WorldWideScience

Sample records for active layer soil

  1. [Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].

    Science.gov (United States)

    Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong

    2003-02-01

    Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.

  2. In situ nuclear magnetic response of permafrost and active layer soil in boreal and tundra ecosystems

    DEFF Research Database (Denmark)

    Kass, Mason Andrew; Irons, Trevor; Minsley, Burke J.

    2017-01-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience...... of the nuclear magnetic resonance (NMR) response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show...

  3. Dynamics and characteristics of soil temperature and moisture of active layer in central Tibetan Plateau

    Science.gov (United States)

    Zhao, L.; Hu, G.; Wu, X.; Tian, L.

    2017-12-01

    Research on the hydrothermal properties of active layer during the thawing and freezing processes was considered as a key question to revealing the heat and moisture exchanges between permafrost and atmosphere. The characteristics of freezing and thawing processes at Tanggula (TGL) site in permafrost regions on the Tibetan Plateau, the results revealed that the depth of daily soil temperature transmission was about 40 cm shallower during thawing period than that during the freezing period. Soil warming process at the depth above 140 cm was slower than the cooling process, whereas they were close below 140 cm depth. Moreover, the hydro-thermal properties differed significantly among different stages. Precipitation caused an obviously increase in soil moisture at 0-20 cm depth. The vertical distribution of soil moisture could be divided into two main zones: less than 12% in the freeze state and greater than 12% in the thaw state. In addition, coupling of moisture and heat during the freezing and thawing processes also showed that soil temperature decreased faster than soil moisture during the freezing process. At the freezing stage, soil moisture exhibited an exponential relationship with the absolute soil temperature. Energy consumed for water-ice conversion during the freezing process was 149.83 MJ/m2 and 141.22 MJ/m2 in 2011 and 2012, respectively, which was estimated by the soil moisture variation.

  4. Theoretical Modeling and Analysis of L- and P-band Radar Backscatter Sensitivity to Soil Active Layer Dielectric Variations

    Directory of Open Access Journals (Sweden)

    Jinyang Du

    2015-07-01

    Full Text Available Freeze-thaw (FT and moisture dynamics within the soil active layer are critical elements of boreal, arctic and alpine ecosystems, and environmental change assessments. We evaluated the potential for detecting dielectric changes within different soil layers using combined L- and P-band radar remote sensing as a prerequisite for detecting FT and moisture profile changes within the soil active layer. A two-layer scattering model was developed and validated for simulating radar responses from vertically inhomogeneous soil. The model simulations indicated that inhomogeneity in the soil dielectric profile contributes to both L- and P-band backscatter, but with greater P-band sensitivity at depth. The difference in L- and P-band responses to soil dielectric profile inhomogeneity appears suitable for detecting associated changes in soil active layer conditions. Additional evaluation using collocated airborne radar (AIRSAR observations and in situ soil moisture measurements over alpine tundra indicates that combined L- and P-band SAR observations are sensitive to soil dielectric profile heterogeneity associated with variations in soil moisture and FT conditions.

  5. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    Science.gov (United States)

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa

    2016-12-01

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be

  6. Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems

    Directory of Open Access Journals (Sweden)

    J. E. Barrett

    2009-12-01

    Full Text Available Polar deserts are characterized by severe spatial-temporal limitations of liquid water. In soil active layers of the Antarctic Dry Valleys, liquid water is infrequently available over most of the arid terrestrial landscape. However, soils on the margins of glacial melt-water streams and lakes are visibly wet during the brief Austral summer when temperatures permit the existence of liquid water. We examined the role of these hydrologic margins as preferential zones for the transformation and transport of nutrient elements and solutes in an environment where geochemical weathering and biological activity is strictly limited by the dearth of liquid water. We report on hydropedological investigations of aquatic-terrestrial transition zones adjacent to 11 stream and lake systems in the Antarctic Dry Valleys. Our results show that wetted zones extended 1–11 m from the edges of lotic and lentic systems. While capillary demand and surface evaporation drive a one-way flux of water through these zones, the scale of these transition zones is determined by the topography and physical characteristics of the surrounding soils. Nutrient concentrations and fluxes appear to be influenced by both the hydrology and microbial-mediated biogeochemical processes. Salt concentrations are enriched near the distal boundary of the wetted fronts due to evapo-concentration of pore water in lake margin soils, while organic matter, ammonium and phosphate concentrations are highest in stream channel sediments where potential for biological activity is greatest. Thus, in the Antarctic Dry Valleys, intermittently wet soils on the margins of streams and lakes are important zones of both geochemical cycling and biological activity.

  7. Biological activity of soddy-calcareous soils and cultural layers in Alanian settlements of the Kislovodsk basin

    Science.gov (United States)

    Chernysheva, E. V.; Kashirskaya, N. N.; Korobov, D. S.; Borisov, A. V.

    2014-09-01

    Microbiological investigations of cultural layers were performed in a settlement of the Alanian culture—Podkumskoe-2 (the 2nd-4th centuries AD). The present-day soddy-calcareous soils (rendzinas) used for different purposes were also studied near this settlement. The most significant changes in the initial characteristics of the soil microbial communities occurred under the residential influence more than 1500 years ago; these changes have been preserved until the present time. In the areas subjected to the anthropogenic impact, the total microbial biomass (the weighted average of 3720 μg C/g soil) was lower than that in the background soil. The minimal values of the microbial biomass were found in the soil of the pasture—2.5 times less than in the background soil. The urease activity of the cultural layer was higher than that of the soils nearby the settlement. Elevated values of the cellulose activity were also recorded only in the cultural layers. The current plowing has led to a significant decrease in the mycelium biomass of the microscopic fungi. In the soil of the fallow, the weighted average value of the fungal hyphae biomass along the profile was twice lower than that in the background soil and cultural layers of the settlement. The pasture first affected the active microbial biomass and, to a lesser extent, the amount of microscopic fungi.

  8. Potential Carbon Transport: Linking Soil Aggregate Stability and Sediment Enrichment for Updating the Soil Active Layer within Intensely Managed Landscapes

    Science.gov (United States)

    Wacha, K.; Papanicolaou, T.; Abban, B. K.; Wilson, C. G.

    2014-12-01

    Currently, many biogeochemical models lack the mechanistic capacity to accurately simulate soil organic carbon (SOC) dynamics, especially within intensely managed landscapes (IMLs) such as those found in the U.S. Midwest. These modeling limitations originate by not accounting for downslope connectivity of flowpathways initiated and governed by landscape processes and hydrologic forcing, which induce dynamic updates to the soil active layer (generally top 20-30cm of soil) with various sediment size fractions and aggregates being transported and deposited along the downslope. These hydro-geomorphic processes, often amplified in IMLs by tillage events and seasonal canopy, can greatly impact biogeochemical cycles (e.g., enhanced mineralization during aggregate breakdown) and in turn, have huge implications/uncertainty when determining SOC budgets. In this study, some of these limitations were addressed through a new concept, Potential Carbon Transport (PCT), a term which quantifies a maximum amount of material available for transport at various positions of the landscape, which was used to further refine a coupled modeling framework focused on SOC redistribution through downslope/lateral connectivity. Specifically, the size fractions slaked from large and small aggregates during raindrop-induced aggregate stability tests were used in conjunction with rainfall-simulated sediment enrichment ratio (ER) experiments to quantify the PCT under various management practices, soil types and landscape positions. Field samples used in determining aggregate stability and the ER experiments were collected/performed within the historic Clear Creek Watershed, home of the IML Critical Zone Observatory, located in Southeastern Iowa.

  9. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    Science.gov (United States)

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  10. Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Umakant; Drewniak, Beth; Jastrow, Julie D.; Matamala, Roser M.; Vitharana, U. W. A.

    2017-08-01

    Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation data for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate

  11. In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems

    Directory of Open Access Journals (Sweden)

    M. A. Kass

    2017-12-01

    Full Text Available Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost requires an interdisciplinary approach, relying on (for example geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multiyear investigation into the impacts of wildfires on permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show the efficacy of borehole NMR (bNMR to permafrost studies. Through statistical analyses and synthetic freezing simulations, we also demonstrate that borehole NMR is sensitive to the nucleation of ice within soil pore spaces.

  12. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    International Nuclear Information System (INIS)

    Genet, H; Euskirchen, E S; McGuire, A D; Barrett, K; Breen, A; Bennett, A; Rupp, T S; Johnstone, J F; Kasischke, E S; Melvin, A M; Mack, M C; Schuur, A E G; Turetsky, M R; Yuan, F

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  13. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil

    Czech Academy of Sciences Publication Activity Database

    Šnajdr, Jaroslav; Valášková, Vendula; Merhautová, Věra; Herinková, Jana; Cajthaml, Tomáš; Baldrian, Petr

    2008-01-01

    Roč. 40, č. 9 (2008), s. 2068-2075 ISSN 0038-0717 R&D Projects: GA MŠk LC06066; GA MZe QH72216; GA AV ČR KJB600200516 Institutional research plan: CEZ:AV0Z50200510 Keywords : enzyme activity * forest soil * lignocellulose Subject RIV: EE - Microbiology, Virology Impact factor: 2.926, year: 2008

  14. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model

    Science.gov (United States)

    Jiang, Yueyang; Zhuang, Qianlai; O'Donnell, Jonathan A.

    2012-01-01

    Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple sites that vary with vegetation cover, disturbance history, and climate. The model performance was evaluated by comparing modeled and measured soil temperatures at different depths. We use the model to explore the influence of climate, fire disturbance, and topography (north- and south-facing slopes) on soil thermal dynamics. Modeled soil temperatures agree well with measured values for both boreal forest and tundra ecosystems at the site level. Combustion of organic-soil horizons during wildfire alters the surface energy balance and increases the downward heat flux through the soil profile, resulting in the warming and thawing of near-surface permafrost. A projection of 21st century permafrost dynamics indicates that as the climate warms, active layer thickness will likely increase to more than 3 meters in the boreal forest site and deeper than one meter in the tundra site. Results from this coupled heat-water modeling approach represent faster thaw rates than previously simulated in other studies. We conclude that the discussed soil thermal model is able to well simulate the permafrost dynamics and could be used as a tool to analyze the influence of climate change and wildfire disturbance on permafrost thawing.

  15. Thin layer activation

    International Nuclear Information System (INIS)

    Schweickert, H.; Fehsenfeld, P.

    1995-01-01

    The reliability of industrial equip ment is substantially influenced by wear and corrosion; monitoring can prevent accidents and avoid down-time. One powerful tool is thin layer activation analysis (TLA) using accelerator systems. The information is used to improve mechanical design and material usage; the technology is used by many large companies, particularly in the automotive industry, e.g. Daimler Benz. A critical area of a machine component receives a thin layer of radioactivity by irradiation with charged particles from an accelerator - usually a cyclotron. The radioactivity can be made homogeneous by suitable selection of particle, beam energy and angle of incidence. Layer thickness can be varied from 20 microns to around 1 mm with different depth distributions; the position and size of the wear zone can be set to within 0.1 mm. The machine is then reassembled and operated so that wear can be measured. An example is a combustion engine comprising piston ring, cylinder wall, cooling water jacket and housing wall, where wear measurements on the cylinder wall are required in a critical zone around the dead-point of the piston ring. Proton beam bombardment creates a radioactive layer whose thickness is known accurately, and characteristic gamma radiation from this radioactive zone penetrates through the engine and is detected externally. Measurements can be made either of the activity removed from the surface, or of the (reduced) residual activity; wear measurement of the order of 10 -9 metres is possible

  16. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Science.gov (United States)

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  17. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Directory of Open Access Journals (Sweden)

    Sizhong Yang

    Full Text Available The buried China-Russia Crude Oil Pipeline (CRCOP across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs. The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  18. Crude Oil Treatment Leads to Shift of Bacterial Communities in Soils from the Deep Active Layer and Upper Permafrost along the China-Russia Crude Oil Pipeline Route

    Science.gov (United States)

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099

  19. Assessing the dynamics of the upper soil layer relative to soil management practices

    Science.gov (United States)

    Hatfield, J.; Wacha, K.; Dold, C.

    2017-12-01

    The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties most reflective to changes in management is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregation model has been developed based on the factors that control how aggregates form and the forces which degrade aggregates. One of the major factors for this model is the storage of carbon into the soil and the interaction with the soil biological component. To increase soil biology requires a stable microclimate that provides food, water, shelter, and oxygen which in turn facilitates the incorporation of organic material into forms that can be combined with soil particles to create stable aggregates. The processes that increase aggregate size and stability are directly linked the continual functioning of the biological component which in turn changes the physical and chemical properties of the soil. Soil aggregates begin to degrade as soon as there is no longer a supply of organic material into the soil. These processes can range from removal of organic material and excessive tillage. To increase aggregation of the upper soil layer requires a continual supply of organic material and the biological activity that incorporates organic material into substances that create a stable aggregate. Soils that exhibit stable soil aggregates at the surface have a prolonged infiltration rate with less runoff and a gas exchange that ensures adequate oxygen for maximum biological activity. Quantifying the dynamics of the soil surface layer provides a quantitative understanding of how management practices affect aggregate stability.

  20. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China.

    Directory of Open Access Journals (Sweden)

    Ruoyang He

    Full Text Available Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT. Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA, respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus, microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.

  1. Urease activity in different soils of Egypt.

    Science.gov (United States)

    el-Shinnawi, M M

    1978-01-01

    Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.

  2. Prediction of unsaturated flow and water backfill during infiltration in layered soils

    Science.gov (United States)

    Cui, Guotao; Zhu, Jianting

    2018-02-01

    We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.

  3. Active layer thickness and ground temperatures, Svea, Svalbard, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Snow and soil temperature records for January 1988 - May 1996 are presented. Included are snow depth and weight measurements, snow density (calculated), active layer...

  4. Characteristics of water infiltration in layered water repellent soils

    Science.gov (United States)

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  5. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  6. Ultimate capacity of piles penetrating in weak soil layers

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Ahmed

    2018-01-01

    Full Text Available A pile foundation is one of the most popular forms of deep foundations. They are routinely employed to transfer axial structure loads through the soft soil to stronger bearing strata. Piles generally used to increase the load carrying capacity of the foundation and reduce the settlement of the foundation. On the other hand, many cases in practice where piles pass through different layers of soil that contain weak layers located at different depths and extension, also some time cavities with a different shape, size, and depth are found. In this study, a total of 96 cases is considered and simulated in PLAXIS 2D program aiming to understand the influence of weak soil on the ultimate pile capacity. The piles embedded in the dense sand with a layer of weak soil at different extension and location. The cross section of the geometry used in this study was designed as an axisymmetric model with the 15-node element; the boundary condition recommended at least 5D in the horizontal direction, and (L+5D in the vertical direction where D and L are the diameter and length of pile, respectively. The soil is modeled as Mohr-Coulomb, with five input parameters and the behavior of pile material represented by the linear elastic model. The results of the above cases are compared with the results found in a pile embedded in dense soil without weak layers or cavities. The results indicated that the existence of weak soil layer within the surrounding soil around the pile decreases the ultimate capacity. Furthermore, it has been found that increase in the weak soil width (extension leads to reduction in the ultimate capacity of the pile. This phenomenon is applicable to all depth of weak soil. The influence of weak layer extension on the ultimate capacity is less when it is presentin the upper soil layers.

  7. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Thawing permafrost and the resulting mineralization of previously frozen organic carbon (C) is considered an important future feedback from terrestrial ecosystems to the atmosphere. Here, we use a dynamic process oriented permafrost model, the CoupModel, to link surface and subsurface temperatures....... The model is successfully adjusted and applied for the study area and shown to be able to simulate active layer dynamics. Subsequently, the model is used to predict the active layer thickness under future warming scenarios. The model predicts an increase of maximum active layer thickness from today 70 to 80......–105 cm as a result of a 2–6 °C warming. An additional increase in the maximum active layer thickness of a few centimetres may be expected due to heat production from decomposition of organic matter. Simulated future soil temperatures and water contents are subsequently used with measured basal soil...

  8. Soil Plasticity Model for Analysis of Collapse Load on Layers Soil

    Directory of Open Access Journals (Sweden)

    Md Nujid Masyitah

    2016-01-01

    Full Text Available Natural soil consist of soil deposits which is a soil layer overlying a thick stratum of another soil. The bearing capacity of layered soil studies have been conducted using different approach whether theoretical, experimental and combination of both. Numerical method in computer programme has become a powerful tool in solving complex geotechnical problems. Thus in numerical modelling, stress-strain soil behaviour is well predicted, design and interpreted using appropriate soil model. It is also important to identify parameters and soil model involve in prediction real soil problem. The sand layer overlaid clay layer soil is modelled with Mohr-Coulomb and Drucker-Prager criterion. The bearing capacity in loaddisplacement analysis from COMSOL Multiphysics is obtained and presented. In addition the stress distribution and evolution of plastic strain for each thickness ratio below centre of footing are investigated. The results indicate the linear relation on load-displacement which have similar trend for both soil models while stress and plastic strain increase as thickness ratio increase.

  9. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    Science.gov (United States)

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  10. [Effects of intensive management on soil C and N pools and soil enzyme activities in Moso bamboo plantations.

    Science.gov (United States)

    Yang, Meng; Li, Yong Fu; Li, Yong Chun; Xiao, Yong Heng; Yue, Tian; Jiang, Pei Kun; Zhou, Guo Mo; Liu, Juan

    2016-11-18

    In order to elucidate the effects of intensive management on soil carbon pool, nitrogen pool, enzyme activities in Moso bamboo (Phyllostachys pubescens) plantations, we collected soil samples from the soil surface (0-20 cm) and subsurface (20-40 cm) layers in the adjacent Moso bamboo plantations with extensive and intensive managements in Sankou Township, Lin'an City, Zhejiang Province. We determined different forms of C, N and soil invertase, urease, catalase and acid phosphatase activities. The results showed that long-term intensive management of Moso bamboo plantations significantly decreased the content and storage of soil organic carbon (SOC), with the SOC storage in the soil surface and subsurface layers decreased by 13.2% and 18.0%, respectively. After 15 years' intensive management of Masoo bamboo plantations, the contents of soil water soluble carbon (WSOC), hot water soluble carbon (HWSOC), microbial carbon (MBC) and readily oxidizable carbon (ROC) were significantly decreased in the soil surface and subsurface layers. The soil N storage in the soil surface and subsurface layers in intensively managed Moso bamboo plantations increased by 50.8% and 36.6%, respectively. Intensive management significantly increased the contents of nitrate-N (NO 3 - -N) and ammonium-N (NH 4 + -N), but decreased the contents of water-soluble nitrogen (WSON) and microbial biomass nitrogen (MBN). After 15 years' intensive management of Masoo bamboo plantations, the soil invertase, urease, catalase and acid phosphatase activities in the soil surface layer were significantly decreased, the soil acid phosphatase activity in the soil subsurface layer were significantly decreased, and other enzyme activities in the soil subsurface layer did not change. In conclusion, long-term intensive management led to a significant decline of soil organic carbon storage, soil labile carbon and microbial activity in Moso bamboo plantations. Therefore, we should consider the use of organic

  11. Biologically Active Organic Matter in Soils of European Russia

    Science.gov (United States)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  12. Increase of rotation angle of soil layers during plow operation

    Science.gov (United States)

    Vasilenko, VV; Afonichev, D. N.; Vasilenko, S. V.; Khakhulin, A. N.

    2018-03-01

    One of the advantages of plowing is the ability of the plow to hide the weed seeds deep into the soil. The depth of the embankment exceeds 10-12 cm, from there the weeds can not rise to the surface of the soil. They perish halfway. But for this, it is necessary to wrap the soil layers at an angle close to 180 °. Modern ploughs can not turn the layers of soil at an angle of more than 135 °, therefore the plow is required to be equipped with additional working elements. The aim of the study is to create an adaptation to the plow to expand the furrow before laying the next soil layer. In a wide furrow, the formation will completely tip, the previous layer will not interfere with it. The device is a set of vertical shields. Each shield is fixed behind the working body of the plow. It is installed with an angle of attack of 20-25 ° to move the previous layer to expand the furrow by 10-12 cm. The model and industrial samples of the plow have shown improved agrotechnical indicators. The average angle of the formation rotation was 177 °, the burial of plant residues in the soil increased from 61 to 99%. The field surface with blocks more than 5 cm decreased from 36.3 to 13.4%, the height of the ridges decreased from 7 to 4 cm. The force of soil pressure on the shield was measured by a strain gage. It is 130-330 N depending on the depth of processing and the speed of movement. The increase in power costs for the four-hull plow was 190-750 W. The coulters on the plow are unnecessary, and this saves energy more than its increase for shields.

  13. Kinematic seismic response of piles in layered soil profile

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, A.N.

    2006-01-01

    This paper is aimed at highlighting the importance of Kinematic Seismic Response of Piles, a phenomenon often ignored in dynamic analysis. A case study is presented where the end bearing pile is embedded in two layer soil system of highly contrasting stiffnesses; a typical case where kinematic loading plays important role. The pile soil system is modeled as continuous system and as discrete parameter system; both are based on BDWF (Beam on Dynamic Winkler Foundation) formulation. For discrete parameter system, a finite element software SAP2000 is used and the modeling technique of kinematic interaction in finite element software is discussed. For pile soil system modeled as continuous system, a general MATLAB code is developed capable of performing elastic site response analysis in two layer soil system, solving differential equation governing kinematic interaction, and giving as output the maximum ground displacement, maximum pile displacement, rotation, moment and shear distribution along pile length. The paper concludes that kinematic seismic actions must be evaluated particularly at the interface of soil layers of significantly differing soil stiffnesses. (author)

  14. A study on water infiltration barriers with compacted layered soils

    International Nuclear Information System (INIS)

    Umeda, Y.; Komori, K.; Fujiwara, A.

    1993-01-01

    In shallow-ground disposal of low-level radioactive wastes, water movements due to natural processes in the soil covering the disposal facility must be properly controlled. A capillary barrier with compacted layered soils can provide an effective means of controlling water movement in the soil covering placed on a low-level radioactive waste disposal facility. An experiment was performed to determine the effectiveness of a full-scale fill as a capillary barrier. The fill used in the experiment was constructed of compacted layers of clay, fine sand, and gravel. Man-made rain was caused to fall on the surfaces of the fill to observe the infiltration of rainwater into the fill and to measure the amount of water drained from within. The experiment established the effectiveness of the capillary barrier

  15. Ureic nitrogen transformation in multi-layer soil columns treated with urease and nitrification inhibitors.

    Science.gov (United States)

    Giovannini, Camilla; Garcia-Mina, Josè M; Ciavatta, Claudio; Marzadori, Claudio

    2009-06-10

    The use of N-(n-butyl)thiophosphoric triamide (NBPT), as a urease inhibitor, is one of the most successful strategies utilized to increase the efficiency of urea-based fertilization. To date, NBPT has been added to the soil incorporated in fertilizers containing either urea or the inhibitor at a fixed percentage on the urea weight. The possibility of using NBPT physically separated from urea-based fertilizers could make its use more flexible. In particular, a granulated product containing NBPT could be utilized in soils treated with different urea-based fertilizers including livestock urine, the amount depending on soil characteristics and/or the urea source (e.g., mineral fertilizer, organo-mineral fertilizer, or animal slurry). In this study, a multilayer soil column device was used to investigate the influence of an experimental granular product (RV) containing NBPT and a garlic extract, combining the ability to protect NBPT by oxidation and nitrification inhibition activity, on (a) spatial variability of soil urease and nitrification activities and (b) timing of urea hydrolysis and mineral-N form accumulation (NO(2)(-), NO(3)(-), NH(4)(+)) in soil treated with urea. The results clearly demonstrated that RV can, effectively, inhibit the soil urease activity along the soil column profile up to 8-10 cm soil layer depth and that the inhibition power of RV was dependent on time and soil depth. However, nitrification activity is not significantly influenced by RV addition. In addition, the soil N transformations were clearly affected by RV; in fact, RV retarded urea hydrolysis and reduced the accumulation of NH(4)(+)-N and NO(2)(-)-N ions along the soil profile. The RV product was demonstrated to be an innovative additive able to modify some key ureic N trasformation processes correlated with the efficiency of the urea-based fertilization, in a soil column higher than 10 cm.

  16. Estimation of apparent soil resistivity for two-layer soil structure

    Energy Technology Data Exchange (ETDEWEB)

    Nassereddine, M.; Rizk, J.; Nagrial, M.; Hellany, A. [School of Computing, Engineering and Mathematics, University of Western Sydney (Australia)

    2013-07-01

    High voltage (HV) earthing design is one of the key elements when it comes to safety compliance of a system. High voltage infrastructure exposes workers and people to unsafe conditions. The soil structure plays a vital role in determining the allowable and actual step/touch voltage. This paper presents vital information when working with two-layer soil structure. It shows the process as to when it is acceptable to use a single layer instead of a two-layer structure. It also discusses the simplification of the soil structure approach depending on the reflection coefficient. It introduces the reflection coefficient K interval which determines if single layer approach is acceptable. Multiple case studies are presented to address the new approach and its accuracy.

  17. Influence of long-term fertilization on soil enzyme activities

    Directory of Open Access Journals (Sweden)

    Alina Dora SAMUEL

    2009-05-01

    Full Text Available Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase were determined in the 0–10, 10–20, and 20–30 cm layers of a brown luvic soil submitted to a complex fertilization experiment with different types of green manure. It was found that each activity decreased with increasing sampling depth. It should be emphasized that greenmanuring of maize led to a significant increase in each of the five enzymatic activities determined. The enzymatic indicators of soil quality calculated from the values of enzymatic activities showed the order: lupinus + rape + oat > lupinus > vetch + oat + ryegrass > lupinus + oat + vetch > unfertilized plot. This order means that by determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. There were significant correlations of soil enzyme activities with chemical properties.

  18. Soils and cultural layers of ancient cities in the south of European Russia

    Science.gov (United States)

    Aleksandrovskii, A. L.; Aleksandrovskaya, E. I.; Dolgikh, A. V.; Zamotaev, I. V.; Kurbatova, A. N.

    2015-11-01

    Antique cities in the south of European Russia are characterized by a considerable thickness of their cultural layers (urbosediments) accumulated as construction debris and household wastes. Under the impact of pedogenesis and weathering in dry climate of the steppe zone, these sediments have acquired the features of loesslike low-humus calcareous and alkaline deposits. They are also enriched in many elements (P, Zn, Ca, Cu, Pb, As) related to the diverse anthropogenic activities. The soils developed from such urbosediments can be classified as urbanozems (Urban Technosols), whereas chernozems close to their zonal analogues have developed in the surface layer of sediments covering long-abandoned ancient cities. Similar characteristics have been found for the soils of the medieval and more recent cities in the studied region. Maximum concentrations of the pollutants are locally found in the antique and medieval urbosediments enriched in dyes, handicrafts from nonferrous metals, and other artifacts. Surface soils of ancient cities inherit the properties and composition of the cultural layer. Even in chernozems that developed under steppe vegetation on the surface of the abandoned antique cities of Phanagoria and Tanais for about 1000—1500 years, the concentrations of copper, zinc, and calcium carbonates remain high. Extremely high phosphorus concentrations in these soils should be noted. This is related to the stability of calcium phosphates from animal bones that are abundant in the cultural layer acting as parent material for surface soils.

  19. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  20. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    Science.gov (United States)

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  1. Characterization of magnetically enhanced buried soil layer in arid environment

    Science.gov (United States)

    Petrovsky, E.; Grison, H.; Kapicka, A.; Silva, P. F.; Font, E.

    2011-12-01

    Magnetic susceptibility (MS) of soils, reflecting the presence of magnetite/maghemite, can be used in several environmental applications. Magnetic topsoil mapping is often used to outline areas polluted by atmospherically deposited dust. However, in these studies, the magnetically enhanced layer is usually shallow, some 5-6 cm under the surface. In our contribution, we present the case when the magnetic susceptibility is enhanced in deeper soil layers. Investigated soils are mostly sandy soils, from several localities in Portugal, in a zone with arid climate. Sample profiles were collected always in forests or forest stands with pines, cork oaks or eucalyptus trees in two areas: around the city of Sines (on the coast south of Lisbon) and around the city of Abrantes (inland, north-east of Lisbon). Both areas are presumably affected by one major source of pollution - power plant. Surface magnetic susceptibility measurements were performed by Bartington MS2D loop; values vary from 10 to 300 x 10-5 SI units. Vertical distribution of magnetic susceptibility was measured already in situ using the SM400 (ZHInstruments) on profiles about 40cm in length. Mass-specific MS was determined using Bartington MS2B dual frequency meter and Agico MFK1. Nine vertical profiles were selected for detailed analyses including the ARM, IRM and hysteresis measurements. Distinctly enhanced magnetic layers were detected in deeper horizons. This enhancement can be ascribed to several mechanisms. Migration of magnetic particles seems to be probable, as observed in our model experiments with sand columns. In coastal areas, the enhanced layer could be due to tsunami deposits, as described in other areas. Finally, in particular at sites close to power plants, the construction works followed by surface remediation have to be also considered as one of the possible mechanisms.

  2. Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.

    Science.gov (United States)

    Garratt, J. R.; Pittock, A. B.; Walsh, K.

    1990-01-01

    The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

  3. [Soil catalase activity of main plant communities in Leymus chinensis grassland in northeast China].

    Science.gov (United States)

    Lu, Ping; Guo, Jixun; Zhu, Li

    2002-06-01

    The seasonal dynamics of soil catalase activity of three different plants communities in Leymus chinensis grassland in northeast China were in a parabolas shape. The seasonal variation of Chloris virgata community was greater than those of Leymus chinensis community and Puccinellia tenuiflora community, and "seed effect" might be the main reason. The correlation between the activity of soil catalase in different soil layers and environmental factors were analyzed. The results showed that the activity of soil catalase was decreased gradually with depth of soil layer. The activity of soil catalase was closely correlated with rainfall and air temperature, and it was affected by soil temperature, soil moisture, and their interactions. The correlation between the activity and aboveground vegetation was very significant, and the growing condition of plant communities could be reflected by the activity of soil catalase.

  4. Effects of a layer of vegetative ash layer on wettable and water repellent soil hydrology

    Science.gov (United States)

    Bodí, Merche B.; Doerr, Stefan H.; Cerdà, Artemi; Mataix-Solera, Jorge

    2010-05-01

    Following a wildfire, a layer of vegetative ash often covers the ground until it is dissolved or redistributed by wind and water erosion. Much of the existing literature suggests that the ash layer temporally reduces infiltration by clogging soil pores or by forming a surface crust (Mallik et al., 1984; Onda et al., 2008). However, an increasing number of field-based studies have found that, at least in the short term, ash increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà and Doerr, 2008; Woods and Balfour, 2008). On the other hand, after a fire the soil may have produced, enhanced or reduced its water repellency (Doerr et al., 2000). Very few studies have been taken into account the interaction of the ash and the repellent soil. The layer of ash may have similar role as a litter layer in delaying runoff and reducing erosion by storing water. In order to examine this interaction, it was been made a series of experiments using a laboratory rainfall simulation. It has been assessed the effects of an ash layer i) on a wettable and water repellent soil (WDPT > 7200s), ii) with different ash thicknesses (bare soil and 5 mm, 15 mm and 30 mm of ash), iii) preceding and following the first rain after a fire when the ground is still wetted and after being partially dried. Three replicates were done, being a total of 40 simulations. The ash used was collected from a Wildfire in Teruel (Spain) during summer of 2009. The simulations were conducted in metal boxes of 30x30 cm and filled with 3 cm of soil. The slope of the box was set at 10° (17%) and the intensity applied was 78-84 mm h-1during 40 minutes. The splash detachment was determined also using four splash cups. Overland flow and subsurface drainage was collected at 1-minute intervals and the former stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. Each sample was examined at the end in terms of water repellency, infiltration

  5. Migration of cesium-137 through sandy soil layer effect of fine silt on migration

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Wadachi, Yoshiki

    1983-01-01

    The migration of 137 Cs through sandy soil layer was studied with consideration of the migration of fine silt by column method. It was found that a portion of fine silt migrated through the soil layer accompanying with 137 Cs. The mathematical migration model of 137 Cs involved the migration of fine silt through such soil layer was presented. This model gave a good accordance between calculated concentration distribution curve in sandy soil layer and effluent curve and observed those. So, this model seems to be advanced one for evaluating migration of 137 Cs in sandy soil layer with silt. (author)

  6. Circumpolar Active-Layer Permafrost System (CAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  7. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers

    Science.gov (United States)

    Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-01-01

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for

  8. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Phosphorus release within the soil matrix caused by the changed redox conditions due to re-establishment of a riparian wetland can be critical for the aquatic environment. However, phosphorous released in the soil will not always result in an immediate contribution to this loss to the aquatic...... environment. Lowland soils are primarily peat soils, and only a minor part of the total soil volume of peat soils is occupied by macropores (>30 µm). Since water primarily flows in these macropores, the majority of the soil matrix is bypassed (the immobile domain). Phosphorus released in the immobile domain...... is not actively transported out of the system, but is only transported via diffusion, which is a very slow process. Thus it is interesting to investigate the size of the active pore volume in peat soils. The hypothesis of this study is that the active pores volume of a peat soil can be expressed using bulk...

  9. Chemical composition of the humus layer, mineral soil and soil solution of 200 forest stands in the Netherlands in 1995

    NARCIS (Netherlands)

    Leeters, E.E.J.M.; Vries, de W.

    2001-01-01

    A nationwide assessment of the chemical composition of the soil solid phase and the soil solution in the humus layer and two mineral layers (0-10 cm and 10-30 cm) was made for 200 forest stands in the year 1995. The stands were part of the national forest inventory on vitality, included seven tree

  10. Solute transport model for radioisotopes in layered soil

    International Nuclear Information System (INIS)

    Essel, P.

    2010-01-01

    The study considered the transport of a radioactive solute in solution from the surface of the earth down through the soil to the ground water when there is an accidental or intentional spillage of a radioactive material on the surface. The finite difference method was used to model the spatial and temporal profile of moisture content in a soil column using the θ-based Richard's equation leading to solution of the convective-dispersive equation for non-adsorbing solutes numerically. A matlab code has been generated to predict the transport of the radioactive contaminant, spilled on the surface of a vertically heterogeneous soil made up of two layers to determine the residence time of the solute in the unsaturated zone, the time it takes the contaminant to reach the groundwater and the amount of the solute entering the groundwater in various times and the levels of pollution in those times. The model predicted that, then there is a spillage of 7.2g of tritium, on the surface of the ground at the study area, it will take two years for the radionuclide to enter the groundwater and fifteen years to totally leave the unsaturated zone. There is therefore the need to try as much as possible to avoid intentional or accidental spillage of the radionuclide since it has long term effect. (au)

  11. Soil carbon fractions and enzyme activities under different vegetation types on the Loess Plateau of China

    OpenAIRE

    Zhang, Haixin; Zeng, Quanchao; An, Shaoshan; Dong, Yanghong; Darboux, Frédéric

    2016-01-01

    Vegetation restoration was effective way of protecting soil erosion and water conservation on the Loess Plateau. Carbon fractions and enzyme activities were sensitive parameters for assessment of soil remediation through revegetation. Forest, forest steppe and grassland soils were collected at 0–5 cm and 5–20 cm soil layers in Yanhe watershed, Shaanxi Province. Urease, sucrase, alkaline phosphatase, soil organic carbon (SOC), microbial biomass carbon (MBC), easily ox...

  12. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  13. Soil physico-chemical characterization in the different soil layers of National Maize Research Program, Rampur, Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-12-01

    Full Text Available Soil pit digging and their precise study is a decision making tool to assess history and future of soil management of a particular area. Thus, the present study was carried out to differentiate soil physico-chemical properties in the different layers of excavated pit of the National Maize Research Program, Rampur, Chitwan, Nepal. Eight pits were dug randomly from three blocks at a depth of 0 to 100 cm. The soil parameters were determined in-situ, and in laboratory for texture, pH, OM, N, P (as P2O5, K (as K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn of collected soils samples of different layers following standard analytical methods at Soil Science Division, Khumaltar. The result revealed that soil structure was sub-angular in majority of the layers, whereas bottom layer was single grained. The value and chrome of colour was increasing in order from surface to bottom in the majority pits. Similarly, the texture was sandy loam in majority layers of the pits. Moreover, four types of consistence (loose to firm were observed. Furthermore, mottles and gravels were absent in the majority layers. Likewise, soil was very to moderately acidic in observed layers of majority pits, except bottom layer of agronomy block was slightly acidic. Regarding fertility parameters (OM, macro and micronutrients, some were increasing and vice-versa, while others were intermittent also. Therefore, a single layer is not dominant for particular soil physico-chemical parameters in the farm. In overall, surface layer is more fertile than rest of the layers in all the pits.

  14. Soil solid-phase controls lead activity in soil solution.

    Science.gov (United States)

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  15. [Study on soil enzyme activities and microbial biomass carbon in greenland irrigated with reclaimed water].

    Science.gov (United States)

    Pan, Neng; Hou, Zhen-An; Chen, Wei-Ping; Jiao, Wen-Tao; Peng, Chi; Liu, Wen

    2012-12-01

    The physicochemical properties of soils might be changed under the long-term reclaimed water irrigation. Its effects on soil biological activities have received great attentions. We collected surface soil samples from urban green spaces and suburban farmlands of Beijing. Soil microbial biomass carbon (SMBC), five types of soil enzyme activities (urease, alkaline phosphatase, invertase, dehydrogenase and catalase) and physicochemical indicators in soils were measured subsequently. SMBC and enzyme activities from green land soils irrigated with reclaimed water were higher than that of control treatments using drinking water, but the difference is not significant in farmland. The SMBC increased by 60.1% and 14.2% than those control treatments in 0-20 cm soil layer of green land and farmland, respectively. Compared with their respective controls, the activities of enzymes in 0-20 cm soil layer of green land and farmland were enhanced by an average of 36.7% and 7.4%, respectively. Investigation of SMBC and enzyme activities decreased with increasing of soil depth. Significantly difference was found between 0-10 cm and 10-20 cm soil layer in green land. Soil biological activities were improved with long-term reclaimed water irrigation in Beijing.

  16. Feedbacks Between Soil Structure and Microbial Activities in Soil

    Science.gov (United States)

    Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.

    2017-12-01

    Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate

  17. [Effect of elevated atmospheric CO2 on soil urease and phosphatase activities].

    Science.gov (United States)

    Chen, Lijun; Wu, Zhijie; Huang, Guohong; Zhou, Likai

    2002-10-01

    The response of soil urease and phosphatase activities at different rice growth stages to free air CO2 enrichment (FACE) was studied. The results showed that comparing with the ambient atmospheric CO2 concentration (370 mumol.mol-1), FACE (570 mumol.mol-1) significantly increased the urease activity of 0-5 cm soil layer at the vigorous growth stage of rice, whole that of 5-10 cm layer had no significant change during the whole growing season. Phosphatase activity of 0-5 cm and 5-10 cm soil layers significantly increased, and the peak increment was at the vigorous growth stage of rice.

  18. Development of smart active layer sensor

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Yoon, Dong Jin; Kwon, Jae Hwa

    2004-01-01

    Structural health monitoring (SHM) is a new technology that will be increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper. In this study, SAL sensor can be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

  19. Numerical modeling of solute transport in deformable unsaturated layered soil

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2017-07-01

    Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.

  20. Effects of tillage on the Fe oxides activation in soil

    Science.gov (United States)

    Chi, Guangyu; Chen, Xin; Shi, Yi; Wang, Jun; Zheng, Taihui

    2009-07-01

    Since mid-1950s, the wetland ecosystems in Sanjiang Plain of Northeast China have been experiencing greater changes in land use, which had negative effects on the soil environments. This study assessed the effects of soil tillage on the activation of soil Fe in the region. The test ecosystems included natural wetland, paddy field and upland field converted from wetland. Soil samples at the depths of 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-60 cm, 60-90 cm and 90-120 cm were collected from each of the ecosystems for the analysis of vertical distribution of soil pH, organic carbon, chelate Fe oxides and Fe(II). The results showed that the conversion of wetland into paddy field and upland field induced a decrease of organic carbon content in 0-10 cm soil layer by 61.8% (P carbon showed that chelate Fe oxides and Fe(II) was correlated positively with soil organic carbon and chelate ratio had a more positive relationship with organic carbon than chelate Fe oxides and Fe(II). The results of chelate Fe oxides, Fe(II) and chelate ratio of Fe suggested that reclamation could prevent the Fe activation and organic matter is credited for having an important influence on the process of Fe activation.

  1. The evaluation method of soil-spring for the analyses of foundation structures on layered bedsoil

    International Nuclear Information System (INIS)

    Satoh, S.; Sasaki, F.

    1985-01-01

    When performing the finite element method analysis of foundation structures, such as mat slab of reactor buildings and turbine buildings, it is very important to evaluate and model the soil-spring mechanism between foundation and soil correctly. In this model, this paper presents the method in which soil-spring mechanism is evaluated from the theoretical solution. In this theory the semi-infinite elastic solid is assumed to be made of multi-layered soil systems. From the analytical example, it is concluded that the stress analysis of foundation structures on multi-layered soil systems cannot be evaluated by the conventional methods. (orig.)

  2. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  3. Sorption and movement of pesticides on thin layer plates of Brazilain soils

    International Nuclear Information System (INIS)

    Lord, K.A.; Helene, C.G.; Andrea, M.M. de; Ruegg, E.F.

    1979-01-01

    The sorption from aqueous solution, and movement in water on thin layers plates of 7 soils of 3 organochlorine, 2 organophosphorus and 1 carbamate insecticide was determined in the laboratory. Generally, all substances were sorbed most and moved least on soils richest in organic matter. However, sorption was not a function of organic matter content alone. Aldrin and DDT were most strongly sorbed and did not move from the point of application on the thin layer plates of any soil. On all 7 soils, carbaryl was the least strongly sorbed insecticide. On 5 soils, lindane, parathion and malathion were increasingly strongly sorbed, but on the other 2 soils lindane was mostly strongly sorbed. The apparent greater mobility of 14 C-labelled malathion on thin layers of soils repeatedly leached could be explained by the formation of more polar substances. (author) [pt

  4. [Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxioniana forest of western Sichuan, China].

    Science.gov (United States)

    Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan

    2014-05-01

    This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.

  5. The study of stress-strain state of stabilized layered soil foundations

    Directory of Open Access Journals (Sweden)

    Sokolov Mikhail V.

    2017-01-01

    Full Text Available Herein presented are the results of modeling and analysis of stress-strain state of layered inhomogeneous foundation soil when it is stabilised by injection to different depths. Produced qualitative and quantitative analysis of the components of the field of isolines of stresses, strains, stress concentration and the difference between the strain at the boundary of different elastic horizontal layers. Recommendations are given for the location of stabilised zones in relation to the border of different elastic layers. In particular, it found that stabilization of soil within the weak layer is inappropriate, since it practically provides no increase in the stability of the soil foundation, and when performing stabilisation of soil foundations, it is recommended to place the lower border of the stabilisation zone below the border of a stronger layer, at this the distribution of stresses and strains occurs more evenly, and load-bearing capacity of this layer is used to the maximum.

  6. Sporadi-E layer and metereological activity

    Directory of Open Access Journals (Sweden)

    C. Scotto

    1995-06-01

    Full Text Available Obscrvations of Es laycr performed at the ionospheric observatory of Rome from 1982 to 1989 have been used to investigate a possible correlation with cold front passages. Such a correlation may exist because of the AGW excited by tropospheric activity at cold front passages. A relationship with thunderclouds electrostatic field is also marginally considered. The treatment of data shows that the distributions of the frequencies of renection at cold front passages present only small differences compared to normal days, both for the f and for the I type; therefore, a correlation between Es layer anù meteorological activity cannot be affirmed.

  7. Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy).

    Science.gov (United States)

    Siles, José A; Öhlinger, Birgit; Cajthaml, Tomas; Kistler, Erich; Margesin, Rosa

    2018-01-30

    Microbial communities in human-impacted soils of ancient settlements have been proposed to be used as ecofacts (bioindicators) of different ancient anthropogenic activities. In this study, bacterial, archaeal and fungal communities inhabiting soil of three archaic layers, excavated at the archaeological site on Monte Iato (Sicily, Italy) and believed to have been created in a chronological order in archaic times in the context of periodic cultic feasts, were investigated in terms of (i) abundance (phospholipid fatty acid (PLFA) analysis and quantitative PCR)), (ii) carbon(C)-source consumption patterns (Biolog-Ecoplates) and (iii) diversity and community composition (Illumina amplicon sequencing). PLFA analyses demonstrated the existence of living bacteria and fungi in the soil samples of all three layers. The upper layer showed increased levels of organic C, which were not concomitant with an increment in the microbial abundance. In taxonomic terms, the results indicated that bacterial, archaeal and fungal communities were highly diverse, although differences in richness or diversity among the three layers were not detected for any of the communities. However, significantly different microbial C-source utilization patterns and structures of bacterial, archaeal and fungal communities in the three layers confirmed that changing features of soil microbial communities reflect different past human activities.

  8. [Dynamics of aquic brown soil enzyme activities under no-tillage].

    Science.gov (United States)

    Liu, Xiumei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2006-12-01

    This paper studied the effects of no-tillage on the dynamics of invertase, urease and acid phosphatase activities in an aquic brown soil during maize growing season. The results showed that in 0 - 10 cm soil layer, the invertase activity at jointing, trumpet-shaped and ripening stages, urease activity at jointing and booting stages, and acid phosphatase activity at booting and ripening stages were significantly higher under no-tillage (NT) than under conventional tillage (CT). In 10 - 20 cm soil layer, the invertase activity at seedling, jointing and trumpet-shaped stages was significantly different between NT and CT, and the urease activity during whole growing season except at booting stage was significantly higher under NT than under CT. In 20 - 30 cm soil layer, the invertase activity during maize growing season was significantly lower under NT than under CT, and urease activity at seedling stage and acid phosphate activity at ripening stage were significantly different between these two treatments. Under NT, there was a decreasing trend of soil enzyme activities with increasing soil depth; while under CT, soil invertase and acid phosphatase activities increased, but urease activity decreased with increasing soil depth.

  9. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    Science.gov (United States)

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  10. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    Directory of Open Access Journals (Sweden)

    A. Bargsten

    2010-05-01

    Full Text Available Nitric oxide (NO plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification, that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany. We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate. Net potential NO fluxes (in terms of mass of N from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover, 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover, and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory

  11. Metatranscriptomic census of active protists in soils.

    Science.gov (United States)

    Geisen, Stefan; Tveit, Alexander T; Clark, Ian M; Richter, Andreas; Svenning, Mette M; Bonkowski, Michael; Urich, Tim

    2015-10-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system.

  12. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    Science.gov (United States)

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  13. The role of soil layers in preventing ground water pollution with 17ß-estradiol hormone (E 2

    Directory of Open Access Journals (Sweden)

    A’zam Golzari

    2016-03-01

    Full Text Available Background: Estrogens include estoril (E3, estradiol and estrone (E1. These chemicals are produced in human and animal bodies as well as in synthetic chemicals (drugs. Estrogens can enter water sources in different ways. When these chemicals enter the human body through water and wastewater, they have the ability to mimic or disrupt the normal estrogen activities in humans and animals. Estrogens in wastewater are able to pass soil layers and contaminate groundwater. Therefore, in this study, the removal of the hormone 17ß-estradiol (E2 as a representative of estrogens in three types of soils was studied. The selection was chosen in respect to the importance of entering the hormone into groundwater through the soil. Methods: This study was an experimental study in which the removal of the hormone E2 from different depths of three types of soils was experimented. The soils were consisted of two different textures, the silty sandy clay and the silty sand with gravel. The hormone E2 was diluted and injected into the drilled holes. Soils were characterized in the soil mechanics laboratory. Hormone extraction from the soils was performed using a centrifuge and analyzed with the Elecsys device. The results were analyzed using the IBM SPSS version 22 software. Results: The results showed that the removal rates of hormone E2 in the three types of soils were higher than 99.5%, and the removal rate in the silty sand was more than the others. In all three soil samples, the removal rates in the first layer were high. The average injected hormone in the soil decreased from 3500 to 3112 ng/l. The results showed that the adhesion and plasticity of the soil had also affected the removal rates. Conclusion: Results showed that the soil plays a significant role in the removal of E2 hormone and this hormone was reduced or eliminated in the first layers of the soils. Thus, the risk of groundwater contamination is low.

  14. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  15. Influence of foundation layering on soil-structure system motion

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.

    1985-01-01

    This paper is concerned with effects on structural motion due to layering of the foundation. Impedance functions for foundations which consist of a layer resting on a viscoelastic half-space are used on a simple 3-dof SSI system and transfer functions are generated. It is shown that the layering of the foundation effects the motion of the SSI system. These effects are more pronounced for shallow layers with large difference in shear wave velocity from the underlying half-space. (orig.)

  16. Improved Seasonal Prediction of European Summer Temperatures With New Five-Layer Soil-Hydrology Scheme

    Science.gov (United States)

    Bunzel, Felix; Müller, Wolfgang A.; Dobrynin, Mikhail; Fröhlich, Kristina; Hagemann, Stefan; Pohlmann, Holger; Stacke, Tobias; Baehr, Johanna

    2018-01-01

    We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.

  17. Evaluation of microbial diversity of different soil layers at a contaminated diesel site

    CSIR Research Space (South Africa)

    Maila, MP

    2005-01-01

    Full Text Available with high TPH removal. Analysis of the microbial diversity in the different soil layers using functional diversity (community-level physiological profile, via Biolog) and genetic diversity using polymerase chain reaction-denaturing gradient gel...

  18. Use of Neutron Probe to Quantify the Soil Moisture Flux in Layers of Cultivated Soil by Chickpea

    International Nuclear Information System (INIS)

    El- Gendy, R.W.

    2008-01-01

    This work aims to use the neutron moisture meter and the soil moisture retention curve to quantify the soil moisture flux in the soil profile of Nubarria soil in Egypt at 15, 30, 45, and 60-cm depths during the growth season of Chickpea. This method depends on the use of in situ θ measurements via neutron moisture meter and soil matric suction using model of the soil moisture retention curve at different soil depths, which can be determined in situ. Total hydraulic potential values at the different soil depths were calculated as a function (θ) using the derivative model. The gradient of hydraulic potential at any soil depth can be obtained by detecting of the hydraulic potential within the soil profile. The soil water fluxes at the different soil depths were calculated using In situ measured unsaturated hydraulic conductivity and the gradient of hydraulic potential, which correlated with soil moisture contents as measured by neutron probe. Values of hydraulic potentials after and before irrigation indicate that the direction of soil moisture movement was downward after irrigation and was different before next irrigation. Collecting active roots for water absorption of chickpea were defined from direction of soil water movement from up and down to a certain soil depth was 19 cm depth from the soil surface. Active rooting depth was 53 cm depth, which separates between evapotranspiration and gravity effects The soil water fluxes after and before the next irrigation of chickpea were 1.2453, 0.8613, 0.8197 and 0.6588 cm/hr and 0.0037, - 0.0270,- 0.1341, and 0.2545 cm/hr at 15, 30, 45 and 60 cm depths, respectively. The negative values at 30 and 45 cm depth before the next irrigation indicates there were up ward movement for soil water flux, where finding collecting active roots for water absorption of chickpea at 19 cm depth. Direction of soil water movement, soil water flux, collecting active roots for water absorption and active rooting depth can be determined using

  19. The Spatial Variability of Soil Dehydrogenase Activity: A Survey in Urban Soils

    OpenAIRE

    Kizilkaya, Ridvan; Aşkin, Tayfun

    2007-01-01

    Information on soil microorganisms and their activity used to determine microbiological characteristics are very important for soil quality and productivity. Studies of enzyme activities provide information on the biochemical processes occurring in soil. There is growing evidence that soil biological parameters may be potential and sensitive indicators of soil ecological conditions and soil management. Soil microbiological parameters may be evaluated statistically due to application of geosta...

  20. Modeling of 1-D nitrate transport in single layer soils | Dike | Journal ...

    African Journals Online (AJOL)

    The transport of nitrate in laboratory single soil columns of sand, laterite and clay were investigated after 21 days. The 1-D contaminant transport model by Notodarmojo et al (1991) for single layer soils were calibrated and verified using field data collected from a refuse dump site at avu, owerri, Imo state. The experimental ...

  1. Predicting Subsurface Soil Layering and Landslide Risk with Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Barari, Amin; Ibsen, Lars Bo

    2011-01-01

    This paper is concerned principally with the application of ANN model in geotechnical engineering. In particular the application for subsurface soil layering and landslide analysis is discussed in more detail. Three ANN models are trained using the required geotechnical data obtained from...... networks are capable of predicting variations in the soil profile and assessing the landslide hazard with an acceptable level of confidence....

  2. Soil radon response around an active volcano

    International Nuclear Information System (INIS)

    Segovia, N.; Valdes, C.; Pena, P.; Mena, M.; Tamez, E.

    2001-01-01

    Soil radon behavior related to the volcanic eruptive period 1997-1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages

  3. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution.

    Science.gov (United States)

    Mazurek, Ryszard; Kowalska, Joanna; Gąsiorek, Michał; Zadrożny, Paweł; Józefowska, Agnieszka; Zaleski, Tomasz; Kępka, Wojciech; Tymczuk, Maryla; Orłowska, Kalina

    2017-02-01

    In most cases, in soils exposed to heavy metals accumulation, the highest content of heavy metals was noted in the surface layers of the soil profile. Accumulation of heavy metals may occur both as a result of natural processes as well as anthropogenic activities. The quality of the soil exposed to heavy metal contamination can be evaluated by indices of pollution. On the basis of determined heavy metals (Pb, Zn, Cu, Mn, Ni and Cr) in the soils of Roztocze National Park the following indices of pollution were calculated: Enrichment Factor (EF), Geoaccumulation Index (I geo ), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI). Additionally, we introduced and calculated the Biogeochemical Index (BGI), which supports determination of the ability of the organic horizon to accumulate heavy metals. A tens of times higher content of Pb, Zn, Cu and Mn was found in the surface layers compared to their content in the parent material. This distribution of heavy metals in the studied soils was related to the influence of anthropogenic pollution (both local and distant sources of emission), as well as soil properties such as pH, organic carbon and total nitrogen content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Soil water characteristics of Middle Pleistocene paleosol layers on ...

    African Journals Online (AJOL)

    Administrator

    2011-09-14

    Sep 14, 2011 ... models to be fitted to the SWCC data, the van Genuchten model was applicable .... There is some risk that ... optimal model for the eight paleosol samples. ..... Code for Quantifying the Hydraulic Functions of Unsaturated Soils.

  5. Applied satellite remote sensing to runoff analysis: Through the effective depth of soil layer

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Kondoh, T.; Kida, T.; Nishikawa, H.

    2002-01-01

    The thickness of the soil layers in which tree roots are able to develop freely influences forest composition and growth. Trees growing in shallow soil are usually less well supplied with water and mineral nutrients than those growing in deeper soil. A soil may be deep in an absolute sense but, because of a relatively impervious layer, such as hardpan or because of a high water-table, may be shallow in a physiological sense. Penetrability measurements have been found useful in evaluating the influence of different forest types on the physical properties of soils. Commonly the penetrability of soils can be measured by using the Hasegawa-formed soil penetrometer and can be judged as the soil softness content (SSC). Previous studies report soil with more than 1.9 cm/drop of SSC to be highly permeable and therefore roots are more likely to be extensively developed. Based upon this theory the depth of soil layer with more than 1.9 cm/drop of SSC can be defined as the Effective Depth of Soil Layer (EDSL). We examined the relationship between the Ratio Vegetation Index (RVI) and the EDSL and established a 'Runoff Simulation Model (RSM)' based upon the theory of the Storage Function Model method. The conclusions are that (1) a strong positive correlation between the RVI (ground measured) and the EDSL was given, (2) applying results of conclusion (1) to satellite analysis a similar correlation between the RVI (satellite analysis of JERS 1/OPS data) and the EDSL was observed and (3) the simulated storm-runoff hydro graph coincides with the observed one well

  6. Heavy metal pollution and soil enzymatic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, G

    1974-01-01

    The activity of hydrolytic soil enzymes was studied on spruce mor, polluted with Cu and Zn from a brass foundry in Sweden. Approximately straight regression lines were obtained between enzymatic activity or respiration rate and log Cu + Zn concentration, with highly significant negative regression coefficients for urease and acid phosphatase activity as well as respiration rate, whereas US -glucosidase activity was not measurably lower at high concentrations of Cu + Zn. 17 references, 5 figures.

  7. Removal of nitrogen by a layered soil infiltration system during intermittent storm events.

    Science.gov (United States)

    Cho, Kang Woo; Song, Kyung Guen; Cho, Jin Woo; Kim, Tae Gyun; Ahn, Kyu Hong

    2009-07-01

    The fates of various nitrogen species were investigated in a layered biological infiltration system under an intermittently wetting regime. The layered system consisted of a mulch layer, coarse soil layer (CSL), and fine soil layer (FSL). The effects of soil texture were assessed focusing on the infiltration rate and the removal of inorganic nitrogen species. The infiltration rate drastically decreased when the uniformity coefficient was larger than four. The ammonium in the synthetic runoff was shown to be removed via adsorption during the stormwater dosing and nitrification during subsequent dry days. Stable ammonium adsorption was observed when the silt and clay content of CSL was greater than 3%. This study revealed that the nitrate leaching was caused by nitrification during dry days. Various patterns of nitrate flushing were observed depending on the soil configuration. The washout of nitrate was more severe as the silt/clay content of the CSL was greater. However, proper layering of soil proved to enhance the nitrate removal. Consequently, a strictly sandy CSL over FSL with a silt and clay content of 10% was the best configuration for the removal of ammonium and nitrate.

  8. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  9. HTO and OBT activity concentrations in soil at the historical atmospheric HT release site (Chalk River Laboratories)

    International Nuclear Information System (INIS)

    Kim, S.B.; Bredlaw, M.; Korolevych, V.Y.

    2012-01-01

    Tritium is routinely released by the Chalk River Laboratories (CRL) nuclear facilities. Three International HT release experiments have been conducted at the CRL site in the past. The site has not been disturbed since the last historical atmospheric testing in 1994 and presents an opportunity to assess the retention of tritium in soil. This study is devoted to the measurement of HTO and OBT activity concentration profiles in the subsurface 25 cm of soil. In terms of soil HTO, there is no evidence from the past HT release experiments that HTO was retained. The HTO activity concentration in the soil pore water appears similar to concentrations found in background areas in Ontario. In contrast, OBT activity concentrations in soil at the same site were significantly higher than HTO activity concentrations in soil. Elevated OBT appears to reside in the top layer of the soil (0–5 cm). In addition, OBT activity concentrations in the top soil layer did not fluctuate much with season, again, quite in contrast with soil HTO. This result suggests that OBT activity concentrations retained the signature of the historical tritium releases. Highlights: ► At the historical HT release site, HTO and OBT activity concentrations in soil depths were investigated. ► Most organically bound tritium exists in the top layer of the soil. ► The results indicated that OBT activity concentrations can be reflective of historical tritium releases into the environment.

  10. Melanin as an active layer in biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Piacenti da Silva, Marina, E-mail: marinaness@yahoo.com; Congiu, Mirko, E-mail: congiumat@gmail.com; Oliveira Graeff, Carlos Frederico de, E-mail: graeff@fc.unesp.br [Department of Physics, Faculty of Sciences - UNESP, Bauru, SP (Brazil); Fernandes, Jéssica Colnaghi, E-mail: jeziga-cf@yahoo.com.br; Biziak de Figueiredo, Natália, E-mail: natbiziak@yahoo.com.br; Mulato, Marcelo, E-mail: mmulato@ffclrp.usp.br [Department of Physics, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  11. Melanin as an active layer in biosensors

    International Nuclear Information System (INIS)

    Piacenti da Silva, Marina; Congiu, Mirko; Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi; Biziak de Figueiredo, Natália; Mulato, Marcelo

    2014-01-01

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine

  12. Responses of plant available water and forest productivity to variably layered coarse textured soils

    Science.gov (United States)

    Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie

    2010-05-01

    Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil

  13. Chemical composition of the humus layer, mineral soil and soil solution of 150 forest stands in the Netherlands in 1990

    NARCIS (Netherlands)

    Vries, de W.; Leeters, E.E.J.M.

    2001-01-01

    A nationwide assessment of the chemical composition of the humus layer, mineral topsoil (0-30 cm) and soil solution in both topsoil and subsoil (60-100 cm) was made for 150 forest stands in the year 1990. The stands, which were part of the national forest inventory on vitality, included seven tree

  14. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    Science.gov (United States)

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.

  15. Termite activity in relation to natural grassland soil attributes

    NARCIS (Netherlands)

    Kaschuk, G.; Pires Santos, J.C.; Almeida, J.A.; Sinhorati, D.S.; Berton-Junior, J.F.

    2006-01-01

    Soil-feeding termites transport soil for mound building, and this process can affect soil characteristics. To verify the influence of soil termite activity on soil characteristics, samples were collected from top, bottom and center of termite mounds, and of the adjacent area, to assess chemical and

  16. Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2015-01-01

    Full Text Available Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameter θ has been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter θ and the permeability and compressibility of the double-layered soil system.

  17. Soil microbial activities and its relationship with soil chemical ...

    African Journals Online (AJOL)

    The fields assessed are organically managed Soils (OMS), Inorganically Managed Soils (IMS) and an Uncultivated Land having grass coverage (ULS). Soil Microbial Respiration (SMR), Microbial Biomass Carbon (MBC), Microbial Biomass Nitrogen (MBN) and Microbial Biomass Phosphorus (MBP) were analyzed.

  18. Modelling of the interface between the geosphere and the biosphere: discharge through a soil layer

    International Nuclear Information System (INIS)

    Elert, M.; Argaerde, A.C.; Ericsson, A.M.

    1988-12-01

    Radionuclides released from an underground repository can be transported by deep groundwater to the biosphere. The deep groundwater can be discharged to an agricultural area or a bog. In this report an evaluation is made of the resulting distribution of radionuclides in the upper soil and the release of radionuclides to a creek. From these environments, radionuclides can follow different exposure pathways to man. In order to evaluate the radionuclide movement to and retention in the soil surface, the hydrology in the superficial layers has been studied with the help of computer models. The chemical environment in soil was studied with special emphasis on radionuclide mobility. Examples of parameters which affect this mobility and which were studied are mineral composition, content of organic material, pH and redox potential. The chemical behaviour of the radionuclides iodine, cesium, radium, uranium, neptunium and americium was the topic of a literature survey. For the work in this report, radionuclide mobility in soils is represented by the equilibrium distribution coefficient, K d . The radionuclide transport calculations showed that only those radionuclides which are sorbed strongly in the soil (i.e. radium, cesium and americium) have retention times longer than the expected lifetime of the soil layer itself. This would also be the case for neptunium and uranium if reducing conditions are found at the base of the soil column. For only slightly sorbing nuclides no important retention was found. The retarding effects of the soil layer is less than that of a sediment layer in a lake (the subject of a previous study). because of the greater water turnover in the soil. Several limitations to current knowledge and modelling techniques have been identified, and suggestion for possible improvement have been made. (85 refs.) (au)

  19. Inversion of soil electrical conductivity data to estimate layered soil properties

    Science.gov (United States)

    CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...

  20. Active Layer Monitoring, Arctic and Subarctic Canada, Version 6

    Data.gov (United States)

    National Aeronautics and Space Administration — This project involves measuring regional and site variability in maximum annual active layer development and vertical surface movement over permafrost, and...

  1. Soil and Water Conservation Activities for Scouts.

    Science.gov (United States)

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  2. Erosion of cohesive soil layers above underground conduits

    Directory of Open Access Journals (Sweden)

    Luu Li-Hua

    2017-01-01

    Full Text Available Using a recently developed 2D numerical modelling that combines Discrete Element (DEM and Lattice Boltzmann methods (LBM, we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.

  3. Erosion of cohesive soil layers above underground conduits

    Science.gov (United States)

    Luu, Li-Hua; Philippe, Pierre; Noury, Gildas; Perrin, Jérôme; Brivois, Olivier

    2017-06-01

    Using a recently developed 2D numerical modelling that combines Discrete Element (DEM) and Lattice Boltzmann methods (LBM), we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.

  4. [Effects of long-term fertilization on enzyme activities in black soil of Northeast China].

    Science.gov (United States)

    Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Wang, Shou-Yu

    2008-03-01

    In this paper, black soil samples at the depths of 0-20 cm and 20-40 cm were collected from the Hailun Agricultural Ecology Station of Chinese Academy of Sciences to study the effects of long-term fertilization on their urease, invertase, phosphatase and catalase activities and total C and N contents. The results showed that long-term application of chemical fertilizers and organic manure increased the activities of urease, invertase and phosphatase in 0-20 cm and 20-40 cm soil layers in different degree, and the combined application of them increased the activities of the three enzymes significantly, with an increment of 43.6%-113.2%, 25.9%-79.5% and 14.7%-134.4% in 0-20 cm soil layer and 56.1%-127.2%, 14.5%-113.8% and 16.2%-207.2% in 20-40 cm soil layer, respectively. However, long-term application of chemical fertilizers without organic manure had little effects on catalase activity. The activities of urease, invertase and phosphatase decreased with increasing soil depth. Long-term application of N fertilizer increased urease activity, and P fertilization had obvious positive effect on phosphatase activity. Long-term fertilization also had obvious effects on the soil total C and N contents and C/N ratio.

  5. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  6. Buried straw layer and plastic mulching increase microlfora diversity in salinized soil

    Institute of Scientific and Technical Information of China (English)

    LI Yu-yi; PANG Huan-cheng; HAN Xiu-fang; YAN Shou-wei; ZHAO Yong-gan; WANG Jing; ZHAI Zhen; ZHANG Jian-li

    2016-01-01

    Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P<0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P<0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.

  7. The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.

    1989-12-01

    The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.

  8. Phosphorus Speciation of Forest-soil Organic Surface Layers using P K-edge XANES Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    J Prietzel; J Thieme; D Paterson

    2011-12-31

    The phosphorus (P) speciation of organic surface layers from two adjacent German forest soils with different degree of water-logging (Stagnosol, Rheic Histosol) was analyzed by P K-edge XANES and subsequent Linear Combination Fitting. In both soils, {approx}70% of the P was inorganic phosphate and {approx}30% organic phosphate; reduced P forms such as phosphonate were absent. The increased degree of water-logging in the Histosol compared to the Stagnosol did not affect P speciation.

  9. Effect of Azospirillum brasilense inoculation on urease activity in soil and gamma-sterilized soil

    International Nuclear Information System (INIS)

    Perotti, E.B.R.; Pidello, A.

    1999-01-01

    Azospirillum spp. is considered a PGPR (plant growth promoting rhyzobacteria) bacterium, besides this interest, there is little information about its effects on other functional microbial groups or on soil enzymes. In this paper, the impact that Azospirillum brasilense 7001 inoculation has on urease activity expression in a Typic Argiudoll was studied. Evolution of urease activity of soil and of gamma irradiation (25 KGy) sterilized soil, and the inoculated strain survival were tested. The relation between soil urease activity and soil NH 4 +-N was also determined. In γ-sterilized soil, urease activity of inoculated soil increased with time, showing significant differences with regard to the control soil without inoculum at day 15. In non-sterile soil, urease activity decreased during the studied period in all treatments; in inoculated soil, it showed higher or lower values than the control depending on sampling time. Azospirillum survival was important and different according to soil condition conditions. The negative relation between NH 4 +-N concentration and soil urease activity (r 2 = 0.62) was observed in inoculated soil. The role of the addition of autoclaved inoculum in the urease activity expression is discussed. The research proves that in both studied situations Azospirillum modified soil urease activity, and that the competition with native microorganisms and soil NH 4 +-N may affect this bacterium capacity. (author)

  10. Modelling desiccation cracking in a homogenous soil clay layer: comparison between different hypotheses on constitutive behaviour

    Directory of Open Access Journals (Sweden)

    Jommi Cristina

    2016-01-01

    Full Text Available Desiccation cracks are usually thought to start from the surface of an evaporating soil layer, and the available simplified models for crack initiation and propagation are based on this hypothesis. On the contrary, experimental results on a Dutch river clay showed that cracks in an evaporating soil layer may start and propagate below the surface, confirming earlier findings by other researchers. A simple one-dimensional model was set up to analyse the consequences of different hypotheses about the material behaviour on the crack onset in a homogenous soil layer undergoing surface drying. The results of the model show that dependence of the material behaviour on the rate of water content change is a necessary requirement for cracks to initiate below the surface. The conclusion suggests that, to properly understand cracking in an evaporating soil layer, an intrinsic time scale for the mechanical response must be accounted for, among all the other factors which were previously highlighted by other researchers. The key factor to predict crack onset below the surface is the dependence of the drying branch of the water retention curve of the compressible soil on the rate of drying, which would be justified by a rate dependent fabric evolution.

  11. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Directory of Open Access Journals (Sweden)

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  12. Compost quality and its function as a soil conditioner of recultivation layers - a critical review

    Science.gov (United States)

    Beck-Broichsitter, Steffen; Fleige, Heiner; Horn, Rainer

    2018-01-01

    During a period of 4 years, soil chemical and physical properties of the temporary capping system in Rastorf (Northern Germany) were estimated, whereby compost was partly used as soil improver in the upper recultivation layer. The air capacity and the available water capacity of soil samples were first determined in 2013 (without compost), and then in 2015 (with compost) under laboratory conditions. Herein, the addition of compost had a positive effect on: the air capacity up to 13.4 cm3 cm-3; and the available water capacity up to 20.1 cm3 cm-3 in 2015, in the recultivation layer (0-20 cm). However, taking into account the in situ results of the tensiometer and frequency domain reflectometry measurements, the addition of compost had a negative effect. The soil-compost mixture led to restricted remoistening even after a normal summer drying period in autumn and induced more negative matric potentials in the recultivation layer. In summary, the soil-improving effect of the compost addition, in conjunction with an increased water storage capacity, is undeniable and was demonstrated in a combined field and laboratory study. Therefore, intensive hydrophobicity can inhibit the homogeneous remoistening of the soil, resulting in a decreased hydraulic effectiveness of the sealing system.

  13. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    package CST Microwave Studio in the frequency domain. We explore different permittivities of the ITO layer, which can be achieved by utilizing different anneal conditions. To increase transmittance and enhance modulation depth or efficiency, we propose to pattern the continuous active layer. Dependence...... from the pattern size and filling factor of the active material are analyzed for tuned permittivity of the ITO layer. Direct simulation of the device functionality validates optimization design....

  14. Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation

    OpenAIRE

    Tao, Hsiao-Hang; Slade, Eleanor M.; Willis, Katherine J.; Caliman, Jean Pierre; Snaddon, Jake Lanion

    2016-01-01

    Optimizing the use of available soil management practices in oil palm plantations is crucial to enhance long-term soil fertility and productivity. However, this needs a thorough understanding of the functional responses of soil biota to these management practices. To address this knowledge gap, we used the bait lamina method to investigate the effects of different soil management practices on soil fauna feeding activity, and whether feeding activity was associated with management-mediated cha...

  15. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    International Nuclear Information System (INIS)

    Reid, Brian J.; Papanikolaou, Niki D.; Wilcox, Ronah K.

    2005-01-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by 14 C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 μg kg -1 ) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk

  16. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)]. E-mail: b.reid@uea.ac.uk; Papanikolaou, Niki D. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Wilcox, Ronah K. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by {sup 14}C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 {mu}g kg{sup -1}) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk.

  17. HT oxidation activity of soil irradiated with gamma radiation

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Tjahaja, P.I.; Takashima, Yoshimasa

    1992-01-01

    The HT oxidation activity was examined for soils irradiated with 60 Co γ-rays at various doses. The HT oxidation rate decreased with increase of initial H 2 concentration, indicating a similar oxidation mechanism between HT and H 2 . Irradiated soils showed decrease of oxidation activity with dose suggests that HT and H 2 oxidation activities were affected by sterilization with γ-rays. The decline of the oxidation activity with dose was analyzed by a composite of two components with different radiosensitivity and they were considered to be activities of soil microorganisms and abiotic soil enzymes. The oxidation activity due to soil microorganisms would be important at low dose range and more radioresistant abiotic soil enzymes would be responsible for the oxidation activity observed at more than several kGy. In non-irradiated soil about half of the oxidation activity was considered resulting from abiotic soil enzymes. (author)

  18. [Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].

    Science.gov (United States)

    Chen, Zheng; Yang, Gui-de; Sun, Qing-ye

    2009-09-01

    Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.

  19. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  20. Mapping of permafrost surface and active layer properties using GPR: a comparison of frequency dependencies

    DEFF Research Database (Denmark)

    Gacitua, Guisella; Uribe, José Andrés; Tamstorf, Mikkel Peter

    2011-01-01

    of the permafrost and from the internal features in the unfrozen soil. These results will be further used to determine the distribution of dielectric heterogeneities to support water content estimated from the same profiles. Comparing results from 400 and 800 MHz, we found that although both frequencies...... are suitable to measure thickness and to detect features in the active layer, the 400 MHz gives a better impression of the influence of the dielectric contrast effect from top of the permafrost zone which can be used to quantify the soil water content....

  1. Bearing Capacity of Footings on Thin Layer of Sand on Soft Cohesive Soil

    DEFF Research Database (Denmark)

    Philipsen, J.; Sørensen, Carsten S.

    2004-01-01

    This paper contains the results of some numerical calculations performed with the aim to determine the bearing capacities of footings placed on a thin layer of sand underlain by soft cohesive soil. During the last 30-35 years different analytical and empirical calculation methods for this situation...... prepared model tests made in laboratories....

  2. Bryoid layer response to soil disturbance by fuel reduction treatments in a dry conifer forest

    Science.gov (United States)

    Amanda Hardman; Bruce McCune

    2010-01-01

    We investigated the response of the bryoid layer, bryophyte and lichen communities on the soil surface three years after fuel reduction treatment (logging and burning) in the central Blue Mountains of eastern Oregon. Both treatment and control areas had been decimated by spruce budworm and drought before the fuel reduction treatments. Treatments reduced overstory and...

  3. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  4. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  5. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    Science.gov (United States)

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the

  6. Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products

    Science.gov (United States)

    Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.

    2017-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.

  7. Thin layer chromatographic analyses of pesticides in a soil ecosystem

    International Nuclear Information System (INIS)

    Afful, S.; Dogbe, S.A.; Ahmad, K.; Ewusie, A.T.

    2008-01-01

    Silica gel 60, silica gel 60 F 254 , and aluminium oxide as adsorbents were used to investigate their suitability for the analysis and detection of the pesticides: nitrofen, atrazine, diuron, dioxacarb, propoxur, propanil, carbaryl and cypermethrin in soil ecosystem using ethyl acetate, chloroform, dichloromethane and ethyl acetate/chloroform (1:1) as developing solvents. O-tolidine and potassium iodide reagent were used for the detection of pesticides. R f values obtained for the pesticides using the silica gel 60-ethyl acetate. silica gel 60F 254 -ethyl acetate, silica gel 60 chloroform, silica gel 60 F 254 - chloroform, silica gel 60 - (1:1) ethyl acetate/chloroform and silica gel 60 F 254 - (1:1) ethyl acetate/chloroform systems generally were within the stipulated range of 0.4-0.8. R f values obtained for the pesticides using silica gel 60-dichloromethane systems were very low except for cypermethrin and nitrofen. Analysis with aluminium oxide coated plates gave a heavy yellow background with the detection reagent making visualization of spots difficult. Aluminium oxide coated plate is, therefore, not recommended when o-tolidine plus potassium iodide is used as detection reagent. (au)

  8. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    Science.gov (United States)

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  9. KIN SP: A boundary element method based code for single pile kinematic bending in layered soil

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2018-02-01

    Full Text Available In high seismicity areas, it is important to consider kinematic effects to properly design pile foundations. Kinematic effects are due to the interaction between pile and soil deformations induced by seismic waves. One of the effect is the arise of significant strains in weak soils that induce bending moments on piles. These moments can be significant in presence of a high stiffness contrast in a soil deposit. The single pile kinematic interaction problem is generally solved with beam on dynamic Winkler foundation approaches (BDWF or using continuous models. In this work, a new boundary element method (BEM based computer code (KIN SP is presented where the kinematic analysis is preceded by a free-field response analysis. The analysis results of this method, in terms of bending moments at the pile-head and at the interface of a two-layered soil, are influenced by many factors including the soil–pile interface discretization. A parametric study is presented with the aim to suggest the minimum number of boundary elements to guarantee the accuracy of a BEM solution, for typical pile–soil relative stiffness values as a function of the pile diameter, the location of the interface of a two-layered soil and of the stiffness contrast. KIN SP results have been compared with simplified solutions in literature and with those obtained using a quasi-three-dimensional (3D finite element code.

  10. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    Directory of Open Access Journals (Sweden)

    Chia-Chun Ho

    2015-03-01

    Full Text Available The multi-soil-layering (MSL system primarily comprises two parts, specifically, the soil mixture layer (SML and the permeable layer (PL. In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  11. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    Science.gov (United States)

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-23

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  12. Active unjamming of confluent cell layers

    Science.gov (United States)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  13. Soil Microbial Activity in Conventional and Organic Agricultural Systems

    Directory of Open Access Journals (Sweden)

    Romero F.V. Carneiro

    2009-06-01

    Full Text Available The aim of this study was to evaluate microbial activity in soils under conventional and organic agricultural system management regimes. Soil samples were collected from plots under conventional management (CNV, organic management (ORG and native vegetation (AVN. Soil microbial activity and biomass was significantly greater in ORG compared with CNV. Soil bulk density decreased three years after adoption of organic system. Soil organic carbon (SOC was higher in the ORG than in the CNV. The soil under organic agricultural system presents higher microbial activity and biomass and lower bulk density than the conventional agricultural system.

  14. Soil and surface layer type affect non-rainfall water inputs

    Science.gov (United States)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  15. Ameliorating effects of designer biochars in a hard-setting subsoil layer: soil fertility and plant biomass

    Science.gov (United States)

    Soils in the southeastern U.S. Coastal Plain region have meager soil fertility and frequently have compacted subsoil layers (E horizon). Designer biochar has gained global interest as an amendment to improve the fertility, chemical, and physical properties of degraded agricultural soils. We hypothes...

  16. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  17. Thin layer activation techniques in research and industry

    International Nuclear Information System (INIS)

    Conlon, T.W.

    1993-01-01

    The following key application of thin layer activation technique (TLA) are discussed: ion-erosion in fusion tokamaks, bio-engineering technology, automobile industry. Future developments of the techniques, such as fission fragment TLA, multi-layer TLA and recoil implantation are discussed as well. 7 refs, 6 figs, 1 tab

  18. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below...

  19. Research on the Horizontal Displacement Coefficient of Soil Surrounding Pile in Layered Foundations by Considering the Soil Mass’s Longitudinal Continuity

    Directory of Open Access Journals (Sweden)

    Yao Wen-Juan

    2013-01-01

    Full Text Available When utilizing the p-y curve to simulate the nonlinear characteristics of soil surrounding pile in layered foundations, due to having not taken into account the soil mass’s longitudinal continuity, the calculation deviation of horizontal displacement increases with the growth of a load. This paper adopted the layered elasticity system theory to consider the soil mass’s longitudinal continuity, as well as utilizing the research method for layered isotropic bodies, assuming that the horizontal resistance is evenly distributed around the perimeter of the pile's cross-section. Then an appropriate transfer matrix method of horizontal displacement coefficient for the soil surrounding pile in layered foundations was established. According to the calculation principle of finite element equivalent load, the horizontal displacement coefficient matrix was deduced as well as providing a corrected formula for the horizontal displacement of soil surrounding pile through the p-y curve method when the external load was increased. Following the established model, a program was created which was used for calculating and analyzing the horizontal displacement coefficient matrix of three-layered soil in order to verify this method’s validity and rationale. Where there is a relatively large discrepancy in the soil layers’ properties, this paper’s method is able to reflect the influence on the layered soil’s actual distributional difference as well as the nearby soil layers’ interaction.

  20. Instrumental neutron activation analysis of soil sample

    International Nuclear Information System (INIS)

    Abdul Khalik Haji Wood.

    1983-01-01

    This paper describes the analysis of soil samples collected from 5 different location around Sungai Lui, Kajang, Selangor, Malaysia. These sample were taken at 22-24 cm from the top of the ground and were analysed using the techniques of Instrumental Neutron Activation Analysis (INAA). The analysis on soil sample taken above 22-24 cm level were done in order to determine if there is any variation in elemental contents at different sampling levels. The results indicate a wide variation in the contents of the samples. About 30 elements have been analysed. The major ones are Na, I, Cl, Mg, Al, K, Ti, Ca and Fe. Trace elements analysed were Ba, Sc, V, Cr, Mn, Ga, As, Zn, Br, Rb, Co, Hf, Zr, Th, U, Sb, Cs, Ce, Sm, Eu, Tb, Dy, Yb, Lu and La. (author)

  1. NASA Soil Moisture Active Passive (SMAP) Applications

    Science.gov (United States)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  2. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    Science.gov (United States)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  3. Long-term comparison of Kuparuk Watershed active layer maps, northern Alaska, USA

    Science.gov (United States)

    Nyland, K. E.; Queen, C.; Nelson, F. E.; Shiklomanov, N. I.; Streletskiy, D. A.; Klene, A. E.

    2017-12-01

    The active layer, or the uppermost soil horizon that thaws seasonally, is among the most dynamic components of the permafrost system. Evaluation of the thickness and spatial variation of the active layer is critical to many components of Arctic research, including climatology, ecology, environmental monitoring, and engineering. In this study we mapped active-layer thickness (ALT) across the 22,278 sq. km Kuparuk River basin on Alaska's North Slope throughout the summer of 2016. The Kuparuk River extends from the Brooks Range through the Arctic Foothills and across the Arctic Coastal Plain physiographic provinces, and drains into the Beaufort Sea. Methodology followed procedures used to produce an ALT map of the basin in 1995 accounting for the effects of topography, vegetation, topoclimate, and soils, using the same spatial sampling scheme for direct ALT and temperature measurement at representative locations and relating these parameters to vegetation-soil associations. A simple semi-empirical engineering solution was used to estimate thaw rates for the different associations. An improved lapse-rate formulation and a higher-resolution DEM were used to relate temperature to elevation. Three ALT maps were generated for the 2016 summer, combining measured thaw depth, temperature records, the 25 m ArcticDEM, high resolution remote sensed data, empirical laps rates, and a topoclimatic index through the thaw solution. These maps were used to track the spatial progression of thaw through the 2016 summer season and estimate a total volume of thawed soil. Maps produced in this study were compared to the 1995 map to track areas of significant geographic changes in patterns of ALT and total volume of thawed soil.

  4. Distribution of active organic matter in the soil profiles of natural and agricultural ecosystems

    Science.gov (United States)

    Khodzhaeva, A. K.; Semenov, V. M.

    2015-12-01

    The amount of active (potentially mineralizable) organic carbon (C0) in the 1-m-deep layer of typical chernozem, dark-gray forest soil, and gray forest soil was estimated for virgin plots and arable land. It was shown that C0 is mainly found in the topsoil (0-20 cm), where its pool reaches 32-60% of the total amount of C0 in the layer of 0-100 cm. The C0 content and its portion in the total organic carbon decrease down the soil profiles. The disturbance of the structure of the pool of active organic carbon—the loss of the moderately mineralizable (0.1 > k 2 > 0.1 day-1) fraction—takes place in the upper horizon of plowed soils. The total pool of C0 in the upper meter of typical chernozem under cropland and under meadow-steppe cenosis comprises 2.8 and 5.2 t/ha, respectively; for the dark gray forest soil under cropland and forest, it reaches 5.5 and 9.8 t/ha, respectively; and for the gray forest soil under cropland and forest, 2.4 and 3.4 t/ha, respectively. The pools of C0 in the typical chernozem. dark gray forest, and gray forest soils are comparable with the values of the annual C-CO2 emission from the soils of these zones.

  5. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use.

    Science.gov (United States)

    Reid, Brian J; Papanikolaou, Niki D; Wilcox, Ronah K

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.

  6. Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A; Kauri, T; Baeaeth, E; Soederstroem, B

    1986-01-01

    The biological effects of heavy metal contamination of coniferous forest soils were studied in the A/sub 01//A/sub 02/ layer around a primary smelter in Northern Sweden. Soil concentrations of 17 elements were determined. Smelter-emitted heavy metals were 5 to 75 times higher in the plot closest to the smelter compared with background levels. Despite emission of sulfur no decrease in pH was found. Bacteria producing acid from maltose, cellobiose, arabinose or xylose and bacteria hydrolyzing starch, pectin, xyland or cellulose decreased 8- to 11-fold due to the soil contamination. Chitin hydrolyzers were 5 times less abundant at the most polluted site compared with background levels. Soil respiration rate and urease activity decreased by about a factor of 4, but phosphatase activity and mycelial lengths were unaffected by the soil contamination. Soil bacteria showed a sigmoidal response to the log of metal concentration in the soil and were affected at a lower pollution level than the other biological variables in the study. A multivariate analysis (partial least squares) showed that soil metal contamination and soil pH were the two environmental factors influencing the soil microorganisms.

  7. Classification of permafrost active layer depth from remotely sensed and topographic evidence

    International Nuclear Information System (INIS)

    Peddle, D.R.; Franklin, S.E.

    1993-01-01

    The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to this study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth

  8. Soil biota and upper soil layer development in two contrasting post-mining chronosequences

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Keplin, B.; Pižl, Václav; Tajovský, Karel; Starý, Josef; Lukešová, Alena; Nováková, Alena; Balík, Vladimír; Háněl, Ladislav; Materna, Jan; Düker, Ch.; Chalupský, Josef; Rusek, Josef; Heinkele, T.

    2001-01-01

    Roč. 17, - (2001), s. 275-284 ISSN 0925-8574 R&D Projects: GA MŠk ME 076; GA ČR GA526/98/P156 Institutional research plan: CEZ:AV0Z6066911 Keywords : succession * coal mining * soil formation Subject RIV: EH - Ecology, Behaviour Impact factor: 0.601, year: 2001

  9. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils.

    Science.gov (United States)

    Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang

    2017-12-01

    A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Huygens' Principle: The capture of seismic energy by a soft soil layer

    Science.gov (United States)

    Lomnitz, Cinna; Meas, Yunny

    2004-07-01

    Possible nonlinear coupling in surface waves is described at the Texcoco Array (TXC) in Mexico City. Shear-coupled surface waves may be caused by interaction between Rayleigh modes in the basement and resonant shear modes in the uppermost mud layer. Large-amplitude, monochromatic wave trains of long duration appear to be modulated by the fundamental mode of the mud layer. Particle motion features frequent reversals from prograde to retrograde ground motion. Earthquake damage in Mexico City might be related to unrecognized effects related to nonlinear coupling in soft-soil conditions.

  11. Development of computer code for determining prediction parameters of radionuclide migration in soil layer

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Ohnuki, Toshihiko

    1986-07-01

    A computer code (MIGSTEM-FIT) has been developed to determine the prediction parameters, retardation factor, water flow velocity, dispersion coefficient, etc., of radionuclide migration in soil layer from the concentration distribution of radionuclide in soil layer or in effluent. In this code, the solution of the predicting equation for radionuclide migration is compared with the concentration distribution measured, and the most adequate values of parameter can be determined by the flexible tolerance method. The validity of finite differential method, which was one of the method to solve the predicting equation, was confirmed by comparison with the analytical solution, and also the validity of fitting method was confirmed by the fitting of the concentration distribution calculated from known parameters. From the examination about the error, it was found that the error of the parameter obtained by using this code was smaller than that of the concentration distribution measured. (author)

  12. Seismic response of nuclear reactors in layered liquefiable soil deposits including nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Zaman, M.; Mamoon, S.M.

    1989-01-01

    Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures

  13. Infinite elements for soil-structure interaction analysis in multi-layered halfspaces

    International Nuclear Information System (INIS)

    Yun, Chung Bang; Kim, Jae Min; Yang, Shin Chu

    1994-01-01

    This paper presents the theoretical aspects of a computer code (KIESSI) for soil-structure interaction analysis in a multi-layered halfspace using infinite elements. The shape functions of the infinite elements are derived from approximate expressions of the analytical solutions. Three different infinite elements are developed. They are the horizontal, the vertical and the comer infinite elements (HIE, VIE and CIE). Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements

  14. Mathematical modelling of water and gas transport in layered soil covers for coal ash deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, A; Lindgren, M [Kemakta Consultants Co, Stockholm (SE)

    1990-12-17

    In the present work the dry deposition alternative is investigated. In particular the design of soil covers is treated theoretically using mathematical models. The soil cover should primarily act as a barrier against infiltrating water. This is done by having soil cover materials with low permeabilities and sloping covers thereby diverting the infiltrating water in the lateral direction. An important design aspect is that overflow should be avoided since this may cause erosional problems. Thus the design of the cover should allow for lateral water flow within the cover. In the present work we use the computer code TRUST for calculating the flow rates and the moisture contents in two layer covers (till on top of clay) for varying conditions. The calculations so far show that the hydraulic conductivity of the clay layer should be smaller than 10{sup -8} m/s. However, for the simulated longer covers (50 m) a lower hydraulic conductivity gives overflow indicating that better lateral drainage must be provided for. This can be done by increasing the thickness or hydraulic conductivity of the till layer. Simulations for different slopes give little impact, while the hydraulic conductivity of the clay layer is of major importance. Gas transport through the soil cover may be of importance if the waste contains pyrite. In the presence of oxygen and water, pyrite is oxidized producing sulphuric acid. The lowered pH will accelerate the leaching of several heavy metals. The transport rate of gas through a porous material is very sensitive to the water content, decreasing rapidly with increasing water content. In the present work a model, where the unsaturated conditions are accounted for, is outlined. A previously developed method for calculating oxygen transport and oxidation rate of pyrite in connection with mine wastes is generalized from 1D to 2D. A sample calculation illustrates the feasibility of the method. (au) (43 refs.).

  15. Soil structure and microbial activity dynamics in 20-month field-incubated organic-amended soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2014-01-01

    to determine compressive strength. During incubation, the amount of WDC depended on soil carbon content while the trends correlated with moisture content. Organic amendment only yielded modest decreases (mean of 14% across all sampling times and soils) in WDC, but it was sufficient to stimulate the microbial......Soil structure formation is essential to all soil ecosystem functions and services. This study aims to quantify changes in soil structure and microbial activity during and after field incubation and examine the effect of carbon, organic amendment and clay on aggregate characteristics. Five soils...... community (65–100% increase in FDA). Incubation led to significant macroaggregate formation (>2 mm) for all soils. Friability and strength of newly-formed aggregates were negatively correlated with clay content and carbon content, respectively. Soil workability was best for the kaolinite-rich soil...

  16. The importance of defining the geometry of foundations of soil layers for dynamic analysis of Colosseum

    International Nuclear Information System (INIS)

    Beste, H-J.; Clemente, P.; Conti, C.; D'Ovidio, G.; Nakamura, Y.; Orlando, L.; Rea, R.; Rovelli, A.; Valente, G.

    2015-01-01

    By the comparison between tests and analyses, the dynamic characterization was performed, in order to obtain the map of elastic modules for soil Colosseum interaction. The accuracy for foundations and soil is lower than for monument, due ti unknown exact geometry underground. For foundations, a high variability was found of elasticity modules, which was referred to variable damage of concrete for cracking in time. For soil layers, different definitions exist, and we are interested in the best. The vibrations produced by trains are depending on the underground geometry too. The analyses are performed with traditional convoys running on Metro B and C, for the vibrations knowledge on RA XLVII and on ground felt by pedestrians.

  17. RUSLE2015: Modelling soil erosion at continental scale using high resolution input layers

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Poesen, Jean; Ballabio, Cristiano; Lugato, Emanuele; Montanarella, Luca; Alewell, Christine

    2016-04-01

    Soil erosion by water is one of the most widespread forms of soil degradation in the Europe. On the occasion of the 2015 celebration of the International Year of Soils, the European Commission's Joint Research Centre (JRC) published the RUSLE2015, a modified modelling approach for assessing soil erosion in Europe by using the best available input data layers. The objective of the recent assessment performed with RUSLE2015 was to improve our knowledge and understanding of soil erosion by water across the European Union and to accentuate the differences and similarities between different regions and countries beyond national borders and nationally adapted models. RUSLE2015 has maximized the use of available homogeneous, updated, pan-European datasets (LUCAS topsoil, LUCAS survey, GAEC, Eurostat crops, Eurostat Management Practices, REDES, DEM 25m, CORINE, European Soil Database) and have used the best suited approach at European scale for modelling soil erosion. The collaboration of JRC with many scientists around Europe and numerous prominent European universities and institutes resulted in an improved assessment of individual risk factors (rainfall erosivity, soil erodibility, cover-management, topography and support practices) and a final harmonized European soil erosion map at high resolution. The mean soil loss rate in the European Union's erosion-prone lands (agricultural, forests and semi-natural areas) was found to be 2.46 t ha-1 yr-1, resulting in a total soil loss of 970 Mt annually; equal to an area the size of Berlin (assuming a removal of 1 meter). According to the RUSLE2015 model approximately 12.7% of arable lands in the European Union is estimated to suffer from moderate to high erosion(>5 t ha-1 yr-1). This equates to an area of 140,373 km2 which equals to the surface area of Greece (Environmental Science & Policy, 54, 438-447; 2015). Even the mean erosion rate outstrips the mean formation rate (walls and contouring) through the common agricultural

  18. [Soil soluble organic matter, microbial biomass, and enzyme activities in forest plantations in degraded red soil region of Jiangxi Province, China].

    Science.gov (United States)

    Jiang, Yu-mei; Chen, Cheng-long; Xu, Zhi-hong; Liu, Yuan-qiu; Ouyang, Jing; Wang, Fang

    2010-09-01

    Taking the adjacent 18-year-old pure Pinus massoniana pure forest (I), P. massoniana, Liquidamber fomosana, and Schima superba mixed forest (II), S. superba pure forest (III), L. fomosana (IV) pure forest, and natural restoration fallow land (CK) in Taihe County of Jiangxi Province as test sites, a comparative study was made on their soil soluble organic carbon (SOC) and nitrogen (SON), soil microbial biomass C (MBC) and N (MBN), and soil urease and asparaginase activities. In 0-10 cm soil layer, the pool sizes of SOC, SON, MBC, and MBN at test sites ranged in 354-1007 mg x kg(-1), 24-73 mg x kg(-1), 203-488 mg x kg(-1), and 24-65 mg x kg(-1), and the soil urease and asparaginase activities were 95-133 mg x kg(-1) x d(-1) and 58-113 mg x kg(-1) x d(-1), respectively. There were significant differences in the pool sizes of SOC, SON, MBC, and MBN and the asparaginase activity among the test sites, but no significant difference was observed in the urease activity. The pool sizes of SOC and SON were in the order of IV > CK > III > I > II, those of MBC and MBN were in the order of CK > IV > III > I > II, and asparaginase activity followed the order of IV > CK > III > II > I. With the increase of soil depth, the pool sizes of SOC, SON, MBC, and MBN and the activities of soil asparaginase and urease decreased. In 0-20 cm soil layer, the SOC, SON, MBC, MBN, total C, and total N were highly correlated with each other, soil asparaginase activity was highly correlated with SOC, SON, TSN, total C, total N, MBC, and MBN, and soil urease activity was highly correlated with SON, TSN, total C, MBC and MBN.

  19. The alpha activity of soils in relation to landscape development

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, R G; Quirk, J P [Western Australia Univ., Nedlands. Dept. of Soil Science and Plant Nutrition

    1976-02-01

    The alpha activity of soils and the degree of the equilibrium of the thorium series has been related to the age of soils developed on a truncated laterite landscape in southwestern Australia. The uplift of the old lateritic plateau has formed a sequence of erosional and depositional surfaces which form the parent materials of the present-day soils. These surfaces because of their different relative ages have been subjected to different degrees of weathering and leaching. The alpha activity of the soils formed on these different landscape surfaces is influenced firstly by the amount of weathering that the surface has undergone, and secondly by the degree of leaching that the soil has undergone as evidenced by profile development. It has been found that the younger soils have higher alpha activities with the thorium series tending more towards equilibrium when compared with older soils, where the alpha activity is lower due to the leaching of the daughter nuclides from the profile.

  20. Homoepitaxial VPE growth of SiC active layers

    Energy Technology Data Exchange (ETDEWEB)

    Burk, A.A. Jr. [Northrop Grumman Electron. Sensors and Syst. Div., Baltimore, MD (United States); Rowland, L.B. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-01

    SiC active layers of tailored thickness and doping form the heart of all SiC electronic devices. These layers are most conveniently formed by vapor phase epitaxy (VPE). Exacting requirements are placed upon the SiC-VPE layers` material properties by both semiconductor device physics and available methods of device processing. In this paper, the current ability of the SiC-VPE process to meet these requirements is described along with continuing improvements in SiC epitaxial reactors, processes and materials. (orig.) 48 refs.

  1. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  2. Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity

    Directory of Open Access Journals (Sweden)

    Johan Habig

    2015-07-01

    Full Text Available Soil microbial communities perform critical functions in ecosystem processes. These functions can be used to assess the impact of agricultural practices on sustainable crop production. In this five-year study, the effect of various agricultural practices on soil microbial diversity and activity was investigated in a summer rainfall area under South African dryland conditions. Microbial diversity and activity were measured in the 0–15 cm layer of a field trial consisting of two fertilizer levels, three cropping systems, and two tillage systems. Using the Shannon–Weaver and Evenness diversity indices, soil microbial species richness and abundance were measured. Microbial enzymatic activities: β-glucosidase, phosphatase and urease, were used to evaluate ecosystem functioning. Cluster analysis revealed a shift in soil microbial community diversity and activity over time. Microbial diversity and activity were higher under no-till than conventional tillage. Fertilizer levels seemed to play a minor role in determining microbial diversity and activity, whereas the cropping systems played a more important role in determining the activity of soil microbial communities. Conservation agriculture yielded the highest soil microbial diversity and activity in diversified cropping systems under no-till.

  3. The effect of glyphosate application on soil microbial activities in ...

    African Journals Online (AJOL)

    In this study, glyphosate effects as N, P and C nutrient sources on microbial population and the effect of different concentration of it on dehydrogenease activity and soil respiration were investigated. The results show that in a soil with a long historical use of glyphosate (soil 1), the hetrotrophic bacterial population was ...

  4. Natural radionuclides in soils - relation between soil properties and the activities

    International Nuclear Information System (INIS)

    Fujiyoshi, Ryoko; Nakayama, Masashi; Sawamura, Sadashi

    2000-01-01

    Vertical profiles of natural radionuclides (K-40 and Ra-226) have been investigated in a soil core with 8 m in depth to elucidate its relation to the bed rock activity and to several soil properties. Pattern of the Ra-226 activity with soil depth suggests inhomogeneity of this nuclide during the accumulating process. Radiometric sorption experiments with Pb-210 as a tracer gave the result that almost all Pb(II) in the soil solution disappeared to be sorbed to the soil components

  5. [Dynamic changes of soil microbial populations and enzyme activities in super-high yielding summer maize farmland soil].

    Science.gov (United States)

    Hou, Peng; Wang, Yong-jun; Wang, Kong-jun; Yang, Jin-sheng; Li, Deng-hai; Dong, Shu-ting; Liu, Jing-guo

    2008-08-01

    To reveal the characteristics of the dynamic changes of soil microbial populations and enzyme activities in super-high yielding ( > 15,000 kg x hm(-2)) summer maize farmland soil, a comparative study was conducted in the experimental fields in National Maize Engineering Research Center (Shandong). On the fields with an annual yield of >15,000 kg x hm(-2) in continuous three years, a plot with the yield of 20 322 kg x hm(-2) (HF) was chosen to make comparison with the conventional farmland (CF) whose maize yield was 8920. 1 kg x hm(-2). The numbers of bacteria, fungi, and actinomycetes as well as the activities of urease and invertase in 0-20 cm soil layer were determined. The results showed that in the growth period of maize, the numbers of bacteria, fungi, and actinomycetes in the two farmland soils increased first and declined then. At the later growth stages of maize, the numbers of soil microbes, especially those of bacteria and actinomycetes, were lower in HF than those in CF. At harvest stage, the ratio of the number of soil bacteria to fungi (B/ F) in HF was 2.03 times higher than that at sowing stage, and 3.02 times higher than that in CF. The B/F in CF had less difference at harvest and sowing stages. The soil urease activity in HF was significantly lower than that in CF at jointing stage, and the invertase activity in HF decreased rapidly after blooming stage, being significantly lower than that in CF.

  6. TDR water content inverse profiling in layered soils during infiltration and evaporation

    Science.gov (United States)

    Greco, R.; Guida, A.

    2009-04-01

    During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance

  7. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    Directory of Open Access Journals (Sweden)

    Ren Bai

    2017-05-01

    Full Text Available Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2 techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai, an Oxisol (Leizhou, and an Ultisol (Taoyuan along four profile depths (up to 70 cm in depth in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  8. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    Science.gov (United States)

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  9. A multi-layer box model of carbon dynamics in soil

    International Nuclear Information System (INIS)

    Kuc, T.

    2005-01-01

    A multi-layer box model (MLB) for quantification of carbon fluxes between soil and atmosphere has been developed. In the model, soil carbon reservoir is represented by two boxes: fast decomposition box (FDB) and slow decomposition box (SDB), characterised by substantially different turnover time (TT) of carbon compounds. Each box has an internal structure (sub-compartments) accounting for carbon deposited in consecutive time intervals. The rate of decomposition of carbon compounds in each sub-compartment is proportional to the carbon content. With the aid of the MLB model and the 14 C signature of carbon dioxide, the fluxes entering and leaving the boxes, turnover time of carbon in each box, and the ratio of mass of carbon in the slow and fast box (M s /M f ) were calculated. The MBL model yields the turnover time of carbon in the FDB (TT f ) ca. 14 for typical investigated soils of temperate climate ecosystems. The calculated contribution of the CO 2 flux originating from the slow box (F s ) to the total CO 2 flux into the atmosphere ranges from 12% to 22%. These values are in agreement with experimental observations at different locations. Assuming that the input flux of carbon (F i n) to the soil system is doubled within the period of 100 years, the soil buffering capacity for excess carbon predicted by the MLB model for typical soil parameters may vary in the range between 26% and 52%. The highest values are obtained for soils characterised by long TTf, and well developed old carbon pool. (author)

  10. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    Science.gov (United States)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  11. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    Science.gov (United States)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  12. A study on vertical distribution of radionuclides in the soil layers 0-30 cm deep in relation to their particle size

    International Nuclear Information System (INIS)

    Megumi, K.; Sato, Y.; Matsunami, T.; Fukuda, K.; Ishiyama, T.; Kimura, S.; Tsujimoto, T.

    1991-01-01

    It is fundamentally important to have a detailed knowledge of distribution of radionuclides in soils in natural environments for an understanding of behavior of nuclides during a lengthy period beyond the limit of the possible in experimental systems. Core soil samples (30 cm) were taken from surface of the ground in the central parts (Osaka and Wakasa) of Japan. Each core sample was sliced into 5 cm sections and the parts of the soil larger than 10 mesh were excluded by standard sieves. Some of the samples were further sieved into four classes of soil particles, such as, 10-60, 60-100, 100-200 and more than 200 mesh. The concentrations of U-series nuclides ( 238 U, 226 Ra, 210 Pb), Th-series nuclides ( 232 Th, 228 Ra), 40 K and 137 Cs in the samples were determined by gamma ray spectrometry and photon activation analysis. The photon activation analysis with a planer type of Ge detector was made by irradiating the samples with bremsstrahlung of tungsten target from electron accelerator, 16 MeV, at Res. Inst. for Advanced Sci. and Tech., Univ. of Osaka Pref. Fallout 137 Cs and 210 Pb deposition in the soil layers showed vertical variation mainly depending on the organic substances contents, the ratios of water contents and particle sizes at each location. A good correlation was found between the concentrations of these two nuclides. This correlation is available to evaluate of the 137 Cs contamination levels in soils. The concentrations of 238 U, 226 Ra, 232 Th, 228 Ra and 40 K contained originally in soils, changed slightly with the depth and the vertical distributions of these nuclides were found to relate mainly to the soil particle size in the layer. This tendency was evidently observed in the soil originating from the weathering of granite rock. (author)

  13. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    Science.gov (United States)

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  14. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone

    Science.gov (United States)

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.

    2013-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  15. [Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].

    Science.gov (United States)

    Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun

    2017-12-01

    Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity

  16. Soil hydraulic material properties and layered architecture from time-lapse GPR

    Science.gov (United States)

    Jaumann, Stefan; Roth, Kurt

    2018-04-01

    Quantitative knowledge of the subsurface material distribution and its effective soil hydraulic material properties is essential to predict soil water movement. Ground-penetrating radar (GPR) is a noninvasive and nondestructive geophysical measurement method that is suitable to monitor hydraulic processes. Previous studies showed that the GPR signal from a fluctuating groundwater table is sensitive to the soil water characteristic and the hydraulic conductivity function. In this work, we show that the GPR signal originating from both the subsurface architecture and the fluctuating groundwater table is suitable to estimate the position of layers within the subsurface architecture together with the associated effective soil hydraulic material properties with inversion methods. To that end, we parameterize the subsurface architecture, solve the Richards equation, convert the resulting water content to relative permittivity with the complex refractive index model (CRIM), and solve Maxwell's equations numerically. In order to analyze the GPR signal, we implemented a new heuristic algorithm that detects relevant signals in the radargram (events) and extracts the corresponding signal travel time and amplitude. This algorithm is applied to simulated as well as measured radargrams and the detected events are associated automatically. Using events instead of the full wave regularizes the inversion focussing on the relevant measurement signal. For optimization, we use a global-local approach with preconditioning. Starting from an ensemble of initial parameter sets drawn with a Latin hypercube algorithm, we sequentially couple a simulated annealing algorithm with a Levenberg-Marquardt algorithm. The method is applied to synthetic as well as measured data from the ASSESS test site. We show that the method yields reasonable estimates for the position of the layers as well as for the soil hydraulic material properties by comparing the results to references derived from ground

  17. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DEFF Research Database (Denmark)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.

    2015-01-01

    organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10ºC. Multivariate statistical analysis of the bacterial diversity data (DNA......The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78º......N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable...

  18. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness......The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays...... with test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...

  19. Diversity and activity of denitrifiers of Chilean arid soil ecosystems

    Directory of Open Access Journals (Sweden)

    Julieta eOrlando

    2012-04-01

    Full Text Available The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study, we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of

  20. Diversity and activity of denitrifiers of chilean arid soil ecosystems.

    Science.gov (United States)

    Orlando, Julieta; Carú, Margarita; Pommerenke, Bianca; Braker, Gesche

    2012-01-01

    The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility, and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS) genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of denitrifiers in particular.

  1. Effect of lead on the microbiological activity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, J P

    1974-01-01

    The production of CO/sub 2/ has been measured after addition of 0, 100, 1000 and 5000 ppm lead (as nitrate) to three Danish soils (two sandy soils and one clay soil). The microbiological activity was inhibited for 10-14 days in the two sandy soils at an addition of 5000 ppm lead, but not in the clay soil. Extraction experiments indicated that the sandy soil has the greatest amount of slight soluble lead, and the content of heavy adsorbed lead was greatest in the clay soil. Determinations (counts) of the effect of lead on the microbial population has shown reduction of the number of microorganisms at addition of 5000 ppm lead. The reduction was greatest in the sandy soil.

  2. Heavy metals fluxes and speciation in the surface layer of urban soils in the province of Brescia (Italy)

    Science.gov (United States)

    Peli, Marco; Raffelli, Giulia; Barontini, Stefano; Bostick, Benjamin C.; Donna, Filippo; Lucchini, Roberto G.; Ranzi, Roberto

    2017-04-01

    the considered soil profiles. The XRF metal total content profiles show an accumulation of metals in the subsurface soil layers, around 5 cm under the soil surface (this feature is highlighted in the normalized profiles). They also give evidence of the plant activity consequences, with the closest downwind site showing values which are for all metals at least one order of magnitude -two for Mn- higher than the ones in the test site. The speciation profiles, besides describing loosely the same pattern, show how the amorphous oxides species is always prevalent for Mn and Pb along the whole profile, while for As the species associated with crystalline oxides is always the prevalent one.

  3. Numerical combination for nonlinear analysis of structures coupled to layered soils

    Directory of Open Access Journals (Sweden)

    Wagner Queiroz Silva

    Full Text Available This paper presents an alternative coupling strategy between the Boundary Element Method (BEM and the Finite Element Method (FEM in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

  4. Development of migration prediction system (MIGSTEM) for cationic species of radionuclides through soil layers

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Takebe, Shinichi; Yamamoto, Tadatoshi

    1989-01-01

    The migration prediction system (MIGSTEM) has been developed for estimating the migration of cationic species of radionuclides through soil layers systematically. The MIGSTEM consists of the migration experiments, the one-dimensional fitting code (inverse analysis code) for determining retardation factor and dispersivity (migration factors) and the three-dimensional differential code (prediction code) for estimating the migration of the radionuclides. The migration experiments are carried out for obtaining the concentration profiles of the radionuclides in unsaturated and saturated soil layers. Using the inverse analysis code, the migration factors are obtained at one time by fitting the concentration profiles calculated to those observed. The prediction code can give the contours of concentration and the one-dimensional concentration profiles at selected time, as well as the changing in the concentration at a selected position with time. The validity of the MIGSTEM was obtained by the benchmark test on the prediction and inverse analysis codes. The MIGSTEM was applied to estimate the migration of Sr 2+ through the sandy soil. (author)

  5. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Tóth András

    2014-12-01

    Full Text Available An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE samples, which are subsequently coated with polyvinylpyrrolidone (PVP and tannic acid (TAN single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS, Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR and Atomic Force Microscopy (AFM. The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

  6. [Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China].

    Science.gov (United States)

    Sun, Hui; Zhang, Jian Feng; Xu, Hua Sen; Chen, Guang Cai; Wang, Li Ping

    2016-10-01

    In October 2015, soil samples with different salinity were collected in a coast area in Yuyao, Zhejiang, and soil microbial community composition, soil catalase, urease activities, as well as soil physical and chemical properties were studied. The results showed that Nitrospira took absolute advantage in the bacterial community, and showed good correlations to total potassium. Cladosporium and Fusarium were predominant in the fungal community. Meanwhile, Cladosporium was related to soil urease and total nitrogen, and same correlation was found between Fusarium and soil urease. Catalase activity ranged from 3.52 to 4.56 mL·g -1 , 3.08 to 4.61 mL·g -1 and 5.81 to 6.91 mL·g -1 for soils with heavy, medium and weak salinity, respectively. Catalase activity increased with the soil layer deepening, which was directly related to soil total potassium, and indirectly related to pH, organic matter, total nitrogen and total phosphorus through total potassium. Soil urease activity ranged among 0.04 to 0.52 mg·g -1 , 0.08 to 1.07 mg·g -1 and 0.27 to 8.21 mg·g -1 for each saline soil, respectively. Urease activity decreased with soil layer deepening which was directly related to soil total nitrogen, and was indirectly related to pH, organic matter and total potassium through total nitrogen. The total phosphorus was the largest effect factor on the bacterial community CCA ordination, and the urease was on fungal community.

  7. The Soil Moisture Active Passive (SMAP) Applications Activity

    Science.gov (United States)

    Brown, Molly E.; Moran, Susan; Escobar, Vanessa; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP measurements will allow global and high-resolution mapping of soil moisture and its freeze/thaw state at resolutions from 3-40 km. These measurements will have high value for a wide range of environmental applications that underpin many weather-related decisions including drought and flood guidance, agricultural productivity estimation, weather forecasting, climate predictions, and human health risk. In 2007, NASA was tasked by The National Academies to ensure that emerging scientific knowledge is actively applied to obtain societal benefits by broadening community participation and improving means for use of information. SMAP is one of the first missions to come out of this new charge, and its Applications Plan forms the basis for ensuring its commitment to its users. The purpose of this paper is to outline the methods and approaches of the SMAP applications activity, which is designed to increase and sustain the interaction between users and scientists involved in mission development.

  8. Variation in root activity with season and soil moisture in coconut

    International Nuclear Information System (INIS)

    Venugopal, Vandana; Balachandran, P.V.

    2007-01-01

    An experiment was conducted at the College of Horticulture, Vellanikkara to study the effect of season and soil moisture regime on the physiological activity of roots in coconut. The experiment has been laid out in CRD with two replications at two different depths (20 and 75 cm) and moisture regimes (irrigated and rain fed) round the year. The 32 P uptake was higher during wet season as compared to dry season in monocrop of coconut. The absorption was more from the surface layers during wet season and roots explored deeper soil layers during dry season. Irrigation in general improved absorption of 32 P in coconut and resulted in higher uptake from the surface soil compared to that under rainfed condition. (author)

  9. Neutron activation analysis of baths forming conversion layer on aluminium

    International Nuclear Information System (INIS)

    Szilagyi, Istvan; Maleczki, Emil; Bodizs, Denes

    1988-01-01

    Chromate layers were formed on the surface of aluminium using yellow and green chromating solutions. For the determination of the aluminium content neutron activation method was used. Nuclear effects disturbing the determination were eliminated by double irradiation technique. (author) 8 refs.; 4 figs

  10. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    Science.gov (United States)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  11. Soil Surface Organic Layers in Alaska's Arctic Foothills: Development, Distribution and Microclimatic Feedbacks

    Science.gov (United States)

    Baughman, C. A.; Mann, D. H.; Verbyla, D.; Valentine, D.; Kunz, M. L.; Heiser, P. A.

    2013-12-01

    Accumulated organic matter at the ground surface plays an important role in arctic ecosystems. These soil surface organic layers (SSOLs) influence temperature, moisture, and chemistry in the underlying mineral soil and, on a global basis, comprise enormous stores of labile carbon. Understanding the dynamics of SSOLs is prerequisite to modeling the responses of arctic ecosystem processes to climate changes. Here, we ask three questions regarding SSOLs in the Arctic Foothills in northern Alaska: 1) What environmental factors control their spatial distribution? 2) How long do they take to form? 3) What is the relationship between SSOL thickness and mineral soil temperature through the growing season? The best topographically-controlled predictors of SSOL thickness and spatial distribution are duration of sunlight during the growing-season, upslope drainage area, slope gradient, and elevation. SSOLs begin to form within several decades following disturbance but require 500-700 years to reach equilibrium states. Once formed, mature SSOLs lower peak growing-season temperature and mean annual temperature in the underlying mineral horizon by 8° and 3° C respectively, which reduces available growing degree days within the upper mineral soil by nearly 80%. How ongoing climate change in northern Alaska will affect the region's SSOLs is an open and potentially crucial question.

  12. Top layer enhances biological ontrol of thrips in ornamentals :"Predatory mites survive better on rich soil cover

    NARCIS (Netherlands)

    Hoogstraten, van K.; Grosman, A.H.

    2014-01-01

    An organic top layer over the soil or substrate can enhance the biological control of thrips in roses and alstroemerias. The top layer contains food for prey mites, which in turn serve as food for predatory mites. In this way the predators survive longer. Thus, as the thrips population increases, an

  13. Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte Iato (Sixth Century BC).

    Science.gov (United States)

    Margesin, Rosa; Siles, José A; Cajthaml, Tomas; Öhlinger, Birgit; Kistler, Erich

    2017-05-01

    Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.

  14. ENZYME ACTIVITIES OF PADDY SOILS AND RELATIONSHIPS WITH THE SOIL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Rıdvan KIZILKAYA

    1998-03-01

    Full Text Available This study was carried out to determine the effect of soil properties on enzyme activities of paddy soils, the sample of which were taken from Üçpınar, Harız, Doğancı, Kaygusuz, Emenli, Sarıköy and Gelemenağarı villages where rice cultivation is an intensive agricultural system. In this study, soil properties having effects on urease, phosphatase, ß-glucosidase and catalase enzyme activities were setforth. Urease enzyme activities of soil samples varied from 24.12 to 39.03 mg N 100 g dry soil -1 . Significant correlations were determined between urease enzyme activities and organic matter (r = 0.89**, extractable Mn (r = 0.74**, exchangable K (r = 0.73** and total P content of soil (r = 0.81*. Acid phosphatase enzyme activity varied between 3.00-17.44 mg phenol 100 g dry soil -1 , alkaline phosphatase enzyme activity between 12.00-25.53 mg phenol 100 g dry soil-1 . Exchangable Mg (r = 0.71* and extractable Cu (r = 0.74* were found to have positive effect on acid phosphatase enzyme activity and pH (r = 0.73*, exchangable Ca (r = 0.74*, exchangable Mg (r = 0.71*, exchangable total basic cations (r = 0.79* and extractable Cu (r = 0.70* had positive effects on alkaline phosphatase enzyme activity, whereas total P (r = - 0.84** affected the activity negatively. ß-glucosidase enzyme activity was measured to vary between 1.12-3.64 mg salingen 100 g dry soil -1 . It was also observed that extractable Zn content of soil samples (r = - 0.97** had negative effect on ß-glucosidase activity, wheras total exchangable acidic cations (r = 0.70* affected the activity positively. Catalase enzyme activities of soils changed between 5.25 - 9.00 mg O2 5 g dry soil -1 . Significant correlations were found between catalase activities and fraction of soils and extractable Fe content. Positive correlations, however, were determined between catalase activities and clay fraction (r = 0.82* and salt content (r = 0.83** of samples.

  15. Unexpectedly high soil organic carbon stocks under impervious surfaces contributed by urban deep cultural layers

    Science.gov (United States)

    Bae, J.; Ryu, Y.

    2017-12-01

    The expansion of urban artificial structures has altered the spatial distribution of soil organic carbon (SOC) stocks. The majority of the urban soil studies within the land-cover types, however, focused on top soils despite the potential of deep soils to store large amounts of SOC. Here, we investigate vertical distribution of SOC stocks in both impervious surfaces (n = 11) and adjacent green spaces (n = 8) to a depth of 4 m with in an apartment complex area, Seoul, Republic of Korea. We found that more than six times differences in SOC stocks were observed at 0-1 m depth between the impervious surfaces (1.90 kgC m-2) and the green spaces (12.03 kgC m-2), but no significant differences appeared when comparing them at the depth of 0-4 m. We found "cultural layers" with the largest SOC stocks at 1-2 m depth in the impervious surfaces (15.85 kgC m-2) and 2-3 m depths in urban green spaces (12.52 kgC m-2). Thus, the proportions of SOC stocks at the 0-1 m depth to the total of 0-4 m depth were 6.83% in impervious surfaces and 32.15% in urban green spaces, respectively. The 13C and 15N stable isotope data with historical aerial photographs revealed that the cropland which existed before 1978 formed the SOC in the cultural layers. Our results highlight that impervious surface could hold large amount of SOC stock which has been overlooked in urban carbon cycles. We believe this finding will help city planners and policy makers to develop carbon management programs better towards sustainable urban ecosystems.

  16. Thin layer activation technique applied to the measurement of wear

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, P [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1978-01-01

    A thin layer of radioactive atoms is produced in the material by bombardment with charged particles, and as the material is worn away the total activity level is monitored. If the activity to depth relationship is then known the amount of material worn away can be determined. By a selective choice of the charged particle species and energy the depth of the active layer, its natural decay rate, and the energy of the emitted radiation can be pre-determined. The Harwell Tandem Electrostatic Generator has been found very suitable for the work. The total activity level can be made as little or as large as required, but a level around 5 to 10 microcuries is usually found to be adequate, and the active layer usually has a depth of 50 to 300 ..mu..m. The activated area can be from < 1 mm/sup 2/ to 4 cm/sup 2/. Particular reference is made to the production of /sup 56/Co in Fe. Experimental arrangements for the irradiation of components are described. Some practical applications undertaken by Harwell for industry are briefly mentioned, including wear of diesel engine valve seatings and fuel injection equipment, engine testing of lubricants, surface loss of rails and railway wheels, wear of gears, wear of graphite bearing materials, and corrosion and erosion of materials. 4 references.

  17. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost.

    Science.gov (United States)

    Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan

    2018-07-01

    Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mathematical modelling of water and gas transport in layered soil covers for coal ash deposit

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, M [Kemakta Consultants Co, Stockholm (SE); Rasmuson, A [Chalmers University of Technology, Goeteborg (SE). Dept. of Chemical Engineering Design

    1991-06-19

    In phase 1 of this study the design of soil covers for deposits of coal ash from energy production was studied with regard to various parameters like: climate, cover slope, hydraulic conductivity of tight layer and length of cover. One of the main results was the relatively large risk for total saturation up to the surface and overflow which may cause surface erosion problems. In the present study two theoretical cases are studied to further elucidate the problem. A case from the phase 1 study is used to illustrate the effect of increased infiltration. Calculations show that total saturation and thereby overflow is achieved when the infiltration is increased by 20% in March, but not when increased by 10% only. This shows that the margin in an acceptable case may be small. A cover treated in phase 1, where totally saturated conditions were obtained, was modified so that two decimeters of the one meter till in its bottom part were exchanged for a drainage layer. It is shown that the effect of this layer is large. A negative side-effect, however, is that gas flow may increase due to the lower saturation of the cover. Calculations were made for a real soil covered mine tailings deposit at Bersbo. This deposit was chosen mainly because it is the only well documented case in Sweden where soil covers are used for securing a deposit, but also because some contradictory results as compared to theory were obtained. Another topic studied in the present work was the influence of a heterogeneous clay layer. For example, a weak zone with a hydraulic conductivity of 10{sup -7} m/s (10{sup -9} m/s for the rest of the clay), covering 0.5 m x 0.5 m of 10 m in length and 5 m in width, will increase the flow through the bottom of the cover with almost 30%. The gas transport through the heterogeneous soil cover was also studied, showing about 5 times increased gas transport rate around the weak zone, but almost no difference about 1 m from the weak zone. (29 figs., 5 tabs., 27 refs.).

  19. The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

    International Nuclear Information System (INIS)

    Jones, S; Hunt, H

    2009-01-01

    Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.

  20. Tracer methods to quantify nutrient uptake from plough layer, sub-soil and fertilizer: implications on sustainable nutrient management

    Energy Technology Data Exchange (ETDEWEB)

    Haak, E [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Radioecology

    1996-07-01

    Two soils injection methods are presented. The first method consists of homogeneously labelling the whole plough layer with carrier free tracers. this is done in two treatments, (1) a reference treatment without connection with the sub-soil and (2) an experimental treatment where the sub-soil is freely accessible for root penetration. The second method, which is now under development, consists of using isotope labelled fertilizers instead of carrier free tracers. By application of the A-value concept it is possible to quantify (by the first method) the plant uptake of nutrients from plough layer and sub-soil, and from the second method, the uptake of nutrients from the applied fertilizer. A fertilizer strategy for phosphorus is discussed based on data obtained from tracer experiment in the field, and soil survey of specific field sites. (author). 7 refs, 2 figs, 1 tab.

  1. Tracer methods to quantify nutrient uptake from plough layer, sub-soil and fertilizer: implications on sustainable nutrient management

    International Nuclear Information System (INIS)

    Haak, E.

    1996-01-01

    Two soils injection methods are presented. The first method consists of homogeneously labelling the whole plough layer with carrier free tracers. this is done in two treatments, (1) a reference treatment without connection with the sub-soil and (2) an experimental treatment where the sub-soil is freely accessible for root penetration. The second method, which is now under development, consists of using isotope labelled fertilizers instead of carrier free tracers. By application of the A-value concept it is possible to quantify (by the first method) the plant uptake of nutrients from plough layer and sub-soil, and from the second method, the uptake of nutrients from the applied fertilizer. A fertilizer strategy for phosphorus is discussed based on data obtained from tracer experiment in the field, and soil survey of specific field sites. (author). 7 refs, 2 figs, 1 tab

  2. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  3. Determination of 137Cs activities in soil samples from east and south Marmara region, Turkey

    International Nuclear Information System (INIS)

    Kilic, Oe.; Belivermis, M.; Cotuk, Y.; Coskun, M.; Cayir, A.; Kuecer, R.

    2006-01-01

    Activity concentrations of 1 37Cs, 4 0K and physico-chemical parameters of soil samples collected from 99 sampling stations in the east and south of Marmara Region of Turkey were determined. The study region was divided into 20 x 20 km grids and soil samples collected randomly in each square from 0-5 cm surface layer. Activities were measured by means of multichannel gamma analyser provided with high purity germanium detector. Relations among 1 37Cs concentrations and physico-chemical parameters of soils and climatic factors of the region were evaluated. Arc View GIS version 3.1 was used mapping of study area. Distribution of radionuclide concentrations in the region illustrated with contour maps using Surfer 8.0 for Windows. The range of activity concentrations of 1 37Cs and 4 0K were measured to be 0.92-153.72 and 69.24-1085.57 Bq/kg respectively

  4. Enzyme activities in reclaimed coal mine spoils and soils

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P R; Aldon, E F; Lindemann, W C

    1987-11-01

    The segregation and stockpiling of topsoil material may reduce enzymatic activities that may hinder normal nutrient cycling processes in reclaimed minelands. The effects of topsoiling and reclamation age on dehydrogenase, nitrogenase, phosphatase, arylsulphatase, amylase, cellulase, invertase and urease activities were evaluated on three reclaimed non-top-soiled and five reclaimed topsoiled areas and compared with an indisturbed reference soil. Three months after topsoiling and revegetation, activities of the enzymes in the reclaimed areas, with the exception of dehydrogenase, were statistically equal to activities of the undisturbed soil. Most enzymes, including dehydrogenase, peaked in the next 1 or 2 years after reclamation with topsoiling and declined thereafter. A 4-year-old topsoiled site (revegetated in 1978) was statistically similar to the undisturbed soil. Amylase activity, however, was significantly lower after the fourth year compared to the undisturbed soil. The non-topsoiled areas, even after 6, 7 and 8 years, appeared to have lower enzyme activities than the younger topsoiled areas or the undisturbed soil. This trend was supported by the finding that the 4-year-old topsoiled site was more enzymatically similar to the undisturbed soil than was the 8-year-old non-topsoiled site (revegetated in 1974). The low enzyme acitivities found in the non-topsoiled areas may be a result of their adverse chemical and physical properties, as well as the low diversity of microorganisms. These studies demonstrate the value of topsoil use for early establishment of soil processes in reclaimed areas. 3 figs., 19 refs., 8 tabs.

  5. Influence of mammal fossorial activity on the soil fermentative activity in conditions of metallurgical production

    Directory of Open Access Journals (Sweden)

    S. M. Kirienko

    2010-09-01

    Full Text Available Effect of mammal fossorial activity as an ecological factor of the soil genesis intensification is studied. Enzymatic activity of soil as its ability to demonstrate a catalytic effect for various compounds transformation is examined. Variability of soil urease activity in technogenic conditions with the participation of animals is shown. The positive influence of animals’ activity on the catalitic ability of the investigated soils was determined. The statistically significant characteristics which have an influence on the urease activity in soil are found out.

  6. Coal mining activities change plant community structure due to air pollution and soil degradation.

    Science.gov (United States)

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  7. Drought monitoring with soil moisture active passive (SMAP) measurements

    Science.gov (United States)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  8. Soil Enzyme Activities in Pinus tabuliformis (Carriére Plantations in Northern China

    Directory of Open Access Journals (Sweden)

    Weiwei Wang

    2016-05-01

    Full Text Available Changes in forest stand structure may alter the activity of invertase, urease, catalase and phenol oxidase after thinning Pinus tabuliformis (Carriére plantations in Yanqing County of Beijing, China. We examined changes in these soil enzymes as influenced by time since thinning (24, 32, and 40 years since thinning for 3 seasons (spring, summer and autumn following harvesting at two depths in the mineral soil (0–10 cm and 10–20 cm. Invertase and urease increased significantly with time since thinning. Catalase activity was highest in the 24-year-old stand and there were no statistically significant differences between the 32- and 40-year-old stands. In addition, maximum invertase, urease, catalase, and phenol oxidase activities occurred during the summer; minimum activities occurred in autumn. Invertase and urease were positively correlated with each other, as were catalase and phenol oxidase. Most soil enzyme activity was higher in the 0–10 cm layer than at the 10–20 cm depth. As time from thinning increased, differences among soil depth became less significant. These results suggest that seasonal changes of these enzymes have different roles, as the time since thinning and thinning treatments may have both short- and long-term impacts on soil microbial activity.

  9. [Effects of different application rates of calcium cyanamide on soil microbial biomass and enzyme activity in cucumber continuous cropping].

    Science.gov (United States)

    Zhang, Xue-peng; Ning, Tang-yuan; Yang, Yan; Sun, Tao; Zhang, Shu-min; Wang, Bin

    2015-10-01

    A 2-year field experiment was conducted to study the effects of CaCN2 combined with cucumber straw retention on soil microbial biomass carbon (SMBC) , soil microbial biomass nitrogen (SMBN) and soil enzyme activities under cucumber continuous cropping system. Four treatments were used in this study as follows: CK (null CaCN2), CaCN2-90 (1350 kg CaCN2 . hm-2) CaCN2-60 (900 kg CaCN2 . hm-2), CaCN2-30 (450 kg CaCN2 . hm-2). The results indicated that, compared with the other treatments, CaCN2-90 treatment significantly decreased SMBC in 0-10 cm soil layer at seedling stage, but increased SMBC in 0-20 cm soil layer after early-fruit stage. Compared with CK, CaCN2 increased SMBC in 0-20 cm soil layer at late-fruit stage, and increased SMBN in 0-10 cm soil layer at mid- and late-fruit stages, however there was no significant trend among CaCN2 treatments in the first year (2012), while in the second year (2013) SMBN increased with the increasing CaCN2 amount after mid-fruit stage. CaCN2 increased straw decaying and nutrients releasing, and also increased soil organic matter. Furthermore, the CaCN2-90 could accelerate straw decomposition. Compared with CK, CaCN2 effectively increased soil urease, catalase and polyphenol oxidase activity. The soil urease activity increased while the polyphenol oxidase activity decreased with the increase of CaCN2, and CaCN2-60 could significantly improve catalase activity. Soil organic matter, urease activity and catalase activity had significant positive correlations with SMBC and SMBN. However, polyphenol oxidase activity was negatively correlated to SMBC and SMBN. Our findings indicated that CaCN2 application at 900 kg . hm-2 combined with cucumber straw retention could effectively improve soil environment, alleviating the soil obstacles under the cucumber continuous cropping system.

  10. Development of Smart Active Layer Sensor (II): Manufacturing and Application

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Kwon, Jae Hwa; Yoon, Dong Jin

    2004-01-01

    This paper is the second part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. As mentioned in the first paper, structural health monitoring (SHM) is a new technology that is being increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor which is described with regard to the theory and concept of the SAL sensor in the first paper. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper In this study, SAL sensor ran be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves

  11. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions...

  12. Logisnet: A tool for multimethod, multiple soil layers slope stability analysis

    Science.gov (United States)

    Legorreta Paulin, G.; Bursik, M.

    2009-05-01

    Shallow landslides and slope failures have been studied from several points of view (inventory, heuristic, statistic, and deterministic). In particular, numerous methods embedded in Geographic Information Systems (GIS) applications have been developed to assess slope stability. However, little work has been done on the systematic comparison of different techniques and the incorporation of vertical contrasts of geotechnical properties in multiple soil layers. In this research, stability is modeled by using LOGISNET, an acronym for Multiple Logistic Regression, Geographic Information System, and Neural Network. The main purpose of LOGISNET is to provide government planners and decision makers a tool to assess landslide susceptibility. The system is fully operational for models handling an enhanced cartographic-hydrologic model (SINMAP) and multiple logistic regression. The enhanced implementation of SINMAP was tested at regional scale in the Highway 101 corridor in Del Norte County, California, and its susceptibility map was found to have improved factor of safety estimates based on comparison with landslide inventory maps. The enhanced SINMAP and multiple logistic regression subsystems have functions that allow the user to include vertical variation in geotechnical properties through summation of forces in specific soil layers acting on failure planes for a local or regional-scale mapping. The working group of LOGISNET foresees the development of an integrated tool system to handle and support the prognostic studies of slope instability, and communicate the results to the public through maps.

  13. Spatial variability of detrended soil plow layer penetrometer resistance transect in a sugarcane field

    Science.gov (United States)

    Pérez, Luis D.; Cumbrera, Ramiro; Mato, Juan; Millán, Humberto; Tarquis, Ana M.

    2015-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns (Brouder et al., 2001; Millán et al., 2012). The objective of the present work was to quantify the spatial structure of soil penetrometer resistance (PR) collected from a transect data consisted of 221 points equidistant. In each sampling, readings were obtained from 0 cm till 70 cm of depth, with an interval of 5 cm (Pérez, 2012). The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years (Pérez et al., 2010). Recently, scaling approach has been applied on the determination of the scaling data properties (Tarquis et al., 2008; Millán et al., 2012; Pérez, 2012). We focus in the Hurst analysis to characterize the data variability for each depth. Previously a detrended analysis was conducted in order to better study de intrinsic variability of the series. The Hurst exponent (H) for each depth was estimated showing a characteristic pattern and differentiating PR evolution in depth. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Millán, H; AM Tarquís, Luís D. Pérez, Juan Mato, Mario González-Posada, 2012. Spatial variability patterns of some Vertisol properties at a field scale using standardized data. Soil and Tillage Research, 120, 76-84. Pérez, Luís D. 2012. Influencia de la maquinaria agrícola sobre la variabilidad espacial de la compactación del suelo. Aplicación de la metodología geoestadística-fractal. PhD thesis, UPM (In Spanish). Pérez, Luís D., Humberto Millán, Mario González-Posada 2010. Spatial complexity of soil plow layer penetrometer resistance as influenced by sugarcane harvesting: A prefractal approach. Soil and Tillage

  14. Sensitivity of WRF-simulated planetary boundary layer height to land cover and soil changes

    Directory of Open Access Journals (Sweden)

    Ferenc Ács

    2014-09-01

    Full Text Available Planetary boundary layer (PBL height sensitivity to both so-called single and accumulated land cover and soil changes is investigated in shallow convection under cloud-free conditions to compare the effects. Single land cover type and soil changes are carried out to be able to unequivocally separate the cause and effect relationships. The Yonsei University scheme in the framework of the Weather Research Forecasting (WRF mesoscale modeling system is used as a research tool. The area investigated lies in the Carpathian Basin, where anticyclonic weather type influence dominated on the five summer days chosen for simulations. Observation-based methods applied for validating diurnal PBL height courses manifest great deviations reaching 500–1300 m. The obtained deviations are somewhat smaller around midday and greater at night. They can originate either from the differences in the measuring principles or from the differences in the atmospheric profiles used. Concerning sensitivity analyses, we showed that PBL height differences caused by soil change are comparable with the PBL height differences caused by land cover change. The differences are much greater in the single than in the accumulated tests. Space averaged diurnal course difference around midday reaching a few tens of meters can be presumably treated as strongly significant. PBL height differences obtained in the sensitivity analyses are, at least in our case, smaller than those obtained by applying different observation based methods. The results may be utilized in PBL height diurnal course analyses.

  15. A Layered Past: the Transformation and Development of Legacy Sediments as Alluvial Soils

    Science.gov (United States)

    Wade, A.; Richter, D. D., Jr.

    2017-12-01

    Legacy sediments are a widespread consequence of post-colonial upland erosion in the United States. Although these deposits are ubiquitous in valley bottoms of the southeastern Piedmont, mature hardwood forests and collapsed stream banks mask their occurrence. While these deposits have been studied for their fluvial dynamics and water quality impacts, they have received less attention in regards to soil structure and formation. In this study, we characterized legacy sediment mineraology, composition and structure to understand how pedogenic processes are overprinting sediment layering in a 40-hectare Piedmont floodplain. To constrain the timing of deposition, we used Pb-210 and C-14 dating on buried charcoal and tree stumps. Our results show that in 100 years of forest regeneration, vegetation and oscillating floodplain conditions have driven these eroded sediment deposits to evolve as soil profiles both in structure and composition. These textural and nutrient gradients have ramifications for the subsurface flow of nutrients through the floodplain. Given the estimated millennia it will take to erode legacy sediment from Piedmont floodplains, it is important to think of these deposits as new stable environments on their own trajectory of soil evolution.

  16. Impact of repeated insecticide application on soil microbial activity

    International Nuclear Information System (INIS)

    Xu Bujin; Zhang Yongxi; Chen Meici; Zhu Nanwen; Ming Hong

    2001-01-01

    The effects of repeated insecticide application on soil microbial activity were studied both in a cotton field and in the laboratory. The results of experiment show that there are some effects on soil microbial activities, such as the population of soil microorganisms, soil respiration, dehydrogenase activity and nitrogen fixation. The degree of effects depends on the chemical dosage. Within the range of 0.5-10.0 μg/g air-dry-soil, the higher the concentration, the stronger effect. In this experiment, the effect disappeared within 4, 8 or 16 days after treatment, depending on the dose applied. In field conditions, the situation is more complex and the data of field experiment show greater fluctuation. (author)

  17. The curved kinetic boundary layer of active matter.

    Science.gov (United States)

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  18. Effects of heat-activated persulfate oxidation on soil microorganisms

    DEFF Research Database (Denmark)

    Tsitonaki, Aikaterini; Smets, Barth F.; Bjerg, Poul Løgstrup

    2008-01-01

    /L). The results emphasize the necessity of using multiple toxicity assays and indigenous cultures in order to realistically assess the potential effects of in situ chemical oxidation on soil microorganisms. A comparison to other studies suggests that the effects of activated persulfate on soil microorganisms...

  19. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  20. Remotely Sensed Active Layer Thickness (ReSALT at Barrow, Alaska Using Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Kevin Schaefer

    2015-03-01

    Full Text Available Active layer thickness (ALT is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT product that uses the Interferometric Synthetic Aperture Radar technique to measure seasonal surface subsidence and infer ALT around Barrow, Alaska. We compared ReSALT with ground-based ALT obtained using probing and calibrated, 500 MHz Ground Penetrating Radar at multiple sites around Barrow. ReSALT accurately reproduced observed ALT within uncertainty of the GPR and probing data in ~76% of the study area. However, ReSALT was less than observed ALT in ~22% of the study area with well-drained soils and in ~1% of the area where soils contained gravel. ReSALT was greater than observed ALT in some drained thermokarst lake basins representing ~1% of the area. These results indicate remote sensing techniques based on InSAR could be an effective way to measure and monitor ALT over large areas on the Arctic coastal plain.

  1. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  2. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  3. Polycyclic aromatic hydrocarbons pollution effect on soil biological activity in the anthropogenic contaminated area

    Science.gov (United States)

    Batukaev, Abdulmalik; Sushkova, Svetlana; Minkina, Tatiana; Antonenko, Elena; Salamova, Anzhelika; Gimp, Alina; Deryabkina, Irina

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant environmental contaminants with mutagenic and carcinogenic properties to all living organisms. The changes in microbial community structure in technogenic polluted soil may be used as tools for predicting and monitoring natural degradation and for search the most effective and appropriate pathways of bioremediation. The present study is aimed to research the biological activity of the soil in the emission zone of Novocherkassk Power station (NPs) (Russia) polluted by PAHs in 2015. The NPs is one of the largest thermal power stations in the south of Russia burning low-quality coal appurtenant the enterprises of I hazardous class. Monitoring plots were located on virgin or no-till fallow areas and not subject to the sanitary-protection zone of the NPs. Soil samples were taken from a depth of 0- to 20-cm, because the major part of PAHs are accumulated in the surface soil layer. The soils of the plots mainly include Chernozems Calcic (plots 1, 4, 5, 7, 9 and 10), Phaeozems Haplic (plots 3, 6, 8 and 11) Fluvisols Umbric (plots 2 and 12). In the soil of 12 monitoring plots located around NPs there were determined the main enzymes, abundance of soil bacteria and 17 priority PAHs. PAHs extraction from soil was performed by new developed ecologically clean method of subcritical water extraction without organic solvents (Sushkova et al., 2015). The level of PAHs around NPs is high at the nearest to factory monitoring plots situated at distance 1,0-1,2 km and reaches from 1600,1±14,7 up to 373,6±7,1 mkg/kg in the 20-cm soil layer. Gradually decrease of PAHs contamination is observed while increasing the distance from the NPs. The level of highmolecular PAHs (4-6 aromatic rings) exceeds the level of lowmolecular (2-3 aromatic rings) PAHs in all monitoring plots situated though the prevailing wind direction from NPs. The close correlations were found between PAHs content and biological activity parameters

  4. Effect Of Soil Contamination Due To Wastewater Irrigation On Total Co As Determined By Neutron Activation And Other Conventional Analytical Techniques In Some Soils Of Egypt

    International Nuclear Information System (INIS)

    Abdel-Sabour, M. F.; Al-Salama, Y. J.

    2004-01-01

    Fifteen soil samples were chosen from different locations (five different locations at north greater Cairo, Egypt) to represent different soils (alluvial and sandy) as well as different sources of contaminated wastewater (sewage and industrial effluent). Using sequential extraction technique (extracting the soil with different solutions, which is designed to separate metal fractions), Co was separated into six operationally defined fractions: water soluble, exchangeable, carbonate bound, Fe-Mn oxides bound, organic bound and residual fractions. Moreover, total-Co in soils as determined by three analytical methods (sum of sequential extracting, Atomic Absorption Spectrometry (AAS) and neutron activation analysis (NAA) techniques) were compared. Cobalt distribution between different extractants shows that the greatest amounts are found in the residual and Occluded in Fe and Mn-Oxides fractions followed by carbonate or organic fractions. In most cases the proportion of all tested Co-forms has increased in contaminated soil layers with higher enrichment in organically bound Co, occluded in Fe and Mn oxides, carbonate exchangeable and soluble fractions. Results indicate that soil properties have a significant role on Co fractions in soil. In the mean time, soil properties are affected by pollution factors such as source of pollution and load of pollution on the studied soil. Data showed that values of total Co determined by NAA method were always higher than the relevant values determined by AAS or those calculated after the sequential extraction method. (Authors)

  5. Typology of nonlinear activity waves in a layered neural continuum.

    Science.gov (United States)

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  6. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  7. Theoretical and Experimental Substantiation for Applicability of a Damping Layer in a Foundation Slab Placed on Soil Bed

    Directory of Open Access Journals (Sweden)

    Kiselev Nikita

    2016-01-01

    Full Text Available Authors present the results of studies of innovative foundation structure. The idea of how to increase the operational quality of foundations and reduce the costs due to rational loading of the soil bed is numerically simulated. It is shown that the bending moment in the foundation slab depends on uneven settlements of the soil bed. It is proposed to stabilize the deformable soil bed by the damping layer placed under the slab footing in the zones with minor settlements. Considered is the concept of the damping layer in the foundation slab placed on the soil bed (DLS. The in-situ test for DLS-clayey bed interaction is described. Given are the results obtained after the experiments for DLS performance. The result of DLS implementation in designing the foundation of the 22-storeyed block of flats is considered. The expediency of DLS in comparison to standard foundations is presented.

  8. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    Science.gov (United States)

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  9. The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem.

    Science.gov (United States)

    Lee, Seung-Hoon; Kang, Hojeong

    2016-02-01

    The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to

  10. Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder [Alnus glutinosa (L. Gaertn.] woodlands

    Directory of Open Access Journals (Sweden)

    Anna Orczewska

    2012-06-01

    Full Text Available Black alder, an N-fixing tree is considered to accelerate the availability of phosphorus in soils due to the increased production of phosphatase enzymes, which are responsible for the P release from the litter. Acid phosphatase activity plays a pivotal role in organic P mineralization in forest soils and in making P available to plants. In order to check whether Alnus glutinosa stimulates acid phosphomonoesterase (PHACID activity, we compared enzyme activities, total P concentration (PTOT, plant-available P (PAVAIL, organic P (PORG and inorganic P (PINORG, and organic matter content in 27 ancient and 27 post-agricultural alder woods (the latter ones representing different age classes: 11-20, 21-40 and 41-60 years of soil samples taken from the litter and the mineral layers. Phosphomonoesterase activity, organic matter, PTOT, PINORG and PORG concentrations were significantly higher in ancient alder woods than in the soils of post-agricultural forests. Significant differences in the acid phosphatase activity, organic matter and PAVAIL concentration were noted between the litter and mineral layers within the same forest type. In recent stands the amount of organic matter and phosphatase activity increased significantly with the age of alder stands, although only in the mineral layer of their soils. Phosphomonoesterase activity, organic matter and PAVAIL content were higher in a litter layer and decreased significantly at a mineral depth of the soil. The acid phosphatase activity was significantly correlated with organic matter content in both ancient and recent stands. There was no significant relationship between PHACID activity and any P forms.

  11. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    Science.gov (United States)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  12. Manganese contents of soils as determined by activation analysis

    International Nuclear Information System (INIS)

    El-Kholi, A.F.; Hamdy, A.A.; Al Metwally, A.I.; El-Damaty, A.H.

    1976-01-01

    The object of this investigation is to determine total manganese by means of neutron activation analysis and evaluate this technique in comparison with the corresponding data obtained by conventional chemical analysis. Data obtained revealed that the values of total manganese in calcareous soils obtained by both chemical analysis and that by neutron activation analysis were similar. Therefore, activation analysis could be recommended as a quick laboratory, less tedious, and time consuming method for the determination of Mn content in both soils and plants than the conventional chemical techniques due to its great specificity, sensitivity and simplicity. Statistical analysis showed that there is a significant correlation at 5% probability level between manganese content in Soybean plant and total manganese determined by activation and chemical analysis giving the evidence that in the case of those highly calcareous soils of low total manganese content this fraction has to be considered as far as available soil manganese is concerned

  13. ACTIVE SOIL DEPRESSURIZATION (ASD) DEMONSTRATION IN A LARGE BUILDING

    Science.gov (United States)

    The report gives results of an evaluation of the feasibility of implementing radon resistant construction techniques -- especially active soil depressurization (ASD) -- in new large buildings in Florida. Indoor radon concentrations and radon entry were monitored in a finished bui...

  14. Soil pollution indices conditioned by medieval metallurgical activity - A case study from Krakow (Poland).

    Science.gov (United States)

    Kowalska, Joanna; Mazurek, Ryszard; Gąsiorek, Michał; Setlak, Marcin; Zaleski, Tomasz; Waroszewski, Jaroslaw

    2016-11-01

    The studied soil profile under the Main Market Square (MMS) in Krakow was characterised by the influence of medieval metallurgical activity. In the presented soil section lithological discontinuity (LD) was found, which manifests itself in the form of cultural layers (CLs). Moreover, in this paper LD detection methods based on soil texture are presented. For the first time, three different ways to identify the presence of LD in the urban soils are suggested. The presence of LD had an influence on the content and distribution of heavy metals within the soil profile. The content of heavy metals in the CLs under the MMS in Krakow was significantly higher than the content in natural horizons. In addition, there were distinct differences in the content of heavy metals within CLs. Profile variability and differences in the content of heavy metals and phosphorus within the CLs under the MMS were activity indicators of Krakow inhabitants in the past. This paper presents alternative methods for the assessment of the degree of heavy metal contamination in urban soils using selected pollution indices. On the basis of the studied total concentration of heavy metals (Zn, Pb, Cu, Mn, Cr, Cd, Ni, Sn, Ag) and total phosphorus content, the Geoaccumulation Index (I geo ), Enrichment Factor (EF), Sum of Pollution Index (PI sum ), Single Pollution Index (PI), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI) were calculated using different local and reference geochemical backgrounds. The use of various geochemical backgrounds is helpful to evaluate the assessment of soil pollution. The individual CLs differed from each other according to the degree of pollution. The different values of pollution indices within the studied soil profile showed that LDS should not be evaluated in terms of contamination as one, homogeneous soil profile but each separate CL should be treated individually. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Layer-by-Layer Assembly and Photocatalytic Activity of Titania Nanosheets on Coal Fly Ash Microspheres

    Directory of Open Access Journals (Sweden)

    Xing Cui

    2014-01-01

    Full Text Available In order to address the problem with titania distribution and recovery, series of Ti0.91O2/CFA photocatalysts (Ti0.91O2/CFA-n, n=2,4,6, and 8 were fabricated by assembling Ti0.91O2 nanosheets on coal fly ash (CFA microspheres via the layer-by-layer assembly (LBLA process and characterized by scanning electron microscopy (SEM, X-ray diffraction analysis (XRD, N2-sorption, and ultraviolet-visible absorption (UV-vis techniques. The SEM images and UV-vis spectra illustrated that Ti0.91O2 nanosheets were immobilized successfully on the CFA by the LBLA approach and changed the characteristics of CFA noticeably. The photocatalytic activity of Ti0.91O2/CFA was evaluated by the photodegradation of methylene blue (MB under UV irradiation. The results demonstrated that Ti0.91O2/CFA-6 showed the best photocatalytic activity among the series of Ti0.91O2/CFA irradiated for 60 min, with a decoloration rate above 43%. After photocatalysis, the Ti0.91O2/CFA could be easily separated and recycled from aqueous solution and Ti0.91O2 nanosheets were still anchored on the CFA.

  16. Dark gray soils on two-layered deposits in the north of Tambov Plain: Agroecology, properties, and diagnostics

    Science.gov (United States)

    Zaidelman, F. R.; Nikiforova, A. S.; Stepantsova, L. V.; Volokhina, V. P.

    2012-05-01

    Dark gray soils in the Tambov Plain are developed from the light-textured glaciofluvial deposits underlain by the calcareous loam. Their morphology, water regime, and productivity are determined by the depth of the slightly permeable calcareous loamy layer, relief, and the degree of gleyzation. The light texture of the upper layer is responsible for its weak structure, high density, the low content of productive moisture, and the low water-holding capacity. If the calcareous loam is at a depth of 100-130 cm, dark gray soils are formed; if it lies at a depth of 40-70 cm, temporary perched water appears in the profile, and dark gray contact-gleyed soils are formed. Their characteristic pedofeatures are skeletans in the upper layers, calcareous nodules in the loamy clay layer, and iron nodules in the podzolized humus and podzolic horizons. The appearance of Fe-Mn concretions is related to gleyzation. The high yield of winter cereals is shown to be produced on the dark gray soils; the yields of spring crops are less stable. Spring cereals should not be grown on the contact-gleyed dark gray soils.

  17. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China.

    Science.gov (United States)

    Xie, Xuefeng; Pu, Lijie; Wang, Qiqi; Zhu, Ming; Xu, Yan; Zhang, Meng

    2017-12-31

    Soil enzyme activity during different years of reclamation and land use patterns could indicate changes in soil quality. The objective of this research is to explore the dynamics of 5 soil enzyme activities (dehydrogenase, amylase, urease, acid phosphatase and alkaline phosphatase) involved in C, N, and P cycling and their responses to changes in soil physicochemical properties resulting from long-term reclamation of coastal saline soil. Soil samples from a total of 55 sites were collected from a coastal reclamation area with different years of reclamation (0, 7, 32, 40, 63a) in this study. The results showed that both long-term reclamation and land use patterns have significant effects on soil physicochemical properties and enzyme activities. Compared with the bare flat, soil water content, soil bulk density, pH and electrical conductivity showed a decreasing trend after reclamation, whereas soil organic carbon, total nitrogen and total phosphorus tended to increase. Dehydrogenase, amylase and acid phosphatase activities initially increased and then decreased with increasing years of reclamation, whereas urease and alkaline phosphatase activities were characterized by an increase-decrease-increase trend. Moreover, urease, acid phosphatase and alkaline phosphatase activities exhibited significant differences between coastal saline soil with 63years of reclamation and bare flat, whereas dehydrogenase and amylase activities remained unchanged. Aquaculture ponds showed higher soil water content, pH and EC but lower soil organic carbon, total nitrogen and total phosphorus than rapeseed, broad bean and wheat fields. Rapeseed, broad bean and wheat fields displayed higher urease and alkaline phosphatase activities and lower dehydrogenase, amylase and acid phosphatase activities compared with aquaculture ponds. Redundancy analysis revealed that the soil physicochemical properties explained 74.5% of the variation in soil enzyme activities and that an obvious relationship

  18. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition

    Science.gov (United States)

    Jones, Sam P.; Ogée, Jérôme; Sauze, Joana; Wohl, Steven; Saavedra, Noelia; Fernández-Prado, Noelia; Maire, Juliette; Launois, Thomas; Bosc, Alexandre; Wingate, Lisa

    2017-12-01

    The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO2) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ18O) of atmospheric CO2. To do so, the activity of carbonic anhydrases (CAs), a group of enzymes that catalyse the hydration of CO2 in soils and plants, needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ18O of CO2 fluxes to solve for the apparent, potentially catalysed, rate of CO2 hydration. This requires information about the δ18O of CO2 in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO2 interacts with, which may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ18O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO2 hydration and the δ18O of soil water from the relationship between the δ18O of CO2 fluxes and the δ18O of CO2 at the soil surface measured at different ambient CO2 conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ18O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ18O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO2 hydration were 6.8-14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water treatments, suggesting

  19. Seasonal Development of Microbial Activity in Soils of Northern Norway

    Institute of Scientific and Technical Information of China (English)

    M. B(O)LTER; N. SOETHE; R. HORN; C. UHLIG

    2005-01-01

    Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacterial biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs.non-active bacteria were noticeable after freeze-thaw cycles.

  20. Spatial distribution of 40K, 228Ra, 226Ra, 238U and 137Cs in surface soil layer observed at small areas

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.; Prohic, E.; Culinovic, M.

    1997-01-01

    The main goal of this study is to give a more detailed insight into spatial radionuclide distribution in soils. It has been necessary in order to plant the future soil sampling procedure that would assure the representative soil samples for broader areas that are usually covered by in situ gamma-spectrometry measurements or aerial gamma-ray spectrometry. The spatial distributions of natural radionuclides and 137 Cs activity in surface soil layer were studed in five regular grids, consisting of 9 points each. The distances between sampled points were 30 cm (A grid), 2.45 m (B grid), 19.5 m (C grid), 156 m (D grid) and 213 m (E grid), respectively. Soil samples were dominantly taken at agricultural ploughed fields from areas of ca. 315 cm 2 (circle of a. 20 cm diameter), from surface up to 15 cm depth. The results indicate that representative soil sample must cover the broader area to provide data that could be compared with data collected by aerial gamma-spectrometry. The average sample on each locality must be prepared from several point samples. It seems that the central point and four points, each at approximately 50-100 m N, S, E, and W from the central point, could be enough

  1. Metatranscriptomic census of active protists in soils

    NARCIS (Netherlands)

    Geisen, Stefan; Tveit, A.T.; Clark, I.M.; Richter, A.; Svenning, M.; Bonkowski, M.; Urich, T.

    2015-01-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce

  2. Gamma radiation fields from activity deposited on road and soil surfaces

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1993-12-01

    Radioactive material deposited in the environment after an accidental release would cause exposure of the population living in the affected areas. The radiation field will depend on many factors such as radionuclide composition, surface contamination density, removal of activity by weathering and migration, and protective measures like decontamination, ploughing and covering by asphalt. Methods are described for calculation of air kerma rate from deposited activity on road and soil surfaces, both from the initially deposited activity and from activity distributed in the upper layer of soil as well as from activity covered by asphalt or soil. Air kerma rates are calculated for different source geometries and the results are fitted to a power-exponential function of photon energy, depth distributions in soil and horizontal dimensions. Based on this function calculations of air kerma rate can easily be made on a personal computer or programmable pocket calculator for specific radionuclide compositions and different horizontal and vertical distributions of the deposited activity. The calculations are compared to results from other methods like the Monte Carlo method and good agreement is found between the results. (au) (7 tabs., 12 ills., 8 refs.)

  3. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  4. Effects of de-icing salt on soil enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, M; Wilke, B M

    1983-01-01

    Effects of de-icing salt on dehydrogenase, urease, alkalinephosphatase and arylsulfatase activity of O/sub L/- and A/sub h/-horizons of a moder and a mull soil were investigated using a field experiment. Additions of 2.5 kg m/sup -2/ and 5.0 kg m/sup -2/ of de-icing salt reduced activities of most enzymes within four weeks. Eleven months after salt addition there was nearly no reduction of enzyme activity to be measured on salt treated soils. The percentage of reduced enzyme activity was generally higher in the moder soil. It was concluded that reductions of enzyme activity were due to decreases of microbial activity and not to inactivation of enzymes.

  5. Improvement of clayey soil characteristics by using activated carbon

    Directory of Open Access Journals (Sweden)

    Al-Soudany Kawther

    2018-01-01

    Full Text Available The clay soil is weak and unable to carry the applied loads as a result of the weight of buildings or vehicles on the load performing on the soil. In this research, clay soil was grained and mixed with different percentages of activated carbon additives to investigate its performance. One type of clay soil from Al-Taji city was used. The percentages of activated carbon 3, 5, 7 and 9% were added to the soil and the influence of the admixture was observed by comparing the results with the untreated soil. The selected properties for this comparison were specific gravity, consistency limits, compaction, static compaction, CBR, consolidation, swelling and unconfined compressive strength. The results showed that the plasticity index, maximum dry weight and specific gravity decreased as the percentage of additives increased. The unconfined compressive strength increased as the percentage of additives and curing periods (1, 7, 14 and 28days increased. The amount of increase in soil strength was even more than 100% for the 9% activatedcarbon. The results showed that the addition of activated carbon has a positive effect to the geotechnical properties.

  6. Effects of trace elements on urease activity in soils

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabai, M A

    1977-01-01

    Disposal of sewage sludges and effluents on agricultural land is becoming a widespread practice. Most sludge samples disposed on soils contain large quantities of various trace elements. Studies of 20 trace elements commonly found in sludge samples showed that they inhibit the activity of urease in soils and that their order of effectiveness as inhibitors of urease depends on the soil. When the trace elements were compared by using 5 ..mu..mol . g/sup -1/ soil, however, some of them showed the same order of effectiveness as urease inhibitors in the six soils studied i.e., for the monovalent and divalent ions. Ag/sup +/ greater than or equal to Hg/sup 2 +/ > Cu/sup 2 +/ > Cd/sup 2 +/ > Zn/sup 2 +/ > Sn/sup 2 +/ > Mn/sup 2 +/, and generally, Fe/sup 3 +/ > Fe/sup 2 +/ and Cu/sup 2 +/ > Cu/sup +/. Other trace element ions that inhibited urease were Ni/sup 2 +/, Co/sup 2 +/, Pb/sup 2 +/, Ba/sup 2 +/, As/sup 3 +/, B/sup 3 +/, Cr/sup 3 +/, Al/sup 3 +/, V/sup 4 +/, Se/sup 4 +/, and Mo/sup 6 +/. Of the trace element ions studied, only As/sup 5 +/ and W/sup 6 +/ did not inhibit urease activity in soils. Studies on the distribution of urease activity showed that it is concentrated in surface soils and decreases with depth. Urease activity was proportional to organic C distribution in each soil profile and was significantly correlated with organic C in the surface soils studied.

  7. Heavy metals' data in soils for agricultural activities

    Directory of Open Access Journals (Sweden)

    T.A. Adagunodo

    2018-06-01

    Full Text Available In this article, the heavy metals in soils for agricultural activities were analyzed statistically. Ten (10 soil samples were randomly taken across the agricultural zones in Odo-Oba, southwestern Nigeria. Ten (10 metals; namely: copper (Cu, lead (Pb, chromium (Cr, arsenic (As, zinc (Zn, cadmium (Cd, nickel (Ni, antimony (Sb, cobalt (Co and vanadium (V were determined and compared with the guideline values. When the values were compared with the international standard, none of the heavy metals in the study area exceeded the threshold limit. However, the maximum range of the samples showed that Cr and V exceeded the permissible limit which could be associated with ecological risk. The data can reveal the distributions of heavy metals in the agricultural topsoil of Odo-Oba, and can be used to estimate the risks associated with the consumption of crops grown on such soils. Keywords: Agricultural soils, Heavy metals, Contamination, Environment, Soil screening, Geostatistics

  8. Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil

    Directory of Open Access Journals (Sweden)

    Rıdvan Kızılkaya

    2012-07-01

    Full Text Available nsecticides are used in modern agriculture in large quantities to control pests and increase crop yield. Their use, however, has resulted in the disruption of ecosystems because of the effects on non-target soil microorganisms, some environmental problems, and decreasing soil fertility. These negative effects of synthetic pesticides on the environment have led to the search for alternative means of pest control. One such alternative is use of natural plant products such as azadirachtin that have pesticidal activity. The aim of this experiment was to study the effect of soil contamination by azadirachtin (C35H44O16 on dehydrogenase (DHA and catalase activity (CA of soil under field conditions in Perm, Russia. The tests were conducted on loamy soil (pHH2O 6.7, ECH2O 0.213 dSm-1, organic carbon 0.99%, to which the following quantities of azadirachtin were added: 0, 15, 30 and 60 mL da-1 of soil. Experimental design was randomized plot design with three replications. The DHA and CA analyses were performed 7, 14 and 21 days after the field experiment was established. The results of field experiment showed that azadirachtin had a positive influence on the DHA and CA at different soil sampling times. The increased doses of azadirachtin applied resulted in the higher level of DHA and CA in soil. The soil DHA and CA showed the highest activity on the 21th day after 60 mL azadirachtin da-1 application doses.

  9. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.

  10. The role of soil pH on soil carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    J. Sauze

    2018-01-01

    Full Text Available Carbonic anhydrases (CAs are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2–H2O isotopic exchange rate (kiso in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation that varied with soil texture. The reasons for this offset are still unknown.

  11. Irrigation and Nitrogen Regimes Promote the Use of Soil Water and Nitrate Nitrogen from Deep Soil Layers by Regulating Root Growth in Wheat.

    Science.gov (United States)

    Liu, Weixing; Ma, Geng; Wang, Chenyang; Wang, Jiarui; Lu, Hongfang; Li, Shasha; Feng, Wei; Xie, Yingxin; Ma, Dongyun; Kang, Guozhang

    2018-01-01

    Unreasonably high irrigation levels and excessive nitrogen (N) supplementation are common occurrences in the North China Plain that affect winter wheat production. Therefore, a 6-yr-long stationary field experiment was conducted to investigate the effects of irrigation and N regimes on root development and their relationship with soil water and N use in different soil layers. Compared to the non-irrigated treatment (W0), a single irrigation at jointing (W1) significantly increased yield by 3.6-45.6%. With increases in water (W2, a second irrigation at flowering), grain yield was significantly improved by 14.1-45.3% compared to the W1 treatments during the drier growing seasons (2010-2011, 2012-2013, and 2015-2016). However, under sufficient pre-sowing soil moisture conditions, grain yield was not increased, and water use efficiency (WUE) decreased significantly in the W2 treatments during normal precipitation seasons (2011-2012, 2013-2014, and 2014-2015). Irrigating the soil twice inhibited root growth into the deeper soil depth profiles and thus weakened the utilization of soil water and NO 3 -N from the deep soil layers. N applications increased yield by 19.1-64.5%, with a corresponding increase in WUE of 66.9-83.9% compared to the no-N treatment (N0). However, there was no further increase in grain yield and the WUE response when N rates exceeded 240 and 180 kg N ha -1 , respectively. A N application rate of 240 kg ha -1 facilitated root growth in the deep soil layers, which was conducive to utilization of soil water and NO 3 -N and also in reducing the residual NO 3 -N. Correlation analysis indicated that the grain yield was significantly positively correlated with soil water storage (SWS) and nitrate nitrogen accumulation (SNA) prior to sowing. Therefore, N rates of 180-240 kg ha -1 with two irrigations can reduce the risk of yield loss that occurs due to reduced precipitation during the wheat growing seasons, while under better soil moisture conditions, a

  12. Dust emission and soil loss due to anthropogenic activities by wind erosion simulations

    Science.gov (United States)

    Katra, Itzhak; Swet, Nitzan; Tanner, Smadar

    2017-04-01

    Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is < 10 micrometer in diameter, including clays and nutrients, was recorded in most experimental conditions. Integrative analyses of the topsoil properties and dust experiment highlight the significant implications for soil nutrient resources and management strategies as well as for PM loading to the atmosphere and air pollution.

  13. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  14. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    Science.gov (United States)

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. The technology of layer-specific rotary soil cultivation for forest crops and equipment for its implementation

    Directory of Open Access Journals (Sweden)

    S. N. Orlovskiy

    2017-06-01

    Full Text Available Influence of existing methods and technologies of soil processing for forest crops on establishment and growth of cultivated tree species was studied. It was found that furrow plough processing of soil can interfere with the cultivated trees’ ecological peculiarities, because the furrow floor, where trees are planted, often constitutes the lower part of the turf or the upper part of the ashen-gray layers having unfavorable water-physical conditions and decreased crop-producing power. Whenever conifer trees grow on the bottom of a furrow excavated in medium and heavy clay loam, their growth is significantly decreased and accompanied by remarkable changes in morphology. Processing of shallow humus thickness soil with multiple cutter results in mixing of A0, A1 and A2 (ashen-gray layers. Consequently, the processed horizon obtains a lower amount of fertile substances than the vegetable soil on non-processed places. An apparatus for graded soil tillage, its construction, working principle and usage technology are described. The major peculiarity of the device consists in the ability not to crumbl the soil, but to shake down vegetable earth cut by subsurface plow from beneath. The technology involves removing roots and grass outside cultivated land, so that it cannot be then overgrown with weeds. It was found that exploitation of the device improves soil pulverization quality, enhances percentage of separates less than 10 mm and 10–50 mm, decreases content of the separate larger than 50 mm, and reduced specific energy output almost three-fold. Vertical displacement of control particles while soil processing with common cutter machines and the suggested device was studied. Establishment and growth of Siberian pine was determined in experimental productive cultures at different planting technologies. It was shown that under the suggested technology, forest plants furrow sowing can be done while soil processing, so that making nurseries becomes

  16. Impact of long term pesticide usage on soil microbial activities and 14C-monocrotophos degradation

    International Nuclear Information System (INIS)

    Tayaputch, N.; Pimpan, P.; Phaikaew, Y.; Chukiatwatana, L.

    2001-01-01

    The effects of long term pesticide usage on soil microbial activities and degradation of 14 C-monocrotophos was observed under cotton field conditions. The experimental field was divided into treated and untreated plots. Pesticides were applied to treated plots at weekly intervals as in common practice in Thailand. The total numbers of applications were 11, 16 and 16 for first, second and third crop seasons, during the three years from 1996 to 1998. Soil samples at depths of 0-15 cm and 15-30 cm were sampled before and after pesticide application for the first two crops, while in the third crop season only the surface layer of soil was taken. The samples were assessed for CO 2 from respiration, soil microbial population, iron reduction capacity, and rates of nitrification. Soil biomass and microbial activities as measured from respiration and iron reduction decreased in the treated plots at both depths after each pesticide application over the three crop seasons, whereas samples from untreated plots at both depths did not show decreases. Repeated application of pesticides did not show any effect on nitrification rates of the first crop but there was inhibition in the second and third crops. Soil columns, treated with 14 C-monocrotophos one week after last pesticide application, were harvested after 0, 3, 6, 9, 18, 24 and 30 months. Extractable residues of 14 C were found only in the 0-15 cm layer. In treated and untreated plots, residues declined from 80.17 and 85.68 to 0.44% of the applied 14 C within 6 months. The long term usage of pesticides did not affect the half-life of 14 C-monocrotophos. Bound residues of 14 C were found at the highest concentrations, 18.94 and 12.58% of that applied, at 6 months in treated and untreated plots, thereafter the binding decreased to 4.68 and 2.74% within 30 months. (author)

  17. Granulated wood ash to forest soils. Effects on microorganisms, phosphorus availability, and spatial relationships in the humus layer

    International Nuclear Information System (INIS)

    Clarholm, Marianne

    1999-01-01

    The report summarises effects on microorganisms, phosphorus (P) availability and spatial relationships in the humus layer of two spruce forests in south-western Sweden four to seven years after application of 3.2 tonnes (t) (Skogaby), alternatively three or six t (Torup) of granulated wood ash. There were tendencies for increases in pH and in numbers of ciliates, flagellates and small nematodes while no effects were observed for naked amoebae, the major consumers of bacteria among the protozoa. After seven years, the amount of P in microbial biomass in the humus layer in the wood ash treatment (A) in Skogaby was significantly higher than in the control (C), increased amounts of microbial nitrogen and carbon were also recorded. Observations over time indicated that the P availability in the soil first decreased after the ash addition, but later increased above that in the control. The time course was most readily seen in the microbial biomass, which contained 50% of total P in the humus layer, an amount equal to ten times the yearly uptake in trees. The microbial biomass has a much higher P concentration as compared to the needles, the component of the tree with the highest concentration. The P in micro-organisms thus form a buffer against P deficiency for the trees. A test where the 32 P uptake rate of excised mycorrhizal fine roots in the laboratory is used to establish P availability in the field, indicated an increased P availability in (A), which was in contrast to reported decreased uptake of P in trees, decreased P concentration in needles and also in roots, as compared to (C). In six treatments investigated in Skogaby 32 P uptake rates were negatively correlated to the P/C of the microbial biomass. Acid phosphatase activity was always higher in (A) as compared to treatments where soluble P had been added and at two out of five times also higher than in (C ). High phosphatase activity levels were at least partly connected to large amounts of microbial biomass

  18. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  19. The thin layer activation method and its applications in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools.

  20. Thin layer activation and ultra thin layer activation: two complementary techniques for wear and corrosion studies in various fields

    International Nuclear Information System (INIS)

    Sauvage, T.; Vincent, L.; Blondiaux, G.

    2002-01-01

    Thin layer activation (TLA) is widely used since more than 25 years to study surface wear or corrosion. This well known technique uses most of the time charged particles activation, which gives sensitivity in the range of the micrometer, except when the fluid mode of detection is utilized. In this case application of the method is limited to phenomena where we have transport of radioactive fragments to detection point. The main disadvantage of this procedure is the error due to trapping phenomena between the wear or corrosion point and detection setup. So the ultra thin layer activation (UTLA) has been developed to get nanometric sensitivity without using any fluid for radioactivity transportation, which is the main source of error of the TLA technique. In this paper we shall briefly describe the TLA technique and the most important fields of application. Then we shall emphasise on UTLA with a presentation of the principle of the method and actual running of application. The main problem concerning UTLA is calibration which requires the use of thin films (usually 10 to 100 nanometers) deposited on substrate. This process is time consuming and we shall demonstrate how running software developed in the lab can solve it. We shall finish the presentation by giving some potential application of the technique in various fields. (authors)

  1. Soil dehydrogenase activity of natural macro aggregates in a toposequence of forest soil

    Directory of Open Access Journals (Sweden)

    Maira Kussainova

    2013-01-01

    Full Text Available The main objective of this study was to determine changes in soil dehydrogenase activity in natural macro aggregates development along a slope in forest soils. This study was carried out in Kocadag, Samsun, Turkey. Four landscape positions i.e., summit, shoulder backslope and footslope, were selected. For each landseape position, soil macro aggregates were separated into six aggregate size classes using a dry sieving method and then dehydrogenase activity was analyzed. In this research, topography influenced the macroaggregate size and dehydrogenase activity within the aggregates. At all landscape positions, the contents of macro aggregates (especially > 6.3 mm and 2.00–4.75 mm in all soil samples were higher than other macro aggregate contents. In footslope position, the soils had generally the higher dehydrogenase activity than the other positions at all landscape positions. In all positions, except for shoulder, dehydrogenase activity was greater macro aggregates of <1 mm than in the other macro aggregate size.

  2. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  3. Application of thin layer activation method to industrial use

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Hatakeyama, Noriko

    1996-01-01

    A thin layer activation method was reviewed for non-destructive, rapid, precise and real-time measurement of wear and corrosion. The review included wear measurement, the principle of the method, actual measurement, application, and laws and regulations. The method is to activate the material surface alone by accelerated ions like p, d and He ions produced by cyclotron, Van de Graaf apparatus or other accelerators and to utilize the yielded radioisotopes as a tracer, is widely used in the tribology field, and is more useful than the previous method with the reactor since it activated the whole material. Application of the method was reportedly resulted in saving the 80% cost and 90% time in the wear measurement of automobile parts such as engine and transmission. Actually, the activated material was combined into the part to be run and the radioactivity was to be measured externally or in the worn particles suitably collected. The activation thickness was generally in the range of 10-200 μm and the resultant radioactivity, 0.2-2 MBq. In most cases in Japan, the method would be under the law concerning prevention from radiation hazards due to radioisotopes, etc. (K.H.)

  4. Dynamics of elements in soil treated with increasing doses sewage sludge for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Oliveira, Helder de; Mortatti, Jefferson; Vendramini, Diego; Lopes, Renato A.; Nolasco, Murilo M.; Sarries, Gabriel A.; Furlan, Adriana

    2007-01-01

    In this work the dynamics of the elements was analyzed The, Br, Ce, Co, Cr, Cs, Fe, Hf, La, In the, Sb, Sc, Sm, Ta, Th, U, Yb and Zn in a profile of a red-yellow latossolo, in the depths of 0-5, 5-10, 10-30 and 30-50 cm, and dose of the biosolid of 0, 25, 124 and 375 t ha -1 , of the station of treatment of sewer of Barueri, Sao Paulo. The experiment was carried out in areas of 3,05 m 2 in the times of 2,2; 4,0; 6,6; 14,3 and 21 months. For analysis of the elementary composition, it was used of the analysis technique by instrumental neutron activation analysis (INAA). The experiment was submitted under normal tropical conditions in a forest station in Itatinga, Sao Paulo, of the University of Sao Paulo. For better details, the factors depth, doses and times statistical analyses of the results of the elementary composition of the soil samples were made. For all the biossolid doses conditioned with polymeric and applied in the soil, the composition of 17 of the 18 elements in the soil were not altered, with exception for Cr in the studied times. The elements As, Br, Ce, Co, Fe, Hf, La, Sm, Ta, Th, U and Yb presented higher levels in the deepest layers of soil; already the elements Cr, In the, Sb and Zn presented higher concentrations in the superficial layers. (author)

  5. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    Science.gov (United States)

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  6. Feeding activity of the earthworm Eisenia andrei in artificial soil.

    NARCIS (Netherlands)

    Jager, D.T.; Fleuren, R.H.L.J.; Roelofs, W.; de Groot, A.C.

    2003-01-01

    Quantitative information on the feeding activity of earthworms is scarce but this information is valuable in many eco(toxico)logical studies. In this study, the feeding activity of the compost worm Eisenia andrei is examined in artificial soil (OECD medium), with and without a high-quality food

  7. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition

    NARCIS (Netherlands)

    Khdhiri, Mondher; Hesse, Laura; Popa, Maria Elena; Quiza, Liliana; Lalonde, Isabelle; Meredith, Laura K.; Röckmann, Thomas; Constant, Philippe

    2015-01-01

    Soil-atmosphere exchange of H2 is controlled by gas diffusion and the microbial production and oxidation activities in soil. Among these parameters, the H2 oxidation activity catalyzed by soil microorganisms harboring high affinity hydrogenase is the most difficult variable to parameterize because

  8. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    Science.gov (United States)

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities

    Science.gov (United States)

    Molaei, Ali; Lakzian, Amir; Datta, Rahul; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Ceccherini, Maria T.

    2017-10-01

    Pharmaceutical antibiotics are frequently used in the livestock and poultry industries to control infectious diseases. Due to the lack of proper guidance for use, the majority of administrated antibiotics and their metabolites are excreted to the soil environment through urine and feces. In the present study, we used chlortetracycline and sulfapyridine antibiotics to screen out their effects on dehydrogenase, alkaline phosphatase and urease activity. Factorial experiments were conducted with different concentrations of antibiotic (0, 10, 25 and 100 mg kg-1 of soil) mixed with soil samples, and the enzyme activity was measured at intervals of 1, 4 and 21 days. The results show that the chlortetracycline and sulfapyridine antibiotics negatively affect the dehydrogenase activity, but the effect of sulfapyridine decreases with time of incubation. Indeed, sulfapyridine antibiotic significantly affect the alkaline phosphatase activity for the entire three-time interval, while chlortetracycline seems to inhibit its activity within 1 and 4 days of incubation. The effects of chlortetracycline and sulfapyridine antibiotics on urease activity appear similar, as they both significantly affect the urease activity on day 1 of incubation. The present study concludes that chlortetracycline and sulfapyridine antibiotics have harmful effects on soil microbes, with the extent of effects varying with the duration of incubation and the type of antibiotics used.

  10. Chromium in soil layers and plants on closed landfill site after landfill leachate application.

    Science.gov (United States)

    Zupancic, Marija; Justin, Maja Zupancic; Bukovec, Peter; Selih, Vid Simon

    2009-06-01

    Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r=0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10-0.15 mg/kg in leaves and 0.05-0.07 mg

  11. Directed Vertical Diffusion of Photovoltaic Active Layer Components into Porous ZnO-Based Cathode Buffer Layers.

    Science.gov (United States)

    Kang, Jia-Jhen; Yang, Tsung-Yu; Lan, Yi-Kang; Wu, Wei-Ru; Su, Chun-Jen; Weng, Shih-Chang; Yamada, Norifumi L; Su, An-Chung; Jeng, U-Ser

    2018-04-01

    Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC 71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC 71 BM more than that of the polymer. The deeper penetration of PC 71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. STRESS-STRAIN STATE OF ROCKFILL DAM DOUBLE-LAYER FACE MADE OF REINFORCED CONCRETE AND SOIL-CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Sainov Mikhail Petrovich

    2017-05-01

    Full Text Available There was studied the stress-strain state of 215 m high rockfill dam where the seepage-control element is presented by a reinforced concrete face of soil-cement concrete placed on the under-face zone. Calculations were carried out for two possible variants of deformability of rock outline taking into account the non-linearity of its deformative properties. It was obtained that the reinforced concrete face and the soil-cement concrete under-face zone work jointly as a single construction - a double-layer face. As the face assembly resting on rock is made with a sliding joint the scheme of its static operation is similar to the that of the beam operation on the elastic foundation. At that, the upstream surface of the double-layer face is in the compressed zone and lower one is in the tensile zone. This protects the face against cracking on the upstream surface but threatens with structural failure of soil-cement concrete. In order to avoid appearance of cracks in soil-cement concrete part due to tension it is necessary to achieve proper compaction of rockfill and arrange transverse joints in the double-layer face.

  13. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau

    Science.gov (United States)

    Chen, Leiyi; Liang, Junyi; Qin, Shuqi; Liu, Li; Fang, Kai; Xu, Yunping; Ding, Jinzhi; Li, Fei; Luo, Yiqi; Yang, Yuanhe

    2016-01-01

    The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2–C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2–C release from the active layer, whereas soil microbial abundance is more directly associated with CO2–C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment. PMID:27703168

  14. Unexpected results in Chernozem soil respiration while measuring the effect of a bio-fertilizer on soil microbial activity.

    Science.gov (United States)

    Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina

    2017-01-01

    The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content.

  15. The effect of the herbicide diuron on soil microbial activity.

    Science.gov (United States)

    Prado, A G; Airoldi, C

    2001-07-01

    The inhibitory effect of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] on microbial activity in red Latosol soil was followed using microcalorimetry. The activity of the micro-organisms in 1.50 g of soil sample was stimulated by addition of 6.0 mg of glucose and 6.0 mg of ammonium sulfate under 35% controlled humidity at 298.15 (+/- 0.02) K. This activity was determined by power-time curves that were recorded for increasing amounts of diuron, varying from zero to 333.33 micrograms g-1 soil. An increase in the amount of diuron in soil caused a decrease of the original thermal effect, to reach a null value above 333.33 micrograms g-1 of herbicide. The power-time curve showed that the lag-phase period and peak time increased with added herbicide. The decrease of the thermal effect evolved by micro-organisms and the increase of the lag-phase period are associated with the death of microbial populations caused by diuron, which strongly affects soil microbial communities.

  16. ABTS assay of phenol oxidase activity in soil.

    Science.gov (United States)

    Floch, Carine; Alarcon-Gutiérrez, Enrique; Criquet, Stéven

    2007-12-01

    Phenol oxidases (PO) are involved in degradation of many recalcitrant aromatic compounds and may be sensitive to some pollutants. Hence, their activities may be a useful indicator for evaluating soil quality and health. To this end, the aim of this study was to develop a simple method to assay PO activity directly in bulk samples by spectrophotometric test using 2,2'-azinobis-(-3 ethylbenzothiazoline-6-sulfononic acid) diammonium salt (ABTS) as the substrate. Three Mediterranean soils were used as models. For each soil, we studied the kinetic parameters and the effects of certain factors (i.e. amount of soil, pH, temperature, incubation time and substrate concentration) in order to determine the optimum conditions for the ABTS assay. Results showed that PO attain their optimum activities when incubating 0.1 g of soil at 30 degrees C for 5 min with 10 ml of a Modified Universal Buffer (MUB) at pH 2 and 200 microl of a 0.1 M ABTS solution.

  17. Biological activity of soil contaminated with cobalt, tin, and molybdenum.

    Science.gov (United States)

    Zaborowska, Magdalena; Kucharski, Jan; Wyszkowska, Jadwiga

    2016-07-01

    In this age of intensive industrialization and urbanization, mankind's highest concern should be to analyze the effect of all metals accumulating in the environment, both those considered toxic and trace elements. With this aim in mind, a unique study was conducted to determine the potentially negative impact of Sn(2+), Co(2+), and Mo(5+) in optimal and increased doses on soil biological properties. These metals were applied in the form of aqueous solutions of Sn(2+) (SnCl2 (.)2H2O), Co(2+) (CoCl2 · 6H2O), and Mo(5+) (MoCl5), each in the doses of 0, 25, 50, 100, 200, 400, and 800 mg kg(-1) soil DM. The activity of dehydrogenases, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and catalase and the counts of twelve microorganism groups were determined on the 25th and 50th day of experiment duration. Moreover, to present the studied problem comprehensively, changes in the biochemical activity and yield of spring barley were shown using soil and plant resistance indices-RS. The study shows that Sn(2+), Co(2+), and Mo(5+) disturb the state of soil homeostasis. Co(2+) and Mo(5+) proved the greatest soil biological activity inhibitors. The residence of these metals in soil, particularly Co(2+), also generated a drastic decrease in the value of spring barley resistance. Only Sn(2+) did not disrupt its yielding. The studied enzymes can be arranged as follows for their sensitivity to Sn(2+), Co(2+), Mo(5+): Deh > Ure > Aryl > Pal > Pac > Cat. Dehydrogenases and urease may be reliable soil health indicators.

  18. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; Johannes C. G. Ottow

    2011-01-01

    The objective of this research was to determine the effects of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD) which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA),in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT). The toxicity and dose response curve of...

  19. Green living roof implementation and influences of the soil layer on its properties

    Directory of Open Access Journals (Sweden)

    Dimitrijević Dragana G.

    2016-01-01

    Full Text Available Affected by undeniable climatic change, the temperature of the urban areas rises continually, increasing rapidly the energy problem of cities and amplifying the pollution problems. The thermal stress is increased, thus both the indoor and the outdoor thermal comfort levels are decreased, enhancing the health problems. Green roof implementation in the building envelope is strategy that provides heat island amelioration, thermal comfort for occupants and reduces energy consumption of buildings. Green living roofs are a passive cooling technique, which can stop the incoming solar radiation from reaching the building structure below. In this paper, we assessed the importance of the green roofs in providing environmental and building energy benefits, and brief investigation on the different configuration of the soil layer in the green roof assembly influences to the temperature of the roof surface was presented. Investigation was conducted for first phase of the living roof growth. Four cells were designed in SolidWorks software where the transient thermal study was performed in order to determine differences between the behavior of the conventional roof and three green roof types.

  20. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Science.gov (United States)

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  1. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    Science.gov (United States)

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  2. A new method of fully three dimensional analysis of stress field in the soil layer of a soil-mantled hillslope

    Science.gov (United States)

    Wu, Y. H.; Nakakita, E.

    2017-12-01

    Hillslope stability is highly related to stress equilibrium near the top surface of soil-mantled hillslopes. Stress field in a hillslope can also be significantly altered by variable groundwater motion under the rainfall influence as well as by different vegetation above and below the slope. The topographic irregularity, biological effects from vegetation and variable rainfall patterns couple with others to make the prediction of shallow landslide complicated and difficult. In an increasing tendency of extreme rainfall, the mountainous area in Japan has suffered more and more shallow landslides. To better assess shallow landslide hazards, we would like to develop a new mechanically-based method to estimate the fully three-dimensional stress field in hillslopes. The surface soil-layer of hillslope is modelled as a poroelastic medium, and the tree surcharge on the slope surface is considered as a boundary input of stress forcing. The modelling of groundwater motion is involved to alter effective stress state in the soil layer, and the tree root-reinforcement estimated by allometric equations is taken into account for influencing the soil strength. The Mohr-Coulomb failure theory is then used for locating possible yielding surfaces, or says for identifying failure zones. This model is implemented by using the finite element method. Finally, we performed a case study of the real event of massive shallow landslides occurred in Hiroshima in August, 2014. The result shows good agreement with the field condition.

  3. Investigation of the Active layer thickness and ground subsidence in Taimyr

    Science.gov (United States)

    Grebenets, V. I.; Tolmanov, V. A.; Streletskiy, D. A.

    2017-12-01

    The active layer of permafrost (ALT) is highly unstable and dynamic in space and time. Soil undergoes frost heave during the freezing process, and ground subsidence during the thawing. The problem of the development of soil sediments' deformations in ALT is relevant as for natural objects (influence on runoff, changing of landscape and vegetation, etc.), so for industrial infrastructure (pipelines, roads, buildings and structures). The observations in the frame of the CALM program in Taimyr were carried out since 2005 (site R-32) with the measurements of the geodetic level of soil surface since 2007. The results of these measurements were processed and the maps of thawing and changes in meso- and micro-relief were constructed. The differentiation of seasonally thawed layer and ground subsidence in different micro-landscape conditions was investigated. The depth of seasonal thawing and the changes of surface movements were found to be determined by three main systems: a) the weather conditions and the climate trends; b) the permafrost-lithological conditions and drainage; c) the micro-landscape characteristics. It was established that for the Norilsk region (Taimyr) the trend in increasing ALT was 0.3 cm / year (for the period of observations 2005-2016) with a certain slowdown in the last 3 to 4 years. Increase in the depth of the ALT was related to the rising Summer temperatures and reduction of the cold period. A strong high impact of the summer precipitation conditions was revealed: in rather cold summer of 2012, with large amount of precipitation mainly in the warmest month (July), the defrosting was the highest. In the year with the record-breaking number of positive degree days (from all the 85 years of regular meteorological observations) but anomalously dry year 2013 (in July - less than 10 mm atmospheric precipitation), the thawing was minimal at the R-32 site. It is interesting that the ground subsidence in 2012 was 30-40% less, than in 2013. This is due

  4. Mechanical Behaviour of Soil Improved by Alkali Activated Binders

    Directory of Open Access Journals (Sweden)

    Enza Vitale

    2017-11-01

    Full Text Available The use of alkali activated binders to improve engineering properties of clayey soils is a novel solution, and an alternative to the widely diffused improvement based on the use of traditional binders such as lime and cement. In the paper the alkaline activation of two fly ashes, by-products of coal combustion thermoelectric power plants, has been presented. These alkali activated binders have been mixed with a clayey soil for evaluating the improvement of its mechanical behaviour. One-dimensional compression tests on raw and treated samples have been performed with reference to the effects induced by type of binder, binder contents and curing time. The experimental evidences at volume scale of the treated samples have been directly linked to the chemo-physical evolution of the binders, investigated over curing time by means of X Ray Diffraction. Test results showed a high reactivity of the alkali activated binders promoting the formation of new mineralogical phases responsible for the mechanical improvement of treated soil. The efficiency of alkali activated binders soil treatment has been highlighted by comparison with mechanical performance induced by Portland cement.

  5. Plutonium isotopes/137Cs activity ratios for soil in Montenegro

    International Nuclear Information System (INIS)

    Antovic, N. M.; Vukotic, P.; Svrkota, N.; Andrukhovich, S.K.

    2011-01-01

    Plutonium isotopes/ 137 Cs activity ratios were determined for six soil samples from Montenegro, using the results of alpha-spectrometric measurements of 239+240 Pu and 238 Pu, as well as gamma-spectrometric cesium measurements. An average 239+240 Pu/ 137 Cs activity ratio is found to be 0.02, as the 238 Pu/ 137 Cs and 238 Pu/ 239+240 Pu one - 0.0006 and 0.03, respectively. It follows from the results that the source of plutonium in Montenegro soil is nuclear weapon testing during the fifties and sixties of the twentieth century. On the other hand, there is a contribution of the accident at the Chernobyl nuclear power plant to the soil contamination with 137 Cs isotope. [sr

  6. Charcoal Increases Microbial Activity in Eastern Sierra Nevada Forest Soils

    Directory of Open Access Journals (Sweden)

    Zachary W. Carter

    2018-02-01

    Full Text Available Fire is an important component of forests in the western United States. Not only are forests subjected to wildfires, but fire is also an important management tool to reduce fuels loads. Charcoal, a product of fire, can have major impacts on carbon (C and nitrogen (N cycling in forest soils, but it is unclear how these effects vary by dominant vegetation. In this study, soils collected from Jeffrey pine (JP or lodgepole pine (LP dominated areas and amended with charcoal derived from JP or LP were incubated to assess the importance of charcoal on microbial respiration and potential nitrification. In addition, polyphenol sorption was measured in unamended and charcoal-amended soils. In general, microbial respiration was highest at the 1% and 2.5% charcoal additions, but charcoal amendment had limited effects on potential nitrification rates throughout the incubation. Microbial respiration rates decreased but potential nitrification rates increased over time across most treatments. Increased microbial respiration may have been caused by priming of native organic matter rather than the decomposition of charcoal itself. Charcoal had a larger stimulatory effect on microbial respiration in LP soils than JP soils. Charcoal type had little effect on microbial processes, but polyphenol sorption was higher on LP-derived than JP-derived charcoal at higher amendment levels despite surface area being similar for both charcoal types. The results from our study suggest that the presence of charcoal can increase microbial activity in soils, but the exact mechanisms are still unclear.

  7. Transfer of radio-cesium from forest soil to woodchips using fungal activities

    Science.gov (United States)

    Kaneko, Nobuhiro; Huang, Yao; Tanaka, Yoichiro; Fujiwara, Yoshihiro; Sasaki, Michiko; Toda, Hiroto; Takahashi, Terumasa; Kobayashi, Tatsuaki; Harada, Naoki; Nonaka, Masahiro

    2014-05-01

    Raido-cesium released to terrestrial ecosystems by nuclear accidents is know to accumulate forest soil and organic layer on the soil. Forests in Japan are not exceptions. Practically it is impossible to decontaminate large area of forests. However, there is a strong demand from local people, who has been using secondary forests (Satoyama) around croplands in hilly areas, to decontaminate radio-cesium, because those people used to collect wild mushrooms and edible plants, and there are active cultures of mushrooms using logs and sawdusts. These natural resource uses consist substantial part of their economical activities, Therefore it is needed to decontaminate some selected part of forests in Japan to local economy. Clear cutting and scraping surface soil and organic matter are common methods of decontamination. However the efficiency of decontamination is up to 30% reduction of aerial radiation, and the cost to preserve contaminated debris is not affordable. In this study we used wood chips as a growth media for saprotrophic fungi which are known to accumulate redio-cesium. There are many studies indicated that mushrooms accumulated redio-cesium from forest soil and organic layer. It is not practical to collect mushrooms to decontaminate redio-cesium, because biomass of mushrooms are not enough to collect total contaminants. Mushrooms are only minor part of saprotrophic fungi. Fungal biomass in forest soil is about 1% of dead organic matter on forest floor. Our previous study to observe Cs accumulation to decomposing leaf litter indicated 18% absorption of total soil radio-Cs to litter during one year field incubation (Kaneko et al., 2013), and Cs concentration was proportional to fungal biomass on litter. This result indicated that fungi transferred radio-cesium around newly supplied leaf litter free of contamination. Therefore effective decontamination will be possible if we can provide large amount of growth media for saprotrophic fungi, and the media can be

  8. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    Science.gov (United States)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  9. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.

    Science.gov (United States)

    Forrest, Scott R; Elmore, Bill B; Palmer, James D

    2005-01-01

    Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.

  10. Review and applicative perspectives of thin layer activation in Romania

    International Nuclear Information System (INIS)

    Racolta, P.M.

    1999-01-01

    The Thin Layer Activation (TLA) is an ion beam based technique. It consists in an accelerated ion bombardment of the surface of interest of a machine part subjected to wear. Wear and some types of corrosion phenomena characterized by a loss of material can be studied by monitoring the resulted changes in radioactivity. In this paper some general considerations on the physical phenomena involved, a short description of the two developed measuring methods, a zoom on the specific steps of the experiments (irradiation, calibration, experimental setups and instrumentation), and some applications will be presented. Although the level of activity used in TLA lies under the limit of the range considered to be safe from the point of view of radiation protection, industry hesitates to use this technique mainly due to psychological reasons with respect to the handling of radioactive material. Recognizing this problem we have decided to offer to industry wear/corrosion measurements using TLA in the form of a 'complete package'. The conception of this procedure will be presented also. (author)

  11. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    Science.gov (United States)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    positively correlated with the carbohydrate fraction and negatively correlated with the aliphatic fraction of the soil C, while carbohydrate-C and alkyl-C increased and decreased with distance from the road, respectively. It is proposed that petroleum hydrocarbons supress soil biological activity at concentrations above 1500 mg kg-1, and that soil organic matter priming primarily affects the carbohydrate fraction of soil organic matter. It can be concluded that the abundance of solid carbohydrates (O-alkyl C) is of paramount importance for the hydrocarbon mineralization under natural conditions, compared to more recalcitrant SOM fractions (mainly aromatic and alkyl C). References Mykhailova, L., Fischer, T., Iurchenko, V. (2013) Distribution and fractional composition of petroleum hydrocarbons in roadside soils. Applied and Environmental Soil Science, vol. 2013, Article ID 938703, 6 pages, DOI 10.1155/2013/938703 Mykhailova, L., Fischer, T., Iurchenko, V. (2014) Deposition of petroleum hydrocarbons with sediment trapped in snow in roadside areas. Journal of Environmental Engineering and Landscape Management 22(3):237-244, DOI 10.3846/16486897.2014.889698 Nelson P.N. and Baldock J.A. (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses, 2005, Biogeochemistry (2005) 72: 1-34, DOI 10.1007/s10533-004-0076-3 Zyakun, A., Nii-Annang, S., Franke, G., Fischer, T., Buegger, F., Dilly, O. (2011) Microbial Actvity and 13C/12C Ratio as Evidence of N-Hexadecane and N-Hexadecanoic Acid Biodegradation in Agricultural and Forest Soils. Geomicrobiology Journal 28:632-647, DOI 10.1080/01490451.2010.489922

  12. An approach to determine multiple enzyme activities in the same soil sample for soil health-biogeochemical indexes

    Science.gov (United States)

    Enzyme activities (EAs) are soil health indicators of changes in decomposition processes due to management and the crop(s) affecting the quantity and quality of plant residues and nutrients entering the soil. More commonly assessed soil EAs can provide information of reactions where plant available ...

  13. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations

    International Nuclear Information System (INIS)

    Jeremić, B.; Tafazzoli, N.; Ancheta, T.; Orbović, N.; Blahoianu, A.

    2013-01-01

    Highlights: • Full 3D, inclined, incoherent seismic motions used for modeling SSI of an NPP. • Analyzed effects of variable and uniform soil/rock layering profiles on SSI. • Surface and embedded foundations were modeled and differences analyzed. - Abstract: Presented here is an investigation of the seismic response of a massive NPP structures due to full 3D, inclined, un-correlated input motions for different soil and rock profiles. Of particular interest are the effects of soil and rock layering on the response and the changes of input motions (frequency characteristics) due to such layering. In addition to rock/soil layering effects, investigated are also effects of foundation embedment on dynamic response. Significant differences were observed in dynamic response of containment and internal structure founded on surface and on embedded foundations. These differences were observed for both rock and soil profiles. Select results are used to present most interesting findings

  14. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Henriksen, Kaj; Mortensen, Lars

    2010-01-01

    Intrinsic biodegradation of organic contaminants in the soil vadose zone depends on site-specific soil properties controlling biophysical and geochemical interactions within the soil pore space. In this study we evaluated the effect of soil texture and moisture conditions on aerobic biodegradatio...... in the deep vadose zone. As a result, management of petroleum hydrocarbon spill sites will benefit from site-specific conceptual models in which the vadose zone is divided into geological compartments with different biophysical potential for biodegradation and bioremediation....

  15. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil.

    Science.gov (United States)

    Pupin, B; Nahas, E

    2014-04-01

    Mangroves provide a distinctive ecological environment that differentiates them from other ecosystems. This study deal to evaluate the frequency of microbial groups and the metabolic activities of bacteria and fungi isolated from mangrove, restinga and Atlantic forest soils. Soil samples were collected during the summer and winter at depths of 0-2, 2-5 and 5-10 cm. Except for fungi, the counts of the total, sporulating, Gram-negative, actinomycetes, nitrifying and denitrifying bacteria decreased significantly in the following order: Atlantic forest >mangrove > restinga. The counts of micro-organisms decreased by 11 and 21% from the surface to the 2-5 and 5-10 cm layers, but denitrifying bacteria increased by 44 and 166%, respectively. A larger growth of micro-organisms was verified in the summer compared with the winter, except for actinomycetes and fungi. The average frequency of bacteria isolated from mangrove, restinga and Atlantic forest soils was 95, 77 and 78%, and 93, 90 and 95% for fungi, respectively. Bacteria were amylolytic (33%), producers of acid phosphatase (79%) and solubilizers (18%) of inorganic phosphate. The proportions of fungi were 19, 90 and 27%. The mangrove soil studied had higher chemical characteristics than the Atlantic forest, but the high salinity may have restricted the growth of microbial populations. Estimates of the microbial counts and activities were important to elucidate the differences of mangrove ecosystem from restinga and Atlantic forest. © 2013 The Society for Applied Microbiology.

  16. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas.

    Directory of Open Access Journals (Sweden)

    Ting Wei

    Full Text Available Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four-year (2007-2011 field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm(-2, M: 6000 kg hm(-2, and L: 3000 kg hm(-2 and no straw incorporation was used as the control (CK. The levels of soil nutrients, soil organic carbon (SOC, soil labile organic carbon (LOC, and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0-40 cm soil layers after straw incorporation treatments, i.e., 9.1-30.5%, 9.8-69.5%, 10.3-27.3%, 0.7-23.4%, and 44.4-49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0-40 cm soil layers were 24.4-31.3%, 9.9-36.4%, and 42.9-65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively.

  17. Soils Activity Mobility Study: Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-09-29

    This report presents a three-level approach for estimation of sediment transport to provide an assessment of potential erosion risk for sites at the Nevada National Security Site (NNSS) that are posted for radiological purposes and where migration is suspected or known to occur due to storm runoff. Based on the assessed risk, the appropriate level of effort can be determined for analysis of radiological surveys, field experiments to quantify erosion and transport rates, and long-term monitoring. The method is demonstrated at contaminated sites, including Plutonium Valley, Shasta, Smoky, and T-1. The Pacific Southwest Interagency Committee (PSIAC) procedure is selected as the Level 1 analysis tool. The PSIAC method provides an estimation of the total annual sediment yield based on factors derived from the climatic and physical characteristics of a watershed. If the results indicate low risk, then further analysis is not warranted. If the Level 1 analysis indicates high risk or is deemed uncertain, a Level 2 analysis using the Modified Universal Soil Loss Equation (MUSLE) is proposed. In addition, if a sediment yield for a storm event rather than an annual sediment yield is needed, then the proposed Level 2 analysis should be performed. MUSLE only provides sheet and rill erosion estimates. The U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) provides storm peak runoff rate and storm volumes, the inputs necessary for MUSLE. Channel Sediment Transport (CHAN-SED) I and II models are proposed for estimating sediment deposition or erosion in a channel reach from a storm event. These models require storm hydrograph associated sediment concentration and bed load particle size distribution data. When the Level 2 analysis indicates high risk for sediment yield and associated contaminant migration or when there is high uncertainty in the Level 2 results, the sites can be further evaluated with a Level 3 analysis using more complex

  18. Activation Assessment of the Soil Around the ESS Accelerator Tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L. [Fermilab; Mokhov, N. V. [Fermilab; Tropin, I. S. [Fermilab; Ene, D. [ESS, Lund

    2017-01-01

    Activation of the soil surrounding the ESS accelerator tunnel calculated by the MARS15 code is presented. A detailed composition of the soil, that comprises about 30 different chemical elements, is considered. Spatial distributions of the produced activity are provided in both transverse and longitudinal direction. A realistic irradiation profile for the entire planned lifetime of the facility is used. The nuclear transmutation and decay of the produced radionuclides is calculated with the DeTra code which is a built-in tool for the MARS15 code. Radionuclide production by low-energy neutrons is calculated using the ENDF/B-VII evaluated nuclear data library. In order to estimate quality of this activation assessment, a comparison between calculated and measured activation of various foils in a similar radiation environment is presented.

  19. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    Science.gov (United States)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received

  20. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling...... of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...

  1. Estimation of iodine in soils by neutron activation analysis

    International Nuclear Information System (INIS)

    Krishnamoorthy, K.R.; Iyer, R.K.

    1982-01-01

    This paper reports the determination of the iodine content of soils by neutron activation analysis. The irradiated sample is fused with alkali in presence of 131 I tracer. From the aqueous extract, iodine activity is extracted into carbon tetrachloride and stripped back to aqueous phase with a high selectivity for iodine. 131 I tracer is used to measure chemical yield. Iodine contents in the range 1 to 20 ppm. have been determined by this technique. (author)

  2. The characterization of petroleum and creosote-contaminated soils: Class component analysis by thin layer chromatography with flame ionization detection

    International Nuclear Information System (INIS)

    Pollard, S.J.T.; Hrudey, S.E.; Fuhr, B.J.; Alex, R.F.; Holloway, L.R.

    1992-01-01

    The assessment and reclamation of coal tar, creosote and petroleum-contaminated sites is emerging as a major challenge to industry and the federal and provincial Canadian governments. Contaminants frequently include polynuclear aromatic compounds (PAH), several high molecular weight analogues of which are documented carcinogens. Adaptation of thin layer chromatography with flame ionization detection for the analysis of hydrocarbon-contaminated soils is described. The method is directly applicable to the analysis of oily waste extracts from petroleum and creosote wood preservative site soils and is capable of distinguishing between the saturate, aromatic and polar components of waste residues. The method provides a rapid, low cost class component analysis of heavy hydrocarbon waste extracts and is particularly useful for estimating the extent of weathering experienced by chronically exposed hydrocarbon wastes in the soil environment. As such, it is useful as a screening tool for a preliminary assessment of the biotreatability or inherent recalcitrance of hydrocarbon waste mixtures. 11 refs., 5 figs

  3. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    Directory of Open Access Journals (Sweden)

    Xiangping Tan

    2014-01-01

    Full Text Available Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2 scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI and the geometric mean of enzyme activities (GME. At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  4. Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers

    Directory of Open Access Journals (Sweden)

    Naoki Kabeya

    2014-06-01

    Full Text Available Two-component hydrograph separation using oxygen-18 concentrations was conducted at a sediment runoff observation weir installed in a small subcatchment of a forested gneiss catchment in Japan. The mean soil thickness of this catchment is 7.27 m, which comprises 3.29 m of brown forest soil (A and B layers and a 3.98-m layer of heavily weathered gneiss. Data were collected for a storm on 20–21 May 2003, and the percentage of event water separated by the stable isotope ratio in comparison with the total rainfall amount was about 1%. This value is within the ratio of a riparian zone in a drainage area. Temporal variation of suspended sediment concentration exhibited higher correlation with the event water component than with the total runoff or pre-event water component. This shows that the riparian zone causes rainwater to flow out quickly during a rain event, and that this is an important area of sediment production and transportation in a forested headwater with thick soil and weathered gneiss layers.

  5. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    International Nuclear Information System (INIS)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs

  6. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs.

  7. Microbial diversity in European alpine permafrost and active layers.

    Science.gov (United States)

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Treatment of turtle aquaculture effluent by an improved multi-soil-layer system.

    Science.gov (United States)

    Song, Ying; Huang, Yu-ting; Ji, Hong-fang; Nie, Xin-jun; Zhang, Zhi-yuan; Ge, Chuan; Luo, An-cheng; Chen, Xin

    2015-02-01

    Concentrated turtle aquaculture effluent poses an environmental threat to water bodies, and therefore needs to be treated prior to disposal. This study was conducted to assess the effect of multi-soil-layer (MSL) systems treating turtle aquaculture effluent with adding different amounts of sludge. Four MSL systems were constructed with dry weight ratios of sludge with 0%, 5%, 10%, and 20% (MSL 1, MSL 2, MSL 3, and MSL 4, respectively). The turtle aquaculture effluent had an average chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) concentration of 288.4, 213.4, and 252.0 mg/L, respectively. The COD/TN (C/N) ratio was 1.2. The results showed that the four MSL systems could effectively treat the COD, NH4(+)-N, and TN, and MSL 4 showed significantly improved NH4(+)-N removal efficiency, suggesting the potential of sludge addition to improve the turtle aquaculture effluent treatment. The average COD, TN, and NH4(+)-N removal efficiencies of MSL 4 were 70.3%, 66.5%, and 72.7%, respectively. To further interpret the contribution of microorganisms to the removal, the microbial community compositions and diversities of the four MSL systems were measured. Comparisons of the denaturing gradient gel electrophoresis (DGGE) profiles revealed that the amount of nitrifying bacteria and diversity in MSL 4 were higher than those in the other three systems. We concluded that adding 20% of sludge improved the NH4(+)-N removal and stability of the system for nitrification, due to the enrichment of the nitrifying bacteria in MSL 4.

  9. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity

    International Nuclear Information System (INIS)

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-01-01

    Graphical abstract: - Highlights: • Two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion. • Effective interfacial heterojunction and high specific surface were observed. • Interstratified nanohybrid exhibits a superior photocatalytic activity. - Abstract: Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl–Ti 3 O 7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10 −2 min −1 , which is about 9 and 4 times higher than its precursors H 2 Ti 3 O 7 and ZnAl-LDH, respectively. Based on UV–vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior

  10. Layer-by-layer self-assembled active electrodes for hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kniprath, Rolf

    2008-11-18

    Solar cells based on thin organic/inorganic heterofilms are currently in the focus of research, since they represent promising candidates for cost-efficient photovoltaic energy conversion. In this type of cells, charges are separated at a heterointerface between dissimilar electrode materials. These materials either absorb light themselves, or they are sensitized by an additional absorber layer at the interface. The present work investigates photovoltaic cells which are composed of nanoporous TiO{sub 2} combined with conjugated polymers and semiconductor quantum dots (QDs). The method of layer-by-layer self-assembly of oppositely charged nanoparticles and polymers is used for the fabrication of such devices. This method allows to fabricate nanoporous films with controlled thicknesses in the range of a few hundred nanometers to several micrometers. Investigations with scanning electron (SEM) and atomic force microscopy (AFM) reveal that the surface morphology of the films depends only on the chemical structure of the polyions used in the production process, and not on their molecular weight or conformation. From dye adsorption at the internal surface of the electrodes one can estimate that the internal surface area of a 1 {mu}m thick film is up to 120 times larger than the projection plane. X-ray photoelectron spectroscopy (XPS) is used to demonstrate that during the layer-by-layer self-assembly at least 40% of the TiO{sub 2} surface is covered with polymers. This feature allows to incorporate polythiophene derivatives into the films and to use them as sensitizers for TiO{sub 2}. Further, electrodes containing CdSe or CdTe quantum dots (QDs) as sensitizers are fabricated. For the fabrication of photovoltaic cells the layer-by-layer grown films are coated with an additional polymer layer, and Au back electrodes are evaporated on top. The cells are illuminated through transparent doped SnO{sub 2} front electrodes. The I/V curves of all fabricated cells show diode

  11. Changes in the biological activity of heavy metal- and oil-polluted soils in urban recreation territories

    Science.gov (United States)

    Trifonova, T. A.; Zabelina, O. N.

    2017-04-01

    Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.

  12. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    Science.gov (United States)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in

  13. A two-layer application of the MAGIC model to predict the effects of land use scenarios and reductions in deposition on acid sensitive soils in the UK

    Directory of Open Access Journals (Sweden)

    R. C. Helliwell

    1998-01-01

    Full Text Available A two-layer application of the catchment-based soil and surface water acidification model, MAGIC, was applied to 21 sites in the UK Acid Waters Monitoring Network (AWAMN, and the results were compared with those from a one-layer application of the model. The two-layer model represented typical soil properties more accurately by segregating the organic and mineral horizons into two separate soil compartments. Reductions in sulphur (S emissions associated with the Second S Protocol and different forestry (land use scenarios were modelled, and their effects on soil acidification evaluated. Soil acidification was assessed in terms of base saturation and critical loads for the molar ratio of base cations (CA2+ + MG 2+ + K+ to aluminium (Al in soil solution. The results of the two-layer application indicate that base saturation of the organic compartment was very responsive to changes in land use and deposition compared with the mineral soil. With the two- layer model, the organic soil compartment was particularly sensitive to acid deposition, which resulted in the critical load being predicted to be exceeded at eight sites in 1997 and two sites in 2010. These results indicate that further reductions in S deposition are necessary to raise the base cation (BC:Al ratio above the threshold which is harmful to tree roots. At forested sites BC:Al ratios were generally well below the threshold designated for soil critical loads in Europe and forecasts indicate that forest replanting can adversely affect the acid status of sensitive term objectives of protecting and sustaining soil and water quality. Policy formulation must seek to protect the most sensitive environmental receptor, in this case organic soils. It is clear, therefore, that simply securing protection of surface waters, via the critical loads approach, may not ensure adequate protection of low base status organic soils from the effects of acidification.

  14. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils

    Energy Technology Data Exchange (ETDEWEB)

    Jacquat, Olivier; Voegelin, Andreas; Villard, Andre; Marcus, Matthew A.; Kretzschmar, Ruben

    2007-10-15

    Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2 to 7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322 to 30090 mg/kg Zn). Based on 12 bulk and 23 microfocused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from {approx}20% to {approx}80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn ({approx}30% to {approx}80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH{sub 4}NO{sub 3} followed by 1 M NH{sub 4}-acetate at pH 6.0. Even though the formation of Zn precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.

  15. NASA Soil Moisture Active Passive Mission Status and Science Performance

    Science.gov (United States)

    Yueh, Simon H.; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni; Entin, Jared K.

    2016-01-01

    The Soil Moisture Active Passive (SMAP) observatory was launched January 31, 2015, and its L-band radiometer and radar instruments became operational since mid-April 2015. The SMAP radiometer has been operating flawlessly, but the radar transmitter ceased operation on July 7. This paper provides a status summary of the calibration and validation of the SMAP instruments and the quality assessment of its soil moisture and freeze/thaw products. Since the loss of the radar in July, the SMAP project has been conducting two parallel activities to enhance the resolution of soil moisture products. One of them explores the Backus Gilbert optimum interpolation and de-convolution techniques based on the oversampling characteristics of the SMAP radiometer. The other investigates the disaggregation of the SMAP radiometer data using the European Space Agency's Sentinel-1 C-band synthetic radar data to obtain soil moisture products at about 1 to 3 kilometers resolution. In addition, SMAP's L-band data have found many new applications, including vegetation opacity, ocean surface salinity and hurricane ocean surface wind mapping. Highlights of these new applications will be provided.

  16. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Science.gov (United States)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  17. Prediction of Hexaconazole Concentration in the Top Most Layer of Oil Palm Plantation Soil Using Exploratory Data Analysis (EDA).

    Science.gov (United States)

    Maznah, Zainol; Halimah, Muhamad; Shitan, Mahendran; Kumar Karmokar, Provash; Najwa, Sulaiman

    2017-01-01

    Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil.

  18. Prediction of Hexaconazole Concentration in the Top Most Layer of Oil Palm Plantation Soil Using Exploratory Data Analysis (EDA.

    Directory of Open Access Journals (Sweden)

    Zainol Maznah

    Full Text Available Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR. This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil.

  19. Loading test of pile affected by soil layer deformation; Jiban henkei no eikyo wo ukeru kui no saika jikken

    Energy Technology Data Exchange (ETDEWEB)

    Kakurai, M.; Tsuchiya, T. [Takenaka Corp., Osaka (Japan)

    1997-10-10

    Large soil tank developed for shearing experiments is used to study the horizontal movement of piles in earthquakes. The system comprises a soil filled (8m deep) tank, pile head loading jig, and 6 actuators. The soil tank is fabricated of 40 layers of 20cm-high iron frames of inner dimensions 2.5mtimes2.5m, and it is filled with soil that is to simulate the ground. The frames are divided into 4 groups each containing 10 frames, and the frames in each group are coupled with each other, so that all the frames in one group will move horizontally when the topmost frame in the group is moved horizontally. An actuator, which travels horizontally ganging with a computer, is mounted on the top frame in each group, and this setup enables the arbitrary simulation of ground deformation in the horizontal direction in an earthquake. The pile head loading jig, driven by 2 actuators, can keep restraining the pile head from rotation while applying load or deforming force to the pile head as desired in the vertical and horizontal direction. Experiments conducted using this system involve the force imposed on a pile in the soil tank by ground deformation and the resultant pile behavior including breakdown. 9 figs.

  20. Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site

    Directory of Open Access Journals (Sweden)

    U. Wollschläger

    2010-08-01

    Full Text Available Multi-channel ground-penetrating radar (GPR was applied at a permafrost site on the Tibetan Plateau to investigate the influence of surface properties and soil texture on the late-summer thaw depth and average soil moisture content of the active layer. Measurements were conducted on an approximately 85 × 60 m2 sized area with surface and soil textural properties that ranged from medium to coarse textured bare soil to finer textured, sparsely vegetated areas covered with fine, wind blown sand, and it included the bed of a gravel road. The survey allowed a clear differentiation of the various units. It showed (i a shallow thaw depth and low average soil moisture content below the sand-covered, vegetated area, (ii an intermediate thaw depth and high average soil moisture content along the gravel road, and (iii an intermediate to deep thaw depth and low to intermediate average soil moisture content in the bare soil terrain. From our measurements, we found hypotheses for the permafrost processes at this site leading to the observed late-summer thaw depth and soil moisture conditions. The study clearly indicates the complicated interactions between surface and subsurface state variables and processes in this environment. Multi-channel GPR is an operational technology to efficiently study such a system at scales varying from a few meters to a few kilometers.

  1. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    Directory of Open Access Journals (Sweden)

    Feifel Sven C

    2011-12-01

    Full Text Available Abstract Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET reaction cascades of cytochrome c (cyt c immobilized by the use of modified silica nanoparticles (SiNPs to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS, Fourier transformed infrared spectroscopy (FT-IR, Zeta-potential and transmission electron microscopy (TEM. The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the

  2. [Response of soil hydrolase and oxidoreductase activities to free-air carbon dioxide enrichment (FACE) under rice-wheat rotation].

    Science.gov (United States)

    Zhang, Yulan; Zhang, Lili; Chen, Lijun; Wu, Zhijie

    2004-06-01

    This paper studied the response of soil urease, phosphatase, arylsulphatase and dehydrogenase to 200 micromol x mol(-1) CO2 elevation under rice-wheat rotation. The results showed that under CO2 elevation, the urease activity in 0-10 cm soil layer was decreased at the early growth stages of wheat but increased at its booting stage; the activity increased at the early growth stages of rice but decreased at its ripening stage. Phosphatase activity was increased during the whole growth period of wheat; the activity increased at the tillering stage of rice but decreased at its later growth stages. Arylsulphatase activity was decreased at the over-wintering and booting stages of wheat but increased at its tillering and ripening stages. Dehydrogenase activity was decreased at the early growth stages of wheat and rice, but increased at their late growth stages.

  3. Enzyme activity of topsoii layer on reclaimed and unreclaimed post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Vindušková, O.; Kukla, J.; Šnajdr, Jaroslav; Baldrian, Petr; Frouz, Jan

    2017-01-01

    Roč. 62, č. 1 (2017), s. 19-25 ISSN 2542-2154 R&D Projects: GA MŠk LC06066; GA ČR GAP504/12/1288 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : enzyme assay * microbial activity * litterbag * macrofauna * soil fauna Subject RIV: DF - Soil Science; EE - Microbiology, Virology (MBU-M) OBOR OECD: Soil science; Microbiology (MBU-M)

  4. Dependency of soil activity concentration on soil -biota concentration ratio of radionuclides for earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Kim, Byeong Ho; Jun, In; Lim, Kwang Muk; Choi, Yong Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The transfer of radionuclides to wildlife (non-human biota) is normally quantified using an equilibrium concentration ratio (CR{sub eq}), defined as the radionuclide activity concentration in the whole organism (fresh weight) divided by that in the media (dry weight for soil). The present study describes the effect of soil radionuclide activity concentration on the transfer of {sup 137}Cs, {sup 85}Sr and {sup 65}Zn to a functionally important wildlife group, annelids, using a commonly studied experimental worm (E.andrei). Time-dependent whole body concentration ratios of {sup 137}Cs, {sup 85}Sr and {sup 65}Zn for the earthworm were experimentally measured for artificially contaminated soils with three different activity concentrations for each radionuclide which were considerably higher than normal background levels. Two parameters of a first order kinetic model, the equilibrium concentration ratio (CR{sub eq}) and the effective loss rate constant (k), were estimated by comparison of experimental CR results with the model prediction

  5. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    Science.gov (United States)

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Distribution flow: a general process in the top layer of water repellent soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1995-01-01

    Distribution flow is the process of water and solute flowing in a lateral direction over and through the very first millimetre or centimetre of the soil profile. A potassium bromide tracer was applied in two water-repellent sandy soils to follow the actual flow paths of water and solutes in the

  7. Study on the effect of organic fertilizers on soil organic matter and enzyme activities of soil in forest nursery

    Directory of Open Access Journals (Sweden)

    Piaszczyk Wojciech

    2017-09-01

    Full Text Available The aim of the study was to assess the effects of organic fertilization on selected chemical properties of the soil and the activity of dehydrogenase and β-glucosidase in the soil of forest nursery. The main goal was to evaluate the role of organic fertilizers in carbon storage in the forest nursery soil. Sample plots were located in northern Poland in the Polanów Forest District on a forest nursery. Soil samples were collected from horizon 0–20 cm for laboratory analyzes. In soil samples pH, soil texture, and organic carbon, nitrogen, base cation contents, dehydrogenase activity and β-glucosidase activity were determined. The obtained results were used to evaluate the carbon storage. The results confirm the beneficial effect of the applied organic fertilizer on chemical properties of the soils under study and their biological activity. The applied organic fertilizers had an impact on increased accumulation of soil organic matter. In the soils investigated, there was an increase in the activity of such enzymes as dehydrogenases and β-glucosidase.

  8. Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2010-11-01

    Full Text Available Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted in gravelly soil over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded in sediments on Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated.

    The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the

  9. [Influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield.

    Science.gov (United States)

    Zhang, Ming Zhi; Niu, Wen Quan; Xu, Jian; Li, Yuan

    2016-06-01

    In order to explore the influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out with three factors of micro-irrigation method, irrigation depth, and subsoiling depth. The factor of irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube-irrigation; three levels of irrigation depth were obtained by controlling the lower limit of soil water content to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first and then decreased, while the activity of phosphatase followed an opposite trend in the growth season of summer maize. Compared with surface drip irrigation and moistube-irrigation, subsurface drip irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth season, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity decreased first and then increased, while urease activity and yield increased first and then decreased. The average soil moisture and root volume all increased in the growth season of summer maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of 40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield, the best management strategy of summer maize was the combination of subsurface drip irrigation, controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoiling before planting.

  10. Influence of the active layer pattern on the electrical characteristics of organic inverters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hyun; Kwon, Jin-Hyuk; Bae, Jin-Hyuk [Kyungpook National University, Daegu (Korea, Republic of); Park, Jae-Hoon; Baang, Sung-Keun [Hallym University, Chuncheon (Korea, Republic of)

    2014-12-15

    We describe the importance of a patterned active layer for the fine driving of organic inverters. In the case of a non-patterned inverter, the capacitance as a function of the applied bias in an organic capacitor structure exhibits a slow saturation nature due to the slow movement of charge carriers. Hence, during the operation of organic inverters with non-patterned active layers, the voltage gains inevitably exhibit lower values whereas higher gains are achieved in the case of sharply-patterned pentacene layers. These results suggest that the patterning of the active layer can be a decisive factor for realizing high-performance electronic circuits based on organic semiconductors.

  11. Measuring the Impact of Wildfire on Active Layer Thickness in a Discontinuous Permafrost region using Interferometric Synthetic Aperture Radar (InSAR)

    Science.gov (United States)

    Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.

    2017-12-01

    In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of

  12. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  13. Detection of irradiation induced changes on the activity and diversity of soil organisms: the effect of soil type

    International Nuclear Information System (INIS)

    Parekh, N.R.; Beresford, N.A.; Black, H.I.J.; Potter, E.D.; Poskitt, J.M.; Dodd, B.A.

    2004-01-01

    Whilst non-radiological environmental impact assessments consider impacts on ecosystem function by assessing soil health the techniques of doing so have rarely been applied to radiological studies. Our aim in the study described was to measure the effects of irradiation treatments on soil communities from three different soils. Undisturbed soil cores from two temperate woodland sites (deciduous and coniferous) and a grassland site were irradiated to give a range of cumulative doses from 0 160 Gy. All cores were incubated at 15 deg C and three cores from each treatment sampled after <1, 3 and 8 days post irradiation. Soil samples were analysed for the presence and abundance of fauna, fungi and heterotrophic bacteria. The activity and functional diversity of soil microbial communities was also assessed in terms of their potential to utilise a range of carbon sources. There was a small impact on Oribatid mites at the highest dose but no significant effect on other soil faunal groups. Although significant changes in the numbers of cultivable fungi or fast growing heterotrophic bacteria were not observed at any of the treatment doses, the numbers of cultivable Pseudomonas spp. declined in all three soil types after irradiation at 80 and 160 Gy. This decline was greatest in the coniferous forest soil. Microbial communities from this soil also showed a dramatic decrease in metabolic activity and in the number of substrates utilised after irradiation at 160 Gy as compared with control non-irradiated samples. Our results show that the affects of gamma irradiation on soil microorganisms are more pronounced in the two organic forest soils as compared to the mineral grassland soil. These differences can be related to two factors; variations in the physico-chemical shielding properties of the soils and differences in the indigenous communities in terms of radioresistant species. (author)

  14. Migracija dizel goriva izlivenog u slojeve zemljišta / Migration of diesel fuel spilled in subsurface layers of soil

    Directory of Open Access Journals (Sweden)

    Mladen Vuruna

    2005-09-01

    Full Text Available U radu su prikazane osnovne fizičko-hemijske karakteristike dizel goriva i zemljišta. Objašnjena je migracija izlivenog naftnog zagađivača kroz vertikalni profil zemljišta. U eksperimentalnom delu ispitivane su koncentracije dizel goriva i relativne koncentracije n-alkana u površinskim slojevima peska, u koje gorivo dospeva kao posledica akcidentnog izlivanja. Utvrđeno je da se koncentracije dizel goriva menjaju sa vremenom nakon izlivanja u svim ispitivanim slojevima. Takođe, utvrđeno je da se dizel gorivo, kao potencijalni zagađivač, u prvih šest nedelja, uglavnom, zadržava u površinskom sloju dubine 30 cm, a objašnjene su i mogućnosti sanacije zagađenog zemljišta. / The basic physical and chemical properties of both diesel fuel and soil have been given in this article and oil pollutants migration through vertical soil profile have been explained as well. In the experimental part of the paper both the concentrations of diesel fuel and relative concentrations of n-alkynes spilled in sandy soil by accident have been investigated. It has been proven that the concentrations of diesel fuel have changed in all layers of soil depending on the time after spill. Diesel fuel as possible pollutant has been retained 30 cm deep in sandy soil during six weeks after spill. Finally, cleanup techniques of polluted soil have been explained.

  15. Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.

    Science.gov (United States)

    Lyubun, Yelena V; Pleshakova, Ekaterina V; Mkandawire, Martin; Turkovskaya, Olga V

    2013-11-15

    Under the influence of pollutants, enzyme activities in plant-microbe-soil systems undergo changes of great importance in predicting soil-plant-microbe interactions, regulation of metal and nutrient uptake, and, ultimately, improvement of soil health and fertility. We evaluated the influence of As on soil enzyme activities and the effectiveness of five field crops for As phytoextraction. The initial As concentration in soil was 50mg As kg(-1) soil; planted clean soil, unplanted polluted soil, and unplanted clean soil served as controls. After 10 weeks, the growth of the plants elevated soil dehydrogenase activity relative to polluted but unplanted control soils by 2.4- and 2.5-fold for sorghum and sunflower (respectively), by 3-fold for ryegrass and sudangrass, and by 5.2-fold for spring rape. Soil peroxidase activity increased by 33% with ryegrass and rape, while soil phosphatase activity was directly correlated with residual As (correlation coefficient R(2)=0.7045). We conclude that soil enzyme activities should be taken into account when selecting plants for phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Sorption Kinetics of Escherichia coli and Salmonella sp on Two Soil Layers Associated with a Groundwater Table in Yaounde, Cameroon (Central Africa

    Directory of Open Access Journals (Sweden)

    Norbert Kemka

    2005-12-01

    Full Text Available A laboratory study has been carried out on two soil layers (HX and HY located above a groundwater table in Yaounde, Cameroon (Central Africa. The main purpose of this study was to assess the retention potential or sorption kinetics of Escherichia coli and Salmonella sp. on these soil layers. For both soil layers, bacterial sorption on soil particles occurred rapidly during the first 30 minutes of incubation of bacteria and soil particles in aqueous media, and increased gradually with incubation time up to 300 min. In some cases, adsorption rates fluctuated after 30 min of incubation, probably due to bacterial cell sorption to and de-sorption from soil particles. Using Freundlich isotherms, it was noted that adsorption coefficient related to adsorption capacity varied from 19 to 4026 E. coli.mg-1 of soil, and from 506 to 847 Salmonella sp.mg-1 of soil. For both bacterial species, the adsorption coefficient of layer HY (located in close proximity of the water table was greater than that of HX (located above layer HY and seemed to positively correlate with the pH values and N/P ratios, and to negatively correlate with the values of C/N and C/P ratios. The linearity coefficient related to adsorption intensity varied from 0.5841 to 1.0023 for E. coli, and from 0.7068 to 1.5236 for Salmonella sp. The physico-chemical characteristics of soil particles seemed to influence the sorption kinetics of bacteria on soil.

  17. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    Science.gov (United States)

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  18. Natural Regeneration in a Multi-Layered Pinus sylvestris-Picea abies Forest after Target Diameter Harvest and Soil Scarification

    Directory of Open Access Journals (Sweden)

    Lars Drössler

    2017-01-01

    Full Text Available Forest management in Sweden can be characterized by even-aged silviculture heavily relying on three established harvest regimes: clearcutting, the seed-tree method, and the shelterwood system. Less intense, small-scale retention harvest systems such as single tree and group selection harvest are rarely used. In addition, natural regeneration dynamics without enrichment planting have barely been studied. Consequently, this study examined natural regeneration establishment in a multi-layered Pinus sylvestris-Picea abies forest stand in southwest Sweden after target diameter harvesting and soil scarification. The creation of forest canopy gaps had a positive effect on total seedling density five years after harvest, mainly due to a significantly higher number of Betula pendula individuals. Seedling density of more desirable tree species suitable for continuous cover forestry such as Fagus sylvatica, Quercus petraea and Picea abies also increased substantially in gaps when compared to pre-harvest conditions or the unharvested plots. In contrast, soil scarification did not increase the number of seedlings of desired tree species due to a significant decrease in Picea abies abundance. Soil moisture and gap size significantly improved Betula pendula seedling establishment while a larger number of Quercus petraea seedlings were observed in Vaccinium myrtillus patches. We conclude that canopy gaps are beneficial under the encountered stand conditions to initiate forest regeneration, and that soil scarification without the timely occurrence of a mast year of desired tree species is not effective in the type of forest studied.

  19. Exposure assessment of kneeling work activities among floor layers

    DEFF Research Database (Denmark)

    Jensen, L K; Rytter, S; Bonde, Jens Peter

    2010-01-01

    high external knee forces ranging from 0.3 Newton (SD 0.2) times body weight when floor layers were kneeling back on the heels, to 3.5 Newton (SD 0.3) times body weight in the crawling work position. The study highlights the need for prevention by minimizing the amount of kneeling work positions among...

  20. Active microbial soil communities in different agricultural managements

    Science.gov (United States)

    Landi, S.; Pastorelli, R.

    2009-04-01

    We studied the composition of active eubacterial microflora by RNA extraction from soil (bulk and rhizosphere) under different environmental impact managements, in a hilly basin in Gallura (Sardinia). We contrasted grassy vineyard, in which the soil had been in continuous contact with plant roots for a long period of time, with traditional tilled vineyard. Moreover, we examined permanent grassland, in which plants had been present for some years, with temporary grassland, in which varying plants had been present only during the respective growing seasons. Molecular analysis of total population was carried out by electrophoretic separation by Denaturing Gradient Gel Electrophoresis (DGGE) of amplified cDNA fragments obtained from 16S rRNA. In vineyards UPGMA (Unweighted Pair Group Mathematical Average) analysis made up separate clusters depending on soil management. In spring both clusters showed similarity over 70%, while in autumn the similarity increased, 84% and 90% for grassy and conventional tilled vineyard respectively. Permanent and temporary grassland joined in a single cluster in spring, while in autumn a partial separation was evidenced. The grassy vineyard, permanent and temporary grassland showed higher richness and diversity Shannon-Weiner index values than vineyard with conventional tillage although no significant. In conclusion the expected effect of the rhizosphere was visible: the grass cover influenced positively the diversity of active microbial population.

  1. Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model

    Directory of Open Access Journals (Sweden)

    J.-P. Lhomme

    1999-01-01

    Full Text Available In many experimental conditions, the evaporative fraction, defined as the ratio between evaporation and available energy, has been found stable during daylight hours. This constancy is investigated over fully covering vegetation by means of a land surface scheme coupled with a mixed-layer model, which accounts for entrainment of overlying air. The evaporation rate follows the Penman-Monteith equation and the surface resistance is given by a Jarvis type parameterization involving solar radiation, saturation deficit and leaf water potential. The diurnal course of the evaporative fraction is examined, together with the influence of environmental factors (soil water availability, solar radiation input, wind velocity, saturation deficit above the well-mixed layer. In conditions of fair weather, the curves representing the diurnal course of the evaporative fraction have a typical concave-up shape. Around midday (solar time these curves appear as relatively constant, but always lower that the daytime mean value. Evaporative fraction decreases when soil water decreases or when solar energy increases. An increment of saturation deficit above the mixed-layer provokes only a slight increase of evaporative fraction, and wind velocity has almost no effect. The possibility of estimation daytime evaporation from daytime available energy multiplied by the evaporative fraction at a single time of the day is also investigated. It appears that it is possible to obtain fairly good estimates of daytime evaporation by choosing adequately the time of the measurement of the evaporative fraction. The central hours of the day, and preferably about 3 hr before or after noon, are the most appropriate to provide good estimates. The estimation appears also to be much better when soil water availability (or evaporation is high than when it is low.

  2. Retention of dead standing plant biomass (marcescence) increases subsequent litter decomposition in the soil organic layer

    Czech Academy of Sciences Publication Activity Database

    Angst, Šárka; Cajthaml, T.; Angst, Gerrit; Šimáčková, H.; Brus, Jiří; Frouz, Jan

    2017-01-01

    Roč. 418, 1-2 (2017), s. 571-579 ISSN 0032-079X Institutional support: RVO:60077344 ; RVO:61389013 Keywords : photodegradation * C-13 CP/MAS NMR spectroscopy * litter decomposition * pyrolysis GC-MS * Calamagrostis epigeios * photo-facilitation Subject RIV: DF - Soil Science; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Soil science; Polymer science (UMCH-V) Impact factor: 3.052, year: 2016

  3. Effect of Exogenous Phytase Addition on Soil Phosphatase Activities: a Fluorescence Spectroscopy Study.

    Science.gov (United States)

    Yang, Xiao-zhu; Chen, Zhen-hua; Zhang, Yu-lan; Chen, Li-jun

    2015-05-01

    The utilization of organic phosphorus (P) has directly or indirectly improved after exogenous phytase was added to soil. However, the mechanism by which exogenous phytase affected the soil phosphatases (phosphomonoesterase and phosphodiesterase) activities was not clear. The present work was aimed to study red soil, brown soil and cinnamon soil phosphomonoesterase (acid and alkaline) (AcP and AlP) and phosphodiesterase (PD) activities responding to the addition of exogenous phytase (1 g phytase/50 g air dry soil sample) based on the measurements performed via a fluorescence detection method combined with 96 microplates using a TECAN Infinite 200 Multi-Mode Microplate Reader. The results indicated that the acid phosphomonoesterase activity was significantly enhanced in red soil (p≤0. 01), while it was significantly reduced in cinnamon soil; alkaline phosphomonoesterase activity was significantly enhanced in cinnamon soil (p≤ 0. 01), while it was significantly reduced in red soil; phosphodiesterase activity was increased in three soils but it was significantly increased in brown soil (p≤0. 01) after the addition of exogenous phytase. The activities still remained strong after eight days in different soils, which indicated that exogenous phytase addition could be enhance soil phosphatases activities effectively. This effect was not only related to soil properties, such as pH and phosphorus forms, but might also be related to the excreted enzyme amount of the stimulating microorganism. Using fluorescence spectroscopy to study exogenous phytase addition influence on soil phosphatase activities was the first time at home and abroad. Compared with the conventional spectrophotometric method, the fluorescence microplate method is an accurate, fast and simple to use method to determine the relationships among the soil phosphatases activities.

  4. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  5. Amino Acid Composition, Urease Activity and Trypsin Inhibitor Activity after Toasting of Soybean in Thick and Thin Layer

    OpenAIRE

    Krička, Tajana; Jurišić, Vanja; Voća, Neven; Ćurić, Duška; Brlek Savić, Tea; Matin, Ana

    2009-01-01

    The objective of this study was to determine amino acid content, urease activity and trypsin inhibitor activity in soybean grain for polygastric animals’ feed aft er toasting with the aim to introduce thick layer in toasting technology. Hence, soybean was toasted both in thick and thin layer at 130 oC during 10 minutes. In order to properly monitor the technological process of soybean thermal processing, it was necessary to study crude protein content, urease activity, trypsin inhibitor activ...

  6. Leaching and residual activity of imidazolinone herbicides in lowland soils

    Directory of Open Access Journals (Sweden)

    João Paulo Refatti

    Full Text Available ABSTRACT: Herbicides used in the Clearfield® rice (Oryza sativa L. production system have a potential for leaching. This can result in contamination of underground water resources and cause injury to not tolerant crops that are sown in a succession and/or crop rotation. The objective of this study was to determine the leaching potential and the residual activity of the herbicides used in the Clearfield® rice system. The experiment was conducted over a period of two years and consisted of conducting a field test to be followed by two bioassays with a year of difference between their implementation. Initially an experiment was conducted in lowland area where it was planted the cultivar of rice ‘PUITA INTA CL’. Approximately one and two years thereafter, soil samples from each plot were collected at intervals of 5cm to a depth of 30cm (B factor for the bioassay to evaluate persistence of herbicides. Factor A was composed of mixtures formulated of imazethapyr + imazapic (75 + 25g a.i. L-1, imazapyr + imazapic (525 + 175g a.i. kg-1 in two doses, imazethapyr (100g a.i. L-1 and treatment control without application. Basing on results, it was concluded that the mixtures imazethapyr + imazapic, imazapyr + imazapic and imazethapyr leached into the soil, reaching depths of up to 25cm in lowland soil. Imidazolinone herbicides used today in the irrigated rice Clearfield® system are persistent in soil, and their phytotoxic activity can be observed up to two years after application.

  7. [Effects of grazing disturbance on soil active organic carbon in mountain forest-arid valley ecotone in the upper reaches of Minjiang River].

    Science.gov (United States)

    Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting

    2014-02-01

    Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content.

  8. Relation between soil P test values and mobilization of dissolved and particulate P from the plough layer of typical Danish soils from a long-term field experiment with applied P fertilizers

    DEFF Research Database (Denmark)

    Glaesner, N.; Kjaergaard, C.; Rubaek, G. H.

    2013-01-01

    Accumulation of phosphorus (P) in agricultural topsoils can contribute to leaching of P which may cause eutrophication of surface waters. An understanding of P mobilization processes in the plough layer is needed to improve agricultural management strategies. We compare leaching of total dissolved...... and particulate P through the plough layer of a typical Danish sandy loam soil subjected to three different P fertilizer regimes in a long-term field experiment established in 1975. The leaching experiment used intact soil columns (20cm diameter, 20cm high) during unsaturated conditions. The three soils had small...

  9. Voc enhancement of a solar cell with doped Li+-PbS as the active layer

    Science.gov (United States)

    Chávez Portillo, M.; Alvarado Pulido, J.; Gallardo Hernández, S.; Soto Cruz, B. S.; Alcántara Iniesta, S.; Gutiérrez Pérez, R.; Portillo Moreno, O.

    2018-06-01

    In this report, we investigate the fabrication of solar cells obtained by chemical bath technique, based on CdS as window layer and PbS and PbS-Li+-doped as the active layer. We report open-circuit-voltage Voc values of ∼392 meV for PbS and ∼630 meV for PbSLi+-doped, a remarkable enhanced in the open circuit voltage is shown for solar cells with doped active layer. Li+ ion passivate the dangling bonds in PbS-metal layer interface in consequence reducing the recombination centers.

  10. Persistence and degradation of pesticide residues in different agricultural soils, related to biological activity. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Flores-Ruegg, E.

    1982-07-01

    Laboratory studies and small-scale field experiments were conducted involving pesticides extensively used in agricultural practice in Brazil (the insecticides aldrin, carbaryl and parathion, and the fungicides carbendazim and metalaxyl) with emphasis on biological activity and soil organic matter content. The ability of fungi isolated from soils of southern, centre and northern regions of Brazil to degrade 14 C-aldrin and its metabolites was assayed in culture growth medium. Results showed that the microorganism Penicilium sp. was able to metabolize the parent compound or one of its metabolites added to the medium. Field studies performed with soils packed into PVC tubes showed that added 14 C-aldrin leached fastest in the soil poor in organic matter. 14 C-carbaryl was used to evaluate the effects of addition of carbon sources on its persistence and degradation in soils rich and poor in organic matter. It was found that cellulose can influence the behaviour of carbaryl in soil low in organic matter by interfering with microorganismal population. Studies on the degradation of 14 C-parathion by soil kept moist with and without repeated applications demonstrated that microbial population was modified by the repeated treatment. The adsorption, movement and persistence of the fungicide 14 C-carbendazim was examined in Brazilian soils differing in organic matter content. Soils with highest levels of organic matter showed higher sorption coefficients and lower mobility. Carbendazim was very persistent in all soils. The metabolite 2-benzimidazolecarbamate was the main degradation product detected. Experiments with 14 C-metalaxyl showed that sorption coefficients in the Humic Gley soil were 0.8 and in the Dark Red Latosol soil 0.3. Data are in agreement with the high mobility of 14 C-metalaxyl in soil thin-layers. Also, a metabolite was detected in percentages varying from 3 to 10% specially in the Humic Gley soil samples

  11. Organic biocides hosted in layered double hydroxides: enhancing antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Cruz Alejandra Santana

    2018-03-01

    Full Text Available Samples of layered double hydroxides containing carbonates as compensating anions were prepared by the urea method. These LDHs were used as hosts of anions coming from pipemidic and nalidixic acid. XRD results confirm that these anions were hosted in the interlayer space of LDHs. Further, from 27Al NMR MAS characterization of an interaction between the brucite-like layers and anions was suggested. Then the hybrids LDHs were used as biocide of Salmonella typhi and Escherichia coli. The release profile of pipemidic and nalidixic anions from hybrid LDHs occurs for periods as long as 3.5 hours. The free-organic acid LDHs were not able to kill S. Typhi, neither E. coli. In contrast, the hybrids LDHs eliminate almost completely bacteria within short times.

  12. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories

    OpenAIRE

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L.; Díaz-Ramírez, Ildefonso J.

    2015-01-01

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and

  13. Soil structure and earthworm activity in an marine silt loam under pasture versus arable land

    NARCIS (Netherlands)

    Jongmans, A.G.; Pulleman, M.M.; Marinissen, J.C.Y.

    2001-01-01

    Agricultural management influences soil organic matter (SOM) and earthworm activity which interact with soil structure. We aimed to describe the change in earthworm activity and related soil (micro)structure and SOM in a loamy Eutrodept as affected by permanent pasture (PP) and conventional arable

  14. Layered silicate films with photochemically active porphyrin cations

    Czech Academy of Sciences Publication Activity Database

    Čeklovský, A.; Czímerová, A.; Lang, Kamil; Bujdák, J.

    2009-01-01

    Roč. 81, č. 8 (2009), s. 1385-1396 ISSN 0033-4545 R&D Projects: GA AV ČR KAN100500651; GA ČR(CZ) GA203/06/1244 Grant - others:GA(SK) VEGA2/6180/27 Institutional research plan: CEZ:AV0Z40320502 Keywords : clay minerals * layer charge * smectites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.289, year: 2009

  15. Validation of Transfer Functions Predicting Cd and Pb Free Metal Ion Activity in Soil Solution as a Function of Soil Characteristics and Reactive Metal Content

    NARCIS (Netherlands)

    Pampura, T.; Groenenberg, J.E.; Lofts, S.; Priputina, I.

    2007-01-01

    According to recent insight, the toxicity of metals in soils is better related to the free metal ion (FMI) activity in the soil solution than to the total metal concentration in soil. However, the determination of FMI activities in soil solution is a difficult and time-consuming task. An alternative

  16. Expression of allelopathy in the soil environment: Soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue

    Science.gov (United States)

    The activity of allelopathic compounds is often reduced in the soil environment where processes involving release from donor plant material, soil adsorption and degradation, and uptake by receptor plants naturally result in complex interactions. Rye (Secale cereale L.) cover crops are known to supp...

  17. Active Boundary Layer Control on a Highly Loaded Turbine Exit Case Profile

    Directory of Open Access Journals (Sweden)

    Julia Kurz

    2018-03-01

    Full Text Available A highly loaded turbine exit guide vane with active boundary layer control was investigated experimentally in the High Speed Cascade Wind Tunnel at the University of the German Federal Armed Forces, Munich. The experiments include profile Mach number distributions, wake traverse measurements as well as boundary layer investigations with a flattened Pitot probe. Active boundary layer control by fluidic oscillators was applied to achieve improved performance in the low Reynolds number regime. Low solidity, which can be applied to reduce the number of blades, increases the risk of flow separation resulting in increased total pressure losses. Active boundary layer control is supposed to overcome these negative effects. The experiments show that active boundary layer control by fluidic oscillators is an appropriate way to suppress massive open separation bubbles in the low Reynolds number regime.

  18. Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity.

    Science.gov (United States)

    Anjana, J; Mohandas, Annapoorna; Seethalakshmy, S; Suresh, Maneesha K; Menon, Riju; Biswas, Raja; Jayakumar, R

    2018-04-15

    Chronic diabetic wounds is characterised by increased microbial contamination and overproduction of matrix metalloproteases that would degrade the extracellular matrix. A bi-layer bandage was developed, that promotes the inhibition of microbial infections and matrix metalloprotease (MMPs) activity. Bi-layer bandage containing benzalkonium chloride loaded gelatin nanoparticles (BZK GNPs) in chitosan-Hyaluronic acid (HA) as a bottom layer and sodium alendronate containing chitosan as top layer was developed. We hypothesized that the chitosan-gelatin top layer with sodium alendronate could inhibit the MMPs activity, whereas the chitosan-HA bottom layer with BZK GNPs (240±66nm) would enable the elimination of microbes. The porosity, swelling and degradation nature of the prepared Bi-layered bandage was studied. The bottom layer could degrade within 4days whereas the top layer remained upto 7days. The antimicrobial activity of the BZK NPs loaded bandage was determined using normal and clinical strains. Gelatin zymography shows that the proteolytic activity of MMP was inhibited by the bandage. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Implement of a Multi-layer Frozen Soil Scheme into SSiB3 and its Evaluation over Cold Regions

    Science.gov (United States)

    Li, Q.

    2016-12-01

    The SSiB3 is a biophysics-based model of land-atmosphere interactions and is designed for global and regional studies. It has three soil layers, three snow layers, as well as one vegetation layer. Soil moisture of the three soil layers, interception water store for the canopy, subsurface soil temperature, ground temperature, canopy temperature and snow water equivalent are all predicted based on the water and energy balance at canopy, soil and snow. SSiB3 substantially enhances the model's capability for cold season studies and produces reasonable results compared with observations. However, frozen soil processes are ignored in the SSiB3 and may have effects on the interannual variability of soil temperature and deep soil memory. A multi-layer comprehensive frozen soil scheme (FSM), which is developed for climate study has been implemented into the SSiB3 to describe soil heat transfer and water flow affected by frozen processed in soil. In the coupled SSiB3-FSM, both liquid water and ice content have been taken into account in the frozen soil hydrologic and thermal property parameterization. The maximum soil layer depth could reach 10 meters thick depending on land conditions. To better evaluate the models' performance, the coupled offline SSiB3-FSM and SSiB3 have been driven from 1948 to 1958 by the Princeton global meteorological data set, respectively. For the 10yrs run, the coupled SSiB3-FSM almost captures the features over different regions, especially cold regions. In order to analysis and compare the differences of SSIB3-FSM and SSIB3 in detail, monthly mean surface temperature for different regions are compared with CAMS data. The statistical results of surface skin temperature show that high latitude regions, Africa, Eastern Australia, and North American monsoon regions have been greatly improved in SSIB3-FSM. For the global statistics, the RMSE of the surface temperature simulated by SSiB3-FSM can be improved about 0.6K compared to SSiB3. In this study

  20. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  1. Activated soil filters for removal of biocides from contaminated run-off and waste-waters

    DEFF Research Database (Denmark)

    Bester, Kai; Banzhaf, Stefan; Burkhardt, Michael

    2011-01-01

    -Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone). However, this removal is a considerable improvement compared to direct discharge into surface waters or infiltration into soil without appropriate removal. In the last experiment the removal efficiencies of the different layers were studied. Though the peat layer...

  2. Photosynthetic activity of young Ricinus communis L. plants under conditions of flooded soil

    Directory of Open Access Journals (Sweden)

    Davi Silva Dalberto

    2017-03-01

    Full Text Available Soil flooding is a stress condition that causes changes in hydric relationships and in the metabolism of crops, thereby affecting their productivity. To evaluate the effects of soil flooding on the chlorophyll a fluorescence transient, as well as gas exchange and Ricinus communis growth, young plants of the ‘AL Guarany 2002’ and ‘IAC Guarani’ cultivars, grown in a greenhouse, were subjected to flood conditions by maintaining a layer of water 2-3 cm above the soil. The stressed plants showed drastic reduction in net CO2 assimilation and growth variables. There was, however, an increase in performance index (PIABS e PITOTAL at different moments of stress between the two cultivars. In general, R. communis plants possess mechanisms to protect the electron transport chain during a period of stress, without causing damage and reducing functionality. However, this is not enough to maintain photosynthetic activity owing to the decrease in stomatal conductance and intrinsic carboxylation efficiency, which affects biomass accumulation in stressed plants. In summary, this study found that the ‘AL Guarany 2002’ was found to be more sensitive to stress than the ‘IAC Guarani’ was.

  3. Activated carbon immobilizes residual polychlorinated biphenyls in weathered contaminated soil.

    Science.gov (United States)

    Langlois, Valérie S; Rutter, Allison; Zeeb, Barbara A

    2011-01-01

    Activated carbon (AC) has recently been shown to be effective in sequestering persistent organic pollutants (POPs) from aquatic sediments. Most studies have demonstrated significant reductions of POP concentrations in water and in aquatic organisms; however, limited data exist on the possibility of using AC to immobilize remaining POPs at terrestrial contaminated sites. Under greenhouse conditions, pumpkin ssp cv. Howden) were grown, and red wiggler worms () were exposed to an industrial contaminated soil containing a mixture of polychlorinated biphenyls (PCBs), i.e., Aroclors 1254 and 1260) treated with one of four concentrations of AC (0.2, 0.8, 3.1, and 12.5%) for 2 mo. The addition of AC to contaminated soils virtually eliminated the bioavailability of PCBs to the plant and invertebrate species. There were reductions in PCB concentrations of more than 67% in ssp and 95% in . These data suggest that AC could be included as part of comprehensive site closure strategy at PCB-contaminated sites. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Effects of heavy metal Cd pollution on microbial activities in soil.

    Science.gov (United States)

    Shi, Weilin; Ma, Xiying

    2017-12-23

    Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  5. Effects of heavy metal Cd pollution on microbial activities in soil

    Directory of Open Access Journals (Sweden)

    Weilin Shi

    2017-12-01

    Full Text Available Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  6. Changes in Soil Enzyme Activities and Microbial Biomass after Revegetation in the Three Gorges Reservoir, China

    Directory of Open Access Journals (Sweden)

    Qingshui Ren

    2018-05-01

    Full Text Available Soil enzymes and microbes are central to the decomposition of plant and microbial detritus, and play important roles in carbon, nitrogen, and phosphorus biogeochemistry cycling at the ecosystem level. In the present study, we characterized the soil enzyme activity and microbial biomass in revegetated (with Taxodium distichum (L. Rich. and Cynodon dactylon (L. Pers. versus unplanted soil in the riparian zone of the Three Gorges Dam Reservoir (TGDR, in order to quantify the effect of revegetation on the edaphic microenvironment after water flooding in situ. After revegetation, the soil physical and chemical properties in revegetated soil showed significant differences to those in unplanted soil. The microbial biomass carbon and phosphorus in soils of T. distichum were significantly higher than those in C. dactylon and unplanted soils, respectively. The microbial biomass nitrogen in revegetated T. distichum and C. dactylon soils was significantly increased by 273% and 203%, respectively. The enzyme activities of T. distichum and C. dactylon soils displayed no significant difference between each other, but exhibited a great increase compared to those of the unplanted soil. Elements ratio (except C/N (S did not vary significantly between T. distichum and C. dactylon soils; meanwhile, a strong community-level elemental homeostasis in the revegetated soils was found. The correlation analyses demonstrated that only microbial biomass carbon and phosphorus had a significantly positive relationship with soil enzyme activities. After revegetation, both soil enzyme activities and microbial biomasses were relatively stable in the T. distichum and C. dactylon soils, with the wooded soil being more superior. The higher enzyme activities and microbial biomasses demonstrate the C, N, and P cycling and the maintenance of soil quality in the riparian zone of the TGDR.

  7. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    Science.gov (United States)

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  8. Soft Soil Improvement for Sub-grade Layer Using Hexagonal Micropiles Layout

    Science.gov (United States)

    Ambak, K.; Abdullah, N. A. H.; Yusoff, M. F.; Abidin, M. H. Z.

    2018-04-01

    Soft soil problems are often associated with sediment and stability where it represents a major challenge in Geotechnical Engineering. Research on a soft soil was carried out to determine the level of sediment resulting from the applied load and thus compare the most ideal form of arrangement by the results obtained from bearing capacity. The study was conducted at Research Centre for Soft Soil (RECESS), UTHM by using kaolin. There are several tests conducted on kaolin before the arrangement of pile which is liquid limit test. Through these tests, the level of water content can be maintained which is 1.2 liquid limit where it is in the homogeneous condition. Density test also carried to know weight of kaolin and water that needed in the model. Meanwhile, large strain consolidation test carried on the soil by placing a load of 8 kPa. Then, the pile was arranged in the soil in the shape of a hexagon and square. Load was increased to 12 kPa and imposed on the surface of the pile with a different forms. After 24 hours, the reading of sediment was measured everyday and the process collecting data conducted for 3 week. Based on data obtained, time against sediment can be plotted. To determine the bearing capacity, direct shear test was conducted to get the value coefficient of cohesion, c as a parameter in the calculation of the soil bearing capacity. The results showed that the rate of settlement occurs is different where hexagonal form less the rate of settlement compared to square form which is 64.2% while the results of bearing capacity have the same value.

  9. Neutron activation and radiometric investigation of Kazakhstan soils

    International Nuclear Information System (INIS)

    Gwozdz, R.; Popov, J.V.; Shishkov, I.A.; Poznyak, V.; Solodukhin, V.P.

    2001-01-01

    Full text: Great diversity of radio-ecological problems requires measurement of materials with vastly differing chemical composition and density, and varying volume. In case of gamma spectrometry such variation in composition, density and volume changes the response of a measuring system quite drastically. A necessary correction is usually achieved by applying one of the four correction methods. The first one is applying a standard with composition as close to the measured sample as possible. The second method needs some previous knowledge about the chemical composition of the sample and a subsequent calculation of the mass absorption coefficient. The third method, an intensity ratio of two gamma lines, can only be applied when an isotope in the investigated sample has two measurable gamma lines. The fourth method consists in an additional gamma transmission measurement, using an isotopic source. Application of the first two methods to samples collected in Kazakhstan is evaluated and the results achieved are described. Instrumental neutron activation analysis by either long, or short irradiation was applied to three groups of samples. The first 15 samples were from the Semipalatinsk area, the next 15 from the area north for the Kara-Tau range. The third group of 5 samples was from the Syr-Darya valley. The Kara-Tau and Syr-Darya samples originate from the area adjacent to an uranium mining site. Only two samples are collected at cultivated soil, all the other are collected at the steppe or semi-desert areas, In the additional group measured there were ten sub-samples of the environmental soil standard, prepared at the Institute of Nuclear Physics. Activation analysis was applied as well to Soil-6 and Soil IAEA-375, two reference materials distributed by IAEA. Determination of concentration of about 40 elements in very sample enabled computation of mass absorption coefficients for all the investigated samples. Results of calculation and experimental testing prove

  10. First results on enzymatic activities in two salt marsh soils under different hydromorphic level and vegetation

    Directory of Open Access Journals (Sweden)

    Carmen Trasar-Cepeda

    2015-12-01

    Full Text Available Salt-marsh soils are soils characterized by non-permanent hydric saturation that, depending on factors like duration of submersion periods, are dominated by different salt-tolerant plant species. The composition of microbial communities is an essential component in trophic dynamics and biogeochemical processes in salt marshes, and determines the level of enzymatic activities, which catalyze the conversion of complex molecules into simpler ones. Despite of this, the enzymatic activities in marsh-soils has not yet been investigated. The aim of this study was to analyze the enzymatic activities in two soil profiles of marsh-soils under different water saturation level and dominated by different plant species [Juncus maritimus Lam and Spartina maritima (Curtis Fernald (Sp]. In both soils, the enzymatic activities were much lower than the levels typically found in terrestrial ecosystems. The enzymatic activities were measured both in air-dried and in re-moistened and incubated soil samples. In air-dried samples, the enzymatic activities were higher in Juncus than in Spartina soil and tended to decrease with depth, being sharper the decrease in Juncus than in Spartina soil. Re-moistened and pre-incubated soils showed a general increase in all the enzymatic activities and throughout the whole soil profile, especially in Spartina soils. Hydrolase activities showed a strong and positive relationship with organic matter content both in air-dried and in re-moistened soil samples, higher in these latter. In general, oxidoreductase activities only showed this relationship in re-moistened soil samples. More studies, preferably using freshly collected soil samples, are needed to understand the relationship between enzymatic activities and these environmental conditions.

  11. Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica

    Science.gov (United States)

    Nikitin, D. A.; Marfenina, O. E.; Kudinova, A. G.; Lysak, L. V.; Mergelov, N. S.; Dolgikh, A. V.; Lupachev, A. V.

    2017-09-01

    The method of luminescent microscopy has been applied to study the structure of the microbial biomass of soils and soil-like bodies in East (the Thala Hills and Larsemann Hills oases) and West (Cape Burks, Hobbs coast) Antarctica. According to Soil Taxonomy, the studied soils mainly belong to the subgroups of Aquic Haploturbels, Typic Haploturbels, Typic Haplorthels, and Lithic Haplorthels. The major contribution to their microbial biomass belongs to fungi. The highest fungal biomass (up to 790 μg C/g soil) has been found in the soils with surface organic horizons in the form of thin moss/lichen litters, in which the development of fungal mycelium is most active. A larger part of fungal biomass (70-98%) is represented by spores. For the soils without vegetation cover, the accumulation of bacterial and fungal biomass takes place in the horizons under surface desert pavements. In the upper parts of the soils without vegetation cover and in the organic soil horizons, the major part (>60%) of fungal mycelium contains protective melanin pigments. Among bacteria, the high portion (up to 50%) of small filtering forms is observed. A considerable increase (up to 290.2 ± 27 μg C/g soil) in the fungal biomass owing to the development of yeasts has been shown for gley soils (gleyzems) developing from sapropel sediments under subaquatic conditions and for the algal-bacterial mat on the bottom of the lake (920.7 ± 46 μg C/g soil). The production of carbon dioxide by the soils varies from 0.47 to 2.34 μg C-CO2/(g day). The intensity of nitrogen fixation in the studied samples is generally low: from 0.08 to 55.85 ng C2H4/(g day). The intensity of denitrification varies from 0.09 to 19.28 μg N-N2O/(g day).

  12. Research on soil microbial communities and enzymatic activity in tropical soils in puerto rico

    Science.gov (United States)

    Soil enzymes are important components of soil quality and its health because of their involvement in ecosystem services related to biogeochemical cycling, global C and organic matter dynamics, and soil detoxification. This talk will provide an overview of the field of soil enzymology, the location a...

  13. Microbial activities in soil near natural gas leaks

    Energy Technology Data Exchange (ETDEWEB)

    Adamse, A D; Hoeks, J; de Bont, J A.M.; van Kessel, J F

    1972-01-01

    From the present experiments it may be concluded that in the surroundings of natural gas leaks, methane, ethane and possibly some other components of the natural gas are oxidized by microbial activities as long as oxygen is available. This is demonstrated by an increased oxygen consumption and carbon dioxide production, as well as by increased numbers of different types of bacteria. The resulting deficiency of oxygen, the excess of carbon dioxide, and perhaps the formation of inhibitory amounts of ethylene, are considered to be mainly responsible for the death of trees near natural gas leaks. Also the long period of time needed by the soil to recover, may be due to prolonged microbial activities, as well as to the presence of e.g. ethylene. The present experiments suggest that especially methane-oxidizing bacteria of the Methylosinus trichosporium type were present in predominating numbers and consequently have mainly been responsible for the increased oxygen consumption. However, some fungi oxidizing components of natural gas, including methane and ethane may also have contributed to the increased microbial activities in the soil. The same will be true of a possible secondary microflora on products derived from microorganisms oxidizing natural gas components. 12 references, 9 figures, 7 tables.

  14. Impacts of mining activities on water and soil.

    Science.gov (United States)

    Warhate, S R; Yenkie, M K N; Chaudhari, M D; Pokale, W K

    2006-04-01

    Seven coal mines are situated in Wardha River Valley. These mines are located at Wani (Dist. Yavatmal of Maharashtra). Out of these, 5 open cast coal mines are run by Western Coal Field Ltd. India. The present study has been undertaken to assess the impacts of mining activities in the adjacent areas. Total 25 samples of water and 19 samples of soil from Nilapur, Bramhani, Kolera, Gowari, Pimpari and Aheri were analyzed for pH, TDS, hardness, alkalinity, fluoride, chloride, nitrite, nitrate, phosphate, sulfate, cadmium, lead, zinc, copper, nickel, arsenic, manganese, sodium and potassium, and the results were compared with the limits of Indian Standards: 10500.

  15. Effects of Fertilization on Tomato Growth and Soil Enzyme Activity

    Science.gov (United States)

    Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing

    2015-04-01

    To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum

  16. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    Directory of Open Access Journals (Sweden)

    Zhanjun Liu

    Full Text Available Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK, NPK plus green manure (NPKG, NPK plus pig manure (NPKM, and NPK plus straw (NPKS on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC, activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72 was comparable to that of the NPK (0.77, NPKG (0.81 and NPKS (0.79 treatments but significantly lower compared with NPKM (0.85. The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  17. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian [Univ. of Macau, Macau (China)

    2012-10-15

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics.

  18. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    International Nuclear Information System (INIS)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian

    2012-01-01

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics

  19. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  20. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    Science.gov (United States)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  1. Dissolved nitrogen transformations and microbial community structure in the organic layer of forest soils in Olkiluoto in 2006

    International Nuclear Information System (INIS)

    Potila, H.; Sarjala, T.; Aro, L.

    2007-02-01

    Carbon (C) and nitrogen (N) cycles in the ecosystem are strongly coupled. Biomass, structure and activity of the bacterial and fungal community are the key factors influencing C and N cycles. Changes in the function of soil microbial community can be a signal of plant responses to environmental changes. Dissolved N compounds, microbial biomass, microbial activity, fungal community structure and functional diversity of microbial communities were measured in September 2006 from five monitoring plots on Olkiluoto to assess information about soil microbial community structure and activity. High within and between variation in the studied plots were detected. However, in this study the values and their variation in the level of N mineralisation, dissolved N compounds, fungal biomass and microbial community structure in the studied plots were within a normal range in comparison with other published data of similar forest types in Finland. (orig.)

  2. Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper, we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  3. Diamagneto-dielectric anisotropic wide angle impedance matching layers for active phased arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  4. Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.

    Science.gov (United States)

    Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan

    2010-08-15

    For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    Science.gov (United States)

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  6. Soil mineral concentrations and soil microbial activity in grapevine inoculated with arbuscular mycorrhizal (AM fungus in Chile

    Directory of Open Access Journals (Sweden)

    Eduardo von Bennewitz

    2008-01-01

    Full Text Available A two year-experiment was carried out to study an effect of root inoculation with arbuscular mycorrhizal (AM fungus on soil mineral concentrations and soil microbial activity in grapevine (Vitis vi­ni­fe­ra cv. “Cabernet Sauvignon” cultivated in Chile. Plants were inoculated with a commercial granular inoculant (Mycosym Tri-ton® and cultivated in 20 L plastic pots filled with an unsterilized sandy clay soil from the Vertisols class under climatic conditions of Curicó (34°58´ S; 71°14´ W; 228 m ASL, Chile.Soil analyses were carried out at the beginning of the study and after two years (four samples of rhizospheric soil for each treatment to assess the effects of mycorrhizal infection on soil mineral concentration and physical properties. Soil microbial activity was measured by quantifying the soil production of CO2 in ten replications of 50 g of soil from each treatment. Root mycorrhizal infection was assessed through samples of fresh roots collected during 2005 and 2006. Fifty samples for each treatment were analyzed and the percentage of root length containing arbuscules and vesicles was assessed.During both years (2005 and 2006 all treatments showed mycorrhizal infection, even the Control treatment where no AM was applied. Mycorrhizal colonization did not affect the soil concentrations of N, P, K, Ca, Mg, K, Ca, Mg, Mn, Zn, Cu, Fe, B, organic matter, pH/KCl and ECe. Soil CO2-C in vitro production markedly decreased during the period of the study. No significant differences where detected among treatments in most cases.

  7. Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.

    2011-01-01

    The inherent coupled nature of earth s energy and water cycles places significant importance on the proper representation and diagnosis of land atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation

  8. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure.

    Science.gov (United States)

    Keiblinger, Katharina M; Schneider, Martin; Gorfer, Markus; Paumann, Melanie; Deltedesco, Evi; Berger, Harald; Jöchlinger, Lisa; Mentler, Axel; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz

    2018-03-01

    Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg -1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC 50 ranging from 76 to 187 mg EDTA-extractable Cu kg -1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC 50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg -1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.

  9. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    Science.gov (United States)

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Antimicrobial activity of Streptomyces spp. Isolates from vegetable plantation soil

    Directory of Open Access Journals (Sweden)

    Isnaeni

    2016-05-01

    Full Text Available Fifteen Streptomyces isolates were isolated from soil in some different location on vegetable plantation at agriculture standard condition. The isolates were assessed for their antibacterial activity against Mycobacterium tuberculosis (MTB ATCC H37RV and mycobacterial which isolated from Dr. Soetomo Hospital patients in Surabaya. The International Streptomyces Project 4 (ISP4 and Middlebrook 7H9 (MB7H9 wwere used as growth or fermentation medium. The screening of inhibition activity was performed using turbidimetry and spot-test on agar medium. Results shown that 33.3% of the isolates (5 isolates have anti-mycobacterial activities. The first line anti tuberculosis drug rifampicin, (RIF, ethambutol (EMB, isoniazid (INH, and pyrazinamide (PZA were used as standards or positive controls with concentration 20 ppm. Optical density of crude fermentation broth concentrated from five isolates relatively lower than five anti-tuberculosis drug activity standard, although their activities against some microbial were similar to the standard at spot-test. The most efficient isolate shown anti-mycobacterial activity was Streptomyces B10 which identified as Streptomyces violaceousniger. In addition, fatty acid methyl ester (FAME profile of gas chromatography-mass spectrometry chromatogram of each isolates were studied and compared to Streptomyces spp. Keywords: Anti-mycobacterial, Mycobacterium tuberculosis, Streptomyces spp.

  11. [Influence of different slope position and profile in Disporopsis pernyi forest land on soil microbial biomass and enzyme activity in southwest Karst mountain of China ].

    Science.gov (United States)

    Qin, Hua-Jun; He, Bing-Hui; Zhao, Xuan-chi; Li, Yuan; Mao, Wen-tao; Zeng, Qing-ping

    2014-09-01

    Soil microbial biomass and enzyme activity are important parameters to evaluate the quality of the soil environment. The goal of this study was to determine the influence of different slope position and section in Disporopsis pernyi forest land on the soil microbial biomass and enzyme activity in southwest Karst Mountain. In this study, we chose the Dip forest land at Yunfo village Chengdong town Liangping country Chongqing Province as the study object, to analyze the influence of three different slope positions [Up Slope(US), Middle Slope(MS), Below Slope(BS)] and two different sections-upper layer(0-15 cm) and bottom layer(15-30 cm) on the soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), microbial carbon entropy (qMBC), microbial nitrogen entropy (qMBN) , catalase(CAT), alkaline phosphatase (ALK), urease(URE), and invertase(INV). The results showed that the same trend (BS > MS > US) was found for SMBC, SMBN, qMBC, qMBN, CAT and INV of upper soil layer, while a different trend (BS > US > MS) was observed for ALK. In addition, another trend (MS > US > BS) was observed for URE. The same trend (BS > MS >US) was observed for SMBN, qMBN, CAT, ALK, URE and INV in bottom layer, but a different trend (MS > BS > US) was observed for SMBC and qMBC. The SMBC, SMBN, CAT, ALK, URE and INV manifested as upper > bottom with reduction of the section, while qMBC and qMBN showed the opposite trend. Correlation analysis indicated that there were significant (P <0.05) or highly significant (P < 0.01) positive correlations among SMBC in different slope position and section, soil enzyme activity and moisture. According to the two equations of regression analysis, SMBC tended to increase with the increasing CAT and ALK, while decreased with the increasing pH. Then SMBN tended to increase with the increasing URE and INV.

  12. Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin.

    Science.gov (United States)

    Peng, Feng-Jiao; Zhou, Li-Jun; Ying, Guang-Guo; Liu, You-Sheng; Zhao, Jian-Liang

    2014-04-01

    Soil contamination of antimicrobials has become an increasing concern because of the potential risks to the soil microbial ecosystem and human health. The present study investigated sorption and desorption behaviors of oxytetracycline (OTC) and ofloxacin (OFL) in 3 typical soils (A, B, and C), and evaluated the antibacterial activity of soil-adsorbed compounds to a pure sensitive strain Escherichia coli ATCC 25922. The results showed different sorption and desorption behaviors of OTC and OFL in the 3 soils, behaviors that were mainly influenced by soil organic matter content and cation exchange capacity (CEC) as well as pH value. In addition, complexation and cation-exchange reactions were shown to be the main sorption mechanisms. Strong adsorption was found in soil B (with a high organic matter content) and in soil C (with high CEC), whereas enhanced desorption was observed in soil A (with low organic matter content). The results also demonstrated that soil-bound antimicrobials retained antibacterial activity toward E. coli. Opposite patterns of antibacterial activity were found for the 2 antimicrobials in the 3 soils: A>B>C for OFL; and C>B>A for OTC. This finding suggests that soil-bound antimicrobials could still exert selective pressure on soil bacteria although less effectively in comparison with the dissolved forms. © 2014 SETAC.

  13. [Effects of heavy metals pollution on soil microbial communities metabolism and soil enzyme activities in coal mining area of Tongchuan, Shaanxi Province of Northwest China].

    Science.gov (United States)

    Guo, Xing-Liang; Gu, Jie; Chen, Zhi-Xue; Gao, Hua; Qin, Qing-Jun; Sun, Wei; Zhang, Wei-Juan

    2012-03-01

    This paper studied the metabolism of soil microbes, functions of soil microbial communities, and activities of soil enzymes in a coal mining area of Tongchuan. In the coal mining area, the concentrations of soil Cu, Zn, Cd, and Pb were significantly higher than those in the non-mining area, of which, Cd contributed most to the heavy metals pollution. By adopting Biolog method combining with principal component analysis (PCA) and cluster analysis, it was found that the metabolic characteristics of different soil microbial communities varied significantly with increasing soil heavy metals pollution, and the variation was mainly manifested in the metabolic patterns of carbon sources such as saccharides and amino acids. In slightly and moderately polluted soils, the utilization of carbon sources by soil microbial communities was activated; while in heavily polluted soils, the carbon sources utilization was inhibited. The activities of soil urease, protease, alkaline phosphatase, and catalase all tended to decline with intensifying soil heavy metals pollution. The soil urease, protease, alkaline phosphatase, and catalase activities in the coal mining area were 50.5%-65.1%, 19.1%-57.1%, 87.2%-97.5%, and 77.3%-86.0% higher than those in the non-mining area, respectively. The activities of soil sucrase and cellulase were activated in slightly and moderately polluted soils, but inhibited in heavily polluted soils.

  14. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  15. Ecotoxicological effects of copper and selenium combined pollution on soil enzyme activities in planted and unplanted soils.

    Science.gov (United States)

    Hu, Bin; Liang, Dongli; Liu, Juanjuan; Xie, Junyu

    2013-04-01

    The present study explored the joint effects of Cu and Se pollution mechanisms on soil enzymes to provide references for the phytoremediation of contaminated areas and agricultural environmental protection. Pot experiments and laboratory analyses were carried out to study the individual and combined influences of Cu and Se on soil enzyme activities. The activities of four soil enzymes (urease, catalase, alkaline phosphatase, and nitrate reductase) were chosen. All soil enzyme activities tested were inhibited by Cu and Se pollution, either individually or combined, in varying degrees, following the order nitrate reductase>urease>catalase>alkaline phosphatase. Growing plants stimulated soil enzyme activity in a similar trend compared with treatments without plants. The joint effects of Cu and Se on catalase activity showed synergism at low concentrations and antagonism at high concentrations, whereas the opposite was observed for urease activity. However, nitrate reductase activity showed synergism both with and without plant treatments. The half maximal effective concentration (EC50) of exchangeable fractions had a similar trend with the EC50 of total content and was lower than that of total content. The EC50 values of nitrate reductase and urease activities were significantly lower for both Se and Cu (p<0.05), which indicated that they were more sensitive than the other two enzymes. Copyright © 2013 SETAC.

  16. Circumpolar Active Layer Monitoring (CALM) Program Network, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CALM network includes 168 active sites in both hemispheres with 15 participating countries. This network represents the only coordinated and standardized program...

  17. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  18. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    Science.gov (United States)

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-06

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.

  19. Highly sensitive multi-layer pressure sensor with an active nanostructured layer of an organic molecular metal

    International Nuclear Information System (INIS)

    Laukhin, V; Lebedev, V; Laukhina, E; Rovira, C; Veciana, J

    2016-01-01

    This work addresses to the modern technologies that need to be instrumented with lightweight highly sensitive pressure sensors. The paper presents the development of a new plain flexible thin pressure sensor using a nanostructured layer of the highly sensitive organic piezoresistive metal β-(BEDT-TTF) 2 I 3 as an active component; BEDT-TTF=bis (ethylenedithio)tetrathiafulvalene. The original construction approach permits one to operate the developed sensor on the principle of electrical resistance variations when its piezoresistive layer is elongated under a pressure increase. The pressure sensing element and a set of gold electrodes were integrated into one compact multi-layer design. The construction was optimized to enable one generic design for pressure ranges from 1 to 400 bar. The pressure tests showed that the sensor is able to control a small pressure change as a well definite electrical signal. So the developed type of the sensors is very attractive as a new generation of compact, lightweight, low-cost sensors that might monitor pressure with a good level of measurement accuracy. (paper)

  20. Murein Hydrolase Activity in the Surface Layer of Lactobacillus acidophilus ATCC 4356▿

    OpenAIRE

    Prado Acosta, Mariano; Palomino, María Mercedes; Allievi, Mariana C.; Rivas, Carmen Sanchez; Ruzal, Sandra M.

    2008-01-01

    We describe a new enzymatic functionality for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356, namely, an endopeptidase activity against the cell wall of Salmonella enterica serovar Newport, assayed via zymograms and identified by Western blotting. Based on amino acid sequence comparisons, the hydrolase activity was predicted to be located at the C terminus. Subsequent cloning and expression of the C-terminal domain in Bacillus subtilis resulted in the functional verificati...

  1. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C

  2. Effects of long-term elevated CO2 on N2-fixing, denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-Qiang; HAN Shi-Jie; REN Fei-Rong; ZHOU Yu-Mei; ZHANG Yan

    2008-01-01

    A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province,northeastern China (42o24'N,128o06'E,and 738 m elevation).A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999.Changpai Scotch pine (Pinus sylvestris var.sylvestriformis seeds were sowed in May,1999 and CO2 fumigation treatments began after seeds germination.In each year,the exposure started at the end of April and stopped at the end of October.Soil samples were collected in June and August 2006 and in June 2007,and soil nitrifying,denitrifying and N2-fixing enzyme activities were measured.Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006,by 30.9% in August 2006 and by 11.3% in June 2007.Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P < 0.012) and August 2006 (P < 0.005) samplings in our study; no significant difference was detected in June 2007,and no significant changes in N2-fixing enzyme activity were found.This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.

  3. Cesium-137 activity in soil from an agricultural land in West Anatolia

    International Nuclear Information System (INIS)

    Aslani, M. A. A.; Yaprak, G.; AYTAS, S.; AKGil, S.; Eral, M.; Yener, G.

    2001-01-01

    Due to the radiocesium derived from the accident at Chernobyl in 1986 deposited on the soil, this study presents experimental data on Cs-137 activity concentrations in soil samples taken from agricultural land of Aegean Region in Turkey in 1997 and 1998. The activity of Cs-137 for these soil samples was found in the range between 0.92±0.15 Bq/kg and 20.75±0.29 Bq/kg. The distribution of Cs-137 in the soil can differ, being dependent on soil properties

  4. Modelling and Vibration Control of Beams with Partially Debonded Active Constrained Layer Damping Patch

    Science.gov (United States)

    SUN, D.; TONG, L.

    2002-05-01

    A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.

  5. Nonlinear optical activity in Bridgman growth layered compounds

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M.I., E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2010-02-15

    Layered semiconductor compound CdI{sub 2} has been grown with the Bridgman technique and studied by nonlinear transmittance spectroscopy. The optical absorption in CdI{sub 2} shows a nonlinear transmission of the incident laser power (P{sub 0}) within a lower power limit. The transmission, however, is found to saturate at high powers, giving a clamped output. The value of the incident power (P{sub 0C}) at which clamping starts is also found to depend on the crystal temperature (T{sub L}). The values of P{sub OC} ranges from 55 to 65 MW cm{sup -2} for T{sub L} = 4.2-180 K. The dynamic range (D{sub R}) as a function of T{sub L} is calculated and the values are found to range from D{sub R} = 2 to 1.6. The optical limiting mechanisms are discussed. The two-photon absorption (TPA) coefficient ({beta}) of the optical nonlinear process in CdI{sub 2} is estimated. The values are found to be within a range from {beta} = 47 to 25 cm GW{sup -1} and be decreasing with increasing T{sub L}. As expected for the TPA process, the experimental data within a certain range follows the linear relation: log (P{sub 0}/P{sub T}) = A{sub G} + {Omega}(P{sub 0} - P{sub T}), where P{sub T} is the transmitted power, A{sub G} is the absorbance of the ground state and {Omega} is a constant depending on the absorption cross-section and the relaxation time. The values of A{sub G} and {Omega} estimated from the fits to the measured data vary with T{sub L}. The findings resulting from this investigation might have potential applications in optical sensors protection.

  6. Evaluation of coal combustion byproducts as soil liming materials - their influence on soil pH and enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, G W; Siddaramappa, R; Wright, R J; Codling, E E; Gao, G

    1994-03-01

    To evaluate coal combustion byproducts as liming materials and address issues related to soil quality, the authors compared the influence of different amounts of four combustion byproducts (fly ash and bed ash from a fluidized bed combustion furnace, lime-injected multistage burner residue, and spray dryer residue) and CaCO[sub 3] on soil pH and activities of urease, phosphatase, arylsulfatase, and dehydrogenase in an acidic soil. Studies comparing the influence of the combustion byproducts and CaCO[sub 3] on soil pH showed that on weight basis of application, substantial differences were observed in the ability of these materials to influence soil pH but that such differences decreased markedly after the data were transformed to a CaCO[sub 3] equivalent basis of application. Analysis of covariance for these transformed data indicated that whereas the liming abilities of fly ash and CaCO[sub 3] were not significantly different when compared on the CaCO[sub 3] equivalent basis, those of bed ash, multistage burner residue, and spray dryer residue were less than that of CaCO[sub 3]. Studies comparing the influence of the byproducts and CaCO[sub 3] on soil enzyme activities showed that the effect of these liming materials on the enzyme activities studied was largely due to their influence on soil pH. These studies showed that the combustion byproducts tested functioned as soil liming materials in a manner similar to that of CaCO[sub 3] and seemed to have little adverse effect on soil quality.

  7. Effect of soil-bound residues of malathion on microbial activities

    International Nuclear Information System (INIS)

    Hussain, A.; Iqbal, Z.; Asi, M.R.; Tahira, R.; Chudhary, J.A.

    2001-01-01

    The effect of soil-bound residues of malathion on CO/sub 2/ evolution, dehydrogenase activity and some nitrogen transformations in a loam soil was investigated under laboratory conditions. The soil samples containing bound residues arising from 10 mg g-1 of the applied malathion were mixed in equal quantity with fresh soil and compared with solvent extracted control soil without bound residues (extracted in the same way as soil containing bound residues). Another control comprising un extracted fresh soil without bound residues was also kept to study the effect of solvent extraction on the biological activity. Rate of Carbon mineralization (CO/sub 2/ evolution) was decreased in the presence of soil-bound residues of malathion. Bound residues also affected dehydrogenase activity of soil. Over 40% inhibition of dehydrogenase activity was observed after 4 days and the inhibition persisted at least for 12 days. Nitrogen mineralization was stimulated in soil containing bound residues of malathion and this stimulatory effect increased with time of incubation. Nitrification was partially inhibited in the presence of soil-bound residues of malathion. The inhibitory effect of the soil-bound residues on nitrification did not show much variation with time. The soil-bound residues did not affect denitrification rate (N/sub 2/O evolution). Nitrogen fixation (acetylene reduction) was partially inhibited in soil amended with bound residues of malathion and the inhibitory effect persisted for at least one week. In general, soil bound residues of malathion inhibited CO/sub 2/ evolution, dehydrogenase activity, nitrification and nitrogen fixation while mineralization of nitrogen was stimulated. Denitrification was not affected by the applied insecticide. (author)

  8. NASA's Soil Moisture Active and Passive (SMAP) Mission

    Science.gov (United States)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; hide

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  9. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.

    Science.gov (United States)

    Liu, Yan-Ling; Wang, Xiao-Mao; Yang, Hong-Wei; Xie, Yuefeng F

    2018-06-01

    Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Plasmonic modulator optimized by patterning of active layer and tuning permittivity

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    as electrodes. External field changes carrier density in the ultra-thin ITO layer, which influences the permittivity. The metal-insulator-metal system possesses a plasmon resonance, and it is strongly affected by changes in the permittivity of the active layer. To improve performance of the structure we propose...... several optimizations. We examine influence of the ITO permittivity on the modulator's performance and point out appropriate values. We analyze eigenmodes of the waveguide structure and specify the range for its efficient operation. We show that substituting the continuous active layer by a one......-dimension periodic stripes increases transmittance through the device and keeps the modulator's performance at the same level. The dependence on the pattern size and filling factor of the active material is analyzed and optimum parameters are found. Patterned ITO layers allow us to design a Bragg grating inside...

  11. Occurrence of the carcinogenic Bracken constituent ptaquiloside in fronds, topsoils and organic soil layers in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, L.H.; Kroghsbo, S.; Frisvad, Jens Christian

    2003-01-01

    Bracken (Pteridium aquilinum (L.) Kuhn) is a common fern found on all continents except Antarctica. It is under suspicion of causing cancer among people who utilizes it as food. The main carcinogenic compound is thought to be the water-soluble compound ptaquiloside. Ptaquiloside-uptake may occur...... not only through food, but also via drinking water as ptaquiloside might leach from plant material. The purpose of the study was to identify environmental parameters that correlate with the ptaquiloside-content in fronds, and to quantify the amount of ptaquiloside in the soil environment. The ptaquiloside...

  12. Antifungal activity of indigenous Bacillus spp. isolated from soil

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2017-01-01

    Full Text Available Biocontrol using plant growth-promoting rhizobacteria (PGPR represents an alternative approach to disease management, since PGPR are known to promote growth and reduce diseases in various crops. Among the different PGPR, members of the genus Bacillus are prefered for most biotechnological uses due to their capability to form extremely resistant spores and produce a wide variety of metabolites with antimicrobial activity. The objective of this research was to identify antagonistic bacteria for management of the plant diseases. Eleven isolates of Bacillus spp. were obtained from the soil samples collected from different localities in the Province of Vojvodina. The antifungal activity of bacterial isolates against five fungal species was examined using a dual plate assay. Bacillus isolates exhibited the highest antifungal activity against Fusarium proliferatum, Fusarium oxysporum f. sp. cepae and Alternaria padwickii, while they had the least antagonistic effect on Fusarium verticillioides and Fusarium graminearum. Molecular identification showed that effective bacterial isolates were identified as Bacillus safensis (B2, Bacillus pumilus (B3, B11, Bacillus subtilis (B5, B7 and Bacillus megaterium (B8, B9. The highest antagonistic activity was exhibited by isolates B5 (from 39% to 62% reduction in fungal growth and B7 (from 40% to 71% reduction in fungal growth. These isolates of B. subtilis could be used as potential biocontrol agents of plant diseases. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31073

  13. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    Science.gov (United States)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  14. On quantifying active soil carbon using mid-infrared spectroscopy

    Science.gov (United States)

    Soil organic matter (SOM) is derived from plant or animal residues deposited to soil and is in various stages of decomposition and mineralization. Total SOM is a common measure of soil quality, although due to its heterogeneous composition SOM can vary dramatically in terms of i...

  15. Innovative reactive layer to enhance soil aquifer treatment: successful installation in the Llobregat aquifer (Catalonia, ne Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.; Gilbert, O.; Bernat, X.; Valhondo, C.; Kock-Schulmeyer, M.; Huerta-Fontela, M.; Colomer, M. V.

    2014-10-01

    The Life+ ENSAT project has demonstrated the effectiveness of a reactive organic layer on the improvement of recharge water quality in an aquifer recharge system. The vegetal compost layer was installed at the bottom of an existing infiltration pond in the Llobregat Lower Valley (Barcelona region) with the purpose of promoting biodegradation and improving the removal emerging micro-pollutants from Llobregat River water. A comprehensive monitoring of water quality including bulk chemistry, emerging micro-pollutants and priority substances indicated that hydro biochemical changes within the organic layer enhance denitrification processes and reduce the levels of gemfibrozil and carbamazepine TP. This effect is due to the release of dissolved organic carbon which promotes biodegradation processes at local scale in the unsaturated zones, without affecting the furthest piezometers. The reactive layer is still active more than 3 years after its installation. The economic assessment of this innovative reactive layer shows that it is a promising solution for the improvement of aquifer recharge with low quality waters, not only technically but also from the economic sustainability standpoint. (Author)

  16. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    Science.gov (United States)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  17. Estimation of available water capacity components of two-layered soils using crop model inversion: Effect of crop type and water regime

    Science.gov (United States)

    Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine

    2017-03-01

    Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC

  18. The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities

    Science.gov (United States)

    Berardi, Marco; Difonzo, Fabio; Vurro, Michele; Lopez, Luciano

    2018-05-01

    The infiltration process into the soil is generally modeled by the Richards' partial differential equation (PDE). In this paper a new approach for modeling the infiltration process through the interface of two different soils is proposed, where the interface is seen as a discontinuity surface defined by suitable state variables. Thus, the original 1D Richards' PDE, enriched by a particular choice of the boundary conditions, is first approximated by means of a time semidiscretization, that is by means of the transversal method of lines (TMOL). In such a way a sequence of discontinuous initial value problems, described by a sequence of second order differential systems in the space variable, is derived. Then, Filippov theory on discontinuous dynamical systems may be applied in order to study the relevant dynamics of the problem. The numerical integration of the semidiscretized differential system will be performed by using a one-step method, which employs an event driven procedure to locate the discontinuity surface and to adequately change the vector field.

  19. Effect of pesticide applications on soil microbial activity and on 14C-methyl parathion dissipation

    International Nuclear Information System (INIS)

    Peres, Terezinha Bonanho

    2000-01-01

    Some crops, as cotton, need different pesticide application to control pests and diseases. These compounds reach soil and may affect the soil microbial activity. As the microorganisms play important role on the nutrient cycling, changes in their activities may affect the soil fertility. The influence of several pesticides on soil microbial activity of the 0-15 cm and 15-30 cm depth of the soil profile, and the 14 C-methyl parathion dissipation was studied under influence of other pesticide applications. The influence of pesticides on the microorganisms was followed in an experimental area of the Instituto Biologico, that was divided in two subareas, both under cotton crop. Columns of PVC was buried in both subareas and a solution of 14 C-methyl parathion diluted in the technical compound was applied on the soil surface of each column. One subarea received all the recommended pesticides for the cotton crop besides the 14 C-methyl parathion. The other subarea received only 14 C-methyl parathion solution on the columns soil surface. The soil microbial activity of both subareas was estimated by measurements of dehydrogenase, arylsulfatase and arginine deaminase enzymes. Further, the availability of total nitrogen in the soil was also measured. The dissipation of 14 C-methyl parathion was studied by radiocarbon recovery in soil extracts and combustion of extracted soil and quantification by radiometric techniques. (author)

  20. Creating Common Ground: Activities of the Soil Health Dialog Workgroup

    Science.gov (United States)

    Lindbo, David L.; Moebius-Clune, Bianca; Hatfield, Jerry; Buckner, William; Conklin, Neil; McMahon, Sean; Haney, Richard; Muller, Paul; Martin, Larkin; Shaw, Richard; Eyrich, Ted; Martens, Klaas; Archuleta, Ray; Thompson, Mary

    2014-05-01

    The concept of Soil Health has come to forefront as a soil management concept for soil scientists, agronomists, producers, land-use planners, and environmental advocates. Although many see this simply as a way to increase organic matter in the soil it is much more than that and has implications to a broader management decisions. A diverse group of stake holders ranging from scientists to consultants, conventional to organic farmers, governmental to NGOs met to start a dialog about soil health with an overarching goal to adopt practices that will improve soil health across a wide area and for a wide variety of land uses. The group recognized the critical need for using soil health as a cornerstone of sustainable soil management. The group also realized that a consistent and coherent message about soil health needed to be developed that would be inclusive to all stake holders. Furthermore the group recognized that if soil health is to be promoted we all need to know and agree on how to measure it and interpret the results. The first outcome from the meeting was the creation of several teams comprised of individuals with the diverse interests as list above. The first was tasked to review and develop a definition of soil health. The first group, after much debate, decided on the adoption of the USDA-NRCS definition of Soil Health as the most effective way to begin. This definition was presented as a press release from the Farm Foundation in early December 2013 in conjunction with World Soil Day. The second group was tasked to review, develop or recommend standard measurement techniques to assess soil health. The methods group is in the process of reviewing methods and hopes to have a preliminary list out for broader review by mid-year. This presentation reviews current progress and asks for input from the Soil Science community at large.

  1. Comparison of two detection methods in thin layer chromatographic analysis of herbicides in a coastal savannah soil

    International Nuclear Information System (INIS)

    Afful, S.; Yeboah, P.O.; Dogbe, S.A.; Akpabli, C.K.

    2004-01-01

    o-tolidine + potassium iodide and photosynthesis inhibition detection methods, were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine), and two urea herbicides (diuron, metobromuron) in a coastal savannah soil using thin layer chromatographic methodology to compare the suitability of the two methods for the study of the herbicides. This was done by spiking 5 g of the soil sample with specific amount of the herbicides standard to generate herbicide-soil concentration of 40.23, 40.28, 41.46, 39.90 and 40.64 μ g/g for atrazine, ametryne, simazine, diuron and metobromuron respectively. Extraction was performed with acetone/hexane mixture (4:1) and the detection limit of each herbicide was then determined. In all, the photosynthesis inhibition method performed better for both the triazine and the urea herbicides, while the o-tolidine + potassium iodide method was suitable for only the triazine herbicides. With the photosynthesis inhibition method, detectability in the range of 0.004 - 0.008±0.02 μ g/g was attained for the herbicides using the unclean extracts. In the case of o-tolidine ± potassium iodide method, detectability of 0.008 - 0.40 0.02 ± g/g was obtained. With the clean up extracts, detectability in the range of 0.025 - 0.162±0.004 μ g/g was obtained using the photosynthesis inhibition method, however, metobromuron was not detected with the clean up extracts with the o-tolidine + KI method. (au)

  2. Comparison of two detection methods in thin layer chromatographic analysis of some herbicides in a coastal savannah soil in Ghana

    International Nuclear Information System (INIS)

    Afful, S.; Yeboah, P.O.; Dogbe, S.A.; Akpabli, C.K.

    2008-01-01

    o-tolidine plus potassium iodide and photosynthesis inhibition detection methods were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine) and two urea herbicides (diuron, metbromuron) in a coastal savannah soil using thin layer chromatography to compare the suitability of the two methods for the study of the herbicides. This was done by spiking 5 g of the soil sample with specific amount of the herbicide standards to generate herbicide-soil concentration of 40.24, 41.46, 40.28, 39.90 and 40.64 μg/g for atrazine, ametryne, simazine, diuron and metbromuron, respectively. Extraction was performed with acetone/hexane mixture (4:1) and the detection limit of each herbicide was then determined. In all, the photosynthesis inhibition method performed better for both the triazine and the urea herbicides, while the o-tolidine plus potassium iodide method was suitable for only the triazine herbicides. With the photosynthesis inhibition method, detectability in the range of 0.004-0.008 ± 0.002 μg/g was attained for the herbicides using the unclean extracts. In the case of o-tolidine plus potassium iodide method, detectability of 0.008-0.406 ± 0.02 μg/g was obtained. With the clean up extracts detectability in the range of 0.025-0.162 ± 0.004 μg/g was obtained using the photosynthesis inhibition method. However, metbromuron was not detected in the cleaned up extracts when o-tolidine plus potassium iodide detection method was used. For the methods described, clean up with SPE cartridge, equipped with C-18, is not critical to obtain the desired results. (au)

  3. Characterisation of Wear Resistant Boride Layers on a Tool Steel by Activity Controlled Pack Boronising

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work addresses the production and characterisation of iron boride layers by pack boronising of a Vanadis 6 tool steel. The boride layers were produced at 900°C for 2h using different pack compositions in order to obtain a single-phase boride layer. The layers were characterized...... by electron microscopy, glow discharge optical emission spectroscopy, X-ray diffraction, Vickers hardness tests and wear testing with a pin-on-disc tribometer. It was found that the type of boride phases (FeB and/or Fe2B) present in the treated layer can be controlled by changing the boron activity...... by pack boronising for all conditions as compared to the heat treated tool steel....

  4. Monitoring Soil Microbial Activities in Different Cropping Systems Using Combined Methods

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhimin; LIU Haijun; HAN Jun; SUN Jingjing; WU Xiaoying; YAO Jun

    2017-01-01

    Cropping activities may affect soil microbial activities and biomass,which would affect C and N cycling in soil and thus the crop yields and quality.In the present study,a combination of microcalorimetric,enzyme activity (sucrase,urease,catalase,and fluorescein diacetate hydrolysis),and real-time polymerase chain reaction (RT-PCR) analyses was used to investigate microbial status of farmland soils,collected from 5 different sites in Huazhong Agriculture University,China.Our results showed that among the 5 sites,both positive and negative impacts of cropping activities on soil microbial activity were observed.Enzyme activity analysis showed that cropping activities reduced soil sucrase and urease activities,which would influence the C and N cycles in soil.Much more attentions should be given to microbial status affected by cropping activities in future.According to the correlation analysis,fluorescein diacetate hydrolysis showed a significantly (P < 0.05) negative correlation with the time to reach the maximum power output (R =--0.898),but a significantly (P < 0.05) positive correlation with bacterial gene copy number (R =0.817).Soil catalase activity also showed a significantly (P < 0.05) positive correlation with bacterial gene copy number (R =0.965).Using combined methods would provide virtual information of soil microbial status.

  5. Computer modeling analysis using compacted soil liner for capping layer at the LLW Radioactive Repository (Landfill) in Bukit Keledang

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Mohd Abdul Wahab Yusof; Mohd Raihan Taha

    2007-01-01

    The VHELP 2.2v computer program is a landfill modeling to study the performance of varies layer in the radioactive repository or landfill. The water balance for the whole repository will be presented in hydrologic parameters such as hydraulic conductivity, runoff, rainfall, surcharge, percolation and evapotranspiration . This study includes the selection and laboratory testing of material density, porosity, void ratio and moisture in achieving the required hydraulic conductivity in gaining water balance. Hence the integrity of the layer will be predicted through out its life span limited to 100 years. This modeling allows us to formulate better compaction method deriving suitable Compacted Soil Liner to control cracks, bath-tub effects, leach-ate discharge and repository stability. The lysimeter samplings and double ring infiltrometer were used in obtaining the actual hydraulic conductivity. This parameter gives modeling input better understanding of the water infiltration and provides better repository profile design to gain water balance. These studies are the first attempt to examine the radioactive repository design profile in containing and surcharge outflow to the ground water. Therefore the acquired knowledge will be beneficial for the construction of the up coming national repository and all existing municipal landfill design. (Author)

  6. The effects of different uranium concentrations on soil microbial populations and enzymatic activities

    International Nuclear Information System (INIS)

    Bagherifam, S.; Lakziyan, A.; Ahmadi, S. J.; Fotovvat, A.; Rahimi, M. F.

    2010-01-01

    Uranium is an ubiquitous constituent of natural environment with an average concentration of 4 mg/kg in earth crust. However, in local areas it may exceed the normal concentration due to human activities resulting in radionuclide contamination in groundwater and surface soil. The effect of six levels of uranium concentration (0, 50, 100,250. 500 and 1000 mg kg -1 ) on soil phosphatase activities and microbial populations were studied in a completely randomized design as a factorial experiment with three replications. The results showed a significant decrease in phosphatase activity. The result of the experiment suggests that soil microbial populations (bacteria, funji and actinomycetes) decrease by increasing the uranium levels in the soil. Therefore, assessment of soil enzymatic activities and microbial populations can be helpful as a useful index for a better management of uranium and radioactive contaminated soils.

  7. Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2010-12-01

    Full Text Available We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002 than low solar activity (2006-2008. It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF Bs (IMF Bz <0 component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

  8. Improving soil enzyme activities and related quality properties of reclaimed soil by applying weathered coal in opencast-mining areas of the Chinese loess plateau

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [College of Environment and Resources, Shanxi University, Taiyuan (China); CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai (China); Shao, Hongbo [CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai (China); Institute for Life Sciences, Qingdao University of Science and Technology (QUST), Qingdao (China); Li, Weixiang; Bi, Rutian [Shanxi Agricultural University, Taigu (China); Bai, Zhongke [Department of Land Science Technology, University of Geosciences, Beijing (China)

    2012-03-15

    There are many problems for the reclaimed soil in opencast-mining areas of the Loess Plateau of China such as poor soil structure and extreme poverty in soil nutrients and so on. For the sake of finding a better way to improve soil quality, the current study was to apply the weathered coal for repairing soil media and investigate the physicochemical properties of the reclaimed soil and the changes in enzyme activities after planting Robinia pseucdoacacia. The results showed that the application of the weathered coal significantly improved the quality of soil aggregates, increased the content of water stable aggregates, and the organic matter, humus, and the cation exchange capacity of topsoil were significantly improved, but it did not have a significant effect on soil pH. Planting R. pseucdoacacia significantly enhanced the activities of soil catalase, urease, and invertase, but the application of the weathered coal inhibited the activity of catalase. Although the application of appropriate weathered coal was able to significantly increase urease activity, the activities of catalase, urease, or invertase had a close link with the soil profile levels and time. This study suggests that applying weathered coals could improve the physicochemical properties and soil enzyme activities of the reclaimed soil in opencast-mining areas of the Loess Plateau of China and the optimum applied amount of the weathered coal for reclaimed soil remediation is about 27 000 kg hm{sup -2}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  10. Evaluation of polyethylenimine/carrageenan multi-layer for antibacterial activity of pathogenic bacteria

    International Nuclear Information System (INIS)

    Briones, Annabelle V.; Bigol, Urcila G.; Sato, Toshinori

    2012-01-01

    The purpose of this study is to investigate the antibacterial activity of multi-layer of polyethylenimine (PEI) and carrageenan (κ,ι, λ) for potential use as coating on biomaterial surface. The multi-layer of PEI/carrageenan was formed using the layer-by-layer assembly absorption technique and was monitored by atomic force microscopy (AFM) and bio molecular interaction analysis. All samples were prepared in phosphate buffer solution and applied to mica disk alternately. The micrographs showed the formation of bi-layer of polyethylenimine and carrageenan (κ, ι, λ) as observed in the change of height of the layer and surface morphology. The bimolecular binding of carrageenan with polyethylenimine was also investigated using a biosensor. The sensorgram showed that PEI interacted molecularly with carrageenan. Results were: 1,916.08 pg/nm 2 for kappa type; 1,844.1 pg/nm 2 for iota type and 6,074.24 pg/nm 2 for lambda type. The multi-layer showed antibacterial activity against Enterobacter cloaceae, Staphylococcus aureus and Enterococcal strains (Enterococcus faecalis (EF) 29212 and 29505). (author)

  11. Thermally activated flux creep in strongly layered high-temperature superconductors

    International Nuclear Information System (INIS)

    Chakravarty, S.; Ivlev, B.I.; Ovchinnikov, Y.N.

    1990-01-01

    Thermal activation energies for single vortices and vortex bundles in the presence of a magnetic field parallel to the layers are calculated. The pinning considered is intrinsic and is due to the strongly layered structure of high-temperature superconductors. The magnetic field and the current dependence of the activation energy are studied in detail. The calculation of the activation energy is used to determine the current-voltage characteristic. It may be possible to observe the effects discussed in this paper in a pure enough sample

  12. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping.

    Science.gov (United States)

    Jeong, Seung-Ki; Kim, Myeong-Ho; Lee, Sang-Yeon; Seo, Hyungtak; Choi, Duck-Kyun

    2014-01-01

    In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 10(13) cm(-2), resistivity at 4.6 × 10(-3) Ω∙cm, and Hall mobility at 14.6 cm(2)/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm(2)/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm(2)/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs.

  13. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    Science.gov (United States)

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J. [University of California Riverside, Riverside, CA (United States). Dept. of Environmental Science

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  15. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  16. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-01-01

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO 2 in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO 2 layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices

  17. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    Science.gov (United States)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of

  18. Influence of Soil Humic and Fulvic Acid on the Activity and Stability of Lysozyme and Urease

    NARCIS (Netherlands)

    Li, Yan; Tan, WenFeng; Koopal, Luuk K.; Wang, MingXia; Liu, Fan; Norde, Willem

    2013-01-01

    Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was

  19. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex.

    Science.gov (United States)

    Adams, Daniel L; Economides, John R; Horton, Jonathan C

    2015-05-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. Copyright © 2015 the American Physiological Society.

  20. Roles of microbial activities on the distribution and speciation of iodine in the soil environment

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Yoshida, Satoshi; Amachi, Seigo

    2000-01-01

    The chemical species of iodine in the environment are expected to be influenced by the activities of microorganisms. In this paper, the roles of microbial activities in the accumulation and loss of iodine in soils were studied. Concentrations of stable iodine in several types of soils were determined by ICP-MS (Inductively Coupled Plasma Mass Spectroscopy). High iodine concentrations were found in upland soils, particularly in Andosol, while the concentrations in lowland soils were considerably lower. Accumulation of iodine in soils was explained by the effects of microorganisms and/or their products (e.g. enzymes). Iodine was observed to be desorbed from the flooded soils due to the reducing conditions (low Eh) created by the microbial activities. From the soil-rice plant system biogenesis methyliodide was found to be evaporated into the atmosphere. In order to study the mechanisms of volatile iodine production from the soil environment, a reliable method using 125 I tracer was established. Soil solution and bacterial cell suspension were incubated using this method, and it was found that volatile organic iodine was produced due to microbial activities (including bacterial activities). (author)

  1. Use of statistical methods for determining homogeneous layers of volcanic soils at a site in the slopes of Volcan Irazu, Cartago, Costa Rica

    International Nuclear Information System (INIS)

    Mora, Rolando

    2013-01-01

    A Statistical method was used to delineate homogeneous layers of volcanic soils in two sites where dynamic penetration soundings have been implemented. The study includes two perforations (DPL 1A and DPL 1B) with dynamic penetrometer light (DPL), carried out in the canton de La Union, Cartago. The data of the number of blows as a function od the depth of the DPL perforations depth were used to calculate the intraclass correlation coefficient (IR) and clearly determine the limits of homogeneous layers in volcanic soils. The physical and mechanical properties of each determined layer were established with the help of computers programs, as well as the variation according to depth of its allowable bearing capacity. With the obtained results is has been possible to determine the most suitable site to establish the foundation of a potable water storage tank [es

  2. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.

    Science.gov (United States)

    Yoon, Hongkyu; Oostrom, Mart; Wietsma, Thomas W; Werth, Charles J; Valocchi, Albert J

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing numerical and analytical model simulations with a detailed data set from a well-defined intermediate-scale flow cell experiment. The flow cell was packed with a fine-grained sand layer embedded in a coarse-grained sand matrix. A total of 499 mL CT was injected at the top of the flow cell and allowed to redistribute in the variably saturated system. A dual-energy gamma radiation system was used to determine the initial NAPL saturation profile in the fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during subsequent CT removal using SVE. Results show that CT mass was removed quickly in coarse-grained sand, followed by a slow removal from the fine-grained sand layer. Consequently, effluent gas concentrations decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. The long-term tailing was mainly due to diffusion from the fine-grained sand layer to the coarse-grained sand zone. An analytical solution for a one-dimensional advection and a first-order mass transfer model matched the tailing well with two fitting parameters. Given detailed knowledge of the permeability field and initial CT distribution, we were also able to predict the effluent concentration tailing and gas concentration profiles at sampling ports using a numerical simulator assuming equilibrium CT evaporation. The numerical model predictions were accurate within the uncertainty of independently measured or literature derived parameters. This study demonstrates that proper numerical modeling of CT removal through SVE can be achieved using equilibrium evaporation of NAPL if detailed fine-scale knowledge of the CT distribution and physical heterogeneity is incorporated into the model. However, CT removal could also be fit by a

  3. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  4. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    Science.gov (United States)

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  5. The impact of mesotrione on several microbiological activity of chernozem soil.

    Science.gov (United States)

    Radivojevic, L; Gasic, S; Krsmanovic, M Saric; Marisavljevic, D; Santric, L; Pavlovic, D; Umiljendic, J Gajic

    2013-01-01

    The effect of mesotrione on microbiological activity in soil was investigated. Trials were set up in laboratory on chernozem soil (pH 7.0, organic matter 3.5%, sand 26%, silt 45%, clay 29%) at Surcin, Serbia. Mesotrione was added at rates 0.5 (field rate), 5, 25 i 50 mg/kg soil