WorldWideScience

Sample records for active magnetic bearings

  1. Active Magnetic BearingsMagnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing......Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... of the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision characterization...

  2. Active Displacement Control of Active Magnetic Bearing System

    Directory of Open Access Journals (Sweden)

    Kertész Milan

    2014-12-01

    Full Text Available The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES. The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL. APDL is used to create the loops of transient simulations where boundary conditions (BC are updated based upon a “gap sensor” which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  3. Active magnetic bearing-supported rotor with misaligned cageless backup bearings: A dropdown event simulation model

    Science.gov (United States)

    Halminen, Oskari; Kärkkäinen, Antti; Sopanen, Jussi; Mikkola, Aki

    2015-01-01

    Active magnetic bearings (AMB) offer considerable benefits compared to regular mechanical bearings. On the other hand, they require backup bearings to avoid damage resulting from a failure in the component itself, or in the power or control system. During a rotor-bearing contact event - when the magnetic field has disappeared and the rotor drops on the backup bearings - the structure of the backup bearings has an impact on the dynamic actions of the rotor. In this paper, the dynamics of an active magnetic bearing-supported rotor during contact with backup bearings is studied with a simulation model. Modeling of the backup bearings is done using a comprehensive cageless ball bearing model. The elasticity of the rotor is described using the finite element method (FEM) and the degrees of freedom (DOF) of the system are reduced using component mode synthesis. Verification of the misaligned cageless backup bearings model is done by comparing the simulation results against the measurement results. The verified model with misaligned cageless backup bearings is found to correspond to the features of a real system.

  4. Effects of Operational Losses in Active Magnetic Bearing Designs.

    Directory of Open Access Journals (Sweden)

    Prince Owusu-Ansah

    2016-04-01

    Full Text Available This paper studies the effects of different forms of operational losses that are associated with active magnetic bearing designs.Active magnetic bearings are generally considered as having much lower frictional losses as compared to fluid and roller bearings, however AMBs are considered as more complex mechatronic systems, associated with various potential power loss mechanisms during it cycle of operation. Minimizing of losses consist of various measures and depends largely on the requirements of the application,among all these losses, aerodynamic losses are classified as been the more dominant in modern high speed applications and turbomachinery especially in expanders and compressors where its working gases are considered to be under very high pressures and temperaturesVarious forms of losses such as hysteresis, eddy current, iron, aerodynamic have been discussed. The methods of reducing these losses in order reduce energy losses with the ultimate goal of improving bearing efficiency haveall been discussed in this paper

  5. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing.

    Science.gov (United States)

    Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin

    2014-07-01

    For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor.

  6. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    Science.gov (United States)

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. PMID:26803551

  7. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  8. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    International Nuclear Information System (INIS)

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  9. Condition monitoring of active magnetic bearing systems / Rupert Gouws

    OpenAIRE

    Gouws, Rupert

    2007-01-01

    In this thesis, the author contextualises condition monitoring of active magnetic bearing (AMB) systems and proposes the real-time condition monitoring of AMB systems. Three real-time fault detection, diagnosis, correction and identification schemes for vibration forces on the rotor of a rotational AMB system are proposed. Two AMB systems were used to conduct this research. The one was a fully suspended 250 kW water cooling AMB pump from which historical fault data was obtained and the oth...

  10. Fault Diagnosis in a Centrifugal Pump Using Active Magnetic Bearings

    OpenAIRE

    Nordmann Rainer; Aenis Martin

    2004-01-01

    The number of rotors running in active magnetic bearings (AMBs) has increased over the last few years. These systems offer a great variety of advantages compared to conventional systems. The aim of this article is to use the AMBs together with a developed built-in software for identification, fault detection, and diagnosis in a centrifugal pump. A single-stage pump representing the turbomachines is investigated. During full operation of the pump, the AMBs are used as actuators to generate def...

  11. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  12. THE EXPERIMENTAL TESTING OF AN ACTIVE MAGNETIC BEARING/ROTOR SYSTEM UNDERGOING BASE EXCITATION

    OpenAIRE

    Clements, Joshua Ryan

    2000-01-01

    Active Magnetic Bearings (AMB) are a relatively recent innovation in bearing technology. Unlike conventional bearings, which rely on mechanical forces originating from fluid films or physical contact to support bearing loads, AMB systems utilize magnetic fields to levitate and support a shaft in an air-gap within the bearing stator. This design has many benefits over conventional bearings. The potential capabilities that AMB systems offer are allowing this new technology to be considered f...

  13. Developments in the field of active magnetic bearings at EDF

    International Nuclear Information System (INIS)

    The studies carried out by EDF concerning the evaluation of the active magnetic bearing technology for their possible application to rotating machinery in electrical plants, and especially the 900 MW ''CP2'' turbogenerators which appear to have very little damping and vibrate noticeably during transients. Using a 4 tons test bench, the good quality of simulation applied to both permanent and transient conditions have been verified. Then, using a 10 tons test bench, the dimensioning concerns of the CP2 application were more precisely evaluated. It has been especially demonstrated that the accessible levels of force and damping were compatible with the application constraints. In a final 30 tons project, some innovative technological components have been used and the benefits from an optimization of the design of the magnetic parameters were determined. Specifications for a full-scale implementation have been therefore defined to enable the manufacturer to make a commercial offer. After a disappointing analysis of the offer, CP2 computations and studies were stopped but subsidiary studies were conducted: estimation of the damage risk under alternative bending of the CP2 rotors during their lifetime, prospective analysis of other possible applications of active magnetic bearings in power plants, development of a new vibratory test method through electromagnetic excitation. 5 figs., 6 refs

  14. R+D works for the further development of high temperature reactors. (1) Captive bearing experiments for active magnetic bearings. (2) Captive bearing test for HTR blowers

    International Nuclear Information System (INIS)

    When using active magnetic bearings as blower shaft bearings, blower motors and bearings must be protected against mechanical damage in case of faults (example: total electrical supply failure due to the supply cables breaking). So-called captive bearings are provided, in order to be able to shut the blowers down safely in such faults. These captive bearings are roller bearings which are additionally fitted in the area of the blower shaft bearings, to prevent mechanical contact between the blower rotor and stator. As there was little experience available for the given boundary conditions, such as - speed, - acceleration, - bearing load, - bearing dimensions, - ambient conditions, appropriate development and tests had to be carried out. It was important to determine suitable captive bearings and the necessary ambient conditions, which will make it possible to support the failures of the magnetic bearings to be expected in 40 years' operation of the reactor without damage and to meet the requirements of the captive bearings. (orig./GL)

  15. Failure Mode and Effect Analysis of Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    K.P. Lijesh

    2016-03-01

    Full Text Available In the present research work Failure Mode and Effect Analysis (FMEA of an Active Magnetic Bearing (AMB has been presented. Various possible failures modes of AMBs and the corresponding effects of those failures on performance of AMBs have been identified. The identified failure modes of AMBs will facilitate designer to incorporate necessary design features that would prevent the occurrence of the failure. The severity, occurrence and detection of the failures modes are determined based on a rating scale of 1 to 5 to quantify the Risk Priority Number (RPN of the failure modes. The methods to eliminate or reduce the high-risk-failure modes are proposed.

  16. Active magnetic bearings: As applied to centrifugal pumps

    Science.gov (United States)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-05-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  17. Active magnetic bearings: As applied to centrifugal pumps

    Science.gov (United States)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-01-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  18. The thermodynamic properties of a new type catcher bearing used in active magnetic bearings system

    International Nuclear Information System (INIS)

    Normally a rotor levitated by active magnetic bearings (AMBs) system would rotate without contacting with any stator component, but the possibility still remains that the supporting force might lose temporarily or permanently, thus requiring the Catcher bearings (CBs) to provide backup protection in case of the failure of AMBs. A new type CB with two separate rolling element bearing series could have the speed distribution between the inner race and intermediate race according to certain ratio, in which the speed of each roller element bearing decreases with the limit speed of the whole CB increasing, offering high capability to sustain its initial rotation speed. Based on the theory of heat transfer, tribology, and rotor dynamics, this paper analyzes the thermal structure of double-decker catcher bearing (DDCB) and single-decker catcher bearing (SDCB), respectively. Through this structure, the thermal resistances and equations of heat transfer can be obtained. Then we calculate the friction heat and temperature distribution in the various CBs upon rotor's dropping on SDCB or DDCB, followed by the discussion on the CBs temperature rise's effects on lubrication conditions and rotor dynamics parameters. Finally various experiments are carried out to measure the temperature rise of different CBs. The results obtained validate the theoretical analysis and also provide main methods to reduce heat generation. Using DDCB is proved to be effective to reduce the temperature rise. - Highlights: • The DDCB is a more suitable catcher bearing for AMBs. • Compared to SDCB, using DDCB, the temperature rise can decrease in the same states. • A lower viscosity of lubricant may induce a lower temperature rise. • The inner raceway temperature of the first layer bearing is the highest. • Reducing the unbalance mass of the rotor is a method to decrease the temperature rise

  19. Design of a Micro Milling Setup with an Active Magnetic Bearing Spindle

    NARCIS (Netherlands)

    Kimman, M.H.

    2010-01-01

    This thesis describes the design of a micro milling setup with an active magnetic bearing spindle. Micro milling is the mechanical removal of material with sub millimeter tools. An active magnetic bearing typically consists of a set of magnetic actuators, a control loop and position sensors. Activ

  20. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing......Parameter identification procedures and model validation are major steps toward intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... contribution of the work is the characterization of magnetic forces by using two different experimental approaches. Such approaches are investigated and described in detail. A special test rig is designed where the four pole AMB is able to generate forces up to 1900 N. The high-precision characterization...

  1. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    of the magnetic forces is conducted using different experimental tests: (a) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor, (b) by measuring the input current and bearing......Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... contribution of the work is the characterization of magnetic forces by using two different experimental approaches. Such approaches are investigated and described in detail. A special test rig is designed where the 4 pole - AMB is able to generate forces up to 1900 N. The high precision characterization...

  2. Characteristics of motorized spindle supported by active magnetic bearings

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenyu; Yu Kun; Wen Liantang; Wang Xiao; Zhou Hongkai

    2014-01-01

    A motorized spindle supported by active magnetic bearings (AMBs) is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spin-dle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic char-acteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  3. Characteristics of motorized spindle supported by active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Xie Zhenyu

    2014-12-01

    Full Text Available A motorized spindle supported by active magnetic bearings (AMBs is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  4. Optimization of active magnetic bearings for automotive flywheel energy storage systems based on soft magnetic materials

    Directory of Open Access Journals (Sweden)

    Wegleiter H.

    2013-01-01

    Full Text Available For active magnetically suspended rotors in mobile flywheel energy storage systems the lowest possible weight, smallest size and a low price is required. Since the flywheel is operated in vacuum and very little heat can be dissipated from the rotor, the bearing’s magnetic losses have to be as minimal as well. This paper compares the design and optimization of homopolar radial active magnetic bearings with 3 different types of laminated steel. The first type is a standard transformer steel, the second one is high flux cobalt steel and the third one is high flux cobalt steel with high tensile strength.

  5. Control of Active Axial Magnetic Bearings for Flywheel-based Energy Storage System

    OpenAIRE

    Morís Gómez, Juan

    2014-01-01

    This thesis deals with the design and implementation of the control system for a Flywheel-based Energy Storage System (FESS) with active magnetic bearings. The thesis focuses on the construction of realistic model of the system according to experimental tests. The simulation model will be used to control the thrust magnetic bearings in order to withstand the flywheel in levitation.

  6. Radial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  7. Magnetic bearings grow more attractive

    Science.gov (United States)

    1993-10-01

    Advances in materials and electronics have enabled designers to devise simpler, smaller magnetic bearings. As a result, costs have dropped, widening the applications for these very-low-friction devices. Avcon (Advanced Controls Technology) has patented a permanent-magnet bias actively controlled bearing. Here high-energy rare earth permanent-magnet materials supply the basic bearing load levitation, while servo-driven electromagnets generate stabilization and centering forces for motion contol. Previous heavy-duty magnetic bearings used electromagnets entirely for suspension and control, which led to large bearings and control systems with higher power requirements. Avcon has developed several types of permanent-magnet bias bearings. The simplest is the radial repulsion bearing. Avcon's homopolar permanent-magnet bias active bearing is the most versatile of the company's designs.

  8. TRANSIENT TEMPERATURE FIELD IN ACTIVE THRUST MAGNETIC BEARING

    Institute of Scientific and Technical Information of China (English)

    Sun Shouqun; Geng Haipeng; Guo Keqian

    2005-01-01

    A transient temperature field model in a thrust magnetic bearing is built in which the heat resources come mainly from the eddy-current loss of solid cores and the copper loss of coils. The transient temperature field, system temperature rise and the thermo-equilibrium state during the rotor starting-up are calculated considering only the copper loss and the eddy-current loss. The numerical results indicate that the temperatures in coils and in magnets rise rapidly, their thermo-equilibrium states are formed within a short time. The temperatures in a thrust-disk and in a rotor rise slowly, their thermo-equilibrium states are formed after a long period time. The temperatures of the thrust-disk and the rotor are far higher than the temperatures of coils and/or magnets after the thermo-equilibrium state has come into being.

  9. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  10. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  11. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    CERN Document Server

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  12. Active Magnetic Bearings used as an Actuator for Rotor Health Monitoring in Conjunction with Conventional Support Bearings

    OpenAIRE

    Bash, Travis Joel

    2005-01-01

    This thesis describes the test rig and results from a project expanding the field of rotor health monitoring by using Active Magnetic Bearings (AMBs) as actuators for applying a variety of known force inputs to a spinning. Similar to modal analysis and other nondestructive evaluation (NDE) techniques which apply input signals to static structures in order to monitor responses; this approach allows for the measurement of both input and output response in a rotating system for evaluation. How...

  13. Design and implement for control system of active magnetic bearings based on DSP

    Science.gov (United States)

    Cao, Jie; Cao, Lihong

    2005-12-01

    Magnetic-bearings, which support shafts with magnetic levitation rather than mechanical contact, have been in industrial use for decades. Recent technological developments, especially in digital processing and control, have made magnetic bearings a more-robust and cost-effective design solution than ever. The dynamic characteristic of electromagnetic bearing depends upon adopted controller; the active control can makes the electromagnetic bearings to realize complex control and special control. With the development of signal processing technology and modern control theory, the main parts of the control system are the digital signal-processing (DSP) electronics, a power supply, and amplifiers. An Active Magnetic Bearing (AMB) controller is mainly discussed in the paper, which is to be solved to realize this flexible control by hardware design based on DSP using TMS320C32 processor. It is proved by experiment that this kind of controller can optimize for this system, improve its stability and also have a very important referential value on the further study of AMB system.

  14. Active control of surge in centrifugal compressors using magnetic thrust bearing actuation

    Science.gov (United States)

    Sanadgol, Dorsa

    This research presents a new method for active surge control in centrifugal compressors with unshrouded impellers using a magnetic thrust bearing to modulate the impeller tip clearance. Magnetic bearings offer the potential for active control of flow instabilities. This capability is highly dependent on the sensitivity of the compressor characteristics to blade tip clearance. If the position of the shaft can be actuated with sufficient authority and speed, the induced pressure modulation makes control of surge promising. The active nature of the magnetic bearing system makes the real-time static and dynamic positioning of the rotor and therefore modulation of the impeller tip clearance possible. A theoretical model is first established that describes the sensitivity of the centrifugal compressor characteristic curve to tip clearance variations induced by axial motion of the rotor. Results from simulation of the nonlinear model for a single stage high-speed centrifugal compressor show that using the proposed control method, mass flow and pressure oscillations associated with compressor surge are quickly suppressed with acceptable tip clearance excursions, typically less than 20% of the available clearance. It is shown that it is possible to produce adequate axial excursions in the clearance between the impeller blades and the adjacent stationary shroud using a magnetic thrust bearing with practical levels of drive voltage. This surge control method would allow centrifugal compressors to reliably and safely operate with a wider range than is currently done in the field. The principal advantage of the proposed approach over conventional surge control methods lies in that, in machines already equipped with magnetic bearing, the method can potentially be implemented by simply modifying controller software. This dispenses with the need to introduce additional hardware, permitting adaptation of existing machinery at virtually no cost. In addition, since the controller is

  15. Magnetic bearing and motor

    Science.gov (United States)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  16. A Passive Magnetic Bearing Flywheel

    Science.gov (United States)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  17. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    OpenAIRE

    Ferfecki P.

    2009-01-01

    The development and the design of a radial active magnetic bearing (AMB) reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead ...

  18. Adaptive control of an active magnetic bearing flywheel system using neural networks / Angelique Combrinck

    OpenAIRE

    Combrinck, Angelique

    2010-01-01

    The School of Electrical, Electronic and Computer Engineering at the North-West University in Potchefstroom has established an active magnetic bearing (AMB) research group called McTronX. This group provides extensive knowledge and experience in the theory and application of AMBs. By making use of the expertise contained within McTronX and the rest of the control engineering community, an adaptive controller for an AMB flywheel system is implemented. The adaptive controller is ...

  19. Test and Theory of Electrodynamic Bearings Coupled to Active Magnetic Dampers

    OpenAIRE

    Tonoli, Andrea; Girardello Detoni, Joaquim; Impinna, Fabrizio; Amati, Nicola

    2014-01-01

    Electrodynamic bearings (EDBs) are passive magnetic bearings that exploit the interaction between eddy currents developed in a rotating conductor and a static magnetic field to generate forces. Similar to other types of magnetic suspensions, EDBs provide contactless support, thus avoiding problems with lubrication, friction and wear. Electrodynamic bearings have also drawbacks such as the difficulty in insuring a stable levitation in a wide speed range. The paper presents a solution where the...

  20. RESEARCH ON CONTROL OF FLYWHEEL SUSPENDED BY ACTIVE MAGNETIC BEARING SYSTEM WITH SIGNIFICANT GYROSCOPIC EFFECTS

    Institute of Scientific and Technical Information of China (English)

    Zhang Kai; Zhao Lei; Zhao Hongbin

    2004-01-01

    Traditional PID controllers are no longer suitable for magnetic-bearing-supported high-speed flywheels with significant gyroscopic effects.Because gyroscopic effects greatly influence the stability of the flywheel rotor,especially at high rotational speeds.Velocity cross feedback and displacement cross feedback are used to overcome harmful effects of nutation and precession modes, and stabilize the rotor at high rotational speeds.Theoretical analysis is given to show their effects.A control platform based on RTLinux and a PC is built to control the active magnetic bearing (AMB) system, and relevant results are reported.Using velocity cross feedback and displacement cross feedback in a closed loop control system, the flywheel successfully runs at over 20 000 r/min.

  1. Identifying parameters in active magnetic bearing system using LFT formulation and Youla factorization

    DEFF Research Database (Denmark)

    Lauridsen, Jonas; Sekunda, André Krabdrup; Santos, Ilmar;

    2015-01-01

    In this paper, a method for identifying uncertain parameters in a rotordynamic system composed of a flexible rotating shaft, rigid discs and two radial active magnetic bearings is presented. Shaft and disc dynamics are mathematically described using a Finite Element (FE) model while magnetic...... techniques are required., The main focus of the paper relies on how to effectively identify uncertain parameters, such as stiffness and damping force coefficients of bearings and seals in rotordynamic systems. Dynamic condensation method, i.e. pseudo-modal reduction, is used to obtain a reduced order model...... of the system matrix A of the full FE model while it is represented as several elements spread over multiple rows and columns of the system matrix of the reduced model. The parametric uncertainty, for both the full and reduced FE model, is represented using Linear Fractional Transformation (LFT). In this way...

  2. Magnetic translator bearings

    Science.gov (United States)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  3. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  4. Vibration characterization of an active magnetic bearing supported rotor / J. Bean

    OpenAIRE

    Bean, Jaco

    2011-01-01

    The McTronX Research group at the Potchefstroom campus of the North-West University, aims to establish a knowledge base on active magnetic bearing (AMB) systems. Up to date, the group has established a firm knowledge base on various topics related to AMB systems. A recent focus was the design and development of a high speed AMB supported rotor system called the rotor delevitation system (RDS) to analyse rotor drops. During the testing phase of the RDS, the machine exhibited vibrations, of whi...

  5. State of the art of control for magnetic levitation and magnetic bearing and control theory. Active control seigyo riron oyo no saisentan

    Energy Technology Data Exchange (ETDEWEB)

    Nonami, K. (Chiba University, Chiba (Japan). Faculty of Engineering)

    1993-04-10

    From the viewpoint of control theory which was made known mainly through the papers presented in the international active magnetic bearing conference, survey was made of the latest state of active magnetic levitation and bearing system technology. The active magnetic bearing control system is applied to turbo-molecular pumps. They are analog PID-controlled rigid rotor pumps. Many of them are commonly characterized by five-axis controlled suction type active magnetic bearing. For heightening its performance, a further progress is being made in the following items of R and D: Transition from analog control to digital control using the digital signal processor. Transition from PID-controlled stabilization control to advanced control applying the modern control theory, robust control theory, learning control theory, and disturbance compensation control and other system designs. Active magnetic bearing control system with flexible rotors passing through the high order elastic mode. Active magnetic sensorless bearing by which the control is made by assuming the rotor displacement by the observer theory from the electric current in exciting coil. 37 refs., 11 figs.

  6. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    Science.gov (United States)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-01-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  7. Intelligent H2/H∞ Robust Control of an Active Magnetic Bearings System

    Directory of Open Access Journals (Sweden)

    Safanah M.Raafat

    2015-06-01

    Full Text Available Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance. This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H∞ controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS. Simulation results reveal that the robust controller design objectives of wide bandwidth and improved performance are satisfied for a wide range of frequency variations. It can be concluded that the intelligent uncertainty weighting functions can precisely compensate for the effects of modelling errors and nonlinearities in the system.

  8. Predictions of Unbalanced Response of Turbo Compressor Equipped with Active Magnetic Bearings through System Identification

    Energy Technology Data Exchange (ETDEWEB)

    Baek, SeongKi; NOh, Myounggyu; Park, Young Woo [Chungnam National Univ., Daejeon (Korea, Republic of); Lee, Kiwook; Lee, Nam Soo; Jeog, Jinhee [LG Electronics, Gumi (Korea, Republic of)

    2016-01-15

    Since vibrations in rotating machinery is a direct cause of performance degradation and failures, it is very important to predict the level of vibrations as well as have a method to lower the vibrations to an acceptable level. However, the changes in balancing during installation and the vibrational modes of the support structure are difficult to predict. This paper presents a method for predicting the unbalanced response of a turbo-compressor supported by active magnetic bearings (AMBs). Transfer functions of the rotor are obtained through system identification using AMBs. These transfer functions contain not only the dynamics of the rotor but also the vibrational modes of the support structure. Using these transfer functions, the unbalanced response is calculated and compared with the run-up data obtained from a compressor prototype. The predictions revealed the effects of the support structure, validating the efficacy of the method.

  9. Theoretical and Experimental Investigation of Force Estimation Errors Using Active Magnetic Bearings with Embedded Hall Sensors

    DEFF Research Database (Denmark)

    Voigt, Andreas Jauernik; Santos, Ilmar

    2012-01-01

    This paper gives an original theoretical and experimental contribution to the issue of reducing force estimation errors, which arise when applying Active Magnetic Bearings (AMBs) with pole embedded Hall sensors for force quantification purposes. Motivated by the prospect of increasing the usability...... of AMBs by embedding Hall sensors instead of mounting these directly on the pole surfaces, force estimation errors are investigated both numerically and experimentally. A linearized version of the conventionally applied quadratic correspondence between measured Hall voltage and applied AMB force...... for pole embedded and pole surface mounted Hall sensors. It is shown that in a given range of bias currents and rotor offsets, pole embedded and surface mounted Hall sensors perform equally well for the four pole heteropolar flux-split radial AMB under investigation. Furthermore, frequency dependence...

  10. Development of active magnetic bearings and ferrofluid seals toward oil free sodium pumps

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhar, B.K., E-mail: bksd@igcar.gov.in; Kumar, R. Nirmal; Sharma, Prashant; Ruhela, Shivprakash; Philip, John; Sundarraj, S.I.; Chakraborty, N.; Mohana, M.; Sharma, Vijay; Padmakumar, G.; Nashine, B.K.; Rajan, K.K.

    2013-12-15

    Sodium centrifugal pumps employ conventional oil cooled bearings and mechanical seals to support the rotor assembly outside sodium and to seal the cover gas from the atmosphere. Although engineered safety features are incorporated in the design and detailed operational procedures formulated to ensure that no oil contamination of sodium can occur, there have been incidents of oil ingress into sodium. A design variant that eliminates the need for oil in top bearings and seals is therefore a promising option. This paper discusses the work in progress to develop a magnetic bearing and ferrofluid seal combination that can achieve this purpose.

  11. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.

    2009-06-01

    Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.

  12. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT

    International Nuclear Information System (INIS)

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University of China. The helium turbine and generator system of 10 MW high-temperature gas-cooled reactor (HTR-10GT) is the second phase for the HTR-10 project. It is to set up a direct helium cycle to replace the current steam cycle. The active magnetic bearing (AMB) instead of ordinary mechanical bearing was chosen to support the rotor in the HTR-10GT. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1500 kg and the rotating speed is 15,000 rpm. The structure of the rotor is so complicated that dynamic analysis of the rotor becomes difficult. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. The dynamic analysis of the rotor is the base for the design of control system. It is important for the rotor to exceed critical speeds. Some kinds of softwares and methods, such as MSC.Marc, Ansys, and the transfer matrix method (TMM), are compared to fully analyze rotor dynamics characteristic in this paper. The modal analysis has been done for the HTR-10GT rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. The design characteristics of the AMB control system for the HTR-10GT were studied and the related experiment to exceed natural frequencies was introduced. The experimental results demonstrate the system functions and validate the control scheme, which will be used in the HTR-10GT project

  13. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT

    International Nuclear Information System (INIS)

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University of China. The helium turbine and generator system of 10 MW high temperature gas-cooled reactor (HTR-10GT) is the second phase for the HTR-10 project. It is to set up a direct helium cycle to replace the current steam cycle. The active magnetic bearing (AMB) instead of ordinary mechanical bearing was chosen to support the rotor in the HTR-10GT. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1500 kg and the rotating speed is 15000 r/min. The structure of the rotor is so complicated that dynamic analysis of the rotor becomes difficult. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. The dynamic analysis of the rotor is the base for the design of control system. It is important for the rotor to exceed critical speeds. Some kinds of software and methods, such as MSC.Marc, Ansys, and the Transfer Matrix Method, are compared to fully analyze rotor dynamics characteristic in this paper. The modal analysis has been done for the HTR-10GT rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. The design characteristics of the AMB control system for the HTR-10GT were studied and the related experiment to exceed natural frequencies was introduced. The experimental results demonstrate the system functions and validate the control scheme, which will be used in the HTR-10GT project. (authors)

  14. Variable Parameters PD Control and Stability of a High Rate Rigid Rotor-Journal Active Magnetic Bearing System

    Institute of Scientific and Technical Information of China (English)

    LUO Kai

    2005-01-01

    Stability is a key problem that means whether a high rate rotor-active magnetic bearings system works reliably or not. Aiming at a bearings system described with nonlinear equations, this paper built a linear model according to the system behavior. Considering realization of the control system and behavior of a high rate rotor system (magnetic force is far smaller than input force produced by mass eccentricity) this paper proposes a design method of variable parameters PD control algorithm that can be used universally. The control system was simplified and a mass of adjusting work of control parameters was reduced. Analysis and simulation indicated that the bearings system could get a wider stable region of harmonic motion, and proved that the algorithm is robust and advanced. The control system can be realized because the winding electric currents are positive. The method is convenient for operation and can easily be used for engineering practice.

  15. A self-sensing active magnetic bearing based on a direct current measurement approach.

    Science.gov (United States)

    Niemann, Andries C; van Schoor, George; du Rand, Carel P

    2013-01-01

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator. PMID:24030681

  16. A Self-Sensing Active Magnetic Bearing Based on a Direct Current Measurement Approach

    Directory of Open Access Journals (Sweden)

    Carel P. du Rand

    2013-09-01

    Full Text Available Active magnetic bearings (AMBs have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.

  17. Optimal Control and H∞ Output Feedback Design Options for Active Magnetic Bearing Spindle Position Regulation

    Directory of Open Access Journals (Sweden)

    Yifei Yang

    2013-07-01

    Full Text Available For the demand of high speed and high accuracy, the use of active magnetic bearing (AMB plays a key role in various industries such as clean rooms, compressors and satellites due to their contactless nature. In this research, two other control options for high speed machine were designed based on the optimal output feedback and H∞ output feedback control methods to improve the radical and axial position regulation of AMB. The output feedback control gain matrix with the minimum performance index is obtained by solving the Riccati equation and fed back to the system in order to achieve the system’s performance. The above designed controllers can efficiently regulate the radial and axial directions position deviation of for AMB systems. Simulations for the two control methods were carried out using Matlab and Simulink for AMB system models. Results show that the H∞ output feedback controller has a better position deviation control performance over the optimal output feedback under condition of decreasing the disturbance of reaction. Finally, simulations results demonstrate that the H∞ Output Feedback is effective.

  18. Nonlinear Control of Magnetic Bearings

    Institute of Scientific and Technical Information of China (English)

    Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen

    2010-01-01

    In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.

  19. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  20. Passive axial stabilization of a magnetic radial bearing by superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu, M.; Marinescu, N. (Ing.-Buro f. Magnettechnik, Mailander Str.19, D-6000 Frankfurt/M. 70 (DE)); Tenbrink, J.; Krauth, H. (Vacuumschmelze GmbH, Gruner Weg 37, D-6450 Hanau (DE))

    1989-09-01

    Contactless bearings for high-speed operation can be constructed using passive magnet systems, which inherently need a second, active bearing for their stabilization. Completely passive bearings only can be obtained using diamagnetic materials. This study deals with the axial stabilization of magnetic radial bearings using a permanent magnet/superconductor system. Using finite element calculation procedures it is shown that axial forces of up 3000 N and stiffnesses of up to 400 N/mm may be achieved.

  1. Magnetic Bearing Controller Improvements for High Speed Flywheel System

    Science.gov (United States)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.; Kascak, Peter E.; Provenza, Andrew J.

    2003-01-01

    A magnetic bearing control system for a high-speed flywheel system is described. The flywheel utilizes a five axis active magnetic bearing system, using eddy current sensors for position feedback to the bearing controller. Magnetic bearing controller features designed to improve flywheel operation and testing are described. Operational improvements include feed forward control to compensate for rotor imbalance, moving notch filtering to compensate for synchronous and harmonic rotational noise, and fixed notching to prevent rotor bending mode excitation. Testing improvements include adding safe gain, bearing current hold, bearing current zero, and excitation input features. Performance and testing improvements provided by these features are measured and discussed.

  2. 主动电磁轴承系统的动力学性能分析%Analysis on Dynamic Performance for Active Magnetic Bearing-Rotor System

    Institute of Scientific and Technical Information of China (English)

    严慧燕; 汪希平; 朱礼进; 张直明; 万金贵

    2001-01-01

    In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings, and studies its rotor dynamics performance, including calculation of the natural frequencies with their distribution characteristics, and the critical speeds of the system. One of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magnetic bearing-rotor system by combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.

  3. Unbalanced Magnetic Pull Effect on Stiffness Models of Active Magnetic Bearing due to Rotor Eccentricity in Brushless DC Motor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available We firstly report on an investigation into the unbalanced magnetic pull (UMP effect on the static stiffness models of radial active magnetic bearing (RAMB in brushless DC motor (BDCM in no-loaded and loaded conditions using the finite element method (FEM. The influences of the UMP on the force-control current, force-position, current stiffness, and position stiffness of RAMB are clarified in BDCM with 100 kW rated power. We found the position stiffness to be more susceptible to UMP. The primary source of UMP is the permanent magnets of BDCM. In addition, the performance of RAMB is affected by the UMP ripples during motor commutation and also periodically affected by the angular position of rotor. The characteristic curves of RAMB force versus control current (or rotor position and angular position of rotor affected by the UMP are given. The method is useful in design and optimization of RAMB in magnetically suspended BDCMs.

  4. Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds

    International Nuclear Information System (INIS)

    If a rotor possesses a high gyroscopic coupling or the running speed is high, the dynamical changes in the rotor become prominent. When active magnetic bearings are used to support such rotors, it is necessary for the bearing controller to take these dynamical changes into consideration. Independent-axis controllers, which are the most commonly used, modulate the bearing force solely based on the sensor output of the same axis. However, this type of controller has difficulties in overcoming the dynamical changes. On the other hand, mixed-axis controllers transform the sensor output into components corresponding to the vibrational modes. A separate controller can then be designed for each vibrational mode. In this way, the controller can be designed based on the dynamics of the rotor. In this paper, we describe a design process for a mixed-axis controller that uses a detailed mathematical model of the system. The performance of the controller is evaluated based on the ISO sensitivity requirements and unbalance response, while considering the change in the system dynamics due to the running speed

  5. Preliminary modal analysis and structure design of an HTR-10 PCU rotor with an active magnetic bearing

    International Nuclear Information System (INIS)

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by INET at Tsinghua University of China. The second phase of the HTR-10 project is to set up a direct helium cycle to replace the current steam cycle. An Active Magnetic Bearing (AMB) was chosen to support the rotor. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1000 kg and the rotating speed is 15,000 r/min. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. Some kinds of FEM software and methods, such as MSC.Marc, Ansys, and the Transfer Matrix Method, are compared to fully analyze rotor dynamics characteristic. The modal analysis and preliminary structure design have been done for the HTR-10 phase II rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. These results offer the basis for design of the AMB control system, and also provide research data for large magnetic bearings. (author)

  6. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  7. Technical design and principle test of active magnetic bearings for the turbine compressor of HTR-10GT

    Energy Technology Data Exchange (ETDEWEB)

    Shi Lei, E-mail: shlinet@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Yu Suyuan; Yang Guojun; Shi Zhengang; Xu Yang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2012-10-15

    The 10 MW high temperature gas-cooled test reactor coupled with gas-turbine circle (HTR-10GT) has been carried out by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China since year 2002. In the power convention unit (PCU) of the HTR-10GT, the contact-free and no-lubricating active magnetic bearings (AMB) are adopted to support the vertical high-speed turbine machine shaft, because of their numerous advantages over the conventional oil mechanical bearings under the special reactor operating conditions. Based on the previous studies and small tests of the AMBs, the final engineering design of the AMBs for the HTR-10GT turbine compressor rotor has been finished recently. This paper firstly introduces the design principle and technical futures of the AMBs. Then the main structure, as well as the key dimensions and parameters of the different AMB components are illustrated in detail. Besides, the rotor dynamic analysis is conducted to provide the mathematic model for the unbalance attenuation with high performance control system design in order to smoothly pass across the first two bending critical speeds before reaching the rated speed of 15,000 rpm. Furthermore, a small AMB flexible test system in compliance with the dynamic similarity principle of the helium turbine compressor rotor of the HTR-10GT, has been set up to validate the advanced control algorithms and accumulate design and operation experiences for the next full scale experiment in the near future.

  8. Novel maglev pump with a combined magnetic bearing.

    Science.gov (United States)

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device. PMID:15745134

  9. Modal Tilt/Translate Control and Stability of a Rigid Rotor with Gyroscopics on Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Timothy Dimond

    2012-01-01

    Full Text Available Most industrial rotors supported in active magnetic bearings (AMBs are operated well below the first bending critical speed. Also, they are usually controlled using proportional, integral and derivative controllers, which are set up as modally uncoupled parallel and tilt rotor axes. Gyroscopic effects create mode splitting and a speed-dependent plant. Two AMBs with four axes of control must simultaneously control and stabilize the rotor/AMB system. Various analyses have been published considering this problem for different rotor/AMB configurations. There has not been a fully dimensionless analysis of these rigid rotor AMB systems. This paper will perform this analysis with a modal PD controller in terms of translation mode and tilt mode dimensionless eigenvalues and eigenvectors. The number of independent system parameters is significantly reduced. Dimensionless PD controller gains, the ratio of rotor polar to transverse moments of inertia and a dimensionless speed ratio are used to evaluate a fully general system stability rigid rotor analysis. An objective of this work is to quantify the effects of gyroscopics on rigid rotor AMB systems. These gyroscopic forces reduce the system stability margin. The paper is also intended to help provide a common framework for communication between rotating machinery designers and controls engineers

  10. Coated Conductors for the Magnetic Bearing Application

    Science.gov (United States)

    Sass, Felipe; Dias, Daniel Henrique Nogueira; Sotelo, Guilherme Gonçalves; Júnior, Rubens de Andrade

    The second generation (2G) of superconductor wires have been considered for several applications lately. This work presents a preliminary study of superconducting magnetic bearings (SMB) using 2G wires as passive levitators. A superconducting block using stacked 2G wires was built to evaluate the magnetic bearing behavior, thought levitation force measurements, when a permanent magnet cylinder approaches or moves away from the block. The superconducting block was compared with an YBCO bulk with nearly the same dimensions and the results show a promising potential for this application.

  11. Magnetic remanence of hematite-bearing murals

    Science.gov (United States)

    Lanza, R.; Zanella, E.; Saudino, S.

    2009-12-01

    We report on a series of experiments designed to test the ability of hematite-bearing colors to record the direction of the ambient magnetic field. Plasterboards accurately oriented with respect to the Earth's magnetic field were painted with red tempera colors prepared with hematite pigments. Magnetic measurements indicate that the color film retains a remanent magnetization and acquires a well developed magnetic fabric. The remanence direction is close to, yet slightly deviated from the Earth's magnetic field. The deviation is interpreted to result from preferential alignment of the pigment grains parallel to the plasterboard surface and depends on both its orientation with respect to magnetic north and the degree of magnetic anisotropy of the color film, which in turn varies according to the pigment used. Investigation of the magnetic remanence of murals may complement archaeomagnetic information derived from traditional materials such as baked and fired structures.

  12. Using Magnetic Bearing Orbit Information to Maximize Centrifugal Compressor Efficiency at Off-Design Conditions

    OpenAIRE

    Thornton, W. Turner; Brasz, Joost J.

    2014-01-01

    Active magnetic bearings used on oil-free centrifugal refrigeration compressors have lower stiffness than conventional oil-lubricated journal or rolling element bearings. The lower stiffness of these bearings makes them sensitive to internal flow instabilities that are precursors of rotating stall or compressor surge. At operating conditions far away from surge the internal flow is very stable and the magnetic bearings keep the shaft centered, resulting in a minimal bearing orbit. The interna...

  13. Flywheel energy storage with superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  14. AN INVESTIGATION OF MAGNETIC BEARING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Gürcan SAMTAŞ

    2007-02-01

    Full Text Available The magnetic bearing consists of levitating a shaft so that it is free to rotate about its axis. The magnetic bearing has the advantages of being very quiet work and very cleanliness because there is no mechanical friction or lubricants. The shaft has two permanent magnets attached to it. These two magnets determine a straight line rotation axis of the rotor shaft. The magnets are radially levitated and centered within a cavity by a passive permanent magnetic field in the adding stator housing assembly. The levitation and centering of the shaft axially is stabilized by a closed loop electronic servo circuit that regulates an electromagnetic field in the stator housing that pushes and pulls on the shaft magnets. The rotor weight can be between one gram and forty five thousand, four hundred grams. In 1985, the first magnetic bearing was developed that it had used to applications of gas turbines and other compressors. In these days, they can be used by many applications which are Medical, Transportation, Machine and Tools Industry, Aerospace, Vacuum and Clean room Environments... etc.

  15. Dynamic interaction between rotor and axially-magnetized passive magnetic bearing considering magnetic eccentricity

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar

    2014-01-01

    Passive magnetic bearings are known due to the excellent characteristics in terms of friction and no requirement of additional energy sources to work. However, passive magnetic bearings do not provide damping, are not stable and, depending on their design, may also introduce magnetic eccentricity....... Such magnetic eccentricities are generated by discrepancies in magnet fabrication. In this framework the main focus of the work is the theoretical as well as experimental investigation of the nonlinear dynamics of a rotor-bearing system with strong emphasis on the magnetic eccentricities and non......-linear stiffness. In this investigation passive magnetic bearings using axially- aligned neodymium cylinder magnets are investigated. The cylinder magnets are axially magnetised for rotor as well as bearings. Compared to bearings with radial magnetisation, the magnetic stiffness of axially-aligned bearings...

  16. MAGNETIC FLUID BEARINGS OF MINING EQUIPMENT

    Directory of Open Access Journals (Sweden)

    I. Gorlov

    2012-01-01

    Full Text Available The paper considers a problem pertaining to selection friction pair materials for plain bearings of mining equipment which are lubricated with  nano-dispersed magnetic oil. Methodology for equipment tests, technology for obtaining new anti-friction materials (polymer, ceramic, amorphous and investigation results are presented in the paper.

  17. Passive magnetic bearing for a horizontal shaft

    Energy Technology Data Exchange (ETDEWEB)

    Post, Richard F.

    2003-12-02

    A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.

  18. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  19. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  20. Performance of repulsive type magnetic bearing system under nonuniform magnetization of permanent magnet

    OpenAIRE

    Ohji, T.; Mukhopadhyay, S. C.; Iwahara, Masayoshi; Yamada, Sotoshi

    2000-01-01

    Permanent magnet bearing system utilizes the repulsive forces between the stator and rotor permanent magnets (PM) for the levitation of the system and it results a simplified axial control scheme. A repulsive type magnetic bearing system based on the above principle was fabricated in our laboratory. Material characteristics and the configuration of the permanent magnets are the central component for this type of bearing system. Due to aging or as both the magnets are repelling each other, the...

  1. Permanent magnet design for high-speed superconducting bearings

    Science.gov (United States)

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-09-10

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

  2. Low-stiction magnetic bearing for satellite application

    Science.gov (United States)

    Rajagopal, K. R.; Sivadasan, K. K.

    2002-05-01

    In this article, the design and development of a low-stiction two-axis-active magnetic bearing used in the reaction wheel of a remote sensing satellite is presented. Conventional design of the magnetic circuit and improvements in the design using finite element (FE) analysis were carried out. The results of investigations carried out to bring down the stiction torque of the magnetic bearing to a very low value of less than 1×10-4 Nm are also presented. Ideally for zero stiction, the cogging between the moving and stationary parts must be zero. In a reaction wheel of the satellite, there will be a permanent magnet brushless dc motor as the drive motor. Magnetic or eddy current sensors present in the motor commutation circuit will induce cogging between the moving and stationary parts. In this work, by properly designing all subsystems, the stiction has been brought down to as low as 0.75×10-4 Nm. Test results of the developed magnetic bearing match fairly with the computed values by FE analysis.

  3. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    of the gas bearing is balanced by the properties of the passive magnetic one. At high speeds the dynamic characteristics of the gas bearing are improved by offsetting the stator ring of the permanent magnetic bearing. Furthermore this design shows a kind of redundancy, which offers soft failure properties....... In the present paper, a detailed mathematical modeling of the gas bearing based on the compressible form of the Reynolds equation is presented. Perturbation theory is applied in order to identify the dynamic characteristic of the bearing. Due to the simple design of the magnetic bearings elements - being...

  4. Dynamic modelling and response characteristics of a magnetic bearing rotor system with auxiliary bearings

    Science.gov (United States)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1995-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.

  5. Dynamic modelling and response characteristics of a magnetic bearing rotor system including auxiliary bearings

    Science.gov (United States)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1993-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.

  6. Analysis of Beat Vibration for Active Magnetic Bearing System%主动磁悬浮轴承系统拍振现象分析

    Institute of Scientific and Technical Information of China (English)

    高辉; 徐龙祥

    2011-01-01

    Vibration analysis plays an important role in the research of active magnetic bearing(AMB) system. However, the established system mathematical models which combine the controller with the dynamic response are relatively few. The vibration equations of radial AMB subsystems are built on the basis of the stress analysis of high speed rotor system, referring the influences of the frequency characteristics of adopted incomplete differential PID controller on the generalized magnetic bearing dynamic stiffness and rotor dynamic unbalance response. The vibration modes existing in AMB system can be obtained by solving the vibration equations. One is free vibration because of the inherent frequency, and the other is harmonic vibration due to unbalanced excitation response. And the produced beat vibration phenomenon is explained when the two kinds of vibration frequency are similar. Through adjusting the control current, the generalized dynamic stiffness of magnetic bearings and as well as the inherent frequency of the system can be changed, thus resulting in the weakening of beat vibration. Simulation and experimental results can verify the "beat vibration" phenomenon and the damping effect after changing the active control. The mechanical model can provide the simulation platform for the research of vibration compensation algorithm of AMB system.%振动分析是研究主动磁悬浮轴承(Active magnetic bearings,AMB)系统的一个重要部分,但是目前结合控制器以及动态不平衡响应建立的系统数学模型相对较少.通过对高速主动磁悬浮轴承转子系统受力分析,参考所使用的不完全微分PID控制器的频率特性对AMB广义动刚度的影响以及对转子动态不平衡激励响应的影响,建立径向子系统的力学振动方程.通过此振动方程的解,得出AMB系统存在的振动形式.一种是由于系统固有频率存在而产生的自由振动,另一种是由于不平衡响应存在而产生的简谐振动,并

  7. Development of bearings and a damper based on magnetically controllable fluids

    Science.gov (United States)

    Guldbakke, J. M.; Hesselbach, J.

    2006-09-01

    This paper presents two different kinds of magnetically controllable fluid bearings and a new magnetorheological fluid damper based upon open porous metallic foams. For the bearings, it will distinguish between a magnetohydrostatic bearing and a hydrostatic bearing with a magnetically controllable fluid. The magnetohydrostatic bearings get their load bearing capacity from the magnetohydrostatic pressure that is generated by the gradient of the magnetic field along a fluid surface. With such magnetohydrostatic bearings a specific load up to 1.6 N cm2 can be reached. To support heavier loads hydrostatic bearings with magnetically controllable fluids can be used. This bearing concept makes it possible to achieve a constant bearing gap even if the load of the bearing changes. For this purpose the fluids are used as a hydraulic medium. Due to the magnetically controlled rheological behaviour of the fluid the bearing gap remains constant. The great advantage of this closed loop system compared to that of common hydrostatic bearings using valves is the quicker response to payload changes. The reason for that is that the active element (i.e. the fluid) acts directly inside the bearing gap and not outside like in the case of valves. The foam damper developed uses the fluid to produce controllable damping forces. The open porous foam is directly placed in the active volume of the damper. By moving the foam piston the magnetically controllable fluid is pressed through the pores. The flow in the pores can be controlled by changing the fluid viscosity by applying a magnetic field. With this damper structure it is possible to reach higher damping forces whilst featuring a small design space.

  8. Flywheel for energy storage with passive superconducting magnetic bearings. Schwungradenergiespeicher mit passiven supraleitenden magnetischen Lagern

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik); Urban, C. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik); Ritter, T. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik); Boegler, P. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik); Weber, K. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik); Rietschel (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik); Zaitsev, O. (Moskovskij Khimiko-Tekhnologicheskij Inst., Moscow (Russian Federation))

    1994-01-01

    A possible application of passive magnetic bearings on a high temperature superconductor basis was described from the development of a low loss flywheel energy store. Compared to active magnetic bearings, the bearing forces are at present smaller by an order of magnitude. The bearing losses with coefficients of friction of 0.000001 are already in the region of the best known low friction bearing. This is all the more surprising if one considers that the development of this new type of bearing has only just started. The main point of future developments will be the further increase in the capability of the bearings; higher speeds, greater bearing forces and a further reduction of the friction losses. (orig./HP)

  9. Analysis of Permanent Magnets Bearings in Flywheel Rotor Designs

    Directory of Open Access Journals (Sweden)

    Prince Owusu-Ansah

    2016-04-01

    Full Text Available This paper discusses analysis of permanent magnet bearing in flywheel rotor designs. This work focuses on the advantages of using permanent magnets in flywheel rotor design as compared to that of the convectional mode of levitating the rotor position. The use of permanent magnet in magnetic bearing design to generate the steady state position of the magnetic field results in less variation of the force exerted on the rotor when it deviates from the nominal position than when an electrical coil is used for the same purpose. Theresults of the analysis shows that the magnetic bearing dynamics as well as its load carryingcapacity improves when the rotor is offset from its central position. The use of permanent magnet compared to current-carrying coils results in smaller overall size of magnetic bearing leading to a more compact system design resulting in improved rotordynamic performance

  10. 风力发电机用同极型磁悬浮轴承的支承性能%Supporting characteristics of the homopolar active magnetic bearing for wind power generator

    Institute of Scientific and Technical Information of China (English)

    谢振宇; 王晓; 周红凯

    2013-01-01

    The setup of vertical axis wind power generator rotor system is built. The homopolar radial active magnetic bearing and the axial active magnetic bearing with the function of suspension and brake synchronously are designed and manufactured. The main design process and configuration parameters are presented. Stability ranges of the control parameters of the active magnetic bearings are tested, the mode frequencies and modal damps of the system are obtained by experimental modal analysis, and the brake function of the axial active magnetic bearing is verified. The results show that the first critical speed of the system is far above the operating rotation speed, there is no resonance when the system is in motion. On the other hand, the axial active magnetic bearing can meet the brake demand and reduce the size and cost of the system.%建立了垂直轴风力发电机转子系统装置,设计制作了同极型径向磁悬浮轴承和具有悬浮与刹车功能的轴向磁悬浮轴承,给出了该装置的主要设计过程和结构参数.测试了磁悬浮轴承控制参数的稳定区域,采用试验模态分析方法获取了系统的模态频率和模态阻尼,并验证了轴向磁悬浮轴承的刹车功能.结果表明,系统的第一阶临界转速远高于最大工作转速,系统在运行时不会出现共振;另外,轴向磁悬浮轴承可以满足刹车制动要求,有利于减小系统的体积和成本.

  11. Toxicity of Magnetic Albumin Microspheres Bearing Adriamycin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Magnetic albumin microspheres bearing adriamycin (ADM-MAM) is a novel chemotherapeutic compound with site-specific drug delivery characteristics. The acute and subacute toxic tests of the compound, local irritating test and anaphylactic test were performed on mice and guinea pigs. The results showed there was no macroscopically and microscopically direct cytotoxic injuries of the compound to the animal organs or to the cells. The LD50 value of the compound was higher than that of the single used adriamycin, indicating that the compound was less toxic than the single adriamycin and quite safe in its therapeutic dosage. Furthermore, there was also no side effects or toxic reactions to be observed on clinical patients with advanced carcinoma or gastric cancer.

  12. Cryocooler applications for high-temperature superconductor magnetic bearings.

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, R. C.

    1998-05-22

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping.

  13. Suppression of Base Excitation of Rotors on Magnetic Bearings

    OpenAIRE

    Steven Marx; C. Nataraj

    2007-01-01

    This paper deals with rotor systems that suffer harmonic base excitation when supported on magnetic bearings. Magnetic bearings using conventional control techniques perform poorly in such situations mainly due to their highly nonlinear characteristics. The compensation method presented here is a novel optimal control procedure with a combination of conventional, proportional, and differential feedback control. A four-degree-of-freedom model is used for the rotor system, and the bearings are ...

  14. Biodegradation reduces magnetization in oil bearing rocks: magnetization results of a combined chemical and magnetic study

    Science.gov (United States)

    Emmerton, S.; Muxworthy, A. R.; Sephton, M. A.; Williams, W.

    2012-12-01

    A relationship between hydrocarbons and their magnetic signatures has been alluded to for decades but this is the first study to combine geochemical and magnetic data. We report an extended study that identifies a definitive connection between magnetic mineralogy and biodegradation within oil-bearing rocks. Samples from Colombia, Canada Indonesia and the UK were collected and magnetically characterized. A negative linear regression in log space between magnetic susceptibility and the percentage of extractable organic matter was observed for individual reservoirs. To determine if this relationship is due to the activity of bacteria or migration of the oil, the percentage of oil components; aliphatic, aromatics, polars and resins and the biodegradation state of the samples were compared to the magnetic susceptibility and magnetic mineralogy of the samples. Geochemical biomarker data revealed that all oil samples were derived from mature type-II kerogen, which was deposited in oxygen-poor environments allowing for an investigation into biodegradation variations. Biodegradation is the decrease of oil quality through the conversion of aliphatic hydrocarbons to polar constituents mainly through the activity of bacteria. A distinct decrease in magnetic susceptibility was correlated to decreasing oil quality (loss of aliphatic hydrocarbons, more biodegraded), which cannot be rejected at 99% confidence. Further magnetic characterization revealed that the high quality, low biodegradation oils from Colombia have a higher magnetic susceptibility (10-3-10-4 m3kg-1) and are dominated by pseudo-single domain grains of magnetite. The lower quality oils i.e., the UK, Canadian and Indonesian samples, displayed decreased magnetic susceptibility (10-5-10-6 m3kg-1) and pseudo-single domain to multidomain grains of magnetite and hematite. Magnetite and pyrrhotite framboidal material were found in all but the Canadian samples. Therefore, with decreasing oil quality there is a progressive

  15. Performances Comparison for a Rotating Shaft Suspended by 4-Axis Radial Active Magnetic Bearings via -Synthesis, Loop-Shaping Design, and Sub(∞with Uncertainties

    Directory of Open Access Journals (Sweden)

    G. Barbaraci

    2011-01-01

    Full Text Available The control systems applied on active magnetic bearing are several. A perfect levitation is characterized by maintaining the operating point condition that is characterized by the center of stator coincident with the geometric center of shaft. The first controller implemented for this purpose is PID controller that is characterized by an algorithm that leads the amplifier to produce control current until the operating point condition is not reached, this is obtained by an integration operator. The effect of an integrator is essential but not necessary for a centered levitation for example in the robust control characterized by a dynamic model depended on plant of system so that it depends on angular speed as LQR controller does. In LQR there is not integrator so there is not a perfectly centered section of shaft with center of stator. On contrary PID controller does not depend on angular speed and it can be easily implemented according some simple rules. Predictive control is another interesting controller characterized by a multiple controller operating in different condition in order to get the minimum of cost function, but also in this case the angular speed is introduce for the same reason discussed before.

  16. Early-stage fault isolation based on frequency response fitted by small-size samples for cryogenic cold compressors with active magnetic bearings.

    Science.gov (United States)

    Arpaia, Pasquale; De Vito, Luca; Girone, Mario; Pezzetti, Marco

    2016-01-01

    A model-based method for fault detection and early-stage isolation, applicable when unfaulty conditions can be identified only by a reduced number of trials (even only one), is presented. The basic idea is to model analytically the uncertainty of the unfaulty frequency response and express the fault condition in terms of the noise power variance. A preliminary fault isolation is carried out by sensitivity analysis in order to identify the most influencing model parameters and assess their influence on the estimated noise. Then, during maintenance tests, the noise power is checked to detect the faulty condition. This technique is conceived to check the quality of a critical component in an experimental installation (fault detection and early-stage isolation), as well as to detect its faulty dynamic behaviors over a long horizon maintenance test campaign (condition monitoring). The method was applied to four cold compressors with active magnetic bearings at CERN by proving to be able to detect an actual faulty condition in one of such compressors. PMID:26827354

  17. Control of a flexible rotor active magnetic bearing test rig:a characteristic model based all-coefficient adaptive control approach

    Institute of Scientific and Technical Information of China (English)

    Long DI; Zongli LIN

    2014-01-01

    Active magnetic bearings (AMBs) have found a wide range of applications in high-speed rotating machinery industry. The instability and nonlinearity of AMBs make controller designs difficult, and when AMBs are coupled with a flexible rotor, the resulting complex dynamics make the problems of stabilization and disturbance rejection, which are critical for a stable and smooth operation of the rotor AMB system, even more difficult. Proportional-integral-derivative (PID) control dominates the current AMB applications in the field. Even though PID controllers are easy to implement, there are critical performance limitations associated with them that prevent the more advanced applications of AMBs, which usually require stronger robustness and performance offered by modern control methods such as H-infinity control andμ-synthesis. However, these advanced control designs rely heavily on the relatively accurate plant models and uncertainty characterizations, which are sometimes difficult to obtain. In this paper, we explore and report on the use of the characteristic model based all-coefficient adaptive control method to stabilize a flexible rotor AMB test rig. In spite of the simple structure of such a characteristic model based all-coefficient adaptive controller, both simulation and experimental results show its strong performance.

  18. THE EDDY LOSSES OF A MAGNETIC THRUST BEARING

    Institute of Scientific and Technical Information of China (English)

    徐华; 王艳

    2004-01-01

    Accurate calculations of losses associated with the operation of magnetic bearings are particularly important for high speed applications where the rotor losses are expected to be large and for some particular applications where even low power losses will be critical. Power losses in the magnetic thrust bearing is often neglected, but if there is misaligned in the rotor and bearing, the magnetic field in the thrust bearing is no longer axisymmetric one, or the dynamic control current in the winding is time dependent one, eddy currents are caused to flow inside the conducting material, then the power losses are very important for magnetic bearing design. This paper presents an analytical model of a thrust magnetic bearing, and the magnetic fields, forces and losses of thrust magnetic bearing are calculated. In the calculations the frequency of dynamic control current is up to 1000Hz, rotating speed is from 60rpm to 1200rpm, and the non-linearity of material is also taken into consideration. The results shows that if the magnetic field is not saturation, the eddy losses is proportional to dynamic control current frequency and a square function of dynamic control current, and also 5/2 power function of shaft's speed.

  19. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-05-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  20. Hybrid Superconducting Magnetic Bearing (HSMB) for high-load devices

    International Nuclear Information System (INIS)

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  1. Modeling and Development of RMD Configuration Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    K.P. Lijesh

    2015-06-01

    Full Text Available The low load carrying capacity of Passive Magnetic Bearings (PMBs has restricted their use in many industrial applications. The Rotation Magnetized Direction (RMD configuration has emerged as a strong and viable method that is able to substantially enhance the load carrying capacity of passive magnetic bearings. It consists of both radially and axially polarized passive magnets. But the physical realization of a radially polarized magnet is difficult to achieve. In the present work, a RMD structure consisting of aluminum ring and cubical shaped magnets is proposed by developing the radially polarized magnets required for RMD structure. A theoretical model is derived by simulating the cuboid magnets in form of sector magnets by developing equivalent surface area. An experimental setup was designed and developed to conduct experimental verification. The theoretical model is validated by conducting experiments on RMD configuration magnetic bearing and axially magnetized full ring bearing. The comparison of the load carrying capacity by different configuration is performed and results are presented.

  2. Dynamic analysis of a magnetic bearing system with flux control

    Science.gov (United States)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  3. Integration of magnetic bearings in the design of advanced gas turbine engines

    Science.gov (United States)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  4. Improved operation of magnetic bearings for flywheel energy storage system

    Science.gov (United States)

    Zmood, R. B.; Pang, D.; Anand, D. K.; Kirk, J. A.

    1990-01-01

    Analysis and operation of prototype 500-Wh flywheel at low speeds have shown that many factors affect the correct functioning of the magnetic bearings. An examination is made of a number of these, including magnetic bearing control system nonlinearities and displacement transducer positioning, and their effects upon the successful operation of the suspension system. It is observed that the bearing control system is extremely sensitive to actuator parameters such as coil inductance. As a consequence of the analysis of bearing relaxation oscillations, the bearing actuator design methodology which has previously been used, where coil parameter selection is based upon static considerations, has been revised. Displacement transducer sensors which overcome the collocation problem are discussed.

  5. Persistent currents in a magnetic bearing with coated conductors

    Science.gov (United States)

    Sass, F.; Ramos de Castro, André; Gonçalves Sotelo, Guilherme; de Andrade, R.

    2015-11-01

    Superconducting magnetic bearings are normally built with bulk superconductors. Since coated conductors properties are far superior, we have proposed in a previous work the replacement of bulks for stacks of 2G wires in magnetic levitation devices. A major limitation of this replacement lies in the fact that the induced current is constrained in narrow loops along the available commercial widths of 2G wires. This work presents a technique to achieve wider loops of persistent current without the need of increasing the coated conductors width. As a result, the use of 2G wires in magnetic bearings took a step towards its economical feasibility.

  6. Magnetic Bearing Amplifier Output Power Filters for Flywheel Systems

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Jansen, Ralph H.; Palazzolo, Alan; Thomas, Erwin; Kascak, Peter E.; Birchenough, Arthur G.; Dever, Timothy P.

    2003-01-01

    Five power filters and two types of power amplifiers were tested for use with active magnetic bearings for flywheel applications. Filter topologies included low pass filters and low pass filters combined with trap filters at the PWM switching frequency. Two state and three state PWM amplifiers were compared. Each system was evaluated based on current magnitude at the switching frequency, voltage magnitude at 500 kHz, and power consumption. The base line system was a two state amplifier without a power filter. The recommended system is a three state power amplifier with a 50 kHz low pass filter and a 27 kHz trap filter. This system uses 5.57 W. It reduces the switching current by an order of magnitude and the 500 kHz voltage by two orders of magnitude. The relative power consumption varied depending on the test condition between 60 to 130 percent of the baseline.

  7. Magnetic bearings: A key technology for advanced rocket engines?

    Science.gov (United States)

    Girault, J. PH.

    1992-01-01

    For several years, active magnetic bearings (AMB) have demonstrated their capabilities in many fields, from industrial compressors to control wheel suspension for spacecraft. Despite this broad area, no significant advance has been observed in rocket propulsion turbomachinery, where size, efficiency, and cost are crucial design criteria. To this respect, Societe Europeenne de Propulsion (SEP) had funded for several years significant efforts to delineate the advantages and drawbacks of AMB applied to rocket propulsion systems. Objectives of this work, relative technological basis, and improvements are described and illustrated by advanced turbopump layouts. Profiting from the advantages of compact design in cryogenic environments, the designs show considerable improvements in engine life, performances, and reliability. However, these conclusions should still be tempered by high recurrent costs, mainly due to the space-rated electronics. Development work focused on this point and evolution of electronics show the possibility to decrease production costs by an order of magnitude.

  8. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  9. Estimation of optimum operating point for thrust magnetic bearing with solid magnet

    Institute of Scientific and Technical Information of China (English)

    孙首群; 田育民

    2003-01-01

    A carrying capacity-temperature rise analysis model has been established for analysis of the carrying capacity, temperature rise and carrying capacity-temperature rise characteristic of a thrust magnetic bearing with solid magnet. The results indicate that there must be an optimal operating point for the thrust magnetic beating with solid magnet. The main factors having effect on carrying capacity-temperature rise include static gap and/or ampere-turns. With proper static gap chosen, the bearing can be run near the optimal operating point by adjhusting ampere-turns, thereby optimizing the bearing properties.

  10. CONTROL SYSTEM OF MAGNETIC BEARINGS BASED ON LINEAR QUADRATIC METHOD OF OPTIMAL CONTROL STRATEGY

    Institute of Scientific and Technical Information of China (English)

    Zhu Huangqiu

    2005-01-01

    A state equation for radical 4-degree-of-freedom active magnetic bearings is built, and the approach on how to use linear quadratic method of optical control theory to design a centralized and decentralized parameters control system is introduced, and also Matlab language is used to simulate and analyze. The simulation results have proved that the differences are small between centralized parameters and decentralized parameters control system. The conclusions of experiments have shown that decentralized controllers designed from optimal state feedback theory meet the requirements of active magnetic bearing system. The vibration amplitude of the rotor is about 20 μm when the speed of the rotor runs between 0 to 60 000 r/min. This method may be used in the study and design of controllers of magnetic bearings.

  11. Sudden venting test of an emergency bearing for the magnet bearing type compound molecular pump

    International Nuclear Information System (INIS)

    The vacuum evacuation system for nuclear fusion reactors bears the role of exhausting hydrogen isotopes in large quantity together with helium continuously for long hours, and as the high vacuum pumps for this purpose, the mechanical pumps which can do continuous evacuation and decrease the quantity of staying radioactive tritium, such as turbo molecular pumps and compound molecular pumps, are promising. Because of the compatibility with tritium, oil lubrication is not desirable, accordingly, the pumps with ceramic rotating vanes and magnetic bearings are demanded. As a part of the development of a magnetic bearing type mechanical pump which can be used for nuclear fusion reactors, the compound molecular pump, in which emergency bearings were incorporated, was made for trial, and the test of sudden air intrusion was carried out, as the results, various knowledges were obtained. The constitution of the testing setup, and the test results are reported. When air was injected at the pressure rise of 3.3x104 Pa/s from exhaust port side, after about 2.5 s, the maximum lift of 4.2x103 N arose. When air was injected at the pressure rise of 2.7x105 Pa/s from the suction part side, after about 0.4s, the maximum lift of 6.9x103 N arose. In the air injection alternately from the suction port and exhaust port sides, the emergency bearings functioned normally in 10 times of the test. (K.I.)

  12. TWO DIMENTIONAL STATIC MAGNETIC ANALYSIS OF RADIAL MAGNETIC BEARING SYSTEMS WITH DIFFERENT STRUCTURES

    Directory of Open Access Journals (Sweden)

    Yusuf ÖNER

    2005-03-01

    Full Text Available The friction loss of electrical machines is an important problem as like in other rotary machines. In addition, the bearings, where the friction losses occur, also require lubrication at periodic intervals and need to be maintained. In this study, to minimize the friction loss of electrical motor, two dimentional static magnetic analysis of radial magnetic bearing systems with different structures are performed and compared with each other; also, magnetic bearing system with four-pole is realized and applied to an induction motor. In simulation, the forces applied to the rotor of induction motor from designed magnetic bearing system are calculated in a computer by using FEMM software package. In application, when comparing designed magnetic bearing system with mechanical bearings up to the revolution of 350 rpm, it was observed that the loss of no-load operating condition of induction motor is decreased about 15 % with magnetic bearing system. In addition to this, mechanical noisy of the motor is also decreased considerably.

  13. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  14. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    International Nuclear Information System (INIS)

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  15. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  16. Single axis controlled hybrid magnetic bearing for left ventricular assist device: hybrid core and closed magnetic circuit.

    Science.gov (United States)

    da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P

    2011-05-01

    In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.

  17. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  18. Active magnetic regenerator

    Science.gov (United States)

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  19. Electrostatic stabilizer for a passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  20. Electrostatic stabilizer for a passive magnetic bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Post, Richard F

    2016-10-11

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  1. Repulsive Magnetic Bearing Using a Piezoelectric Actuator for Stabilization

    Science.gov (United States)

    Mizuno, Takeshi; Aizawa, Mitsunori

    A repulsive magnetic bearing system equipped with a piezoelectric actuator for the motion control of permanent magnets is studied experimentally. In this system, the radial motions of the rotor are passively supported by repulsive forces between permanent magnets. The motion in the axial direction is stabilized by moving the permanent magnets for radial suspension with a piezoelectric actuator. In the experiments, a piezoelectric actuator with a stroke of 200µm was installed first. PD and I-PD controllers were applied to achieve levitation without any mechanical contact. It was experimentally shown that the dynamic characteristics of the levitation system could be adjusted by pole assignment. Next the actuator was replaced by an actuator with a stoke of 90µm. Experimental results demonstrated that the rotor can follow stepwise command signal whose magnitude was within ±20µm.

  2. STUDY ON CATASTROPHIC MECHANISM FOR ROTOR DROP TRANSIENT VIBRATION FOLLOWING MAGNETIC BEARING FAILURE

    Institute of Scientific and Technical Information of China (English)

    方之楚

    2002-01-01

    The nonlinear and transient vibration of a rotor, which dropped onto back-up bearings when its active magnetic bearings were out of order, was investigated. After strictly deriving its equations of motion and performing numerical simulations, the timehistories of rotating speed of the dropping rotor, and normal force at the rubbing contact point as well as the frequency spectrum of the vibration displacement of back-up bearings are fully analyzed. It is found that the strong and unsteady forced bending vibration of the unbalanced and damped rotor decelerating through its first bending vibtation of the unbalanced and damped rotor decelerating through its first critical speed as well as chattering at high frequencies caused by the nonlinearity at the rubbing contact point between the journal and back-up bearings may lead to the catastrophic damage of the system.

  3. From Hybrid to Actively-Controlled Gas Lubricated Bearings – Theory and Experiment

    DEFF Research Database (Denmark)

    Morosi, Stefano

    experimentally, showing dependency on the supply pressure and, less prominently, the rotational velocity. Moreover, additional research is carried out in order to perform a feasibility study on a new kind of hybrid permanent magnetic – aerodynamic gas bearing. This new kind of machine is intended to exploit...... bearings, tilting pad and flexure pivot gas bearings. These solutions proved to be effective in improving static and dynamic properties of the bearings, however issues related to the manufacturing and accuracy of predictions has so far limited their applications. Another drawback is that passive bearings...... offer a low degree of robustness, meaning that an accurate optimization is necessary for each application. Another way of improving gas bearings operation performance is by using active control systems, transforming conventional gas bearings in an electro-mechanical machine component. In this framework...

  4. Numerical computation of the restoring force in a cylindrical bearing containing magnetic liquid

    Directory of Open Access Journals (Sweden)

    Greconici Marian

    2008-01-01

    Full Text Available Present paper deals with the second order of magnetic levitation, applied to a cylindrical bearing holding a magnetized shaft and the magnetic liquid The magnetic restoring force acting on the shaft of the cylindrical bearing. was numerically evaluated, the liquid being considered a nonlinear medium.

  5. Correlating biodegradation to magnetization in oil bearing sedimentary rocks

    Science.gov (United States)

    Emmerton, Stacey; Muxworthy, Adrian R.; Sephton, Mark A.; Aldana, Milagrosa; Costanzo-Alvarez, Vincenzo; Bayona, German; Williams, Wyn

    2013-07-01

    A relationship between hydrocarbons and their magnetic signatures has previously been alluded to but this is the first study to combine extensive geochemical and magnetic data of hydrocarbon-associated samples. We report a detailed study that identifies a connection between magnetic mineralogy and oil biodegradation within oil-bearing sedimentary units from Colombia, Canada Indonesia and the UK. Geochemical data reveal that all the oil samples are derived from mature type-II kerogens deposited in oxygen-poor environments. Biodegradation is evident to some extent in all samples and leads to a decrease in oil quality through the bacterially mediated conversion of aliphatic hydrocarbons to polar constituents. The percentage of oil components and the biodegradation state of the samples were compared to the magnetic susceptibility and magnetic mineralogy. A distinct decrease in magnetic susceptibility is correlated to decreasing oil quality and the amount of extractable organic matter present. Further magnetic characterization revealed that the high quality oils are dominated by pseudo-single domain grains of magnetite and the lower quality oils by larger pseudo-single domain to multidomain grains of magnetite and hematite. Hence, with decreasing oil quality there is a progressive dominance of multidomain magnetite as well as the appearance of hematite. It is concluded that biodegradation is a dual process, firstly, aliphatic hydrocarbons are removed thereby reducing oil quality and secondly, magnetic signatures are both created and destroyed. This complex relationship may explain why controversy has plagued previous attempts to resolve the connection between magnetics and hydrocarbon deposits. These findings reinforce the importance of bacteria within petroleum systems as well as providing a platform for the use of magnetization as a possible exploration tool to identify subsurface reservoirs and a novel proxy of hydrocarbon migration.

  6. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    Science.gov (United States)

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point. PMID:16126584

  7. Fully Suspended, Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig With Forced Excitation

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Montague, Gerald; Duffy, Kirsten; Mehmed, Oral; Johnson, Dexter; Jansen, Ralph

    2004-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig, a significant advancement in the Dynamic Spin Rig (DSR), is used to perform vibration tests of turbomachinery blades and components under rotating and nonrotating conditions in a vacuum. The rig has as its critical components three magnetic bearings: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feed-forward control feature, which will enable the excitation of various natural blade modes in bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and nonrotating, unbladed rotor and a fully levitated, rotating and nonrotating, bladed rotor in which a pair of blades was arranged 180 degrees apart from each other. These tests include the bounce mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For nonrotating blades, a blade-tip excitation amplitude of approximately 100 g/A was achieved at the first-bending critical (approximately 144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 70 mils was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 908 relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.

  8. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Science.gov (United States)

    Morii, Y.; Sukedai, M.; Ohashi, S.

    2011-11-01

    The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  9. Mechanical Characteristics of a Thrust Magnetic Bearing%推力轴承的力学特性

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Static and dynamic mechanical characteristics of a thrustmagnetic bearing are studied owing to the inclination of the runner disk. The application refers to a thrust magnetic bearing for a turbo-expander/compressor. The static tilt of the runner disk has remarkable influence on the mechanical characteristics of thrust magnetic bearing, it can change the static load distribution between two radial magnetic bearings and will exert violent coupling effect among a thrust magnetic bearing and two radial magnetic bearings. Such a finding can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.

  10. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    Science.gov (United States)

    Flowers, George T.

    1995-01-01

    Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.

  11. Improvement of the Levitation Characteristics in the Magnetic Bearing System Using HTSC-Permanent Magnet Hybrid Structure

    Science.gov (United States)

    Ohashi, Shunsuke

    Magnetic bearing using pining force of a permanent magnet and a high-temperature superconductor has been developed. Additional permanent magnet is introduced to increase the levitation force of the magnetic bearing. In this hybrid magnetic bearing system, levitation force is mainly given by the repulsive force of the permanent magnets, and stability for the lateral direction is given by pining force of the superconductor. The experimental device is developed. A ring type superconductor and a bulk one are examined. Levitation characteristics of the hybrid magnetic bearing are measured. A bulk superconductor shows better characteristics both levitation and lateral stability than ring one. Levitation force of the hybrid system becomes about twice as large as that of the no-hybrid one. Although repulsive force of the permanent magnet decreases lateral stability of the system, its influence becomes small by choosing adequate position of the permanent magnets and the superconductor.

  12. Bear

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The famous physicist made for his scholars this riddle. A fellow encountered a bear in a wasteland. There was nobody else there. Both were frightened and ran away. Fellow to the north, bear to the west. Suddenly the fellow stopped, aimed his gun to the south and shot the bear. What colour was the bear?

  13. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA

    OpenAIRE

    Cheng, Shanbao; Olles, Mark W.; Burger, Aaron F.; Steven W Day

    2011-01-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negati...

  14. Stability of multi orifice active tilting-pad journal bearings

    DEFF Research Database (Denmark)

    Haugaard, Asger M.; Santos, Ilmar

    2010-01-01

    The stability properties of actively lubricated tilting-pad journal bearings are investigated theoretically. The bearing preload factor and control system gains are varied, and stable and unstable regions are identified. It is seen, that the control system influences bearing stability......, and that the nature and magnitude of this influence depends on the rotor mass, preload factor and rotational speed. Furthermore, it is shown that assuming the bearing pads to be rigid can produce a substantial error. A rigid pad model will overpredict the stable range of the bearing, thus it may lead to failure...

  15. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity

    Directory of Open Access Journals (Sweden)

    David Fraser

    2013-09-01

    Full Text Available The “pot bears” received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  16. Experimental investigations of active air bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar; Morosi, Stefano

    2012-01-01

    Along with traditional oil lubrication, increasing demand for high-speed applications has renewed attention to gas bearings technology. Traditional aerostatic and aerodynamic gas lubrication has been widely used in a variety of applications, ranging from high-speed spindles to micro and meso-scal...

  17. Adaptive compensation of sensor runout and mass unbalance in magnetic bearings

    Science.gov (United States)

    Setiawan, Joga Dharma

    Active magnetic bearings (ANBs) have increasingly become the choice for high-speed, high-performance rotating machinery because they provide the scope for contactless and frictionless operation. Since magnetic bearings are open-loop unstable, they require careful control system design. Although general feedback control techniques have been proposed for precise shaft levitation, the problem of sensor runout (SRO) has been largely overlooked due to its similarities with mass unbalance in creating periodic disturbances. Furthermore, the important problem of synchronous SRO and unbalance compensation has not been adequately investigated. To improve the accuracy of magnetically levitated rotors, we propose for the first time an adaptive control framework that can compensate SRO and unbalance, both individually and simultaneously, while providing shaft stabilization about the geometric center. In our approach, bias currents in the magnetic coils are periodically perturbed to create persistency of excitation that guarantees individual identification of the harmonic components of the synchronous disturbances. Through feed-forward cancellation of the disturbances and careful control system design, the algorithm provides geometric center stabilization that is robust to uncertainty in plant parameter values. While Lyapunov stability theory and its derived passivity formalism provide a solid theoretical framework for the algorithm, corroborating experimental results establish the simplicity of the design and implementation procedure. The algorithm applies to both SISO and MIMO systems involving a rigid rotor and future studies are expected to broaden its applicability to flexible rotor models.

  18. Research on analytical model and design formulas of permanent magnetic bearings based on Halbach array with arbitrary segmented magnetized angle

    Science.gov (United States)

    Wang, Nianxian; Wang, Dongxiong; Chen, Kuisheng; Wu, Huachun

    2016-07-01

    The bearing capacity of permanent magnetic bearings can be improved efficiently by using the Halbach array magnetization. However, the research on analytical model of Halbach array PMBs with arbitrary segmented magnetized angle has not been developed. The application of Halbach array PMBs has been limited by the absence of the analytical model and design formulas. In this research, the Halbach array PMBs with arbitrary segmented magnetized angle has been studied. The magnetization model of bearings is established. The magnetic field distribution model of the permanent magnet array is established by using the scalar magnetic potential model. On the basis of this, the bearing force model and the bearing stiffness model of the PMBs are established based on the virtual displacement method. The influence of the pair of magnetic rings in one cycle and the structure parameters of PMBs on the maximal bearing capacity and support stiffness characteristics are studied. The reference factors for the design process of PMBs have been given. Finally, the theoretical model and the conclusions are verified by the finite element analysis.

  19. Experimental Grey Box Model Identification of an Active Gas Bearing

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Pierart Vásquez, Fabián Gonzalo; Niemann, Hans Henrik;

    2014-01-01

    Gas bearings have inherent dynamics that gives rise to low damping and potential instability at certain rotational speeds. Required damping and stabilization properties can be achieved by active ow control if bearing parameters are known. This paper deals with identifacation of parameters...... in a dynamic model of an active gas bearing and subsequent control loop design. A grey box model is determined based on experiments where piezo actuated valves are used to perturb the journal and hence excite the rotor-bearing system. Such modelling from actuator to output is shown to effciently support...... controller design, in contrast to impact models that focus on resonance dynamics. The identified model is able to accurately reproduce the lateral dynamics of the rotor-bearing system in a desired operating range, in this case around the first two natural frequencies. The identified models are validated...

  20. New analytical solution for the analysis and design of permanent magnet thrust bearings

    Institute of Scientific and Technical Information of China (English)

    Huan YANG; Rong-xiang ZHAO; Shi-you YANG

    2009-01-01

    On the basis of the current sheet model, a new analytical solution for permanent magnet (PM) bearings is developed.Compared with analytical methods based on the coupling energy model and the magnetic dipole model, the proposed one is more physically intuitive and convenient for engineering designers. According to the analytical model, the thrust characteristics of a novel PM thrust bearing is studied and verified by finite element analysis (FEA). In the proposed thrust bearing configuration, the rotor is composed of stacked PM rings with alternative axial magnetization directions, and the stator with alternative radial magnetization directions while copper rings are used to separate adjacent PM rings. A prototype PM thrust bearing with the proposed configuration is designed and fabricated. The performances of the PM thrust bearing are experimentally validated. It is shown that the calculation accuracy of the presented analytical solution is satisfying.

  1. Active Magnetic Regenerative Liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, John A. [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Oseen-Send, Kathryn [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ferguson, Luke [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Pouresfandiary, Jamshid [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Cousins, Anand [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ralph, Heather [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Hampto, Tom [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States)

    2016-01-12

    This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designs indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature

  2. Research of Digital Power Amplifier Simulation for High-power Blower with Active Magnetic Bearing%大功率磁悬浮鼓风机数字功放的仿真研究

    Institute of Scientific and Technical Information of China (English)

    于文涛; 刘淑琴

    2011-01-01

    High-power blower with active magnetic bearing (AMB) has advantages of small, high speed, high reliability, low noise, it uses three-level digital switching power amplifier base on field programmable gate array (FPGA). Using Matlab/Simulink power system blackset library to complete the model of half-bridge circuit and current sensing circuit, simulate the FPGA internal data processing by embedded M-function modules.The simulation and experimental results verify the correctness of this method of modeling.It provides a new accurate method for simulation of digital circuit power amplifier.%大功率磁悬浮轴承鼓风机具有体积小、转速高、可靠性高、噪音低等优点,其功率放大器采用基于现场可编程门阵列(FPGA)的三电平PWM数字功放,应用Matlab/Simulink中基于电力系统模块集库,完成数字功放电路中的半桥电路和电流采样电路的建模,通过植入M函数文件内嵌功能模块模拟了FPGA内部的数据处理流程.仿真与实验结果验证了该建模方法的正确性,为数字电路功放的仿真提供了新的准确方法.

  3. Ambient-Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems

    Science.gov (United States)

    Post, R. F.; Bender, D. A.

    2002-05-01

    Based on prior work at the Lawrence Livermore National Laboratory ambient-temperature passive magnetic bearings are being adapted for use in highpower flywheel energy storage systems developed at the Trinity Flywheel Power company. En route to this goal specialized test stands have been built and computer codes have been written to aid in the development of the component parts of these bearing systems. The Livermore passive magnetic bearing system involves three types of elements, as follows: (1) axially symmetric levitation elements, energized by permanent magnets, (2) electrodynamic stabilizers employing axially symmetric arrays of permanent magnet bars (Halbach arrays) on the rotating system, interacting with specially wound electrically shorted stator circuits, and, (3) eddy-current-type vibration dampers, employing axially symmetric rotating pole assemblies interacting with stationary metallic discs. The theory of the Livermore passive magnetic bearing concept describes specific quantitative stability criteria.

  4. Superconductor-Magnet Bearings With Inherent Stability and Velocity-Independent Drag Torque

    Science.gov (United States)

    Lee, Eun-Jeong; Ma, Ki Bui; Wilson, Thomas L.; Chu, Wei-Kan

    1999-01-01

    A hybrid superconductor magnet bearing system has been developed based on passive magnetic levitation and the flux pinning effect of high-temperature superconductivity. The rationale lies in the unique capability of a high-temperature superconductor (HTS) to enhance system stability passively without power consumption. Characterization experiments have been conducted to understand its dynamic behavior and to estimate the required motor torque for its driving system design. These experiments show that the hybrid HTS-magnet bearing system has a periodic oscillation of drag torque due mainly to the nonuniform magnetic field density of permanent magnets. Furthermore, such a system also suffers from a small superimposed periodic oscillation introduced by the use of multiple HTS disks rather than a uniform annulus of HTS material. The magnitude of drag torque is velocity independent and very small. These results make this bearing system appealing for high-speed application. Finally, design guidelines for superconducting bearing systems are suggested based on these experimental results.

  5. 三相交流主动磁轴承参数设计与特性分析%Parameter Design and Characteristic Analysis for Three-Phase AC Active Magnetic Bearing

    Institute of Scientific and Technical Information of China (English)

    诸德宏; 程新; 朱熀秋

    2009-01-01

    A mathematical model of the suspension forces is established for three-phase inverter-fed AC radial magnetic bearings. According to the requirement the suspension forces, parameters of an experimental prototype are calculated. The magnetic field and suspension forces of the rotor are verified using Ansoft. Nonlinearity of the suspension forces and the coupling characteristics of the movement between two degrees of freedom around the balance position are calculated and analyzed. The results show that the mechanical configuration and magnetic circuits of the magnetic bearing are correct, and the suspension magnetic forces satisfy the design requirement. Suspension forces have good linearity and symmetry around the balance position, and the movement of two degrees of freedom around balance position has no coupling.%建立了一种三相逆变器驱动的交流主动磁轴承的悬浮力数学模型,根据实验样机悬浮磁力的要求,给出了实验样机参数计算过程.利用Ansoft对该结构磁轴承的磁场和转子受力情况进行仿真验算,并对磁轴承悬浮力非线性和转子在平衡位置附近的运动耦合性进行了计算分析.研究结果表明:这种磁轴承机械和磁路结构合理,悬浮磁力满足设计要求,悬浮力在平衡位置附近具有较好的线性和对称性,二自由度运动几乎没有耦合.

  6. PARAMETER DESIGN AND FINITE ELEMENT ANALYSIS FOR RADIALAXIAL ACTIVE MAGNETIC BEARING WITH SHARING BIASED CURRENT%径向一轴向共用偏磁电流的主动磁轴承结构参数设计与有限元分析

    Institute of Scientific and Technical Information of China (English)

    诸德宏; 卢立户; 刘海娟; 程新; 王鹏

    2011-01-01

    The configuration and working principle of a novel radial-axial active magnetic bearing with sharing biased magnetic current were introduced. The flux path was calculated by using the equivalent magnetic circuit, and the mathematical models of suspension forces were deduced. According to design desire of the suspension forces, the experiment prototype of the novel magnetic bearing was designed . The experiment prototype of the novel magnetic bearing' s flux path is analyzed by finite element Ansoft software. The results of theory analysis and finite element analysis have shown that the mechanical configuration and magnetic circuits of the magnetic bearing are reasonable, and the suspension forces are satisfied design desire, and the movement and magnetic circuits among 3 degrees of freedom around the balanceable position have almost no coupling, and using independent PID(proportion integration differentiation) control among 3 degrees of freedom for this novel magnetic bearing and greatly simplifying the control system.%介绍一种新型径向一轴向共用偏磁电流的主动磁轴承的基本结构和工作机理,用等效磁路法对该磁轴承的磁路进行计算,得到悬浮力数学模型;根据悬浮力要求设计实验样机参数,利用有限元Ansoft软件对磁轴承样机的磁路进行有限元分析.理论研究和有限元分析结果表明,该磁轴承机械和磁路结构合理,悬浮力满足设计要求,各自由度在平衡位置附近运动,与磁路没有耦合,对各自由度可采用分散的PID(proportion integration differentiation)对其进行控制,大大简化控制系统.

  7. Rotor's Suspension for Vernier-gimballing magnetically suspended flywheel with conical magnetic bearing.

    Science.gov (United States)

    Tang, Jiqiang; Xiang, Biao; Wang, Chun'e

    2015-09-01

    A novel Vernier-gimballing magnetically suspended flywheel with conical magnetic bearing (conical MB) can generate great gyroscopic moment by tilting the high-speed rotor. To output the gyroscopic moment, the high-speed rotor must be suspended stably and can be tilted. But when the rotor tilts, the gap between the stator and rotor of conical MB changes nonlinearly, what will cause the magnetic force and current stiffness of this conical MB to be serious nonlinear. To solve these problems, one kind of adaptive controller based on Lyapunov stability theory is designed by regarding the current stiffness of this conical MB as uncertain parameter. The validity of this adaptive control method is verified on a Vernier-gimballing MSFW with 68 Nms angular momentum and 1.7° maximum tilting angle. All experimental results indicated that this adaptive control has better performances on controlling rotor's stable suspension than existing PID control when the rotor translates or tilts. PMID:26089172

  8. PRINCIPLES AND PARAMETER DESIGN FOR AC-DC THREE-DEGREE FREEDOM HYBRID MAGNETIC BEARINGS

    Institute of Scientific and Technical Information of China (English)

    ZHU Huangqiu; XIE Zhiyi; ZHU Dehong

    2006-01-01

    To simplify the mechanical structure, decrease the overall system size of the 3-degree freedom axial-radial magnetic bearings and reduce the manufacturing costs as well as operating costs,an innovated AC-DC 3-degree freedom hybrid magnetic bearing is proposed, which is driven by a DC amplifier in axial direction and a 3-phase power converter in radial directions respectively, and the axial and radial bias magnetic fluxes are provided with a common radial polarized permanent magnet ring. The principle producing magnetic suspension forces is introduced. By using equivalent magnetic circuit method, the calculation formulas of magnetic suspension forces and the mathematics models of the system are deduced. Nonlinearities of suspension forces and cross coupling between different degree freedoms are studied further by calculating the suspension forces at different displacements and control currents to validate the feasibility of the mathematics model. Then based on the mathematics models of the bearing, a control method of this novel bearing is designed. Lastly, the methods on parameter design and calculations of the bearing are presented, and an applicable prototype is simulated to analyze the magnetic path by using finite element analysis. The theory analysis and simulation results have shown that this magnetic bearing incorporates the merits of 3-phase AC drive, permanent magnet flux biased and axial-radial combined control, and reduces overall system size and has higher efficiency and lower cost. This innovated magnetic bearing has a wide application in super-speed and super-precision numerical control machine tools, bearingless motors, high-speed flywheels, satellites, etc.

  9. A novel permanent magnetic bearing and its anti-wear effect in impeller total artificial heart

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel permanent magnetic bearing has been developed, which consists of two magnetic rings with different dimensions in the same direction of axial magnetization, located concentrically. Because of the effect of magnetic field, the magnetic rings keep a distance axially from each other. If the distance between the two rings changes, a rehabilitation force is produced to return to the original position. When this distance decreases, a repelling force will be generated; its component in axial direction can be used as a magnetic spring and its radial component can function as a bearing. With this novel permanent magnetic bearing, an impeller total artificial heart (TAH) is designed, manufactured and tested. The rotation is driven radially. On the left and right sides of the rotor magnets, two small magnetic rings are fixed onto the rotor, coupling with two big magnetic rings on both sides of the motor coil, to form the magnetic bearings. Hereby the bearings are used for wear reduction rather than rotor levitation. That means the magnetic bearings counteract the attractive force between the motor coil iron and rotor magnets so as to reduce the friction between the motor stator and rotor. At the left and right ends of the rotor, two impellers with the same width but different diameters are mounted. Thus the device has only one moving part-rotor; both the left pump and the right pump eject the blood synchronically; the volume equilibrium of both pumps can be achieved automatically without need of control. The device weighing 250 g has a length of 60 mm and a diameter of 40 mm at its largest point, and can produce a blood flow up to 150 mm Hg and 6 L/min from left pump, 50 mm Hg and 6 L/min from right pump, at rotating speed of 4000 r/min of the motor. The consumed power is under 10 W.

  10. A Novel Integrated Structure with a Radial Displacement Sensor and a Permanent Magnet Biased Radial Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2014-01-01

    Full Text Available In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.

  11. Development of an Anti-Vibration Controller for Magnetic Bearing Cooling Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a program to develop a vibration-free reverse-Brayton cycle cooling system using specially-tuned magnetic bearings. Such a system is critical...

  12. Design and implementation of an active rectangular aerostatic thrust bearing stage with electromagnetic actuators

    Institute of Scientific and Technical Information of China (English)

    MAO JunHong; LI LiChuan

    2009-01-01

    The design and implementation of an active rectangular aerostaUc thrust bearing stage with electro-magnetic actuators are presented. The stage is fundamentally precise and simple since the out-of-plane degree-of-freedoms (DOF) of a thrust air bearing are closed-loop controlled by electromagnetic actua-tors. The design is one-moving-part with mechanical symmetry, and a commercially available air bear-ing is rigidly attached to the table. The actuators are four independent coils mounted to the guiding surface of the table with iron cores, which are directly machined on the table. A bench level prototype system is developed and out-of-plane axes decoupled models of the system are derived. A control al-gorithm synthesized by arbitrarily placing closed-loop poles according to the model with air bearing dynamics neglected is implemented by C programming language running on the DOS platform. The stage is capable of vertical direction precision micro-positioning and guiding 3-DOF plane motions without limiting the working range of plane motions. Positioning accuracy of the stage no longer de-pends upon design and manufacturing of an air bearing, while passive preload of the stage for a flat film aerostatic thrust bearing is eliminated.

  13. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Science.gov (United States)

    Hull, John R.

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  14. A new conveyor system based on a passive magnetic levitation unit having repulsive-type magnetic bearings

    Science.gov (United States)

    Ohji, T.; Ichiyama, S.; Amei, K.; Sakui, M.; Yamada, S.

    2004-05-01

    A magnetic repulsive-type conveyor system is proposed as a new application of repulsive-type magnetic bearings, which use repulsive forces between the stator and rotor permanent magnets. The proposed conveyer is composed by aligning many passive magnetic levitation units. Each unit also contains electromagnets to oscillate a levitator shaft in the radial direction. The way of generating vibration and rotation in the conveyance direction was examined by the various excitation methods.

  15. Dynamical analysis of a flywheel-superconducting bearing with a moving magnet support

    International Nuclear Information System (INIS)

    A lateral stiffness improvement approach based on a moving magnet support is developed to reduce the vibration of a flywheel rotor-high temperature superconductor (HTS) bearing. A flywheel rotor levitated with an HTS bearing is modelled and then analysed with a moving stator magnet placed above the rotor. A dynamic support principle is introduced based on moving the stator magnet in anti-phase with the rotor displacement for small variations. A complete dynamical equation of the flywheel rotor is derived including gyroscopic and imbalance effects. The simulation results showed that the dynamic support of the flywheel rotor with additional stator magnet movements decreases the vibration of the flywheel rotor considerably

  16. Experimental validation of field cooling simulations for linear superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D H N; Motta, E S; Sotelo, G G; De Andrade Jr, R, E-mail: ddias@coe.ufrj.b [Laboratorio de aplicacao de Supercondutores (LASUP), Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-07-15

    For practical stability of a superconducting magnetic bearing the refrigeration process must occur with the superconductor in the presence of the magnetic field (a field cooling (FC) process). This paper presents an experimental validation of a method for simulating this system in the FC case. Measured and simulated results for a vertical force between a high temperature superconductor and a permanent magnet rail are compared. The main purpose of this work is to consolidate a simulation tool that can help in future projects on superconducting magnetic bearings for MagLev vehicles.

  17. Design and parameter estimation of hybrid magnetic bearings for blood pump applications

    Science.gov (United States)

    Lim, Tau Meng; Zhang, Dongsheng; Yang, Juanjuan; Cheng, Shanbao; Low, Sze Hsien; Chua, Leok Poh; Wu, Xiaowei

    2009-10-01

    This paper discusses the design and parameter estimation of the dynamics characteristics of a high-speed hybrid magnetic bearings (HMBs) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet (PM) brushless and sensorless DC motor. It is levitated by two HMBs at both ends in five-degree-of-freedom with proportional-integral-derivative (PID) controllers; among which four radial directions are actively controlled and one axial direction is passively controlled. Test results show that the rotor can be stably supported to speeds of 14,000 rpm. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMBs system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air—in both the radial and axial directions. The radial stiffness of the HMBs is compared to the Ansoft's Maxwell 2D/3D finite element magnetostatic results. Experimental estimation showed that the dynamics characteristics of the HMBs system are dominated by the frequency-dependent stiffness coefficients. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamics properties under normal operating conditions with fluid.

  18. Contrasting activity patterns of sympatric and allopatric black and grizzly bears

    Science.gov (United States)

    Schwartz, C.C.; Cain, S.L.; Podruzny, S.; Cherry, S.; Frattaroli, L.

    2010-01-01

    The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzlyblack bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ???1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bearhuman encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats. ?? 2010 The Wildlife Society.

  19. Mycosynthesis of silver nanoparticles bearing antibacterial activity.

    Science.gov (United States)

    Azmath, Pasha; Baker, Syed; Rakshith, Devaraju; Satish, Sreedharamurthy

    2016-03-01

    Mycosynthesis of silver nanoparticles was achieved by endophytic Colletotrichum sp. ALF2-6 inhabiting Andrographis paniculata. Well dispersed nanoparticles were characterized using UV-Visible spectrometry with maximum absorption conferring at 420 nm. FTIR analysis revealed possible biomolecules reducing the metal salt and stabilization of nanoparticles. XRD analysis depicted the diffraction intensities exhibiting between 20 and 80 °C at 2theta angle thus conferring the crystalline nature of nanoparticles. Morphological characteristic using TEM revealed the polydispersity of nanoparticles with size ranging from 20 to 50 nm. Synthesized nanoparticles exhibited bactericidal activity against selected human pathogens. Nanoparticles mode of action was carried out to reveal DNA damage activity. Thus the present investigation reports facile fabrication of silver nanoparticles from endophytic fungi. PMID:27013906

  20. Dynamic behavior of a magnetic bearing supported jet engine rotor with auxiliary bearings

    Science.gov (United States)

    Flowers, George T.; Xie, Huajun; Sinha, S. C.

    1995-01-01

    This paper presents a study of the dynamic behavior of a rotor system supported by auxiliary bearings. The steady-state behavior of a simulation model based upon a production jet engine is explored over a wide range of operating conditions for varying rotor imbalance, support stiffness, and damping. Interesting dynamical phenomena, such as chaos, subharmonic responses, and double-valued responses, are presented and discussed.

  1. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    Science.gov (United States)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  2. A passive magnetic-thrust bearing for energy-storage flywheels

    Science.gov (United States)

    Wilcock, D. F.; Eusepi, M.

    1980-08-01

    Flywheels for the storage and subsequent release of energy in general involve the suspension of rather large masses rotating at speeds limited by the strength of the flywheel material. Since drag torque on the flywheel represents an undesirable energy drain during storage, windage can be eliminated by operation in a vacuum, leaving bearing drag as a significant item. Using a vertical shaft configuration, a passive repulsion-type permanent-magnet thrust bearing is virtually frictionless while small, low-loss, oil-lubricated pintle bearings maintain the shaft radially. This paper discusses the analytical design of the passive magnetic-thrust bearing, including its nonrotating damper. Reliability of the system is high since no servo-control system is required.

  3. Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG

    Science.gov (United States)

    Sun, Jinji; Wang, Chun'e.; Le, Yun

    2016-08-01

    To increase the displacement stiffness and decrease power loss of double gimbals magnetically suspended control momentum gyro (DGMSCMG), this paper researches a new structure of axial passive magnetic bearing (APMB). Different from the existing APMB, the proposed APMB is composed of segmented permanent magnets and magnetic rings. The displacement stiffness and angular stiffness expressions are derived by equivalent magnetic circuit method and infinitesimal method based on the end magnetic flux. The relationships are analyzed between stiffness and structure parameters such as length of air gap, length of permanent magnet, height of permanent magnet and end length of magnetic ring. Besides, the axial displacement stiffness measurement method of the APMB is proposed, and it verified the correctness of proposed theoretical method. The DGMSCMG prototype is manufactured and the slow-down characteristic experiment is carried out, and the experimental result reflects the low power loss feature of the APMB.

  4. Active control of multi-input hydraulic journal bearing system

    Science.gov (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  5. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    Science.gov (United States)

    Enemark, Søren; Santos, Ilmar F.

    2016-02-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved in the frequency domain by the methods of Finite Difference and pseudo-arclength continuation. The theoretical findings are validated against experiments carried out using a dedicated test-rig and a special device for characterisation of the magnetic anisotropy. The characterisation of the magnetic anisotropy shows that it can be quantified as magnetic eccentricities having an amplitude and a phase, which result in linear and parametric excitation. The magnetic eccentricities are also determined using the steady-state response of the rotor-bearing system due to forcing from the magnetic anisotropies and several levels of mass imbalance. Discrepancies in the results from the two methods in terms of magnetic eccentricity magnitude are due to additional geometric eccentricities in the shaft. The steady-state system response shows clear nonlinear phenomena, e.g. bent resonance peaks, jump phenomena and nonlinear cross-coupling between the two orthogonal directions, especially during counter-phase motion between shaft and bearings. The clear nonlinear behaviour is facilitated by the lack of damping resulting in relatively large vibrations. The overall nonlinear dynamic behaviour is well captured by the theoretical model, thereby validating the modelling approach.

  6. Magnetic bearings for a high-performance optical disk buffer, volume 1

    Science.gov (United States)

    Hockney, Richard; Adler, Karen; Anastas, George, Jr.; Downer, James; Flynn, Frederick; Goldie, James; Gondhalekar, Vijay; Hawkey, Timothy; Johnson, Bruce

    1990-05-01

    The innovation investigated in this project was the application of magnetic bearing technology to the translator head of an optical-disk data storage device. Both the capability for space-based applications and improved performance are expected to result. The phase 1 effort produced: (1) detailed specifications for both the translator-head and rotary-spindel bearings; (2) candidate hardware configurations for both bearings with detail definition for the translator head; (3) required characteristics for the magnetic bearing control loops; (4) position sensor selection; and (5) definition of the required electronic functions. The principal objective of Phase 2 was the design, fabrication, assembly, and test of the magnetic bearing system for the translator head. The scope of work included: (1) mechanical design of each of the required components; (2) electrical design of the required circuitry; (3) fabrication of the component parts and bread-board electronics; (4) generation of a test plan; and (5) integration of the prototype unit and performance testing. The project has confirmed the applicability of magnetic bearing technology to suspension of the translator head of the optical disk device, and demonstrated the achievement of all performance objectives. The magnetic bearing control loops perform well, achieving 100 Hz nominal bandwidth with phase margins between 37 and 63 degrees. The worst-case position resolution is 0.02 micron in the displacement loops and 1 micron rad in the rotation loops, The system is very robust to shock disturbances, recovering smoothly even when collisions occur between the translator and frame. The unique start-up/shut-down circuit has proven very effective.

  7. A flywheel energy storage system with permanent magnet bearing; Ein Schwungrad-Energiespeicher mit permanentmagnetischer Lagerung

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, M.

    1997-12-01

    It is the major objective of the work reported to expand the applications of radially passive permanent magnet bearings for rotors with increased mass and moment of inertia, and to show that partially passive magnetic bearings can be used for systems with high-capacity motors and generators. The following main aspects are discussed and explained: The fundamental principles and applications of flywheels; applicable magnetic bearing systems and their components; dynamic properties of a magnetically suspended rotor; design of the motor/generator unit of a flywheel system; the entire design of the prototype system developed and its essential components; safety aspects of the flywheel; power losses and power output; current applications and possible further applications of magnetically suspended flywheels; results and applications of permanent magnet bearings. (orig./CB) [Deutsch] Ein wesentliches Ziel dieser Arbeit ist, den Einsatzbereich fuer radial passive permanentmagnetische Lager fuer Rotoren mit groesserer Masse und groesserem Traegheitsmoment zu erweitern und zu zeigen, dass partiell passive Magnetlager sich auch fuer grosse Motor- und Generatorleistungen eignen. Auf folgende Schwerpunkte wird eingegangen: die Technik und die Verwendung von Schwungraedern, verschiedene Arten der Magnetlagerung und deren Komponenten, Dynamik eines magnetgelagerten Rotors, Auslegung des Motor/Generators eines Schwungradsystems, Gesamtaufbau des realisierten Prototypen und seine wesentlichen Baugruppen, Sicherheitsaspekte des Schwungrades, Verluste und Leistungsabgabe, Anwendungen und Erweiterungen des magnetgelagerten Schwungrades, Ergebnisse und Einsatzmoeglichkeiten permanentmagnetischer Lager. (orig./GL)

  8. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    Science.gov (United States)

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.

  9. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, S., E-mail: ohashi@ipcku.kansai-u.ac.j [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan); Kobayashi, S. [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-10-15

    Magnetic levitation using the pinning force of the YBaCuO high-T{sub c} bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  10. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Science.gov (United States)

    Ohashi, S.; Kobayashi, S.

    2009-10-01

    Magnetic levitation using the pinning force of the YBaCuO high- Tc bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  11. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    International Nuclear Information System (INIS)

    Magnetic levitation using the pinning force of the YBaCuO high-Tc bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  12. DESIGN AND APPLICATION OF MAGNETIC BEARING SUSPENSION SYSTEM IN A THREE PHASE INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    Osman GÜRDAL

    1998-03-01

    Full Text Available The current popularity of suspension and levitation stems no doubt the possibilities in high-speed ground transportation schemes. Although these are both challenging and exciting, there is considerable scope for application of suspension techniques to achieving frictionless bearing. The requirement in this case is often for close tolerances, low power consumption, small airgaps and ingeneral, compactness. Thus, magnetic suspension using DC electromagnets schemes have received more attention than the other techniques of repulsion levitation. Proposed prototype system consists of a conventional stator and its rotor without iron core, set of electromagnets for suspension of rotor shaft and set of compensation circuits feedbacked by optical-transducers. Prototyped system is aimed as a laboratory demonstration tool so there is no challenging to exceed the speeds of 1500 rev/min that is the speed of motor with mechanical bearings. Magnetic bearing suspension system provides a high impact visual demonstration of many principles in undergraduate educational programs in electrical education, e.g., electromagnetic design, PD controlled compensation of a unstable control system and power amplifier design. The system is capable of giving a good comparison between mechanical and magnetic bearing up to speeds 350 rev/min. Power losses without load show about 15% reduction with magnetic bearing. The noise of the motor is also decreased to a low level.

  13. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Science.gov (United States)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke

    2013-11-01

    We have developed the hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  14. Advanced Control of Active Bearings - Modelling, Design and Experiments

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane

    In all rotating machines relative movements between the stationary parts and the rotating parts imply energy loss and, in many critical cases, vibration problems. This energy loss leads to higher overall energy consumption of the system. Research activities towards the reduction of friction, the ...... in shaft angular velocity, thereby allowing safe operation in and above the regions of the first and second critical speeds.......In all rotating machines relative movements between the stationary parts and the rotating parts imply energy loss and, in many critical cases, vibration problems. This energy loss leads to higher overall energy consumption of the system. Research activities towards the reduction of friction......, the enhancement of damping, the extension of operating range and the minimisation of critical vibrations in machine elements are of fundamental importance. The main component to tackle the energy-loss-related problems is the bearing. The area of design of active bearings, while very promising, is still in its...

  15. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    of mass imbalance. Discrepancies in the results from the two methods in terms of magnetic eccentricity magnitude are due to additional geometric eccentricities in the shaft. The steady-state system response shows clear nonlinear phenomena, e.g. bent resonance peaks, jump phenomena and nonlinear cross...... that it can be quantified as magnetic eccentricities having an amplitude and a phase, which result in linear and parametric excitation. The magnetic eccentricities are also determined using the steady-state response of the rotor–bearing system due to forcing from the magnetic anisotropies and several levels...

  16. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    Energy Technology Data Exchange (ETDEWEB)

    Curwen, P.W.; Rao, D.K.; Wilson, D.S. [Mechanical Technology Inc., Latham, NY (United States)

    1992-06-01

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, {open_quotes}A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.{close_quotes} The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions.

  17. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    International Nuclear Information System (INIS)

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, open-quotes A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.close quotes The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions

  18. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.

    Science.gov (United States)

    Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh

    2009-07-01

    Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.

  19. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    International Nuclear Information System (INIS)

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one

  20. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp

    2013-11-15

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  1. GA-BASED PID NEURAL NETVVORK CONTROL FOR MAGNETIC BEARING SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    LI Guodong; ZHANG Qingchun; LIANG Yingchun

    2007-01-01

    In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algorithm)-based PID neural network controller is designed and trained to emulate the operation of a complete system (magnetic beating, controller, and power amplifiers).The feasibility of using a neural network to control nonlinear magnetic beating systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.

  2. Stellar magnetic activity

    International Nuclear Information System (INIS)

    The stellar emission in the chromospheric Ca II H+K lines is compared with the coronal soft X-ray emission, measuring the effects of non-radiative heating in the outer atmosphere at temperatures differing two orders of magnitude. The comparison of stellar flux densities in Ca II H+K and X-rays is extended to fluxes from the transition-region and the high-temperature chromosphere. The stellar magnetic field is probably generated in the differentially rotating convective envelope. The relation between rotation rate and the stellar level of activity measured in chromospheric, transition-region, and coronal radiative diagnostics is discovered. X-ray observations of the binary λ Andromedae are discussed. The departure of M-type dwarfs from the main relations, and the implications for the structure of the chromospheres of these stars are discussed. Variations of the average surface flux densities of the Sun during the 11-year activity cycle agree with flux-flux relations derived for other cool stars, suggesting that the interpretation of the stellar relations may be furthered by studying the solar analogue in more detail. (Auth.)

  3. Optimization of the Superconducting Linear Magnetic Bearing of a Maglev Vehicle

    OpenAIRE

    Quéval, Loïc; Sotelo, Guilherme G.; Kharmiz, Yassin; Dias, Daniel H. N.; Sass, Felipe; Zermeño, Víctor M. R; Gottkehaskamp, Raimund

    2015-01-01

    Considering the need for cost/performance prediction and optimization of superconducting maglev vehicles, we develop and validate here a 3D finite element model to simulate superconducting linear magnetic bearings. Then we reduce the 3D model to a 2D model in order to decrease the computing time. This allows us to perform in a reasonable time a stochastic optimization considering the superconductor properties and the vehicle operation. We look for the permanent magnet guideway geometry that m...

  4. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.

    Science.gov (United States)

    Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori

    2015-06-01

    The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump. PMID:25407124

  5. Mini hemoreliable axial flow LVAD with magnetic bearings: part 2: design description.

    Science.gov (United States)

    Goldowsky, Michael

    2002-01-01

    This paper gives the preliminary configuration of the flow geometry used to eliminate bearing thrombus by forced pressure wash-out of the bearing gaps. This left ventricular assist device (LVAD) is physiologically controllable without extraneous sensors based on the measurement of pump differential pressure using the magnetic bearings. Knowing the LVAD differential pressure allows safe cyclic variation of impeller rpm with feedback around differential pressure, which obtains desired pressure pulsatility. Flow pulsatility is known to be of major benefit for minimizing thrombus in both the pump and arteries. It also results in improved perfusion of many organs. The ability of a conventional virtual zero power feedback loop to axially control the bearing in a long-term drift free manor is also explained.

  6. Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor

    Science.gov (United States)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2008-01-01

    Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  7. Riccati difference equation in optimal control for magnetic bearings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; LIU Kun

    2012-01-01

    A model predictive optimal control method for magnetically suspended flywheel is presented.In order to suppress the conical whirl of the rotor caused by gyroscopic effect,the synchronization error is added to the traditional quadratic performance index.The target performance index is composed of the translatory error,the synchronization error,and the control output predicted by the discrete-time state model.The optimal controller is obtained by means of iterating a Riccati difference equation (RDE).Stability of the control scheme is investigated through fake algebraic Riccati technique (FART).The robust performance of the controller with respect to control parameters is studied by simulation.Results of the simulation and experiment on a compact magnetically suspended flywheel demonstrate that the proposed controller with consideration of the synchronization error is very effective to suppress the conical whirl caused by gyroscopic effect.

  8. Centrifugally activated bearing for high-speed rotating machinery

    Science.gov (United States)

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  9. Ambient-Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bender, D.; Post, R.

    2000-05-26

    Based on prior work at the Lawrence Livermore National Laboratory ambient-temperature passive magnetic bearings are being adapted for use in high-power flywheel energy storage systems developed at the Trinity Flywheel Power company. En route to this goal specialized test stands have been built and computer codes have been written to aid in the development of the component parts of these bearing systems. The Livermore passive magnetic bearing system involves three types of elements, as follows: (1) Axially symmetric levitation elements, energized by permanent magnets., (2) electrodynamic ''stabilizers'' employing axially symmetric arrays of permanent magnet bars (''Halbach arrays'') on the rotating system, interacting with specially wound electrically shorted stator circuits, and, (3) eddy-current-type vibration dampers, employing axially symmetric rotating pole assemblies interacting with stationary metallic discs. The theory of the Livermore passive magnetic bearing concept describes specific quantitative stability criteria. The satisfaction of these criteria will insure that, when rotating above a low critical speed, a bearing system made up of the three elements described above will be dynamically stable. That is, it will not only be stable for small displacements from equilibrium (''Earnshaw-stable''), but will also be stable against whirl-type instabilities of the types that can arise from displacement-dependent drag forces, or from mechanical-hysteritic losses that may occur in the rotor. Our design problem thus becomes one of calculating and/or measuring the relevant stiffnesses and drag coefficients of the various elements and comparing our results with the theory so as to assure that the cited stability criteria are satisfied.

  10. Effect of Active Mineral on Load-Bearing Autoclaved Aerocrete

    Institute of Scientific and Technical Information of China (English)

    彭苏萍; 王立刚

    2001-01-01

    Influence of ultrafine active mineral (DK mineral) on mechanical property of fly ash based load-bearing aerocrete was analyzed. The result shows that the addition of DK mineral in a suitable amount can enhance obviously the compressive strength of aerocrete. According to the SEM-EDS and X-ray diffraction analyses, the crystal shapes of hydration products are well developed and interlocked for samples containing DK mineral. Its microstructure is denser than that of the samples without DK mineral. Having a good activation, the DK mineral makes both the type and the quantity of hydrated products be obviously superior to that of the contrast sample.

  11. 径向磁轴承的力学特性%Mechanical Characteristics of Radial Magnetic Bearing

    Institute of Scientific and Technical Information of China (English)

    张钢; 虞烈; 谢友柏

    2001-01-01

    This paper is based on the example of a radial magnetic bearing possessed of eight-pole, and derives the calculation formulas of static and dynamic mechanical characteristics of the bearing, in which the shape and curvature of surface, eccentricity and tilt of the journal are taken into account. Variations of the static and dynamic characteristics of the radial magnetic bearing versus static tilt parameters of journal are discussed. The outcomes show that the static tilt of the journal has influence on the mechanical characteristics of radial magnetic bearing, and change the static load capacity between two radial magnetic bearings and exert coupling effect between them. To study the dynamics of a practical rotor-magnetic bearing system, at least six stiffness coefficients in each radial magnetic bearing must be considered in ideal case, and twelve stiffness coefficients must be considered in general case of tilting journal. Such a find can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.

  12. 径向磁轴承的力学特性%Mechanical Characteristics of Radial Magnetic Bearing

    Institute of Scientific and Technical Information of China (English)

    张钢; 虞烈; 谢友柏

    2000-01-01

    This paper is based on the example of a radial magnetic bearing possessed of eight-pole, and derives the calculation formulas of static and dynamic mechanical characteristics of the bearing, in which the shape and curvature of surface, eccentricity and tilt of the journal are taken into account. Variations of the static and dynamic characteristics of the radial magnetic bearing versus static tilt parameters of journal are discussed. The outcomes show that the static tilt of the journal has influence on the mechanical characteristics of radial magnetic bearing, and change the static load capacity between two radial magnetic bearings and exert coupling effect between them. To study the dynamics of a practical rotor-magnetic bearing system, at least six stiffness coefficients in each radial magnetic bearing must be considered in ideal case, and twelve stiffness coefficients must be considered in general case of tilting journal. Such a find can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.

  13. A Method for stability analysis of magnetic bearings : Basic stability criteria

    CERN Document Server

    Shayak, B

    2016-01-01

    In this work I outline a general procedure for dynamic modeling and stability analysis of a magnetic bearing, which is a rotating shaft confined inside a chamber through electromagnetic forces alone. I consider the simplest type of self-propelled bearing, namely a permanent magnet synchronous motor and an induction motor rotor freely suspended inside the corresponding stator, and having no eccentricity-fedback control algorithm. Writing Euler's equations for the rotor mechanics and Maxwell's equations for the electromagnetic field leads to a systematic technique for analysing the dynamics of the complete system. Physical arguments indicate that that two essential components for rotor confinement are a spatial gradient in the stator magnetic field and a torque angle lying in the second quadrant. These predictions are confirmed through the linear stability analysis. The direct practical utility of the results is mitigated by the presence of a repeated eigenvalue in the linearized equations. Despite this limitat...

  14. Development and characterization of magnetic HTS bearings for a 400 kW synchronous HTS motor

    International Nuclear Information System (INIS)

    Promising results of static and dynamic investigations on various journal type test bearings encouraged us to develop a scaled-up HTS bearing, able to carry the HTS rotor of a 400 kW superconducting motor. The stator, a YBCO hollow cylinder of 203 mm inner diameter and 250 mm length, is cooled by liquid nitrogen. Permanent magnet rings with a diameter of 200 mm were mounted on a shaft with alternating polarity. Characterization of the bearing capacity was performed with three different YBCO stators at temperatures between 66 and 86 K in a test set-up. A significant influence of the temperature was found. At a stator temperature of 72 K and a rotation frequency of 25 Hz (corresponding to nominal motor speed) a radial bearing force of 2700 N was measured for the shaft at centre position. Under rotation of the shaft the bearing capacity is reduced. At present our results range within the highest radial bearing capacities reported world-wide

  15. Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes

    Directory of Open Access Journals (Sweden)

    Amir Gharib

    2015-01-01

    Full Text Available Background: The combination of artemisinin and transferrin exhibits versatile anticancer activities. In previous, we successfully prepared artemisinin and transferrin-loaded magnetic nanoliposomes and evaluated their anti-proliferative activity against MCF-7 and MDA-MB-231 cell lines in vitro. In this study, we investigate the in vivo anti-breast cancer activity of artemisinin and transferrin-loaded magnetic nanoliposome against breast transplanted tumors in BALB/c mice model. Materials and Methods: Artemisinin and transferrin-loaded magnetic nanoliposomes were prepared and characterized for some physiochemical properties. Pieces of tumor tissue from the breast cancer-bearing BALB/c mice were transplanted subcutaneously to the syngeneic female BALB/c mice. In the presence of the external magnet that placed at the breast tumor site, the tissue distribution and tumor-suppressing effects of prepared nanoliposomes on tumor growth was evaluated. Results: The prepared nanoliposomes have fine spherical shape, rough surface, nano-sized diameter and magnetic properties. At 2 h after treatment, the intravenous administration of artemisinin and transferrin-loaded magnetic nanoliposomes followed using the magnetic field approximately produced 10- and 5.5-fold higher levels of artemisinin and transferrin in the tumors, respectively, compared with free artemisinin and transferrin. Moreover, in the presence of an external magnetic field, the prepared nanoliposomes could significantly induce apoptosis in the mice breast cancer cells as well as could reduce tumor volume in tumorized mice at 15 days after treatment. Conclusion: The data suggested that the artemisinin and transferrin-loaded magnetic nanoliposomes would be a good choice for the breast tumor-targeted therapy, due to its high targeting efficiency.

  16. Radial Forces in a Centrifugal Compressor; Experimental Investigation by Using Magnetic Bearings and Static Pressure Distribution

    Institute of Scientific and Technical Information of China (English)

    Arttu REUNANEN; Jaakko LARJOLA

    2005-01-01

    The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estimated using the static pressure distribution measured at the impeller outlet. The impeller force was found to be the highest at choke, the lowest at the design flow and moderate at stall. The radial force determined from the pressure measurements was only slightly different from the force obtained from the bearing measurements. The rotational speed was seen to affect the force to some extent.

  17. An active magnetic regenerator device

    DEFF Research Database (Denmark)

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction...

  18. A contribution on the investigation of the dynamic behavior of rotating shafts with a Hybrid Magnetic Bearing Concept (HMBC) for blower application

    International Nuclear Information System (INIS)

    Within a subproject of the RAPHAEL-Program, which was part of the 6th EURATOM Framework Program supervised by the European Commission, it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. Within the RAPHAEL program, the subproject 'Component Development' is dealing with R and D of components of High Temperature Reactor Technology (HTR), where a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered to be key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic radial orientated bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The scope of this R and D-Project, which will be described more detailed in this contribution, includes: the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System; the modification of the completely AMB-supported test

  19. A contribution on the investigation of the dynamic behaviour of rotating shafts with a hybrid magnetic bearing concept (HMBC) for blower application - HTR2008-58045

    International Nuclear Information System (INIS)

    Within a sub-project of the RAPHAEL-Program, which is part of the 6. EURATOM Framework Program supervised by the European Commission it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. As in the RAPHAEL program the sub-project 'Component Development' deals with R and D on components of High Temperature Reactor Technology (HTR), a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic Radial Bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The Scope of this R and D-Project, which will be described more detailed in this contribution, includes the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System, the modification of the completely AMB supported test facility FLP500 with a radial

  20. Activity estimation in radioimmunotherapy using magnetic nanoparticles

    Science.gov (United States)

    Rajabi, Hossein; Johari Daha, Fariba

    2015-01-01

    Objective Estimation of activity accumulated in tumor and organs is very important in predicting the response of radiopharmaceuticals treatment. In this study, we synthesized 177Lutetium (177Lu)-trastuzumab-iron oxide nanoparticles as a double radiopharmaceutical agent for treatment and better estimation of organ activity in a new way by magnetic resonance imaging (MRI). Methods 177Lu-trastuzumab-iron oxide nanoparticles were synthesized and all the quality control tests such as labeling yield, nanoparticle size determination, stability in buffer and blood serum up to 4 d, immunoreactivity and biodistribution in normal mice were determined. In mice bearing breast tumor, liver and tumor activities were calculated with three methods: single photon emission computed tomography (SPECT), MRI and organ extraction, which were compared with each other. Results The good results of quality control tests (labeling yield: 61%±2%, mean nanoparticle hydrodynamic size: 41±15 nm, stability in buffer: 86%±5%, stability in blood serum: 80%±3%, immunoreactivity: 80%±2%) indicated that 177Lu-trastuzumab-iron oxide nanoparticles could be used as a double radiopharmaceutical agent in mice bearing tumor. Results showed that 177Lu-trastuzumab-iron oxide nanoparticles with MRI had the ability to measure organ activities more accurate than SPECT. Conclusions Co-conjugating radiopharmaceutical to MRI contrast agents such as iron oxide nanoparticles may be a good way for better dosimetry in nuclear medicine treatment. PMID:25937783

  1. MATLAB WEB SERVER AND ITS APPLICATION IN REMOTE COLLABORATIVE DESIGN OF MAGNETIC BEARING SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Acclimatizing itself to the development of network,Math Works Inc constructed a MATLAB Web Server environment by dint of which one can browse the calculation and plots of MATLAB through Internet directly.The installation and use of the environment is introduced.A code established on the platform of MATLAB,which deals with the modal analysis of magnetic bearing system(MBS) supporting rotors of five degrees of freedom and considering the coupling of thrust bearing with radical bearings is modified to work in the environment.The purpose is to realize a remote call of the code by users through Internet for the performance analysis of the system.Such an application is very important to the concurrent design of MBS and for the utilization of distributive knowledge acquisition resources in collaborative design.The work on modification and realization is described and the results are discussed.

  2. On the Modulation of Brain Activation During Simulated Weight Bearing in Supine Gait-Like Stepping.

    Science.gov (United States)

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Luft, Andreas R; Riener, Robert; Michels, Lars; Kollias, Spyros

    2016-01-01

    To date, the neurophysiological correlates of muscle activation required for weight bearing during walking are poorly understood although, a supraspinal involvement has been discussed in the literature for many years. The present study investigates the effect of simulated ground reaction forces (0, 20, and 40% of individual body weight) on brain activation in sixteen healthy participants. A magnetic resonance compatible robot was applied to render three different levels of load against the feet of the participants during active and passive gait-like stepping movements. Brain activation was analyzed by the means of voxel-wise whole brain analysis as well as by a region-of-interest analysis. A significant modulation of brain activation in sensorimotor areas by the load level could neither be demonstrated during active nor during passive stepping. These observations suggest that the regulation of muscle activation under different weight-bearing conditions during stepping occurs at the level of spinal circuitry or the brainstem rather than at the supraspinal level.

  3. Preliminary study on rotor dynamics of magnetic bearing for 10MW high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The finite element method and MSC. Marc software are applied to analyze the rotor modal of magnetic bearings for power conversion unit (PCU) of 10 MW high temperature gas-cooled reactor (HTR-10). The effects of the magnetic bearings sustaining stiffness on the rotor natural frequencies were studied. Results show that the natural frequencies may be adjusted by changing the sustaining stiffness and rotor material. It is very important for the magnetic bearing to pass two order bending natural frequencies and design control system

  4. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    Science.gov (United States)

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7

  5. Study on the Levitation and Restoring Force Characteristics of the Improved HTS-permanent Magnet Hybrid Magnetic Bearing

    Science.gov (United States)

    Sugiyama, R.; Oguni, K.; Ohashi, S.

    We have developed the hybrid magnetic bearing using permanent magnets and high temperature bulk super conductor (HTS). In this system, the permanent magnet has ring type structure so that the permanent magnet and the HTS can be set to the stator. The pinning force of the HTS is used for the levitation and the guidance. Repulsive force of the permanent magnets was used in the conventional hybrid system. However the restoring force in the guidance direction of the conventional hybrid system decreases by the side slip force of the permanent magnets. In this research, attractive force of permanent magnets is used for increasing the load weight in the guidance direction. In this paper, influence of the hybrid system on the static characteristics of the rotor is studied. Three-dimensional numerical analysis of the linkage flux (in the levitation and the guidance direction) in the HTS is undertaken. The stator side permanent magnet increases the linkage flux of the levitation direction. Therefore in the hybrid system the linkage flux of the levitation direction increases. The levitation and restoring force of the rotor is measured. The levitation force of the hybrid system becomes smaller than that of the non-hybrid one by attractive force. The rotor in the hybrid system is supported by the pinning force and attractive force. The restoring force of the hybrid system becomes larger than that of the non-hybrid one because of increasing the linkage flux of the levitation direction.

  6. Sliding Mode Output Feedback Control of a Flexible Rotor Supported by Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    A. S. Lewis

    2001-01-01

    Full Text Available A new sliding mode feedback algorithm is applied to control the vibration of a flexible rotor supported by magnetic bearings. It is assumed that the number of states is greater than the number of sensors. A mathematical model of the rotor]magnetic bearing system is presented in terms of partial differential equations. These equations are then discretized into a finite number of ordinary differential equations through Galerkin’s method. The sliding mode control law is designed to be robust to rotor unbalance and transient disturbances. A boundary layer is introduced around each sliding hyperplane to eliminate the chattering phenomenon. The results from numerical simulations are presented that not only corroborate the validity of the proposed controller, but also show the effects of various control parameters as a function of the angular speed of the rotor. In addition, results are presented that indicate how the current required by the magnetic bearings is affected by control parameters and the angular speed of the rotor.

  7. Active lubrication applied to radial gas journal bearings. Part 1: Modeling

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2011-01-01

    Active bearings represent a mechatronic answer to the growing industrial need to high performance turbomachinery. The present contribution aims at demonstrate the feasibility of applying active lubrication to gas journal bearings. The principle of operation is to generate active forces...... by regulating radial injection of lubricant through the means of piezoelectric actuators mounted on the back of the bearing sleeves. A feedback law is used to couple the dynamic of a simplified rotor-bearing system with the pneumatic and dynamic characteristics of a piezoelectric actuated valve system. Selected...... examples show the considerable performance advantages of such new kind of bearing....

  8. Application of power amplifier OPA544 in active magnetic bearing control system%功率放大器OPA544在主动磁悬浮控制系统中的应用

    Institute of Scientific and Technical Information of China (English)

    钱婧; 汪希平; 田丰; 郭丽; 杨玉敏

    2011-01-01

    在磁悬浮系统的功放中采用OPA544功率器件实现对系统输出负载电流的放大作用,其性能将随功放的类型而变化.针对毫米级气隙的悬浮系统,设计前级PID控制调理电路,与OPA544功率放大器配合实现差动式电流控制,最终在一台主动磁悬浮平板试验台上实现系统的稳定悬浮,仿真结果与试验情况基本吻合.%Adopt power amplifier OPA544 to amplifier the output load current to achieve the system's current increasing. The controlling model was designed and PID controlling strategy was selected, therefore system's simulation was achieved on a basis of the whole module's parameters. The order of magnitude for the air gap or the displacement was millimeter. As to suspension under control, design PID controlling circuit to attain the full current. The use of two electronic component of OPA544 could realized push-pull power amplifier control thoughts, and then achieved the establishment of active magnetic plate's dynamic equilibrium,and better system stability was gained. Actual experiments and facts dovetailed nicely with simulation as for the comparison with the virtual results.

  9. Schemes for applying active lubrication to main engine bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    the dynamics of the injection for a piezo-actuated oil injector and a mechanical-actuated oil injector are presented in this study. It is shown how the dynamics of the oil injection system is coupled to the dynamics of the bearing fluid film through equations. The global system is numerically solved using...... as a case of study a single-cylinder combustion engine, where the conventional lubrication of the main bearing is modified by applying radial oil injection using piezo-actuated injection. The performance of such a hybrid bearing is compared to an equivalent conventional lubricated bearing in terms...

  10. Magnetic mineralogy analyses on greigite-bearing sediments with inconsistent magnetic polarity (Adana Basin, Southern Turkey)

    Science.gov (United States)

    Lucifora, S.; Cifelli, F.; Mattei, M.; Cosentino, D.; Sagnotti, L.; Roberts, A.

    2012-04-01

    A paleomagnetic study has been carried out, in the framework of the VAMP (Vertical Anatolian Movement Project) project, on 4 stratigraphic sections and 1 site from the Adana basin in the southern margin of the Anatolian Plateau. About 300 standard cylindrical samples have been analysed for paleomagnetism and rock magnetism. All the sections have been deposited in the upper Messinian"lago-mare" post-evaporitic event, which occurred in the Mediterranean basin, during the reverse polarity Chron C3r. Paleomagnetic results, presented in this work, are in contrast with these data, showing both normal and reverse polarities along the sections. Standard magnetic mineralogy investigations, integrated with SEM analyses and FORC diagrams, show that magnetite and ferrimagnetic iron sulphides (greigite) are the main magnetic carriers. Moreover, we find an interesting correlation between the magnetic mineralogy of the sediments and the magnetic polarities, being magnetite the magnetic carrier in the normal polarity samples and greigite in the reverse ones. Reversal and fold tests demonstrate that normal polarity samples have been subjected to a pervasive magnetic overprint and acquired their remanent magnetization after bedding tilt. Whereas samples with a reverse polarity acquired their remanent magnetization before bedding tilt, but after syn-sedimentary soft deformation. This work is proposed as a contribution aimed to improve the understanding of the relationship between the magnetic mineralogy and the remagnetization phenomena in order to avoid misinterpretation of magnetostratigraphic and paleomagnetic data.

  11. 磁悬浮轴承-转子系统非线性行为的控制%Control of Nonlinear Behaviors of an Active Magnetic Bearing - Rotor System

    Institute of Scientific and Technical Information of China (English)

    孙保苍; 梁荣生; 陈威

    2011-01-01

    利用状态反馈法,对磁悬浮轴承-转子系统的振动进行控制.通过理论推导,证明在原点附近,可近似地将受控系统分解为两个渐近稳定的子系统之和.借助数值仿真对转子受控前后的运动响应进行分析,以验证该控制方案的有效性.通过比较发现,提出的状态反馈控制方案不但能控制转子的周期运动,而且对该系统的概周期运动和混沌运动也能进行有效控制.%In this paper, the nonlinear dynamical behaviors of an active magnetic beating-rotor system are investigated.In order to control the vibration of the system, a state feedback method is adopted.It is theoretically proved that the controlled system can be approximately divided into two asymptotically stable subsystems near the origin.Based on this conclusion, kinematic responses to both controlled and uncontrolled systems are analyzed by numerical simulations to verify the validity of the control scheme.Mutual comparison of the results of both systems reveals that the state feedback control scheme presented here can effectively control not only periodic vibrations, but also quasi-periodic and chaotic vibrations.

  12. Performance of an active electric bearing for rotary micromotors

    International Nuclear Information System (INIS)

    An electric bearing used to support a micromachined rotor of variable-capacitance motors was designed and tested in order to study the characteristics of this frictionless bearing. Electrostatic suspension of a ring-shaped rotor in five degrees of freedom is required to eliminate the mechanical bearing and thus the friction and wear between the rotor and the substrate. Bulk microfabrication-based glass/silicon/glass bonding is chosen for this device, allowing the fabrication of large area sense capacitors and rotor, which make the device potentially suitable for the development of an electrostatically suspended micromachined gyroscope. The device and its basic operating principle are described, as well as the dynamics of the rotor and basic design considerations of the electric bearing system. A theoretical relationship to relate the characteristics of a classical lag–lead compensator to the stiffness properties of the electric bearing is developed to explain the experimental bearing measurements. The experimental results of closed-loop frequency response, suspension stiffness and drive voltage effects are presented and discussed for the bearing operated initially in the atmospheric environment. The performance of a tri-axial electrostatic accelerometer has also been experimentally investigated on the prototype of the electric bearing system

  13. Model-Based Control Design for Flexible Rotors Supported by Active Gas Bearings - Theory & Experiment

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo

    the critical speeds. In order to overcome such limitations, a mechatronic device has been proposed as a possible solution. This device named "hybrid active radial gas bearing" or simply "active gas bearing", combines an aerodynamic gas journal bearing with piezoelectrically controlled injectors. In the present...... the effect of external pressurization. In order to validate the theoretical model, a test rig is used, which consists of a flexible rotor supported by a ball bearing and the active gas bearing. This thesis has three main focuses and original contributions: Firstly, contribute to improving a existing...... theoretical model for active gas bearings, with special attention to the modelling of the injection system. Secondly, experimentally validate the improved mathematical model in terms of static properties (journal equilibrium position and resulting aerodynamic forces) and dynamic properties (natural...

  14. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  15. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  16. Effect of unbalanced magnetic pull and hydraulic seal force on the vibration of large rotor-bearing systems

    Science.gov (United States)

    Song, Z.; Guo, P.; Liu, Y.

    2014-03-01

    The influence of unbalanced magnetic pull (UMP) and hydraulic seal force on the vibration of large rotor-bearing systems is studied. The UMP caused by rotor eccentricity imposes important effects on rotating machinery, especially for large generators such as water turbine generator sets, because these machines operate above their first critical speed in some instances and are supported by oil film bearings. A magnetic stiffness matrix for studying the effects of the UMP is proposed. The magnetic stiffness matrix can be generated by decomposing the expression of air gap magnetic field energy. Two vibration models are constructed using the Lagrange equation. The difference between the two models lies in the boundary support condition: one has rigid support and the other has elastic bearing support. The influence of the magnetic stiffness and elastic support on the critical speed of the rotor is studied using Lyapunov nonlinear vibration stability theory. The vibration amplitude of the rotor is calculated, taking the magnetic stiffness and horizontal centrifugal force into account. The unbalanced hydraulic seal force is produced because of the asymmetry of seal clearance. This imbalance is one of the factors that causes self-excited vibration in rotating machinery, and is as important as the UMP for large water turbine generator sets. The rotor-bearing system is supported by an oil film journal bearing, whose characteristic also impose considerable influence on vibration. On the basis of the above-mentioned conditions, a three-dimensional finite element model of the rotating system that includes the oil film journal bearing is constructed. The effect of the UMP and unbalanced hydraulic seal force is considered in the construction, and studied in relation to the magnetic parameters, seal parameters, journal bearing stiffness, and outer diameter of the rotating machine critical speed. Conclusions may benefit the dynamic design and optimized operation of large rotating

  17. Effect of unbalanced magnetic pull and hydraulic seal force on the vibration of large rotor-bearing systems

    International Nuclear Information System (INIS)

    The influence of unbalanced magnetic pull (UMP) and hydraulic seal force on the vibration of large rotor-bearing systems is studied. The UMP caused by rotor eccentricity imposes important effects on rotating machinery, especially for large generators such as water turbine generator sets, because these machines operate above their first critical speed in some instances and are supported by oil film bearings. A magnetic stiffness matrix for studying the effects of the UMP is proposed. The magnetic stiffness matrix can be generated by decomposing the expression of air gap magnetic field energy. Two vibration models are constructed using the Lagrange equation. The difference between the two models lies in the boundary support condition: one has rigid support and the other has elastic bearing support. The influence of the magnetic stiffness and elastic support on the critical speed of the rotor is studied using Lyapunov nonlinear vibration stability theory. The vibration amplitude of the rotor is calculated, taking the magnetic stiffness and horizontal centrifugal force into account. The unbalanced hydraulic seal force is produced because of the asymmetry of seal clearance. This imbalance is one of the factors that causes self-excited vibration in rotating machinery, and is as important as the UMP for large water turbine generator sets. The rotor-bearing system is supported by an oil film journal bearing, whose characteristic also impose considerable influence on vibration. On the basis of the above-mentioned conditions, a three-dimensional finite element model of the rotating system that includes the oil film journal bearing is constructed. The effect of the UMP and unbalanced hydraulic seal force is considered in the construction, and studied in relation to the magnetic parameters, seal parameters, journal bearing stiffness, and outer diameter of the rotating machine critical speed. Conclusions may benefit the dynamic design and optimized operation of large rotating

  18. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  19. Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal axis wind turbine applications

    Science.gov (United States)

    Kriswanto, Jamari

    2016-04-01

    Permanent magnet bearings (PMB) are contact free bearings which utilize the forces generated by the magnets. PMB in this work is a type of radial PMB, which functions as the radial bearings of the Horizontal Axis Wind Turbine (HAWT) rotor shaft. Radial PMB should have a greater radial force than the radial force HAWT rotor shaft (bearing load). This paper presents a modeling and experiments to calculate the radial force of the radial PMB. This paper also presents rotational speed test of the radial PMB compared to conventional bearings for HAWT applications. Modeling using COMSOL Multiphysics 4.3b with the magnetic fields physics models. Experiments were conducted by measuring the displacement of the rotor to the stator for a given load variation. Results of the two methods showed that the large displacement then the radial force would be greater. Radial forces of radial PMB is greater than radial forces of HAWT rotor shaft. The rotational speed test results of HAWT that used radial PMB produced higher rotary than conventional bearings with an average increase of 87.4%. Increasing rotational speed occured because radial PMB had no friction. HAWT that used radial PMB rotated at very low wind speeds are 1.4 m/s with a torque of 0.043 Nm, while the HAWT which uses conventional bearing started rotating at a wind speed of 4.4 m/s and required higher torque of 0.104 N.

  20. Uncertainty in magnetic activity indices

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Magnetic activity indices are widely used in theoretical studies of solar-terrestrial coupling and space weather prediction. However, the indices suffer from various uncertainties, which limit their application and even mislead to incorrect conclu-sion. In this paper we analyze three most popular indices, Kp, AE and Dst. Three categories of uncertainties in magnetic indices are discussed: "data uncertainty" originating from inadequate data processing, "station uncertainty" caused by in-complete station covering, and "physical uncertainty" stemming from unclear physical mechanism. A comparison between magnetic disturbances and related indices indicate that the residual Sq will cause an uncertainty of 1―2 in K meas-urement, the uncertainty in saturated AE is as much as 50%, and the uncertainty in Dst index caused by the partial ring currents is about a half of the partial ring cur-rent.

  1. Stellar activity and magnetic shielding

    CERN Document Server

    Grießmeier, J -M; Lammer, H; Grenfell, J L; Stadelmann, A; Motschmann, U; 10.1017/S1743921309992961

    2010-01-01

    Stellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.

  2. Biotransformation of Earthworm Activity on Potassium-Bearing Mineral Powder

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Zhu; Bin Lian; Xue Yang; Congqiang Liu; Lijun Zhu

    2013-01-01

    This study analyzes the biotransformation of earthworms on K in potassium-bearing mineral powder (PBMP) under different PBMP recruitments.A mixture of PBMP (10% to 60% mass fraction) and decaying cow dung was used as feed for breeding the earthworms to study the potassium-releasing ability of earthworms on PBMP in soil.The mixture containing 20% and 30% PBMP resulted in good growth and propagation of the earthworms as well as higher conversion rates of potassium.Therefore,the optimum recruitments of mineral powder are 20% and 30%.The mixture of cow dung and PBMP was compared with the mixture of cow dung and corresponding proportions of quartz powder to analyze the conversion rate of earthworms on PBMP in different combinations.After the earthworms were raised with the mixture of cow dung and PBMP (8: 2 and 7: 3) for 30 d,the contents of rapidly available K and effective K were 10 824.3.±35.9 and 11 688.4±16.1 mg.kg-1 as well as 10079.6±62.2 and 10247.5±172.7 mg.kg-1,respectively.After the earthworms were raised with the mixture of cow dung and quartz powder (8: 2 and 7: 3) for 30 d,the contents of rapidly available K and effective K were 10 623.3± 41.1 and 11 385.5±13.5 mg.kg-1 as well as 9 834.2±51.8 and 9 907.6±11.4 mg.kg-1,respectively.Thus,the contents of rapidly available K and effective K in the mixture of cow dung and PBMP were significantly higher compared with those in the mixture of cow dung and quartz powder (P<0.05).The increment contents of rapidly available K and effective K were 201.0 and 302.9 mg·kg-1 as well as 245.4 and 339.9 mg.kg-1,respectively.Therefore,earthworms can activate and trans-form K into effective K through feeding,digestion,absorption,and excretion.The results provided a new idea of using earthworms to release potassium in low-grade potassium-bearing rocks and obtain the rapidly available K and effective K needed by plants.

  3. Fault-tolerant strategies for an implantable centrifugal blood pump using a radially controlled magnetic bearing.

    Science.gov (United States)

    Pai, Chi Nan; Shinshi, Tadahiko

    2011-10-01

    In our laboratory, an implantable centrifugal blood pump (CBP) with a two degrees-of-freedom radially controlled magnetic bearing (MB) to support the impeller without contact has been developed to assist the pumping function of the weakened heart ventricle. In order to maintain the function of the CBP after damage to the electromagnets (EMs) of the MB, fault-tolerant strategies for the CBP are proposed in this study. Using a redundant MB design, magnetic levitation of the impeller was maintained with damage to up to two out of a total of four EMs of the MB; with damage to three EMs, contact-free support of the impeller was achieved using hydrodynamic and electromagnetic forces; and with damage to all four EMs, the pump operating point, of 5 l/min against 100 mmHg, was achieved using the motor for rotation of the impeller, with contact between the impeller and the stator.

  4. Control system design for flexible rotors supported by actively lubricated bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2008-01-01

    and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented...... displacement and velocity of the shaft at the bearing positions....

  5. 磁悬浮飞轮用嵌环式永磁偏置径向磁轴承%Thimble Permanent-magnet-biased Radial Magnetic Bearing for Magnetically-suspended-flywheel

    Institute of Scientific and Technical Information of China (English)

    王曦; 房建成; 樊亚洪; 刘虎; 王春娥; 文通; 孙津济

    2011-01-01

    To satisfy the requirement on low-power magnetic bearings of magnetically-suspended-flywheel (MSFW) with flat rotor applied in spacecraft, a class of radial permanent-magnet-biased magnetic bearing (RPMB), named thimble-RPMB, is presented. It is homopolar, so it has low rotational loss. Its poles have short axial length and flexible pole-arrangement, because its working gaps distribute along two concentric circles in only one layer, and radial magnetic forces are concurrent in one plane. According to different requirements of completely-active MSFW and 2-axis-active MSFW, 3 species of thimble-RPMB are analyzed and designed, namely, pole-aligned, pole-interlaced and pole-biased, by the equivalent-magnetic-circuit method and FEA simulation. The designed completely-active MSFW has short axial length, light weight, and high precision. The optimally designed 2-axis-active MSFW has high passive stiffness, high current stiffness, and high stability of current stiffness.%为满足航天用扁平转子磁悬浮飞轮对低功耗磁轴承的需求,提出一类同极性嵌环式永磁偏置径向磁轴承(Radial permanent-magnet-biased magnetic bearing,RPMB),旋转损耗低,工作气隙径向内外双环、轴向同层分布,径向磁力为平面汇交力系,具有磁极轴向短、可灵活设计的独特优势.根据全主动、主被动两类磁悬浮飞轮的不同需求,采用磁路分析与有限元仿真的方法,对磁极对齐型、磁极交错型、磁极偏置型三种嵌环式RPMB进行了有针对性的分析与设计,所设计的全主动磁悬浮飞轮,具有轴向长度短、质量小、精度高的优点;所设计的两轴主动磁悬浮飞轮,经优化设计,具有高被动刚度、高电流刚度、电流刚度高稳定性的优点.

  6. Modeling and Analysis of Coupling Performance of Dynamic Stiffness Models for a Novel Combined Radial-Axial Hybrid Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2014-01-01

    Full Text Available The combined radial-axial magnetic bearing (CRAMB with permanent magnet creating bias flux can reduce the size, cost, and mass and save energy of the magnetic bearing. The CRAMB have three-degree-of-freedom control ability, so its structure and magnetic circuits are more complicated compared to those of the axial magnetic bearing (AMB or radial magnetic bearing (RMB. And the eddy currents have a fundamental impact on the dynamic performance of the CRAMB. The dynamic stiffness model and its cross coupling problems between different degrees of freedom affected for the CRAMB are proposed in this paper. The dynamic current stiffness and the dynamic displacement stiffness models of the CRAMB are deduced by using the method of equivalent magnetic circuit including eddy current effect, but the dynamic current stiffness of the RMB unit is approximately equal to its static current stiffness. The analytical results of an example show that the bandwidth of the dynamic current stiffness of the AMB unit and the dynamic displacement stiffness of the CRAMB is affected by the time-varying control currents or air gap, respectively. And the dynamic current stiffness and the dynamic displacement stiffness between the AMB unit and the RMB unit are decoupled due to few coupling coefficients.

  7. Authigenesis of magnetic minerals in gas hydrate-bearing sediments in the Nankai Trough, offshore Japan

    Science.gov (United States)

    Kars, Myriam; Kodama, Kazuto

    2015-03-01

    Gas hydrate occurrence is one of the possible mechanisms invoked for iron sulfide formation. A high-resolution rock magnetic study was conducted in IODP Expedition 316 Hole C0008C located in the Megasplay Fault Zone of the Nankai Trough, offshore Japan. In this particular zone, no bottom simulating reflectors (BSR), indicating the base of the gas hydrate stability field, have been identified. Two hundred and eighteen Pleistocene samples were collected from 70 to 110 m CSF in order to document the changes in the concentration, grain size, and rock magnetic parameters of magnetic minerals, through the gas hydrate-bearing horizons. Two different populations of magnetic grains are recognized in the pseudosingle domain range. Three types of magnetic mineral assemblages are identified: iron oxides (magnetite), ferrimagnetic iron sulfides (greigite and pyrrhotite), and their mixture. Greigite and pyrrhotite are authigenic and constitute six layers, called IS1-IS6. IS1, IS3, IS4, and IS6 are associated with pore water anomalies, suggesting the occurrence of gas hydrates and anoxic conditions. IS2 and IS5 are probable gas hydrates horizons, although there is no independent data to confirm it. The remaining intervals are mainly composed of detrital iron oxides and paramagnetic iron sulfides. Two scenarios based on different diagenetic stages are proposed to explain the variations in the magnetic properties and mineralogy over the studied interval. The results suggest that rock magnetism appears useful to better constrain the gas hydrate distribution in Hole C0008C, and counterbalances the low resolution of pore water analyses and the absence of a BSR.

  8. Robust Stability and Robust H2 and H-infinity Output-Feedback Control of a Magnetic Bearing System via LMI Optimization

    Directory of Open Access Journals (Sweden)

    MohammadReza Davoodi

    2009-12-01

    Full Text Available This paper offers a design procedure for robust stability, robust H-infinity control and robust H2 control via dynamic output feedback for a class of uncertain linear systems. The uncertainties are of norm bounded type. Then in order to support a high-speed energy storage flywheel, these procedures are applied to an active radial magnetic bearing system. The state space matrices of this controller are the solution of some linear matrix inequalities (LMIs.

  9. Field cooling of a MgB{sub 2} cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Perini, E; Giunchi, G [EDISON S.p.A., R and D Division, Foro Buonaparte 31, 20121 Milano (Italy)], E-mail: elena.perini@edison.it, E-mail: giovanni.giunchi@edison.it

    2009-04-15

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB{sub 2}, even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB{sub 2} bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below T{sub c}. We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  10. Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing

    Science.gov (United States)

    Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.

    2015-07-01

    The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.

  11. Improvement of the levitation stability of the HTSC-permanent magnet hybrid bearing by using the new arrangement of the permanent magnet

    Science.gov (United States)

    Sukedaia, M.; Emoto, K.; Sugiyama, R.; Ohashi, S.

    The hybrid magnetic bearing using permanent magnets and the high temperature superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. Although the previous configuration improves the load weight of the rotor, levitation and guidance stability has been decreased because of the repulsive force of the permanent magnet. Three-dimensional numerical analysis of the system has been undertaken to reduce lateral force which decreases lateral stability of the rotor. From the results, effective arrangement of the hybrid system is given. Increment of the load weight is confirmed. Influence of the hybrid system on the pinning force between the HTSC and the permanent magnet is shown to be smaller than previous one.

  12. Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports

    Science.gov (United States)

    Flowers, George T.

    1996-01-01

    This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.

  13. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory

    Directory of Open Access Journals (Sweden)

    P. T. Gallagher

    Full Text Available The availability of full-disk, high-resolution Ha images from Big Bear Solar Observatory (USA, Kanzelhöhe Solar Observatory (Austria, and Yunnan Astronomical Observatory (China allows for the continual monitoring of solar activity with unprecedented spatial and temporal resolution. Typically, this Global Ha Network (GHN provides almost uninterrupted Ha images with a cadence of 1 min and an image scale of 1'' per pixel. 

    Every hour, GHN images are transferred to the web-based BBSO Active Region Monitor (ARM; www.bbso.njit.edu/arm, which includes the most recent EUV, continuum, and magnetogram data from the Solar and Heliospheric Observatory, together with magnetograms from the Global Oscillation Network Group. ARM also includes a variety of active region properties from the National Oceanic and Atmospheric Administration’s Space Environment Center, such as up-to-date active region positions, GOES 5-min X-ray data, and flare identification. Stokes I, V, Q, and U images are available from the recently operational BBSO Digital Vector Magnetograph and the Vector Magnetograph at the Huairou Solar Observing Station of Beijing Observatory. Vector magnetograms provide complete information on the photospheric magnetic field, and allow for magnetic flux gradients, electric currents, and shear forces to be calculated: these measurements are extremely sensitive to conditions resulting in flaring activity. Furthermore, we have developed a Flare Prediction System which estimates the probability for each region to produce C-, M-, or X-class flares based on nearly eight years of NOAA data from cycle 22. This, in addition to BBSO’s daily solar activity reports, has proven a useful resource for activity forecasting.

    Key words. Solar physics, astronomy and astrophysics (flares and mass ejections; instruments and techniques

  14. Design and Mathematical Analysis of a Novel Reluctance Force-Type Hybrid Magnetic Bearing for Flywheel with Gimballing Capability

    Directory of Open Access Journals (Sweden)

    Chun'e Wang

    2013-01-01

    Full Text Available Magnetically suspended flywheel (MSFW with gimballing capability fulfills requirements of precision and maneuvers for space applications. A novel reluctance force-type hybrid magnetic bearing (RFHMB is presented based on analysis of demerits of Lorentz force-type magnetic bearing and common RFHMB. It features that radial and axial magnetic bearing units are integrated into a compact assembly with four separate biased permanent magnets and two conical stators; four radial poles with shoes and rotor made of iron-based amorphousness can reduce eddy loss. Equivalent magnetic circuits of permanent magnets and their control currents are presented. Simulation results indicate flux density fluctuates from 0.272 T to 0.41 T; rotor tilting does not affect the suspension force when rotor only tilts around X-axis or Y-axis. When rotor drifts in X, Y, or Z direction and tilts around X-axis or Y-axis simultaneously, force in corresponding directions slightly increases with tilting angle’s enlargement, but the maximum change does not exceed 14%. Additional tilting torque mainly determined by uniformity of flux density in conical air gaps is 0.05 Nm which is far smaller than 11 Nm in common RFHMB; magnetic suspension force is effectively decoupled among X, Y, and Z directions; results prove that MSFW with gimballing capability theoretically meets maneuvering requirement of spacecraft.

  15. Program for tests on magnetic bearing suspended rotor dynamics for gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    A program for test on rotor dynamics was planned for the turbo-machine of the Gas Turbine High Temperature Reactor (GTHTR300). The rotor system of the turbo-machine consists of a turbo-compressor rotor and a generator rotor connected with a flexible coupling, each suspended with two radial magnetic bearings. The rotors, which are flexible rotors, pass over the critical speeds of bending mode. The magnetic bearing is required to have a high load capacity, about 10 times larger than any built thus far to support a flexible rotor. In the rotor design, the standard limit of the vibration amplitude of 75 μm at the rated rotational speed of 3,600 rpm was fulfilled by optimizing the stiffness of the magnetic bearings. A test apparatus was designed to verify the design of the magnetic bearing suspended turbo-machine rotor of the GTHTR300. The test apparatus is composed of 1/3-scale test rotors, which are connected with a flexible coupling and driven by a variable speed motor. The test magnetic bearing was designed within the state-of-the-art technology to have a load capacity about 1/10 of that of the actual one. The test rotors were designed to closely simulate the critical speeds and vibration modes of the actual ones. This paper shows the test apparatus and the test plan for the magnetic bearing suspended rotor system. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  16. Summer declines in activity and body temperature offer polar bears limited energy savings

    Science.gov (United States)

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  17. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. PMID:26185248

  18. Analysis on Dynamic Performance for Active Magnetic Bearing—Rotor System

    Institute of Scientific and Technical Information of China (English)

    YANHui-yan; WANGXi-ping; 等

    2001-01-01

    In the application of active magnetic bearings(AMB),one of the key problems to be solved is the safety and stabiltiy in the sense of rotor dynamics,The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings,and studies its rotor dynamics performance,including calculation of the natural frequencies with their distribution characteristics,and the critical speeds of the system.one of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magntic bearing-rotor systemby combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.

  19. Research on the Architecture of the CAD System of a Magnetic Bearing Based on Pattern-oriented

    Institute of Scientific and Technical Information of China (English)

    CHEN Rui-qing; SUN Yan-hua; CHEN Jian-bin; YU Lie

    2006-01-01

    The architecture of the CAD system of a magnetic bearing is established by using pattern-oriented software architecture.Based on the pipe-filter pattern, all the present resources come from different developing environments, aiding the design of a magnetic bearing system, can be integrated into the system. Replacing the original pipes with database, the concurrent design can be realized in the design process,which changes the serial mode of traditional manufacture.The distributed and heterogeneous design resources can be integrated into the system and shared by importing the broker pattern. Combining pipe-filter pattern with broker pattern, the system is opening and easy to maintain and extend.

  20. Low- and high-temperature magnetic properties of iron-bearing particles of combustion origin

    Science.gov (United States)

    Kim, W.; Doh, S. J.; Yu, Y.; Moon, J. W.

    2012-04-01

    Magnetic particulates in the urban atmosphere are often observed in the forms of spherules and aggregates derived from iron impurities in fossil fuels upon combustion. Recently, magnetic properties of various atmospheric samples gather a scientific interest as economic and rapid proxies in the pollution studies based on their strong linkage to heavy metals and/or volatile organic carbons. Here we present low- and high-temperature magnetic properties of iron-bearing spherules and aggregates separated from the dry-deposit of aerosols and vehicle exhaust emission, respectively. Spherical particles behave like magnetite with the domain state of pseudo-single-domain even for larger than 10 μm in diameter. This probably involves the growth of magnetite branching small particles with a dendritic texture. For the aggregates containing abundant sulfur, only a magnetite signal can be found in low-temperature but both pyrrhotite and magnetite signals occur in high-temperature. Such discrepancy indicates that aggregates of magnetite-like particles with non-monoclinic pyrrhotite due to the absence of low-temperature transition in remanence at around 30 - 35 K.

  1. 5th workshop 'Magnetic bearings'. Proceedings; 5. Workshop Magnetlagertechnik. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, S.; Rottenbach, T. (comps.)

    2001-07-01

    The workshop investigated the state of the art of magnetic bearings and their applications. It was attended by experts from industry, research institutions and universities who took the chance to exchange their experience and keep abreast of new developments. The proceedings volume contains all papers presented at the meeting, in chronological order. [German] Der Workshop stellt sich zur Aufgabe, sowohl die Fortschritte in Forschung und Entwicklung in der Magnetlagertechnik aufzuzeigen als auch den Stand der Technik an speziellen Anwendungen darzustellen. Die Veranstaltung versteht sich als Forum fuer Forscher und Anwender aus der Industrie, industriellen Forschungseinrichtungen sowie Universitaeten und Hochschulen. Daher steht der Erfahrungsaustausch zwischen Entwicklern, Herstellern und Betreibern im Mittelpunkt. Interessierte Fachleute aus Wissenschaft und Industrie haben hier die Moeglichkeit, sich ueber die Grundlagen, Einsatzmoeglichkeiten und Anwendungsgebiete der Magnetlagertechnologie zu informieren. Im vorliegenden Tagungsband sind die von den Autoren eingereichten Beitraege in der Reihenfolge des Tagungsprogramms wiedergegeben. (orig.)

  2. FPGA-Based Digital Current Switching Power Amplifiers Used in Magnetic Bearing Systems

    Science.gov (United States)

    Wang, Yin; Zhang, Kai; Dong, Jinping

    For a traditional two-level current switching power amplifier (PA) used in a magnetic bearing system, its current ripple is obvious. To increase its current ripple performance, three-level amplifiers are designed and their current control is generally based on analog and logical circuits. So the required hardware is complex and a performance increase from the hardware adjustment is difficult. To solve this problem, a FPGA-based digital current switching power amplifier (DCSPA) was designed. Its current ripple was obviously smaller than a two-level amplifier and its control circuit was much simpler than a tri-level amplifier with an analog control circuit. Because of the field-programmable capability of a FPGA chip used, different control algorithms including complex nonlinear algorithms could be easily implemented in the amplifier and their effects could be compared with the same hardware.

  3. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an effective......The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...

  4. Magnetization behavior of RE123 bulk magnets bearing twin seed-crystals in pulsed field magnetization processes

    Science.gov (United States)

    Oka, T.; Miyazaki, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.

    2016-02-01

    Melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were fabricated by the cold seeding method with using single or twin-seed crystals composed of Nd-Ba-Cu-O thin films on MgO substrates. The behavior of the magnetic flux penetration into anisotropic-grown bulk magnets thus fabricated was precisely evaluated during and after the pulsed field magnetization operated at 35 K. These seed crystals were put on the top surfaces of the precursors to grow large grains during the melt-processes. Although we know the magnetic flux motion is restricted by the enhanced pinning effect in temperature ranges lower than 77 K, we observed that flux invasion occurred at applied fields of 3.3 T when the twin seeds were used. This is definitely lower than those of 3.7 T when the single-seeds were employed. This means that the magnetic fluxes are capable of invading into twin-seeded bulk magnets more easily than single-seeded ones. The twin seeds form the different grain growth regions, the narrow-GSR (growth sector region) and wide-GSR, according to the different grain growth directions which are parallel and normal to the rows of seed crystals, respectively. The invading flux measurements revealed that the magnetic flux invades the sample from the wide-GSR prior to the narrow-GSR. It suggests that such anisotropic grain growth leads to different distributions of pinning centers, variations of J c values, and the formation of preferential paths for the invading magnetic fluxes. Using lower applied fields definitely contributed to lowering the heat generation during the PFM process, which, in turn, led to enhanced trapped magnetic fluxes.

  5. Rotational Remanent Magnetization (RRM) to Identify Pyrrhotite in Natural Iron-Sulfide-Bearing Samples

    Science.gov (United States)

    Slotznick, S. P.; Kirschvink, J. L.; Fischer, W. W.; Webb, S. M.

    2014-12-01

    Pyrrhotite has been known for several decades to have anomalous demagnetization behavior when using tumbling AF techniques. This was quantified by Thomson (1990) to show that pyrrhotite can acquire rotational remanent magnetization (RRM) similar to the more intensely-studied iron sulfide, greigite. Use of RRM as an identification tool in natural samples has not become standard practice, perhaps due to the decrease in use of tumbling AF techniques. However, using the 2G SQuID magnetometer with in-line AF/ARM coils and RAPID automated protocols (Kirschvink et al. 2008), one can easily produce and measure RRM. This method of measuring RRM has been used to identify greigite (Suzuki et al. 2006), but not pyrrhotite. We present room temperature RRM measurements for samples spinning from -20 to +20 rev/sec, perpendicular to peak AF fields of 90mT (at 950 Hz) in iron-sulfide-bearing shales, argillites, and carbonates throughout Earth History (Miocene, Cretaceous, Mesoproterozoic, Late Archean). Presence of pyrrhotite was confirmed using AF demagnetization of NRM (GRM), IRM acquisition/AF demagnetization (Cisowski plots), Kappabridge thermal susceptibility, ultra-high resolution scanning SQuID microscopy (UHRSSM), and/or X-ray absorption near edge spectroscopy (XANES)/multiple energy X-ray fluorescence (XRF) imaging. Although the total absence of pyrrhotite cannot be proven, the same techniques were applied to rocks that do not gain RRM easily to identify their iron sulfides and ferromagnetic minerals, and no magnetic iron sulfides were found. The RRM signal for pyrrhotite is distinct from that of greigite, suggesting it could be used as a tool for distinguishing these magnetic iron sulfides from each other. Further work on room temperature RRM could define a unique non-destructive rock magnetic test for pyrrhotite.

  6. Diffusion in active magnetic colloids

    Energy Technology Data Exchange (ETDEWEB)

    Taukulis, R.; Cebers, A., E-mail: aceb@tesla.sal.lv

    2014-11-15

    Properties of active colloids of circle swimmers are reviewed. As a particular example of active magnetic colloids the magnetotactic bacteria under the action of a rotating magnetic field is considered. The relation for a diffusion coefficient due to the random switching of the direction of rotation of their rotary motors is derived on the basis of the master equation. The obtained relation is confirmed by the direct numerical simulation of random trajectory of a magnetotactic bacterium under the action of the Poisson type internal noise due to the random switching of rotary motors. The results obtained are in qualitative and quantitative agreement with the available experimental results and allow one to determine the characteristic time between the switching events of a rotary motor of the bacterium. - Highlights: • Magnetotactic bacteria in a rotating field behaves as circle swimmers. • Diffusion coefficient of these swimmers due to the random switching of rotary motors is calculated. • Results are in good qualitative and quantitative agreement with available experimental results.

  7. Magnetic Helicity Injection in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2006-01-01

    We present the evolution of magnetic field and its relationship with magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station, longitudinal magnetograms by MDI of SOHO and white light images of TRACE. The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere, even if the mean current helicity density brings the general chiral property in a layer of solar active regions. As new magnetic flux emerges in active regions, changes of photospheric current helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected, including changes in sign caused by the injection of magnetic helicity of opposite sign. Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere,the injected magnetic helicity is probably not proportional to the current helicity density remaining in the photosphere. The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions (such as, delta active regions). They represent different aspects of magnetic chirality. A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.

  8. Magnetic polarity ages of the fossil-bearing strata at the Si hetun section, West Liaoning:A preliminary result

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Rock-magnetic and palaeomagnetic studies have been carried out on the interval of famous fossil-bearing sedimentary rocks and its overlying basalts and underlying basalts at the Sihetun section, West Liaoning Province. Normal polarity was obtained for the sedimentary interval and the underlying basalts, while reversed polarity was found in the overlying basalts. Taking account of the new 40Ar/39Ar ages (Swisher et al., 1999), we classified the fossil-bearing sedimentary interval into the Barremian M3n zone (Early Cretaceous age). Several abnormal horizons on magnetic properties, probably corresponding to the tuffs,were observed in the fossil-bearing sedimentary interval.This implies that the massive bio-extinction may link to dramatic environmental changes that were caused by voleanic eruptions.``

  9. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  10. Development of thin-slice fiber Bragg grating-giant magnetostrictive material sensors used for measuring magnetic field of magnetic bearings

    Science.gov (United States)

    Ding, Guoping; Wang, Huaqiang; Liu, Jiayi; Gao, Bin; Zhang, Biyun

    2015-10-01

    The magnetic field is a physical medium used to realize the levitation and motion control of magnetic bearings. It is necessary to conduct the air-gap flux density measurement so as to validate theoretical analyses and provide instructions for practical design. A thin-slice fiber Bragg grating-giant magnetostrictive material (FBG-GMM) sensor, in which the FBG was stuck perpendicular to the principal magnetostriction orientation of a thin GMM slice, was proposed to measure magnetic-flux density in the small air gap. The configuration of FBG-GMM sensor was the same with that of a sensor of 1.5 mm×14 mm×7 mm TbDyFe slice stuck with a 1300 nm-wavelength FBG on the side of the slice. The FBG-GMM magnetic field sensor was tested on an U-shape electromagnet test setup under static conditions. The sensor had a linear region of 0.121 to 0.261 T with the sensitivity of 1089.056 pm/T. The FBG-GMM magnetic field sensor was introduced to measure the air-gap flux density of radial magnetic bearings. Measurement of static flux density was conducted with 2 FBG-GMM sensors compensated with a temperature FBG; and the measured data showed that the FBG-GMM sensor had feasible linear region and sensitivity to measure the air-gap flux density of magnetic bearings.

  11. Tilting-Pad Journal Bearings with Active Lubrication Applied as Calibrated Shakers: Theory and Experiment

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    dependent calibration function, i.e. the transfer function between control signal and force over the rotor. This work presents a theoretical model of the calibration function for a tilting-pad journal bearing with active lubrication. The bearing generates controllable forces by injecting pressurized oil...... form of the Reynolds equation. The oil film model is formulated considering an elastothermohydrodynamic lubrication regime. The model is used to study the relevance and effects of different parameters on the calibration function, aiming at providing general guidelines for the active bearing design...

  12. Elastohydrodynamics Applied to Active Tilting-Pad Journal Bearings

    DEFF Research Database (Denmark)

    Haugaard, Martin Asger; Santos, Ilmar

    2010-01-01

    The static and dynamic properties of tilting-pad journal bearings with controllable radial oil injection are investigated theoretically. The tilting pads are modeled as flexible structures and their behavior is described using a three-dimensional finite element framework and linear elasticity....... The oil film pressure and flow are considered to follow the modified Reynolds equation, which includes the contribution from controllable radial oil injection. The Reynolds equation is solved using a two-dimensional finite element mesh. The rotor is considered to be rigid in terms of shape and size...

  13. Connection between active longitudes and magnetic helicity

    CERN Document Server

    Brandenburg, A

    2005-01-01

    A two-dimensional mean field dynamo model is solved where magnetic helicity conservation is fully included. The model has a negative radial velocity gradient giving rise to equatorward migration of magnetic activity patterns. In addition the model develops longitudinal variability with activity patches travelling in longitude. These patches may be associated with active longitudes.

  14. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

    Science.gov (United States)

    Unterweger, Harald; Tietze, Rainer; Janko, Christina; Zaloga, Jan; Lyer, Stefan; Dürr, Stephan; Taccardi, Nicola; Goudouri, Ourania-Menti; Hoppe, Alexander; Eberbeck, Dietmar; Schubert, Dirk W; Boccaccini, Aldo R; Alexiou, Christoph

    2014-01-01

    A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs) bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 μg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta potential of −45 mV. No signs of particle precipitation were observed over a period of at least 8 weeks. Analysis of drug-release kinetics using the dialysis tube method revealed that these were driven by inverse ligand substitution and diffusion through the polymer shell as well as enzymatic degradation of hyaluronic acid. The biological activity of the particles was investigated in a nonadherent Jurkat cell line using flow cytometry. Further, cell viability and proliferation was examined in an adherent PC-3 cell line using xCELLigence analysis. Both tests demonstrated that particles without cisplatin were biocompatible with these cells, whereas particles with the drug induced apoptosis in a dose-dependent manner, with secondary necrosis after prolonged incubation

  15. Study on the controllability for active magnetic bearings

    International Nuclear Information System (INIS)

    One of the main challenges in AMB is its controllability which means it is difficult to get a stable spindle and controller. To solve this problem, some methods have been developed previously, but the value of the controllability of AMB was not calculated. The subject of our study is to develop a new method and find a mathematical model that aims to research the controllability of AMB, the status at passing through levitation process, running, a critical speed and achieve high-speed rotation. The stiffness and damping of AMB, which changes randomly along with the rotor running, are determined by the controller system. How to get the relationship between the stiffness and damping with dynamic coefficients of rotor-AMB system is a key problem to get an optimization controller. In this paper, a mathematical model of the relationship is established. Stiffness and damping of AMB can change if the parameter of controller modulated. Based on rotor dynamics theory, the dynamic characteristics of rotors such as critical speeds, system stability and unbalanced excitation are analyzed. Computer simulations are carried out and the effectiveness of the presented procedure is investigated

  16. Tunable reflector with active magnetic metamaterials.

    Science.gov (United States)

    Deng, Tianwei; Huang, Ruifeng; Tang, Ming-Chun; Tan, Peng Khiang

    2014-03-24

    We placed active magnetic metamaterials on metallic surface to implement a tunable reflector with excellent agile performance. By incorporating active elements into the unit cells of the magnetic metamaterial, this active magnetic metamaterial can be tuned to switch function of the reflector among a perfect absorber, a perfect reflector and a gain reflector. This brings about DC control lines to electrically tune the active magnetic metamaterial with positive loss, zero loss and even negative loss. The design, analytical and numerical simulation methods, and experimental results of the tunable reflector are presented. PMID:24663977

  17. Superconducting magnet activities at CEN Saclay

    International Nuclear Information System (INIS)

    The activities in superconducting magnets at DPhPE/Saclay spread over a wide range from DC magnets mainly for particle and nuclear physics and also for other fields of research, pulsed magnets for particle accelerators and for a controlled fusion tokamak machine. The superconducting magnets designed during recent years involve a variety of conductor types, winding schemes, materials and cooling modes, including the use of superfluid helium. (author)

  18. Exploring integral controllers in actively-lubricated tilting-pad journal bearings

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    Active tilting-pad journal bearings with radial oil injection combine good stability properties of conventional tilting-pad journal bearings with the capability of improving their dynamic properties even more by control techniques. The main contribution of this work is the experimental...... investigation of integral controllers for feedback-controlled lubrication with the aim of: a) presetting the static journal center and consequently exploring the changes of bearing dynamic properties; b) obtaining an integral controller capable of re-positioning the static journal eccentricity for matching...... equilibria under conventional hydrodynamic and feedback-controlled lubrication regimes. A novel application is proposed, that tries to build non-invasive perturbation forces and uses the active fluid film forces of the bearing as a calibrated shaker....

  19. Textured bearing surface in artificial joints to reduce macrophage activation

    Science.gov (United States)

    Nakanishi, Yoshitaka; Nishi, Naoki; Chikaura, Hiroto; Nakashima, Yuta; Miura, Hiromasa; Higaki, Hidehiko; Mizuta, Hiroshi; Iwamoto, Yukihide; Fujiwara, Yukio; Komohara, Yoshihiro; Takeya, Motohiro

    2015-12-01

    Micro slurry-jet erosion has been proposed as a precision machining technique for the bearing surfaces of artificial joints in order to reduce the total amount of polyethylene wear and to enlarge the size of the wear debris. The micro slurry-jet erosion method is a wet blasting technique which uses alumina particles as the abrasive medium along with compressed air and water to create an ideal surface. Pin-on-disc wear tests with multidirectional sliding motion on the textured surface of a \\text{Co}-\\text{Cr}-\\text{Mo} alloy counterface for polyethylene resulted in both a reduction of wear as well as enlargement of the polyethylene debris size. In this study, primary human peripheral blood mononuclear phagocytes were incubated with the debris, and it was elucidated that the wear debris generated on the textured surface regulated secretion of the proinflammatory cytokines IL-6 and TNF-α, indicating a reduction in the induced tissue reaction and joint loosening.

  20. Synthesis of New Thiazole Derivatives Bearing A Sulfonamide Moiety Of Expected Anticancer And Radiosensitizing Activities

    International Nuclear Information System (INIS)

    In a search for new cytotoxic agents with improved antitumor activity and selectivity, some new pyrano thiazole and thiazolopyranopyrimidine derivatives bearing sulfonamide moiety were synthesized. The newly synthesized compounds were evaluated for their antitumor activity alone and in combination with γ-irradiation. These new compounds were docked inside the active site of carbonic anhydrase II to predict their mechanism of action.

  1. Linear and non-linear control techniques applied to actively lubricated journal bearings

    Science.gov (United States)

    Nicoletti, R.; Santos, I. F.

    2003-03-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0-80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, illustrating clearly one of its most promising applications.

  2. Thermally activated magnetization reversal in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Zhou Guang-Hong; Wang Yin-Gang; Qi Xian-Jin; Li Zi-Quan; Chen Jian-Kang

    2009-01-01

    In this paper, the magnetization reversal of the ferromagnetic layers in the lrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants.

  3. Modeling and Development of a Magnetic Bearing Controller for a High Speed Flywheel System

    Science.gov (United States)

    Dever, Timothy P.; Brown, Gerald V.; Duffy, Kirsten P.; Jansen, Ralph H.

    2005-01-01

    This paper describes a modeling effort used to develop an improved type of magnetic bearing controller, called a modal controller, for use on high speed flywheel systems. The controller design is based on models of the flywheel system, is designed to directly control the natural dynamics of the spinning rotor, and is generic enough to be readily adapted to future flywheel systems. Modeling and development are described for two key controller subsystems: the modal controller subsystem, which allows direct control over the rotor rigid body modes, and the bending mode compensation subsystem, which tracks, and prevents interference from, the rotor bending modes during flywheel operation. Integration of modeling results into the final controller is described and data taken on the NASA Glenn D1 flywheel module during high speed operation are presented and discussed. The improved modal controller described in this paper has been successfully developed and implemented and has been used for regular hands-free operation of the D1 flywheel module up to its maximum operating speed of 60,000 RPM.

  4. Investigation of Combined Motor/Magnetic Bearings for Flywheel Energy Storage Systems

    Science.gov (United States)

    Hofmann, Heath

    2003-01-01

    Dr. Hofmann's work in the summer of 2003 consisted of two separate projects. In the first part of the summer, Dr. Hofmann prepared and collected information regarding rotor losses in synchronous machines; in particular, machines with low rotor losses operating in vacuum and supported by magnetic bearings, such as the motor/generator for flywheel energy storage systems. This work culminated in a presentation at NASA Glenn Research Center on this topic. In the second part, Dr. Hofmann investigated an approach to flywheel energy storage where the phases of the flywheel motor/generator are connected in parallel with the phases of an induction machine driving a mechanical actuator. With this approach, additional power electronics for driving the flywheel unit are not required. Simulations of the connection of a flywheel energy storage system to a model of an electromechanical actuator testbed at NASA Glenn were performed that validated the proposed approach. A proof-of-concept experiment using the D1 flywheel unit at NASA Glenn and a Sundstrand induction machine connected to a dynamometer was successfully conducted.

  5. Three Types of Active Lubrication Systems for the Main Bearings of Reciprocating Machines

    DEFF Research Database (Denmark)

    Santos, Ilmar; Pulido, E. E.

    2010-01-01

    pressures, through orifices circumferentially located around the bearing surface. The computed bearing fluid film forces are coupled to the set of nonlinear equations that describes the dynamics of the reciprocating engine, obtained with the help of multibody dynamics (rigid components) and finite elements...... method (flexible components). The main equations that govern the dynamics of the injection for a hydraulic-actuated, a piezoelectric-actuated and a mechanical-actuated oil injector are presented in this study. The global system is numerically solved using as a case of study a single-cylinder combustion......In the paper the authors investigate three different schemes for the realization of the controllable oil injection system to be couple to the main engine bearings. The use of active lubrication in fluid film bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film...

  6. The Magnetic Free Energy in Active Regions

    Science.gov (United States)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  7. Pumps for cryogenic liquids with superconducting magnetic bearings. Final report; Pumpen fuer kryogene Fluessigkeiten mit supraleitenden Magnetlagern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, G.; Fuchs, G.; Sorber, J.; Brosche, H.; Richter, M.; Frenzel, C.

    2000-07-01

    A liquid nitrogen pump with contactless superconducting magnetic bearings was to be developed on the basis of an available motor with superconducting bearings. Contactless superconducting magnetic bearings require practically no servicing. A high demand for pumps for cryogenic liquids is expected with the impending use of hydrogen as an energy source. The pumping of liquid nitrogen was demonstrated successfully with the new test aggregate. The maximum pumped volume was 17 l/min at a lift of 0.5 m and 6 l/min at a lift of 1 m. In all, 15 hours of operation were registered in the superconducting state of the bearing, which included 2 hours of uninterrupted pump operation. The higher speed range for which magnetic bearings are optimally suited was not reached. Operation at higher frequencies was impossible either because of stronger resonance amplituees or because the power system was too weak. [German] Ziel des Vorhabens war die Entwicklung einer Pumpe fuer fluessigen Stickstoff mit beruehrungslosen supraleitenden Magnetlagern auf der Basis eines vorhandenen supraleitend gelagerten Motors. Die beruehrungslose supraleitende Magnetlager sind praktisch wartungsfrei. Ein Bedarf an Pumpen fuer kryogene Fluessigkeiten entsteht insbesondere durch den in naher Zukunft zu erwartenden Einsatz von Wasserstoff als Energietraeger. Mit dem entworfenen Aggregat wurde das Pumpen von Fluessigstickstoff erfolgreich demonstriert. Der Foerderstrom betrug bei 0,5m Foerderhoehe maximal 17 l/min; beim 1m Foerderhoehe wurden maximal 6 l/min gemessen. Es wurden insgesamt ca. 15 Betriebsstunden in supraleitenden Zustand des Lagers, darunter 2 Stunden ununterbrochener Pumpbetrieb registriert. Der hoehere Drehzahlbereich, fuer den das Magnetlager eigentlich paedestiniert ist, konnte nicht erreicht werden. Ein Betrieb bei hoeheren (Ist-)Frequenzen war nicht moeglich, entweder durch staerkere Resonanzausschlaege oder durch einen zu schwachen Antrieb. (orig.)

  8. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2014-08-01

    Full Text Available Harald Unterweger,1 Rainer Tietze,1 Christina Janko,1 Jan Zaloga,1 Stefan Lyer,1 Stephan Dürr,1 Nicola Taccardi,2 Ourania-Menti Goudouri,3 Alexander Hoppe,3 Dietmar Eberbeck,4 Dirk W Schubert,5 Aldo R Boccaccini,3 Christoph Alexiou1 1ENT Department, Section of Experimental Oncology and Nanomedicine (SEON, Else Kroener-Fresenius-Stiftung-Professorship, University Hospital Erlangen, 2Chair of Chemical Engineering I (Reaction Engineering, 3Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, 4Physikalisch-Technische Bundesanstalt, Berlin, 5Institute of Polymer Materials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany Abstract: A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 µg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta

  9. Active lubrication applied to radial gas journal bearings. Part 2: Modelling improvement and experimental validation

    DEFF Research Database (Denmark)

    Pierart, Fabián G.; Santos, Ilmar F.

    2016-01-01

    Actively-controlled lubrication techniques are applied to radial gas bearings aiming at enhancing one of their most critical drawbacks, their lack of damping. A model-based control design approach is presented using simple feedback control laws, i.e. proportional controllers. The design approach...... combines three main domains: tribology, dynamics and control. The Reynolds equation with radial injection, including piezoelectrically controlled jet, describes the non-linear interaction between bearing surface and rotating shaft. Dynamics of the flexible shaft and rotating parts are modelled aid...... by finite element method and the global model is used as control design tool. Active lubrication allows for significant increase in damping factor of the rotor-bearing system. Very good agreement between theory and experiment is obtained, supporting the multi-physic design tool developed....

  10. The effects of automated scatter feeders on captive grizzly bear activity budgets.

    Science.gov (United States)

    Andrews, Nathan L P; Ha, James C

    2014-01-01

    Although captive bears are popular zoo attractions, they are known to exhibit high levels of repetitive behaviors (RBs). These behaviors have also made them particularly popular subjects for welfare research. To date, most research on ursid welfare has focused on various feeding methods that seek to increase time spent searching for, extracting, or consuming food. Prior research indicates an average of a 50% reduction in RBs when attempts are successful and, roughly, a 50% success rate across studies. This research focused on decreasing time spent in an RB while increasing the time spent active by increasing time spent searching for, extracting, and consuming food. The utility of timed, automated scatter feeders was examined for use with captive grizzly bears (Ursis arctos horribilis). Findings include a significant decrease in time spent in RB and a significant increase in time spent active while the feeders were in use. Further, the bears exhibited a wider range of behaviors and a greater use of their enclosure.

  11. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    Science.gov (United States)

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  12. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... to be spatially constant and equal to the applied field, thus neglecting the demagnetizing field. Furthermore, the experimental magnetocaloric properties used (adiabatic temperature change, isothermal entropy change and specific heat) are often not corrected for demagnetization. The demagnetizing field in an AMR...

  13. Rock magnetic characterization of ferrimagnetic iron sulfides in gas hydrate-bearing marine sediments at Site C0008, Nankai Trough, Pacific Ocean, off-coast Japan

    Science.gov (United States)

    Kars, Myriam; Kodama, Kazuto

    2015-07-01

    A high-resolution rock magnetic study was carried out in Integrated Ocean Drilling Program (IODP) Expedition 316 Hole C0008A located in the Megasplay Fault Zone of the Nankai Trough, SW offshore Japan, in order to document changes in magnetic properties throughout gas hydrate-bearing horizons. A total of 169 Pleistocene discrete samples were collected from ~110 to 153 m core depth below sea floor (CSF), and their magnetic minerals concentration, grain size, composition, and rock magnetic parameters were estimated. Results showed the presence of iron oxides ((titano)-magnetite), iron sulfides (greigite and pyrrhotite), and their mixture, among which single-domain greigite is the most major magnetic mineral present in the samples. Two horizons containing ferrimagnetic iron sulfides (114.5-127.5 and 129.5-150 m CSF) covering almost the entire studied interval were identified, both associated with slight local pore water anomalies, suggesting occurrence of gas hydrates and anoxic conditions. These results are different from the neighboring Hole C0008C (215 m away from Hole C0008A) where four pore water anomalies and six iron sulfide-rich intervals were identified for the same time slice. Comparison of the lithology, physical properties, and geochemical data of the two boreholes at Site C0008 suggests that a combination of processes (e.g., availability of reactive iron, microbial activity) is responsible for such laterally varying distribution of the ferrimagnetic iron sulfides.

  14. Water-soluble ruthenium complexes bearing activity against protozoan parasites.

    Science.gov (United States)

    Sarniguet, Cynthia; Toloza, Jeannette; Cipriani, Micaella; Lapier, Michel; Vieites, Marisol; Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Moreno, Virtudes; Maya, Juan Diego; Azar, Claudio Olea; Gambino, Dinorah; Otero, Lucía

    2014-06-01

    Parasitic illnesses are major causes of human disease and misery worldwide. Among them, both amebiasis and Chagas disease, caused by the protozoan parasites, Entamoeba histolytica and Trypanosoma cruzi, are responsible for thousands of annual deaths. The lack of safe and effective chemotherapy and/or the appearance of current drug resistance make the development of novel pharmacological tools for their treatment relevant. In this sense, within the framework of the medicinal inorganic chemistry, metal-based drugs appear to be a good alternative to find a pharmacological answer to parasitic diseases. In this work, novel ruthenium complexes [RuCl2(HL)(HPTA)2]Cl2 with HL=bioactive 5-nitrofuryl containing thiosemicarbazones and PTA=1,3,5-triaza-7-phosphaadamantane have been synthesized and fully characterized. PTA was included as co-ligand in order to modulate complexes aqueous solubility. In fact, obtained complexes were water soluble. Their activity against T. cruzi and E. histolytica was evaluated in vitro. [RuCl2(HL4)(HPTA)2]Cl2 complex, with HL4=N-phenyl-5-nitrofuryl-thiosemicarbazone, was the most active compound against both parasites. In particular, it showed an excellent activity against E. histolytica (half maximal inhibitory concentration (IC50)=5.2 μM), even higher than that of the reference drug metronidazole. In addition, this complex turns out to be selective for E. histolytica (selectivity index (SI)>38). The potential mechanism of antiparasitic action of the obtained ruthenium complexes could involve oxidative stress for both parasites. Additionally, complexes could interact with DNA as second potential target by an intercalative-like mode. Obtained results could be considered a contribution in the search for metal compounds that could be active against multiple parasites. PMID:24740394

  15. Preparation of high-quality HTS rings for application in the magnetic bearing of cryotanks and pinning in grain boundaries

    Science.gov (United States)

    Bringmann, B.; Walter, H.; Jooss, Ch.; Leenders, A.; Freyhardt, H. C.

    2002-08-01

    Seeded melt growth of YBCO high-temperature superconductors is one of the most promising preparation techniques to obtain high-quality HTS tiles for application, e.g. in magnetic bearings. Semi-finished HTSL products of complex shapes have to be developed by different seeding and multi-seeding techniques. To obtain large hollow cylinders designed for application in the magnetic bearing of a cryotank a modified multi-seeded melt growth (MSMG) process was employed. This cryotank will be mounted for testing in a vehicle of a major German car manufacturer. The MSMG process introduces grain boundaries into the HTS tiles. For transport current investigations of [0 0 1]-tilt grain boundaries in melt textured YBCO a series of MSMG bicrystals have been prepared. They exhibit a dependence of the critical current density on misorientation angle which is much weaker than the one observed in thin-film bicrystals. The bulk samples have dimensions larger than the magnetic penetration depth along the grain boundary. Thus, flux pinning has to be taken into account. Different contributions to the longitudinal pinning force have to be considered: vortices at grain boundaries can be pinned by magnetic interaction with Abrikosov vortices in the banks, by defects in the grain boundary itself or by defects which are located next to the grain boundary.

  16. Inconsistent magnetic polarities in magnetite- and greigite-bearing sediments: Understanding complex magnetizations in the late Messinian in the Adana Basin (southern Turkey)

    Science.gov (United States)

    Lucifora, Stella; Cifelli, Francesca; Mattei, Massimo; Sagnotti, Leonardo; Cosentino, Domenico; Roberts, Andrew P.

    2012-10-01

    We present paleomagnetic, rock magnetic and scanning electron microscope data from three upper Messinian stratigraphic sections from the Adana Basin (southern Turkey). The collected samples are from fine-grained units, which were deposited during the Messinian Salinity Crisis (within subchron C3r). Paleomagnetic results reveal an inconsistent polarity record, related to a mixture of magnetite and greigite that hinders determination of a reliable magnetostratigraphy. Three classes of samples are recognized on the basis of paleomagnetic results. The first is characterized by a single magnetization component, with normal polarity, that is stable up to 530-580°C and is carried by magnetite. The second is characterized by a single magnetization component, with reversed polarity, that is stable up to 330-420°C. This magnetization is due to greigite, which developed after formation of slumps and before tectonic tilting of the studied successions. The third is characterized by reversed polarity, which is stable up to 530-580°C. We interpret this component as a primary magnetization carried by fine-grained and magnetically stable detrital magnetite. Results indicate that in the Adana Basin the assumption that a primary magnetization is carried by magnetite, and a magnetic overprint carried by greigite, does not hold because a late magnetic overprint has also been found for magnetite-bearing samples. Our data illustrate the complexity of magnetostratigraphic reconstructions in successions characterized by variable mixtures of magnetic minerals with different magnetic stability that formed at different stages. We demonstrate the need to perform detailed magnetic mineralogy analyses when conducting magnetostratigraphic studies of clay-rich sediments from marine or lacustrine environments.

  17. Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Peter Stenvinkel

    Full Text Available The brown bear (Ursus arctos hibernates for 5 to 6 months each winter and during this time ingests no food or water and remains anuric and inactive. Despite these extreme conditions, bears do not develop azotemia and preserve their muscle and bone strength. To date most renal studies have been limited to small numbers of bears, often in captive environments. Sixteen free-ranging bears were darted and had blood drawn both during hibernation in winter and summer. Samples were collected for measurement of creatinine and urea, markers of inflammation, the calcium-phosphate axis, and nutritional parameters including amino acids. In winter the bear serum creatinine increased 2.5 fold despite a 2-fold decrease in urea, indicating a remarkable ability to recycle urea nitrogen during hibernation. During hibernation serum calcium remained constant despite a decrease in serum phosphate and a rise in FGF23 levels. Despite prolonged inactivity and reduced renal function, inflammation does not ensue and bears seem to have enhanced antioxidant defense mechanisms during hibernation. Nutrition parameters showed high fat stores, preserved amino acids and mild hyperglycemia during hibernation. While total, essential, non-essential and branched chain amino acids concentrations do not change during hibernation anorexia, changes in individual amino acids ornithine, citrulline and arginine indicate an active, although reduced urea cycle and nitrogen recycling to proteins. Serum uric acid and serum fructose levels were elevated in summer and changes between seasons were positively correlated. Further studies to understand how bears can prevent the development of uremia despite minimal renal function during hibernation could provide new therapeutic avenues for the treatment of human kidney disease.

  18. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    DEFF Research Database (Denmark)

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    The servo valve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling betw...

  19. Preparation of plutonium-bearing ceramics via mechanically activated precursor

    Science.gov (United States)

    Chizhevskaya, S. V.; Stefanovsky, S. V.

    2000-07-01

    The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.

  20. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    Science.gov (United States)

    Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.

    2013-12-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the

  1. Observational Study of Solar Magnetic Active Phenomena

    Indian Academy of Sciences (India)

    Hongqi Zhang

    2006-06-01

    The electric current separated into two parts reflected the quantative properties of heterogeneity and chirality of magnetic field, and defined them as the shear and twist components of current. We analyze the basic configuration and evolution of superactive region NOAA 6580-6619-6659. It is found that the contribution of the twist component of current cannot be reflected in the normal analysis of the magnetic shear and gradient of the active regions. The observational evidence of kink magnetic ropes generated from the subatmosphere cannot be found completely in some super delta active regions.

  2. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2005-01-01

    In the present paper the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... lubricated tilting-pad bearing. By applying a simple proportional controller it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the feasibility...

  3. Experimental Identification of Dynamic Coefficients of Tilting-Pad Bearings with Active Lubrication

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    supply unit, b) servovalves, c) radial injection nozzles, d) displacement sensors and e) well-tuned digital controllers which turn the bearing static and dynamic properties controllable. A scaled-down industrial rotor, composed by a flexible rotor supported by a four rocker LBP tilting-pad journal......This article presents the experimental identification of the equivalent dynamic coefficients of an activelylubricated bearing under different lubrication regimes, namely: passive (no injection flow), hybrid (constant injection flow) and feedback-controlled (variable injection flow) lubrication...... bearing featuring active lubrication under light load conditions, is used for such a goal. The experimental identification is performed in the frequency domain by means of the measured FRFs and a finite element model of the rotor. The comparison between results under the different lubrication regimes...

  4. Absolute alpha activity measurements of some plants growing in monazite bearing soils in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Mahawatte, P.; Hewamanna, R. (Colombo Univ. (Sri Lanka). Radioisotope Centre)

    1991-01-01

    Deposits of monazite bearing soils occur along the Southwest, West and East Coasts of Sri Lanka. High levels of gamma activity in some plant species growing in the West Coast have been reported. The high levels were due to the presence of the daughter nuclides of {sup 232}Th, most of which are alpha emitters. Absolute alpha activity measurements of ash samples of some plants growing in monazite bearing soils were carried out using the alpha sensitive polymeric nuclear track detector CR-39. The values ranged from 60-1900 mBq/g and were in good agreement with the values obtained from conventional scintillation counting method. The activity concentration of {sup 228}Th in the ash samples was also calculated by measuring the activity concentration of emanated thoron trapped inside a glass bottle with the use of a CR-39 track detector. (author).

  5. Absolute alpha activity measurements of some plants growing in monazite bearing soils in Sri Lanka

    International Nuclear Information System (INIS)

    Deposits of monazite bearing soils occur along the Southwest, West and East Coasts of Sri Lanka. High levels of gamma activity in some plant species growing in the West Coast have been reported. The high levels were due to the presence of the daughter nuclides of 232Th, most of which are alpha emitters. Absolute alpha activity measurements of ash samples of some plants growing in monazite bearing soils were carried out using the alpha sensitive polymeric nuclear track detector CR-39. The values ranged from 60-1900 mBq/g and were in good agreement with the values obtained from conventional scintillation counting method. The activity concentration of 228Th in the ash samples was also calculated by measuring the activity concentration of emanated thoron trapped inside a glass bottle with the use of a CR-39 track detector. (author)

  6. Maintenance Free Bearings

    OpenAIRE

    S. M. Muzakkir & Harish Hirani

    2015-01-01

    In the present research work the need of a Maintenance Free Bearings (MFB) is established. The paper presents preliminary friction calculations to highlight the ways to achieve maintenance free bearings. The existing technologies of well established maintenance free bearings are described. The hybridization of bearing technologies to achieve low cost maintenance free bearings has been exemplified. Finally a combination of passive magnetic repulsion and hydrodynamics ha...

  7. Rock magnetism of greigite bearing sediments from the Dead Sea, Israel

    OpenAIRE

    Ute Frank; Norbert Nowaczyk; Jörg F.W. Negendank

    2007-01-01

    Laminated evaporitic sediments from the Dead Sea, Israel, were subjected to detailed rock magnetic investigations including the analysis of laboratory induced magnetizations and high temperature runs of the saturation magnetization. Ti-magnetite and greigite were identified as the main magnetic carrier minerals. The variations in concentration, grain size and coercitivity depended parameters reflect the varying amount of greigite with respect to Ti-magnetite. Samples with a high greigite conc...

  8. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  9. The Relationship between Magnetic Gradient and Magnetic Shear in Five Super Active Regions Producing Great Flares

    Institute of Scientific and Technical Information of China (English)

    Hai-Min Wang; Hui Song; Ju Jing; Vasyl Yurchyshyn; Yuan-Yong Deng; Hong-Qi Zhang; David Falconer; Jing Li

    2006-01-01

    We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magnetograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Flight Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magnetograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km-1, 2.3to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.

  10. Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes

    OpenAIRE

    Amir Gharib; Zohreh Faezizadeh; Seyed Ali Reza Mesbah-Namin; Ramin Saravani

    2015-01-01

    Background: The combination of artemisinin and transferrin exhibits versatile anticancer activities. In previous, we successfully prepared artemisinin and transferrin-loaded magnetic nanoliposomes and evaluated their anti-proliferative activity against MCF-7 and MDA-MB-231 cell lines in vitro. In this study, we investigate the in vivo anti-breast cancer activity of artemisinin and transferrin-loaded magnetic nanoliposome against breast transplanted tumors in BALB/c mice model. Materials and M...

  11. Development of a differentially balanced magnetic bearing and control system for use with a flywheel energy storage system

    Science.gov (United States)

    Higgins, Mark A.; Plant, David P.; Ries, Douglas M.; Kirk, James A.; Anand, Davinder K.

    1992-01-01

    The purpose of a magnetically suspended flywheel energy storage system for electric utility load leveling is to provide a means to store energy during times when energy is inexpensive to produce and then return it to the customer during times of peak power demand when generated energy is most expensive. The design of a 20 kWh flywheel energy storage system for electric utility load leveling applications involves the successful integration of a number of advanced technologies so as to minimize the size and cost of the system without affecting its efficiency and reliability. The flywheel energy storage system uses a carbon epoxy flywheel, two specially designed low loss magnetic bearings, a high efficiency motor generator, and a 60 cycle AC power converter all integrated through a microprocessor controller. The basic design is discussed of each of the components that is used in the energy storage design.

  12. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to increase arsenic mobilization in the aqueous phase, raising concerns with this approach.

  13. Lateral vibration control of a flexible overcritical rotor via an active gas bearing – Theoretical and experimental comparisons

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2016-01-01

    The lack of damping of radial gas bearings leads to high vibration levels of a rotor supported by this type of bearing when crossing resonant areas. This is even more relevant for flexible rotors, as studied in this work. In order to reduce these high vibration levels, an active gas bearing...... aided by the finite element method and the rotor–fluid interaction in the gas bearing is included using the solution of a modified version of the Reynolds equation for compressible fluids, taking into account the piezoelectrically controlled jet action. Performance and accuracy of both model...

  14. Cluster magnetic fields from active galactic nuclei

    CERN Document Server

    Sutter, P M; Yang, H -Y

    2009-01-01

    Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.

  15. Active vibration control of a rotor-bearing system based on dynamic stiffness

    OpenAIRE

    Andrés Blanco Ortega; Francisco Beltrán Carbajal; Gerardo Silva Navarro; Marco Antonio Oliver Salazar

    2010-01-01

    This paper presents an active vibration control scheme to reduce unbalance induced synchronous vibration in rotorbearing systems supported on two ball bearings, one of which can be automatically moved to control the effective rotor length and, as an immediate consequence, the rotor stiffness. This dynamic stiffness control scheme, based on frequency analysis, speed control and acceleration scheduling, is used to avoid resonant vibration of a rotor system when it passes (runup or coast down) t...

  16. Synthesis and Antibacterial Activity of N,NDiethylamide Bearing Benzenesulfonamide Derivatives

    OpenAIRE

    Ajani, Olayinka O.; Familoni, Oluwole B; Echeme, Johnbull O.; Wu, Feipeng; Sujiang, Zheng

    2013-01-01

    Sulfonamides are known to represent a class of medicinally important compounds which are extensively used as antibacterial agents. Hence, a series of new N,N-diethyl amide bearing sulfonamides (2a-k) were synthesized via amidation of easily prepared benzenesulfonamide precursors (1a-k). The chemical structures of all synthesized compounds were substantiated using spectroscopic means such as IR, Mass spectra and 1H-NMR as well as analytical data. The antimicrobial activity of these compounds a...

  17. Myocardial enzyme activities of black bears and comparison with those of human beings

    Institute of Scientific and Technical Information of China (English)

    HOU Wan-ru; LUO Fei-li; HU Zhi-ping

    2005-01-01

    According to the principle of enzyme reaction rate, healthy pent black bears' myocardial enzyme activity is assayed by visual colorimetry and compared with that of healthy human beings. The determination at 37℃ and the statistic analysis of the experimental data work out the following findings. For male black bears, the average CK activity is 163.20U/L, the confidence interval of its expected value (127.70 to 198.70)U/L, and the coefficient of variation 39.2%; the average CK-MB activity 21.62U/L, the confidential interval (17.72 to 25.51)U/L, and the coefficient of variation 34.26%; the average LDH activity 604.20U/L, the confidence interval (524.56 to 683.83)U/L, and the coefficient of variation 23.80%; the average HBDH activity 516.70U/L, the confidence interval (453.06 to 580.34)U/L, and the coefficient of variation 22.24%; the average GOT activity 69.70U/L, the confidence interval (60.21 to 79.19)U/L, and the coefficient of variation 24.59%. For female black bears, the average CK activity is 145.50U/L, the confidence interval (114.59 to 176.21)U/L, and the coefficient of variation 38.27%; the average CK-MB activity 18.84U/L, the confidence interval (14.64 to 23.04)U/L, and the coefficient of variation 40.34%; the average LDH activity 563.70U/L, the confidence interval (473.80 to 652.60)U/L, and the coefficient of variation 28.80%; the average of HBDH activity 475.50U/L, the confidence interval (412.10 to 538.40)U/L, and the coefficient of variation 24.07%; the average of GOT activity is 62.37U/L, the confidential interval (52.54 to 72.20)U/L, and the coefficient of variation 28.46%. The male black bear's average myocardium enzyme activities are slightly higher than those of the female. But the statistical results indicate that the difference is not significant.

  18. Design, synthesis and antiproliferative activities of diaryl urea derivatives bearing N-acylhydrazone moiety

    Institute of Scientific and Technical Information of China (English)

    Bei Zhang; Yan Fang Zhao; Xin Zhai; Wei Jie Fan; Jun Ling Ren; Chun Fu Wu; Ping Gong

    2012-01-01

    A new series of diaryl urea derivatives bearing N-acylhydrazone moiety were designed and synthesized.All the target compounds were evaluated for their antiproliferative activities against human leukemia cell line (HL-60),human lung adenocarcinoma epithelial cell hne (A549) and human breast cancer cell line (MDA-MB-231) in vitro by standard MTT assay.The pharmacological results indicated that some compounds exhibited promising antitumor activities.Compound lj showed the most potent antiproliferative activity against the tested three cell lines with IC50 values of 0.13 μmol/L,0.7 μ mol/L and 0.5 μmol/L,respectively.

  19. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data.

    Science.gov (United States)

    Ebinger, Michael R; Haroldson, Mark A; van Manen, Frank T; Costello, Cecily M; Bjornlie, Daniel D; Thompson, Daniel J; Gunther, Kerry A; Fortin, Jennifer K; Teisberg, Justin E; Pils, Shannon R; White, P J; Cain, Steven L; Cross, Paul C

    2016-07-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore. PMID:26971522

  20. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data.

    Science.gov (United States)

    Ebinger, Michael R; Haroldson, Mark A; van Manen, Frank T; Costello, Cecily M; Bjornlie, Daniel D; Thompson, Daniel J; Gunther, Kerry A; Fortin, Jennifer K; Teisberg, Justin E; Pils, Shannon R; White, P J; Cain, Steven L; Cross, Paul C

    2016-07-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

  1. Magnetic activity of seismic solar analogs

    CERN Document Server

    Salabert, D

    2016-01-01

    We present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using observations collected by the Kepler satellite and the ground-based, high-resolution Hermes spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in relation to solar activity. We show that the activity of the Sun is actually comparable to the activity of the seismic solar analogs. Furthermore, we report on the discovery of temporal variability in the acoustic frequencies of the young (1 Gyr-old) solar analog KIC10644253 with a modulation of about 1.5 years, which agrees with the derived photospheric activity (Salabert et al., 2016b). It could actually be the signature of the short-period modulation, or quasi-biennal oscillation, of its magnetic activity as observed in the Sun and the 1-Gyr-old solar analog HD30495. In...

  2. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    International Nuclear Information System (INIS)

    Background: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. Objectives: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. Results: We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Conclusions: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. - Highlights: • Comparative study of ligand activation of human and polar bear PXRs. • Polar bear PXR is a promiscuous ligand-activated nuclear receptor but less so than human PXR. • Environmental contaminants activate human and polar bear PXRs differently. • Expression and ligand promiscuity indicate that PXR is a xenosensor in polar bears

  3. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    Energy Technology Data Exchange (ETDEWEB)

    Lille-Langøy, Roger, E-mail: Roger.lille-langoy@bio.uib.no [University of Bergen, Department of Biology, P.O. Box 7803, N-5020 Bergen (Norway); Goldstone, Jared V. [Woods Hole Oceanographic Institution, 266 Woods Hole Road, 02543-1050 Woods Hole, MA (United States); Rusten, Marte [University of Bergen, Department of Molecular Biology, P.O. Box 7803, N-5020 Bergen (Norway); Milnes, Matthew R. [Mars Hill University, 100 Athletic Street, Box 6671, Mars Hill, 28754 NC (United States); Male, Rune [University of Bergen, Department of Molecular Biology, P.O. Box 7803, N-5020 Bergen (Norway); Stegeman, John J. [Woods Hole Oceanographic Institution, 266 Woods Hole Road, 02543-1050 Woods Hole, MA (United States); Blumberg, Bruce [University of California, Irvine, 92697 CA (United States); Goksøyr, Anders [University of Bergen, Department of Biology, P.O. Box 7803, N-5020 Bergen (Norway)

    2015-04-01

    Background: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. Objectives: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. Results: We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Conclusions: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. - Highlights: • Comparative study of ligand activation of human and polar bear PXRs. • Polar bear PXR is a promiscuous ligand-activated nuclear receptor but less so than human PXR. • Environmental contaminants activate human and polar bear PXRs differently. • Expression and ligand promiscuity indicate that PXR is a xenosensor in polar bears.

  4. The effects of automated scatter feeders on captive grizzly bear activity budgets.

    Science.gov (United States)

    Andrews, Nathan L P; Ha, James C

    2014-01-01

    Although captive bears are popular zoo attractions, they are known to exhibit high levels of repetitive behaviors (RBs). These behaviors have also made them particularly popular subjects for welfare research. To date, most research on ursid welfare has focused on various feeding methods that seek to increase time spent searching for, extracting, or consuming food. Prior research indicates an average of a 50% reduction in RBs when attempts are successful and, roughly, a 50% success rate across studies. This research focused on decreasing time spent in an RB while increasing the time spent active by increasing time spent searching for, extracting, and consuming food. The utility of timed, automated scatter feeders was examined for use with captive grizzly bears (Ursis arctos horribilis). Findings include a significant decrease in time spent in RB and a significant increase in time spent active while the feeders were in use. Further, the bears exhibited a wider range of behaviors and a greater use of their enclosure. PMID:24467390

  5. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh; Enemark, Søren; Santos, Ilmar

    2013-01-01

    . Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise...... contact stability dictated by mechanical–magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported...... contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters....

  6. Foil bearings

    Science.gov (United States)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  7. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Michelle L McLellan

    Full Text Available Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C and hot (27.9-40.1°C days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  8. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    Science.gov (United States)

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  9. Quantum mechanical first principles calculations of the electronic and magnetic structure of Fe-bearing rock-forming silicates

    International Nuclear Information System (INIS)

    The focus of this thesis is the study of the electronic and magnetic structure of three representatives of the main Fe-bearing rock-forming silicates: Fe2+2Si2O6, almandine Fe2+3Al2(SiO4)3 and andradite Ca3Fe3+2(SiO4)3. For this purpose the quantum mechanical first principles electronic structure calculations are performed by the most efficient DFT method in the local spin-density approximation for calculating spectroscopic data: the spin-polarized self consistent charge X[alpha] method. These minerals have attracted significant attention due to their abundance in the Earth's crust and mantle, and because crystallised silicates are main components of cosmic dust which is the most abundant raw material in the Universe. The specific feature and strength of these investigations consist in the theoretical characterization of these complex systems based on experimental results. This means that, on one hand, experimental spectroscopic and crystallographic data are being used to judge the reliability of the calculations, whereas, on the other hand, experimental data are interpreted and explained by the theoretical results. This work is divided into seven main parts. Chapter 1 is the introduction to the thesis. Chapter 2 describes the theoretical bases, ideas, approximations and advantages of the SCC- X[alpha] method and basics of the art of cluster construction. Chapter 3 considers physical bases of absorption and Moessbauer spectroscopy, crystal field theory, evaluation of the main spectroscopic values within the frames of the SCC- X[alpha] method and magnetic interaction between atoms. In addition, tetragonally, trigonally and angularly distorted octahedral sites with various degrees of the distortions are calculated and analyzed. The electronic and magnetic structures of orthoferrosilite, almandine and andradite are described in Chapters 4, 5 and 6, respectively. In the case of orthoferrosilite the magnetic interactions between the iron spins within the ribbons and

  10. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data

    Science.gov (United States)

    Ebinger, Michael R.; Haroldson, Mark A.; van Manen, Frank T.; Costello, Cecily M; Bjornlie, Daniel D; Thompson, Daniel J.; Gunther, Kerry A.; Fortin, Jennifer K.; Teisberg, Justin E.; Pils, Shannon R; White, P J; Cain, Steven L; Cross, Paul C.

    2016-01-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88%, whereas the false-positive rate was 18–24%. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

  11. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (arsenic present in soils or rice paddies is released via volatilization. Additionally, past studies often have not monitored arsenic release in the aqueous phase. Two main pathways for microbial arsenic volatilization are known and include methylation of arsenic during methanogenesis and methylation by arsenite S-adenosylmethionine methyltransferase. In this study, we compare the roles of these two pathways in arsenic volatilization and aqueous mobilization through mesocosm experiments with cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to

  12. Black and Brown Bear Activity at Selected Coastal Sites in Glacier Bay National Park and Preserve, Alaska: A Preliminary Assessment Using Noninvasive Procedures

    Science.gov (United States)

    Partridge, Steve; Smith, Tom; Lewis, Tania

    2009-01-01

    A number of efforts in recent years have sought to predict bear activity in various habitats to minimize human disturbance and bear/human conflicts. Alaskan coastal areas provide important foraging areas for bears (Ursus americanus and U. arctos), particularly following den emergence when there may be no snow-free foraging alternatives. Additionally, coastal areas provide important food items for bears throughout the year. Glacier Bay National Park and Preserve (GLBA) in southeastern Alaska has extensive coastal habitats, and the National Park Service (NPS) has been long interested in learning more about the use of these coastal habitats by bears because these same habitats receive extensive human use by park visitors, especially kayaking recreationists. This study provides insight regarding the nature and intensity of bear activity at selected coastal sites within GLBA. We achieved a clearer understanding of bear/habitat relationships within GLBA by analyzing bear activity data collected with remote cameras, bear sign mapping, scat collections, and genetic analysis of bear hair. Although we could not quantify actual levels of bear activity at study sites, agreement among measures of activity (for example, sign counts, DNA analysis, and video record) lends support to our qualitative site assessments. This work suggests that habitat evaluation, bear sign mapping, and periodic scat counts can provide a useful index of bear activity for sites of interest.

  13. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Shashwat S; Chen, D-H [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: chendh@mail.ncku.edu.tw

    2009-05-06

    We report a novel nanoformulation for targeted drug delivery which utilizes nanophotonics through the fusion of nanotechnology with biomedical application. The approach involves an energy-transferring magnetic nanoscopic co-assembly fabricated of rhodamine B (RDB) fluorescent dye grafted gum arabic modified Fe{sub 3}O{sub 4} magnetic nanoparticle and photosensitive linker by which dexamethasone drug is conjugated to the magnetic nano-assembly. The advantage offered by this nanoformulation is the indirect photo-triggered-on-demand drug release by efficient up-converting energy of the near-IR (NIR) light to higher energy and intraparticle energy transfer from the dye grafted magnetic nanoparticle to the linker for drug release by cleavage. The synthesized nanoparticles were found to be of ultra-small size (13.33 nm) and are monodispersed in an aqueous suspension. Dexamethasone (Dexa) drug conjugated to RDB-GAMNP by photosensitive linker showed appreciable release of Dexa by photo-triggered response on exposure to radiation having a wavelength in the NIR region whereas no detectable release was observed in the dark. Photo-triggered response for the nanoformulation not bearing the rhodamine B dye was drastically less as less Dexa was released on exposure to NIR radiation which suggest that the photo-cleavage of linker and release of Dexa mainly originated from the indirect excitation through the uphill energy conversions based on donor-acceptor model FRET. The promising pathway of nanophotonics for the on-demand release of the drug makes this nanocarrier very promising for applications in nanomedicine.

  14. 基于LabVIEW的磁悬浮轴承的静态刚度测量系统%Measurement System of Static Stiffness for Magnetic Bearings Based on LabVIEW

    Institute of Scientific and Technical Information of China (English)

    马骁; 尹成科; 陈琛

    2012-01-01

    Rotors can be suspended in stators through electromagnetic force in magnetic bearings. The static stiffness is one important technical characteristic of magnetic bearings, so it is a necessary procedure to measure static stiffness for magnetic bearings. A static stiffness measurement system was established up for active magnetic bearings in the open-loop control. This system was based on LabVIEW software development platform, and included X - Y - Z precision motorized stages, six-axis force/torque transducer,laser optical displacement sensor,and high precision ammeter for the most part. An industrial personal computer controlled every measurement cell for automatic measurement, acquisition, and data storage. It has the advantage of high automation.%磁悬浮轴承主要利用电磁力使转子悬浮于定子中,其刚度特性是磁悬浮轴承的重要技术指标,因此磁悬浮轴承的刚度测量是检验磁悬浮轴承性能的必要环节.文中建立了适用于混合控制的磁悬浮轴承在开环控制下的静态刚度测量系统.该系统利用LabVIEW软件开发测量平台,由X-Y -Z电控精密位移台、六自由度力传感器、激光位移传感器及高分辨率电流表等设备组成,并由工控机统一控制各测量单元,实现自动测量、自动采集与数据存储等功能,具有自动化程度高的优点.

  15. A novel Planar Magnetic Bearing and Motor Configuration applied in a Positioning Stage

    NARCIS (Netherlands)

    Molenaar, A.

    2000-01-01

    This thesis presents the design and implementation of a fully contactless high precision magnetically suspended position stage with large planar stroke. This stage is the first which is suitable for practical application in vacuum. The underlying electromechanical working principles, modelling and a

  16. Inertially stabilized line-of-sight control system using a magnetic bearing with vernier gimbaling capacity

    Science.gov (United States)

    Lin, Zhuchong; Liu, Kun

    2014-11-01

    Line of sight stabilization and control system is widely used in pointing and stabilizing the line of sight of optical sensors. Multi-axis gimbals configurations are commonly used for isolating disturbance from the angular motion of the base where the stabilization platform is mounted. However, in the case of large payload, nonlinear friction and the bandwidth limit of the servo loop can greatly diminish the performance of the whole system. Magnetic actuators, because of their high force per mass capability and non-friction characteristic, are promising means of achieving high-accuracy stabilization. Nevertheless, the gap between magnetic actuators and the payload is very small, which limits the slewing range of the line of sight as well as the angular motion range of the base that can be isolated. A novel two-stage stabilization configuration is developed, which combines multi-axis gimbals configuration and magnetic actuators as well as both of their advantages. At the first stage, a multi-axis gimbals configuration is adopted to isolate the large angular motion of the base while at the second stage magnetic actuators are utilized to perform high-accuracy stabilization. A so-called "stabilizing inside and tracking outside" scheme is carried out to perform two-stage stabilization control. The advantage of this configuration compared with conventional configuration is analyzed through analytical method. Finally, the effectiveness of the design is investigated through simulation studies.

  17. Recent Activities in Magnetic Separation in Sweden

    OpenAIRE

    Wang, Yanmin; Forssberg, Eric

    1995-01-01

    This paper describes some industrial applications of magnetic separation in Swedish mineral industry. Recent studies on magnetic treatment of minerals in Sweden are also presented. These studies involve selectivity of wet magnetic separation, wet magnetic recovery of mineral fines and ultrafines, sulphide processing by magnetic means, as well as dry magnetic purification of industrial minerals.

  18. Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by means of Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F. Y.

    2003-01-01

    The main objective of this research project is the investigation of multirecess hydrostatic journal bearings with active hybrid (hydrostatic and hydrodynamic) lubrication. This paper gives a theoretical contribution to the modeling of this kind of bearing, combining computational fluid dynamics...... and control techniques. The feasibility of influencing the dynamic fluid film coefficients (stiffness and damping) by means of a controllable fluid injection into opposed bearing recesses is investigated. By controlling the pressure and flow injection using servo control systems, it is possible to obtain...

  19. Anisotropy of complex magnetic susceptibility as an indicator of strain and petrofabric in rocks bearing sulphides

    Science.gov (United States)

    Borradaile, G. J.; Puumala, M.; Stupavsky, M.

    1992-02-01

    A new method, anisotropy of complex magnetic susceptibility (ACMS), for determining the petrofabric of specimens with conductive minerals is developed. The method uses the same induction coil equipment and techniques that can be used for the measurement of the anisotropy of magnetic susceptibility (AMS). However, a higher (100 kHz) operating frequency emphasizes the electrical conductivity response and thus yields a measure of the anisotropy of electrical conductivity of the specimen. The method was tested on variably deformed plasticine samples containing aluminium fabric markers and on synthetic aggregates of pyrrhotite and talc-pyrrhotite mixtures deformed triaxially at a confining pressure of 200 MPa (2 kbar) by up to 35% homogeneous shortening. ACMS successfully defines the petrofabric and permits prediction of the principal directions of finite strain. The intensity of AMS and, to a lesser extent, of ACMS correlate with the strain ratio in these simple, coaxial, flattening plane strain experimental deformations on selected materials.

  20. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.;

    2012-01-01

    We use the extensive database of magnetic observations from the Mars Global Surveyor to investigate magnetic disturbances in the Martian space environment statistically, both close to and far from crustal anomalies. We discuss the results in terms of possible ionospheric and magnetospheric currents...... a magnetic experiment at the martian surface, the Mars Surface Magnetic Observatory (MSMO) including the science objectives, science experiment requirements, instrument and basic operations. We find the experiment to be feasible within the constraints of proposed stationary landing platforms....

  1. 飞轮储能用磁力轴承的发展研究%Development Research of Magnetic Bearing Technology for Flywheel Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    陈湘舜; 曾虎彪

    2011-01-01

    飞轮电池以高比能、环境友好等优点成为国内外研究热点.特别是在磁力轴承技术获得突破之后,飞轮储能效率与寿命都得到极大的提高.详细论述了飞轮储能系统中磁力轴承的发展历史与研究现状;对比分析了永磁轴承、电磁轴承和超导磁轴承的优缺点,指出被动磁力轴承对构建经济型飞轮电池的重要性;针对飞轮电池发展的实际需求提出了目前应重点研究的方向.%With the advantages of high energy density, environment friendly and so on, flywheel battery becomes research hotspot at home and abroad.Especially after a breakthrough in the magnetic bearing technology, its energy, storage efficiency and life expectancy have been greatly improved.The history, research status and development trend of magnetic bearing technology for flywheel energy storage system were presented.The merit and demerit of permanent magnetic beating, electromagnetic bearing and superconducting magnetic bearing; were amalyzed in contrast.The importance of passive magnetic bearing on the construction of economical flywheel battery was pointed out.For the actual demand of the flywheel battery development, the focus of current research was proposed.

  2. Photospheric Magnetic Free Energy Density of Solar Active Regions

    CERN Document Server

    Zhang, Hongqi

    2016-01-01

    We present the photospheric energy density of magnetic fields in two solar active regions inferred from observational vector magnetograms, and compare it with the possible different defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in active region NOAA 6580-6619-6659 and 11158. It is noticed that the quantity 1/4pi Bn.Bp is an important energy parameter that reflects the contribution of magnetic shear on the difference between the potential magnetic field (Bp) and non-potential one (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density changes obviously before the powerful solar flares in the active region NOAA 11158, it is consistent with the change of magnetic fields in the lower atmosphere with flares.

  3. Synthesis and in vitro antimicrobial activity of N-arylquinoline derivatives bearing 2-morpholinoquinoline moiety

    Institute of Scientific and Technical Information of China (English)

    Jigar A. Makawana; Manish P. Patel; Ranjan G. Patel

    2012-01-01

    A new series of N-arylquinoline derivatives 5a-x bearing 2-morpholinoquinoline moiety has been synthesized by one pot base catalyzed cyclocondensation reaction of 2-morpholinoquinoline-3-carbaldehydes 2a-c,malononitrile 3 and β-enaminones 4a-h.All the synthesized compounds were screened for their in vitro antimicrobial activity against six bacterial pathogens,namely Streptococcus pneumoniae,Clostridium tetani,Bacillus subtilis,Salmonella typhi,Vibrio cholerae,Escherichia coli and against two fungal pathogens,Aspergillus fumigatus and Candida albicans using broth microdilution MIC method.Of the compounds studied,majority of the compounds were found to active against C.tetani,B.subtilis and C.albicans as compared to first-line standard drugs.

  4. Rod-like Schiff Base Magnetic Liquid Crystals Bearing Organic Radical

    Institute of Scientific and Technical Information of China (English)

    ZHENG, Min-Yan; AN, Zhong-Wei

    2006-01-01

    4 novel rod-like Schiff base magnetic liquid crystals have been prepared in which trans-bicyclohexyl or trans-cyclohexyl phenyl and biphenyl carboxylic acid phenol ester mesogenic cores with n-propyl and n-pentyl substituents were terminated by 4-amino-TEMPO (TEMPO=2,2,6,6-tetramethylpiperidine-l-oxyl). Of these compounds the silk-like and schlieren textures were found from 4c and 4d by POM (Polarizing Optical Microscope).DSC (Differential Scanning Calorimeter) measurements show that the mesophase exists from 4-6 ℃. EPR spectra reveal their paramagnetic properties.

  5. Magnetization and geochemistry of greigite-bearing Cretaceous strata, North Slope Basin, Alaska

    Science.gov (United States)

    Reynolds, R.L.; Tuttle, M.L.; Rice, C.A.; Fishman, N.S.; Karachewski, J.A.; Sherman, David M.

    1994-01-01

    Greigite is ubiquitous in marine mudstone of the Seabee Formation, and it dominates the magnetic properties of the Seabee. The Seabee rocks fill an ancient submarine canyon cut into marine, transitional, and nonmarine sandstone, siltstone, and mudstone beds of the undifferentiated Ninuluk and Seabee Formations. Different geochemical signatures in the Seabee Formation and undifferentiated Ninuluk and Seabee rocks indicate different origins of their greigite and associated iron disulfide minerals. In the Seabee, greigite and pyrite formed during early diagenesis via bacterial sulfate reduction utilizing indigenous sulfate and organic carbon. -Authors

  6. Design of multi-input multi-output controller for magnetic bearing which suspends helium gas-turbine generator rotor for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    A design of a MIMO controller, which links magnetic forces of multiple magnetic bearings by feedback of multiple measurement values of vibration of a rotor, was proposed for the radial magnetic bearings for the generator rotor of helium gas turbine with a power output of 300 MWe. The generator rotor is a flexible rotor, which passes over the forth critical speed. A controller transfer function was derived at the forth critical speed, in which the bending vibration mode is similar to the one which is excited by unbalance mass to reduce a modeling error. A 1404-dimensional un-symmetric coefficient matrix of equation of state for the rotating rotor affected by Jayro effect was reduced by a modal decomposition using Schur decomposition to reduce a reduction error. The numerical results showed that unbalance response of rotor was 53 and 80 μmp-p, respectively, well below the allowable limits both at the rated and critical speeds. (author)

  7. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    Science.gov (United States)

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  8. Cross-Axis Proportional Gains Used to Control Gyroscopic Effects in a Magnetic- Bearing-Supported Flywheel

    Science.gov (United States)

    Brown, Gerald V.; Kascak, Albert F.

    2001-01-01

    For magnetic-bearing-supported high-speed machines with significant gyroscopic effects, it is necessary to stabilize both forward and backward tilt whirling modes. Instability or the low damping of these modes can prevent the attainment of desired shaft speeds. Previous work elsewhere showed that cross-axis derivative gain in the magnetic bearing control law can improve the stability of the forward whirl mode, but it is commonly recognized that derivative gains amplify high-frequency noise and increase the required control effort. At the NASA Glenn Research Center, it has been shown previously that a simple cross-axis proportional gain can add stability (without adding noise) to either forward whirl or backward whirl, depending on the sign of the gain, but that such a gain destabilizes the other mode. It has been predicted by Glenn analysis that both modes can be stabilized by cross-axis proportional gains by utilizing the large-frequency separation of the two modes at speeds where the gyroscopic effects are significant. We use a modal controller that decouples the tilt and center-of-mass-translation modes. Only the tilt modes exhibit speed-dependent gyroscopic effects. The key to controlling them by the present method is to stabilize the backward whirl tilt mode with the appropriate sign of cross-axis proportional gain in the control law, but to include a low-pass filter on that gain term to restrict its effect only to the low-frequency backward-whirl mode. A second cross-axis term with the opposite sign and a high-pass filter stabilizes the forward whirl, which can have a frequency one or two orders of magnitude higher than the backward whirl, permitting very independent action of the two terms. Because the physical gyroscopic torques are proportional to the spinning speed of the shaft, it is convenient to gain-schedule the cross-axis control terms by making them proportional to shaft speed. This has the added benefit of avoiding a somewhat awkward zero

  9. Stability and coupling dynamic behavior of nonlinear journal active electromagnetic bearing rotor system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The stability and coupling dynamic behavior of a journal active electromagnetic bearing rotor system are analyzed.The gyroscopic effect is considered in the rotor model.The system equations are formulated by combining equations for rotor motion and decentralized proportional integral differential (PID) controllers.A method combining the predictor-corrector mechanism and the Netwon-Raphson method is presented to calculate the critical speed at the corresponding Hopf bifurcation point of the system.For periodic motions,a continuation method combining the predictor-corrector mechanism and shooting method is presented.Non-linear unbalanced periodic motions and their stability margins are obtained using the shooting method and established continuation method for periodic motions.With the change of control parameters,the system local stability and bifurcation behaviors are obtained using the Floquet theory.The numerical examples show that the schemes not only significantly save computing cost,but also have high precision.

  10. A Model of Mercury's Magnetospheric Magnetic Field with Dependence on Magnetic Activity

    Science.gov (United States)

    Korth, H.; Tsyganenko, N. A.; Johnson, C. L.; Philpott, L. C.; Anderson, B. J.; Solomon, S. C.; McNutt, R. L., Jr.

    2015-12-01

    Accurate knowledge of Mercury's magnetospheric magnetic field is required to characterize the planet's internal field and the structure of the magnetosphere. We present the first model of Mercury's magnetospheric magnetic field that includes a dependence on magnetic activity. The model consists of individual modules for magnetic fields of internal origin, approximated by a dipole of magnitude 190 nT RM3, where RM is Mercury's radius, offset northward by 479 km along the spin axis, and of external origin resulting from currents flowing on the magnetopause boundary and in the cross-tail current sheet. The magnetic field is confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft and dependent on magnetic activity. The cross-tail current is prescribed having a disk shape near the planet and extending into a sheet at larger distances. The magnitude of the tail current, which also depends on magnetic activity, is fit to minimize the root-mean-square residual between the model magnetic field and the field within the magnetosphere observed by MESSENGER. The model was fit separately for magnetic field observations within distinct levels of magnetic activity. Linear fits of model parameters versus magnetic activity allows continuous scaling of the model to magnetic activity. The magnetic field contribution from each module is shielded individually by a scalar potential function, which was fit to minimize the root-mean-square normal magnetic field component at the magnetopause. The resulting model reproduces the dependence of the magnetospheric size and tail current intensity on magnetic activity, and allows more accurate characterization of the internal field.

  11. Synthesis and evaluation of radiolabeled, folic acid-PEG conjugated, amino silane coated magnetic nanoparticles in tumor bearing Balb/C mice

    Directory of Open Access Journals (Sweden)

    Razjouyan Javad

    2015-07-01

    Full Text Available To design a potent agent for positron emission tomography/magnetic resonance imaging (PET/MRI imaging and targeted magnetic hyperthermia-radioisotope cancer therapy radiolabeled surface modified superparamagnetic iron oxide nanoparticles (SPIONs were used as nanocarriers. Folic acid was conjugated for increasing selective cellular binding and internalization through receptor-mediated endocytosis. SPIONs were synthesized by the thermal decomposition of tris (acetylacetonato iron (III to achieve narrow and uniform nanoparticles. To increase the biocompatibility of SPIONs, they were coated with (3-aminopropyl triethoxysilane (APTES, and then conjugated with synthesized folic acid-polyethylene glycol (FA-PEG through amine group of (3-aminopropyl triethoxysilane. Finally, the particles were labeled with 64Cu (t1/2 = 12.7 h using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono (N-hydroxy succinimide ester DOTA-NHS chelator. After the characterization of SPIONs, their cellular internalization was evaluated in folate receptor (FR overexpressing KB (established from a HeLa cell contamination and mouse fibroblast cell (MFB lines. Eventually, active and passive targeting effects of complex were assessed in KB tumor-bearing Balb/C mice through biodistribution studies. Synthesized bare SPIONs had low toxicity effect on healthy cells, but surface modification increased their biocompatibility. Moreover, KB cells viability was reduced when using folate conjugated SPIONs due to FR-mediated endocytosis, while having little effect on healthy cells (MFB. Moreover, this radiotracer had tolerable in vivo characteristics and tumor uptake. In the receptor blocked case, tumor uptake was decreased, indicating FR-specific uptake in tumor tissue while enhanced permeability and retention effect was major mechanism for tumor uptake.

  12. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    CERN Document Server

    McIntosh, Scott W

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their p...

  13. Active-Controlled Fluid Film Based on Wave-Bearing Technology

    Science.gov (United States)

    Dimofte, Florin; Hendricks, Robert C.

    2011-01-01

    It has been known since 1967 that the steady-state and dynamic performance, including the stability of a wave bearing, are highly dependent on the wave amplitude. A wave-bearing profile can be readily obtained by elastically distorting the stationary bearing sleeve surface. The force that distorts the elastic sleeve surface could be an applied force or pressure. The magnitude and response of the distorting force would be defined by the relation between the bearing surface stiffness and the bearing pressure, or load, in a feedback loop controller. Using such devices as piezoelectric or other electromechanical elements, one could step control or fully control the bearing. The selection between these systems depends on the manner in which the distortion forces are applied, the running speed, and the reaction time of the feedback loop. With these techniques, both liquid- (oil-) or gas- (air-) lubricated wave bearings could be controlled. This report gives some examples of the dependency of the bearing's performance on the wave amplitude. The analysis also was proven experimentally.

  14. Magnetic Pump Axial Force Balance Method based on the Magnetic Bearing%基于永磁悬推力轴承的磁力泵轴向力平衡方法

    Institute of Scientific and Technical Information of China (English)

    周龙德; 杨国来

    2013-01-01

    针对磁力泵在运行过程中产生的轴向力平衡问题,通过对磁力泵轴向力的分析,提出了采用永磁悬浮推力轴承来替代普通推力轴承的方法,彻底解决了磁力泵工作现场推力轴承磨损与破裂的问题,实现了磁力泵无接触传动,降低了噪声和功率损失,提高了磁力泵的工作效率和使用寿命.%Focused on the problem of the axial force balance in the operation process of the magnetic pump and based on the magnetic pump axial force analysis,the way that using the permanent magnetic suspension thrust bearing to replace the traditional thrust bearing was proposed,which completely solves the problem that thrust bearing wear and fracture in the magnetic pump working site,realizing the magnetic pump non-contact transmission,noise reducing,power loss,and improves the pump efficiency and service life.

  15. Biomechanical analysis of weight bearing force and muscle activation levels in the lower extremities during gait with a walker.

    Directory of Open Access Journals (Sweden)

    Ishikura T

    2001-04-01

    Full Text Available The biomechanics of using a walker for the partial weight bearing gait and as a method for gradually increasing the muscle activation level were examined with a force plate and surface electromyography. The results showed that the weight bearing force during gait with a walker is determined by the flexion angle of the hip joint. The value remains constant for each stride, indicating that a walker can be used for the partial weight bearing gait. Moreover, the muscle activation levels in the rectus femoris muscle and biceps femoris muscle per unit time during normal gait and gait with a walker with varying hip joint flexion angles were found to be correlated with the weight bearing force and to be constant for each stride. In addition, the muscle activation level was consistent with the level observed during the open kinetic chain resistance exercise with a specific loading level. These findings suggest that normal gait and gait with a walker may be applicable as a method for gradually increasing the muscle activation level.

  16. 交流混合型磁轴承磁场及悬浮力特性分析%Magnetic Field and Characteristic Analysis of Suspension Forces for Radial AC Hybrid Magnetic Bearing

    Institute of Scientific and Technical Information of China (English)

    张松; 张维煜; 朱熀秋

    2012-01-01

    对交流混合型磁轴承的组成结构和基本工作原理进行了介绍,并针对该交流混合型磁轴承的悬浮力进行了数学模型的建立,而且通过泰勒公式近似获得其线性模型.文中创建了该磁轴承的实体模型,利用Ansoft 软件仿真并分析了该交流磁轴承的磁通分布状况(气隙及磁极内部);采用Ansoft分析软件与MATLAB软件对交流磁轴承悬浮力的非线性变化规律进行了计算分析.仿真结果表明:磁通密度的分布在磁轴承中,其仿真值和理论设计值几乎吻合,说明该磁轴承计算设计的参数有效;基于数学模型和有限元实体模型的交流混合型磁轴承特性分析结果一致,表明该磁轴承的数学模型建立正确,逼近磁轴承实际工作情况下的模型.%Configuration and operation principle of the radial AC hybrid magnetic bearing ( AC HMB) were introduced , the mathematical models of suspension forces were deduced with the method of equivalent magnetic circuits, and the linearity models about the equilibrium position were obtained by using their Taylor expansions. Based on the establishment of finite element solid models of the magnetic bearing in Ansoft finite element analysis software, the magnetic field distributions in air gap and magnetic pole of the AC HMB were calculated. The nonlinear variation of suspension forces of the magnetic bearing was calculated with Ansoft finite element and MATLAB software respectively. The simulation results show that the magnetic field distribution in magnetic bearing is consistent with the theoretical design, and the designing of structural parameters is reasonable. Results also show that the characteristic analysis results based on the mathematical models and finite element solid models of the AC HMB are consistent, and the mathematical model is proved correct, which is close to the model of the magnetic bearing under actual conditions.

  17. An active antenna for ELF magnetic fields

    Science.gov (United States)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  18. Bearing system

    Science.gov (United States)

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  19. Establishing a definition of polar bear (Ursus maritimus) health: a guide to research and management activities.

    Science.gov (United States)

    Patyk, Kelly A; Duncan, Colleen; Nol, Pauline; Sonne, Christian; Laidre, Kristin; Obbard, Martyn; Wiig, Øystein; Aars, Jon; Regehr, Eric; Gustafson, Lori L; Atwood, Todd

    2015-05-01

    The meaning of health for wildlife and perspectives on how to assess and measure health, are not well characterized. For wildlife at risk, such as some polar bear (Ursus maritimus) subpopulations, establishing comprehensive monitoring programs that include health status is an emerging need. Environmental changes, especially loss of sea ice habitat, have raised concern about polar bear health. Effective and consistent monitoring of polar bear health requires an unambiguous definition of health. We used the Delphi method of soliciting and interpreting expert knowledge to propose a working definition of polar bear health and to identify current concerns regarding health, challenges in measuring health, and important metrics for monitoring health. The expert opinion elicited through the exercise agreed that polar bear health is defined by characteristics and knowledge at the individual, population, and ecosystem level. The most important threats identified were in decreasing order: climate change, increased nutritional stress, chronic physiological stress, harvest management, increased exposure to contaminants, increased frequency of human interaction, diseases and parasites, and increased exposure to competitors. Fifteen metrics were identified to monitor polar bear health. Of these, indicators of body condition, disease and parasite exposure, contaminant exposure, and reproductive success were ranked as most important. We suggest that a cumulative effects approach to research and monitoring will improve the ability to assess the biological, ecological, and social determinants of polar bear health and provide measurable objectives for conservation goals and priorities and to evaluate progress. PMID:25679818

  20. Establishing a definition of polar bear (Ursus maritimus) health: A guide to research and management activities

    Science.gov (United States)

    Patyk, Kelly A.; Duncan, Colleen G.; Nol, Pauline; Sonne, C.; Laidre, Kristin L.; Obbard, Martyn E.; Wiig, Øystein; Aars, Jon; Regehr, Eric V.; Gustafson, L.; Atwood, Todd C.

    2015-01-01

    The meaning of health for wildlife and perspectives on how to assess and measure health, are not well characterized. For wildlife at risk, such as some polar bear (Ursus maritimus) subpopulations, establishing comprehensive monitoring programs that include health status is an emerging need. Environmental changes, especially loss of sea ice habitat, have raised concern about polar bear health. Effective and consistent monitoring of polar bear health requires an unambiguous definition of health. We used the Delphi method of soliciting and interpreting expert knowledge to propose a working definition of polar bear health and to identify current concerns regarding health, challenges in measuring health, and important metrics for monitoring health. The expert opinion elicited through the exercise agreed that polar bear health is defined by characteristics and knowledge at the individual, population, and ecosystem level. The most important threats identified were in decreasing order: climate change, increased nutritional stress, chronic physiological stress, harvest management, increased exposure to contaminants, increased frequency of human interaction, diseases and parasites, and increased exposure to competitors. Fifteen metrics were identified to monitor polar bear health. Of these, indicators of body condition, disease and parasite exposure, contaminant exposure, and reproductive success were ranked as most important. We suggest that a cumulative effects approach to research and monitoring will improve the ability to assess the biological, ecological, and social determinants of polar bear health and provide measurable objectives for conservation goals and priorities and to evaluate progress.

  1. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  2. Magnetic activity of surface plasmon resonance using dielectric magnetic materials fabricated on quartz glass substrate

    Science.gov (United States)

    Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji

    2016-07-01

    The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.

  3. Application of a load-bearing passive and active vibration isolation system in hydraulic drives

    Science.gov (United States)

    Unruh, Oliver; Haase, Thomas; Pohl, Martin

    2016-09-01

    Hydraulic drives are widely used in many engineering applications due to their high power to weight ratio. The high power output of the hydraulic drives produces high static and dynamic reaction forces and moments which must be carried by the mounts and the surrounding structure. A drawback of hydraulic drives based on rotating pistons consists in multi-tonal disturbances which propagate through the mounts and the load bearing structure and produce structure borne sound at the surrounding structures and cavities. One possible approach to overcome this drawback is to use an optimised mounting, which combines vibration isolation in the main disturbance direction with the capability to carry the reaction forces and moments. This paper presents an experimental study, which addresses the vibration isolation performance of an optimised mounting. A dummy hydraulic drive is attached to a generic surrounding structure with optimised mounting and excited by multiple shakers. In order to improve the performance of the passive vibration isolation system, piezoelectric transducers are applied on the mounting and integrated into a feed-forward control loop. It is shown that the optimised mounting of the hydraulic drive decreases the vibration transmission to the surrounding structure by 8 dB. The presented study also reveals that the use of the active control system leads to a further decrease of vibration transmission of up to 14 dB and also allows an improvement of the vibration isolation in an additional degree of freedom and higher harmonic frequencies.

  4. Evaluation of the Effectiveness of an Active Magnetic Damper (AMD) in Damping Subsynchronous Vibrations in a Flexible Rotor

    OpenAIRE

    Mendoza, Hector

    2000-01-01

    Subsynchronous vibrations such as those caused by rotor instability represent one of the most harrowing scenarios of rotor vibration. They are related to a great diversity of destabilizing forces and some of them are not well understood yet. Therefore, special attention must be paid to this type of vibration. Active Magnetic Bearings (AMBs) monitor the position of the shaft and change the dynamics of the system accordingly to keep the rotor in a desired position, offering the possibility of...

  5. Mixed-mu superconducting bearings

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  6. Active screening of magnetic field near power stations generator buses

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2013-12-01

    Full Text Available An experimental study technique for a prototyping system of active screening of power-frequency magnetic field distortions near power station generator buses via controllable magnetic field sources is presented. Results of experimental research on a proto-typing active screening system with different control algorithms are given.

  7. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    Science.gov (United States)

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  8. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    Science.gov (United States)

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  9. The Limit of Free Magnetic Energy in Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  10. Magnetic activity of F stars observed by Kepler

    CERN Document Server

    Mathur, S; Ballot, J; Ceillier, T; Salabert, D; Metcalfe, T S; Regulo, C; Jimenez, A; Bloemen, S

    2013-01-01

    The study of stellar activity is important because it can provide new constraints for dynamo models, when combined with surface rotation rates and the depth of the convection zone. We know that the dynamo mechanism, which is believed to be the main process to rule the magnetic cycle of solar-like stars at least, results from the interaction between (differential) rotation, convection, and magnetic field. The Kepler mission has been collecting data for a large number of stars during 4 years allowing us to investigate magnetic stellar cycles. We investigated the Kepler light curves to look for magnetic activity or even hints of magnetic activity cycles. Based on the photometric data we also looked for new magnetic indexes to characterise the magnetic activity of the stars. We selected a sample of 22 solar-like F stars that have a rotation period smaller than 12 days. We performed a time-frequency analysis using the Morlet wavelet yielding a magnetic proxy. We computed the magnetic index S_ph as the standard dev...

  11. Light-Activated Magnetic Compass in Birds

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Greiner, Walter

    2013-01-01

    Migrating birds fly thousand miles without having a map, or a GPS unit. But they may carry their own sensitive navigational tool, which allows them "see" the Earth’s magnetic field. Here we review the important physical and chemical constraints on a possible compass sensor and discuss the suggest......Migrating birds fly thousand miles without having a map, or a GPS unit. But they may carry their own sensitive navigational tool, which allows them "see" the Earth’s magnetic field. Here we review the important physical and chemical constraints on a possible compass sensor and discuss...... the suggestion that radical pairs in a photoreceptor cryptochrome might provide a biological realization for a magnetic compass. Finally, we review the current evidence supporting a role for radical pair reactions in the magnetic compass of birds....

  12. AUGMENTATION OF IMMUNE FUNCTIONS AND AUTOLOGOUS TUMOR-KILLING ACTIVITY BY KAPPA-SELENOCARRAGEENAN IN MICE BEARING SARCOMA 180

    Institute of Scientific and Technical Information of China (English)

    Wei Hulai; Jia Zhengping; Zhao Huishun

    1998-01-01

    Objective: To study the enhancement of the immune functions and autologous tumor-killing (ATK) activity by kappa-selenocarrageenan (KSC) in mice bearing sarcoma 180. Methods: To measure the effects of KSC and/or Cyclophosphamide (Cy) on natural killer (NK) activity,lymphokine-activated killer (LAK) activity, the production of interleukin-2 (IL-2), ATK activity and the growth of sarcoma 180 (S180). Results: KSC promoted NK activity, LAK activity and ATK activity in vivo, increased IL-2 production at 40 mg/kg/d×9d. It also enhanced the antitumor action of Cy (20 mg/kg/d×9d) and offset the inhibition of Cy on immunocopetent cells. The ATK activity in splenocytes of S180-bearing mice could be induced and increased by recombinant interleukin-2 (rIL-2) in vitro. Conclusion: KSC has an up- regulating effect on the immune functions and ATK activity in tumorbearing mice. It can be used as a biological response modifier (BRM) in cancer biotherapy.

  13. Tumor inhibitory activity of methanolic and ethyl acetate soluble extracts of Thuja occidentalis L. on mice bearing Ehrlich ascites carcinoma.

    Directory of Open Access Journals (Sweden)

    Archana M Navale

    2014-06-01

    Full Text Available Thuja occidentalis (Cupressaceae is an ornamental plant of European origin. It has been used in folk medicine for the treatment of cancer. Mice bearing Ehrlich Ascites Carcinoma (EAC mice were treated with methanolic extract (165 mg/kg, ethyl acetate soluble fraction (30 mg/kg and combination of both extracts of TO. Inhibition of tumor growth, increase in survival time of animal with treatment, and hematological parameters were determined. Both methanolic and ethyl acetate soluble fractions of TO exerted tumor growth inhibitory activity in mice bearing EAC. Combination treatment of two extracts showed more pronounced effect. In conclusion, Methanolic and ethyl acetate soluble extracts of TO exhibit anticancer activity against Ehrlich ascites carcinoma in mice. Thus, it has anticancer potential and should be further evaluated in higher models.

  14. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    -pad bearing. By applying a simple proportional controller, it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the feasibility of increasing...

  15. Active fluid mixing with magnetic microactuators for capture of salmonella

    Science.gov (United States)

    Hanasoge, S.; Owen, D.; Ballard, M.; Mills, Z.; Xu, J.; Erickson, M.; Hesketh, P. J.; Alexeev, A.

    2016-05-01

    Detection of low concentrations of bacteria in food samples is a challenging process. Key to this process is the separation of the target from the food matrix. We demonstrate magnetic beads and magnetic micro-cilia based microfluidic mixing and capture, which are particularly useful for pre-concentrating the target. The first method we demonstrate makes use of magnetic microbeads held on to NiFe discs on the surface of the substrate. These beads are rotated around the magnetic discs by rotating the external magnetic field. The second method we demonstrate shows the use of cilia which extends into the fluid and is manipulated by a rotating external field. Magnetic micro-features were fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The high magnetic permeability of NiFe allows for maximum magnetic force on the features. The magnetic features were actuated using an external rotating magnet up to frequencies of 50Hz. We demonstrate active mixing produced by the microbeads and the cilia in a microchannel. Also, we demonstrate the capture of target species in a sample using microbeads.

  16. Structural Design and Simulation Analysis of Five Freedom Degree Magnetic Bearings Electric Spindle%五自由度磁悬浮电主轴的结构设计与仿真

    Institute of Scientific and Technical Information of China (English)

    陈瑞; 刘贤兴

    2011-01-01

    Based on the traditional structure of five freedom degree magnetic bearings electric spindle, the two parts of five freedom degree magnetic bearings electric spindle were introduced, which were three freedom degree permanent magnet bias mixed magnetic bearings and two freedom degree magnetic bearings asynchronous motor. Firstly, the prototype of five freedom degree magnetic bearings electric spindle was designed, and then the magnetic force and levitation force by electromagnetic analysis software Asoft/Maxwell was analyzed, thus verifying the structure and parameter rationality of the prototype. Finally, the simulation model of control system in Matlab/Simulink was constructed and some related simulation was did, which lays foundation for establishing the control system of the magnetic bearings electric spindle.%在传统五自由度磁悬浮电主轴结构的基础上,提出了一种由永磁偏置三自由度混合磁轴承和二自由度磁悬浮异步电机构成的五自由度磁悬浮电主轴结构.设计了五自由度磁悬浮电主轴的试验样机,通过电磁场分析软件Asoft/Maxwell分析了样机的磁场和悬浮力,验证了所设计样机结构和参数的合理性.在MATLAB/Simulink环境下构建了控制系统的仿真模型,进行了相关的仿真研究,为磁悬浮电主轴数字控制系统的建立奠定了基础.

  17. Magnetism and Electricity Activity "Attracts" Student Interest

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…

  18. The influence of the magnetic field on the performance of an active magnetic regenerator (AMR)

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Engelbrecht, Kurt

    2011-01-01

    The influence of the time variation of the magnetic field, termed the magnetic field profile, on the performance of a magnetocaloric refrigeration device using the active magnetic regeneration (AMR) cycle is studied for a number of process parameters for both a parallel plate and packed bed...... regenerator using a numerical model. The cooling curve of the AMR is shown to be almost linear far from the Curie temperature of the magnetocaloric material. It is shown that a magnetic field profile that is 10% of the cycle time out of sync with the flow profile leads to a drop in both the maximum...... temperature span and the maximum cooling capacity of 20–40% for both parallel plate and packed bed regenerators. The maximum cooling capacity is shown to depend very weakly on the ramp rate of the magnetic field. Reducing the temporal width of the high field portion of the magnetic field profile by 10% leads...

  19. Stellar magnetic activity – Star-Planet Interactions

    Directory of Open Access Journals (Sweden)

    Poppenhaeger, K.

    2015-01-01

    Full Text Available Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high-energy emission affect the exoplanetary atmosphere and its mass loss over time. One major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. I will review recent theoretical and observational results, as well as outline some avenues for future progress.

  20. Tests of an Induced Activity Monitor in a magnetic environment

    CERN Document Server

    Pangallo, M; Perrot, Anne Laure; Vincke, H; CERN. Geneva. TS Department

    2005-01-01

    The Induced Activity Monitors (IAM) dedicated to measure the gamma ambient dose equivalent rate (due to the photons from the activated materials) will be installed inside the LHC accelerator and in the experimental caverns. Some of these IAM detectors (plastic ionization chambers) will be located in areas were magnetic fields will be present. Therefore the response of such radiation detectors in a magnetic field environment has been experimentally and theoretically studied and the results are reported in this note. The tests were performed at CERN in the CMS H2 experimental area with conventional and superconductor magnets. The response of the IAM was studied for different orientations of its chamber with respect to the magnetic field lines and for different magnetic field intensities up to 3T. Moreover, FLUKA Monte Carlo Simulations were performed to fully understand the physical effects responsible for the various measurement results. The conclusions of this study will permit to choose the proper orientatio...

  1. Influence of magnetic field on activity of given anaerobic sludge.

    Science.gov (United States)

    Xu, Y B; Duan, X J; Yan, J N; Du, Y Y; Sun, S Y

    2009-11-01

    Two modes of magnetic fields were applied in the Cr(6+) removal sludge reactors containing two predominated strains--Bacillus sp. and Brevibacillus sp., respectively. The magnetic field mode I* of 0-4.5 or 0-14 mT between pieces was obtained by setting the magnetic pieces with the surface magnetic density of 0-6 or 0-20 mT into the reactor, and the magnetic field mode II* of 6, 20, or 40 mT on the return line was obtained by controlling the working distance of the permanent magnet outside the sludge return line. The effects of different magnetic fields on the activity of the given anaerobic sludge were studied by comparing with the control (absent of magnetic field). The results showed that the magnetic field of 0-4 mT improved the activity of given sludge most effectively, U(max) CH(4) (the peak methane-producing rate) and the methane producing volume per gCOD(Cr) reached 64.3 mlCH(4)/gVSS.d and 124 mlCH(4)/gCOD(Cr), which increased by 20.6 and 70.7%, respectively, compared with the control. And the magnetic field of 20 mT took second place. It could be concluded that the input of some magnetic field could improve the activity of anaerobic sludge by increasing the transformation efficiency of COD(Cr) matters to methane, and the total organic wastage did not increase.

  2. Design, synthesis, and self-assembly of optically active perylenetetracarboxylic diimide bearing two peripheral chiral binaphthyl moieties

    International Nuclear Information System (INIS)

    An optically active perylenetetracarboxylic diimide (PTCDI) bearing two optically active binaphthyl moieties has been designed and synthesized. The self-assembly properties of these novel PTCDI derivatives in DMF/H2O were systematically investigated by electronic absorption, circular dichroism (CD) spectra, IR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) technique. Observation of CD signal in the whole absorption region of PTCDI chromophore, indicates effective chiral information transfer from the chiral binaphthyl units to the central PTCDI chromophore at molecular level. The intermolecular π–π interaction between PTCDI rings together with the additionally formed hydrogen bonds between the crown ether moieties of (S)-1 and additional water molecules and the chiral discrimination of periphery chiral side chains induces further intensified asymmetrical perturbation of the chiral binaphthyl units to the central PTCDI chromophore during the self-assembly process, resulting in the formation of right-handed helical arrangement of corresponding molecules in a stack of PTCDI chromophores in aggregates. In addition, the formed nanostructures were revealed to show good semiconducting properties. - Graphical abstract: An optically active perylenetetracarboxylic diimide bearing two optically active binaphthyl moieties has been prepared. Self-assembly properties of this novel PTCDI derivative in DMF/H2O were systematically investigated. Experimental results indicate the effective chiral information transfer and expression at molecular and intermolecular level. Highlights: ► An optically active perylenetetracarboxylic diimide bearing two optically active binaphthyl moieties has been prepared. ► Self-assembly properties of this novel PTCDI derivative in DMF/H2O were systematically investigated. ► Experimental results indicate the effective chiral information transfer and expression at molecular

  3. 基于在线动平衡的磁轴承参数辨识%Parameter identification for magnetic bearing based on online dynamic balancing

    Institute of Scientific and Technical Information of China (English)

    侯二永; 刘昆

    2013-01-01

    针对磁悬浮刚性转子系统,提出了一种基于在线动平衡的磁轴承参数辨识方法。采用已知大小和相位的不平衡质量作为激振源,根据动平衡仪测得的转子不平衡响应,求得磁轴承位移刚度和电流刚度。利用某型磁悬浮控制力矩陀螺对该方法进行了实验验证,得到了一定转速范围内的磁轴承位移刚度和电流刚度,证明了该方法的正确性和实用性。实验结果表明,外转子型磁轴承位移刚度和电流刚度随转速的增加而下降明显。%Based on online dynamic balancing,a novel parameter identification method is proposed for magnetic suspending rigid rotor system. Two unbalancing masses with given magnitude and phase were added to the rotor and used as a vibration exciter.The displacement stiffness and current stiffness were identified from the unbalancing response detected by the balancing monitor.The proposed method was experimentally validated with a magnetic suspending control moment gyroscope,and the displacement stiffness and current stiffness of its magnetic bearings were obtained within a certain rotational speed interval,which demonstrates the correctness and feasibility of the method.The experimental results show that the displacement stiffness and current stiffness decrease notably with the rotational speed increased for an outer rotor magnetic bearing.

  4. Novel oxime-bearing coumarin derivatives act as potent Nrf2/ARE activators in vitro and in mouse model.

    Science.gov (United States)

    Chang, Ken-Ming; Chen, Huang-Hui; Wang, Tai-Chi; Chen, I-Li; Chen, Yu-Tsen; Yang, Shyh-Chyun; Chen, Yeh-Long; Chang, Hsin-Huei; Huang, Chih-Hsiang; Chang, Jang-Yang; Shih, Chuan; Kuo, Ching-Chuan; Tzeng, Cherng-Chyi

    2015-12-01

    We have designed and synthesized certain novel oxime- and amide-bearing coumarin derivatives as nuclear factor erythroid 2 p45-related factor 2 (Nrf2) activators. The potency of these compounds was measured by antioxidant responsive element (ARE)-driven luciferase activity, level of Nrf2-related cytoprotective genes and proteins, and antioxidant activity. Among them, (Z)-3-(2-(hydroxyimino)-2-phenylethoxy)-2H-chromen-2-one (17a) was the most active, and more potent than the positive t-BHQ in the induction of ARE-driven luciferase activity. Exposure of HSC-3 cells to various concentrations of 17a strongly increased Nrf2 nuclear translocation and the expression level of Nrf2-mediated cytoprotective proteins in a concentration-dependent manner. HSC-3 cells pretreated with 17a significantly reduced t-BOOH-induced oxidative stress. In the animal experiment, Nrf2-mediated cytoprotective proteins, such as aldo-keto reductase 1 subunit C-1 (AKR1C1), glutathione reductase (GR), and heme oxygenase (HO-1), were obviously elevated in the liver of 17a-treated mice than that of control. These results suggested that novel oxime-bearing coumarin 17a is able to activate Nrf2/ARE pathway in vivo and are therefore seen as a promising candidate for further investigation.

  5. The Life Cycle of Active Region Magnetic Fields

    Science.gov (United States)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  6. 磁悬浮轴承转子位移自检测方法%Self-sensing Methods of Rotor Displacement for Magnetic Bearings

    Institute of Scientific and Technical Information of China (English)

    金婕; 朱熀秋

    2014-01-01

    磁悬浮轴承转子位移传感器检测的速度和精度,对磁悬浮轴承位移闭环控制的精度具有重要影响。论文指出了磁悬浮轴承转子传统的位移传感器检测方法的不足,分析了参数估计法,状态估计等几种目前主要的磁悬浮轴承自检测技术的基本原理,性能和适用范围,最后,对磁悬浮轴承位移自检测技术的发展趋势做了进一步阐述。%The speed and accuracy of rotor displacement sensor for magnetic bearings have important impact on the precision of closed-loop control for magnetic bearings.The article pointed out the drawbacks of the traditional displacement sensors.The principles, performances and applicable ranges of parameter estima-tion, state estimation and other main self-sensing technologies were analyzed.Finally, the development trend and prospect of self-sensing technology were further formulated.

  7. Blood Pump Having a Magnetically Suspended Rotor

    Science.gov (United States)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  8. Magnetic Levitation Technique for Active Vibration Control

    OpenAIRE

    Hoque, Emdadul; Mizuno, Takeshi

    2010-01-01

    A zero-power controlled magnetic levitation system has been presented in this chapter. The unique characteristic of the zero-power control system is that it can generate negative stiffness with zero control current in the steady-state which is realized in this chapter. The detail characteristics of the levitation system are investigated. Moreover, two major contributions, the stiffness adjustment and nonlinear compensation of the suspension system have been introduced elaborately. Often, ther...

  9. Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field

    Directory of Open Access Journals (Sweden)

    Liu Z

    2014-12-01

    Full Text Available Zhongyang Liu,1,* Liangliang Huang,1,* Liang Liu,1,* Beier Luo,2,* Miaomiao Liang,3 Zhen Sun,1 Shu Zhu,1 Xin Quan,1 Yafeng Yang,1 Teng Ma,1 Jinghui Huang,1 Zhuojing Luo1 1Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 2Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 3Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Schwann cells (SCs are attractive seed cells in neural tissue engineering, but their application is limited by attenuated biological activities and impaired functions with aging. Therefore, it is important to explore an approach to enhance the viability and biological properties of SCs. In the present study, a magnetic composite made of magnetically responsive magnetic nanoparticles (MNPs and a biodegradable chitosan–glycerophosphate polymer were prepared and characterized. It was further explored whether such magnetic nanocomposites via applied magnetic fields would regulate SC biological activities. The magnetization of the magnetic nanocomposite was measured by a vibrating sample magnetometer. The compositional characterization of the magnetic nanocomposite was examined by Fourier-transform infrared and X-ray diffraction. The tolerance of SCs to the magnetic fields was tested by flow-cytometry assay. The proliferation of cells was examined by a 5-ethynyl-2-deoxyuridine-labeling assay, a PrestoBlue assay, and a Live/Dead assay. Messenger ribonucleic acid of BDNF, GDNF, NT-3, and VEGF in SCs was assayed by quantitative real-time polymerase chain reaction. The amount of BDNF, GDNF, NT-3, and VEGF secreted from SCs was determined by enzyme-linked immunosorbent assay. It was found that magnetic nanocomposites containing 10% MNPs showed a cross-section diameter of 32.33±1.81 µm, porosity of 80.41%±0.72%, and

  10. Magnetic structure of an activated filament in a flaring active region

    CERN Document Server

    Sasso, C; Solanki, S K

    2013-01-01

    While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We introduce observational results on the magnetic field structure of an activated filament in a flaring active region. We study, in particular, its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displays signs of rotation. We invert the Stokes profiles of the chromospheric He I 10830 A triplet and the photospheric Si I 10827 A line observed in this filament by the VTT on Tenerife. Using these inversion results we present and interpret the first maps of velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Up to 5 different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of...

  11. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    OpenAIRE

    Scott William Mcintosh; Leamon, Robert J.

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magne...

  12. Deciphering solar magnetic activity: on grand minima in solar activity

    OpenAIRE

    Mcintosh, Scott W.; Leamon, Robert J.

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magne...

  13. Active load path adaption in a simple kinematic load-bearing structure due to stiffness change in the structure's supports

    Science.gov (United States)

    Gehb, C. M.; Platz, R.; Melz, T.

    2016-09-01

    Load-bearing structures with kinematic functions enable and disable degrees of freedom and are part of many mechanical engineering applications. The relative movement between a wheel and the body of a car or a landing gear and an aircraft fuselage are examples for load-bearing systems with defined kinematics. In most cases, the load is transmitted through a predetermined load path to the structural support interfaces. However, unexpected load peaks or varying health condition of the system's supports, which means for example varying damping and stiffness characteristics, may require an active adjustment of the load path. However, load paths transmitted through damaged or weakened supports can be the reason for reduced comfort or even failure. In this paper a simplified 2D two mass oscillator with two supports is used to numerically investigate the potential of controlled adaptive auxiliary kinematic guidance elements in a load-bearing structure to adapt the load path depending on the stiffness change, representing damage of the supports. The aim is to provide additional forces in the auxiliary kinematic guidance elements for two reasons. On the one hand, one of the two supports that may become weaker through stiffness change will be relieved from higher loading. On the other hand, tilting due to different compliance in the supports will be minimized. Therefore, shifting load between the supports during operation could be an effective option.

  14. 外加磁场对磁流体润滑油膜轴承的影响∗%Effects on Magnetic-fluid-lubricated Oil-film Bearings by Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    张亚南; 王建梅; 张笑天; 张艳娟

    2015-01-01

    为了研究磁流体润滑油膜轴承内磁场的分布情况,分别通过永磁铁、螺线管及亥姆赫兹线圈对其施加3种不同形式的外磁场。通过磁场二维实体有限元模型的数值仿真,分析在3种模型下磁流体润滑油膜轴承的磁场分布特性,并比较磁场在油膜区的分布情况。结果表明,永磁铁模型的磁场主要分布在永磁铁、油膜、轴承座以及靠近磁铁的轧辊部分,螺线管模型的磁场主要分布在油膜、轴承座以及靠近磁铁的轧辊部分,亥姆霍兹线圈模型的磁场主要分布在线圈以及油膜的端部;3种模型在油膜区磁场分布沿轴向均呈现中间小、两端大的不均匀现象,且具有端部效应;永磁铁模型和螺线管模型在油膜区磁场沿径向分布均匀,亥姆霍兹线圈模型沿径向分布不均匀。%In order to study the distribution of magnetic field in the magnetic⁃fluid⁃lubricate d oil⁃film bearings,three dif⁃ferent forms of the external magnetic field was exerted through the application of permanent magnet,toroidal solenoid and Helmholtz coils.Two⁃dimensional solid finite element model of magnetic field was established and analyzed to study the magnetic field distribution of three different models.The magnetic field distribution in oil film district for different models was compared.The results show that the magnetic field is different for three different models,it is mainly distributed in per⁃manent magnets,the oil film,bearing pedestal and roll part near the magnet for the permanent magnets model,mainly in the oil film,bearing pedestal and roll part near the magnet for toroidal solenoid model,and mainly in the coil and the end of the oil film for Helmholtz coils model.The magnetic field distribution of the three different models in oil film district has an end effect and presents uneven distribution along the axial,which is small in the middle and large at ends.The magnetic field

  15. 外加磁场对磁流体润滑油膜轴承的影响∗%Effects on Magnetic-fluid-lubricated Oil-film Bearings by Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    张亚南; 王建梅; 张笑天; 张艳娟

    2015-01-01

    In order to study the distribution of magnetic field in the magnetic⁃fluid⁃lubricate d oil⁃film bearings,three dif⁃ferent forms of the external magnetic field was exerted through the application of permanent magnet,toroidal solenoid and Helmholtz coils.Two⁃dimensional solid finite element model of magnetic field was established and analyzed to study the magnetic field distribution of three different models.The magnetic field distribution in oil film district for different models was compared.The results show that the magnetic field is different for three different models,it is mainly distributed in per⁃manent magnets,the oil film,bearing pedestal and roll part near the magnet for the permanent magnets model,mainly in the oil film,bearing pedestal and roll part near the magnet for toroidal solenoid model,and mainly in the coil and the end of the oil film for Helmholtz coils model.The magnetic field distribution of the three different models in oil film district has an end effect and presents uneven distribution along the axial,which is small in the middle and large at ends.The magnetic field distribution in oil film district is uniform along the radial direction for the permanent magnet model and toroidal solenoid model, but not uniform for the Helmholtz coils model.%为了研究磁流体润滑油膜轴承内磁场的分布情况,分别通过永磁铁、螺线管及亥姆赫兹线圈对其施加3种不同形式的外磁场。通过磁场二维实体有限元模型的数值仿真,分析在3种模型下磁流体润滑油膜轴承的磁场分布特性,并比较磁场在油膜区的分布情况。结果表明,永磁铁模型的磁场主要分布在永磁铁、油膜、轴承座以及靠近磁铁的轧辊部分,螺线管模型的磁场主要分布在油膜、轴承座以及靠近磁铁的轧辊部分,亥姆霍兹线圈模型的磁场主要分布在线圈以及油膜的端部;3种模型在油膜区磁场分布沿轴向均呈现中间小、两端

  16. Experimental Studies with an Active Magnetic Regenerating Refrigerator

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian;

    2015-01-01

    Experimental results for an active magnetic regenerator (AMR) are presented. The focus is on whether or not it pays off to partly substitute soft magnetic material with non-magnetic insulation in a flux-conducting core in the magnet system. Such a substitution reduces losses due to heat conduction...... and eddy currents, but also reduces the magnetic field. Two different cores were tested in the AMR system with different cooling loads and it is shown, that in the present case, replacing half of the iron with insulation lead to an average reduction in temperature span of 14%, but also a small decrease...... in COP, hence the substitution did not pay off. Furthermore, it is shown experimentally, that small imbalances in the heat transfer fluid flow greatly influence the system performance. A reduction of these imbalances through valve adjustments resulted in an increase in the temperature span from...

  17. Cryogenic Active Magnetic Regenerator Test Apparatus

    Science.gov (United States)

    Tura, A.; Roszmann, J.; Dikeos, J.; Rowe, A.

    2006-04-01

    An AMR Test Apparatus (AMRTA) used in experiments near room-temperature required a number of modifications to allow for testing at cryogenic temperatures and with a 5 T magnetic field. The impacts of parasitic heat leaks, frictional heat generation, and eddy current heating in the AMRTA are analyzed. A low temperature gas circulation (LTGC) system to control the operating temperature was developed. The LTGC consists of a GM cryocooler coupled to a compressor and helium circuit which circulates fluid through a set of heat exchangers and flexible transfer lines connected to the AMRTA. Design features are discussed as is some initial test data.

  18. Highly active antibody-modified magnetic polyelectrolyte capsules.

    Science.gov (United States)

    Valdepérez, Daniel; Del Pino, Pablo; Sánchez, Lourdes; Parak, Wolfgang J; Pelaz, Beatriz

    2016-07-15

    Polyelectrolyte hollow capsules are versatile platforms typically used for encapsulation of a wide variety of macromolecules in their cavity. The polymer shell of these capsules as composed by alternating layers of oppositely charged polyelectrolytes also allows for adding additional functionalities. The properties of the shell can be for example engineered by trapping different nanoparticles in-between the shell layers and/or by attaching bioactive molecules such as antibodies to the outermost layer. Herein, iron oxide NPs were inmobilized into the shell of polyelectrolyte capsules and the outermost layer of the shell was covalently modified with anti peroxidase antibodies. These capsules act as prototype model system, aiming to obtain a microstructure with the potential capability to specifically recognize and separate macromolecules. Due to the magnetic nanoparticles in the capsule shell, the capsules together with the attached target might be extracted by magnetic field gradients. Here we verified this approach by extracting horseradish peroxidase from a solution through magnetic separation with capsules bearing antibodies against horseradish peroxidase. The bioactivity of the capsules and the high degree of specific antibody functionalization were confirmed and quantified through an enzymatic reaction mediated by the extracted horseradish peroxidase. PMID:27089014

  19. The connection between stellar activity cycles and magnetic field topology

    Science.gov (United States)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Folsom, C. P.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Waite, I. A.

    2016-08-01

    Zeeman Doppler imaging has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained form ZDI and activity cycles.

  20. Analysis on Stiffness of Permanent Magnetic Bearing%轴向磁化永磁轴承的刚度特性分析

    Institute of Scientific and Technical Information of China (English)

    张钢; 殷庆振; 阮娟; 蒋德得; 高刚

    2011-01-01

    利用永磁体等效电流模型,以轴向磁化的永磁轴承为对象建立了刚度矩阵.通过无量纲化,分析了各个尺寸参数对刚度的影响规律,并绘制了相应的变化曲线图,分析结果表明:在轴向力和径向刚度分析中,当R/a>3时,磁环外径作为弱影响参数可以被省略;在倾斜刚度和耦合刚度分析中,外径的影响规律不能被忽略;当磁环的高度和厚度相等时,永磁轴承性能最优.%By using the equivalent electricity model and taking the permanent magnetic bearing in axial magnetizing as the object, the stiffness matrix has been built. Through the dimensionless method, the analysis of the law about the impact of various size parameters on the stiffness has been done and the corresponding graphs have been drawn. The results show that in the analysis of the axial and radial stiffness, when R/a > 3, the ring diameter as a weak effect parameter can be omitted; when analyzing tilt stiffness and coupling stiffness, the influencing law of the diameter can not be ignored; When the height and thickness of the ring are equal, the permanent magnet bearing has the optimum function.

  1. cis-Nitenpyram Analogues Bearing Acyloxy Segments Anchored on the Tetrahydropyrimidine Ring: Synthesis,Insecticidal Activities and Molecular Docking Studies

    Institute of Scientific and Technical Information of China (English)

    SUN Chuan-wen; WU Ying; CHEN Yan-xia; NAN Shi-bin; ZHANG Wang-geng

    2013-01-01

    A series of novel cis-nitenpyram analogues bearing acyloxy segments anchored on the tetrahydropyrimidine ring was designed and synthesized.Preliminary bioassays indicate that all the nitenpyram analogues 3a—3n exhibit good insecticidal activities against Nilaparvata lugens and Aphis medicaginis at 100 mg/L,while analogue 3k affords the best activity in vitro and the lethal concentration 50(LC50) values(0.187,0.214 mg/L) are close to that of nitenpyram.The structure activity relationships(SARs) suggest that their insecticidal potency is influenced by the species of acyloxy segments.The docking results reveal that analogue 3k forms stronger hydrogen-bonding with the nAChR,which explain the structure activity relationships(SARs) observed in vitro and imply that the strategies of our designed nitenpyram analogues are feasible.

  2. The connection between stellar activity cycles and magnetic field topology

    CERN Document Server

    See, V; Vidotto, A A; Donati, J -F; Saikia, S Boro; Bouvier, J; Fares, R; Folsom, C P; Gregory, S G; Hussain, G; Jeffers, S V; Marsden, S C; Morin, J; Moutou, C; Nascimento, J D do; Petit, P; Waite, I A

    2016-01-01

    Zeeman Doppler imaging has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on ...

  3. Synthesis and Biological Evaluation of a Valinomycin Analog Bearing a Pentafluorophenyl Active Ester Moiety.

    Science.gov (United States)

    D'Accolti, Lucia; Denora, Nunzio; La Piana, Gianluigi; Marzulli, Domenico; Siwy, Zuzanna S; Fusco, Caterina; Annese, Cosimo

    2015-12-18

    A valuable analog of the K(+)-ionophore valinomycin (1), bearing a pentafluorophenyl ester moiety, has been obtained by selective reaction between the tertiary hydroxyl moiety of analog 2 (available from valinomycin hydroxylation) and the isocyanate group of pentafluorophenyl N-carbonyl glycinate (3) catalyzed by bis(N,N-dimethylformamide)dichlorodioxomolybdenum(VI). LC-HRMS studies show that analog 4 undergoes easy derivatization under mild conditions by reaction with OH- and NH2-containing compounds. Mitochondrial depolarization assays suggest that 4 acts as a K(+)-ionophore, provided that the glycine carboxyl group is appropriately masked. PMID:26566090

  4. AMR (Active Magnetic Regenerative) refrigeration for low temperature

    Science.gov (United States)

    Jeong, Sangkwon

    2014-07-01

    This paper reviews AMR (Active Magnetic Regenerative) refrigeration technology for low temperature applications that is a novel cooling method to expand the temperature span of magnetic refrigerator. The key component of the AMR system is a porous magnetic regenerator which allows a heat transfer medium (typically helium gas) to flow through it and therefore obviate intermittently operating an external heat switch. The AMR system alternatingly heats and cools the heat transfer medium by convection when the magneto-caloric effect is created under varying magnetic field. AMR may extend the temperature span for wider range than ADR (Adiabatic Demagnetization Refrigerator) at higher temperatures above 10 K because magneto-caloric effects are typically concentrated in a small temperature range in usual magnetic refrigerants. The regenerative concept theoretically enables each magnetic refrigerant to experience a pseudo-Carnot magnetic refrigeration cycle in a wide temperature span if it is properly designed, although adequate thermodynamic matching of strongly temperature-dependent MCE (magneto-caloric effect) of the regenerator material and the heat capacity of fluid flow is often tricky due to inherent characteristics of magnetic materials. This paper covers historical developments, fundamental concepts, key components, applications, and recent research trends of AMR refrigerators for liquid helium or liquid hydrogen temperatures.

  5. Transport of Magnetic Helicity and Dynamics of Solar Active Regions

    Science.gov (United States)

    Georgoulis, M. K.; Labonte, B. J.; Rust, D. M.

    2005-01-01

    We outline a simple method to monitor variations of the magnetic helicity the current helicity and the non-potential (free) magnetic energy on the photospheric boundary of solar active regions. Explicit manifestations of dynamical activity in the solar atmosphere such as flares coronal mass ejections and filament eruptions may be related to these variations. While similar methods require knowledge of the vector potential and the velocity field vector on the photosphere our method requires only the photospheric potential magnetic field corresponding to the observed magnetograms. The calculation of the potential field for any given magnetogram is straightforward. Moreover our method relies on the constant-alpha force-free approximation assumed to hold in the active region. Whether the above is a realistic assumption can be tested using an array of well-documented methods. Therefore our technique may prove quite useful to at least a subset of active regions in which the linear force-free approximation is justifiable.

  6. A novel magnetic lead screw active suspension system for vehicles

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2014-01-01

    This paper encompasses a detailed study of the redesign of a novel Magnetic Lead Screw (MLS) active suspension system for possible regeneration of the energy dispatched in the suspension system and active control of vehicle body movement. The MLS converts a low speed high force linear motion...... of a translator into a high speed low torque rotational motion of a rotor through helically shaped magnets. The paper describes the drawback of the first MLS prototype v1.0 developed for active suspension system, which lead to a new design of the MLS prototype named v1.5. Furthermore the paper introduces detailed...

  7. Numerical Modeling of Multi-Material Active Magnetic Regeneration

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden;

    2009-01-01

    Magnetic refrigeration is a potentially environmentally-friendly alternative to vapour compression technology that is presented in this paper. The magnetocaloric effect in two magnetocaloric compounds in the La(Fe,Co,Si)13 series is presented in terms of their adiabatic temperature change...... and the specific heat as a function of temperature at constant magnetic field. A 2.5-dimensional numerical model of an active magnetic regenerative (AMR) refrigerator device is presented. The experimental AMR located at Risø DTU has been equipped with a parallel-plate based regenerator made of the two materials...

  8. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  9. Investigation of magnetic active core sizes and hydrodynamic diameters of a magnetically fractionated ferrofluid

    International Nuclear Information System (INIS)

    In this work we address the question which relates between the size of the magnetically active core of magnetic nanoparticles (MNPs) and the size of the overall particle in the solution (the so-called hydrodynamic diameter dhyd) exists. For this purpose we use two methods of examination that can deliver conclusions about the properties of MNP which are not accessible with normal microscopy. On the one hand, we use temperature dependent magnetorelaxation (TMRX) method, which enables direct access to the energy barrier distribution and by using additional hysteresis loop measurements can provide details about the size of the magnetically active cores. On the other hand, to determine the size of the overall particle in the solution, we use the magnetooptical relaxation of ferrofluids (MORFF) method, where the stimulation is done magnetically while the reading of the relaxation signal, however, is done optically. As a basis for the examinations in this work we use a ferrofluid that was developed for medicinal purposes and which has been fractioned magnetically to obtain differently sized fractions of MNPs. The two values obtained through these methods for each fraction shows the success in fractioning the original solution. Therefore, one can conclude a direct correlation between the size of the magnetically active core and the size of the complete particle in the solution from the experimental results. To calculate the size of the magnetically active core we found a temperature dependent anisotropy constant which was taken into account for the calculations. Furthermore, we found relaxation signals at 18 K for all fractions in these TMRX measurements, which have their origin in other magnetic effects than the Néel relaxation.

  10. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    OpenAIRE

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  11. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings

    Science.gov (United States)

    Schmied, J.; Pradetto, J. C.

    1994-01-01

    The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.

  12. Xenoestrogenic and dioxin-like activity in blood of East Greenland polar bears (Ursus maritimus)

    DEFF Research Database (Denmark)

    Erdmann, Simon Erik; Dietz, Rune; Sonne, Christian;

    2013-01-01

    The aims of the project were to (i) extract the lipophilic persistent organic pollutants (POPs) from the blood of 99 East Greenland polar bears and assess the combined mixture effect on the estrogen receptor (ER) and the aryl hydrocarbon receptor (AhR) mediated transactivity; (ii) To evaluate...... chromatography (HPLC). ER mediated transactivity was determined using the ER luciferase reporter MVLN cell assay. The extracts were tested alone (XER) and together with 17β-estradiol (E2) as a physiological mimic (XERcomp). Dioxins and dioxin-like (DL) compounds were extracted by a combination of SPE...... and the Supelco Dioxin Prep System®. AhR mediated dioxin-like transactivity was determined using the AhR luciferase reporter Hepa 1.12cR cell assay. Agonistic ER transactivity was elicited by 19% of the samples, and a further increased E2 induced ER response was found for 52%, whereas 17% antagonized the E2...

  13. Synchronous suspension control study for magnetic bearing rotor displacement%磁悬浮轴承的转子位移同步悬浮控制研究

    Institute of Scientific and Technical Information of China (English)

    王军; 曾励

    2011-01-01

    提出一种对磁悬浮轴承进行转子位移同步悬浮控制的策略,建立了位移同步悬浮控制系统的控制模型,基于状态重构机理实现转子位移同步,按状态空间法设计状态同步矩阵和系统闭环状态反馈矩阵,并对所设计系统进行了仿真分析.%Put forward a control strategy that displacement of the magnetic suspension bearing' s rotor synchronized suspension. The model of the displacement synchronization suspension control system was structured. Based on principles of state reconstruction, achieve displacement synchronization of the rotor. By state space method, designed state synchronization matrix and system' s closed state feedback matrix and analyzed the result of this system simulation.

  14. Superconducting bearings for flywheel applications

    OpenAIRE

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings in flywheels.

  15. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  16. The influence of the magnetic field on the performance of an active magnetic regenerator (AMR)

    CERN Document Server

    Bjørk, R

    2014-01-01

    The influence of the time variation of the magnetic field, termed the magnetic field profile, on the performance of a magnetocaloric refrigeration device using the active magnetic regeneration (AMR) cycle is studied for a number of process parameters for both a parallel plate and packed bed regenerator using a numerical model. The cooling curve of the AMR is shown to be almost linear far from the Curie temperature of the magnetocaloric material. It is shown that a magnetic field profile that is 10% of the cycle time out of sync with the flow profile leads to a drop in both the maximum temperature span and the maximum cooling capacity of 20-40\\% for both parallel plate and packed bed regenerators. The maximum cooling capacity is shown to depend very weakly on the ramp rate of the magnetic field. Reducing the temporal width of the high field portion of the magnetic field profile by 10% leads to a drop in maximum temperature span and maximum cooling capacity of 5-20%. An increase of the magnetic field from 1 T t...

  17. Simulation of magnetic active polymers for versatile microfluidic devices

    CERN Document Server

    Gusenbauer, Markus; Fischbacher, Johann; Reichel, Franz; Exl, Lukas; Bance, Simon; Kataeva, Nadezhda; Binder, Claudia; Brückl, Hubert; Schrefl, Thomas

    2013-01-01

    We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.

  18. Numerical modeling and analysis of the active magnetic regenerator

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein

    In this thesis the active magnetic regenerator (AMR) is analyzed using various numerical tools and experimental devices. A 2-dimensional transient numerical model of the AMR is developed and implemented and it is used to investigate the in uence of a range of parameters on the performance...... expressed as temperature span versus cooling power is mapped as a function of the central parameters. Since regenerators built of several magnetic materials distinguished by their respective magnetic transition temperatures are reported to perform better than single-material AMRs this concept has been...... investigated using the numerical AMR model. The results show indeed that the performance may be enhanced signicantly and it may thus be concluded that the performance of the AMR is dependent on a vast number of parameters (material composition, magnetic eld source, regenerator geometry, regenerator eciency...

  19. Development of an active magnetic regenerator for space applications

    Science.gov (United States)

    Chen, Weibo

    2014-07-01

    This paper discusses the design of a micromachined regenerator in an Active Magnetic Regenerative Refrigeration (AMRR) system for space applications. The AMRR system is designed to provide continuous remote/distributed cooling at about 2 K and reject heat at temperatures of about 15 K. This paper first discusses the general thermal and fluid performance requirements for an AMRR regenerator, a unique structured bed configuration that enables the regenerator to meet these requirements, and its thermal and fluid performance based on numerical analyses. The paper then discusses the general design consideration for the magnetic field driving the regenerator for optimal thermal performance, and the analysis processes to optimize the variation rate of the magnetic field in an actual superconducting magnet during the isothermal processes of the AMRR cycle to enhance the performance of an actual regenerator. The paper finally presents the thermal performance of the regenerator from such iterative design optimization processes.

  20. 高温超导磁悬浮轴承研发现状%Research and Development Status of High Temperature Superconducting Magnetic Bearings

    Institute of Scientific and Technical Information of China (English)

    邓自刚; 王家素; 王素玉; 郑珺; 林群煦; 张娅

    2009-01-01

    As one of the most representative applications of self-stable high temperature superconducting magnetic levitation technology, high temperature superconducting magnetic bearing (SMB) can realize passive high-speed rotation without any friction, which provides a new way to markedly improve and upgrade the performance of present machinery and equipment with common bearings. In order to summarize the research and development status of SMB, the typical prototypes are described respectively from America, Germany, Japan and Korea, as well as other domestic and foreign groups. The key technical issues and present hotspot are pointed out and discussed to explain the future development and potential prospect.%高温超导磁悬浮轴承作为具有自稳定优势的高温超导磁悬浮技术最具代表性的应用之一,可实现无源的高速无摩擦旋转运行,为大幅度提高现有机器设备的性能及升级换代提供了新的途径.本文综述了近年来美国、德国、日本和韩国等国内外小组开展的高温超导磁悬浮轴承代表性样机研发现状,探讨了该项技术的关键难点问题,指出了当前研究的热点,阐述了可能的应用前景.

  1. GAS BEARING

    Science.gov (United States)

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  2. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  3. 基于磁路分析的轴向混合磁轴承径向承载力解析计算%Calculation of Radial Electromagnetic Force of Axial Hybrid Magnetic Bearing Based on Magnetic Circuit Analysis

    Institute of Scientific and Technical Information of China (English)

    张云鹏; 刘淑琴; 李红伟; 范友鹏

    2012-01-01

    研究轴向混合磁轴承实现五自由度悬浮时,需要计算径向承载力与磁轴承结构参数以及永磁体参数之间的关系。为了解决轴向混合磁轴承缺乏径向承载力解析数学模型的问题,该文在分析轴向混合磁轴承磁路以及各部分磁导的基础上,结合稀土永磁体的工作特性,用虚位移法得出了轴向混合磁轴承的径向承载力解析数学模型。模型表明,在小径向位移时,该型的混合磁轴承径向承载力随着径向位移增加而增加,近似线性关系,径向承载力和刚度随轴向气隙增大而减小;磁轴承径向承载力随永磁体的有效长度增加呈现先增大后趋近饱和。利用有限元方法对径向承载力进行仿真计算,仿真结果与模型计算结果基本吻合。%In studying axial hybrid magnetic bearing (HMB) for suspension in five degree of freedom (DOF), the relationship between radial electromagnetic force and magnetic bearing structural parameters and permanent magnet parameters should be calculated. In order to overcome the lack of analytical calculation model for radial electromagnet force of axial HMB, based on magnetic circuit analysis and calculation of magnetic conductance for each parts, the analytical calculation model for radial electromagnet force of axial HMB is proposed in this paper. The analytical formulation of radial electromagnetic force is derived by using virtual displacement method and demagnetization characteristics of the rare earth permanent magnet. It is found that the radial electromagnetic force increases with the radial displacement increasing approximately in linear relationship, and the radial force and stiffness decreases with the axial gap increasing. The radial electromagnetic force increased and then saturated with increasing permanent magnet effective length. The model of axial HMB is simulated by finite-element method software and the simulation results are basically in

  4. Influence of eddy effect to the parameter design and optimized design for magnetic bearing%涡流效应对磁轴承参数设计的影响及优化设计

    Institute of Scientific and Technical Information of China (English)

    张维煜; 朱熀秋

    2012-01-01

    The movement state is significantly different from that of resting and suspended state for the solid rotor under the condition of rotating, due to the large additional magnetic field produced by eddy currents in the rotor. Therefore, the accuracy of parameter design for magnetic bearing based on quiescent point is not high, and the eddy current effect on the parameters of the design must be considered. In this paper, the changes of the key parameters in the parameter design affected by the eddy current effect were estimated, and the simulation results of magnetic flux densities were compared with those obtained from experimental measurements. An agreement was found between the finite element model (FEM) results and experimental observations. On this basis, an optimization scheme was also proposed, and the optimization simulation results with finite element analysis software show that the design method is reasonable and design result is accurate. So this scheme makes the parameters design accurate and close to the actual operation. Therefore, analyzing the influence of eddy effect to the parameter design for a three-phase AC active magnetic bearing and providing accurate and very simple optimization scheme are important references for the parameters design of active magnetic bearing with solid rotor.%实心结构的转子旋转时,产生的附加磁场(涡流场)会使转子的运动状态显著不同于静止悬浮,可见依赖于静态工作点的磁轴承参数设计精确性不高,因此需要考虑涡流效应对参数设计的影响.利用有限元仿真软件估算了磁轴承设计中的关键参数受涡流效应影响的变化情况,并通过对比气隙磁通密度的实测值与有限元仿真值,验证了所建立有限元模型的正确性.在此基础上还提出了一种优化方案,并通过优化实例的仿真结果验证了该设计方法的合理性和设计结果的正确性.因此,分析涡流效应对交流主动磁轴承参数设计的影

  5. Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings using Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F.Y.

    2004-01-01

    Fluid film forces are generated in hydrostatic journal bearings by two types of lubrication mechanisms: the hydrostatic lubrication in the bearing recesses and hydrodynamic lubrication in the bearing lands, when operating in rotation. The combination of both lubrication mechanisms leads to hybrid...

  6. Model-based Process Monitoring and Control of Micro-milling using Active Magnetic Bearings

    OpenAIRE

    Blom, R.S.

    2011-01-01

    The process of micro-milling is a promising technology for the fabrication of micro-parts with arbitrary 3D features in a wide range of materials. However, as a result of the reduced dimensions, the susceptibility of the process for machine tool errors and vibrations is higher, having adverse effects on accuracy and surface quality of the resulting workpieces. Furthermore, the production time and the efficiency of the process suffer from low material removal rates and excessive tool wear and ...

  7. Model-based Process Monitoring and Control of Micro-milling using Active Magnetic Bearings

    NARCIS (Netherlands)

    Blom, R.S.

    2011-01-01

    The process of micro-milling is a promising technology for the fabrication of micro-parts with arbitrary 3D features in a wide range of materials. However, as a result of the reduced dimensions, the susceptibility of the process for machine tool errors and vibrations is higher, having adverse effect

  8. Analysis on Stiffness and Damping Performance of Active Magnetic Bearing System

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    1IntroductionTohaveproperstifnessanddampingisanessentialconditionforanactivemagneticbearingsystemtoworknormaly.Thestifnessofa...

  9. Measuring starspots on magnetically active stars with the VLTI

    CERN Document Server

    Wittkowski, M; Hubrig, S; Posselt, B; Von der Lühe, O

    2002-01-01

    We present feasibility studies to directly image stellar surface features, which are caused by magnetic activity, with the Very Large Telescope Interferometer (VLTI). We concentrate on late type magnetically active stars, for which the distribution of starspots on the surface has been inferred from photometric and spectroscopic imaging analysis. The study of the surface spot evolution during consecutive rotation cycles will allow first direct measurements (apart from the Sun) of differential rotation which is the central ingredient of magnetic dynamo processes. The VLTI will provide baselines of up to 200 m, and two scientific instruments for interferometric studies at near- and mid-infrared wavelengths. Imaging capabilities will be made possible by closure-phase techniques. We conclude that a realistically modeled cool surface spot can be detected on stars with angular diameters exceeding ~2 mas using the VLTI with the first generation instrument AMBER. The spot parameters can then be derived with reasonable...

  10. Dynamics of an active magnetic particle in a rotating magnetic field.

    Science.gov (United States)

    Cēbers, A; Ozols, M

    2006-02-01

    The motion of an active (self-propelling) particle with a permanent magnetic moment under the action of a rotating magnetic field is considered. We show that below a critical frequency of the external field the trajectory of a particle is a circle. For frequencies slightly above the critical point the particle moves on an approximately circular trajectory and from time to time jumps to another region of space. Symmetry of the particle trajectory depends on the commensurability of the field period and the period of the orientational motion of the particle. We also show how our results can be used to study the properties of naturally occurring active magnetic particles, so-called magnetotactic bacteria. PMID:16605340

  11. On the nonlinear steady state response of rigid rotors supported by air foil bearings - Theory and experiments

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Santos, Ilmar

    2015-01-01

    The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics...

  12. Stellar Magnetic Dynamos and Activity Cycles

    CERN Document Server

    Wright, Nicholas J

    2013-01-01

    Using a new uniform sample of 824 solar and late-type stars with measured X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity that is believed to be a probe of the underlying stellar dynamo. Using an unbiased subset of the sample we calculate the power law slope of the unsaturated regime of the activity -- rotation relationship as $L_X/L_{bol}\\propto Ro^\\beta$, where $\\beta=-2.70\\pm0.13$. This is inconsistent with the canonical $\\beta = -2$ slope to a confidence of 5$\\sigma$ and argues for an interface-type dynamo. We map out three regimes of coronal emission as a function of stellar mass and age, using the empirical saturation threshold and theoretical super-saturation thresholds. We find that the empirical saturation timescale is well correlated with the time at which stars transition from the rapidly rotating convective sequence to the slowly rotating interface sequence in stellar spin-down models. This may be hinting at fundamental changes in the ...

  13. Hybrid magnetic mechanism for active locomotion based on inchworm motion

    Science.gov (United States)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2013-02-01

    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes.

  14. Surface magnetic fields during the solar activity cycle

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R.; Labonte, B.J. (Mount Wilson Observatory, Pasadena, CA (USA))

    1981-11-01

    We examine magnetic field measurements from Mount Wilson that cover the solar surface over a 13 1/2 year interval, from 1967 to mid-1980. Seen in long-term averages, the sunspot latitudes are characterized by fields of preceding polarity, while the polar fields are built up by a few discrete flows of following polarity fields. These drift speeds average about 10 ms/sup -1/ in latitude - slower early in the cycle and faster later in the cycle - and result from a large-scale poleward displacement of field lines, not diffusion. Weak field plots show essentially the same pattern as the stronger fields, and both data indicate that the large-scale field patterns result only from fields emerging at active region latitudes. The total magnetic flux over the solar surface varies only by a factor of about 3 from mimimum to a very strong maximum (1979). Magnetic flux is highly concentrated toward the solar equator; only about 1% of the flux is at the poles. Magnetic flux appears at the solar surface at a rate which is sufficient to create all the flux that is seen at the solar surface within a period of only 10 days. Flux can spread relatively rapidly over the solar surface from outbreaks of activity. This is presumably caused by diffusion. In general, magnetic field lines at the photospheric level are nearly radial.

  15. Experimental and modelling results of a parallel-plate based active magnetic regenerator

    DEFF Research Database (Denmark)

    Tura, A.; Nielsen, Kaspar Kirstein; Rowe, A.

    2012-01-01

    The performance of a permanent magnet magnetic refrigerator (PMMR) using gadolinium parallel plates is described. The configuration and operating parameters are described in detail. Experimental results are compared to simulations using an established twodimensional model of an active magnetic...

  16. Effect of Alstonia scholaris in enhancing the anticancer activity of berberine in the Ehrlich ascites carcinoma-bearing mice.

    Science.gov (United States)

    Jagetia, Ganesh Chandra; Baliga, Manjeshwar Shrinath

    2004-01-01

    The chemomodulatory activity of Alstonia scholaris extract (ASE) was studied in combination with berberine hydrochloride (BCL), a topoisomerase inhibitor, in Ehrlich ascites carcinoma-bearing mice. The tumor-bearing animals were injected with various doses of ASE, and 8 mg/kg of BCL (one-fifth of the 50% lethal dose) was combined with different doses of ASE (60-240 mg/kg). The combination of 180 mg/kg of ASE with 8 mg/kg of BCL showed the greatest antitumor effect; the number of tumor-free survivors was more, and the median survival time and the average survival time increased up to 47 and 40.5 days, respectively, when compared with either treatment alone. Similarly, when 180 mg/kg of ASE was combined with different doses of BCL (2-12 mg/kg), a dose-dependent increase in the anticancer activity was observed up to 8 mg/kg of BCL. However, a further increase in the BCL dose to 10 and 12 mg/kg resulted in toxic side effects. The best effect was observed when 180 mg/kg of ASE was combined with 6 or 8 mg/kg of BCL, where an increase in the antineoplastic activity was reported. The efficacy of the combination of 180 mg/kg of ASE was also tested with 6 mg/kg body weight of BCL in various stages of tumorigenesis, and it was effective when given in the early stages, although the efficiency decreased with an increase in the tumor developmental stages.

  17. Vibration Reduction System Using Magnetic Suspension Technology

    Directory of Open Access Journals (Sweden)

    Spychała Jarosław

    2015-01-01

    Full Text Available The article presents considerations concerning the construction of vibration reduction system using magnetic suspension technology. Presents the results of simulation, numerical and experimental the bearingless electric motor, for which successfully used this type of solution. Positive results of research and testing have become the basis for the development of the concept of building this type of active vibration reduction system , at the same time acting as a support for a technical object, which is a jet engine. Bearing failures are manifested by loss or distortion of their mass, which leads to a total destruction of the roller bearing, and thus reflected in the security. The article presents the concept of building active magnetic suspension to eliminate the bearing system of classical rolling bearing and replace it with magnetic bearing.

  18. Research on Dynamic Model's Building of Active Magnetic Suspension Systems

    Institute of Scientific and Technical Information of China (English)

    SHI Jian; YAN Guo-zheng; LI Li-chuan; WANG Kun-dong

    2006-01-01

    An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn't depend on system's physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.

  19. Solar Magnetism and the Activity Telescope at HSOS

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang; Ya-Nan Wang; Qi-Qian Hu; Jun-Sun Xue; Hai-Tian Lu; Hou-Kun Ni; Han-Liang Chen; Xiao-Jun Zhou; Qing-Sheng Zhu; Lü-Jun Yuan; Yong Zhu; Dong-Guang Wang; Yuan-Yong Deng; Ke-Liang Hu; Jiang-Tao Su; Jia-Ben Lin; Gang-Hua Lin; Shi-Mo Yang; Wei-Jun Mao

    2007-01-01

    A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1(A) bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.

  20. Design of an active magnetic regenerator test apparatus

    Science.gov (United States)

    Rowe, A. M.; Barclay, J. A.

    2002-05-01

    The Active Magnetic Regenerator (AMR) has been shown to be a refrigeration technology with high efficiencies. Complex thermodynamic interactions in the regenerator, a shortage of suitable magnetic refrigerants, and difficulty in acquiring accurate experimental data have combined to hamper the development of AMR refrigerators. An apparatus to dynamically characterize the behavior of AMR beds is a valuable tool in furthering the development of the technology. This paper describes the design and construction of an AMR test apparatus. For initial tests, the apparatus has been used to examine the performance of Gd AMR beds operating in 2 T fields.

  1. Superconductor bearings, flywheels and transportation

    Science.gov (United States)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  2. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  3. Magnetic field effects on brain monoamine oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Borets, V.M.; Ostrovskiy, V.Yu.; Bankovskiy, A.A.; Dudinskaya, T.F.

    1985-03-01

    In view of the increasing use of magnetotherapy, studies were conducted on the effects of 35 mTesla magnetic fields on monoamine oxidase activity in the rat brain. Under in vitro conditions a constant magnetic field in the continuous mode was most effective in inhibiting deamination of dopamine following 1 min exposure, while in vivo studies with 8 min or 10 day exposures showed that inhibition was obtained only with a variable field in the continuous mode. However, inhibition of dopamine deamination was only evident within the first 24 h after exposure was terminated. In addition, in none of the cases was norepinephrine deamination inhibited. The effects of the magnetic fields were, therefore, transient and selective with the CNS as the target system. 9 references.

  4. Chromospheric magnetic fields of an active region filament

    Science.gov (United States)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  5. Performance analysis of a rotary active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.;

    2013-01-01

    Performance results for a novel rotary active magnetic regenerator (AMR) and detailed numerical model of it are presented. The experimental device consists of 24 regenerators packed with gadolinium (Gd) spheres rotating inside a four-pole permanent magnet with magnetic field of 1.24T. A parametric...... study of the temperature span, cooling power, coefficient of performance (COP) and efficiency of the system was carried out over a range of different hot reservoir temperatures, volumetric flow rates and cooling powers. Detailed modeling of the AMR using a 1D model was performed and compared......-equivalent cooling power (ExQ), and the overall second law efficiency, η2nd. Losses mapping indicated that friction and thermal leakage to the ambient are the most important contributors to the reduction of the system performance. Based on modeling results, improvements on the flow distributor design and reduction...

  6. Surface magnetic fields during the solar activity cycle

    Science.gov (United States)

    Howard, R.; Labonte, B. J.

    1981-01-01

    The behavior of the magnetic field of the sun as measured in the Fe I 5250 A line is summarized. A latitudinal distribution of the fields observed over 13.5 yr is presented, and episodic formation of the polar fields (about 6 gauss) from a poleward drift originating at the sunspots is noted. Weak magnetic fields (-2 to +2) reach a maximum two years before the maximum in the average field. The total flux remains constant from minimum to maximum, with strong magnetic flux exhibiting an equatorward drift; both strong and new flux appear mostly around sunspots. The appearance of new flux implies the decay of flux elsewhere on the sun, because of the measured constancy of total flux; total replacement of the surface flux can occur within ten days. Field annihilation is concentrated in the active latitudes, where strong opposite polarity fields occur close together.

  7. FINE MAGNETIC FEATURES AND CHIRALITY IN SOLAR ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    In this paper, we present fine magnetic features near the magnetic inversion line in the solar active region NOAA 10930. The high-resolution vector magnetograms obtained by Hinode allow detailed analyses around magnetic fibrils in the active region. The analyses are based on the fact that the electric current density can be divided into two components: the shear component caused by the magnetic inhomogeneity and the twist component caused by the magnetic field twist. The relationships between magnetic field, electric current density, and its two components are examined. It is found that the individual magnetic fibrils are dominated by the current density component caused by the magnetic inhomogeneity, while the large-scale magnetic region is generally dominated by the electric current component associated with the magnetic twist. The microstructure of the magnetic field in the solar atmosphere is far from the force-free field. The current mainly flows around the magnetic flux fibrils in the active regions.

  8. Numerical Analysis of Magnetically Suspended Rotor in HTR-10 Helium Circulator Being Dropped into Auxiliary Bearings%HTR-10氦风机磁悬浮转子跌落在辐助轴承上的数值分析

    Institute of Scientific and Technical Information of China (English)

    赵泾雄; 杨国军; 李悦; 于溯源

    2012-01-01

    Active magnetic bearings (AMB) have been selected to support the rotor of primary helium circulator in commercial 10 Mega-Walt High Temperature Gas-cooled Reactor (HTR-10). In an AMB system, the auxiliary bearings are necessary to protect the AMB components in case of losing power. This paper performs the impact simulation of Magnetically Suspended Rotor in HTR-10 Helium Circulator being dropped into the auxiliary bearings using the finite element program ABAQUS. The dynamic response and the strain field of auxiliary bearings are analyzed. The results achieved by the numerical analysis are in agreement with the experiment results. Therefore, the feasibility of the design of auxiliary bearing and the possibility of using the AMB system in the HTR are proved.%辅助轴承是10 MW高温气冷堆(HTR-10)氦风机磁力轴承-转子系统中的辅助支承结构,其主要任务是在磁力轴承因失电而失效时支承高速转动的转子,是整个系统安全运行的保证.本研究以HTR-10磁力轴承氦风机实验台架中的辅助轴承为研究对象,使用ABAQUS有限元软件数值模拟转子跌落,分析滚动辅助轴承内圈与滚动体的变形及能量损耗特性,并与初步的实验结果进行比对,验证辅助轴承的可靠性,为磁力轴承在高温气冷堆核电厂中的应用提供重要的技术保障.

  9. 一种低功耗径向磁轴承的结构及磁力研究%Structure and Magnetic Force Research of Low Power Radial Magnetic Suspension Bearing

    Institute of Scientific and Technical Information of China (English)

    孙传余; 肖林京; 李洪宇; 丁鸿昌

    2013-01-01

    In order to solve the problem of high current consuming and difficult adjusting in radial magnetic suspension bearing ( MSB). A new structure of low power radial MSB is proposed in this paper, which adopts the up suction and down repulsion of the permanent magnetic force to counteract the gravity of rotor, then applies the electromagnetic repulsion force to adjust the rotor position dynamically. Based on the analysis of magnetic circuit, the paper carries out the magnetic force calculation, draws the curves of magnetic force by MATLAB software, gets the relationship between axis radius and rotor gravity, gets the relationship between adjusting electromagnetic force and control current, and provides a new visual angle and method for radial MSB research.%针对磁悬浮轴承电流消耗大且难于调节的问题,提出了一种新型的低功耗径向磁轴承结构,采用永磁上吸下斥作用力抵消转子重力,再通过电磁排斥力动态调节转子位置.在分析磁路的基础上,进行磁力计算,使用MATLAB绘制磁力曲线,得到转轴半径和抵消重力的关系,得到电磁调节力与控制电流的关系,为磁轴承的设计研究提供新的角度和方法.

  10. The Magnetic Classification of Solar Active Regions 1992 - 2015

    OpenAIRE

    Jaeggli, Sarah A.; Norton, Aimee A.

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-g...

  11. Towards age/rotation/magnetic activity relation with seismology

    Directory of Open Access Journals (Sweden)

    Mathur Savita

    2015-01-01

    Full Text Available The knowledge of stellar ages directly impacts the characterization of a planetary system as it puts strong constraints on the moment when the system was born. Unfortunately, the determination of precise stellar ages is a very difficult task. Different methods can be used to do so (based on isochrones or chemical element abundances but they usually provide large uncertainties. During its evolution a star goes through processes leading to loss of angular momentum but also changes in its magnetic activity. Building rotation, magnetic, age relations would be an asset to infer stellar ages model independently. Several attempts to build empirical relations between rotation and age (namely gyrochronology were made with a focus on cluster stars where the age determination is easier and for young stars on the main sequence. For field stars, we can now take advantage of high-precision photometric observations where we can perform asteroseismic analyses to improve the accuracy of stellar ages. Furthermore, the variability in the light curves allow us to put strong constraints on the stellar rotation and magnetic activity. By combining these precise measurements, we are on the way of understanding and improving relations between magnetic activity, rotation, and age, in particular at different stages of stellar evolution. I will review the status on gyrochronology relationships based on observations of young cluster stars. Then I will focus on solar-like stars and describe the inferences on stellar ages, rotation, and magnetism that can be provided by high-quality photometric observations such as the ones of the Kepler mission, in particular through asteroseismic analyses.

  12. Magnetic cloud passage at Earth and associated substorm activity

    Science.gov (United States)

    Farrugia, C. J.; Freeman, M. P.; Burlaga, L. F.

    1992-01-01

    An approach to the study of the solar wind-magnetosphere interaction by signal type, that is, by examining the effect in the magnetosphere of well defined interplanetary structures, is presented. Focus is on the response of the magnetosphere to interplanetary magnetic clouds. Among their properties are: the slow and smooth variation of the magnetic field vector, with fluctuation level well below common interplanetary values; the similarly well behaved bulk flow; the wide range of field and flow parameters; and the longevity of passage (1 to 2 days). If the magnetic cloud is oriented such that a long period of uninterruptedly northward pointing field is followed by a long interval of continuously southward pointing field, then the transition of the magnetosphere from a quiescent state (the 'ground state') to a very active state can be studied, the latter being sustained by continued forcing from the magnetic cloud. A synopsis of the main findings of a recent study in such an interaction is given, concentrating on the substorm activity attending the second part of cloud passage.

  13. Paclitaxel-induced macrophage activities in the tumor-bearing host: immunologic implications and therapeutic applications

    OpenAIRE

    Mullins, David Warren

    1998-01-01

    Tumors induce immune dysfunction through the production of soluble factors that subvert macrophage (Mf) function to favor tumor growth. Previous studies suggested that tumor-induced immune cell dysfunction may be reversible through regimens that disrupt tumor cell suppressor mechanisms and concurrently promote tumoricidal activities. Because the antineoplastic agent paclitaxel (TAXOL) activates Mf function, we studied mechanisms of paclitaxel-mediated cytotoxic and immunostimulatory respons...

  14. Inconsistent magnetic polarities in magnetite-and greigite-bearing sediments: Understanding complex magnetizations in the late Messinian in the Adana Basin (southern Turkey)

    OpenAIRE

    Lucifora, S.; Dipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italy; Cifelli, F.; Dipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italy; Mattei, M.; Dipartimento di Scienze Geologiche, Universita` di Roma TRE, Rome; Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Cosentino, D.; Dipartimento di Scienze Geologiche, Universita` 'Roma Tre', Rome, Italy; Roberts, A. P.; Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia

    2012-01-01

    We present paleomagnetic, rock magnetic and scanning electron microscope data from three upper Messinian stratigraphic sections from the Adana Basin (southern Turkey). The collected samples are from fine-grained units, which were deposited during the Messinian Salinity Crisis (within subchron C3r). Paleomagnetic results reveal an inconsistent polarity record, related to a mixture of magnetite and greigite that hinders determination of a reliable magnetostratigraphy. Three classes of samples a...

  15. Antitumor activity and systemic effects of PVM/MA-shelled selol nanocapsules in lung adenocarcinoma-bearing mice

    Science.gov (United States)

    de Souza, Ludmilla Regina; Alexandre Muehlmann, Luis; Carneiro Matos, Lívia; Simón-Vázquez, Rosana; Guerreiro Marques Lacava, Zulmira; Maurício Batista De-Paula, Alfredo; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; César Morais, Paulo; González-Fernández, África; Nair Báo, Sônia; Bentes Azevedo, Ricardo

    2015-12-01

    Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility.

  16. Blood Pump Bearing System

    Science.gov (United States)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  17. Enhanced anti-tumor activity and reduced toxicity by combination andrographolide and bleomycin in ascitic tumor-bearing mice.

    Science.gov (United States)

    Guo, Huizhen; Zhang, Zhenbiao; Su, Zuqing; Sun, Chaoyue; Zhang, Xie; Zhao, Xiaoning; Lai, Xiaoping; Su, Ziren; Li, Yucui; Zhan, Janis Yaxian

    2016-04-01

    Bleomycin (BLM) is an effective anti-carcinogen. With the main detrimental effects of inducing pulmonary fibrosis on patients, its clinical use is limited. Developing agents that enhance the efficacy and attenuate the side effects of cancer chemotherapy are critical. Andrographolide (Andro), an active diterpenoid labdane component extracted from Andrographis panicula, is generally prescribed for treatment of inflammatory associated diseases. The study showed that BLM combined with Andro was significantly more effective than BLM alone on inhibiting the tumor growth, arresting the cell cycle at G0/G1 phase, promoting the capase-3 and capase-8 activity to induce cancer cell apoptosis. The underlying mechanisms may be related to the transcriptional regulation of P53/P21/Cyclin pathways. Moreover, BLM induced pulmonary fibrosis in tumor-bearing mice, but BLM combined with Andro dramatically alleviated the lesion in pulmonary fibrosis by activating the SOD, suppressing MDA and HYP production, in the meanwhile attenuating the IL-1β, TNF- α, IL-6 and TGF-β1 level. These mechanisms were associated with its effect on inhibition of protein expression of TGF-β, α-SMA, p-Smad2/3, enhanced expression of Smad7. Thus, it demonstrated that Andro might be a potential adjuvant therapeutic agent for BLM. PMID:26874212

  18. New aminoporphyrins bearing urea derivative substituents: synthesis, characterization, antibacterial and antifungal activity

    Directory of Open Access Journals (Sweden)

    Gholamreza Karimipour

    2015-06-01

    Full Text Available This work studied the synthesis of 5,10,15-tris(4-aminophenyl-20-(N,N-dialkyl/diaryl-N-phenylurea porphyrins (P1-P4 with alkyl or aryl groups of Ph, iPr, Et and Me, respectively and also the preparation of their manganese (III and cobalt (II complexes (MnP and CoP. The P1-P4 ligands were characterized by different spectroscopic techniques (1H NMR, FTIR, UV-Vis and elemental analysis, and metalated with Mn and Co acetate salts. The antibacterial and antifungal activities of these compounds in vitro were investigated by agar-disc diffusion method against Escherichia coli (-, Pseudomonas aeruginosa (-, Staphylococcus aureus(+, Bacillus subtilis (+ and Aspergillus oryzae and Candida albicans. Results showed that antibacterial and antifungal activity of the test samples increased with increase of their concentrations and the highest activity was obtained when the concentration of porphyrin compounds was 100 µg/mL. The activity for the porphyrin ligands depended on the nature of the urea derivative substituents and increased in the order P1 > P2 > P3 >P4, which was consistent with the order of their liposolubility. MnP and CoP complexes exhibited much higher antibacterial and antifungal activity than P1-P4ligands. Further, the growth inhibitory effects of these compounds was generally in the order CoP complexes > MnP complexes > P1-P4 ligands. Among these porphyrin compounds, CoP1displayed the highest antibacterial and antifungal activity, especially with a concentration of 100 µg/mL, against all the four tested bacteria and two fungi, and therefore it could be potential to be used as drug.

  19. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.

    Science.gov (United States)

    Li, Guozhou; Li, Qiang; Yang, Lizhen; Wu, Lijun

    2016-07-01

    We investigate optical magnetism and optical activity in a simple planar metamolecule composed of double U-shaped metal split ring resonators (SRRs) twisted by 90° with respect to one another. Compared to a single SRR, the resonant energy levels are split and strong magnetic response can be observed due to inductive and conductive coupling. More interestingly, the nonchiral structures exhibit strong optical gyrotropy (1100°/λ) under oblique incidence, benefiting from the strong electromagnetic coupling. A chiral molecule model is proposed to shed light on the physical origin of optical activity. These artificial chiral metamaterials could be utilized to control the polarization of light and promise applications in enantiomer sensing-based medicine, biology, and drug development.

  20. Exploring the efficiency potential for an active magnetic regenerator

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Haffenden Bahl, Christian Robert;

    2016-01-01

    A novel rotary state of the art active magnetic regenerator refrigeration prototype was used in an experimental investigation with special focus on efficiency. Based on an applied cooling load, measured shaft power, and pumping power applied to the active magnetic regenerator, a maximum second......-law efficiency of 18% was obtained at a cooling load of 81.5 W, resulting in a temperature span of 15.5 K and a coefficient of performance of 3.6. A loss analysis is given, based on measured pumping power and shaft power together with theoretically estimated regenerator presssure drop. It is shown that...... and replacing the packed spheres with a theoretical parallel plate regenerator. Furthermore, significant potential efficiency improvements through optimized regenerator geometries are estimated and discussed....

  1. Barbiturate bearing aroylhydrazine derivatives: Synthesis, NMR investigations, single crystal X-ray studies and biological activity

    Science.gov (United States)

    Giziroglu, Emrah; Sarikurkcu, Cengiz; Aygün, Muhittin; Basbulbul, Gamze; Soyleyici, H. Can; Firinci, Erkan; Kirkan, Bulent; Alkis, Ayse; Saylica, Tayfur; Biyik, Halil

    2016-03-01

    A series of barbituric acid aroylhydrazine derivatives have been prepared from their corresponding 1,3-dimethyl-5-acetyl barbituric acid and aroylhydrazines. All compounds have been fully characterized by using FT-IR, multinuclear NMR (1H, 13C) and Mass (MS) spectrometry. We also describe the X-ray crystal structure of 3a, which crystallizes in the monoclinic P21/n space group. The crystal structure is stabilized with infinite linear chains of dimeric units. Furthermore, all compounds were investigated for their tyrosinase inhibition, antioxidative and antimicrobial activies. The results from biological activity assays have shown that all of compounds have excellent antioxidant, significant tyrosinase inhibition and moderate antimicrobial activity.

  2. MEDULLOBLASTOMA IN A GRIZZLY BEAR (URSUS ARCTOS HORRIBLIS).

    Science.gov (United States)

    Mitchell, Jeffrey W; Thomovsky, Stephanie A; Chen, Annie V; Layton, Arthur W; Haldorson, Gary; Tucker, Russell L; Roberts, Gregory

    2015-09-01

    A 3-yr-old female spayed grizzly bear (Ursus arctos horribilis) was evaluated for seizure activity along with lethargy, inappetence, dull mentation, and aggressive behavior. Magnetic resonance (MR) examination of the brain revealed a contrast-enhanced right cerebellar mass with multifocal smaller nodules located in the left cerebellum, thalamus, hippocampus, and cerebrum with resultant obstructive hydrocephalus. Cerebrospinal fluid analysis revealed mild mononuclear pleocytosis, with differentials including inflammatory versus neoplastic processes. Blood and cerebrospinal fluid were also submitted for polymerase chain reaction and agar gel immunodiffusion to rule out infectious causes of meningitis/encephalitis. While awaiting these results, the bear was placed on steroid and antibiotic therapy. Over the next week, the bear deteriorated; she died 1 wk after MR. A complete postmortem examination, including immunohistochemisty, revealed the cerebellar mass to be a medulloblastoma. This is the only case report, to the authors' knowledge, describing a medulloblastoma in a grizzly bear.

  3. Antitumoral activity of low density lipoprotein-aclacinomycin complex in mice bearing H22 tumor

    Institute of Scientific and Technical Information of China (English)

    Wen Xiang Bi; Song De Xu; Pei Hai Zhang; Feng Kong

    2000-01-01

    @@ INTRODUCTION Cancer cells, which proliferate rapidly need large amounts of cholesterol for new membrane synthesis,and high LDL receptor (LDLR) activity. LDL has been proposed as a useful discriminatory vehicle for the delivery of cytotoxic drugs to tumor cells[1,2].

  4. On the Magnetic Field Strength of Active Region Filaments

    CERN Document Server

    Kuckein, C; Pillet, V Martinez; Casini, R; Sainz, R Manso; Shimizu, T

    2009-01-01

    We study the vector magnetic field of a filament observed over a compact Active Region Neutral Line. Spectropolarimetric data acquired with TIP-II (VTT, Tenerife, Spain) of the 10830 \\AA spectral region provide full Stokes vectors which were analyzed using three different methods: magnetograph analysis, Milne-Eddington inversions and PCA-based atomic polarization inversions. The inferred magnetic field strengths in the filament are of the order of 600 - 700 G by all these three methods. Longitudinal fields are found in the range of 100 - 200 G whereas the transverse components become dominant, with fields as large as 500 - 600 G. We find strong transverse fields near the Neutral Line also at photospheric levels. Our analysis indicates that strong (higher than 500 G, but below kG) transverse magnetic fields are present in Active Region filaments. This corresponds to the highest field strengths reliably measured in these structures. The profiles of the Helium 10830 \\AA lines observed in this Active Region filam...

  5. Axial radial magnetic bearing in magnetic suspending switched reluctance motor application%一种磁悬浮开关磁阻电机用轴向径向磁轴承

    Institute of Scientific and Technical Information of China (English)

    赵旭升; 邓智泉; 汪波

    2011-01-01

    To overcome the defects of the present permanent magnet biased axial radial magnetic bearing,a new permanent magnet biased axial radial magnetic bearing(PARMB) was studied,which was used in magnetic suspending switched reluctance motor application.The configuration and fundamental principle of PARMB were analyzed.The equivalent magnetic circuit was established to deduce the mathematical models of PARMB.The parameter design and calculation were presented.The parameters of the proposed prototype were also given.The 3-D magnetic field simulation was performed by using the finite element software.The theory analysis and the simulation show that the presented PARMB has smaller volume compared to the existed structure,here is no coupling between axial and radial directions,the control is easier than before.Therefore,the proposed PARMB is more suitable for the high speed or low loss occasions.%为了克服现有永磁偏置轴向径向磁轴承的缺陷,研究了一种新型结构的磁悬浮开关磁阻电机用永磁偏置轴向径向磁轴承.分析其结构及工作原理,利用等效磁路法进行分析,得出了轴向悬浮力及径向悬浮力的数学模型,并对数学模型进行了线性化处理,得出了其轴向、径向位移刚度和电流刚度.给出了磁极面积、控制线圈安匝数、定转子结构等主要参数的设计方法,给出了样机参数,用有限元对样机进行了三维仿真分析.理论研究和仿真分析表明:该永磁偏置轴向径向磁轴承结构紧凑,轴向控制磁通和径向控制磁通彼此解耦,控制更加容易,适用于高速、低功耗等场合.

  6. 利用场路结合方法分析磁轴承悬浮力%Levitation force analysis of magnetic bearing by circuit-field combination method

    Institute of Scientific and Technical Information of China (English)

    王大朋; 王凤翔

    2011-01-01

    针对磁轴承悬浮力分析比较复杂的问题,提出利用场路结合分析磁轴承悬浮力的方法.基于磁路法推导了径向磁轴承悬浮力的线性化模型,针对具体的磁轴承系统,利用有限元法分析了磁轴承能够满足线性化模型的偏置电流选择范围和磁轴承转子偏移范围,通过最小二乘法修正了线性化模型的电流刚度系数和位移刚度系数,并对超出线性化模型范围的悬浮力进行了分析,采用多项式拟合的方法推导了悬浮力的非线性模型.对所推导的磁轴承悬浮力模型进行了实验验证.分析及实验结果表明:由于磁饱和等因素的影响,利用磁路法推导的线性悬浮力模型已不能充分描述磁轴承悬浮力特性,通过场路结合方法推导的悬浮力模型能够更准确地计算磁轴承悬浮力.%For the analysis of magnetic force of magnetic bearings is complicated, a levitation force analysis of magnetic bearing based on field-circuit coupled method was used. Firstly, the linear expressions of magnetic levitation force was deduced based on the analysis of magnetic circuit, then the ranges of bias current and operating which can satisfy linear model were analyzed by means of the finite element analysis, through least square method the current rigidity coefficient and displacement rigidity coefficient were modified, and the nonlinear expressions of magnetic levitation force was deduced by polynomial approximation for exceeding linear model range, and finally the finite element method was verified by experiment. The analysis and experimental results show that due to the magnetic saturation and other factors, and the levitation force model which was deduced by using of the magnetic circuit method can not adequately describe the magnetic bearing levitation force characteristics, and the levitation force model which was deduced by field-circuit method can more accurately calculate magnetic bearing levitation force.

  7. Discovery of thiochroman derivatives bearing a carboxy-containing side chain as orally active pure antiestrogens.

    Science.gov (United States)

    Kanbe, Yoshitake; Kim, Myung-Hwa; Nishimoto, Masahiro; Ohtake, Yoshihito; Tsunenari, Toshiaki; Taniguchi, Kenji; Ohizumi, Iwao; Kaiho, Shin-ichi; Nabuchi, Yoshiaki; Kawata, Setsu; Morikawa, Kazumi; Jo, Jae-Chon; Kwon, Hee-An; Lim, Hyun-Suk; Kim, Hak-Yeop

    2006-08-01

    In order to search for alternatives to the sulfoxide moiety in the long side chain of pure antiestrogens, several molecules that may interact with water in a fashion similar to ICI164,384 were designed and it was found that compounds with the carboxy, the sulfamide, or the sulfonamide instead of the sulfoxide moiety also functioned as pure antiestrogens. Interestingly, the compound possessing the carboxy moiety showed superior antiestrogen activity compared to ICI182,780 when dosed orally. Results of the pharmacokinetic evaluation indicated that the potent antiestrogen activity at oral dosing attributed to both the improved absorption from the intestinal wall and the metabolic stability of the compound in liver. PMID:16709454

  8. Why the White Bear is Still There: Electrophysiological Evidence for Ironic Semantic Activation during Thought Suppression

    OpenAIRE

    Giuliano, Ryan J.; Wicha, Nicole Y. Y.

    2010-01-01

    Much research has focused on the paradoxical effects of thought suppression, leading to the viewpoint that increases in unwanted thoughts are due to an ironic monitoring process which increases the activation of the very thoughts one is trying to rid from consciousness. However, it remains unclear from behavioral findings whether suppressed thoughts become more accessible during the act of suppression. In the current study, event-related potentials were recorded while participants suppressed ...

  9. Edge Adapted Wavelets, Solar Magnetic Activity, and Climate Change

    CERN Document Server

    Johnson, Robert W

    2009-01-01

    The continuous wavelet transform is adapted to account for signal truncation through renormalization and by modifying the shape of the analyzing window. Comparison is made of the instant and integrated wavelet power with previous algorithms. The edge adapted and renormalized admissible wavelet transforms are used to estimate the level of solar magnetic activity from the sunspot record. The solar activity is compared to Oerlemans' temperature reconstruction and to the Central England Temperature record. A correlation is seen for years between 1610 and 1990, followed by a strong deviation as the recently observed temperature increases.

  10. Preclinical evaluation of somatostatin analogs bearing two macrocyclic chelators for high specific activity labeling with radiometals

    Energy Technology Data Exchange (ETDEWEB)

    Storch, D.; Schmitt, J.S.; Waldherr, C.; Maecke, H.R. [Div. of Radiological Chemistry, Univ. Hospital Basel (Switzerland); Waser, B.; Reubi, J.C. [Div. of Cell Biology and Experimental Cancer Research, Inst. of Pathology, Univ. of Bern (Switzerland)

    2007-07-01

    Radiometallated analogues of the regulatory peptide somatostatin are of interest in the in vivo localization and targeted radiotherapy of somatostatin receptor-overexpressing tumors. An important aspect of their use in vivo is a fast and efficient labeling (complexation) protocol for radiometals along with a high specific activity. We describe in this manuscript synthetic methods for the coupling of two chelators (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid = DOTA) to the bioactive peptide [Tyr{sup 3},Thr{sup 8}]-octreotide (TATE) in order to increase the specific activity (radioactivity in Bq per mole peptide). The full chelator-linker-peptide conjugate was assembled on solid support using standard Fmoc chemistry. Two DOTA-chelators were linked to the peptide using lysine or N,N'-bis(3-aminopropyl)-glycine (Apg); in addition, pentasarcosine (Sar{sub 5}) was used as a spacer between the chelators and the peptide to probe its influence on biology and pharmacology. Complexation rates with In{sup 3+} and Y{sup 3+} salts and the corresponding radiometals were high, the bis-DOTA-derivatives showed higher complexation rates and gave higher specific activity than DOTA-TATE. Pharmacological and biological data of the complexed molecules did not show significant differences if compared to the parent peptide [{sup 111/nat}In-DOTA]-TATE except for [({sup 111/nat}In-DOTA){sub 2}-Apg]-TATE which showed a lower binding affinity and rate of internalization into tumor cells. The biodistribution of [({sup 111/nat}In-DOTA)-Lys({sup 111/nat}In-DOTA)]-TATE in the rat tumor model (AR4-2J) showed a high and specific (as shown by a blocking experiment) tracer uptake in somatostatin receptor-positive tissue but a lower tumor uptake compared to [{sup 111/nat}In-DOTA]-TATE. (orig.)

  11. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, T. S.; Mathur, S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Buccino, A. P.; Mauas, P. J. D.; Petrucci, R. [Instituto de Astronomia y Fisica del Espacio (CONICET), C.C. 67 Sucursal 28, C1428EHA-Buenos Aires (Argentina); Brown, B. P. [Department of Astronomy and Center for Magnetic Self-Organization, University of Wisconsin, Madison, WI 53706-1582 (United States); Soderblom, D. R. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Henry, T. J. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Hall, J. C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  12. Development and active demonstration of acid digestion of burnable plutonium bearing solid wastes

    International Nuclear Information System (INIS)

    The investigations were focused on the active demonstration of the process in a technical scale plant by treatment of 790 kg of waste which contained about 7 kg of plutonium. Complete oxidation of the waste material is achieved within 15 min in sulfuric acid (kept under oxidizing condition by nitric acid) at 250 deg C. At 250 deg C with permanent stirring a rate of plutonium oxide to plutonium sulfate conversion of up to 99.9% is obtained within 8 hours. The waste oxidation product, besides offgas, is a residue of 320 g per kg waste digested. Precipitation of plutonium is achieved with an efficiency of 88% using cetylpyridinium nitrate. Active process demonstration was performed in a plant of 10 kg capacity per daily run from March 1983 until June 1985. The average waste throughput achieved was 4.1 kg waste per run (maximum 10.4 kg). The plutonium decontamination factors were 1010 for the cleaned offgas and 106 for the liquid secondary waste. Tantalum as a potential construction material for the digester does not exhibit specific corrosion; its surface corrosion is 0.1 mm per annum at the maximum

  13. Selective activation of mechanosensitive ion channels using magnetic particles.

    Science.gov (United States)

    Hughes, Steven; McBain, Stuart; Dobson, Jon; El Haj, Alicia J

    2008-08-01

    This study reports the preliminary development of a novel magnetic particle-based technique that permits the application of highly localized mechanical forces directly to specific regions of an ion-channel structure. We demonstrate that this approach can be used to directly and selectively activate a mechanosensitive ion channel of interest, namely TREK-1. It is shown that manipulation of particles targeted against the extended extracellular loop region of TREK-1 leads to changes in whole-cell currents consistent with changes in TREK-1 activity. Responses were absent when particles were coated with RGD (Arg-Gly-Asp) peptide or when magnetic fields were applied in the absence of magnetic particles. It is concluded that changes in whole-cell current are the result of direct force application to the extracellular loop region of TREK-1 and thus these results implicate this region of the channel structure in mechano-gating. It is hypothesized that the extended loop region of TREK-1 may act as a tension spring that acts to regulate sensitivity to mechanical forces, in a nature similar to that described for MscL. The development of a technique that permits the direct manipulation of mechanosensitive ion channels in real time without the need for pharmacological drugs has huge potential benefits not only for basic biological research of ion-channel gating mechanisms, but also potentially as a tool for the treatment of human diseases caused by ion-channel dysfunction.

  14. Synthesis, characterization and antiamoebic activity of chalcones bearing N-substituted ethanamine tail.

    Science.gov (United States)

    Leeza Zaidi, Saadia; Mittal, Sonam; Rajala, Maitreyi S; Avecilla, Fernando; Husain, Mohammad; Azam, Amir

    2015-06-15

    A series of chalcones (4-21) possessing N-substituted ethanamine were synthesized by the aldol condensation reaction of 1-(4-(2-substituted ethoxy)phenyl)ethanones with different aldehydes preceded by the reaction of 2-chloro N-substituted ethanamine hydrochloride and 4-hydroxy acetophenone. The structure of all the synthesized compounds was elucidated by various spectral and X-ray diffraction studies. The compounds were screened against HM1: IMSS strain of Entamoeba histolytica and cytotoxicity was performed on A549 (non-small cell lung cancer cell line) cells by MTT assay. Out of eighteen compounds twelve showed better activity then the standard drug metronidazole. The compound 9, 14 and 19 showed good cell viability, hence were least toxic. PMID:26021707

  15. Research on Design and Mechanical Properties of Permanent Magnetic Bearings for Vertical Wind Turbines%立式风力发电机用永磁轴承的设计及其力学性能研究

    Institute of Scientific and Technical Information of China (English)

    张钢; 倪晓艇; 孟庆涛; 刘飞; 张坚

    2015-01-01

    To reduce startup wind speed of wind turbines,the structural design and mechanical properties of permanent magnetic bearings for 1 kW vertical wind turbines are studied from perspective of supporting technology.The permanent magnetic bearings are manufactured and assembled.The accuracy of theoretical analysis is verified by loading experi-ments,and the industrial application of the bearings is discussed.The results show that the bearings expand adaptive areas of wind fields,the rotational speed of permanent magnetic levitation wind turbines and generated energy is much higher than that of wind turbines supported by rolling bearings.%为降低风力发电机的启动风速,从支承技术角度对1 kW 立式风力发电机用永磁轴承结构设计及其力学性能进行了研究。对设计的永磁轴承进行了加工和装配,通过加载试验验证了理论分析的准确性,探索了永磁轴承的工业应用。结果表明:该轴承扩大了适应风场的区域,永磁轴承支承的风力发电机的转速及发电量明显高于滚动轴承支承的风力发电机。

  16. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery.

    Science.gov (United States)

    Faulconer, Emily K; von Reitzenstein, Natalia V Hoogesteijn; Mazyck, David W

    2012-01-15

    Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 μg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N(2) (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 μg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (± 8.3%) sorbent recovery and 96.3% (± 9%) Hg removal. The mass balance has been closed to within approximately ± 15%. PMID:22104766

  17. Active split-ring metamaterial slabs for magnetic resonance imaging

    CERN Document Server

    Lopez, Marcos A; Freire, Manuel J; Behr, Volker C; Jakob, Peter M; Marques, Ricardo

    2011-01-01

    In this work, it is analyzed the ability of split-ring metamaterial slabs with zero/high permeability to reject/confine the radiofrequency magnetic field in magnetic resonance imaging systems. Using an homogenization procedure, split-ring slabs have been designed and fabricated to work in a 1.5T system. Active elements consisting of pairs of crossed diodes are inserted in the split-rings. With these elements, the permeability of the slabs can be automatically switched between a unity value when interacting with the strong excitation field of the transmitting body coil, and zero or high values when interacting with the weak field produced by protons in tissue. Experiments are shown for different configurations where these slabs can help to locally increase the signal-to-noise-ratio.

  18. Towards age/rotation/magnetic activity relation with seismology

    CERN Document Server

    Mathur, Savita

    2015-01-01

    The knowledge of stellar ages directly impacts the characterization of a planetary system as it puts strong constraints on the moment when the system was born. Unfortunately, the determination of precise stellar ages is a very difficult task. Different methods can be used to do so (based on isochrones or chemical element abundances) but they usually provide large uncertainties. During its evolution a star goes through processes leading to loss of angular momentum but also changes in its magnetic activity. Building rotation, magnetic, age relations would be an asset to infer stellar ages model independently. Several attempts to build empirical relations between rotation and age (namely gyrochronology) were made with a focus on cluster stars where the age determination is easier and for young stars on the main sequence. For field stars, we can now take advantage of high-precision photometric observations where we can perform asteroseismic analyses to improve the accuracy of stellar ages. Furthermore, the variab...

  19. Optimisation Of An Integrated Planar Magnetic For Active Antenna Panels

    Science.gov (United States)

    Strixner, E.; Godzik, S.; Drechsler, E., , Dr.

    2011-10-01

    The envisaged German Space Missions HRWS and TerraSAR-X follow-on have triggered the development of a new generation of low voltage DC power supplies for active antennas at Astrium GmbH. The basic approachis tointegrate all power, digital, RF electronics and RF radiators required for one antenna tile into one common unit. Due to the high number of electronic boxes needed for one antenna it is essential to optimise cost, volume, efficiency and weight. The development of an integrated planar magnetic for power conversion is one contribution to this overall optimisation process. The focus of this presentation is the development of an integrated planar magnetic used for a half-bridge forward converter with secondary side synchronous current doubler. The converter is supplied from a 100 V power bus and delivers a total average output power of 280W for the drain supply of the pulsed RF power stages.

  20. Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears.

    Directory of Open Access Journals (Sweden)

    Andrea Friebe

    Full Text Available Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12, the mean date of parturition was 26 January (SD = 12, and the mean duration of the gestation period was 56 days (SD = 2. The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human.

  1. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Marek [Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw (Poland); Begelman, Mitchell C., E-mail: sikora@camk.edu.pl, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  2. Synthesis and catalytic activity of metallo-organic complexes bearing 5-amino 2-ethylpyridine -2-carboximidate

    Indian Academy of Sciences (India)

    LUO MEI; XU JIA; ZHANG JING CHENG

    2016-06-01

    A series of copper, cobalt, nickel and manganese complexes were synthesized and characterized. Reaction of 5-amino-2-cyanopyridine with $ MCl_{2}$·x$H_{2}O$ (M: $Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Mn^{2+})$ in anhydrous ethanol resulted in the formation of four complexes $[NH_{2}EtPyCuCl_{2}(CH_{3}OH)].H_{2}O 1$, $[(NH_{2}EtPyHCl)_{3}Co]$$(Cl)_{3}.3H_{2}O 2$, $[(NH_{2}EtPy)_{2}$ 2$(H_{2}O)Ni]$ $(Cl_{2})$ 3, and $[(NH_{2}EtPy)_{2}$ 2$(H_{2}O)$ Mn]$(Cl_{2})$ 4 $[NH_{2} EtPy=5-amino-oethylpyridine-2-carboximidate], respectively. The structures of these compounds were determined by X-raydiffraction, NMR and IR spectroscopy, and elemental analysis. Each complex was then used as a catalyst in the Henry reaction, and its catalytic activity was determined by 1H NMR. Good catalytic effects were achieved (69–87%).

  3. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  4. 五自由度全永磁轴承系统的稳定悬浮特性分析%Stable Levitation Performance Analysis of Five Degrees of Freedom All Permanent Magnetic Bearing System

    Institute of Scientific and Technical Information of China (English)

    张钢; 孟庆涛; 钟永彦; 张坚; 张海龙; 樊曼

    2015-01-01

    为探讨永磁悬浮轴承系统的稳定悬浮特性,从轴承刚度角度对五自由度全永磁轴承系统的稳定悬浮特性进行了分析。采用等效磁荷理论建立永磁轴承的承载力、承载力矩和刚度的数学表达式,并利用蒙特卡洛法对表达式中存在的四重积分进行求解。探究转子在受迫进动情况下以及受到外力矩干扰时继续保持稳定旋转所需要的最低临界转速。基于轴向永磁轴承与径向永磁轴承的结构,提出一种六磁环五自由度全永磁轴承系统结构模型,对全永磁轴承的转子系统承受轴向和径向外载荷的承载力、力矩和承载刚度进行分析,得出轴向可以承受外载荷而径向无法承受外载荷,即静态下轴向可以稳定悬浮、径向不能稳定悬浮,符合 Earnshaw 定理。利用刚性转子的陀螺惯性力矩来承受全永磁轴承系统的不平衡力矩和外力矩,从而保持转子定轴自稳定悬浮,并对系统稳定悬浮特性进行计算,结果表明转子在超过最低临界转速后是可以实现动态稳定悬浮的,具有一定的工程应用价值。%To investigate the stable levitation performance of permanent magnetic bearings system, the stable levitation performance of the five-DOF permanent magnetic bearing (PMB) system is analyzed from the perspective of bearing stiffness. The analysis formulas of PMB’ s loading capacity, torque and stiffness are established based on the equivalent magnetic charge theory, then use Monte Carlo method to solve the quadruple integral formula to get the result of the force, moment and stiffness. The minimum critical speed for rotor in the case of forced precession and in the situation of external torque is explored. Puts forward a six circular magnetic rings and five DOF all permanent magnetic bearing structure model based on the structure of radial and axial magnetic bearings, the carrying capacity, moment and stiffness of five-DOF PMB

  5. Evaluation and Improvement of Eddy Current Position Sensors in Magnetically Suspended Flywheel Systems

    Science.gov (United States)

    Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)

    2001-01-01

    Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.

  6. Impact attenuation during weight bearing activities in barefoot vs. shod conditions: a systematic review.

    Science.gov (United States)

    Fong Yan, Alycia; Sinclair, Peter J; Hiller, Claire; Wegener, Caleb; Smith, Richard M

    2013-06-01

    Although it could be perceived that there is extensive research on the impact attenuation characteristics of shoes, the approach and findings of researchers in this area are varied. This review aimed to clarify the effect of shoes on impact attenuation to the foot and lower leg and was limited to those studies that compared the shoe condition(s) with barefoot. A systematic search of the literature yielded 26 studies that investigated vertical ground reaction force, axial tibial acceleration, loading rate and local plantar pressures. Meta-analyses of the effect of shoes on each variable during walking and running were performed using the inverse variance technique. Variables were collected at their peak or at the impact transient, but when grouped together as previous comparisons have done, shoes reduced local plantar pressure and tibial acceleration, but did not affect vertical force or loading rate for walking. During running, shoes reduced tibial acceleration but did not affect loading rate or vertical force. Further meta-analyses were performed, isolating shoe type and when the measurements were collected. Athletic shoes reduced peak vertical force during walking, but increased vertical force at the impact transient and no change occurred for the other variables. During running, athletic shoes reduced loading rate but did not affect vertical force. The range of variables examined and variety of measurements used appears to be a reason for the discrepancies across the literature. The impact attenuating effect of shoes has potentially both adverse and beneficial effects depending on the variable and activity under investigation. PMID:23245643

  7. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery

    Energy Technology Data Exchange (ETDEWEB)

    Faulconer, Emily K., E-mail: emily.faulconer@yahoo.com [Department of Environmental Engineering Sciences, University of Florida, 217 Black Hall, P.O. Box 116450, Gainesville, FL 32611-645 (United States); Hoogesteijn von Reitzenstein, Natalia V.; Mazyck, David W. [Department of Environmental Engineering Sciences, University of Florida, 217 Black Hall, P.O. Box 116450, Gainesville, FL 32611-645 (United States)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal oxidation of MPAC decreased the amorphous characteristic of iron oxides. Black-Right-Pointing-Pointer Thermal oxidation did not influence magnetic recovery or Hg removal performance. Black-Right-Pointing-Pointer At all thermal oxidation temperatures, the 3:1 MPAC achieved the highest Hg removal. - Abstract: Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 {mu}g/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N{sub 2} (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 {mu}g/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% ({+-}8.3%) sorbent recovery and 96.3% ({+-}9%) Hg removal. The mass balance has been closed to within approximately {+-}15%.

  8. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  9. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    Science.gov (United States)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  10. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs -- Space-weather HMI Active Region Patches

    CERN Document Server

    Bobra, Monica G; Hoeksema, J Todd; Turmon, Michael J; Liu, Yang; Hayashi, Keiji; Barnes, Graham; Leka, K D

    2014-01-01

    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are avail...

  11. Design, synthesis and in vivo anti-hyperglycemic activity of gem-dimethyl-bearing C-glucosides as SGLT2 inhibitors

    Institute of Scientific and Technical Information of China (English)

    Wen Jing Zhao; Yong Heng Shi; Gui Long Zhao; Yu Li Wang; Hua Shao; Li Da Tang; Jian Wu Wang

    2011-01-01

    A series of gem-dimethyl-bearing C-glucosides were designed and synthesized as SGLT2 inhibitors, with anhydrous aluminum chloride-mediated Friedel-Crafts alkylation to construct the gem-dimethyl functionality being the key step. The in vivo anti-hyperglycemic activity was evaluated with mice oral glucose tolerance test (OGTT), and all the synthesized compounds showed significant but less potent anti-hyperglycemic activity than the positive control dapagliflozin.

  12. Photometric magnetic-activity metrics tested with the Sun: Application to Kepler M dwarfs

    CERN Document Server

    Mathur, S; Garcia, R A; Ceillier, T

    2014-01-01

    The Kepler mission has been providing high-quality photometric data leading to many breakthroughs in the exoplanet search and in stellar physics. Stellar magnetic activity results from the interaction between rotation, convection, and magnetic field. Constraining these processes is important if we want to better understand stellar magnetic activity. Using the Sun, we want to test a magnetic activity index based on the analysis of the photo- metric response and then apply it to a sample of M dwarfs observed by Kepler. We estimate a global stellar magnetic activity index by measuring the standard deviation of the whole time series, Sph. Because stellar variability can be related to convection, pulsations, or magnetism, we need to ensure that this index mostly takes into account magnetic effects. We define another stellar magnetic activity index as the average of the standard deviation of shorter subseries which lengths are determined by the rotation period of the star. This way we can ensure that the measured p...

  13. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    Science.gov (United States)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  14. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    International Nuclear Information System (INIS)

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO2) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO2 was coagulated with magnetite particles using FeCl3·6 H2O at a fixed pH value. Magnetic separation of coagulated TiO2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO2 powder. The magnetic separation of TiO2–magnetite coagulate from solution proved to be efficient around pH:8

  15. Evolution of the Magnetic Field Distribution of Active Regions

    CERN Document Server

    Dacie, Sally; van Driel-Gesztelyi, Lidia; Long, David; Baker, Deb; Janvier, Miho; Yardley, Stephanie; Pérez-Suárez, David

    2016-01-01

    Aims. Although the temporal evolution of active regions (ARs) is relatively well understood, the processes involved continue to be the subject of investigation. We study how the magnetic field of a series of ARs evolves with time to better characterise how ARs emerge and disperse. Methods. We examine the temporal variation in the magnetic field distribution of 37 emerging ARs. A kernel density estimation plot of the field distribution was created on a log-log scale for each AR at each time step. We found that the central portion of the distribution is typically linear and its slope was used to characterise the evolution of the magnetic field. Results. The slopes were seen to evolve with time, becoming less steep as the fragmented emerging flux coalesces. The slopes reached a maximum value of ~ -1.5 just before the time of maximum flux before becoming steeper during the decay phase towards the quiet Sun value of ~ -3. This behaviour differs significantly from a classical diffusion model, which produces a slope...

  16. Solar activity, magnetic storms and their effects on biological systems

    International Nuclear Information System (INIS)

    Full text: In the present time much attention is spent on the electromagnetic waves, solar radiation and magnetic storms on biological systems, including on person. However, there are few publications describing the mechanism of these influences on human. First of all it is necessary to point out that electromagnetic waves, the flow of particles in space and magnetic storms, acting on person human-all is connected with biophysical processes. So approach to influence of these factors on organism follows the processes of influence of these waves on bio system. Magnetic storms are phenomena continuously connected with solar activity. Investigation of cosmic space has intensified the practical importance of the problem of interaction with natural factors of external ambience. Much attention deserves the cosmic radiation, geomagnetic field, elements of climate and weathers. However the mechanism of bio tropic action of these factors is not enough studied. Beginning XXI century was already signified the successes in investigation of Mars. The Space shuttles 'Spirit' and 'Opportunity' successfully have carried out some work on examining and finding of water on Mars. A flight of person to Mars is being considered. One of the important mechanisms of influence on human organism is, in our opinion, the rising of the resonance at coincidence of frequencies and their more important factor is a phenomena of electromagnetic induction and forming the radicals in the organism

  17. Effects of flow balancing on active magnetic regenerator performance

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian;

    2016-01-01

    Experiments with a recently constructed rotary multi-bed active magnetic regnenerator (AMR) prototype have revealed strong impacts on the temperature span from variations in the resistances of the flow channels carrying heat transfer fluid in and out of the regenerator beds. In this paper we show...... through numerical modeling how unbalanced flow in the beds decreases the cooling power and COP for a dual bed device. Furthermore, it is shown how resistance variations in multi-bed devices give rise to unbalanced flow in the individual beds and how this decreases cooling powers and COPs of the machines...

  18. Experimental results for a novel rotary active magnetic regenerator

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Bahl, Christian;

    2012-01-01

    Active magnetic regenerator (AMR) refrigerators represent an alternative to vapor compression technology and have great potential in realizing cooling devices with high efficiency, which are highly desirable for a broad range of applications. The technology relies on the magnetocaloric effect...... in a solid refrigerant rather than the temperature change that occurs when a gas is compressed/expanded. This paper presents the general considerations for the design and construction of a high frequency rotary AMR device. Experimental results are presented at various cooling powers for a range of operating...

  19. Helical Magnetic Fields in Solar Active Regions: Theory vs. Observations

    CERN Document Server

    Petrovay, K; Choudhuri, A

    2006-01-01

    The mean value of the normalized current helicity in solar active regions is on the order of 1e-8 1/m, negative in the northern hemisphere, positive in the southern hemisphere. Observations indicate that this helicity has a subsurface origin. Possible mechanisms leading to a twist of this amplitude in magnetic flux tubes include the solar dynamo, convective buffeting of rising flux tubes, and the accretion of weak external poloidal flux by a rising toroidal flux tube. After briefly reviewing the observational and theoretical constraints on the origin of helicity, we present a recently developed detailed model for poloidal flux accretion.

  20. 2-dimensional numerical modeling of active magnetic regeneration

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Pryds, Nini; Smith, Anders;

    2009-01-01

    Various aspects of numerical modeling of Active Magnetic Regeneration (AMR) are presented. Using a 2-dimensional numerical model for solving the unsteady heat transfer equations for the AMR system, a range of physical effects on both idealized and non-idealized AMR are investigated. The modeled...... system represents a linear, parallel-plate based AMR. The idealized version of the model is able to predict the theoretical performance of AMR in terms of cooling power and temperature span. This is useful to a certain extent, but a model reproducing experiments to a higher degree is desirable. Therefore...

  1. Control of active liquid crystals with a magnetic field.

    Science.gov (United States)

    Guillamat, Pau; Ignés-Mullol, Jordi; Sagués, Francesc

    2016-05-17

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix. PMID:27140604

  2. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy.

    Science.gov (United States)

    Fang, Kun; Song, Lina; Gu, Zhuxiao; Yang, Fang; Zhang, Yu; Gu, Ning

    2015-12-01

    Controlled drug delivery systems have been extensively investigated for cancer therapy in order to obtain better specific targeting and therapeutic efficiency. Herein, we developed doxorubicin-loaded magnetic PLGA microspheres (DOX-MMS), in which DOX was encapsulated in the core and high contents (28.3 wt%) of γ-Fe2O3 nanoparticles (IOs) were electrostatically assembled on the surface of microsphere to ensure the high sensitivity to response of an external alternating current magnetic field (ACMF). The IOs in PLGA shell can both induce the heat effect and trigger shell permeability enhancement to release drugs when DOX-MMs was activated by ACMF. Results show that the cumulative drug release from DOX-MMs exposed to ACMF for 30 min (21.6%) was significantly higher (approximately 7 times higher) than that not exposed to ACMF (2.8%). The combination of hyperthermia and enhanced DOX release from DOX-MMS is beneficial for in vitro 4T1 breast cancer cell apoptosis as well as effective inhibition of tumor growth in 4T1 tumor xenografts. Therefore, the DOX-MMS can be optimized as powerful delivery system for efficient magnetic responsive drug release and chemo-thermal therapy.

  3. Celecoxib and Ibuprofen Restore the ATP Content and the Gluconeogenesis Activity in the Liver of Walker-256 Tumor-Bearing Rats

    Directory of Open Access Journals (Sweden)

    Camila Oliveira de Souza

    2015-07-01

    Full Text Available Background/Aims: The main purpose of this study was to investigate the effects of celecoxib and ibuprofen, both non-steroidal anti-inflammatory drugs (NSAIDs, on the decreased gluconeogenesis observed in liver of Walker-256 tumor-bearing rats. Methods: Celecoxib and ibuprofen (both at 25 mg/Kg were orally administered for 12 days, beginning on the same day when the rats were inoculated with Walker-256 tumor cells. Results: Celecoxib and ibuprofen treatment reversed the reduced production of glucose, pyruvate, lactate and urea from alanine as well as the reduced production of glucose from pyruvate and lactate in perfused liver from tumor-bearing rats. Besides, celecoxib and ibuprofen treatment restored the decreased ATP content, increased triacylglycerol levels and reduced mRNA expression of carnitine palmitoyl transferase 1 (CPT1, while ibuprofen treatment restored the reduced mRNA expression of peroxisome proliferator-activated receptor alpha (PPARα in the liver of tumor-bearing rats. Both treatments tended to decrease TNFα, IL6 and IL10 in the liver of tumor-bearing rats. Finally, the treatment with celecoxib, but not with ibuprofen, reduced the growth of Walker-256 tumor. Conclusion: Celecoxib and ibuprofen restored the decreased gluconeogenesis in the liver of Walker-256 tumor-bearing rats. These effects did not involve changes in tumor growth and probably occurred by anti-inflammatory properties of these NSAIDs, which increased expression of genes associated with fatty acid oxidation (PPARα and CPT1 and consequently the ATP production, normalizing the energy status in the liver of tumor-bearing rats.

  4. Novel Repeatable Inner Locking Device for Magnetic Bearing Flywheel%磁悬浮飞轮用新型可重复内锁紧机构

    Institute of Scientific and Technical Information of China (English)

    刘强; 曹建树; 房建成; 徐宝东

    2014-01-01

    为减小磁悬浮飞轮整机的体积质量和降低发射成本,提出了一种基于锥面锁紧和摩擦自锁的可重复内锁紧机构,并介绍了其结构、工作原理。根据发射振动条件对锁紧机构进行静力学分析,得到锁紧机构各项锁紧参数。在此基础上,通过选择锁台位置和锥面约束面积,采用有限元法对锁紧状态下的飞轮转子进行动力学模态计算。根据设计结果研制了一套锁紧机构,并通过正弦扫频振动和随机振动模拟卫星发射振动工况,检验锁紧机构对磁悬浮飞轮系统的保护效果。结果显示,振动试验中飞轮系统无明显共振发生,飞轮定、转子间最大相对振动位移为30μm,远小于飞轮保护间隙200μm,表明锁紧机构能够对飞轮系统实施有效保护。%In order to reduce the volume, weight and launch cost of magnetic bearing flywheel as a whole, a repeatable inner loc⁃king device based on conical surface to lock and friction self⁃locking to keep locking was presented. Its composition and operating prin⁃ciple were introduced. According to launch vibration condition, the static analysis of locking device was carried out and the locking pa⁃rameters were obtained. Upon this basis, by choosing locking step position and conical constraint area, the dynamics modals of flywheel rotor under locking state were calculated by finite element method ( FEM) . According to design results, a locking device was devel⁃oped, and vibration working condition of satellite launching was simulated by swept⁃sine vibration and random vibration, so as to verify the protection effects on the magnetic bearing flywheel by the locking device. The result shows that, no resonance occurs during testing of the flywheel, and the maximum relative vibration displacement between stator and rotor is at 30 μm far less than the protection gap of 200 μm, which indicates the locking device can effectively protect flywheel

  5. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  6. Study of geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein;

    2016-01-01

    Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical...

  7. Active sterile neutrino conversions in a supernova with random magnetic fields

    CERN Document Server

    Pastor, S; Valle, José W F; Pastor, S; Semikoz, V; Valle, Jose W F

    1995-01-01

    {Large enough random magnetic fields may affect in an important way neutrino conversion rates, even in the case where neutrinos have zero transition magnetic moments. We consider their effect in the case of active to sterile \

  8. The Magnetic Classification of Solar Active Regions 1992-2015

    Science.gov (United States)

    Jaeggli, S. A.; Norton, A. A.

    2016-03-01

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  9. Observational evidence for enhanced magnetic activity of superflare stars.

    Science.gov (United States)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-24

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  10. Tooling Converts Stock Bearings To Custom Bearings

    Science.gov (United States)

    Fleenor, E. N., Jr.

    1983-01-01

    Technique for reworking stock bearings saves time and produces helicopter-rotor bearings ground more precisely. Split tapered ring at one end of threaded bolt expands to hold inside of inner race bearing assembly; nut, at other end of bolt, adjusts amount of spring tension. Piece of hardware grasps bearing firmly without interfering with grinding operation. Operation produces bearing of higher quality than commercially available bearings.

  11. The Magnetic Classification of Solar Active Regions 1992 - 2015

    CERN Document Server

    Jaeggli, Sarah A

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-groups e.g. $\\beta\\gamma$, $\\beta\\delta$) make up fractions of approximately 20% and 80% of the sample respectively. This fraction is relatively constant during high levels of activity, however, an increase in the $\\alpha$ fraction to about 35% and and a decrease in the $\\beta$ fraction to about 65% can be seen near each solar minimum and is statistically significant at the 2-$\\sigma$ level. Over 30% of all active regions observed during the years of solar maxima were appended with the classifications $\\gamma$ and/or $\\del...

  12. Magnetic Activity Cycles in the Exoplanet Host Star epsilon Eridani

    CERN Document Server

    Metcalfe, T S; Brown, B P; Mathur, S; Soderblom, D R; Henry, T J; Mauas, P J D; Petrucci, R; Hall, J C; Basu, S

    2012-01-01

    The active K2 dwarf epsilon Eri has been extensively characterized, both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3 year magnetic activity cycle in epsilon Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3 year and 13 year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3 year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95+/-0.03 years and 12.7+/-0.3 years, which by analogy with the solar case suggests a revised identification of the dynamo mechanisms that are responsible for the so-called "active" and "inactive" sequences as proposed by Bohm-V...

  13. Magnetic bearing optical delay line

    NARCIS (Netherlands)

    Dool, T.C. van den; Kamphues, F.G.; Fouss, B.; Henrioulle, K.; Hogenhuis, H.

    2004-01-01

    TNO TPD, in close cooperation with Micromega-Dynamics and Dutch Space, has developed an advanced Optical Delay Line (ODL) for use in PRIMA, GENIE and other ground based interferometers. The delay line design is modular and flexible, which makes scaling for other applications a relatively easy task.

  14. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands.

    Science.gov (United States)

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian; Poater, Albert

    2016-01-01

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru-O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations. PMID:26877818

  15. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    Science.gov (United States)

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian

    2016-01-01

    Summary A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations. PMID:26877818

  16. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia

    2016-01-28

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  17. Disruption avoidance through active magnetic feedback in tokamak plasmas

    Science.gov (United States)

    Paccagnella, Roberto; Zanca, Paolo; Yanovskiy, Vadim; Finotti, Claudio; Manduchi, Gabriele; Piron, Chiara; Carraro, Lorella; Franz, Paolo; RFX Team

    2014-10-01

    Disruptions avoidance and mitigation is a fundamental need for a fusion relevant tokamak. In this paper a new experimental approach for disruption avoidance using active magnetic feedback is presented. This scheme has been implemented and tested on the RFX-mod device operating as a circular tokamak. RFX-mod has a very complete system designed for active mode control that has been proved successful for the stabilization of the Resistive Wall Modes (RWMs). In particular the current driven 2/1 mode, unstable when the edge safety factor, qa, is around (or even less than) 2, has been shown to be fully and robustly stabilized. However, at values of qa (qa > 3), the control of the tearing 2/1 mode has been proved difficult. These results suggested the idea to prevent disruptions by suddenly lowering qa to values around 2 where the tearing 2/1 is converted to a RWM. Contrary to the universally accepted idea that the tokamaks should disrupt at low qa, we demonstrate that in presence of a well designed active control system, tokamak plasmas can be driven to low qa actively stabilized states avoiding plasma disruption with practically no loss of the plasma internal energy.

  18. Development on software system of structure design for radial magnetic bearing%径向磁力轴承结构设计软件系统的开发

    Institute of Scientific and Technical Information of China (English)

    朱晓明

    2011-01-01

    Magnetic bearing is applying in more fields because of its many excellent characteristics. As the important base of sustaining system, the structure design of magnetic hearing requires balance among many parameters and repeated calculaton, thus add the complexity. Aiming at design process of magnetic bearing, the theoretic formula and experimental formula are deduced. Combinig parameterized programming thinking and interactive programming mode, a design software system for magnetic bearing is developed with the application of VC++6.0. The test proved the software system can complete the structure design rapidly and correctly, shorten the development period and increase the reliability.%由于磁力轴承具有多种优点,其应用越来越广泛。磁力轴承的结构设计是进行支撑系统设计的重要基础,但其设计过程需要对多个参数进行综合衡量并反复计算,增加了设计复杂度。针对磁力轴承的设计过程,推导了径向磁力轴承的理论公式和经验公式。通过参数化程序设计思想和交互式程序设计方法,利用VC++6.0设计环境,开发了轴承结构设计软件系统。通过测试证明,该软件系统能够快速准确完成轴承的结构设计,大大缩短了开发周期,增加了可靠性。

  19. Deciphering Solar Magnetic Activity I: On The Relationship Between The Sunspot Cycle And The Evolution Of Small Magnetic Features

    CERN Document Server

    McIntosh, Scott W; Leamon, Robert J; Davey, Alisdair R; Howe, Rachel; Krista, Larisza D; Malanushenko, Anna V; Cirtain, Jonathan W; Gurman, Joseph B; Thompson, Michael J

    2014-01-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ~22-years. The principal variation of sunspots, an ~11-year variation in number, modulates the amount of magnetic field that pierces the solar surface and drives significant variations in our Star's radiative, particulate and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11-year sunspot variation is intrinsically tied it to the spatio-temporal overlap of the activity bands belonging to the 22-year magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints, and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer scale variability.

  20. Environmental chemicals modulate polar bear (Ursus maritimus) peroxisome proliferator-activated receptor gamma (PPARG) and adipogenesis in vitro

    DEFF Research Database (Denmark)

    Routti, Heli; Lille-Langøy, Roger; Berg, Mari K;

    2016-01-01

    and three synthetic mixtures of contaminants in murine 3T3-L1 preadipocytes and polar bear adipose tissue-derived stem cells (pbASCs). PCB153 and p,p'-DDE antagonized pbPPARG, although their predicted receptor-ligand affinity was weak. PBDEs, tetrabromobisphenol A, and PCB170 had a weak agonistic effect...