to an input/output conversion mechanism, results were obtained such as elucidation of fractal time-response characteristics of a monomolecular film heterozygous element and STM image observation of artificial protein molecule. In an information processing mechanism in a molecular structure, results were realized such as generation of asynchronous vibration with a polypyrrole film, high functional formation of a copper phthalocyanine evaporation film and improvement of a device forming process, characteristical improvement of non-linear photochromism and characteristical evaluation of an optical resonator, confirmation of basic motion of laminated element consisting of input/plasticity/ output layers, and manifestation of inhibitory responsiveness of a plasticity layer. (NEDO)

  20. An efficient visible and UV-light-activated B–N-codoped TiO2 photocatalytic film for solar depollution prepared via a green method

    International Nuclear Information System (INIS)

    Xu Qingchi; Zhang Yan; He Ziming; Loo, Say Chye Joachim; Tan, Timothy Thatt Yang

    2012-01-01

    This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO 2 porous film prepared via a “green” and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B–N-codoped TiO 2 film (p-3B–N–TiO 2 ) is 3 times higher than that of porous N-doped TiO 2 (p-N–TiO 2 ) film, while its UV photocatalytic activity is almost double that of p-N–TiO 2 film and comparable to that of porous TiO 2 . The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti 3+ recombination centers.

  1. Characterization of Barnyard Millet Starch Films Containing Borage Seed Oil

    Directory of Open Access Journals (Sweden)

    Thi Luyen Cao

    2017-11-01

    Full Text Available In this study, barnyard millet starch (BMS was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO. The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.

  2. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.

    Science.gov (United States)

    Zhang, Junying; Zhu, Hailing; Zheng, Shukai; Pan, Feng; Wang, Tianmin

    2009-10-01

    Coupling a narrow-band-gap semiconductor with TiO(2) is an effective method to produce photocatalysts that work under UV-vis light irradiation. Usually photocatalytic coupled-semiconductors exist mainly as powders, and photocatalytic activity is only favored when a small loading amount of narrow-band-gap semiconductor is used. Here we propose a heavy-loading photocatalyst configuration in which 51% of the surface of the TiO(2) film is covered by a Cu(2)O microgrid. The coupled system shows higher photocatalytic activity under solar light irradiation than TiO(2) and Cu(2)O films. This improved performance is due to the efficient charge transfer between the two phases and the similar opportunity each has to be exposed to irradiation and adsorbates.

  3. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  4. The Physico-Mechanical Properties and Release Kinetics of Eugenol in Chitosan-Alginate Polyelectrolyte Complex Films as Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Baiq Amelia Riyandari

    2018-02-01

    Full Text Available A study of eugenol release and its kinetics model from chitosan-alginate polyelectrolyte complex (PEC films has been conducted. Some factors that affected the eugenol release were also studied, including the composition of chitosan-alginate PEC and the concentration of eugenol. The chitosan-alginate-eugenol PEC films were synthesized at pH ± 4.0, then the PEC films were characterized using a Fourier-transform infrared spectroscopy (FTIR spectrophotometer. An investigation of the films’ properties was also conducted, including morphology analysis using a scanning electron microscope (SEM, differential thermal analysis (DTA / thermogravimetric analysis (TGA, mechanical strength, transparency testing, water absorption, and water vapor permeability. The release of eugenol was investigated through in vitro assay in ethanol 96% (v/v for four days, and the concentration of eugenol was measured using an ultraviolet-visible (UV-Vis spectrophotometer. The characterization of the films using FTIR showed that the formation of PEC occurred through ionic interaction between the amine groups (–NH3+of the chitosan and the carboxylate groups (–COO– of the alginate. The result showed that the composition of chitosan-alginate PEC and the concentration of eugenol can affect the release of eugenol from PEC films. A higher concentration of alginate and eugenol could increase the concentration of eugenol that was released from the films. The mechanism for the release of eugenol from chitosan-alginate PEC films followed the Korsmeyer-Peppas model with an n value of < 0.5, which means the release mechanism for eugenol was controlled by a Fickian diffusion process. The antioxidant activity assay of the films using the 2,2-diphenyl-1-picrylhydrazyl (DPPH method resulted in a high radical scavenging activity (RSA value of 55.99% in four days.

  5. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices.

    Science.gov (United States)

    Wei, Lu; Nitta, Naoki; Yushin, Gleb

    2013-08-27

    Continuous, smooth, visibly defect-free, lithographically patterned activated carbon films (ACFs) are prepared on the surface of silicon wafers. Depending on the synthesis conditions, porous ACFs can either remain attached to the initial substrate or be separated and transferred to another dense or porous substrate of interest. Tuning the activation conditions allows one to change the surface area and porosity of the produced carbon films. Here we utilize the developed thin ACF technology to produce prototypes of functional electrical double-layer capacitor devices. The synthesized thin carbon film electrodes demonstrated very high capacitance in excess of 510 F g(-1) (>390 F cm(-3)) at a slow cyclic voltammetry scan rate of 1 mV s(-1) and in excess of 325 F g(-1) (>250 F cm(-3)) in charge-discharge tests at an ultrahigh current density of 45,000 mA g(-1). Good stability was demonstrated after 10,000 galvanostatic charge-discharge cycles. The high values of the specific and volumetric capacitances of the selected ACF electrodes as well as the capacity retention at high current densities demonstrated great potential of the proposed technology for the fabrication of various on-chip devices, such as micro-electrochemical capacitors.

  6. Whey protein-based films incorporated with oregano essential oil

    Directory of Open Access Journals (Sweden)

    Sandra Prestes Lessa Fernandes Oliveira

    Full Text Available Abstract This study aimed to prepare whey protein-based films incorporated with oregano essential oil at different concentrations, and evaluate their properties and antimicrobial activity. Films were more flexible with increasing the concentration of oregano oil and water vapor permeability was higher in the films with oregano oil. Increasing the concentration of essential oil decreased the water solubility. The solubility of control film and film with 1.5% oregano oil was 20.2 and 14.0%, respectively. The addition of 1% of oregano oil improved the resistance of the films. The tensile strength for the control film was 66.0 MPa, while for the film with 1% of oregano oil was 108.7 MPa. Films containing 1.5% oregano oil showed higher antimicrobial activity. The zone of inhibition ranged from 0 to 1.7 cm. The results showed that the whey protein-based films incorporated with oregano essential oil has potential application as active packaging.

  7. A new educational film control for use in studies of active mind-body therapies: acceptability and feasibility.

    Science.gov (United States)

    Innes, Kim E; Selfe, Terry Kit; Alexander, Gina K; Taylor, Ann Gill

    2011-05-01

    The study objectives were to ascertain whether a novel educational film class is an acceptable and feasible comparison group for a randomized controlled trial regarding the effects of an active mind-body therapy on cardiovascular disease risk in postmenopausal women. Seventy-five (75) participants attended a baseline assessment visit and were randomly assigned to either a yoga group or an educational film (control) group. Both groups attended two 90-minute classes/week for 8 weeks, followed by a second assessment visit. Those not attending the second assessment were classified as dropouts. Over 60 films covering a range of topics relevant to the study population were evaluated; 15 were selected by consensus of at least 2 researchers and 1 layperson. Each film session followed the same format: an informal greeting period, viewing of the film, and a 15-minute postfilm discussion. To determine acceptability and feasibility of the film class, potential between-group differences in dropout and attendance were examined, and participant feedback given during class and on end-of-study questionnaires were evaluated. The relation between group assignment and dropout was not significant (χ(2) [1, N = 75] = 0.14, p = 0.71). One-way analysis of variance (ANOVA) indicated no significant between-group difference in number of classes attended for the yoga (X = 13.67 ± 3.10) versus film group (13.26 ± 1.97), F(1,63) = 0.39, p = 0.53). Participant feedback regarding the film program was positive. These findings support the feasibility and acceptability of this educational film control. Easy to standardize and tailor to a variety of populations, this film program may offer an attractive alternative to the more traditional educational control.

  8. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments

    Science.gov (United States)

    Tak, Young Jun; Du Ahn, Byung; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively. PMID:26902863

  9. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    Science.gov (United States)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  10. A model system to mimic environmentally active surface film roughness and hydrophobicity.

    Science.gov (United States)

    Grant, Jacob S; Shaw, Scott K

    2017-10-01

    This work presents the development and initial assessment of a laboratory platform to allow quantitative studies on model urban films. The platform consists of stearic acid and eicosane mixtures that are solution deposited from hexanes onto smooth, solid substrates. We show that this model has distinctive capabilities to better mimic a naturally occurring film's morphology and hydrophobicity, two important parameters that have not previously been incorporated into model film systems. The physical and chemical properties of the model films are assessed using a variety of analytical instruments. The film thickness and roughness are probed via atomic force microscopy while the film composition, wettability, and water uptake are analyzed by Fourier transform infrared spectroscopy, contact angle goniometry, and quartz crystal microbalance, respectively. Simulated environmental maturation is achieved by exposing the film to regulated amounts of UV/ozone. Ultimately, oxidation of the film is monitored by the analytical techniques mentioned above and proceeds as expected to produce a utile model film system. Including variable roughness and tunable surface coverage results in several key advantages over prior model systems, and will more accurately represent native urban film behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Photo- and Electrochromic Properties of Activated Reactive Evaporated MoO3 Thin Films Grown on Flexible Substrates

    Directory of Open Access Journals (Sweden)

    K. Hari Krishna

    2008-01-01

    Full Text Available The molybdenum trioxide (MoO3 thin films were grown onto ITO-coated flexible Kapton substrates using plasma assisted activated reactive evaporation technique. The film depositions were carried out at constant glow power and oxygen partial pressures of 8 W and 1×10−3 Torr, respectively. The influence of substrate temperature on the microstructural and optical properties was investigated. The MoO3 thin films prepared at a substrate temperature of 523 K were found to be composed of uniformly distributed nanosized grains with an orthorhombic structure of α-MoO3. These nanocrystalline MoO3 thin films exhibited higher optical transmittance of about 80% in the visible region with an evaluated optical band gap of 3.29 eV. With the insertion of 12.5 mC/cm2, the films exhibited an optical modulation of 40% in the visible region with coloration efficiency of 22 cm2/C at the wavelength of 550 nm. The MoO3 films deposited at 523 K demonstrated better photochromic properties and showed highest color center concentration for the irradiation time of 30 minutes at 100 mW/cm2.

  12. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    Science.gov (United States)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  13. Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film.

    Science.gov (United States)

    Bhatia, Sugandha; Bharti, Anoop

    2015-06-01

    The pleothera of micro organisms obtained from contaminated food cultured in a starch broth was effectively tested against antibacterial agents, i.e. nisin, lysozyme and chelating agent EDTA. A variety of combination treatments of these antimicrobial agents and their incorporation in Starch based active packaging film according to their permissibility standards was done. 4 variables of Nisin concentration (ranging from 0 to 750 IU/ml), 3 variables of lysozyme concentration (ranging from 0 to 500 IU/ml) and 3 variables of EDTA concentration from (0 to 20 μM) were chosen. Bacterial inhibition by combination of different levels of different factors without antimicrobial films was evaluated using a liquid incubation method. The samples were assayed for turbidity at interval of 2, 4 and 24 h to check effectiveness of combined effects of antimicrobial agents which proved a transitory bactericidal effect for short incubation times. Zone of Inhibition was observed in the antimicrobial films prepared by agar diffusion method. Statistical analysis of experimental data for their antimicrobial spectrum was carried out by multi regression analysis and ANOVA using Design-Expert software to plot the final equation in terms of coded factors as antimicrobial agents. The experimental data indicated that the model was highly significant. Results were also evaluated graphically using response surface showing interactions between two factors, keeping other factor fixed at values at the center of domain. Synergy was also determined among antibacterial agents using the fractional inhibitory concentration (FIC) index which was observed to be 0.56 supporting the hypothesis that nisin and EDTA function as partial synergistically. The presented work aimed to screen in quick fashion the combinatorial effect of three antimicrobial agents and evaluating their efficacy in anti microbial film development.

  14. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  15. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    International Nuclear Information System (INIS)

    Liu, Rui; Han, Lihao; Huang, Zhuangqun; Ferrer, Ivonne M.; Smets, Arno H.M.; Zeman, Miro; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe 3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  16. Thermally-activated internal friction peaks in amorphous films of Nb3Ge and Nb3Si

    International Nuclear Information System (INIS)

    Berry, B.S.; Pritchet, W.C.

    1978-01-01

    A large number of the thermally-activated internal friction peaks observed in crystalline solids are associated with the general mechanism of stress-induced directional short-range ordering. These peaks are an indirect but nevertheless valuable structural probe, and provide an important means of obtaining quantitative information on the kinetics of local atomic movements. This paper deals with what are thought to be the first-known examples of such peaks in the field of metallic glasses. The peaks have been observed in amorphous films of Nb 3 Ge and Nb 3 Si which are both superconductors with transition temperatures Tsub(c) near 3.6K. Although Tsub(c) is thus well below the record values of approximately equal to 23K reported for crystalline films of Nb 3 Ge, Tsuei has found the amorphous films to be much superior mechanically to their crystalline counterparts. Consequently, the amorphous films have technological interest as an easily-handled source from which the brittle high-Tsub(c) phase may be obtained by a final in-situ anneal. (author)

  17. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol).

    Science.gov (United States)

    Sekhavat Pour, Zahra; Makvandi, Pooyan; Ghaemy, Mousa

    2015-09-01

    There has been a growing interest in developing antibacterial polymeric materials. In the present work, novel antibacterial cross-linked blend films were prepared based on polyvinyl alcohol (PVA) and quaternary ammonium starch (ST-GTMAC) using citric acid (CA) as plasticizer and glutaraldehyde (GA) as cross-linker. The ST-GTMAC was successfully synthesized from reaction between water-soluble oxidized starch and glycidyltrimethylammonium chloride (GTMAC). The effect of ST-GTMAC, CA and GA contents on the swelling, solubility, mechanical and thermal properties of the films was investigated. It was found that incorporation of ST-GTMAC reduced UV-transmittance and provided antibacterial properties, increasing GA content increased tensile strength and decreased solubility and swelling degree of the films, while CA acted as plasticizer when its concentration was above 10 wt%. The results showed that ST-GTMAC/PVA/CA/GA film has fair antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. These results suggest that the prepared film might be used as potential antibacterial material in medical and packaging applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    Science.gov (United States)

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  19. Enhanced electrochemomechanical activity of polyaniline films towards high pH region: contribution of Donnan effect

    International Nuclear Information System (INIS)

    Takashima, Wataru; Nakashima, Megumi; Pandey, Shyam S.; Kaneto, Keiichi

    2004-01-01

    Enhancement of electrochemomechanical deformation (ECMD) and expansion of ECMD activity towards high pH have been simultaneously achieved in the electrolytes equilibrated with HCl and NaCl solutions for polyaniline (PANI) film. The maximum deformation has been reached to 6.7% in the mixture of 3 M HCl and 3 M NaCl equilibrated at pH 3 at ambient temperature. By comparing the fact that the ECMD magnitude is 3.2% in 1 M HCl equilibrated at pH 0.5, the simple judicious selection of electrolyte condition leads to the enhancement of ECMD magnitude by around two times. The concentration dependence on both electrical conductivity and absorption spectra elucidates the increase of protonation ratio as a function of electrolyte concentration. The results indicate that the high concentration retains both the electrochemical and ECMD activities in PANI film towards high pH region, which is the enhanced functionality of PANI supported by Donnan effect

  20. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    Science.gov (United States)

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  1. Antibacterial activity of novel peptide derived from Cry1Ab16 toxin and development of LbL films for foodborne pathogens control

    International Nuclear Information System (INIS)

    Plácido, Alexandra; Bragança, Idalina; Marani, Mariela; Rodrigues de Araujo, Alyne; Vasconcelos, Andreanne Gomes; Batziou, Krystallenia; Domingues, Valentina F.

    2017-01-01

    Escherichia coli is one of the most common etiological agents of diarrhea in developing countries. The appearance of resistant E. coli prevents treatment of these infections. Biotechnological products incorporating antimicrobial peptides are currently being considered in applications to prevent intestinal infections by these bacteria. The aim of this study was to evaluate the antibacterial activity of the peptide PcL342-354C, which is derived from the toxin Cry1Ab16 from Bacillus thuringiensis, against E. coli strains. We also report the preparation, characterization and evaluation of the antibacterial activity of LbL films containing PcL342-354C. The results showed that the PcL342-354C peptide inhibited the growth of different strains of E. coli with minimal inhibitory concentration ranging from 15.62–31.25 μg/mL and minimal bactericidal concentration was 250 μg/mL, indicating a potential antibacterial activity. The morphology of an ITO/Cashew gum/PcL342-354C film was analysed using atomic force microscopy which showed an increase of roughness due to the increase in the number of layers. The LbL films showed significant antibacterial activity against E. coli NCTC 9001 in both conditions tested (10 and 20 bilayers). Our results indicate that the peptide exhibits an antibacterial potential that can be tapped to develop biomaterials with antibacterial activity for use against foodborne pathogens. - Highlights: • The PcL342–354C peptide inhibited the growth of E. coli. • The peptide can be simply incorporated into edible films combined with cashew gum. • LbL films incorporating the peptide have antibacterial activity against E. coli. • The PcL342–354C exhibits an antibacterial potential that can be tapped to develop biomaterials.

  2. Antibacterial activity of novel peptide derived from Cry1Ab16 toxin and development of LbL films for foodborne pathogens control

    Energy Technology Data Exchange (ETDEWEB)

    Plácido, Alexandra, E-mail: alexandra.placido@gmail.com [REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, ISEP, Instituto Politécnico do Porto, Porto (Portugal); Bragança, Idalina, E-mail: linab_20@hotmail.com [REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, ISEP, Instituto Politécnico do Porto, Porto (Portugal); Marani, Mariela, E-mail: mmarani@cenpat-conicet.gob.ar [IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut (Argentina); Rodrigues de Araujo, Alyne, E-mail: alyne_biomed@hotmail.com [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba, PI (Brazil); Vasconcelos, Andreanne Gomes, E-mail: andreannegv@gmail.com [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba, PI (Brazil); Batziou, Krystallenia, E-mail: batkrysta@gmail.com [REQUIMTE/UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto (Portugal); Domingues, Valentina F., E-mail: vfd@isep.ipp.pt [REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, ISEP, Instituto Politécnico do Porto, Porto (Portugal); and others

    2017-06-01

    Escherichia coli is one of the most common etiological agents of diarrhea in developing countries. The appearance of resistant E. coli prevents treatment of these infections. Biotechnological products incorporating antimicrobial peptides are currently being considered in applications to prevent intestinal infections by these bacteria. The aim of this study was to evaluate the antibacterial activity of the peptide PcL342-354C, which is derived from the toxin Cry1Ab16 from Bacillus thuringiensis, against E. coli strains. We also report the preparation, characterization and evaluation of the antibacterial activity of LbL films containing PcL342-354C. The results showed that the PcL342-354C peptide inhibited the growth of different strains of E. coli with minimal inhibitory concentration ranging from 15.62–31.25 μg/mL and minimal bactericidal concentration was 250 μg/mL, indicating a potential antibacterial activity. The morphology of an ITO/Cashew gum/PcL342-354C film was analysed using atomic force microscopy which showed an increase of roughness due to the increase in the number of layers. The LbL films showed significant antibacterial activity against E. coli NCTC 9001 in both conditions tested (10 and 20 bilayers). Our results indicate that the peptide exhibits an antibacterial potential that can be tapped to develop biomaterials with antibacterial activity for use against foodborne pathogens. - Highlights: • The PcL342–354C peptide inhibited the growth of E. coli. • The peptide can be simply incorporated into edible films combined with cashew gum. • LbL films incorporating the peptide have antibacterial activity against E. coli. • The PcL342–354C exhibits an antibacterial potential that can be tapped to develop biomaterials.

  3. Photocatalytic activity and stability of TiO{sub 2} and WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Carcel, Radu Adrian; Andronic, Luminita, E-mail: andronic-luminita@unitbv.ro; Duta, Anca, E-mail: a.duta@unitbv.ro

    2012-08-15

    Photocatalysis represents a viable option for complete degrading the dye molecules resulted in the textile industry, up to products that do not represent environmental threats. The photocatalytic degradation of methyl orange has been investigated using TiO{sub 2}, WO{sub 3} and mixed thin films. The photodegradation efficiency is examined in correlation with the experimental parameters (irradiation time, H{sub 2}O{sub 2} addition and stability), along with the morphology and crystallinity data. The H{sub 2}O{sub 2} addition increases the photodegradation efficiency by providing additional hydroxyl groups and further reducing the recombination of the electron-hole pairs by reacting with the electrons at the catalyst interface. To test the stability of the photocatalytic films in long time running processes, batch series of experiments were conducted using contact periods up to 9 days. The results show that the thin films maintained their photocatalytic properties confirming their stability and viability for up-scaling. Highlights: Black-Right-Pointing-Pointer TiO{sub 2}, WO{sub 3} and mixed thin films Black-Right-Pointing-Pointer We tested the photocatalytic activity and photocatalyst stability over a period up to 9 days of continuous irradiation. Black-Right-Pointing-Pointer The influence of medium pH and oxidizing agent (H{sub 2}O{sub 2}) was analyzed.

  4. An efficient visible and UV-light-activated B-N-codoped TiO{sub 2} photocatalytic film for solar depollution prepared via a green method

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qingchi; Zhang Yan; He Ziming [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore); Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore); Tan, Timothy Thatt Yang, E-mail: tytan@ntu.edu.sg [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore)

    2012-08-15

    This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO{sub 2} porous film prepared via a 'green' and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B-N-codoped TiO{sub 2} film (p-3B-N-TiO{sub 2}) is 3 times higher than that of porous N-doped TiO{sub 2} (p-N-TiO{sub 2}) film, while its UV photocatalytic activity is almost double that of p-N-TiO{sub 2} film and comparable to that of porous TiO{sub 2}. The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti{sup 3+} recombination centers.

  5. Studies of thin films of Ti- Zr -V as non-evaporable getter films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Gupta, Nidhi; Jagannath,; Sharma, R. K.; Gadkari, S. C.; Muthe, K. P.; Mukundhan, R.; Gupta, S. K.

    2013-01-01

    Non-Evaporable Getter (NEG) films of the Ti-Zr-V prepared on stainless steel substrates by Radio Frequency sputtering. To observe its getter behavior at the lowest activation temperature, the sample is heated continuously at different temperatures (100°C, 150°C, 200°C and 250°C) for 2 hours. The changes of the surface chemical composition at different temperaturesare analyzed by using XPS and SEM (Scanning Electron Microscopy) techniques. The volume elemental composition of the film has been measured by energy dispersive X-ray spectroscopy (EDX). The in-situ XPS measurements of the activated getter films show the disappearance of the superficial oxide layer through the variation in the oxygen stoichiometry during thermal activation. Results of these studies show that the deposited films of Ti-Zr-V could be used as NEG to produce extreme high vacuum.

  6. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    Science.gov (United States)

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  7. Stress evaluation of chemical vapor deposited silicon dioxide films

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Itsumi, Manabu

    2002-01-01

    Film stress of chemical vapor deposited silicon dioxide films was evaluated. All of the deposited films show tensile intrinsic stresses. Oxygen partial pressure dependence of the intrinsic stress is very close to that of deposition rate. The intrinsic stress increases with increasing the deposition rate under the same deposition temperature, and decreases with increasing substrate temperature. Electron spin resonance (ESR) active defects in the films were observed when the films were deposited at 380 deg. C and 450 deg. C. The ESR signal intensity decreases drastically with increasing deposition temperature. The intrinsic stress correlates very closely to the intensity of the ESR-active defects, that is, the films with larger intrinsic stress have larger ESR-active defects. It is considered that the intrinsic stress was generated because the voids caused by local bond disorder were formed during random network formation among the SiO 4 tetrahedra. This local bond disorder also causes the ESR-active defects

  8. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  9. Electrosynthesis and characterization of ZnO nanoparticles as inorganic component in organic thin-film transistor active layers

    International Nuclear Information System (INIS)

    Picca, Rosaria Anna; Sportelli, Maria Chiara; Hötger, Diana; Manoli, Kyriaki; Kranz, Christine; Mizaikoff, Boris; Torsi, Luisa; Cioffi, Nicola

    2015-01-01

    Highlights: • PSS-capped ZnO NPs were synthesized via a green electrochemical-thermal method • The influence of electrochemical conditions and temperature was studied • Spectroscopic data show that PSS functionalities are retained in the annealed NPs • Nanostructured ZnO improved the performance of P3HT-based thin film transistors - Abstract: ZnO nanoparticles have been prepared via a green electrochemical synthesis method in the presence of a polymeric anionic stabilizer (poly-sodium-4-styrenesulfonate, PSS), and then applied as inorganic component in poly-3-hexyl-thiophene thin-film transistor active layers. Different parameters (i.e. current density, electrolytic media, PSS concentration, and temperature) influencing nanoparticle synthesis have been studied. The resulting nanomaterials have been investigated by transmission electron microscopy (TEM) and spectroscopic techniques (UV-Vis, infrared, and x-ray photoelectron spectroscopies), assessing the most suitable conditions for the synthesis and thermal annealing of nanostructured ZnO. The proposed ZnO nanoparticles have been successfully coupled with a poly-3-hexyl-thiophene thin-film resulting in thin-film transistors with improved performance.

  10. Enhanced electrocatalytic activity of reduced graphene oxide-Os nanoparticle hybrid films obtained at a liquid/liquid interface

    Science.gov (United States)

    Bramhaiah, K.; Pandey, Indu; Singh, Vidya N.; Kavitha, C.; John, Neena S.

    2018-03-01

    Hybrid films of reduced graphene oxide-osmium nanoparticles (rGO-Os NPs) synthesized at a liquid/liquid interface are explored for their electrocatalytic activity towards the oxidation of rhodamine B (RhB), a popular colourant found in textile industry effluents and a non-permitted food colour. The free-standing nature of the films enables them to be lifted directly on to electrodes without the aid of any binders. The films consist of aggregates of ultra-small Os NPs interspersed with rGO layers. The hybrid film exhibits enhanced RhB oxidation when compared to its constituents arising from the synergic effect between rGO and Os NPs, Os contributing to electrocatalysis and rGO contributing to high surface area and conductance as well as stabilization of Os nanoparticles. The electrochemical sensor based on rGO-Os NP hybrid film on pencil graphite electrode shows a remarkable performance for the quantitative detection of RhB with a linear variation in a wide range of concentrations, 4-1300 ppb (8.3 nM-2.71 μM). The modified electrode presents good stability over more than 6 months, reproducibility and anti-interference capability. The use of developed sensor for adequate detection of RhB in real samples such as food samples and pen markers is also demonstrated.

  11. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging.

    Science.gov (United States)

    Iseppi, Ramona; Pilati, Francesco; Marini, Michele; Toselli, Maurizio; de Niederhäusern, Simona; Guerrieri, Elisa; Messi, Patrizia; Sabia, Carla; Manicardi, Giuliano; Anacarso, Immacolata; Bondi, Moreno

    2008-04-30

    In this study, Enterocin 416K1, a bacteriocin produced by Enterococcus casseliflavus IM 416K1, was entrapped in an organic-inorganic hybrid coating applied to a LDPE (low-density polyethylene) film for its potential use in the active food packaging field. The antibacterial activity of the coated film was evaluated against Listeria monocytogenes NCTC 10888 by qualitative modified agar diffusion assay, quantitative determination in listeria saline solution suspension and direct contact with artificially contaminated food samples (frankfurters and fresh cheeses) stored at room and refrigeration temperatures. All investigations demonstrated that enterocin-activated coatings have a good anti-listeria activity. Qualitative tests showed a clear zone of inhibition in the indicator lawn in contact with and around the coated film. During the quantitative antibacterial evaluation the L. monocytogenes viable counts decreased to 1.5 log units compared to the control. The inhibitory capability was confirmed also in food-contact assays. In all food samples packed with coated films we observed a significant decrease in L. monocytogenes viable counts in the first 24 h compared to the control. This difference was generally maintained up to the seventh day and then decreased, with the exception of the cheese samples stored at refrigeration temperature.

  12. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  13. "Crash": Using a Popular Film as an Experiential Learning Activity in a Multicultural Counseling Course

    Science.gov (United States)

    Villalba, Jose A.; Redmond, Rachelle E.

    2008-01-01

    "Crash" (P. Haggis, 2004) depicts the intersection of race, ethnicity, religion, and social class in a culturally and politically charged environment. The result is a film that places the viewer in situations that are void of simple right and wrong solutions. The authors describe an experiential learning activity that is based on using "Crash" to…

  14. Avant-Garde Film: Cinema as Discourse.

    Science.gov (United States)

    MacDonald, Scott

    1988-01-01

    Considers the state of the avant-garde film movement. Contends that for those who are convinced of the potential importance of the broadest articulation of cinema, it is necessary to demonstrate the excitement and value of using avant-garde films in a wide range of academic contexts and as one of academic film activity's essential components. (MS)

  15. Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances

    DEFF Research Database (Denmark)

    Wu, Zhong Shuai; Yang, Sheng; Zhang, Lili

    2015-01-01

    Micro-supercapacitors (MSCs) hold great promise as highly competitive miniaturized power sources satisfying the increased demand in microelectronics; however, simultaneously achieving high areal and volumetric capacitances is still a great challenge. Here we demonstrated the designed construction...... of binder-free, electrically conductive, nanoporous activated graphene (AG) compact films for high-performance MSCs. The binder-free AG films are fabricated by alternating deposition of electrochemically exfoliated graphene (EG) and nanoporous AG with a high specific surface area of 2920 m2/g, and then dry...

  16. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    Science.gov (United States)

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract.

    Science.gov (United States)

    Kalaycıoğlu, Zeynep; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; Erim, F Bedia

    2017-08-01

    In this study, the effects of turmeric extract incorporation on the antibacterial and physical properties of the chitosan films were evaluated. Turmeric containing chitosan-based film was produced with casting procedure and cross-linked with sodium sulfate. Mechanical, optical, thermal properties, and water vapor permeability of the films were studied. The addition of turmeric to chitosan film significantly increased the tensile strength of the film and improved the ultraviolet-visible light barrier of the film. Infrared spectroscopy analysis suggested an interaction between the phenolic compounds of the extract and amin group of chitosan. Antimicrobial activity of the chitosan films was studied against Salmonella and Staphylococcus aureus by plate count agar technique and a better antimicrobial activity was observed with turmeric incorporation. Turmeric incorporated chitosan films with enhanced antimicrobial activity and film stiffness can be suggested as a promising application for food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Self-assembled Bi{sub 2}MoO{sub 6}/TiO{sub 2} nanofiber heterojunction film with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Zhang, Tianxi [School of Physics, Northwest University, Xi’an 710069 (China); Pan, Chao; Pu, Chenchen; Hu, Yang [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun [School of Physics, Northwest University, Xi’an 710069 (China); Liu, Enzhou, E-mail: liuenzhou@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China)

    2017-01-01

    Highlights: • Self-assembled Bi{sub 2}MoO{sub 6}/TiO{sub 2} nanofiber film was synthesized. • TiO{sub 2} nanofiber film exhibits excellent visible light scattering property. • The scattering light from TiO{sub 2} overlaps with the absorption light of Bi{sub 2}MoO{sub 6}. • Bi{sub 2}MoO{sub 6}/TiO{sub 2} heterojunction photocatalysts show higher photocatalytic activity. - Abstract: TiO{sub 2} nanofiber film (TiO{sub 2} NFF) was successfully fabricated by an ethylene glycol-assisted hydrothermal method, and then self-assembled flake-like Bi{sub 2}MoO{sub 6} was grown on the surface of TiO{sub 2} nanofiber under alcohol thermal condition. The investigations indicate that the nanofiber structure of TiO{sub 2} films exhibits excellent visible light scattering property, the scattering light overlaps with the absorption band of Bi{sub 2}MoO{sub 6}, which can enhance the utility of incident light. The prepared Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites show obviously enhanced photocatalytic activity for methylene blue (MB) degradation compared with pure TiO{sub 2} nanofiber under visible light irradiation (λ > 420 nm). The enhanced photocatalytic activity is primarily attributed to the synergistic effect of visible light absorption and effective electron-hole separation at the interfaces of the two semiconductors, which is confirmed by photoluminescence (PL) and electrochemical tests.

  19. Phase Change Activation and Characterization of Spray-Deposited Poly(vinylidene) Fluoride Piezoelectric Thin Films

    Science.gov (United States)

    Riosbaas, Miranda Tiffany

    Structural safety and integrity continues to be an issue of utmost concern in our world today. Existing infrastructures in civil, commercial, and military applications are beginning to see issues associated with age and environmental conditions. In addition, new materials are being put to service that are not yet fully characterized and understood when it comes to long term behavior. In order to assess the structural health of both old and new materials, it is necessary to implement a technique for monitoring wear and tear. Current methods that are being used today typically depend on visual inspection techniques or handheld instruments. These methods are not always ideal for large structures as they become very tedious leading to a substantial amount of both time and money spent. More recently, composite materials have been introduced into applications that can benefit from high strength-to-weight ratio materials. However, the use of more complex materials (such as composites) leads to a high demand of structural health monitoring techniques, since the damage is often internal and not visible to the naked eye. The work performed in this thesis examines the methods that can be used for phase change activation and characterization of sprayable poly(vinylidene) fluoride (PVDF) thin films in order to exploit their piezoelectric characteristics for sensing applications. PVDF is widely accepted to exist in four phases: alpha, beta, gamma, and delta. Alpha phase PVDF is produced directly from the melt and exhibits no piezoelectric properties. The activation or transition from α phase to some combination of beta and/or gamma phase PVDF leads to a polarizable piezoelectric thin film to be used in sensing applications. The work herein presents the methods used to activate phase change in PVDF, such as mechanical stretching, annealing, and chemical composition, to be able to implement PVDF as an impact detection sensor. The results and analysis provided in this thesis will

  20. Correlating activity incorporation with properties of oxide films formed on material samples exposed to BWR and PWR coolants in Finnish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P. [VTT Industrial Systems, Espoo (Finland); Buddas, T.; Halin, M.; Kvarnstroem, R.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant, Loviisa (Finland); Helin, M.; Muttilainen, E.; Reinvall, A. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    2002-07-01

    The extent of activity incorporation on primary circuit surfaces in nuclear power plants is connected to the chemical composition of the coolant, to the corrosion behaviour of the material surfaces and to the structure and properties of oxide films formed on circuit surfaces due to corrosion. Possible changes in operational conditions may induce changes in the structure of the oxide films and thus in the rate of activity incorporation. To predict these changes, experimental correlations between water chemistry, oxide films and activity incorporation, as well as mechanistic understanding of the related phenomena need to be established. In order to do this, flow-through cells with material samples and facilities for high-temperature water chemistry monitoring have been installed at Olkiluoto unit 1 (BWR) and Loviisa unit 1 (PWR) in spring 2000. The cells are being used for two major purposes: To observe the changes in the structure and activity levels of oxide films formed on material samples exposed to the primary coolant. Correlating these observations with the abundant chemical and radiochemical data on coolant composition, dose rates etc. collected routinely by the plant, as well as with high-temperature water chemistry monitoring data such as the corrosion potentials of relevant material samples, the redox potential and the high-temperature conductivity of the primary coolant. We describe in this paper the scope of the work, give examples of the observations made and summarize the results on oxide films that have been obtained during one full fuel cycle at both plants. (authors)

  1. Ethanolic extract of propolis for biodegradable films packaging enhanced with chitosan

    Science.gov (United States)

    Ismail, M. I.; Roslan, A.; Saari, N. S.; Hashim, K. H.; Kalamullah, M. R.

    2017-09-01

    The use of industrial organic waste which are chitosan and propolis as materials for the development of biodegradable and active packaging is economical and environmentally appealing. Processing of propolis-chitosan film can minimize waste, and produce low-cost added value biopolymer packaging films for targeted applications. This aims of this research is to develop and characterize a biodegradable films by incorporating chitosan with propolis extract to enhance the functional properties for potential use as active food packaging. The film's moisture content, solubility and antimicrobial activity increase due to increasing volume of propolis extract which are 0 ml, 1.2 ml and 2.4 ml of propolis extract. Propolis-chitosan film with 2.4 ml of propolis extract is more soluble in water compared to propolis-chitosan film with 0 ml of propolis extract and 1.2 ml of propolis extract. The higher the volume of the propolis extract used, the higher the solubility of film in the water. The moisture content also will increase when higher volume of propolis extract used. Characterization of moisture content, solubility and antimicrobial activities revealed the benefits of adding propolis extract into chitosan films and the potential of using the developed film as active food packaging.

  2. Role of catechins in the antioxidant capacity of an active film containing green tea, green coffee, and grapefruit extracts.

    Science.gov (United States)

    Colon, M; Nerin, C

    2012-10-03

    The oxygen radical absorbance capacity (ORAC) method was used to characterize the antioxidant capacity of natural extracts of green tea, green coffee, and grapefruit. These natural extracts were incorporated into a plastic film layer, which was subsequently subjected to a free radical gas stream in order to determine the antioxidant capacity directly in the active film. The green tea extract (GTE) afforded the strongest antioxidant activity. To identify the active compounds in the extract, concentration of the diverse catechins in samples were determined by HPLC-UV analysis. The results showed that the content of catechins in the GTE is around 77% (w/w), the major components being (-)-epigallocatechin gallate, (-)-epicatechin gallate, and (-)-epicatechin. A variation in the concentration profile of catechins was detected during the oxidation process. The chromatographic study demonstrated that (-)-gallocatechin, (-)- epigallocatechin, (+)-catechin, and (-)-catechin gallate exhibited the most radical scavenging.

  3. Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor

    International Nuclear Information System (INIS)

    Cui, Lili; Pu, Tao; Liu, Ying; He, Xingquan

    2013-01-01

    Graphical abstract: A novel nitrite sensor was prepared by using LBL technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The nitrite sensor shows super stability for consecutive CV testing and rather low detection limit. -- Abstract: In this paper, a novel graphene/cobalt phthalocyanine composite film was prepared by layer-by-layer (LBL) technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The surface morphology of graphene/cobalt phthalocyanine composite film was characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). It is found that graphene/cobalt phthalocyanine composite film modified GCE exhibits good catalytic activity toward the oxidation of nitrite. The oxidation current barely decreases in consecutive CV test. Furthermore, the modified GCE shows long-term stability after 70 days. The super good stability can be attributed to the immobilization and dispersion of electroactive cobalt phthalocyanine by graphene, and using A-GCE as substrate which can enhance the interaction force between GCE and electroactive cobalt phthalocyanine. The nitrite sensor shows rather low detection limit of 0.084 μM at a signal-to-noise ratio = 3 (S/N = 3)

  4. Use of the piezoelectric film for the determination of cracks and defects - the passive and active electric potential CT method

    International Nuclear Information System (INIS)

    Kubo, S; Sakagami, T; Suzuki, T; Maeda, T; Nakatani, K

    2008-01-01

    The passive and active electric potential CT method was proposed by using piezoelectric film for identification of cracks and defects. This method is based on the principle of mutual conversion between mechanical strains and electric potential of piezoelectric material. A smart-layer was constructed using the piezoelectric film, and attached on a structure with a defect. When the structure was subjected to a mechanical load, the electric potential distribution appeared passively on the piezoelectric film due to the direct piezoelectric effect. The defect can be identified from the distribution with the help of inverse analysis. It was found that the crack could be identified reasonably, although the defect depth was not well estimated for the defects located far from the layer. When the electric signal was input to the smart-layer, acoustic wave was actively emitted from the layer due to the inverse piezoelectric effect, and a reflected wave was received on the layer. It was found that the depth of the defect could be estimated well. The simultaneous use of the passive method and the active method is promising for the identification of the defect.

  5. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  6. THE EFFORT OF IMPROVING THE ACTIVITY AND ABILITY OF STUDENTS IN WRITING REVIEW TEXT THROUGH FILM AT SMA NEGERI 1 PUNGGUR CENTRAL LAMPUNG

    Directory of Open Access Journals (Sweden)

    Peni Asih

    2017-05-01

    Full Text Available The objectives of this classroom action research are to improve the students’ activity and ability in writing review text at class XII IPA 1 semester 2 of SMA N 1 Punggur. This research uses a film as a medium which is aimed to make the students of XII IPA 1 easy in writing a review text. The researcher uses two cycles in her research which consists of 2 meetings in each cycle. Cycle I   uses a short story in its meeting and cycle II uses a film in its meeting. The result shows that the average score of students who gained passing grade (74 or above  in cycle I is 56,67 %  and in cycle II is 76,6 %  while  there is  43,33 % of  students who get under  74  in cycle I and 23,34%   in cycle II. It means that their average score in writing a review text using film has increased. The students have made a good progress after being given treatment by using film as medium of instruction. This is because film can make the students active during teaching learning process. The result of this study implies that teaching learning process using film improve the students ‘ability in writing a review text. Therefore, this media is recommended to be used in the process of teaching learning English especially review text.  Keywords : Film, Review Text,  Writing,

  7. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    Science.gov (United States)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  8. Effect of post-treatment on photocatalytic oxidation activity of (111 oriented NaNbO3 film

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2015-10-01

    Full Text Available We investigate the impact of post-treatment on photocatalytic oxidation activity of (111 oriented NaNbO3 film prepared by pulse laser deposition. Some impurities such as Na2Nb4O11 and bigger particles appear in the treated samples. The activity of rhodamine B degradation with N2 purge increases with the amount of ⋅OH, the sample treated under H2/Ar(7% being the highest activity, followed by under air and untreated one; the opposite trend is observed when the system was without N2 purge.

  9. Effect of active layer deposition temperature on the performance of sputtered amorphous In—Ga—Zn—O thin film transistors

    International Nuclear Information System (INIS)

    Wu Jie; Shi Junfei; Dong Chengyuan; Chen Yuting; Zhou Daxiang; Hu Zhe; Zhan Runze; Zou Zhongfei

    2014-01-01

    The effect of active layer deposition temperature on the electrical performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) is investigated. With increasing annealing temperature, TFT performance is firstly improved and then degraded generally. Here TFTs with best performance defined as ''optimized-annealed'' are selected to study the effect of active layer deposition temperature. The field effect mobility reaches maximum at deposition temperature of 150 °C while the room-temperature fabricated device shows the best subthreshold swing and off-current. From Hall measurement results, the carrier concentration is much higher for intentional heated a-IGZO films, which may account for the high off-current in the corresponding TFT devices. XPS characterization results also reveal that deposition temperature affects the atomic ratio and O1s spectra apparently. Importantly, the variation of field effect mobility of a-IGZO TFTs with deposition temperature does not coincide with the tendencies in Hall mobility of a-IGZO thin films. Based on the further analysis of the experimental results on a-IGZO thin films and the corresponding TFT devices, the trap states at front channel interface rather than IGZO bulk layer properties may be mainly responsible for the variations of field effect mobility and subthreshold swing with IGZO deposition temperature. (semiconductor devices)

  10. Fabrication and Antibacterial Effects of Polycarbonate/Leaf Extract Based Thin Films

    Directory of Open Access Journals (Sweden)

    R. Mahendran

    2016-01-01

    Full Text Available We have reported the preparation and antibacterial activities of leaf extract incorporated polycarbonate thin films to improve the antibacterial characteristics of host polycarbonates (PCs. Crude extracts of Azadirachta indica, Psidium guajava, Acalypha indica, Andrographis paniculata, and Ocimum sanctum were prepared by maceration using Dimethylformamide as solvent. The leaf extracts (LE were incorporated into the PC matrix by solution blending method, and the thin films were fabricated by Thermally Induced Phase Separation (TIPS technique. The antibacterial activities of the as-prepared films were evaluated against E. coli and S. aureus by disk diffusion method. The inhibitory effects of the PC/LE films are higher for S. aureus than the E. coli, but pristine PC film did not exhibit any remarkable antibacterial characteristics. Further, the model fruit (Prunus studies revealed that the PC/LE films retained the freshness of the fruits for more than 11 days. This study demonstrates that the PC/LE films have excellent antibacterial activities; thus, the films could be promising candidate for active antibacterial packaging applications.

  11. Meteor Film Recording with Digital Film Cameras with large CMOS Sensors

    Science.gov (United States)

    Slansky, P. C.

    2016-12-01

    In this article the author combines his professional know-how about cameras for film and television production with his amateur astronomy activities. Professional digital film cameras with high sensitivity are still quite rare in astronomy. One reason for this may be their costs of up to 20 000 and more (camera body only). In the interim, however,consumer photo cameras with film mode and very high sensitivity have come to the market for about 2 000 EUR. In addition, ultra-high sensitive professional film cameras, that are very interesting for meteor observation, have been introduced to the market. The particular benefits of digital film cameras with large CMOS sensors, including photo cameras with film recording function, for meteor recording are presented by three examples: a 2014 Camelopardalid, shot with a Canon EOS C 300, an exploding 2014 Aurigid, shot with a Sony alpha7S, and the 2016 Perseids, shot with a Canon ME20F-SH. All three cameras use large CMOS sensors; "large" meaning Super-35 mm, the classic 35 mm film format (24x13.5 mm, similar to APS-C size), or full format (36x24 mm), the classic 135 photo camera format. Comparisons are made to the widely used cameras with small CCD sensors, such as Mintron or Watec; "small" meaning 12" (6.4x4.8 mm) or less. Additionally, special photographic image processing of meteor film recordings is discussed.

  12. Fabrication and characterization of 6,13-bis(triisopropylsilylethynyl)-pentacene active semiconductor thin films prepared by flow-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Khairul Anuar; Rusnan, Fara Naila; Seria, Dzulfahmi Mohd Husin; Saad, Ismail; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia); Katsuhiro, Uesugi; Hisashi, Fukuda [Division of Engineering for Composite Functions, Muroran Institute of Technology 27-1 Mizumoto, Muroran 050-8585 Hokkaido (Japan)

    2015-08-28

    Investigation on the physical characterization and comparison of organic thin film based on a soluble 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene is reported. Oriented thin-films of pentacene have been successfully deposited by flow-coating method, in which the chloroform solution is sandwiched between a transparent substrate and a slide glass, followed by slow-drawing of the substrate with respect to the slide glass. Molecular orientation of flow-coated TIPS-pentacene is comparable to that of the thermal-evaporated pentacene thin film by the X-ray diffraction (XRD) results. XRD results showed that the morphology of flow-coated soluble pentacene is similar to that of the thermal-evaporated pentacene thin films in series of (00l) diffraction peaks where the (001) diffraction peaks are strongest in the nominally out-of-plane intensity and interplanar spacing located at approximately 2θ = 5.33° (d-spacing, d{sub 001} = 16 Å). Following that, ITO/p-TIPS-pentacene/n-ZnO/Au vertical diode was fabricated. The diode exhibited almost linear characteristics at low voltage with nonlinear characteristics at higher voltage which similar to a pn junction behavior. The results indicated that the TIPS-pentacene semiconductor active thin films can be used as a hole injection layer for fabrication of a vertical organic transistor.

  13. Characterization of Starch Edible Films with Different Essential Oils Addition

    Directory of Open Access Journals (Sweden)

    Šuput Danijela

    2016-12-01

    Full Text Available This study investigated properties of starch-based edible films with oregano and black cumin essential oil addition. Essential oils addition positively affected film swelling (decreased due to essential oil addition, mechanical properties (tensile strength decreased while elongation at break increased, and water vapor barrier properties (decreased along with essential oils addition. Control film did not have any biological activity, which proves the need for essential oils addition in order to obtain active packaging. Oregano oil was more effective in terms of biological activity. Endothermal peak, above 200°C, represents total thermal degradation of edible films. Diffraction pattern of control film showed significant destruction of A-type crystal structure. Addition of essential oils resulted in peak shape change: diffraction peaks became narrower. Principal Component Analysis has been used to assess the effect of essential oils addition on final starch-based edible films characteristics with the aim to reveal directions for the film characteristics improvement, since the next phase will be optimal film application for food packaging.

  14. Rutile TiO{sub 2} active-channel thin-film transistor using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Jin; Heo, Kwan-Jun; Yoo, Su-Chang; Choi, Seong-Gon [Chungbuk National University, Cheongju (Korea, Republic of); Chang, Seung-Wook [Samsung Display, Co., Ltd., Suwon (Korea, Republic of)

    2014-10-15

    TiO{sub 2} active-channel thin-film transistors (TFTs), in which the bottom-gate top-contact architecture was prepared with atomic layer deposition grown TiO{sub 2} as the semiconducting layer, were fabricated and then investigated based on key process parameters, such as the rapid thermal annealing (RTA) temperature. Structural analyses suggested that TiO{sub 2} films annealed at temperatures above 500 .deg. C changed from an amorphous to a rutile phase. The TFT with a TiO{sub 2} semiconductor annealed at 600 .deg. C exhibited strongly-saturated output characteristics, a much higher on/off current ratio of 4.3 x 10{sup 5}, and an electron mobility of 0.014 cm{sup 2}/Vs. Moreover, the potential for manipulating TiO{sub 2}-based TFTs with RTA methodology was demonstrated through the realization of a simple resistive-load inverter.

  15. On the crystallization of amorphous germanium films

    Science.gov (United States)

    Edelman, F.; Komem, Y.; Bendayan, M.; Beserman, R.

    1993-06-01

    The incubation time for crystallization of amorphous Ge (a-Ge) films, deposited by e-gun, was studied as a function of temperature between 150 and 500°C by means of both in situ transmission electron microscopy and Raman scattering spectroscopy. The temperature dependence of t0 follows an Arrhenius curve with an activation energy of 2.0 eV for free-sustained a-Ge films. In the case where the a-Ge films were on Si 3N 4 substrate, the activation energy of the incubation process was 1.3 eV.

  16. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunhong, E-mail: y.jiang@leeds.ac.uk [University of Leeds, Institute of Particle Science and Engineering (United Kingdom); O’Neill, Alex J. [University of Leeds, School of Molecular and Cellular Biology (United Kingdom); Ding, Yulong [University of Leeds, Institute of Particle Science and Engineering (United Kingdom)

    2015-04-15

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  17. Nostalgic [re]remembering: film fan cultures and the affective reiteration of popular film histories.

    Directory of Open Access Journals (Sweden)

    Nathan Hunt

    2011-05-01

    Full Text Available

    Abstract: This article explores two central uses of memory narratives in film fan culture: Firstly; that fan magazines recycle and reiterate popular histories of film, with the extensive detailing of anecdotes and histories of productions serving to fix certain texts as canonical, cult or classic film artefacts whilst legitimating nostalgia as a mode of reading; secondly; that such films are historically positioned in terms of an appeal to fans via nostalgia as activating personal and affective histories of pleasurable film reception. This piece examines the various ways that commercial magazines discursively utilise nostalgia in their mediation between texts, institutions and fan audiences. At the same time it also explores that way that nostalgia resonates within the activities and discourses of fans as they engage with film.

     

    Résumé: Cet article analyse deux usages fondamentaux des souvenirs narratifs dans la culture des fans cinématographiques. D'une part, le recyclage et la reprise d'histoires populaires sur le cinéma, notamment, avec la mention très détaillée d'anecdotes et d'histoires sur l'histoire de

  18. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  19. Carbon film electrodes for super capacitor applications

    Science.gov (United States)

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  20. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature.

    Science.gov (United States)

    Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M

    2017-10-21

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  1. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  2. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  3. Antibacterial Properties of Titanate Nano fiber Thin Films Formed on a Titanium Plate

    International Nuclear Information System (INIS)

    Yada, M.; Inoue, Y.; Morita, T.; Torikai, T.; Watari, T.; Noda, I.; Hotokebuchi, T.

    2013-01-01

    A sodium titanate nano fiber thin film and a silver nanoparticle/silver titanate nano fiber thin film formed on the surface of a titanium plate exhibited strong antibacterial activities against methicillin-resistant Staphylococcus aureus, which is one of the major bacteria causing in-hospital infections. Exposure of the sodium titanate nano fiber thin film to ultraviolet rays generated a high antibacterial activity due to photo catalysis and the sodium titanate nano fiber thin film immediately after its synthesis possessed a high antibacterial activity even without exposure to ultraviolet rays. Elution of silver from the silver nanoparticle/silver titanate nano fiber thin film caused by the silver ion exchange reaction was considered to contribute substantially to the strong antibacterial activity. The titanate nano fiber thin films adhered firmly to titanium. Therefore, these titanate nano fiber thin film/titanium composites will be extremely useful as implant materials that have excellent antibacterial activities.

  4. A short literature survey on iron and cobalt ion doped TiO2 thin films and photocatalytic activity of these films against fungi

    International Nuclear Information System (INIS)

    Tatlıdil, İlknur; Bacaksız, Emin; Buruk, Celal Kurtuluş; Breen, Chris; Sökmen, Münevver

    2012-01-01

    Highlights: ► Co or Fe doped TiO 2 thin films were prepared by sol–gel method. ► We obtained lower E g values for Fe-doped and Co-TiO 2 thin films. ► Doping greatly affected the size and shape of the TiO 2 nanoparticles. ► Photocatalytic killing effect of the doped TiO 2 thin films on C. albicans and A. niger was significantly higher than undoped TiO 2 thin film for short exposure periods. - Abstract: In this study, a short recent literature survey which concentrated on the usage of Fe 3+ or Co 2+ ion doped TiO 2 thin films and suspensions were summarized. Additionally, a sol–gel method was used for preparation of the 2% Co or Fe doped TiO 2 thin films. The surface of the prepared materials was characterised using scanning-electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis and band gap of the films were calculated from the transmission measurements that were taken over the range of 190 and 1100 nm. The E g value was 3.40 eV for the pure TiO 2 , 3.00 eV for the Fe-doped TiO 2 film and 3.25 eV for Co-TiO 2 thin film. Iron or cobalt doping at lower concentration produce more uniformed particles and doping greatly affected the size and shape of the TiO 2 nanoparticles. Photocatalytic killing effect of the 2% Co doped TiO 2 thin film on Candida albicans was significantly higher than Fe doped TiO 2 thin film for short and long exposure periods. Doped thin films were more effective on Aspergillus niger for short exposure periods.

  5. Stability of thin liquid films containing surface active particles

    Science.gov (United States)

    Umashankar, Hariharan; Kalpathy, Sreeram; Dixit, Harish

    2017-11-01

    The stability and dynamics of thin liquid films(industrial settings like coating and printing processes and extraction of oil from porous rocks. In this study a hydrodynamic model is introduced to capture the long term evolution of a Newtonian liquid film containing insoluble surfaceactive particles.We consider here the possibility of four distinct interaction regimes based on the surface rheological effects of the particles, such that either, both or neither of Marangoni and surface viscosity effects would be present at the leading order in the governing equations. The liquid film is bounded by a rigid impermeable solid below and covered by passive air phase above.A standard linear stability analysis and nonlinear simulations are performed on the set of highly coupled partial differential evolution equations. Linear stability analysis gives insights on whether a particular imposed perturbationwavenumber will grow or decay in time and also evaluating the fastest growing wavenumber. Parametric studies for all four regimes provides a strong confirmation that surface viscosity and Marangoni effects are indeed rupture delaying effects.

  6. Improving the Performances of Random Copolymer Based Organic Solar Cells by Adjusting the Film Features of Active Layers Using Mixed Solvents

    Directory of Open Access Journals (Sweden)

    Xiangwei Zhu

    2015-12-01

    Full Text Available A novel random copolymer based on donor–acceptor type polymers containing benzodithiophene and dithienosilole as donors and benzothiazole and diketopyrrolopyrrole as acceptors was designed and synthesized by Stille copolymerization, and their optical, electrochemical, charge transport, and photovoltaic properties were investigated. This copolymer with high molecular weight exhibited broad and strong absorption covering the spectra range from 500 to 800 nm with absorption maxima at around 750 nm, which would be very conducive to obtaining large short-circuits current densities. Unlike the general approach using single solvent to prepare the active layer film, mixed solvents were introduced to change the film feature and improve the morphology of the active layer, which lead to a significant improvement of the power conversion efficiency. These results indicate that constructing random copolymer with multiple donor and acceptor monomers and choosing proper mixed solvents to change the characteristics of the film is a very promising way for manufacturing organic solar cells with large current density and high power conversion efficiency.

  7. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  8. Antimicrobial Active Packaging including Chitosan Films with Thymus vulgaris L. Essential Oil for Ready-to-Eat Meat

    Directory of Open Access Journals (Sweden)

    Jesús Quesada

    2016-08-01

    Full Text Available An active packaging system has been designed for the shelf life extension of ready to eat meat products. The package included an inner surface coated with a chitosan film with thyme essential oil (0%, 0.5%, 1%, and 2% not in direct contact with the meat. Our aim was to reduce the impact of thyme essential oil (EO on meat sensory properties by using a chemotype with low odor intensity. The pH, color parameters, microbial populations, and sensory properties were assessed during 4 weeks of refrigerated storage. The presence of EO films reduced yeast populations, whereas aerobic mesophilic bacteria, lactic acid bacteria, and enterobacteria were not affected by the presence of the EO in the films. Meat color preservation (a * was enhanced in the presence of EO, giving a better appearance to the packaged meat. The presence of the chitosan-EO layer reduced water condensation inside the package, whereas packages containing only chitosan had evident water droplets. Thyme odor was perceived as desirable in cooked meat, and the typical product odor intensity decreased by increasing the EO concentration. Further studies should point towards developing oil blends or combinations with natural antimicrobial agents to be incorporated into the film to improve its antimicrobial properties.

  9. TiN thin film deposition by cathodic cage discharge: effect of cage configuration and active species

    International Nuclear Information System (INIS)

    De Freitas Daudt, N; Cavalcante Braz, D; Alves Junior, C; Pereira Barbosa, J C; Barbalho Pereira, M

    2012-01-01

    Plasma cathodic cage technique was developed recently in order to eliminate phenomena such as edge effects and overheating, which occur during conventional nitriding processes. In this work, the effect of plasma active species and cage configurations during thin film deposition of TiN were studied. This compound was chosen because its properties are very sensitive to slight variations in chemical composition and film thickness, becoming a good monitoring tool in fabrication process control. In order to verify the effect of cage geometry on the discharge and characteristics of the grown film, a cage made of titanium was used with different numbers and distribution of holes. Furthermore, different amounts of hydrogen were added to the Ar + N2 plasma atmosphere. Flow rates of Ar and N2 gas were fixed at 4 and 3 sccm, respectively and flow rates of H 2 gas was 0, 1 and 2 sccm. Plasma species, electrical discharge and physical characteristics of the grown film were analyzed by Optical Emission Spectroscopy (OES), Atomic Force Microscopy (AFM), X-Ray Diffraction. It was observed by OES that the luminous intensity associated to Hα species is not proportional to flow rate of H 2 gas. Electrical efficiency of the system, crystal structure and topography of the TiN film are strongly influenced by this behavior. For constant flow rate of H 2 gas, it was found that with more holes at the top of the cage, deposition rate, crystallinity and roughness are higher, if compared to cages with a small number of holes at the top of cage. On the other hand, the opposite behavior was observed when more holes were located at the sidewall of cage.

  10. One-step chemical bath deposition and photocatalytic activity of Cu2O thin films with orientation and size controlled by a chelating agent

    International Nuclear Information System (INIS)

    Xu, HaiYan; Dong, JinKuang; Chen, Chen

    2014-01-01

    Nanocrystalline cuprous oxide (Cu 2 O) thin films were prepared via a one-step chemical bath deposition (CBD) method. The effects of a chelating agent on the orientation, morphology, crystallite size, and photocatalytic activity of the thin films were carefully examined using X-ray diffractometry, scanning electron microscopy, and UV–vis spectrophotometry. The results confirmed that the crystallite size as well as the orientation of the films was dependent on the volume of trisodium citrate (TSC), demonstrating that the band gap ranged from 2.71 eV to 2.49 eV. The morphology and number density of the thin films also depended on the volume of TSC. In addition, the obtained Cu 2 O thin films could degrade methyl orange (MO) efficiently in the presence of H 2 O 2 under visible-light irradiation, and the mechanism for the enhanced photocatalytic activity of the Cu 2 O thin films with the assistance of H 2 O 2 was also explored in detail. - Graphical abstract: Nano-structured Cu 2 O thin films have been prepared by a one-step chemical bath deposition method. The number density, crystallite size, surface morphology and orientation of these thin films could be tailored by chelating agent. The results confirmed that the crystallite size as well as the orientation of the thin films was dependent on the volume of TSC, showed that the band gap ranged from 2.71 eV to 2.49 eV. The formation mechanism of the Cu 2 O particles could be illuminated by an oriented attachment mode. In addition, the obtained Cu 2 O thin films degraded methyl orange efficiently in the presence of H 2 O 2 under the irradiation of visible light, and the mechanism for photocatalytic reaction was also discussed in detail. - Highlights: • Oriented Cu 2 O thin films were prepared by one-step chemical bath deposition. • Orientation and crystallite size were dependent on trisodium citrate volume. • The enhanced visible light degradation mechanism was systematically studied. • Oriented attachment

  11. Wetting phenomena in films of molecular hydrogen isotopes

    International Nuclear Information System (INIS)

    Albrecht, U.; Conradt, R.; Herminghaus, S.; Leiderer, P.

    1996-01-01

    We have investigated various aspects of the wetting behavior of hydrogen films (including the heavier isotopes) using surface plasmon resonance, light scattering, and photoelectron emission. Studies in the vicinity of the triple point (T 3 (H 2 )=13,96 K) confirmed the known >, and gave no indications for a prewetting transition in this range. At low temperatures (T 3 /3) the equilibrium film thickness reaches only a few monolayers. Thicker films, prepared by quench-condensation of H 2 gas at 1.5 K, undergo a dewetting process during annealing: most of the film material contracts to clusters, and in between the films thins down to its equilibrium thickness. This surface diffusion process is thermally activated, with an activation energy of 23 K (in the case of H 2 ). The dewetting kinetics has not revealed any indication for a surface-molten layer on the solid films at low temperatures, or for a superfluid component

  12. The Influence Of Modified Water Chemistries On Metal Oxide Films, Activity Build-Up And Stress Corrosion Cracking Of Structural Materials In Nuclear Power Plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1998-07-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of activated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (author)

  13. Reduction of V{sub 2}O{sub 5} thin films deposited by aqueous sol–gel method to VO{sub 2}(B) and investigation of its photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, Olivier [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava (Slovakia); Roch, Tomas; Satrapinskyy, Leonid; Gregor, Maros; Plecenik, Tomas; Plecenik, Andrej [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava (Slovakia); Plesch, Gustav, E-mail: plesch@fns.uniba.sk [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava (Slovakia)

    2014-12-15

    Graphical abstract: - Highlights: • Preparation of VO{sub 2}(B) films by aqueous sol–gel method and their characterization. • Influence of annealing conditions on the mechanism of V{sub 2}O{sub 5} film reduction. • The VO{sub 2}(B) films with energy gap of 2.8 eV show photocatalytic activity. • The films with higher roughness exhibit increased photoactivity. - Abstract: A way of preparation of VO{sub 2}(B) thin films by reduction of V{sub 2}O{sub 5} films synthesized from an aqueous sol–gel system has been developed and photocatalytic properties of the obtained films were studied. The reduction was performed by annealing of the V{sub 2}O{sub 5} film in vacuum as well as in H{sub 2}/Ar atmosphere, which was followed by temperature dependent XRD. It has been shown that the reduction is influenced by the layered-structure of the vanadium oxides. It is a two-step process, where the mixed-valence vanadium oxide V{sub 4}O{sub 9} is first formed before reaching the VO{sub 2}(B) phase. The film microstructure was characterized by SEM and AFM and the valence states of vanadium in VO{sub 2}(B) films were evaluated by XPS. The VO{sub 2}(B) polymorph shows an energy band-gap around 2.8 eV and it exhibits photocatalytic properties. It was measured by following the degradation of rhodamine B under UVA as well as metalhalogenide lamp irradiation, which has similar spectral distribution as natural sunlight. The VO{sub 2}(B) films show distinct photoactivities under both lamps, although they were found to be more active under the UVA irradiation. The film annealed under reducing hydrogen atmosphere, which exhibits higher granularity and surface roughness, shows higher photoactivity than the vacuum-annealed film.

  14. Effects of germane flow rate in electrical properties of a-SiGe:H films for ambipolar thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Miguel, E-mail: madominguezj@gmail.com [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Rosales, Pedro, E-mail: prosales@inaoep.mx [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Torres, Alfonso [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Flores, Francisco [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Molina, Joel; Moreno, Mario [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Luna, Jose [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Orduña, Abdu [Centro de Investigación en Biotecnología Aplicada (CIBA), IPN, Tlaxcala, Tlaxcala 72197 (Mexico)

    2014-07-01

    In this work, the study of germane flow rate in electrical properties of a-SiGe:H films is presented. The a-SiGe:H films deposited by low frequency plasma-enhanced chemical vapor deposition at 300 °C were characterized by Fourier transform infrared spectroscopy, measurements of temperature dependence of conductivity and UV–visible spectroscopic ellipsometry. After finding the optimum germane flow rate conditions, a-SiGe:H films were deposited at 200 °C and analyzed. The use of a-SiGe:H films at 200 °C as active layer of low-temperature ambipolar thin-film transistors (TFTs) was demonstrated. The inverted staggered a-SiGe:H TFTs with Spin-On Glass as gate insulator were fabricated. These results suggest that there is an optimal Ge content in the a-SiGe:H films that improves its electrical properties. - Highlights: • As the GeH{sub 4} flow rate increases the content of oxygen decreases. • Ge-H bonds show the highest value in a-SiGe:H films with GeH{sub 4} flow of 105 sccm. • Films with GeH{sub 4} flow of 105 sccm show the highest activation energy. • An optimum incorporation of germanium is obtained with GeH{sub 4} flow rate of 105 sccm. • At 200 °C the optimum condition of the a-SiGe:H films remain with no changes.

  15. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  16. Effects of Ni doping on photocatalytic activity of TiO2 thin films ...

    Indian Academy of Sciences (India)

    Wintec

    scavenger will shift the equilibrium to one side and thereby deposition of the film is progressed. The rate of the reaction and the nature of deposition depend on growing time and temperature. The resultant films were characterized by XRD, EDAX, UV and SEM. The result shows that the deposited films have amorphous ...

  17. Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream (Sparus aurata) Fillets.

    Science.gov (United States)

    Ortega Blázquez, Irene; Grande Burgos, María J; Pérez-Pulido, Rubén; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP) treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs) found at time 0 in control samples ( Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium ) rapidly changed during storage (with an increase of Vibrio, Photobacterium , and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage). The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax , and Sphingomonas as main OTUs) and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium , and Shewanella as main OTUs) and approached control samples. HP treatments (singly or in combination with activated films) determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella ) during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied.

  18. Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream (Sparus aurata Fillets

    Directory of Open Access Journals (Sweden)

    Irene Ortega Blázquez

    2018-02-01

    Full Text Available The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs found at time 0 in control samples (Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium rapidly changed during storage (with an increase of Vibrio, Photobacterium, and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage. The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax, and Sphingomonas as main OTUs and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium, and Shewanella as main OTUs and approached control samples. HP treatments (singly or in combination with activated films determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied.

  19. Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream (Sparus aurata) Fillets

    Science.gov (United States)

    Ortega Blázquez, Irene; Grande Burgos, María J.; Pérez-Pulido, Rubén; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP) treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs) found at time 0 in control samples (Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium) rapidly changed during storage (with an increase of Vibrio, Photobacterium, and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage). The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax, and Sphingomonas as main OTUs) and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium, and Shewanella as main OTUs) and approached control samples. HP treatments (singly or in combination with activated films) determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella) during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied. PMID:29541064

  20. TFOS DEWS II Tear Film Report.

    Science.gov (United States)

    Willcox, Mark D P; Argüeso, Pablo; Georgiev, Georgi A; Holopainen, Juha M; Laurie, Gordon W; Millar, Tom J; Papas, Eric B; Rolland, Jannick P; Schmidt, Tannin A; Stahl, Ulrike; Suarez, Tatiana; Subbaraman, Lakshman N; Uçakhan, Omür Ö; Jones, Lyndon

    2017-07-01

    The members of the Tear Film Subcommittee reviewed the role of the tear film in dry eye disease (DED). The Subcommittee reviewed biophysical and biochemical aspects of tears and how these change in DED. Clinically, DED is characterized by loss of tear volume, more rapid breakup of the tear film and increased evaporation of tears from the ocular surface. The tear film is composed of many substances including lipids, proteins, mucins and electrolytes. All of these contribute to the integrity of the tear film but exactly how they interact is still an area of active research. Tear film osmolarity increases in DED. Changes to other components such as proteins and mucins can be used as biomarkers for DED. The Subcommittee recommended areas for future research to advance our understanding of the tear film and how this changes with DED. The final report was written after review by all Subcommittee members and the entire TFOS DEWS II membership. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei, E-mail: fancm@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Xiaochao, E-mail: zhang13598124761@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yawen; Wang, Yunfang [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Hui [Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-07-01

    A series of micro-nano-structure BiOBr thin films were prepared at a low temperature by the alcoholysis-coating method using BiBr{sub 3} as precursor. The as-prepared films were characterized by X-ray powder diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller surface area. The obtained results indicated that micro-nano-structure tetragonal BiOBr films with different intensity ratios of (110) to (102) characteristic peaks could be synthesized through controlling the reaction temperature and the calcination temperatures. Furthermore, the photocatalytic activities of BiOBr thin films with different preparation conditions have been evaluated by the degradation of methyl orange (MO) under UV light irradiation, suggesting that the photocatalytic activity should be closely related to the solvent, the alcoholysis reaction temperature, and the calcining temperature. The best photocatalytic degradation efficiency of MO for BiOBr thin films reaches 98.5% under 2.5 h UV irradiation. The BiOBr thin films display excellent stability and their photocatalytic activity still remains above 90% after being used five times. The main reasons for the higher photocatalytic activity of micro-nano-structure BiOBr microspheres have been investigated. In addition, the possible formation mechanism of BiOBr thin films with micro-nano-structure and excellent photocatalytic activity was proposed and discussed. - Highlights: • The BiOBr film was prepared at low temperature via alcoholysis-coating method. • The optimum process conditions of preparing BiOBr film were discussed. • As-prepared BiOBr films were composed of micro-nano flake structures. • The BiOBr films demonstrated excellent photocatalytic activity. • The formation mechanism of BiOBr films with high activity was proposed.

  2. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  3. The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film

    Science.gov (United States)

    Rochima, Emma; Fiyanih, Elisah; Afrianto, Eddy; Subhan, Ujang; Praseptiangga, Danar; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    This research aimed to investigate the effect of nanochitosan (CSNPs) suspension by beads milling method as filler in carrageenan-tapioca biocomposite film. In addition, the antibacterial activity of CSNPs as filler with two food pathogenic bacteria, Staphylococcus aureus and Escherichia coli and then influence of nano fillers for appearance of films were observed. The incorporation of CSNPs suspension with 0.5, 1, 1.5 and 2 (%v/v) in carrageenan-tapioca film exhibited antibacterial activity againts both bacteria. CSNPs had slightly higher antimicrobial activity against E. coli aureus compared to S. aureus at all concentrations due to different mechanisms. Therefore, the best antimicrobial activity was obtained from 1 wt%. Furthermore the best antimicrobial activity was characterized by means of the thickness and transparency. The result showed that the thickness of film was 0.059 mm and the transparency was 87.88. It was concluded that the incorporation of CSNPs suspension 1 wt% in carrageenan-tapioca composite film is suitable for developing active packaging.

  4. Role of plasma activation in tailoring the nanostructure of multifunctional oxides thin films

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M.; Losurdo, Maria; Capezzuto, Pio [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, and Department of Chemistry, University of Bari, via Orabona, 4-70125 Bari (Italy); Bruno, Giovanni [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, and Department of Chemistry, University of Bari, via Orabona, 4-70125 Bari (Italy)], E-mail: giovanni.bruno@ba.imip.cnr.it

    2009-03-01

    Potential of O{sub 2} remote plasmas for improving structural, morphological and optical properties of various multifunctional oxides thin films both during plasma assisted growth as well as by post-growth treatments is discussed. In particular, an O{sub 2} remote plasma metalorganic chemical vapor deposition (RP-MOCVD) route is presented for tailoring the structural, morphological and optical properties of Er{sub 2}O{sub 3} and ZnO films. Furthermore, post-growth room-temperature remote O{sub 2} plasma treatments of indium-tin-oxides (ITO) films are demonstrated to be effective in improving morphology of ITO films.

  5. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles.

    Science.gov (United States)

    Shankar, Shiv; Wang, Long-Feng; Rhim, Jong-Whan

    2017-08-01

    The present study aimed to develop the carbohydrate biopolymer based antimicrobial films for food packaging application. The nanocomposite films of various biopolymers and copper oxide nanoparticles (CuONPs) were prepared by solvent casting method. The nanocomposite films were characterized using SEM, FTIR, XRD, and UV-vis spectroscopy. The thermal stability, UV barrier, water vapor permeability, and antibacterial activity of the composite films were also evaluated. The surface morphology of the films was dependent on the types of polymers used. The XRD revealed the crystallinity of CuONPs in the composite films. The addition of CuONPs increased the thickness, tensile strength, UV barrier property, relative humidity, and water vapor barrier property. The CuONPs incorporated composite films exhibited strong antibacterial activity against Escherichia coli and Listeria monocytogenes. The developed composite films could be used as a UV-light barrier antibacterial films for active food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Study of the mobility activation in ZnSe thin films deposited using inert gas condensation

    Directory of Open Access Journals (Sweden)

    Jeewan Sharma

    2017-12-01

    Full Text Available ZnSe thin films were synthesized on glass substrates using the inert gas condensation technique at substrate temperature ranging from 25 °C to 100 °C. The hexagonal structure and average crystallite size (6.1–8.4 nm were determined from X-ray diffraction data. The transient photoconductivity was investigated using white light of intensity 8450 lx to deduce the effective density of states (Neff in the order of 1.02 × 1010–13.90 × 1010 cm−3, the frequency factor (S in the range 2.5 × 105–24.6 × 105 s−1 and the trap depth (E ranging between 0.37–0.64 eV of these films. The trap depth study revealed three different types of levels with quasi-continuous distribution below the conduction band. An increase in the photoconductivity was observed as a result of the formation of potential barriers (Vb and of the increase of carrier mobility at the crystallite boundaries. The study of the dependence of various mobility activation parameters on the deposition temperature and the crystallite size has provided better understanding of the mobility activation mechanism.

  7. Supercapacitive properties of hybrid films of manganese dioxide and polyaniline based on active carbon in organic electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Wu-yuan; Wang, Wei; He, Ben-lin; Sun, Ming-liang; Yin, Yan-sheng [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, Shandong Province (China)

    2010-11-01

    This is the first report about supercapacitive performance of hybrid film of manganese dioxide (MnO{sub 2}) and polyaniline (PANI) in an organic electrolyte (1.0 M LiClO{sub 4} in acetonitrile). In this work, a high surface area and conductivity of active carbon (AC) electrode is used as a substrate for PANI/MnO{sub 2} film electro-codeposition. The redox properties of the coated PANI/MnO{sub 2} thin film exhibit ideal capacitive behaviour in 1 M LiClO{sub 4}/AN. The specific capacitance (SC) of PANI/MnO{sub 2} hybrid film is as high as 1292 F g{sup -1} and maintains about 82% of the initial capacitance after 1500 cycles at a current density of 4.0 mA cm{sup -2}, and the coulombic efficiency ({eta}) is higher than 95%. An asymmetric capacitor has been developed with the PANI/MnO{sub 2}/AC positive and pure AC negative electrodes, which is able to deliver a specific energy as high as 61 Wh kg{sup -1} at a specific power of 172 W kg{sup -1} in the range of 0-2.0 V. These results indicate that the organic electrolyte is a promising candidate for PANI/MnO{sub 2} material application in supercapacitors. (author)

  8. One-step chemical bath deposition and photocatalytic activity of Cu{sub 2}O thin films with orientation and size controlled by a chelating agent

    Energy Technology Data Exchange (ETDEWEB)

    Xu, HaiYan, E-mail: xuhaiyan@ahjzu.edu.cn; Dong, JinKuang, E-mail: dongjinkuang1988@126.com; Chen, Chen, E-mail: 13865901653@139.com

    2014-01-15

    Nanocrystalline cuprous oxide (Cu{sub 2}O) thin films were prepared via a one-step chemical bath deposition (CBD) method. The effects of a chelating agent on the orientation, morphology, crystallite size, and photocatalytic activity of the thin films were carefully examined using X-ray diffractometry, scanning electron microscopy, and UV–vis spectrophotometry. The results confirmed that the crystallite size as well as the orientation of the films was dependent on the volume of trisodium citrate (TSC), demonstrating that the band gap ranged from 2.71 eV to 2.49 eV. The morphology and number density of the thin films also depended on the volume of TSC. In addition, the obtained Cu{sub 2}O thin films could degrade methyl orange (MO) efficiently in the presence of H{sub 2}O{sub 2} under visible-light irradiation, and the mechanism for the enhanced photocatalytic activity of the Cu{sub 2}O thin films with the assistance of H{sub 2}O{sub 2} was also explored in detail. - Graphical abstract: Nano-structured Cu{sub 2}O thin films have been prepared by a one-step chemical bath deposition method. The number density, crystallite size, surface morphology and orientation of these thin films could be tailored by chelating agent. The results confirmed that the crystallite size as well as the orientation of the thin films was dependent on the volume of TSC, showed that the band gap ranged from 2.71 eV to 2.49 eV. The formation mechanism of the Cu{sub 2}O particles could be illuminated by an oriented attachment mode. In addition, the obtained Cu{sub 2}O thin films degraded methyl orange efficiently in the presence of H{sub 2}O{sub 2} under the irradiation of visible light, and the mechanism for photocatalytic reaction was also discussed in detail. - Highlights: • Oriented Cu{sub 2}O thin films were prepared by one-step chemical bath deposition. • Orientation and crystallite size were dependent on trisodium citrate volume. • The enhanced visible light degradation mechanism

  9. Radiochromic film dosimetry. Considerations on precision and accuracy for EBT2 and EBT3 type films

    Energy Technology Data Exchange (ETDEWEB)

    Dreindl, Ralf [Medical Univ. of Vienna/Vienna General Hospital (Austria). Dept. of Radiooncology; EBG MedAustron GmbH, Wiener Neustadt (Austria); Georg, Dietmar; Stock, Markus [Medical Univ. of Vienna/Vienna General Hospital (Austria). Dept. of Radiooncology; Medical Univ. of Vienna (Austria). Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology

    2014-09-01

    Gafchromic {sup registered} EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months. All films were irradiated to clinical photon beams (6MV, 10MV and 18MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB {sup registered} was used for further statistical calculations and image processing. The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed. In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. (orig.)

  10. Radiochromic film dosimetry: considerations on precision and accuracy for EBT2 and EBT3 type films.

    Science.gov (United States)

    Dreindl, Ralf; Georg, Dietmar; Stock, Markus

    2014-05-01

    Gafchromic® EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months. All films were irradiated to clinical photon beams (6 MV, 10 MV and 18 MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB® was used for further statistical calculations and image processing. The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed. In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. Copyright © 2013. Published by Elsevier GmbH.

  11. Radiochromic film dosimetry. Considerations on precision and accuracy for EBT2 and EBT3 type films

    International Nuclear Information System (INIS)

    Dreindl, Ralf; Georg, Dietmar; Stock, Markus; Medical Univ. of Vienna

    2014-01-01

    Gafchromic registered EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months. All films were irradiated to clinical photon beams (6MV, 10MV and 18MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB registered was used for further statistical calculations and image processing. The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed. In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. (orig.)

  12. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  13. TiO2 thin-films on polymer substrates and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Jae-Hun; Han, Yang-Su; Choy, Jin-Ho

    2006-01-01

    We have developed dip-coating process for TiO 2 -thin film on polymer substrates (acrylonitrile-butadiene-styrene polymer: ABS, polystyrene: PS). At first, a monodispersed and transparent TiO 2 nano-sol solution was prepared by the controlled hydrolysis of titanium iso-propoxide in the presence of acetylacetone and nitric acid catalyst at 80 deg. C. Powder X-ray diffraction patterns of the dried particles are indicative of crystalline TiO 2 with anatase-type structure. According to the XRD and transmission electron microscopy (TEM) studies, the mean particle size was estimated to be ca. 5 nm. The transparent thin films on ABS and PS substrates were fabricated by dip-coating process by changing the processing variables, such as the number of dip-coating and TiO 2 concentration in nano-sol solution. Scanning electron microscopic (SEM) analysis for the thin film samples reveals that the acetylacetone-modified TiO 2 nano-sol particles are effective for enhancing the interfacial adherence between films and polymeric substrates compared to the unmodified one. Photocatalytic degradation of methylene blue (MB) on the TiO 2 thin-films has also been systematically investigated

  14. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer.

    Science.gov (United States)

    Li, Jinhua; Wang, Gang; Zhu, Hongqin; Zhang, Miao; Zheng, Xiaohu; Di, Zengfeng; Liu, Xuanyong; Wang, Xi

    2014-03-12

    Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.

  15. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  16. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  17. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  18. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    International Nuclear Information System (INIS)

    Vähä-Nissi, Mika; Pitkänen, Marja; Salo, Erkki; Kenttä, Eija; Tanskanen, Anne; Sajavaara, Timo; Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana; Karppinen, Maarit; Harlin, Ali

    2014-01-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al 2 O 3 of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al 2 O 3 thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al 2 O 3 • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli

  19. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  20. Desenvolvimento e avaliação de filme antimicrobiano aromatizado para aplicação em massa de pastel Development and evaluation of antimicrobial and flavored film for using on pastry dough

    Directory of Open Access Journals (Sweden)

    Allan Robledo Fialho e Moraes

    2011-03-01

    Full Text Available A indústria de alimentos, buscando atender à crescente demanda dos consumidores, vem desenvolvendo embalagens ativas para proporcionar qualidade e segurança aos produtos acondicionados. Este trabalho objetivou desenvolver e avaliar a aplicação de filmes ativos aromatizados em contato com a massa de pastel. Os filmes foram preparados pelo método casting, adicionados de ácido sórbico e aroma de pizza e avaliados in vitro frente ao microrganismo Penicillium sp. Também foram estudadas suas propriedades mecânicas, migração de ácido sórbico, avaliação sensorial do produto e análise microbiológica in vivo. Os filmes ativos apresentaram atividade antimicrobiana tanto in vitro como no alimento. A caracterização mecânica mostrou que os filmes ativos aromatizados apresentaram valores de carga máxima na ruptura, inferiores ao filme controle e, durante a migração, a adição de aroma contribuiu para uma maior liberação do ácido sórbico. Além disso, as massas de pastel em contato com os filmes ativos aromatizados apresentaram melhores resultados sensoriais.The food industry, trying to meet growing consumer demand, is developing active packaging to provide quality and safety for packed food. This research aimed to develop and evaluate the implementation of active flavored films in contact with pastry dough. The active films were evaluated for in vitro antimicrobial activity against Penicillium sp. The mechanical properties of the films, the sorbic acid migration, sensory and in vivo microbiological analyses were also tested. The active films showed better results for in vitro and in vivo microbiological analyses when compared with the film with the sorbic acid incorporated directly on the pastry dough. The incorporation of sorbic acid and flavor affected the mechanical properties of the active films compared to the control film. The flavor addition provided a larger migration of sorbic acid from the film to the pastry dough

  1. Part A. Neutron activation analysis of selenium and vanadium in biological matrices. Part B. Isomeric transition activation in aqueous solutions of alkyl bromides

    International Nuclear Information System (INIS)

    Ebrahim, A.

    1988-01-01

    Several procedures were evaluated for determination of selenium in biological fluids and vanadium in biological tissues by neutron activation analysis (NAA) employing 77m Se and 52 V isotopes, respectively. Procedures for determination of total selenium, trimethylselenonium (TMSe) ion and selenite (SeO 3 2- ) ion in urine and serum and for total selenoamino acids in urine were developed by utilizing anion exchange chromatography and molecular NAA. A pre-column derivatization of selenoamino acids with o-phthalaldehyde was necessary for their determination. Also an analytical approach was developed for determination of trace vanadium in liver samples from normal and diabetic rats as well as human and cow. Reactions of bromine-80 activated by radiative neutron capture and bromine-82 activated by isomeric transition were investigated in aqueous solutions of bromomethane and 1-bromobutane. Bromine-80 organic yields decreased with decreasing solute concentrations. The tendency for aggregation of the solute molecules diminished as the solute concentration approached zero where the probable state of the solute approached a monomolecular dispersion. Unlike reactions of 80 Br born by 79 Br(n,γ) 80 Br reaction, the total organic product yields resulting from the 82m Br(I.T.) 82 Br process showed no solute concentration dependence

  2. A short literature survey on iron and cobalt ion doped TiO{sub 2} thin films and photocatalytic activity of these films against fungi

    Energy Technology Data Exchange (ETDEWEB)

    Tatl Latin-Small-Letter-Dotless-I dil, Ilknur [Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bacaks Latin-Small-Letter-Dotless-I z, Emin [Department of Physics, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Buruk, Celal Kurtulus [Department of Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon (Turkey); Breen, Chris [Materials and Engineering Research Institution, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Soekmen, Muenevver, E-mail: msokmen@ktu.edu.tr [Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Co or Fe doped TiO{sub 2} thin films were prepared by sol-gel method. Black-Right-Pointing-Pointer We obtained lower E{sub g} values for Fe-doped and Co-TiO{sub 2} thin films. Black-Right-Pointing-Pointer Doping greatly affected the size and shape of the TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer Photocatalytic killing effect of the doped TiO{sub 2} thin films on C. albicans and A. niger was significantly higher than undoped TiO{sub 2} thin film for short exposure periods. - Abstract: In this study, a short recent literature survey which concentrated on the usage of Fe{sup 3+} or Co{sup 2+} ion doped TiO{sub 2} thin films and suspensions were summarized. Additionally, a sol-gel method was used for preparation of the 2% Co or Fe doped TiO{sub 2} thin films. The surface of the prepared materials was characterised using scanning-electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis and band gap of the films were calculated from the transmission measurements that were taken over the range of 190 and 1100 nm. The E{sub g} value was 3.40 eV for the pure TiO{sub 2}, 3.00 eV for the Fe-doped TiO{sub 2} film and 3.25 eV for Co-TiO{sub 2} thin film. Iron or cobalt doping at lower concentration produce more uniformed particles and doping greatly affected the size and shape of the TiO{sub 2} nanoparticles. Photocatalytic killing effect of the 2% Co doped TiO{sub 2} thin film on Candida albicans was significantly higher than Fe doped TiO{sub 2} thin film for short and long exposure periods. Doped thin films were more effective on Aspergillus niger for short exposure periods.

  3. A Natural Antibacterial-Antioxidant Film from Soy Protein Isolate Incorporated with Cortex Phellodendron Extract

    Directory of Open Access Journals (Sweden)

    Shumin Liang

    2018-01-01

    Full Text Available An active film was prepared by incorporating cortex Phellodendron extract (CPE, an active agent into a soybean protein isolate (SPI. Different concentrations of CPE (0%, 10%, 12.5%, 15%, 17.5%, 20%, or 22.5%, w/w, based on SPI were mixed into the films characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetry, tensile tests, and barrier properties. The rheological properties of the solutions were also tested. The effects of the CPE content on the antibacterial and antioxidant activities of the films were examined. The results indicated that new hydrogen bonds formed between molecules in the films, and the crystallinity of the films decreased. The incorporation of CPE had no significant influence on the thermal stability of the films. Films containing 15% CPE had the maximum tensile strength of 6.00 MPa. The barrier properties against water vapor, oxygen, and light enhanced with the incorporation of CPE. The antioxidant activity of the SPI film was also improved. The films were effective against Staphylococcus aureus (S. aureus, Gram-positive bacteria. These results suggest that the SPI/CPE film can potentially extend the shelf lives of foods.

  4. Fixed-film processes. Part 2

    International Nuclear Information System (INIS)

    Canziani, R.

    1999-01-01

    Recently, full scale fixed-film or mixed suspended have been applied in many wastewater treatments plants. These processes no longer depend on biomass settle ability and can be used to improve the performance of existing plants as required by more stringent discharge permit limits, especially for nutrients suspended solids. Also, processes may work at high rates making is possible to build small footprint installations. Fixed-film processes include trickling filters (and combined suspended and fixed-films processes), rotating biological contactors, biological aerated submerged, filters moving bed reactors, fluidized bed reactors. In the first part, the theoretical based governing fixed-film processes are briefly outlined, with some simple examples of calculations, underlining the main differences with conventional activate sludge processes. In the second part, the most common types of reactors are reviewed [it

  5. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gas Sensing Properties of Pure and Cr Activated WO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. GAIKWAD

    2010-09-01

    Full Text Available Thick films of WO3 (Tungsten Oxide were prepared by screen-printing techniques. The surfaces of the films were modified by dipping them into an aqueous solution of Chromium Oxide (CrO3 for different intervals of time, followed by firing at 550 oC for 30 min. The gas sensing performance of the pure and Cr2O3-modified films was tested for various gases at different temperatures. The unmodified films showed response to H2S, ethanol and cigar smoke. However Cr2O3- modified films suppresses gas sensing response to all gases except H2S. The surface modification, using dipping process, altered the adsorbate-adsorbent interactions, which gave the specific selectivity and enhanced sensitivity to H2S gas. The gas response, selectivity, thermal stability and recovery time of the sensor were measured and presented. The role played by surface chromium species to improve gas sensing performance is discussed.

  7. Release behavior and stability of encapsulated D-limonene from emulsion-based edible films.

    Science.gov (United States)

    Marcuzzo, Eva; Debeaufort, Frédéric; Sensidoni, Alessandro; Tat, Lara; Beney, Laurent; Hambleton, Alicia; Peressini, Donatella; Voilley, Andrée

    2012-12-12

    Edible films may act as carriers of active molecules, such as flavors. This possibility confers to them the status of active packaging. Two different film-forming biopolymers, gluten and ι-carrageenans, have been compared. D-Limonene was added to the two film formulations, and its release kinetics from emulsion-based edible films was assessed with HS-SPME. Results obtained for edible films were compared with D-limonene released from the fatty matrix called Grindsted Barrier System 2000 (GBS). Comparing ι-carrageenans with gluten-emulsified film, the latter showed more interesting encapsulating properties: in fact, D-limonene was retained by gluten film during the process needed for film preparation, and it was released gradually during analysis time. D-Limonene did not show great affinity to ι-carrageenans film, maybe due to high aroma compound hydrophobicity. Carvone release from the three different matrices was also measured to verify the effect of oxygen barrier performances of edible films to prevent D-limonene oxidation. Further investigations were carried out by FT-IR and liquid permeability measurements. Gluten film seemed to better protect D-limonene from oxidation. Gluten-based edible films represent an interesting opportunity as active packaging: they could retain and release aroma compounds gradually, showing different mechanical and nutritional properties from those of lipid-based ingredients.

  8. Indium-Nitrogen Codoped Zinc Oxide Thin Film Deposited by Ultrasonic Spray Pyrolysis on n-(111 Si Substrate: The Effect of Film Thickness

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2014-01-01

    Full Text Available Indium-nitrogen codoped zinc oxide (INZO thin films were fabricated by spray pyrolysis deposition technique on n-(111 Si substrate with different film thicknesses at 450°C using a precursor containing zinc acetate, ammonium acetate, and indium nitrate with 1 : 3 : 0.05 at.% concentration. The morphology and structure studies were carried out by scanning electron microscopy (SEM and X-ray diffraction (XRD. The grain size of the films increased when increasing the film thickness. From XRD spectra, polycrystalline ZnO structure can be observed and the preferred orientation behavior varied from (002 to (101 as the film thickness increased. The concentration and mobility were investigated by Hall effect measurement. the p-type films with a hole mobility around 3 cm2V−1s−1 and hole concentration around 3×1019 cm−3 can be achieved with film thickness less than 385 nm. The n-type conduction with concentration 1×1020 cm−3 is observed for film with thickness 1089 nm. The defect states were characterized by photoluminescence. With temperature-dependent conductivity analysis, acceptor state with activation energy 0.139 eV dominate the p type conduction for thin INZO film. And the Zn-related shallow donors with activation energy 0.029 eV dominate the n-type conduction for the thick INZO film.

  9. Study of Electrical Transport Properties of Thin Films Used as HTL and as Active Layer in Organic Solar Cells, through Impedance Spectroscopy Measurements

    Directory of Open Access Journals (Sweden)

    Camilo A. Otalora

    2016-01-01

    Full Text Available Impedance spectroscopy (IS is used for studying the electrical transport properties of thin films used in organic solar cells with structure ITO/HTL/active layer/cathode, where PEDOT:PSS (poly(3,4-ethylenedioxythiophene:polystyrene sulfonic acid and CuPC (tetrasulfonated copper-phthalocyanine were investigated as HTL (hole transport layer and P3HT:PCBM (poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends prepared from mesitylene and chlorobenzene based solutions were studied as active layer and Ag and Al were used as cathode. The study allowed determining the influence of the type of solvent used for the preparation of the active layer as well as the speed at which the solvents are removed on the carriers mobility. The effect of exposing the layer of P3HT to the air on its mobility was also studied. It was established that samples of P3HT and P3HT:PCBM prepared using mesitylene as a solvent have mobility values significantly higher than those prepared from chlorobenzene which is the solvent most frequently used. It was also determined that the mobility of carriers in P3HT films strongly decreases when this sample is exposed to air. In addition, it was found that the electrical properties of P3HT:PCBM thin films can be improved by removing the solvent slowly which is achieved by increasing the pressure inside the system of spin-coating during the film growth.

  10. Thermal degradation kinetics and estimation of lifetime of radiation grafted polypropylene films

    International Nuclear Information System (INIS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Bhalla, Vinod Kumar

    2017-01-01

    In this research work, thermal stability and degradation behavior of acrylic acid grafted polypropylene (PP-g-PAAc) films were investigated by using thermogravimetric (TGA) analysis at four different heating rates 5, 10, 15 and 20 °C/min over a temperature range of 40–550 °C in nitrogen atmosphere. The kinetic parameters namely activation energy (E a ), reaction order (n) and frequency factor (Z) were calculated by three multiple heating rate methods. The thermal stability of PP-g-PAAc films is found to decrease with increase in degree of grafting. The TGA data and thermal kinetic parameters were also used to predict the lifetime of grafted PP films. The estimated lifetime of neat PP as well as grafted PP decreased with increase in temperature by all the three methods. Studies also indicated that E a and lifetime of PP-g-PAAc films decreased with increase in degree of grafting, which may also be helpful in biodegradation of grafted PP films. - Highlights: • Thermal stability of grafted polypropylene films have been observed lower than for neat polypropylene film. • Multiple heating rate methods have been used for determination of activation energy. • Activation energies of grafted polypropylene films were lower than polypropylene film. • The lifetimes of grafted polypropylene films were shorter than for neat polypropylene film.

  11. Black Films and Film-Makers.

    Science.gov (United States)

    Patterson, Lindsay, Ed.

    The development of black films and the attitudes of the film industry toward black films and black actors are some of the topics examined in this anthology of essays. Section 1, "Nigger to Supernigger," contains such articles as "The Death of Rastus: Negroes in American Films" by Thomas R. Cripps and "Folk Values in a New Medium" by Alain Locke…

  12. N-Doped graphene/PEDOT composite films as counter electrodes in DSSCs: Unveiling the mechanism of electrocatalytic activity enhancement

    Science.gov (United States)

    Paterakis, Georgios; Raptis, Dimitrios; Ploumistos, Alexandros; Belekoukia, Meltiani; Sygellou, Lamprini; Ramasamy, Madeshwaran Sekkarapatti; Lianos, Panagiotis; Tasis, Dimitrios

    2017-11-01

    A composite film was obtained by layer deposition of N-doped graphene and poly(3,4-ethylenedioxythiophene) (PEDOT) and was used as Pt-free counter electrode for dye-sensitized solar cells. N-doping of graphene was achieved by annealing mixtures of graphene oxide with urea. Various parameters concerning the treatment of graphene oxide-urea mixtures were monitored in order to optimize the electrocatalytic activity in the final solar cell device. These include the mass ratio of components, the annealing temperature, the starting concentration of the mixture in aqueous solution and the spinning rate for film formation. PEDOT was applied by electrodeposition. The homogeneity of PEDOT coverage onto either untreated or thermally annealed graphene oxide-urea film was assessed by imaging (AFM/SEM) and surface techniques (XPS). It was found that PEDOT was deposited in the form of island structures onto untreated graphene oxide-urea film. On the contrary, the annealed film was homogeneously covered by the polymer, acquiring morphology of decreased roughness. An apparent chemical interaction between PEDOT and N-doped graphene flakes was revealed by XPS data, involving potential grafting of PEDOT chains onto graphitic lattice through Csbnd C bonding. In addition, diffusion of nitrogen-containing fragments within the PEDOT layer was found to take place during electrodeposition process, resulting in enhanced interfacial interactions between components. The solar cell with the optimized N-doped graphene/PEDOT composite counter electrode exhibited a power conversion efficiency (η) of 7.1%, comparable within experimental error to that obtained by using a reference Pt counter electrode, which showed a value of 7.0%.

  13. Flexible camphor sulfonic acid-doped PAni/α-Fe{sub 2}O{sub 3} nanocomposite films and their room temperature ammonia sensing activity

    Energy Technology Data Exchange (ETDEWEB)

    Bandgar, D.K. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Navale, S.T. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Navale, Y.H.; Ingole, S.M. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Stadler, F.J. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Ramgir, N.; Aswal, D.K.; Gupta, S.K. [Technical Physics Division, Babha Atomic Research Centre, Mumbai, M.S. (India); Mane, R.S. [School of Physical Sciences, SRTM University, Nanded 431606 (India); Patil, V.B., E-mail: drvbpatil@gmail.com [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India)

    2017-03-01

    Composite nanostructures play a crucial role in gas sensing applications owing to their tunable properties and sizes. The main goal of this article is to prepare camphor sulfonic acid (10–50 wt%)-doped PAni/α-Fe{sub 2}O{sub 3} (PFC) composite nanostructured films on flexible polyethylene terephthalate (PET) substrate through in-situ polymerization process and study their gas sensing activity towards various gases. Structural and morphological measurements along with gas sensing properties in terms of selectivity, response, stability, and response-recovery times are investigated and reported. The gas selectivity tests of flexible PFC nanostructured composite films are performed towards different gases such as NO{sub 2}, NH{sub 3}, LPG, CH{sub 3}OH, and C{sub 2}H{sub 5}OH etc., wherein all the flexible PFC (10–50%) films demonstrate a superior selectivity towards NH{sub 3} gas even in the presence of other test gases. Among the different compositions, 30% PFC flexible film exhibits highest response of 72% to 100 ppm NH{sub 3} with good response time of 65 s. The systematic study between PFC flexible nanocomposite films and NH{sub 3} gas is conducted and reported. In addition, the interfacial charge transfer kinetics across NH{sub 3} and PFC film interface was investigated by means of impendence spectroscopy study. - Highlights: • Novel route of preparation of camphor sulfonic acid doped PAni-Fe{sub 2}O{sub 3} (PFC) flexible films. • XRD, FTIR, and RAMAN analysis confirms the formation of PFC composites. • PFC films are highly selective towards NH{sub 3} gas at room temperature. • PFC films able to detect as low as 2.5 ppm concentration of NH{sub 3} gas. • 30% PFC flexible film exhibits highest response of 72%–100 ppm NH{sub 3} gas with good response time of 65 s.

  14. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films.

    Science.gov (United States)

    Wang, Long-Feng; Rhim, Jong-Whan

    2015-09-01

    Ternary blend agar/alginate/collagen (A/A/C) hydrogel films with silver nanoparticles (AgNPs) and grapefruit seed extract (GSE) were prepared. Their performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water contact angle (CA), water swelling ratio (SR), water solubility (WS), and antimicrobial activity were determined. The A/A/C film was highly transparent, and both AgNPs and GSE incorporated blend films (A/A/C(AgNPs) and A/A/C(GSE)) exhibited UV-screening effect, especially, the A/A/C(GSE) film had high UV-screening effect without sacrificing the transmittance. In addition, the A/A/C blend films formed efficient hydrogel film with the water holding capacity of 23.6 times of their weight. Both A/A/C(AgNPs) and A/A/C(GSE) composite films exhibited strong antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) food-borne pathogenic bacteria. The test results of fresh potatoes packaging revealed that all the A/A/C ternary blend films prevented forming of condensed water on the packaged film surface, both A/A/C(AgNPs) and A/A/C(GSE) composite films prevented greening of potatoes during storage. The results indicate that the ternary blend hydrogel films incorporated with AgNPs or GSE can be used not only as antifogging packaging films for highly respiring fresh agriculture produce, but also as an active food packaging system utilizing their strong antimicrobial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  16. Strategic approach to film marketing in international setting

    Directory of Open Access Journals (Sweden)

    Štavljanin Velimir

    2011-01-01

    Full Text Available This paper represents the strategic aspects of the film marketing through an analysis of contemporary international theory and practice. The analysis is based on the basic principles of the film marketing and film product development. Application of marketing principles in the film industry under the new business conditions is only a prerequisite, but no more a guarantee of success. From the point of view of marketing managers, success must be ensured by the strategic approach, which is addressed in the paper. Given that the most successful marketing activities depend on the marketing mix strategies, a novel approach to film marketing mix was one of the main focuses of the paper. Attention of a separate chapter is focused on film marketing mix, taking into account technology impact on film marketing. .

  17. Computer Program NIKE

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2014-01-01

    FORTRAN source code for program NIKE (PC version of QCPE 343). Sample input and output for two model chemical reactions are appended: I. Three consecutive monomolecular reactions, II. A simple chain mechanism......FORTRAN source code for program NIKE (PC version of QCPE 343). Sample input and output for two model chemical reactions are appended: I. Three consecutive monomolecular reactions, II. A simple chain mechanism...

  18. Fixed-film processes. Part 1

    International Nuclear Information System (INIS)

    Canziani, R.

    1999-01-01

    Recently, full scale fixed-film or mixed suspended and fixed biomass bioreactors have been applied in many wastewater treatments plants. These process no longer depend on biomass settle ability and can be used to improve the performance of existing plants as required by more stringent discharge permit limits, especially for nutrients and suspended solid. Also, processes may work at high rates making it possible to build small footprint installations. Fixed-film process include trickling filter, moving bed reactors fluidized bed reactors. In the first part, the theoretical base governing fixed-film processes are briefly outlined with some simple examples of calculations underlining the main differences with conventional activated sludge processes [it

  19. Nigerian popular films: copyright and originality | Effiong | Lwati: A ...

    African Journals Online (AJOL)

    This essay attempts to examine the effect of copyright activities on Nigerian popular films. To an extent, it is to show how these activities have affected the distribution of films produced by Nigerians and the rising wave of returning to the cinema halls. Movie producers have expressed disappointment in the loss of their ...

  20. Diffusion behavior in the films of Nb-Ti systems

    International Nuclear Information System (INIS)

    Yoshitake, Michiko; Yoshihara, Kazuhiro

    1990-01-01

    The diffusion behavior of substrate element into a deposited film was investigated. The observed systems were a Nb film/Ti substrate and a Ti film/Nb substrate. When the Nb film/Ti substrate was heated in a vacuum, Ti diffused very rapidly in the Nb film. The pre-exponential factor of the diffusion constant of Ti in the Nb film was 5.6x10 -2 m 2 s -1 , and the activation energy was 220 kJmol -1 . The observed activation energy is about 60% of that of Ti in the bulk Nb. On the other hand, when the Ti film/Nb substrate was heated in a vacuum, Nb did not diffuse so rapidly. Titanium diffused through the Nb film rapidly and was concentrated on the surface of the Nb film. The chemical state of the concentrated Ti was metallic, and neither titanium oxides nor titanium carbide was observed. Therefore, the driving force of the rapid diffusion of Ti in the Nb film is considered as the reduction of the surface energy of Nb film. The difference in the diffusion behavior between Ti through the Nb film and Nb through the Ti film is explained supposing that the segregation of Ti reduces the surface energy of the Nb film but the segregation of Nb does not reduce the surface energy of the Ti film. After heating of the Nb film/Ti substrate for a long time, a new phase was formed at the interface between the Nb film and the Ti substrate. The chemical composition of the new phase is about 50% of Ti and 50% of Nb. This phase has not been reported in the phase diagram of the bulk Ti-Nb system. The surface area of the Nb film is considered to be quite large, so the contribution of surface energy to the thermodynamic state of the Nb film cannot be neglected. Therefore, the chemical potential of the film is different from that of the bulk. Then, the new phase, which does not exist in the phase diagram of the bulk system, is formed by an interaction of the films. (author)

  1. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production

    Science.gov (United States)

    Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao

    2017-07-01

    Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.

  2. A device for checking the speeds and quality of X-ray films and efficiency of film processors

    International Nuclear Information System (INIS)

    Crooks, H.E.

    1980-01-01

    In order to carry out quality assurance tests of X-ray films, screens and processors, a standard exposure source of utmost reliability is desirable. The performance of apparatus containing yellow-green light emitting radioactive tritium activated phosphor, known as Betalight, is described. Over a period of 2 1/2 years, variations in film speeds up to +- 20% from nominally the same types of film have been observed. Additionally, substandard developer has been easily identified with the use of this device. The device is cheap and easy to manufacture, accurate and simple to use. (U.K.)

  3. Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract.

    Science.gov (United States)

    Balti, Rafik; Mansour, Mohamed Ben; Sayari, Nadhem; Yacoubi, Lamia; Rabaoui, Lotfi; Brodu, Nicolas; Massé, Anthony

    2017-12-01

    Active food packaging films based on crab chitosan and Spirulina extract (SE) were developed. The effects of the SE incorporation at different levels on physical (color, opacity water vapor and oxygen permeability) and mechanical (tensile strength and elongation at break) properties of chitosan films were investigated. FTIR was carried out to observe the potential modifications of the chitosan films when incorporated with SE. The obtained results suggested that incorporation of SE into chitosan films improved mechanical and barrier properties. The antioxidant activity of the chitosan/SE films was characterized by means of three different analytical assays (DPPH, FRAP and FIC). Crab chitosan edible films containing SE showed higher antioxidant activity, regardless concentrations and methods assayed. Furthermore, the antioxidant activity occurred in a concentration-dependent manner. The agar disc diffusion method was used to determine the antibacterial activities of chitosan edible films against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella typhimurium, Bacillus subtilis and Bacillus cereus. The chitosan/SE films were more effective (pchitosan edible films incorporated with SE showed great potential to be used for active food packaging due to its excellent antioxidant and antibacterial activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  5. The Photocatalytic Activity and Compact Layer Characteristics of TiO2 Films Prepared Using Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    H. C. Chang

    2014-01-01

    Full Text Available TiO2 compact layers are used in dye-sensitized solar cells (DSSCs to prevent charge recombination between the electrolyte and the transparent conductive substrate (indium tin oxide, ITO; fluorine-doped tin oxide, FTO. Thin TiO2 compact layers are deposited onto ITO/glass by means of radio frequency (rf magnetron sputtering, using deposition parameters that ensure greater photocatalytic activity and increased DSSC conversion efficiency. The photoinduced decomposition of methylene blue (MB and the photoinduced hydrophilicity of the TiO2 thin films are also investigated. The photocatalytic performance characteristics for the deposition of TiO2 films are improved by using the Grey-Taguchi method. The average transmittance in the visible region exceeds 85% for all samples. The XRD patterns of the TiO2 films, for sol-gel with spin coating of porous TiO2/TiO2 compact/ITO/glass, show a good crystalline structure. In contrast, without the TiO2 compact layer (only porous TiO2, the peak intensity of the anatase (101 plane in the XRD patterns for the TiO2 film has a lower value, which demonstrates inferior crystalline quality. With a TiO2 compact layer to prevent charge recombination, a higher short-circuit current density is obtained. The DSSC with the FTO/glass and Pt counter electrode demonstrates the energy conversion efficiency increased.

  6. Modified Starch-Chitosan Edible Films: Physicochemical and Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Monserrat Escamilla-García

    2017-12-01

    Full Text Available Starch and chitosan are widely used for preparation of edible films that are of great interest in food preservation. This work was aimed to analyze the relationship between structural and physical properties of edible films based on a mixture of chitosan and modified starches. In addition, films were tested for antimicrobial activity against Listeria innocua. Films were prepared by the casting method using chitosan (CT, waxy (WS, oxidized (OS and acetylated (AS corn starches and their mixtures. The CT-starches films showed improved barrier and mechanical properties as compared with those made from individual components, CT-OS film presented the lowest thickness (74 ± 7 µm, water content (11.53% ± 0.85%, w/w, solubility (26.77% ± 1.40%, w/v and water vapor permeability ((1.18 ± 0.48 × 10−9 g·s−1·m−1·Pa−1. This film showed low hardness (2.30 ± 0.19 MPa, low surface roughness (Rq = 3.20 ± 0.41 nm and was the most elastic (Young’s modulus = 0.11 ± 0.06 GPa. In addition, films made from CT-starches mixtures reduced CT antimicrobial activity against L. innocua, depending on the type of modified starch. This was attributed to interactions between acetyl groups of AS with the carbonyl and amino groups of CT, leaving CT with less positive charge. Interaction of the pyranose ring of OS with CT led to increased OH groups that upon interaction with amino groups, decreased the positive charge of CT, and this effect is responsible for the reduced antimicrobial activity. It was found that the type of starch modification influenced interactions with chitosan, leading to different films properties.

  7. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  8. Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging.

    Science.gov (United States)

    de Souza, Ana Cristina; Dias, Ana M A; Sousa, Hermínio C; Tadini, Carmen C

    2014-02-15

    In this work, supercritical solvent impregnation (SSI) has been tested for the incorporation of natural compounds into biocomposite materials for food packaging. Cinnamaldehyde, with proved antimicrobial activity against fungi commonly found in bread products, was successfully impregnated on biocomposite cassava starch based materials using supercritical carbon dioxide as solvent. Different process experimental conditions were tested (pressure, impregnation time and depressurization rate) at a fixed temperature (35 °C) in order to study their influence on the amount of impregnated cinnamaldehyde as well as on the morphology of the films. Results showed that all conditions permitted to impregnate antimicrobial active amounts superior to those previously obtained using conventional incorporation methods. Moreover, a significant decrease of the equilibrium water vapor sorption capacity and water vapor permeability of the films was observed after SSI processing which is a clear advantage of the process, considering the envisaged applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pagni, O. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Somhlahlo, N.N. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Weichsel, C. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)]. E-mail: andrew.leitch@nmmu.ac.za

    2006-04-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies.

  10. Electrical properties of ZnO thin films grown by MOCVD

    International Nuclear Information System (INIS)

    Pagni, O.; Somhlahlo, N.N.; Weichsel, C.; Leitch, A.W.R.

    2006-01-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies

  11. Pressure dependence of the interfacial structure of potassium chloride films on iron

    International Nuclear Information System (INIS)

    Olson, Dustin; Gao, Hongyu; Tang, Chun; Tysoe, Wilfred T.; Martini, Ashlie

    2015-01-01

    Potassium chloride films on a clean iron surface are used as a model system to explore the interfacial structure of the films and the dependence of that structure on film thickness and pressure. The interfacial structure of one-, two-, three- and four-layer films is measured experimentally using low-energy electron diffraction. Those findings are then complemented by molecular dynamics simulations in which the atomic interaction between the film and substrate is tuned to match film thickness-dependent sublimation activation energy obtained from temperature-programmed desorption measurements. The resultant simulation reliably predicts the structure of thicker films and is then used to study the effect of pressure on the distribution of the lattice constant within and between each layer of the potassium chloride films. Findings indicate that both film thickness and pressure affect the structure within the films as well as the degree of registry between the film and adjacent substrate. - Highlights: • KCl films on an Fe surface are used as a model system to explore interfacial structure • Thin film structure is measured using low-energy electron diffraction • An empirical potential is tuned to match sublimation activation energy • Simulations reveal the effect of pressure on the lattice constant within the KCl films • Pressure affects the film structure and registry between film and substrate

  12. Pressure dependence of the interfacial structure of potassium chloride films on iron

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Dustin [Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin—Milwaukee, Milwaukee, WI 53211 (United States); Gao, Hongyu; Tang, Chun [School of Engineering, University of California Merced, Merced CA 95343 (United States); Tysoe, Wilfred T. [Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin—Milwaukee, Milwaukee, WI 53211 (United States); Martini, Ashlie [School of Engineering, University of California Merced, Merced CA 95343 (United States)

    2015-10-30

    Potassium chloride films on a clean iron surface are used as a model system to explore the interfacial structure of the films and the dependence of that structure on film thickness and pressure. The interfacial structure of one-, two-, three- and four-layer films is measured experimentally using low-energy electron diffraction. Those findings are then complemented by molecular dynamics simulations in which the atomic interaction between the film and substrate is tuned to match film thickness-dependent sublimation activation energy obtained from temperature-programmed desorption measurements. The resultant simulation reliably predicts the structure of thicker films and is then used to study the effect of pressure on the distribution of the lattice constant within and between each layer of the potassium chloride films. Findings indicate that both film thickness and pressure affect the structure within the films as well as the degree of registry between the film and adjacent substrate. - Highlights: • KCl films on an Fe surface are used as a model system to explore interfacial structure • Thin film structure is measured using low-energy electron diffraction • An empirical potential is tuned to match sublimation activation energy • Simulations reveal the effect of pressure on the lattice constant within the KCl films • Pressure affects the film structure and registry between film and substrate.

  13. Development of Burdock Root Inulin/Chitosan Blend Films Containing Oregano and Thyme Essential Oils

    Science.gov (United States)

    Cao, Thi Luyen; Yang, So-Young; Song, Kyung Bin

    2018-01-01

    In this study, inulin (INU) extracted from burdock root was utilized as a new film base material and combined with chitosan (CHI) to prepare composite films. Oregano and thyme essential oils (OT) were incorporated into the INU-CHI film to confer the films with bioactivities. The physical and optical properties as well as antioxidant and antimicrobial activities of the films were evaluated. INU film alone showed poor physical properties. In contrast, the compatibility of INU and CHI demonstrated by the changes in attenuated total reflectance-Fourier transformation infrared spectrum of the INU-CHI film increased tensile strength and elongation at break of the INU film by 8.2- and 3.9-fold, respectively. In addition, water vapor permeability, water solubility, and moisture content of the films decreased proportionally with increasing OT concentration in the INU-CHI film. Incorporation of OT also increased the opacity of a and b values and decreased the L value of the INU-CHI films. All INU-CHI films containing OT exhibited antioxidant and antimicrobial properties. Particularly, the INU-CHI film with 2.0% OT exhibited the highest 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and antimicrobial activities against four pathogens. Thus, the INU-CHI film containing OT developed in this study might be utilized as an active packaging material in the food industry. PMID:29301339

  14. Development of Burdock Root Inulin/Chitosan Blend Films Containing Oregano and Thyme Essential Oils.

    Science.gov (United States)

    Cao, Thi Luyen; Yang, So-Young; Song, Kyung Bin

    2018-01-03

    In this study, inulin (INU) extracted from burdock root was utilized as a new film base material and combined with chitosan (CHI) to prepare composite films. Oregano and thyme essential oils (OT) were incorporated into the INU-CHI film to confer the films with bioactivities. The physical and optical properties as well as antioxidant and antimicrobial activities of the films were evaluated. INU film alone showed poor physical properties. In contrast, the compatibility of INU and CHI demonstrated by the changes in attenuated total reflectance-Fourier transformation infrared spectrum of the INU-CHI film increased tensile strength and elongation at break of the INU film by 8.2- and 3.9-fold, respectively. In addition, water vapor permeability, water solubility, and moisture content of the films decreased proportionally with increasing OT concentration in the INU-CHI film. Incorporation of OT also increased the opacity of a and b values and decreased the L value of the INU-CHI films. All INU-CHI films containing OT exhibited antioxidant and antimicrobial properties. Particularly, the INU-CHI film with 2.0% OT exhibited the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and antimicrobial activities against four pathogens. Thus, the INU-CHI film containing OT developed in this study might be utilized as an active packaging material in the food industry.

  15. Nanostructured hematite thin films for photoelectrochemical water splitting

    Science.gov (United States)

    Maabong, Kelebogile; Machatine, Augusto G. J.; Mwankemwa, Benard S.; Braun, Artur; Bora, Debajeet K.; Toth, Rita; Diale, Mmantsae

    2018-04-01

    Nanostructured hematite thin films prepared by dip coating technique were investigated for their photoelectrochemical activity for generation of hydrogen from water splitting. Structural, morphological and optical analyses of the doped/undoped films were performed by X-ray diffraction, high resolution field emission-scanning electron microscopy, UV-vis spectrophotometry and Raman spectroscopy. The photoelectrochemical measurements of the films showed enhanced photoresponse and cathodic shift of the onset potential upon Ti doping indicating improved transfer of photoholes at the semiconductor-electrolyte interface. Films doped with 1 at% Ti produced 0.72 mA/cm2 at 1.23 V vs RHE which is 2 times higher than current density for the pure film (0.30 mA/cm2, at 1.23 V vs RHE). Gas chromatography analysis of the films also showed enhanced hydrogen evolution at 1 at% Ti with respect to pure film.

  16. Antimicrobial wound dressing films containing essential oils and oleoresins of pepper encapsulated in sodium alginate films

    Directory of Open Access Journals (Sweden)

    Jessica Miranda Rosa

    2018-03-01

    Full Text Available ABSTRACT: Medicated wound dressings are important barriers to avoid contamination and, when they contain antimicrobial additives, can be used as treatment for infected wounds. There are several types of polysaccharide materials that serve as matrices for medicated wound dressings, among them, sodium alginate. For the preparation of the films studied in this paper, sodium alginate was employed in combination with essential oils/oleoresins (EO/OL of six peppers that are commonly used in cooking. The EO/OL were incorporated at three different concentrations (low, intermediate and high. Most of the films prepared had better dispersion of the EO/OL at the intermediate concentration. All films studied in this research were dissolved in water at different rates. The antibacterial activity of the prepared films showed significant results against Escherichia coli, Staphylococcus aureus and Bacillus cereus, and demonstrated that the films studied may be a new alternative for medicated wound dressings.

  17. Thin film-based optically variable security devices: From passive to active

    Science.gov (United States)

    Baloukas, Bill

    Counterfeiting costs the world economy billions of dollars every year. Aside from financial losses, counterfeiting also poses a great threat to the public's safety, for example through the existence of counterfeit passports (terrorism), pharmaceutical products (health hazards) and even airplane parts (safety issues). Optical security devices (OSDs) have therefore played a critical role in the fight against counterfeiting. It is the aim of the present thesis to show that through the use of metamerism and electrochromic materials, new types of active security devices with interesting features can be created; indeed, most present-day devices are passive in nature. I first demonstrate that the addition of metamerism in the design of interference filters can result in innovative features. Different structures which can be used in transmission and/or in reflection are designed, fabricated, and evaluated. The first structures which are presented here are based on a combination of two different metameric interference filters. Possessing widely different transmission spectra, these filters also offer different angular color shifts and, as a result, offer an opportunity of creating hidden image effects. Despite their interesting properties, such metameric devices are shown to be highly illuminant and observer sensitive; that is the color match is lost under most observation conditions. These issues are solved by a simpler structure based on the juxtaposition of an interference filter and a non-iridescent colored material. Throughout this study, I present the design approach, analyze the filters' sensitivity to deposition errors, and evaluate the performance of prototype devices prepared by dual ion beam sputtering. Following my work on passive metameric systems, I then propose to go one step further by implementing an active component using an electrochromic material. This novel concept, which is based on the joint use of a metameric filter and electrochromic device, offers

  18. Novel development of nanocrystalline kesterite Cu2ZnSnS4 thin film with high photocatalytic activity under visible light illumination

    Science.gov (United States)

    Apostolopoulou, Andigoni; Mahajan, Sandip; Sharma, Ramphal; Stathatos, Elias

    2018-01-01

    Cu2ZnSnS4 (CZTS) represents a promising p-type direct band gap semiconductor with large absorption coefficient in the visible region of solar light. In the present study, a kesterite CZTS nanocrystalline film, with high purity, was successfully synthesized via the combination of successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) technique. The morphology and structural properties of the CZTS films were characterized by FE-SEM microscopy, porosimetry in terms of Brunauer-Emmett-Teller (BET) technique, X-ray diffraction and Raman spectroscopy. The as-prepared films under mild heat treatment at 250 °C in the presence of sulfur atmosphere exhibited fine nanostructure with 35 nm average particle size, high specific surface area of 53 m2/g and 9 nm pore diameter. The photocatalytic activity of the films was examined to the degradation of Basic Blue 41 (BB-41) and Acid Orange 8 (AO-8) organic azo dyes under visible light irradiation, demonstrating 97.5% and 70% discoloration for BB-41 and AO-8 respectively. Reusability of the CZTS films was also tested proving good stability over several repetitions. The reduction of photocatalyst's efficiency after three successive repetitions didn't exceed 5.6% and 8.5% for BB-41 and AO-8 respectively.

  19. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, D., E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, M.; Kaczmarek, D. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, P. [Institute of Experimental Physics, University of Wrocław, Max Born 9, 50-204 Wrocław (Poland); Szponar, B. [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław (Poland); Domaradzki, J. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Kepinski, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi{sub 3} and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  20. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    International Nuclear Information System (INIS)

    Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Mazur, P.; Szponar, B.; Domaradzki, J.; Kepinski, L.

    2016-01-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi_3 and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  1. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Changes of the optical characteristics of radiochromic films in the transition from EBT3 to EBT-XD films

    Science.gov (United States)

    Schoenfeld, Andreas A.; Wieker, Soeren; Harder, Dietrich; Poppe, Bjoern

    2016-07-01

    A new type of radiochromic film, the EBT-XD film, has been introduced with the aim to reduce the orientation effect and the lateral response artifact occurring in the use of radiochromic films together with flatbed scanners. The task of the present study is to quantify the changes of optical characteristics involved with the transition from the well-known EBT3 films to the new EBT-XD films, using the optical bench arrangement already applied by Schoenfeld et al (2014 Phys. Med. Biol. 59 3575-97). Largely reduced polarization effects and the almost complete loss of the anisotropy of the scattered light produced in a radiation-exposed film have been observed. The Rayleigh-Debye-Gans theory is used to understand these optical changes as arising from the reduced length-to-width ratio of the LiPCDA polymer crystals in the active layer of the EBT-XD film. The effect of these changes on the flatbed scanning artifacts will be shortly addressed, but treated in more detail in a further paper.

  3. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    Science.gov (United States)

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  4. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  5. Characteristics of sputtered Al-doped ZnO films for transparent electrodes of organic thin-film transistor

    International Nuclear Information System (INIS)

    Park, Yong Seob; Kim, Han-Ki

    2011-01-01

    Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (I D -V D ), drain current-gate voltage (I D -V G ), threshold voltage (V T ), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 x 10 -3 Ω.cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm 2 /V s and the on/off ratio of ∼ 10 5 . Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.

  6. Generating Soap Bubbles by Blowing on Soap Films

    Science.gov (United States)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2016-02-01

    Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.

  7. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    International Nuclear Information System (INIS)

    Grishin, S. V.; Golova, T. M.; Morozova, M. A.; Romanenko, D. V.; Seleznev, E. P.; Sysoev, I. V.; Sharaevskii, Yu. P.

    2015-01-01

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series

  8. Physical and antibacterial properties of edible films formulated with apple skin polyphenols.

    Science.gov (United States)

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; Friedman, M; McHugh, T H

    2011-03-01

    Fruit and vegetable skins have polyphenolic compounds, terpenes, and phenols with antimicrobial and antioxidant activity. These flavoring plant essential oil components are generally regarded as safe. Edible films made from fruits or vegetables containing apple skin polyphenols have the potential to be used commercially to protect food against contamination by pathogenic bacteria. The main objective of this study was to evaluate physical properties as well as antimicrobial activities against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica of apple skin polyphenols at 0% to 10% (w/w) concentrations in apple puree film-forming solutions formulated into edible films. Commercial apple skin polyphenol powder had a water activity of 0.44 and high total soluble phenolic compounds and antioxidant capacity (995.3 mg chlorogenic acid/100 g and 14.4 mg Trolox/g, respectively). Antimicrobial activities of edible film containing apple skin polyphenols were determined by the overlay method. Apple edible film with apple skin polyphenols was highly effective against L. monocytogenes. The minimum concentration need to inactive L. monocytogenes was 1.5%. However, apple skin polyphenols did not show any antimicrobial effect against E. coli O157:H7 and S. enterica even at 10% level. The presence of apple skin polyphenols reduced water vapor permeability of films. Apple skin polyphenols increased elongation of films and darkened the color of films. The results of the present study show that apple skin polyphenols can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by direct contact.

  9. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  10. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.)

  11. Film quality in film mammography. Pt. 2

    International Nuclear Information System (INIS)

    Friedrich, M.; Weskamp, P.; Freie Univ. Berlin

    1976-01-01

    During consideration of three film mammographic systems, the concept of signal/noise ratio is developed as a quantitative measure of film quality. The ability to recognise detail related to detail size, film blackening and exposure geometry was studied for various systems, and the quality profiles are discussed. There is a considerable difference in quality between industrial films without screens and film-screen combinations; however, exposure geometry during mammography has a considerable effect which tends to reduce the difference. Consequently, detail sizes of 200 μ to 1,000 μ (including the majority of mammographic micro-calcifications) are shown about equally well. Contrast for the lo-dose system is somewhat less than for adequately exposed industrial film. Over-exposure with the lo-dose system, contrary to industrial film, rapidly leads to unsatisfactory results. On the other hand it is often not possible to obtain an adequate exposure when using industrial film. For these reasons it is often an advantage to examine large breasts and the dense breasts of young women with a film-screen combination which requires approximately one eighth of the dose necessary for industrial film. For small or easily compressable breasts best results are obtained, using an adequate exposure by employing industril film; radiation dose it then acceptable. (orig./ORU) [de

  12. Electronic and geometric structure of electro-optically active organic films and associated interfaces

    International Nuclear Information System (INIS)

    Ivanco, J.; Haber, T.; Resel, R.; Netzer, F.P.; Ramsey, M.G.

    2006-01-01

    The electronic and structural properties of sexiphenyl and sexithiophene films grown under ultra-high vacuum conditions on a variety of well-controlled substrate surfaces have been examined. We show that, in contradiction with the general notion, the ionisation potential of the organic films is not a material constant. Considering the variable ionisation potential, the validity of the Schottky-Mott relationship, which expresses a dependence of the band alignment on the substrate work function, is analysed. We also briefly discuss the relevance of the built-in potential behaviour in organic films for the band-bending concept

  13. GREENHOUSE PLASTIC FILMS CAPABLE OF MODIFYING THE SPECTRAL DISTRIBUTION OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2010-03-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of innovative covering films for protected cultivation capable of modifying the spectral distribution of the transmitted radiation and thus the vegetative activity. Two photoselective films, three photoluminescent films and one low-density polyethylene film were used as greenhouse coverings for cherry trees and peach trees, grown in pots. The photoselective films were characterised by a reduction of the R/FR ratio in comparison to the natural solar radiation. Tree growth parameters, such as the apical shoot of cherry trees and the shoot of peach trees, were monitored. Different responses to vegetative activities were observed under the films, depending on the species, with a higher shoots growth rate in the peach with respect to the cherry. The photoselective film characterised by the lowest R/FR ratio significantly enhanced the growth of cherry and peach trees in comparison to the trees cultivated under the other greenhouse films

  14. Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination

    International Nuclear Information System (INIS)

    Zhang, Man; Pu, Wenhong; Pan, Shichang; Okoth, Otieno Kevin; Yang, Changzhu; Zhang, Jingdong

    2015-01-01

    Liquid phase deposition (LPD) technique was employed to prepare α-Fe 2 O 3 films for photoelectrocatalytic degradation of pollutants. The obtained LPD films were characterized by various surface analysis techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The results indicated that α-Fe 2 O 3 films with porous structure were successfully deposited on the titanium substrates by the LPD process. The UV–Visible diffuse reflectance spectroscopic (DRS) analysis showed that the obtained LPD α-Fe 2 O 3 film mainly absorbed visible light, which was advantageous to the utilization of solar energy. Under visible light illumination, the Fe 2 O 3 film electrodes exhibited sensitive photocurrent responses, which were affected by the calcination temperature. Consistent with the photocurrent analysis, the α-Fe 2 O 3 film calcined at 600 °C showed the best photoelectrocatalytic performance, and different organic pollutants such as methyl orange (MO) and p-nitrophenol (PNP) were effectively degraded over the LPD film electrode by photoelectrocatalytic treatment under visible light illumination. - Highlights: • α-Fe 2 O 3 film is prepared by liquid phase deposition process. • LPD α-Fe 2 O 3 film has a porous structure and absorbs visible light. • Calcination temperature shows a significant effect on the PEC performance of α-Fe 2 O 3 film. • α-Fe 2 O 3 film is efficient for photoelectrocatalytic degradation of pollutants

  15. Metalorganic chemical vapor deposition of Er{sub 2}O{sub 3} thin films: Correlation between growth process and film properties

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)], E-mail: michelaria.giangregorio@ba.imip.cnr.it; Losurdo, Maria; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)

    2009-02-27

    Er{sub 2}O{sub 3} thin films have been grown by metalorganic chemical vapor deposition (MOCVD) at 600 deg. C on different substrates, including glass, Si (100) and sapphire (0001) using tris(isopropylcyclopentadienyl)erbium and O{sub 2}. The effects of growth parameters such as the substrate, the O{sub 2} plasma activation and the temperature of organometallic precursor injection, on the nucleation/growth kinetics and, consequently, on film properties have been investigated. Specifically, very smooth (111)-oriented Er{sub 2}O{sub 3} thin films (the root mean square roughness is 0.3 nm) are achieved on Si (100), {alpha}-Al{sub 2}O{sub 3} (0001) and amorphous glass by MOCVD. Growth under O{sub 2} remote plasma activation results in an increase in growth rate and in (100)-oriented Er{sub 2}O{sub 3} films with high refractive index and transparency in the visible photon energy range.

  16. UV photodissociation spectroscopy of oxidized undecylenic acid films.

    Science.gov (United States)

    Gomez, Anthony L; Park, Jiho; Walser, Maggie L; Lin, Ao; Nizkorodov, Sergey A

    2006-03-16

    Oxidation of thin multilayered films of undecylenic (10-undecenoic) acid by gaseous ozone was investigated using a combination of spectroscopic and mass spectrometric techniques. The UV absorption spectrum of the oxidized undecylenic acid film is significantly red-shifted compared to that of the initial film. Photolysis of the oxidized film in the tropospheric actinic region (lambda > 295 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the observed photochemical activity. The presence of peroxides is confirmed by mass-spectrometric analysis of the oxidized sample and an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is observed. The data strongly imply the importance of photochemistry in aging of atmospheric organic aerosol particles.

  17. TiO{sub 2}/SiO{sub 2} porous composite thin films: Role of TiO{sub 2} areal loading and modification with gold nanospheres on the photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Levchuk, Irina, E-mail: irina.r.levchuk@gmail.com [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Laboratoire de Chimie, ENS Lyon, CNRS, Universite Claude Bernard Lyon 1, Universite de Lyon, UMR 5182, 46 allee d’Italie, 69364 Lyon (France); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Guillard, Chantal [Institut de Recherches sur la Catalyse et l’Environnement, IRCELYON, CNRS—University of Lyon, 69100 (France); Gregori, Damia; Chateau, Denis; Parola, Stephane [Laboratoire de Chimie, ENS Lyon, CNRS, Universite Claude Bernard Lyon 1, Universite de Lyon, UMR 5182, 46 allee d’Italie, 69364 Lyon (France)

    2016-10-15

    Highlights: • Composite TiO{sub 2}/Au/SiO{sub 2} films were prepared by sol-gel. • Size of Au NPs was in range 5–7 nm. • Physico-chemical and photocatalytic properties of TiO{sub 2}/Au/SiO{sub 2} were tested. • After UVC treatment all coatings exhibit super-hydrophilic character. • Photocatalytic activity of thin films was associated with areal loading of TiO{sub 2}. - Abstract: The aim of the work was to study photocatalytic activity of composite TiO{sub 2}/Au/SiO{sub 2} thin films. Coatings were prepared using sol-gel technique. Physicochemical parameters of coatings were characterized using UV–vis spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, tactile measurements, goniometry and diffuse reflectance measurements. The photocatalytic activity of the films was tested in batch mode using aqueous solution of formic acid. Changes of formic acid concentration were determined by means of high pressure liquid chromatography (HPLC). Increase of initial degradation rate of formic acid was detected for TiO{sub 2}/Au/SiO{sub 2} films with gold nanoparticle’s load 0.5 wt.% and 1.25 wt.%. However, deeper insights using more detailed characterization of these coatings demonstrated that the improvement of the photocatalytic activity is more probably attributed to an increase in the areal loading of TiO{sub 2}.

  18. Preparation and characterization of gelatin/cerium(Ⅲ) film

    Institute of Scientific and Technical Information of China (English)

    黄崇军; 黄雅钦; 田娜; 童元建; 殷瑞贤

    2010-01-01

    A novel gelatin film with antibacterial activity was prepared by electrostatic crosslinking using cerium (Ⅲ) nitrate hexahydrate as the crosslinking agent. The structure and properties of the films were investigated by Fourier transform infrared spectra, tensile tests, thermogravimetric analysis, static drop contact angle and disc diffusion method. The results showed that cross-linking could not only improve the thermal and mechanical properties and lower the hydrophilic property of the films, but also make...

  19. Active control of sound transmission through a rectangular panel using point-force actuators and piezoelectric film sensors.

    Science.gov (United States)

    Sanada, Akira; Higashiyama, Kouji; Tanaka, Nobuo

    2015-01-01

    This study deals with the active control of sound transmission through a rectangular panel, based on single input, single output feedforward vibration control using point-force actuators and piezoelectric film sensors. It focuses on the phenomenon in which the sound power transmitted through a finite-sized panel drops significantly at some frequencies just below the resonance frequencies of the panel in the low-frequency range as a result of modal coupling cancellation. In a previous study, it was shown that when point-force actuators are located on nodal lines for the frequency at which this phenomenon occurs, a force equivalent to the incident sound wave can act on the panel. In this study, a practical method for sensing volume velocity using a small number of piezoelectric film strips is investigated. It is found that two quadratically shaped piezoelectric film strips, attached at the same nodal lines as those where the actuators were placed, can sense the volume velocity approximately in the low-frequency range. Results of simulations show that combining the proposed actuation method and the sensing method can achieve a practical control effect at low frequencies over a wide frequency range. Finally, experiments are carried out to demonstrate the validity and feasibility of the proposed method.

  20. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    International Nuclear Information System (INIS)

    Azócar, Ignacio; Vargas, Esteban; Duran, Nicole; Arrieta, Abel; González, Evelyn

    2012-01-01

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix–polyether glycol was studied. AgNps of 4–6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia–polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20–80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO 3 concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia–polyether glycol hybrid film. Highlights: ► Antibacterial activity of films (zirconia–polyether glycol) modified with silver nanoparticles. ► Biofilm formation is prevented. ► High sensibility against gram positive bacteria.

  1. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Ignacio, E-mail: manuel.azocar@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vargas, Esteban [Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Duran, Nicole [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Arrieta, Abel [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Gonzalez, Evelyn [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas, Universidad de Chile, Sergio Livingstone Polhammer 1007, Santiago (Chile); and others

    2012-11-15

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix-polyether glycol was studied. AgNps of 4-6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia-polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20-80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO{sub 3} concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia-polyether glycol hybrid film. Highlights: Black-Right-Pointing-Pointer Antibacterial activity of films (zirconia-polyether glycol) modified with silver nanoparticles. Black-Right-Pointing-Pointer Biofilm formation is prevented. Black-Right-Pointing-Pointer High sensibility against gram positive bacteria.

  2. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jeong-Wan; Park, Sung Kyu, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, Yong-Hoon, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  3. Mapping nanoscale effects of localized noise-source activities on photoconductive charge transports in polymer-blend films

    Science.gov (United States)

    Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun

    2018-05-01

    We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.

  4. Impedance measurements of nanoporosity in electrodeposited ZnO films for DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, L.; Haller, S.; Rousset, J.; Donsanti, F.; Guillemoles, J.-F.; Lincot, D. [Institute of R and D on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie Paristech, 6 quai Watier, 78400 Chatou (France); Decker, F. [Chemistry Department, ' ' Sapienza' ' Universita di Roma, 00185 Roma (Italy)

    2010-05-15

    Porous ZnO/dye hybrid films have been deposited by cathodic electrodeposition, and their active surface area after dye desorption was evaluated by impedance measurements with the semiconducting electrode polarized in accumulation. Surface area ratios have been deduced for a large number of films from imaginary part Z' vs. frequency measurements, having a constant rate over the frequency range from 0.5 Hz to > 50 Hz. The active surface increased by a factor of roughly 150 per every micron of film with respect to the area of a flat ZnO electrode: this linear relationship held from less than 1 {mu}m up to 9 {mu}m thick films. (author)

  5. Temperature-dependent evolution of chemisorbed digermane in Ge thin film growth

    International Nuclear Information System (INIS)

    Eres, D.; Sharp, J.W.

    1992-01-01

    The formation and evolution of chemisorbed digermane layers in context with germanium thin film growth was investigated by time- resolved surface reflectometry. Modulation of the source gas supply made possible the separation and independent study of the temperature dependence of the adsorption and desorption processes. The regeneration of active sites by molecular hydrogen desorption was identified as the rate-limiting step at low substrate temperatures. A dynamic method of thin film growth was demonstrated by repetitively replenishing the active film growth sites regenerated between two successive source gas pulses. The film growth rate was shown to be related to the substrate temperature and the delay time between successive source gas pulses

  6. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    Science.gov (United States)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K. Y.; Bhosale, C. H.

    2013-05-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

  7. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    International Nuclear Information System (INIS)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K.Y.; Bhosale, C. H.

    2013-01-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process. (semiconductor materials)

  8. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  9. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    Science.gov (United States)

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  10. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages.

    Science.gov (United States)

    Yang, Hyun-Ju; Song, Kyung Bin

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging.

  11. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages

    Science.gov (United States)

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging. PMID:27433114

  12. Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing.

    Science.gov (United States)

    Kajisa, Taira; Yanagimoto, Yoshiyuki; Saito, Akiko; Sakata, Toshiya

    2018-02-23

    Surface-coated poly(catecholamine) (pCA) films have attracted attention as biomaterial interfaces owing to their biocompatible and physicochemical characteristics. In this paper, we report that pCA-film-coated electrodes are useful for potentiometric biosensing devices. Four different types of pCA film, l-dopa, dopamine, norepinephrine, and epinephrine, with thicknesses in the range of 7-27 nm were electropolymerized by oxidation on Au electrodes by using cyclic voltammetry. By using the pCA-film electrodes, the pH responsivities were found to be 39.3-47.7 mV/pH within the pH range of 1.68 to 10.01 on the basis of the equilibrium reaction with hydrogen ions and the functional groups of the pCAs. The pCA films suppressed nonspecific signals generated by other ions (Na + , K + , Ca 2+ ) and proteins such as albumin. Thus, the pCA-film electrodes can be used in pH-sensitive and pH-selective biosensors. HeLa cells were cultivated on the surface of the pCA-film electrodes to monitor cellular activities. The surface potential of the pCA-film electrodes changed markedly because of cellular activity; therefore, the change in the hydrogen ion concentration around the cell/pCA-film interface could be monitored in real time. This was caused by carbon dioxide or lactic acid that is generated by cellular respiration and dissolves in the culture medium, resulting in the change of hydrogen concentration. pCA-film electrodes are suitable for use in biocompatible and pH-responsive biosensors, enabling the more selective detection of biological phenomena.

  13. Photocatalytic activity of Al2O3-doped TiO2 thin films activated with visible light on the bacteria Escherichia coli

    International Nuclear Information System (INIS)

    Barajas-Ledesma, E.; Garcia-Benjume, M.L.; Espitia-Cabrera, I.; Bravo-Patino, A.; Espinoza-Beltran, F.J.; Mostaghimi, J.; Contreras-Garcia, M.E.

    2010-01-01

    Al 2 O 3 -doped TiO 2 thin films were prepared by combining electrophoretic deposition (EPD) with sputtering. A Corning* glass was used as a substrate, in which a titanium film was deposited by sputtering. Then, a precursor sol was prepared with Ti(n-OBu) 4 and Al(s-OBu) 3 and used as the medium for EPD. Next, the thin films were sintered and, finally, characterised by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Several cultures of Escherichia coli, strain XL1-Blue, were prepared. Nine experiments were carried out. In three of them, an inoculum (a low amount of a product that contains bacteria) was prepared without a film; in the other six Al 2 O 3 -doped TiO 2 film-coated glass substrates were irradiated with visible light before they were introduced in the inoculum. The SEM and EDS results showed that TiO 2 -Al 2 O 3 films were obtained, covering all the glass substrate and with uniform size of particles forming them, and that the aluminium was distributed uniformly on the film. XRD results showed that rutile phase was obtained. By TEM, the structure of TiO 2 was demonstrated. Al 2 O 3 -doped TiO 2 thin films were successful at eliminating E. coli.

  14. Influence of film dimensions on film droplet formation.

    Science.gov (United States)

    Holmgren, Helene; Ljungström, Evert

    2012-02-01

    Aerosol particles may be generated from rupturing liquid films through a droplet formation mechanism. The present work was undertaken with the aim to throw some light on the influence of film dimensions on droplet formation with possible consequences for exhaled breath aerosol formation. The film droplet formation process was mimicked by using a purpose-built device, where fluid films were spanned across holes of known diameters. As the films burst, droplets were formed and the number and size distributions of the resulting droplets were determined. No general relation could be found between hole diameter and the number of droplets generated per unit surface area of fluid film. Averaged over all film sizes, a higher surface tension yielded higher concentrations of droplets. Surface tension did not influence the resulting droplet diameter, but it was found that smaller films generated smaller droplets. This study shows that small fluid films generate droplets as efficiently as large films, and that droplets may well be generated from films with diameters below 1 mm. This has implications for the formation of film droplets from reopening of closed airways because human terminal bronchioles are of similar dimensions. Thus, the results provide support for the earlier proposed mechanism where reopening of closed airways is one origin of exhaled particles.

  15. Duplex Tear Film Evaporation Analysis.

    Science.gov (United States)

    Stapf, M R; Braun, R J; King-Smith, P E

    2017-12-01

    Tear film thinning, hyperosmolarity, and breakup can cause irritation and damage to the human eye, and these form an area of active investigation for dry eye syndrome research. Recent research demonstrates that deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. In this paper, we explore the conditions for tear film breakup by considering a model for tear film dynamics with two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of osmosis, evaporation as modified by the lipid, and the polar portion of the lipid layer. We solve the system numerically for reasonable parameter values and initial conditions and analyze how shifts in these cause changes to the system's dynamics.

  16. Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Harish Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Katiyar, R S [Department of Physics, University of Puerto Rico, San Juan, PR 00931-3343 (Puerto Rico); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2007-10-07

    We study the influence of Mn doping on the vibrational properties of rf sputtered ZnO thin films. Raman spectra of the Mn doped ZnO samples reveal two additional vibrational modes, in addition to the host phonon modes, at 252 and 524 cm{sup -1}. The intensity of the additional modes increases continuously with Mn concentration in ZnO and can be used as an indication of Mn incorporation in ZnO. The modes are assigned to the activation of ZnO silent modes due to relaxation of Raman selection rules produced by the breakdown of the translational symmetry of the crystal lattice with the incorporation of Mn at the Zn site. Furthermore, the A{sub 1} (LO) mode is observed with very high intensity in the Raman spectra of undoped ZnO thin film and is attributed to the built-in electric field at the grain boundaries.

  17. Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films

    International Nuclear Information System (INIS)

    Yadav, Harish Kumar; Sreenivas, K; Katiyar, R S; Gupta, Vinay

    2007-01-01

    We study the influence of Mn doping on the vibrational properties of rf sputtered ZnO thin films. Raman spectra of the Mn doped ZnO samples reveal two additional vibrational modes, in addition to the host phonon modes, at 252 and 524 cm -1 . The intensity of the additional modes increases continuously with Mn concentration in ZnO and can be used as an indication of Mn incorporation in ZnO. The modes are assigned to the activation of ZnO silent modes due to relaxation of Raman selection rules produced by the breakdown of the translational symmetry of the crystal lattice with the incorporation of Mn at the Zn site. Furthermore, the A 1 (LO) mode is observed with very high intensity in the Raman spectra of undoped ZnO thin film and is attributed to the built-in electric field at the grain boundaries

  18. Asymmetric photoelectric property of transparent TiO2 nanotube films loaded with Au nanoparticles

    International Nuclear Information System (INIS)

    Wang, Hui; Liang, Wei; Liu, Yiming; Zhang, Wanggang; Zhou, Diaoyu; Wen, Jing

    2016-01-01

    Highlights: • Highly transparent films of TiO 2 nanotube arrays were directly fabricated on FTO glasses. • Semitransparent TNT-Au composite films were obtained and exhibited excellent photoelectrocatalytic ability. • Back-side of TNT-Au composite films was firstly irradiated and tested to compare with front-side of films. - Abstract: Semitransparent composite films of Au loaded TiO 2 nanotubes (TNT-Au) were prepared by sputtering Au nanoparticles on highly transparent TiO 2 nanotubes films, which were fabricated directly on FTO glasses by anodizing the Ti film sputtered on the FTO glasses. Compared with pure TNT films, the prepared TNT-Au films possessed excellent absorption ability and high photocurrent response and improved photocatalytic activity under visible-light irradiation. It could be concluded that Au nanoparticles played important roles in improving the photoelectrochemical performance of TNT-Au films. Moreover, in this work, both sides of TNT-Au films were researched and compared owing to theirs semitransparency. It was firstly found that the photoelectric activity of TNT-Au composite films with back-side illumination was obviously superior to front-side illumination.

  19. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  20. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  1. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  2. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  3. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Chen, Yingzhi; Huang, Zheng-Hong; Yue, Mengbin; Kang, Feiyu

    2014-01-21

    Organic nanostructures in terms of porphyrin building blocks have shown great potential in visible-light photocatalytic applications because of their optical, electrical, and catalytic properties. Graphenes are known to provide a high-quality two-dimensional (2D) support for inorganic semiconductor nanostructures to increase the adsorption capability of the photocatalysts and an electron-transfer medium with attractive potential to enhance photogenerated charge separation. A combination of porphyrin nanostructures with graphene sheets, particularly in the form of free-standing films, is highly desirable due to its photocatalysing feasibility and convenience. Toward this aim, we demonstrate a facile method to integrate porphyrin (meso-tetra(p-hydroxyphenyl)porphyrin, p-THPP) nanoparticles (NPs) into macroscopic graphene (reduced graphene oxide, rGO) films through vacuum filtration of the co-colloids of graphene oxide (GO) and p-THPP nanoparticles (NPs) followed by gaseous reduction. The obtained p-THPP/rGO nanohybrid film exhibits enhanced visible-light photocatalytic activity compared to each moiety of the hybrid, and this photocatalyst can be easily separated and recycled for successive use with excellent stability. The results show that this facile fabrication of the p-THPP/rGO nanohybrid film makes it available for high-performance optoelectronic applications, as well as for device integration.

  4. Preparation and characterization of HMSPP/MMT/silver nanocomposite films with antibacterial activity

    International Nuclear Information System (INIS)

    Oliani, Washington Luiz; Komatsu, Luiz Gustavo Hiroki; Berenguer, Isabelle; Lugao, Ademar Benevolo; Parra, Duclerc Fernandes; Lincopan, Nilton

    2015-01-01

    The aim of study was to use nanocomposites for bactericide packing for food. The polypropylene modified by irradiation in acetylene at dose of 12.5 kGy, also known as high-melt-strength-polypropylene (HMSPP), with montmorillonite (MMT) and silver nanoparticles (AgNPs) composed a mix to process by melt intercalation in a twin-screw extruder. As compatibilizer agent it has been used a propylene graft maleic anhydride copolymer (PP-g-MA). The nanocomposites were evaluated by Fourier Transformed Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and determination of antibacterial activity. The results indicate the formation of microstructures predominantly intercalated and flocculated. Further, the antibacterial properties of the films were investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. (author)

  5. Preparation and characterization of HMSPP/MMT/silver nanocomposite films with antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, Washington Luiz; Komatsu, Luiz Gustavo Hiroki; Berenguer, Isabelle; Lugao, Ademar Benevolo; Parra, Duclerc Fernandes, E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lincopan, Nilton [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola de Farmacia. Dept. de Analises Clinicas; Rangari, Vijaya Kumar [Center For Advanced Materials Science and Engineering Tuskegee University, AL (United States)

    2015-07-01

    The aim of study was to use nanocomposites for bactericide packing for food. The polypropylene modified by irradiation in acetylene at dose of 12.5 kGy, also known as high-melt-strength-polypropylene (HMSPP), with montmorillonite (MMT) and silver nanoparticles (AgNPs) composed a mix to process by melt intercalation in a twin-screw extruder. As compatibilizer agent it has been used a propylene graft maleic anhydride copolymer (PP-g-MA). The nanocomposites were evaluated by Fourier Transformed Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and determination of antibacterial activity. The results indicate the formation of microstructures predominantly intercalated and flocculated. Further, the antibacterial properties of the films were investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. (author)

  6. Electrically and thermally activated ageing mechanisms in metallised polymer film capacitors

    International Nuclear Information System (INIS)

    Lee, Yuen Pen

    2001-01-01

    This dissertation describes a combined computational and experimental study to understand the fundamental electrostatic, thermal, electromagnetic, and discharge related processes during the ageing of metallised polymer film capacitors. In the event of internal breakdowns, these capacitors are capable of 'self-healing' through a controlled isolation of defects on the electrode surfaces by mosaic patterning the electrode. The objective of this project is to develop viable computer models to unravel electrothermally activated ageing processes in capacitors. To provide the necessary validation to any capacitor models developed, our work is supported by comprehensive experiments including industrial standard accelerated life tests and associated breakdown damage analyses of tested capacitors. These have enabled an empirical identification of main factors affecting the reliability and lifetime of capacitors. Relevant raw data and the qualitative picture enabled by these data are crucial to the development and refinement of viable computational models of capacitors. Given the complexity of ageing processes, it is both very difficult and unnecessary to develop a one-for-all model that describes indiscriminately all relevant processes. The approach adapted in this work has been to prioritise key ageing processes and modularise each process with its own computer model. The overall picture of capacitor ageing can then be unravelled by integrating all modules together. For instance, the fine geometrical features of the electrode mosaic pattern and the capacitor's laminated structure have been assessed through a concept of field intensification using a 2D electrostatic finite element computation. With fine geometrical features accounted for by the field intensification concept, fast electric events in capacitors can be simulated using a simple equivalent circuit model. Similar assessment of heat transfer has led to an equally efficient modelling of thermal events in capacitors

  7. Equilibrium helium film in the thick film limit

    International Nuclear Information System (INIS)

    Klier, J.; Schletterer, F.; Leiderer, P.; Shikin, V.

    2003-01-01

    For the thickness of a liquid or solid quantum film, like liquid helium or solid hydrogen, there exist still open questions about how the film thickness develops in certain limits. One of these is the thick film limit, i.e., the crossover from the thick film to bulk. We have performed measurements in this range using the surface plasmon resonance technique and an evaporated Ag film deposited on glass as substrate. The thickness of the adsorbed helium film is varied by changing the distance h of the bulk reservoir to the surface of the substrate. In the limiting case, when h > 0, the film thickness approaches about 100 nm following the van der Waals law in the retarded regime. The film thickness and its dependence on h is precisely determined and theoretically modeled. The equilibrium film thickness behaviour is discussed in detail. The agreement between theory and experiment is very good

  8. Cystamine immobilization on TiO2 film surfaces and the influence on inhibition of collagen-induced platelet activation

    International Nuclear Information System (INIS)

    Zhou Yujuan; Weng Yajun; Zhang Liping; Jing Fengjuan; Huang Nan; Chen Junying

    2011-01-01

    Poor haemocompatibility is a main issue of artificial cardiovascular materials in clinical application. Nitric oxide (NO), produced by vascular endothelial cells, is a well known inhibitor of platelet adhesion and activation. Thus, NO-releasing biomaterials are beneficial for improving haemocompatibility of blood-contacting biomedical devices. In this paper, a novel method was developed for enhancement of haemocompatibility by exploiting endogenous NO donors. TiO 2 films were firstly synthesized on Si (1 0 0) wafers via unbalanced magnetron sputtering technology, and then polydopamine was grafted on TiO 2 films and used as a linker for further immobilization of cystamine. The obtained surfaces were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. NO generation is evaluated by saville-griess reagents, and it shows that cystamine immobilized samples are able to catalytically generate NO by decomposing endogenous S-nitrosothiols (RSNO). In vitro platelet adhesion results reveal that cystamine modified surfaces can inhibit collagen-induced platelet activation. ELISA analysis reveals that cGMP in platelets obviously increases on cystamine immobilized surface, which suggests the reducing of platelet activation is through NO/cGMP signal channel. It can be concluded that cystamine immobilized surface shows better blood compatibility by catalyzing NO release from the endogenous NO donor. It may be a promising method for improvement of haemocompatibility of blood-contacting implants.

  9. Making Sense of Business and Community in Hollywood Films

    DEFF Research Database (Denmark)

    Hansen, Per H.; Magnussen, Anne

    2018-01-01

    We analyze how Hollywood films from 1928 to 2016 represented business within a broad historical and business context. We argue that the films actively contributed to audiences’ sensemaking processes and to how different groups perceived the role of business in society. We advance the idea...... that films provided cultural blueprints to be used by viewers for their own understanding, identification, and practices in relation to business in its historical context, particularly during periods of uncertainty, crisis, and instability when many films addressed deeper societal concerns about the role...... of business....

  10. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging.

    Science.gov (United States)

    Moghimi, Roya; Aliahmadi, Atousa; Rafati, Hasan

    2017-11-01

    Edible films containing essential oils (EO) as natural antibacterial agents are promising systems for food preservation. In this work, nanoemulsions of Thymus daenensis EO (wild; F1 and cultivated; F2) were loaded in hydroxyl propyl methyl cellulose (HPMC) films and the effect of different parameters (polymer, plasticizer, and EO concentration) on the film properties were analyzed and optimized. Prepared HPMC films were characterized in terms of EO loading, morphology, mechanical properties, and the antibacterial activity. The results of SEM showed uniform incorporation of nanoemulsions into the edible film. Investigation of the mechanical properties of two edible films revealed a plasticizing effect of T. daenensis EO on the films. Also, edible films had noticeable antimicrobial activity against selected microorganisms, i.e. 47.0±2.5mm and 22.6±0.5mm zone of inhibition against S. aureus for films containing F1 and F2, respectively. Incorporation of nanoemulsions into the HPMC films can be used for active food preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    Science.gov (United States)

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  12. Manufacturing Te/PEDOT Films for Thermoelectric Applications.

    Science.gov (United States)

    Culebras, Mario; Igual-Muñoz, Ana María; Rodríguez-Fernández, Carlos; Gómez-Gómez, María Isabel; Gómez, Clara; Cantarero, Andrés

    2017-06-21

    In this work, flexible Te films have been synthesized by electrochemical deposition using PEDOT [poly(3,4-ethylenedioxythiophene)] nanofilms as working electrodes. The Te electrodeposition time was varied to find the best thermoelectric properties of the Te/PEDOT double layers. To show the high quality of the Te films grown on PEDOT, the samples were analyzed by Raman spectroscopy, showing the three Raman active modes of Te: E 1 , A 1 , and E 2 . The X-ray diffraction spectra also confirmed the presence of crystalline Te on top of the PEDOT films. The morphology of the Te/PEDOT films was studied using scanning electron microscopy, showing a homogeneous distribution of Te along the film. Also an atomic force microscope was used to analyze the quality of the Te surface. Finally, the electrical conductivity and the Seebeck coefficient of the Te/PEDOT films were measured as a function of the Te deposition time. The films showed an excellent thermoelectric behavior, giving a maximum power factor of about 320 ± 16 μW m -1 K -2 after 2.5 h of Te electrochemical deposition, a value larger than that reported for thin films of Te. Qualitative arguments to explain this behavior are given in the discussion.

  13. Film beyond boundaries: film, migrant narratives and other media Film beyond boundaries: film, migrant narratives and other media

    OpenAIRE

    Anelise Reich Corseuil

    2008-01-01

    The articles here presented are representative of the debates about the various transformational aspects of film studies, fostering the discussion about the transformations and interactions between national and international narrative forms, the interrelations between film and literature, and film with other media. The critical perspectives here presented range from an emphasis on cultural materialism, dialogism, reception theory, deconstructionism, narrative studies to film aesthetics or fil...

  14. Characterization of chemically deposited Ag/sub 2/S thin films

    International Nuclear Information System (INIS)

    Choudhury, M.G.M.; Rahman, M.M; Shahjahan, M.; Hossain, M.S.; Muhibbullah, M.; Uddin, M.A.; Banu, D.A.

    2001-01-01

    Silver Sulphide (Ag/sub 2/S) thin films were prepared by the chemical deposition method on glass substrates. Films of different thickness were deposited at room temperature. The films obtained were found to the uniform, pin-hole free and strongly adherent to the substrates. Films were characterized by X-$D, Hall effect, dc conductivity, thermoelectric power and optical measurements. X-RD revealed that as deposited films are amorphous with some microcrystalline structure. Hall effect measurement shows that the material deposited is n-type semiconductor with carrier concentration of the order of 10/sup 14/ cm/sup -3/. The dc dark conductivity shows two distinct conduction regions. The conductivity increases quite sharply above a transition temperature. Tt and below Tt the conductivity is weakly activated process with hopping via localized states. Above Tt the activation energy is quite high and the conduction may be due to impurity states to extended states. From the nature of variation of thermoelectric power with temperature it was found that in this material the position of Fermi level lie above the conduction band for thicker films and below the conduction band for relatively thinner films. The optical band gap of the films has been calculated from the transmittance spectra. The evaluated optical band gap E/sup opt/ was found to be about 1.1 eV and the value do not change much with film thickness. The refractive index, extinction coefficient and dielectric constants have also been evaluated from the transmission measurements. (author)

  15. Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Choi, Jinwook; Jeong, Yongsoo; Lee, Oh Yeon; Oh, Han-Jun

    2011-01-01

    Micro-arc oxidation method is a useful process for mesoporous titanium dioxide films. In order to improve the photocatalytic activity of the TiO 2 film, N-Eu co-doped titania catalyst was synthesized by micro-arc oxidation in the H 2 SO 4 /Eu(NO 3 ) 3 mixture solution. The specific surface area and the roughness of the anodic titania film fabricated in the H 2 SO 4 /Eu(NO 3 ) 3 electrolyte, were increased compared to that of the anodic TiO 2 film prepared in H 2 SO 4 solution. The absorbance response of N-Eu titania film shows a higher adsorption onset toward visible light region, and the incorporated N and Eu ions during anodization as a dopant in the anodic TiO 2 film significantly enhanced the photocatalytic activity for dye degradation. After dye decomposition test for 3 h, dye removal rates for the anodic TiO 2 film were 60.7% and 90.1% for the N-Eu doped titania film. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the surface enlargement and the new electronic state of the TiO 2 band gap by N and Eu co-doping.

  16. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    Science.gov (United States)

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  17. New developments in radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, C. G.

    2006-01-01

    NIST has been a pioneer in the use of radiochromic film for medical dosimetry applications. Beginning in 1988 with experiments with 90 Sr/Y ophthalmic applicators, this work has continued into the present. A review of the latest applications is presented, which include high activity low-energy photon source dosimetry and ultra-high resolution film densitometry for dose enhancement near stents and microbeam radiation therapy dosimetry. An exciting recent development is the availability of a new radiochromic emulsion which has been developed for IMRT dosimetry. This emulsion is an order of magnitude more sensitive than was previously available. Measurements of the sensitivity and uniformity of samples of this new film are reported, using a spectrophotometer and two scanning laser densitometers. A unique feature of the new emulsion is that the peak of the absorbance spectrum falls at the wavelength of the HeNe lasers used in the densitometer, maximising sensitivity. When read at a wavelength of 633 nm, sensitivities on the order of 900 mAU Gy -1 were determined for this new film type, compared with about 40 mAU Gy -1 for type HS film, 20 mAU Gy -1 for type MD-55-2 film, and 3 mAU Gy -1 for type HD-810. Film uniformities were found to be good, on the order of 6% peak to peak. However, there is a strong polarisation effect in the samples examined, requiring care in film orientation during readout. (authors)

  18. Fabrication of La-doped TiO2 Film Electrode and investigation of its electrocatalytic activity for furfural reduction

    International Nuclear Information System (INIS)

    Wang, Fengwu; Xu, Mai; Wei, Lin; Wei, Yijun; Hu, Yunhu; Fang, Wenyan; Zhu, Chuan Gao

    2015-01-01

    Lanthanum trivalent ions (La 3+ ) doped nano-TiO 2 film electrode was prepared by the sol–gel method. The prepared electrode was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). The electrocatalytic properties of the roughened TiO 2 film electrode towards the electrocatalytic reduction of furfural to furfural alcohol were evaluated by CV and preparative electrolysis experiments. The results of the optimum molar ratio of La: Ti was 0.005:1. Experimental evidence was presented that the La nano-TiO 2 electrode exhibited higher electrocatalytic activity for the reduction of furfural than the undoped nano-TiO 2 electrode in N,N-dimethylformamide medium. Bulk electrolysis studies were also carried out for the reduction of furfural and the product was confirmed by NMR

  19. Suppressing the Photocatalytic Activity of TiO2 Nanoparticles by Extremely Thin Al2O3 Films Grown by Gas-Phase Deposition at Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-01-01

    Full Text Available This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2 pigment powders by extremely thin aluminum oxide (Al2O3 films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development.

  20. Diffusion and crystal growth in plasma deposed thin ITO films

    International Nuclear Information System (INIS)

    Steffen, H.; Wulff, H.; Quaas, M.; Tun, Tin Maung.; Hipple, R.

    2000-01-01

    Tin-doped indium oxide (ITO) films were deposited by means of DC-planar magnetron sputtering. A metallic In/Sn (90/10) target an Ar/O 2 gas mixture were used. The oxygen flow was varied between 0 and 2 sccm. Substrate voltages between 0 and -100 V were used. With increasing oxygen flow film structure and composition change from crystalline metallic In/Sn to amorphous ITO. Simultaneously the deposition rate decreases and the film density increases. The diffusion of oxygen into metallic In/Sn films and the amorphous-to-crystalline transformation of ITO were studied using in situ grazing incidence X-ray diffractometry (GIXRD), grazing incidence reflectometry (GIXR), and AFM. From the X-ray integral intensities diffusion constants, activation energies of the diffusion, reaction order and activation energy of the crystal growth were extracted. (authors)

  1. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  2. Bioactive Films Containing Alginate-Pectin Composite Microbeads with Lactococcus lactis subsp. lactis: Physicochemical Characterization and Antilisterial Activity

    Directory of Open Access Journals (Sweden)

    Mariam Bekhit

    2018-02-01

    Full Text Available Novel bioactive films were developed from the incorporation of Lactococcus lactis into polysaccharide films. Two different biopolymers were tested: cellulose derivative (hydroxylpropylmethylcellulose (HPMC and corn starch. Lactic acid bacteria (LAB free or previously encapsulated in alginate-pectin composite hydrogel microbeads were added directly to the film forming solution and films were obtained by casting. In order to study the impact of the incorporation of the protective culture into the biopolymer matrix, the water vapour permeability, oxygen permeability, optical and mechanical properties of the dry films were evaluated. Furthermore, the antimicrobial effect of bioactive films against Listeria monocytogenes was studied in synthetic medium. Results showed that the addition of LAB or alginate-pectin microbeads modified slightly films optical properties. In comparison with HPMC films, starch matrix proves to be more sensitive to the addition of bacterial cells or beads. Indeed, mechanical resistance of corn starch films was lower but barrier properties were improved, certainly related to the possible establishment of interactions between alginate-pectin beads and starch. HPMC and starch films containing encapsulated bioactive culture showed a complete inhibition of listerial growth during the first five days of storage at 5 °C and a reduction of 5 logs after 12 days.

  3. Watching a Film With Others : Towards a Theory of Collective Spectatorship

    NARCIS (Netherlands)

    Hanich, Julian

    This essay suggests that collectively watching a film with quiet attention should be considered a kind of joint action. When silently watching a film in a cinema the viewers are not merely engaged in individual actions – watching a film with others often implies a shared activity based on a

  4. Characterization of polymer, DNA-based, and silk thin film resistivities and of DNA-based films prepared for enhanced electrical conductivity

    Science.gov (United States)

    Yaney, Perry P.; Ouchen, Fahima; Grote, James G.

    2009-08-01

    DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.

  5. Konsep Teater Epik Brecht dalam Film Dogville

    Directory of Open Access Journals (Sweden)

    Philipus Nugroho Hari Wibowo

    2014-11-01

    Full Text Available Film yang menggunakan panggung sebagai tempat kejadian (setting masih jarangditemukan di Indonesia. Kalaupun ada film-film tersebut hanyalah mengisahkankehidupan orang-orang teater dengan segala aktivitas kesehariannya, ataumentransformasikan naskah-naskah panggung menjadi sebuah film. Film Dogvillekarya sineas Denmark, Lars von Trier, menggunakan konsep pemanggunganteater dalam penggarapan filmnya.Dalam film tersebut, setting sebuah kota hanyadihadirkan disebuah studio besar (panggung dengan garis-garis kapur yangdianggap mewakili berbagai macam benda ataupun dinding yang memisahkan satutempat dengan tempat lainnya. Furnitur yang dihadirkan sangat minimalis, hanyabeberapa benda saja yang dihadirkan yang dianggap cukup mengidentifikasikantempat tersebut. Background yang dipakai hanya layar hitam dan putih untukmembedakan adegan malam dan adegan siang. Berdasarkan kesamaan strukturpembentuk yang terdapat dalam film (narasi dan teater, yaitu tema, alur,penokohan, dan setting yang dipaparkan secara deskriptif, dapat dibuktikan bahwaKonsep Teater Epik Brecht yang selama ini diterapkan dalam panggung bisaditerapkan dalam film Dogville. Brecht’s Concept of EpicTheaterin Dogville Film. Films using the stage as the scene(setting are still rare in Indonesia, even if there are only films that tell us about the lifeof the theatre (stage with all activities of daily life, or transforming the manuscripts stage(theater into a movie. LarsvonTrier, Dannish film maker, made Dogville – it uses theconcept of theatrical staging in the process of the film making. In the film, a city settingis just presented in a large studio (stage with the chalk lines are considered to representa wide range of objects or wall that separate sone place to another one. Presenting veryminimalist furniture, only a few objects are presented and sufficient to identify the place.Background screens use only black and white to distinguish the scenes and the scenesduring the night. Based

  6. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...

  7. International Geophysical Year, 1957-1958: Drifting Station Alpha Documentary Film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This film documents the activities that occurred on Drifting Station Alpha in the Arctic Ocean during the International Geophysical Year, 1957 to 1958. The film is...

  8. Regards sur le Cinema (A Look at the Film Industry).

    Science.gov (United States)

    Arroyo, Francine; Avelino, Cristina

    1996-01-01

    Examines the role of films as an instructional aid in class activities devoted to learning a foreign language as well as one's native tongue with the support of modern technology. One of the primary ways of using film to encourage learning is to interest the students in criticizing the film and then to expose them to published criticism of the…

  9. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles

    Directory of Open Access Journals (Sweden)

    Inyoung Choi

    2017-06-01

    Full Text Available Biopolymer films based on apple skin powder (ASP and carboxymethylcellulose (CMC were developed with the addition of apple skin extract (ASE and tartaric acid (TA. ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR, optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film.

  10. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Rita, E-mail: ritarebelo@det.uminho.pt [2C2T, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); CEB, Center for Biological Engineering, LIBRO—Laboratório de Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-335 Braga (Portugal); Manninen, N.K. [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, University of Coimbra, 3030-788 Coimbra (Portugal); Fialho, Luísa [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Henriques, Mariana [CEB, Center for Biological Engineering, LIBRO—Laboratório de Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-335 Braga (Portugal); Carvalho, Sandra [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, University of Coimbra, 3030-788 Coimbra (Portugal)

    2016-05-15

    Highlights: • Ag and Ag{sub x}O thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering. • Coatings were characterized chemically, physically and structurally. • In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. • Ag{sub x}O coating presented antibacterial behavior. - Abstract: Ag and Ag{sub x}O thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the Ag{sub x}O thin film showed both metallic Ag and Ag−O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while Ag{sub x}O layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and Ag{sub x}O surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to Ag{sub x}O coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was

  11. Solution-derived photocatalytic films for environmental cleaning applications

    International Nuclear Information System (INIS)

    Štangar, U Lavrencic; Kete, M; Šuligoj, A; Tasbihi, M

    2012-01-01

    When photocatalytic water treatment is concerned, suspended catalyst in the aqueous phase is usually more efficient than immobilized on an inert support, but in the former case an undesirable separation/recycling step is needed. We have therefore concentrated on the preparation of immobilized catalysts in the form of films on glass and aluminium supports. The low-temperature sol-gel processing route to obtain transparent thin TiO 2 /SiO 2 films for self-cleaning purposes and thicker TiO 2 /SiO 2 coatings for efficient removal of pollutants in water and air are presented. The synthesis is based on a production of a nanocrystalline titania sol with a silica binder that after deposition does not require thermal treatment at high temperatures. Depending on the target application, some specific synthesis parameters and photocatalytic activity testing conditions are illustrated. For water-cleaning coatings fast kinetics is required, which was achieved by addition of a highly active titania powder into the sol. The same preparation procedure was used to prepare efficient air-cleaning coatings. On the other hand, self-cleaning films were thinner and transparent to keep the original appearance of the substrate and they solidified at ambient conditions. Advanced methodologies to evaluate photocatalytic activity of the films were applied.

  12. Antimicrobial food packaging film based on the release of LAE from EVOH.

    Science.gov (United States)

    Muriel-Galet, Virginia; López-Carballo, Gracia; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-02

    The aim of this work was to develop antimicrobial films for active packaging applications containing the natural antimicrobial compound LAE (lauramide arginine ethyl ester) in EVOH copolymers with different mol % ethylene contents (i.e. EVOH-29 and EVOH-44). EVOH-29 and EVOH-44 films were made by casting and incorporating 0.25%, 1%, 5%, and 10% LAE in the film forming solution (w/w with respect to polymer weight). Previously, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of LAE against Listeria monocytogenes, Escherichia coli, and Salmonella enterica were determined by a microdilution assay. The antimicrobial activity of the resulting films was tested in vitro against these microorganisms in liquid culture media. The activity of the films was also evaluated over time. The results showed that films containing 5% and 10% LAE produced total growth inhibition and viable counts decreased with 0.25% and 1% LAE. Finally, the effectiveness of the films was tested by applying them to an infant formula milk inoculated with L. monocytogenes and S. enterica and stored for 6 days at 4°C. The application of films with LAE to infant formula milk inoculated with L. monocytogenes reduced at the end of storage period about 4 log in case of 10% LAE and with S. enterica reduced 3.74 log and 3.95 log with EVOH 29 5% and 10%, respectively, and EVOH-44 5% and 10% LAE reduced 1 log and 3.27 log, respectively, at the end of storage. The antimicrobial capacity of EVOH-29 films was greater than that of EVOH-44 films in all the cases tested. In general, the films were more effective in inhibiting the growth of L. monocytogenes than S. enterica, this inhibition being more acute at the end of the storage time. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application.

    Science.gov (United States)

    Fouda, Moustafa M G; El-Aassar, M R; El Fawal, G F; Hafez, Elsayed E; Masry, Saad Hamdy Daif; Abdel-Megeed, Ahmed

    2015-03-01

    Biopolymer composite film containing k-carrageenan (KC), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) was formulated by dissolving KC and PVP in water containing PEG. Silver nanoparticles (AgNPs), was produced by Honeybee and added to solution. Finally, all solutions were poured onto dishes and dried overnight at 40°C to form the final films. Tensile strength (TS) and elongation (E %) is evaluated. The water contact angle is inspected. Thermal properties (TGA) and swelling behavior for water were considered. Fungal activity is also examined. Morphology of all films was also explored using scanning electron microscope. AgNPs induced significant hydrophilicity to KC-PVP-PEG film with contact angle of 41.6 and 34.7 for KC-PVP-PEG-AgNPs. Films with AgNPs exhibited higher thermal stability and strength properties than other films without. Films with AgNPs explore lower swelling behavior than other films without. Both SEM and EDX proved the deposition of AgNPs on the surface of films. Films with AgNPs showed higher activity against pathogenic fungi compared with the chemical fungicide; fluconazole. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Leaching-resistant carrageenan-based colorimetric oxygen indicator films for intelligent food packaging.

    Science.gov (United States)

    Vu, Chau Hai Thai; Won, Keehoon

    2014-07-23

    Visual oxygen indicators can give information on the quality and safety of packaged food in an economic and simple manner by changing color based on the amount of oxygen in the packaging, which is related to food spoilage. In particular, ultraviolet (UV)-activated oxygen indicators have the advantages of in-pack activation and irreversibility; however, these dye-based oxygen indicator films suffer from dye leaching upon contact with water. In this work, we introduce carrageenans, which are natural sulfated polysaccharides, to develop UV-activated colorimetric oxygen indicator films that are resistant to dye leakage. Carrageenan-based indicator films were fabricated using redox dyes [methylene blue (MB), azure A, and thionine], a sacrificial electron donor (glycerol), an UV-absorbing photocatalyst (TiO2), and an encapsulation polymer (carrageenan). They showed even lower dye leakage in water than conventional oxygen indicator films, owing to the electrostatic interaction of anionic carrageenan with cationic dyes. The MB/TiO2/glycerol/carrageenan oxygen indicator film was successfully bleached upon UV irradiation, and it regained color very rapidly in the presence of oxygen compared to the other waterproof oxygen indicator films.

  15. Photocatalytic activity of V doped ZnO nanoparticles thin films for the removal of 2- chlorophenol from the aquatic environment under natural sunlight exposure.

    Science.gov (United States)

    Salah, Numan; Hameed, A; Aslam, M; Babkair, Saeed S; Bahabri, F S

    2016-07-15

    Vanadium doped ZnO powders were used as precursors to deposit thin films of V(5+) incorporated ZnO nanoparticles on glass substrates by the pulsed laser deposition technique. The observed variations in Raman signals, visible region shift in the diffuse reflectance spectra along with a small shift in the (101) reflections of the X-ray diffraction (XRD) confirmed the insertion of V(5+) ions in ZnO lattice. No other additional reflection in the XRD results other than ZnO further endorsed the occupation of lattice positions by V entities rather than independent oxide formation. The asymmetric XPS peaks of Zn2p and V2p core levels confirmed the existence of both in the vicinity. The existence of minimal proportion of V(3+) along with V(5+) states varied the alteration of the oxidation states V in the synthetic route. The SEM images at various resolutions displayed the uniform distribution identical nanoparticles without the presence of additional phases in the deposited films. The SEM cross-section measurements revealed the uniform thickness of ∼90 nm of each film, whereas the surface studies of the films were performed by AFM. The as-synthesized films were tested for photocatalytic activity in sunlight illumination for the removal of 2-chlorophenol. The unique feature of the study was the estimation of the photocatalytic activity 20 ppm of 2-chlorophenol by exposing the low exposed area. The degradation of the substrate was measured by liquid phase UV-vis spectroscopy, whereas total organic carbon measurement revealed the mineralization of the substrate. The released Cl(-) ions were also measured by ion chromatography. The estimated flatband potentials and pHzpc values of the V doped materials, by Mott-Schottky analysis and zeta potential measurements respectively, were correlated with the photocatalytic activity. The kinetics of the photocatalytic degradation/mineralization process was estimated and results were correlated with the plausible mechanism. Copyright

  16. Antibacterial effects of the artificial surface of nanoimprinted moth-eye film.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Minoura

    Full Text Available The antibacterial effect of a nanostructured film, known as "moth-eye film," was investigated. The moth-eye film has artificially formed nano-pillars, consisting of hydrophilic resin with urethane acrylate and polyethylene glycol (PEG derivatives, all over its surface that replicates a moth's eye. Experiments were performed to compare the moth-eye film with a flat-surfaced film produced from the same materials. The JIS Z2801 film-covering method revealed that the two films produced a decrease in Staphylococcus aureus and Esherichia coli titers of over 5 and 3 logs, respectively. There was no marked difference in the antibacterial effects of the two surfaces. However, the antibacterial effects were reduced by immersion of the films in water. These results indicated that a soluble component(s of the resin possessed the antibacterial activity, and this component was identified as PEG derivatives by time-of-flight secondary ion mass spectrometry (TOF-SIMS and Fourier transform infrared spectroscopy (FT-IR. When a small volume of bacterial suspension was dropped on the films as an airborne droplet model, both films showed antibacterial effects, but that of the moth-eye film was more potent. It was considered that the moth-eye structure allowed the bacteria-loaded droplet to spread and allow greater contact between the bacteria and the film surface, resulting in strong adherence of the bacteria to the film and synergistically enhanced bactericidal activity with chemical components. The antibacterial effect of the moth-eye film has been thus confirmed under a bacterial droplet model, and it appears attractive due to its antibacterial ability, which is considered to result not only from its chemical make-up but also from physical adherence.

  17. Portrait of a Cult Film Audience: "The Rocky Horror Picture Show."

    Science.gov (United States)

    Austin, Bruce A.

    1981-01-01

    Examines the phenomenon of the cult film and the characteristics of the audiences of the "Rocky Horror Picture Show." Suggests that the preparation, waiting, and finally the active participation in the viewing of the film itself appear to be part of a group ritual which characterizes the cult film as an event. (JMF)

  18. Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging.

    Science.gov (United States)

    Wu, Chunhua; Tian, Jinhu; Li, Shan; Wu, Tiantian; Hu, Yaqin; Chen, Shiguo; Sugawara, Tatsuya; Ye, Xingqian

    2016-08-01

    The chitosan gallates (CG) were obtained by free-radical-initiated grafting of gallic acid (GA) onto chitosan (CS) in this work. The chemical structures of the CG were corroborated by UV-vis, GPC and (1)H NMR analysis. The grafting reaction was accompanied with a degradation of the CS molecule. The shear-thinning flow behavior of CG film-forming solutions (CG FFS) decreased with the grafting amount of GA into CS chain, while the CG FFS grafted at a lower GA value behaved like a networks containing entangled or cross-linked polymer chains with a more elastic behavior. The increasing of GA grafting onto the CS chain led to a reduction of tensile strength, elongation at break and water resistance in the corresponding films, but increases in the antioxidant and antimicrobial activities were observed. The microstructure of the film was investigated using scanning electron and atomic force microscope, and the results were closely related to the observed film properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Active control of flow noise sources in turbulent boundary layer on a flat-plate using piezoelectric bimorph film

    International Nuclear Information System (INIS)

    Song, Woo Seog; Lee, Seung Bae; Shin, Dong Shin; Na, Yang

    2006-01-01

    The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency f b + =0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall-pressure energy spectrum when the 700ν/u τ -long bimorph film is periodically actuated at the non-dimensional frequency f b + =0.008 and 0.028. The bimorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event

  20. Preparation and evaluation of periodontal films based on polyelectrolyte complex formation.

    Science.gov (United States)

    Kassem, Abeer Ahmed; Ismail, Fatma Ahmed; Naggar, Viviane Fahim; Aboulmagd, Elsayed

    2015-05-01

    Local intra-pocket drug delivery devices can provide an effective concentration of the antimicrobial agent at the site of action with avoidance of undesirable side effects. This study explored the application of chitosan-alginate and chitosan-pectin polyelectrolyte complex (PEC) films as drug release regulators for tetracycline HCl (Tc) to treat periodontal pockets. Periodontal films with 1:1 Tc:PEC ratio were prepared using 1:1 chitosan (Ch) to sodium alginate (A) or 1:3 Ch to pectin (P). The scanning electron microscope showed acceptable film appearance and differential scanning calorimetry analysis confirmed complex formation. The in vitro release studies for both films showed a burst drug release, followed by prolonged release for 70 h. A prolonged antibacterial activity of both films against Staphylococcus aureus ATCC 6538 was observed over a period of 21 days. Aging studies indicated that the five months storage period in freezer did not significantly influence the drug release profile or the antibacterial activity of both films. Clinical evaluation showed a significant reduction in pocket depth (p < 0.0001) to their normal values (≤3 mm). PEC films could be exploited as a prolonged drug release devices for treatment of periodontal pockets.

  1. All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium

    Energy Technology Data Exchange (ETDEWEB)

    Hira, T.; Homma, T.; Uchiyama, T.; Kuwamura, K.; Kihara, Y.; Saiki, T. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522 (Japan)

    2015-01-19

    Localized surface plasmon resonance (LSPR) switching was investigated in a Au/GeSbTe/Au nanosandwich as a key active element for plasmonic integrated circuits and devices. Near-infrared single-particle spectroscopy was conducted to examine the interaction of a Au nanorod (AuNR) and Au film, between which a GeSbTe layer was incorporated as an active phase-change media. Numerical calculation revealed that hybridized modes of the AuNR and Au film exhibit a significant change of scattering intensity with the phase change. In particular, the antisymmetric (magnetic resonance) mode can be modulated effectively by the extinction coefficient of GST, as well as its refractive index. Experimental demonstration of the switching operation was performed by alternate irradiation with a picosecond pulsed laser for amorphization and a continuous wave laser for crystallization. Repeatable modulation was obtained by monitoring the scattering light around the LSPR peak at λ = 1070 nm.

  2. Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe

    International Nuclear Information System (INIS)

    Wysocka-Zolopa, Monika; Winkler, Krzysztof; Caballero, Ruben; Langa, Fernando

    2011-01-01

    Highlights: → Formation of redox active films of ferrocene derivatives of C 60 and palladium. → Fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. → Electrochemical activity at both positive and negative potentials. → Charge transfer processes accompanied by transport of supporting electrolyte to and from the polymer layers. - Abstract: Redox active films have been produced via electrochemical reduction in a solution containing palladium(II) acetate and ferrocene derivatives of C 60 (Fc-C 60 and bis-Fc-C 60 ). In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Fc-C 60 /Pd and bis-Fc-C 60 /Pd films form uniform and relatively smooth layers on the electrode surface. These films are electrochemically active in both the positive and negative potential regions. At negative potentials, reduction of fullerene moiety takes place resulting in voltammetric behavior resembles typical of conducting polymers. In the positive potential range, oxidation of ferrocene is responsible for the formation of a sharp and symmetrical peak on the voltammograms. In this potential range, studied films behave as typical redox polymers. The charge associated with the oxidation process depends on the number of ferrocene units attached to the C 60 moiety. Oxidation and reduction of these redox active films are accompanied by transport of supporting electrolyte to and from the polymer layer. Films also show a higher permeability to anions than to cations.

  3. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes.

    Science.gov (United States)

    Krampe, Raphael; Visser, J Carolina; Frijlink, Henderik W; Breitkreutz, Jörg; Woerdenbag, Herman J; Preis, Maren

    2016-01-01

    According to the European Pharmacopoeia, oromucosal films comprise mucoadhesive buccal films and orodispersible films. Both oral dosage forms receive considerable interest in the recent years as commercially available pharmaceutical products and as small scale personalized extemporaneous preparations. In this review, technological issues such as viscosity of the casting liquid, mechanical properties of the film, upscaling and the stability of the casting solution and produced films will be discussed. Furthermore, patient-related problems like appearance, mucosal irritation, taste, drug load, safety and biopharmaceutics are described. Current knowledge and directions for solutions are summarized. The viscosity of the casting solution is a key factor for producing suitable films. This parameter is amongst others dependent on the polymer and active pharmaceutical ingredient, and the further excipients that are used. For optimal patient compliance, an acceptable taste and palatability are desirable. Safe and inert excipients should be used and appropriate packaging should be provided to produced films. Absorption through the oral mucosa will vary for each active compound, formulation and patient, which gives rise to pharmacokinetic questions. Finally, the European Pharmacopoeia needs to specify methods, requirement and definitions for oromucosal film preparations based on bio-relevant data.

  4. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi; Katuri, Krishna; Kavanagh, Paul; Kumar, Amit Ravi Pradeep; Leech, Dó nal

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  5. New Poly(lactic acid) Active Packaging Composite Films Incorporated with Fungal Melanin

    OpenAIRE

    Łukasz Łopusiewicz; Filip Jędra; Małgorzata Mizielińska

    2018-01-01

    In this work, fungal melanin was used for the first time to prepare poly(lactic acid)-based composites. The films of various melanin concentrations (0.025%, 0.05% and 0.2% w/w) were prepared using an extrusion method. The mechanical, antioxidant, antimicrobial, water vapor and UV-Vis barrier properties, as well as available polyphenolics on the surface, were studied. FT-IR and Raman spectroscopy studies were carried out to analyze the chemical composition of the resulting films. The hydrophob...

  6. Photoluminescence of Mg_2Si films fabricated by magnetron sputtering

    International Nuclear Information System (INIS)

    Liao, Yang-Fang; Xie, Quan; Xiao, Qing-Quan; Chen, Qian; Fan, Meng-Hui; Xie, Jing; Huang, Jin; Zhang, Jin-Min; Ma, Rui; Wang, Shan-Lan; Wu, Hong-Xian; Fang, Di

    2017-01-01

    Highlights: • High quality Mg_2Si films were grown on Si (111) and glass substrates with magnetron sputtering, respectively. • The first observation of Photoluminescence (PL) of Mg_2Si films was reported. • The Mg_2Si PL emission wavelengths are almost independence on temperature in the range of 77–300 K. • The strongest PL emissions may be attributed to interstitial Mg donor level to valence band transitions. • The activation energy of Mg_2Si is determined from the quenching of major luminescence peaks. - Abstract: To understand the photoluminescence mechanisms and optimize the design of Mg_2Si-based light-emitting devices, Mg_2Si films were fabricated on silicon (111) and glass substrates by magnetron sputtering technique, and the influences of different substrates on the photoelectric properties of Mg_2Si films were investigated systematically. The crystal structure, cross-sectional morphology, composition ratios and temperature-dependent photoluminescence (PL) of the Mg_2Si films were examined using X-ray diffraction (XRD), Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and PL measurement system, respectively. XRD results indicate that the Mg_2Si film on Si (111) displays polycrystalline structure, whereas Mg_2Si film on glass substrate is of like-monocrystalline structure.SEM results show that Mg_2Si film on glass substrate is very compact with a typical dense columnar structure, and the film on Si substrate represents slight delamination phenomenon. EDS results suggest that the stoichiometry of Mg and Si is approximately 2:1. Photoluminescence (PL) of Mg_2Si films was observed for the first time. The PL emission wavelengths of Mg_2Si are almost independence on temperature in the range of 77–300 K. The PL intensity decreases gradually with increasing temperature. The PL intensity of Mg_2Si films on glass substrate is much larger than that of Mg_2Si film on Si (111) substrate. The activation energy of 18 meV is

  7. Crystallization kinetics of amorphous aluminum-tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T.; Radic, N. [Rugjer Boskovic Inst., Zagreb (Croatia). Div. of Mater. Sci.; Ivkov, J. [Institute of Physics, Bijenicka 46, P.O.B. 304, HR-10000 Zagreb (Croatia); Babic, E.; Tonejc, A. [Faculty of Sciences, Physics Department, Bijenicka 32, P.O.B. 162, HR-10000 Zagreb (Croatia)

    1999-01-01

    Crystallization kinetics of the amorphous Al-W thin films under non-isothermal conditions was examined by continuous in situ electrical resistance measurements in vacuum. The estimated crystallization temperature of amorphous films in the composition series of the Al{sub 82}W{sub 18} to Al{sub 62}W{sub 38} compounds ranged from 800 K to 920 K. The activation energy for the crystallization and the Avrami exponent were determined. The results indicated that the crystallization mechanism in films with higher tungsten content was a diffusion-controlled process, whereas in films with the composition similar to the stoichiometric compound (Al{sub 4}W), the interface-controlled crystallization probably occurred. (orig.) With 4 figs., 1 tab., 26 refs.

  8. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.

    Science.gov (United States)

    Louie, Mary W; Bell, Alexis T

    2013-08-21

    A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)2 to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)2/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH(-) (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER.

  9. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  10. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.

    Science.gov (United States)

    Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H

    2015-04-29

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.

  11. Hybrid methyl green/cobalt-polyoxotungstate nanostructured films: Self-assembly, electrochemical and electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Hugo C.; Fernandes, Diana M., E-mail: diana.fernandes@fc.up.pt; Freire, Cristina, E-mail: acfreire@fc.up.pt

    2015-08-30

    Graphical abstract: Hybrid {MG/Co(PW9)2}{sub n} multilayer films were successfully prepared and exhibit W-based electrocatalytic activity towards reduction of nitrite and iodate anions. - Highlights: • Layer-by-layer hybrid films {MG/Co(PW_9)_2}{sub n} were sucessfully prepared. • UV–vis was used to monitor film build-up and showed regular stepwise film growth. • XPS confirmed sucessfull {MG/Co(PW_9)_2}{sub n} film fabrication. • Films showed excellent electrocatalytic activity towards nitrite and iodate reduction. - Abstract: Hybrid multilayer films were prepared by alternately depositing cationic dye methyl green (MG) and anionic sandwich-type polyoxometalate K{sub 10}[Co{sub 4}(H{sub 2}O){sub 2}(PW{sub 9}O{sub 34}){sub 2}] (Co(PW{sub 9}){sub 2}) via electrostatic layer-by-layer (LbL) self-assembly method. Film build-up was monitored by UV–vis spectroscopy which showed a regular stepwise growth. X-ray photoelectron spectroscopy data confirmed the successful fabrication of the hybrid films with MG-Co(PW{sub 9}){sub 2} composition and scanning electron microscopy images revealed a completely covered surface with a non-uniform distribution of the molecular species. Electrochemical characterization of films by cyclic voltammetry revealed two tungsten-based reduction processes in the potential range between −0.9 and −0.5 V due to W{sup VI} → W{sup V} in Co(PW{sub 9}){sub 2}. Studies with the redox probes, [Fe(CN){sub 6}]{sup 3−/4−} and [Ru(NH{sub 3}){sub 6}]{sup 3+/2+}, revealed that not only the electrostatic attractions or repulsions have effects on the kinetics of the probe reactions, but also the film thickness. Additionally, the {MG/Co(PW_9)_2}{sub n} multilayer films exhibit efficient W-based electrocatalytic activity towards reduction of nitrite and iodate.

  12. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gosavi, S.R., E-mail: srgosavi.taloda@gmail.com [C. H. C. Arts, S. G. P. Commerce, and B. B. J. P. Science College, Taloda, Dist., Nandurbar 425413, M. S. (India); Nikam, C.P. [B.S.S.P.M.S. Arts, Commerce and Science College, Songir, Dist., Dhule 424309, M. S. (India); Shelke, A.R.; Patil, A.M. [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Ryu, S.-W. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Bhat, J.S. [Department of Physics, Karnatak University, Dharwad 580003 (India); Deshpande, N.G., E-mail: nicedeshpande@yahoo.co.in [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2015-06-15

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting.

  13. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  14. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method.

    Science.gov (United States)

    Fasihi, Hadi; Fazilati, Mohammad; Hashemi, Mahdi; Noshirvani, Nooshin

    2017-07-01

    The aim of this study was to investigate the possibility of increasing the antimicrobial and antioxidant properties of biodegradable active films stabilized via Pickering emulsions. The blend films were prepared from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), emulsified with oleic acid (OL) and incorporated with rosemary essential oil (REO). Formation of Pickering emulsion was confirmed by scanning electron microscopy (SEM), optical microscopy, mean droplet size and emulsion stability. Morphological, optical, physical, mechanical, thermal, antifungal and antioxidant properties of the films incorporated with different concentrations of REO (0.5, 1.5 and 3%) were determined. The results showed an increase in UV absorbance and elongation at break but, a decrease in tensile strength and thermal stability of the films. Interestingly, films containing REO exhibited considerable antioxidant and antimicrobial properties. In vitro microbial tests exhibited 100% fungal inhibition against Penicillium digitatum in the films containing 3% REO. In addition, no fungal growth were observed after 60days of storage at 25°C in bread slices were stored with active films incorporated with 3% REO, could attributed to the slow and regular release of REO caused by Pickering emulsions. The results of this study suggest that Pickering emulsion is a very promising method, which significantly affects antioxidant and antimicrobial activities of the films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Application of Gelidium corneum edible films containing carvacrol for ham packages.

    Science.gov (United States)

    Lim, G O; Hong, Y H; Song, K B

    2010-01-01

    We prepared an edible film of Gelidium corneum (GC) containing carvacrol as an antimicrobial and antioxidative agent. The GC film containing carvacrol significantly decreased the WVP, while TS and %E values were increased, compared to the film without carvacrol. Increasing amounts of an antimicrobial agent increased antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes. Application of the film to ham packaging successfully inhibited the microbial growth and lipid oxidation of ham during storage. Our results indicate that GC film can be a useful edible packaging material for food products, and the incorporation of carvacrol in the GC film may extend the shelf life.

  16. Effects of atomic oxygen on titanium dioxide thin film

    Science.gov (United States)

    Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi

    2018-05-01

    In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.

  17. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  18. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  19. Synthesis and characterisation of co-evaporated tin sulphide thin films

    Science.gov (United States)

    Koteeswara Reddy, N.; Ramesh, K.; Ganesan, R.; Ramakrishna Reddy, K. T.; Gunasekhar, K. R.; Gopal, E. S. R.

    2006-04-01

    Tin sulphide films were grown at different substrate temperatures by a thermal co-evaporation technique. The crystallinity of the films was evaluated from X-ray diffraction studies. Single-phase SnS films showed a strong (040) orientation with an orthorhombic crystal structure and a grain size of 0.12 μm. The films showed an electrical resistivity of 6.1 Ω cm with an activation energy of 0.26 eV. These films exhibited an optical band gap of 1.37 eV and had a high optical absorption coefficient (>104 cm-1) above the band-gap energy. The results obtained were analysed to evaluate the potentiality of the co-evaporated SnS films as an absorber layer in solar photovoltaic devices.

  20. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    Science.gov (United States)

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  1. Control of amorphous films properties in the case of combined sputtering of targets

    International Nuclear Information System (INIS)

    Okunev, V.D.; Yurov, A.G.

    1979-01-01

    A possibility of controlling amorphous film properties produced by combined sputtering of two targets: was investigated one of the targets was made of a basis material-polycrystalline CdGeAs 2 , the other one was made of a material of additives. As the additives the Ni,Co elements with low chemical activity and the Cu,Te additives with high chemical activity were used. Besides, to study the effect of deviation from amorphous CdGeAs 2 stoichiometry on film properties, the Gd,Ge,As additives were investigated. The various additives influence on electric conductivity of amorphous films has been studied. It is shown that approximately 1 at% Ni or Co contents results in reducing film specific resistance by 6 orders. Cu and Te introduction results in the change of the structure and type of amorphous layer conductivity. The conclusion has been drawn, that introduction of the elements with high chemical activity can be used as the method of producing films with new physicochemical properties

  2. Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Miyata, Toshihiro; Tsukada, Satoshi; Minami, Tadatsugu

    2006-01-01

    Anatase titanium dioxide (TiO 2 ) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO 2 pellets as the source material. Highly transparent TiO 2 thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O 2 ) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO 2 thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO 2 thin film with a resistivity of 2.6 x 10 -1 Ω cm was prepared at a substrate temperature of 400 deg. C without the introduction of O 2 gas

  3. Innovative bionanocomposite films of edible proteins containing liposome-encapsulated nisin and halloysite nanoclay.

    Science.gov (United States)

    Boelter, Juliana Ferreira; Brandelli, Adriano

    2016-09-01

    Films and coatings based on natural polymers have gained increased interest for food packaging applications. In this work, halloysite and phosphatidylcholine liposomes encapsulating nisin were used to develop nanocomposite films of gelatin and casein. Liposomes prepared with either soybean lecithin or Phospholipon(®) showed particle size ranging from 124 to 178nm and high entrapment efficiency (94-100%). Considering their stability, Phospholipon(®) liposomes with 1.0mg/ml nisin were selected for incorporation into nanocomposite films containing 0.5g/l halloysite. The films presented antimicrobial activity against Listeria monocytogenes, Clostridium perfringens and Bacillus cereus. Scanning electron microscopy revealed that the films had a smooth surface, but showed increased roughness with addition of liposomes and halloysite. Casein films were thinner and slightly yellowish, less rigid and very elastic as compared with gelatin films. Thermogravimetric analysis showed a decrease of the degradation temperature for casein films added with liposomes. The glass transition temperature decreased with addition of liposomes and halloysite. Gelatin and casein films containing nisin-loaded liposomes and halloysite represent an interesting alternative for development of active food packaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evaluation of Enzymatically Modified Soy Protein Isolate Film Forming Solution and Film at Different Manufacturing Conditions.

    Science.gov (United States)

    Mohammad Zadeh, Elham; O'Keefe, Sean F; Kim, Young-Teck; Cho, Jin-Hun

    2018-04-01

    The effects of transglutaminase on soy protein isolate (SPI) film forming solution and films were investigated by rheological behavior and physicochemical properties based on different manufacturing conditions (enzyme treatments, enzyme incubation times, and protein denaturation temperatures). Enzymatic crosslinking reaction and changes in molecular weight distribution were confirmed by viscosity measurement and SDS-PAGE, respectively, compared to 2 controls: the nonenzyme treated and the deactivated enzyme treated. Films treated with both the enzyme and the deactivated enzyme showed significant increase in tensile strength (TS), percent elongation (%E), and initial contact angle of films compared to the nonenzyme control film due to the bulk stabilizers in the commercial enzyme. Water absorption property, protein solubility, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy revealed that enzyme treated SPI film matrix in the molecular structure level, resulted in the changes in physicochemical properties. Based on our observation, the enzymatic treatment at appropriate conditions is a practical and feasible way to control the physical properties of protein based biopolymeric film for many different scientific and industrial areas. Enzymes can make bridges selectively among different amino acids in the structure of protein matrix. Therefore, protein network is changed after enzyme treatment. The behavior of biopolymeric materials is dependent on the network structure to be suitable in different applications such as bioplastics applied in food and pharmaceutical products. In the current research, transglutaminase, as an enzyme, applied in soy protein matrix in different types of forms, activated and deactivated, and different preparation conditions to investigate its effects on different properties of the new bioplastic film. © 2018 Institute of Food Technologists®.

  5. Adsorption of hydrogen on clean and modified magnesium films

    DEFF Research Database (Denmark)

    Johansson, Martin; Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    films at H/Mg ratios less than 2% is developed. The activation barrier for hydrogen dissociation is 72 +/- 15 kJ/mole H-2, and a stagnant hydrogen uptake is observed. For platinum-catalyzed films, the barrier is significantly reduced, and there is no stagnation in the uptake rate....

  6. Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Seitz, Linsey C.; Sokaras, Dimosthenis

    2017-01-01

    The electrochemical splitting of water holds great potential as a method for producing clean fuels by storing electricity from intermittent energy sources. The efficiency of such a process would be greatly facilitated by incorporating more active catalysts based on abundant materials for the oxygen...... improvement over pure MnOx. These films are characterized with operando X-ray Absorption Spectroscopy, which reveal that Mn assumes a higher oxidation state under reaction conditions when Au is present. The magnitude of the enhancement is correlated to the size of the Au domains, where larger domains...

  7. Cystamine immobilization on TiO{sub 2} film surfaces and the influence on inhibition of collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yujuan [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng Yajun, E-mail: wengyj7032@sohu.com [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang Liping; Jing Fengjuan; Huang Nan [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Chen Junying, E-mail: chenjy@263.net [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2011-12-15

    Poor haemocompatibility is a main issue of artificial cardiovascular materials in clinical application. Nitric oxide (NO), produced by vascular endothelial cells, is a well known inhibitor of platelet adhesion and activation. Thus, NO-releasing biomaterials are beneficial for improving haemocompatibility of blood-contacting biomedical devices. In this paper, a novel method was developed for enhancement of haemocompatibility by exploiting endogenous NO donors. TiO{sub 2} films were firstly synthesized on Si (1 0 0) wafers via unbalanced magnetron sputtering technology, and then polydopamine was grafted on TiO{sub 2} films and used as a linker for further immobilization of cystamine. The obtained surfaces were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. NO generation is evaluated by saville-griess reagents, and it shows that cystamine immobilized samples are able to catalytically generate NO by decomposing endogenous S-nitrosothiols (RSNO). In vitro platelet adhesion results reveal that cystamine modified surfaces can inhibit collagen-induced platelet activation. ELISA analysis reveals that cGMP in platelets obviously increases on cystamine immobilized surface, which suggests the reducing of platelet activation is through NO/cGMP signal channel. It can be concluded that cystamine immobilized surface shows better blood compatibility by catalyzing NO release from the endogenous NO donor. It may be a promising method for improvement of haemocompatibility of blood-contacting implants.

  8. Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract.

    Science.gov (United States)

    Akhtar, Muhammad Javeed; Jacquot, Muriel; Jasniewski, Jordane; Jacquot, Charlotte; Imran, Muhammad; Jamshidian, Majid; Paris, Cédric; Desobry, Stéphane

    2012-08-01

    The aims of this work were to functionalize edible hydroxypropyl methylcellulose (HPMC) films with natural coloring biomolecules having antioxidant capacity and to study their photo-aging stability in the films. HPMC films containing a natural red color compound (NRC) at the level of 1, 2, 3 or 4% (v/v) were prepared by a casting method. A slight degradation of films color was observed after 20 days of continuous light exposure. The antioxidant activity of NRC incorporated films was stable during different steps of film formation and 20 days of dark storage. On the other hand, antioxidant activity of samples stored under light was significantly affected after 20 days. FTIR (Fourier Transformed Infrared) spectroscopy was used to characterize the new phenolic polymeric structures and to study the photo-degradation of films. The results showed a good polymerization phenomenon between NRC and HPMC in polymer matrix giving a natural color to the films. NRC showed an ability to protect pure HPMC films against photo-degradation. This phenomenon was directly proportional to the concentration of NRC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Film Reviews.

    Science.gov (United States)

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  10. Nitrogen doping in atomic layer deposition grown titanium dioxide films by using ammonium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, M.-L., E-mail: marja-leena.kaariainen@lut.fi; Cameron, D.C.

    2012-12-30

    Titanium dioxide films have been created by atomic layer deposition using titanium chloride as the metal source and a solution of ammonium hydroxide in water as oxidant. Ammonium hydroxide has been used as a source of nitrogen for doping and three thickness series have been deposited at 350 Degree-Sign C. A 15 nm anatase dominated film was found to possess the highest photocatalytic activity in all film series. Furthermore almost three times better photocatalytic activity was discovered in the doped series compared to undoped films. The doped films also had lower resistivity. The results from X-ray photoemission spectroscopy showed evidence for interstitial nitrogen in the titanium dioxide structure. Besides, there was a minor red shift observable in the thickest samples. In addition the film conductivity was discovered to increase with the feeding pressure of ammonium hydroxide in the oxidant precursor. This may indicate that nitrogen doping has caused the decrease in the resistivity and therefore has an impact as an enhanced photocatalytic activity. The hot probe test showed that all the anatase or anatase dominant films were p-type and all the rutile dominant films were n-type. The best photocatalytic activity was shown by anatase-dominant films containing a small amount of rutile. It may be that p-n-junctions are formed between p-type anatase and n-type rutile which cause carrier separation and slow down the recombination rate. The combination of nitrogen doping and p-n junction formation results in superior photocatalytic performance. - Highlights: Black-Right-Pointing-Pointer We found all N-doped and undoped anatase dominating films p-type. Black-Right-Pointing-Pointer We found all N-doped and undoped rutile dominating films n-type. Black-Right-Pointing-Pointer We propose that p-n junctions are formed in anatase-rutile mixture films. Black-Right-Pointing-Pointer We found that low level N-doping has increased TiO{sub 2} conductivity. Black

  11. Morphology-controlled electrodeposition of Cu2O microcrystalline particle films for application in photocatalysis under sunlight

    International Nuclear Information System (INIS)

    Wu, Guodong; Zhai, Wei; Sun, Fengqiang; Chen, Wei; Pan, Zizhao; Li, Weishan

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► PEG was used to electro-deposit Cu 2 O microcrystalline particle films. ► Morphologies of Cu 2 O microcrystals could be controlled by the amount of PEG. ► The films showed regularly varied photocatalytic activities under sunlight. ► The films could be recycled and showed stable activities. -- Abstract: Morphology-controlled Cu 2 O microcrystalline particle films had been successfully electrodeposited on tin-doped indium oxide glass substrates in CuSO 4 solutions containing different amounts of polyethylene glycol (PEG) additives. With an increase of PEG, microcrystals gradually changed from irregular shapes to cubes, octahedrons, and spherical shapes. Sizes increasingly became smaller with an increase of PEG under the same deposition time. These films had been first used as recyclable photocatalysts and showed excellent and photocatalytic activities in photodegradation of methylene blue (MB) under sunlight. Activities were regularly varied relative to the morphologies of films controlled by the amount of PEG and could be further enhanced by adding a little amount of hydrogen peroxide in the MB solution. The method for controllable preparation of Cu 2 O microcrystals with photocatalytic activities was simple and inexpensive. The as-prepared particle films could also be used in photodegradation of many other pollutants under sunlight.

  12. Restoration of variable density film soundtracks

    OpenAIRE

    Hassaïne , Abdelâali; Decencière , Etienne; Besserer , Bernard

    2009-01-01

    Full text available at http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569192297.pdf; International audience; The restoration of motion picture films has been an active research field for many years. The restoration of the soundtrack however has mainly been performed at the audio domain in spite of the fast that it is recorded as a continuous image on the film stock. In this paper, we propose a new restoration method for variable density soundtracks. The method first d...

  13. Trends in Controllable Oil Film Bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar

    2011-01-01

    This work gives an overview about the theoretical and experimental achievements of mechatronics applied to oil film bearings, with the aim of: controlling the lateral vibration of flexible rotating shafts; modifying bearing dynamic characteristics, as stiffness and damping properties; increasing......" components and be applied to rotating machines with the goal of avoiding unexpected stops of plants, performing rotordynamic tests and identifying model parameters "on site". Emphasis is given to the controllable lubrication (active lubrication) applied to different types of oil film bearings, i...

  14. The influence of nanoscopically thin silver films on bacterial viability and attachment.

    Science.gov (United States)

    Ivanova, Elena P; Hasan, Jafar; Truong, Vi Khanh; Wang, James Y; Raveggi, Massimo; Fluke, Christopher; Crawford, Russell J

    2011-08-01

    The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.% on the 3- and 150-nm films, respectively. Inductively coupled plasma time of flight mass spectroscopy (ICP-TOF-MS) was used to measure the concentration of silver ions released from these films. Concentrations of 0.9 and 5.2 ppb were detected for the 3- and 150-nm films, respectively. The surface wettability of the films remained nearly identical for both film thicknesses, displaying a static water contact angle of 95°, while the surface free energy of the 150-nm film was found to be slightly greater than that of the 3-nm film, being 28.8 and 23.9 mN m(-1), respectively. The two silver film thicknesses exhibited statistically significant differences in surface topographic profiles on the nanoscopic scale, with R (a), R (q) and R (max) values of 1.4, 1.8 and 15.4 nm for the 3-nm film and 0.8, 1.2 and 10.7 nm for the 150-nm film over a 5 × 5 μm scanning area. Confocal scanning laser microscopy and scanning electron microscopy revealed that the bactericidal activity of the 3-nm silver film was not significant, whereas the nanoscopically smoother 150-nm silver film exhibited appreciable bactericidal activity towards Pseudomonas aeruginosa ATCC 9027 cells and Staphylococcus aureus CIP 65.8 cells, obtaining up to 75% and 27% sterilisation effect, respectively.

  15. Molecular tailoring of interfaces for thin film on substrate systems

    Science.gov (United States)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  16. The Evolution of Film: Rethinking Film Studies

    OpenAIRE

    Harbord, Janet P.

    2007-01-01

    How is film changing? What does it do, and what do we do with it? This book examines the reasons why we should be studying film in the twenty-first century, connecting debates from philosophy, anthropology and new media with historical concerns of film studies.

  17. Optical properties and surface topography of CdCl2 activated CdTe thin films

    Science.gov (United States)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  18. Asymmetric photoelectric property of transparent TiO{sub 2} nanotube films loaded with Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); College of Applied Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China); Liang, Wei, E-mail: 986903124@qq.com [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China); Liu, Yiming; Zhang, Wanggang; Zhou, Diaoyu; Wen, Jing [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China)

    2016-11-15

    Highlights: • Highly transparent films of TiO{sub 2} nanotube arrays were directly fabricated on FTO glasses. • Semitransparent TNT-Au composite films were obtained and exhibited excellent photoelectrocatalytic ability. • Back-side of TNT-Au composite films was firstly irradiated and tested to compare with front-side of films. - Abstract: Semitransparent composite films of Au loaded TiO{sub 2} nanotubes (TNT-Au) were prepared by sputtering Au nanoparticles on highly transparent TiO{sub 2} nanotubes films, which were fabricated directly on FTO glasses by anodizing the Ti film sputtered on the FTO glasses. Compared with pure TNT films, the prepared TNT-Au films possessed excellent absorption ability and high photocurrent response and improved photocatalytic activity under visible-light irradiation. It could be concluded that Au nanoparticles played important roles in improving the photoelectrochemical performance of TNT-Au films. Moreover, in this work, both sides of TNT-Au films were researched and compared owing to theirs semitransparency. It was firstly found that the photoelectric activity of TNT-Au composite films with back-side illumination was obviously superior to front-side illumination.

  19. Tungsten oxide thin films obtained by anodisation in low electrolyte concentration

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nadja B.D. da [Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Capão do Leão, s/n, Pelotas, RS (Brazil); Pazinato, Julia C.O. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Sombrio, Guilherme; Pereira, Marcelo B.; Boudinov, Henri [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Gündel, André; Moreira, Eduardo C. [Universidade Federal do Pampa, Travessa 45, 1650 Bagé, RS (Brazil); Garcia, Irene T.S., E-mail: irene.garcia@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2015-03-02

    Tungsten oxide nanostructured films were grown on tungsten substrates by anodisation under a fixed voltage and with sodium fluoride as electrolyte. The effect of the anion chloride and the influence of the modifying agent disodium hydrogen phosphate in the tungsten oxide films were also investigated. The structural characterisation of the films was performed by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The band gap was determined through diffuse reflectance spectroscopy. The thin films were photoluminescent and emitted in the range of 300 to 630 nm when irradiated at 266 nm. The synthesised films efficiently degraded of methyl orange dye in the presence of hydrogen peroxide and 250 nm radiation. The modifying agent was responsible for the improvement of the photocatalytic activity. Films with similar photocatalytic performance were obtained when the system sodium fluoride and disodium hydrogen phosphate were replaced by sodium chloride. The porous structure and low band gap values were responsible for the photocatalytic behaviour. - Highlights: • Tungsten oxide thin films were obtained by anodisation of tungsten in aqueous media. • The performance of the NaCl, NaF and NaF/Na{sub 2}HPO{sub 4} as electrolytes was investigated. • The relation between structure and optical behaviour has been discussed. • Films obtained with NaCl and NaF/Na{sub 2}HPO{sub 4} present similar photocatalytic activity.

  20. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    Science.gov (United States)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.