Sample records for active flow control

  1. Sensor Development for Active Flow Control (United States)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.


    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  2. Active Control of Jet Engine Inlet Flows

    National Research Council Canada - National Science Library

    Rediniotis, Othon; Bowersox, Rodney; Kirk, Aaron; Kumar, Abhinav; Tichenor, Nathan


    ...), flow visualization tests, particle image velocimetry (PIV), pressure probe and wall static tap experiments at various locations, the development and evolution of the secondary flow structures were observed...

  3. Temperature-gated thermal rectifier for active heat flow control. (United States)

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang


    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  4. Usefulness of DC power flow for active power flow analysis with flow controlling devices

    NARCIS (Netherlands)

    Van Hertem, D.; Verboomen, J.; Purchala, K.; Belmans, R.; Kling, W.L.


    DC power flow is a commonly used tool for contingency analysis. Recently, due to its simplicity and robustness, it also becomes increasingly used for the real-time dispatch and techno-economic analysis of power systems. It is a simplification of a full power flow looking only at active power.

  5. Fluidic actuators for active flow control on airframe (United States)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.


    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  6. Active Flow Control in an Aggressive Transonic Diffuser (United States)

    Skinner, Ryan W.; Jansen, Kenneth E.


    A diffuser exchanges upstream kinetic energy for higher downstream static pressure by increasing duct cross-sectional area. The resulting stream-wise and span-wise pressure gradients promote extensive separation in many diffuser configurations. The present computational work evaluates active flow control strategies for separation control in an asymmetric, aggressive diffuser of rectangular cross-section at inlet Mach 0.7 and Re 2.19M. Corner suction is used to suppress secondary flows, and steady/unsteady tangential blowing controls separation on both the single ramped face and the opposite flat face. We explore results from both Spalart-Allmaras RANS and DDES turbulence modeling frameworks; the former is found to miss key physics of the flow control mechanisms. Simulated baseline, steady, and unsteady blowing performance is validated against experimental data. Funding was provided by Northrop Grumman Corporation, and this research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

  7. Structural integrated sensor and actuator systems for active flow control (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael


    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  8. Intelligent Flow Control Valve (United States)

    Kelley, Anthony R (Inventor)


    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  9. Distributed Power Flow Controller

    NARCIS (Netherlands)

    Yuan, Z.


    In modern power systems, there is a great demand to control the power flow actively. Power flow controlling devices (PFCDs) are required for such purpose, because the power flow over the lines is the nature result of the impedance of each line. Due to the control capabilities of different types of

  10. Parallel Vortex Body Interaction Enabled by Active Flow Control (United States)

    Weingaertner, Andre; Tewes, Philipp; Little, Jesse


    An experimental study was conducted to explore the flow physics of parallel vortex body interaction between two NACA 0012 airfoils. Experiments were carried out at chord Reynolds numbers of 740,000. Initially, the leading airfoil was characterized without the target one being installed. Results are in good agreement with thin airfoil theory and data provided in the literature. Afterward, the leading airfoil was fixed at 18° incidence and the target airfoil was installed 6 chord lengths downstream. Plasma actuation (ns-DBD), originating close to the leading edge, was used to control vortex shedding from the leading airfoil at various frequencies (0.04 governing parameters of this vortex body interaction are explored. This work was supported by the Army Research Office under ARO Grant No. W911NF-14-1-0662.

  11. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil (United States)

    Munday, Phillip M.

    The objective of this computational study is to examine and quantify the influence of fundamental flow control inputs in suppressing flow separation over a canonical airfoil. Most flow control studies to this date have relied on the development of actuator technology, and described the control input based on specific actuators. Taking advantage of a computational framework, we generalize the inputs to fundamental perturbations without restricting inputs to a particular actuator. Utilizing this viewpoint, generalized control inputs aim to aid in the quantification and support the design of separation control techniques. This study in particular independently introduces wall-normal momentum and angular momentum to the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. By closely studying different variables, the influence of the wall-normal and angular momentum injections on separated flow is identified. As an example, open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at alpha = 6° and 9° with Re = 23,000 is examined with large-eddy simulations. For the shallow angle of attack alpha = 6°, the small recirculation region is primarily affected by wall-normal momentum injection. For a larger separation region at alpha = 9°, it is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Reducing the size of the separated flow region significantly impacts the forces, and in particular reduces drag and increases lift on the airfoil. It was found that the influence of flow control on the small recirculation region (alpha = 6°) can be sufficiently quantified with the traditional coefficient of momentum. At alpha = 9°, the effects of wall-normal and angular momentum inputs are captured by modifying the standard

  12. Active bypass flow control for a seal in a gas turbine engine (United States)

    Ebert, Todd A.; Kimmel, Keith D.


    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.

  13. Active bypass flow control for a seal in a gas turbine engine (United States)

    Ebert, Todd A.; Kimmel, Keith D.


    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.

  14. Control of Nonlinear Coupled Electromagnetic Actuators for Active Drag Reduction in Turbulent Flow


    Seidler, Florian; Trabert, Julius; Dück, Marcel; van Waasen, Stefan; Schiek, Michael; Abel, Dirk; Castelan, E. B.


    The research group FOR1779 “active drag reduction via wavy surface oscillations” develops robust methods for reduction of turbulent friction drag by flow control. The planned concentration on unsteady flow conditions requires a control of the electromagnetic actuator system for generation of transversal surface waves. The bars are positioned in parallel and coupled with an aluminum surface to generate a travelling wave perpendicular to the flow field. The actuator system can be approximately ...

  15. Flow Control (United States)


    can be written as â fj (t) =WO tanh( WIx (t)+bI)+bO, (38) where WI , WO are the input and output matrices, respectively, and bI and bO are the input...applications, present on envisioned airborne optical platforms . One of the problems is that all adaptive optical systems rely on mechanically moving some...of successfully controlling the optical aberration due to the flow over the aperture of airborne optical platforms . As outlined above, systems

  16. Advanced Chemically-Based Actuation for Active Flow Control, Phase I (United States)

    National Aeronautics and Space Administration — The proposed SBIR program by Virtual AeroSurface Technologies (VAST) focuses on the development of a novel variant of pulsed blowing active flow control in which...

  17. Active Control of Flow Separation Over an Airfoil (United States)

    Ravindran, S. S.


    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  18. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems (United States)

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori


    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  19. Development of an Active Flow Control Technique for an Airplane High-Lift Configuration (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Hartwich, Peter M.; Khodadoust, Abdi


    This study focuses on Active Flow Control methods used in conjunction with airplane high-lift systems. The project is motivated by the simplified high-lift system, which offers enhanced airplane performance compared to conventional high-lift systems. Computational simulations are used to guide the implementation of preferred flow control methods, which require a fluidic supply. It is first demonstrated that flow control applied to a high-lift configuration that consists of simple hinge flaps is capable of attaining the performance of the conventional high-lift counterpart. A set of flow control techniques has been subsequently considered to identify promising candidates, where the central requirement is that the mass flow for actuation has to be within available resources onboard. The flow control methods are based on constant blowing, fluidic oscillators, and traverse actuation. The simulations indicate that the traverse actuation offers a substantial reduction in required mass flow, and it is especially effective when the frequency of actuation is consistent with the characteristic time scale of the flow.

  20. On the Active and Passive Flow Separation Control Techniques over Airfoils (United States)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh


    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  1. Heavy Class Helicopter Fuselage Model Drag Reduction by Active Flow Control Systems (United States)

    De Gregorio, F.


    A comprehensive experimental investigation of helicopter blunt fuselage drag reduction using active flow control is being carried out within the European Clean Sky program. The objective is to demonstrate the capability of several active flow technologies to decrease fuselage drag by alleviating the flow separation occurring in the rear area of some helicopters. The work is performed on a simplified blunt fuselage at model-scale. Two different flow control actuators are considered for evaluation: steady blowing, unsteady blowing (or pulsed jets). Laboratory tests of each individual actuator are first performed to assess their performance and properties. The fuselage model is then equipped with these actuators distributed in 3 slots located on the ramp bottom edge. This paper addresses the promising results obtained during the wind-tunnel campaign, since significant drag reductions are achieved for a wide range of fuselage angles of attack and yaw angles without detriment of the other aerodynamic characteristics.

  2. Parametric Approach to Assessing Performance of High-Lift Device Active Flow Control Architectures

    Directory of Open Access Journals (Sweden)

    Yu Cai


    Full Text Available Active Flow Control is at present an area of considerable research, with multiple potential aircraft applications. While the majority of research has focused on the performance of the actuators themselves, a system-level perspective is necessary to assess the viability of proposed solutions. This paper demonstrates such an approach, in which major system components are sized based on system flow and redundancy considerations, with the impacts linked directly to the mission performance of the aircraft. Considering the case of a large twin-aisle aircraft, four distinct active flow control architectures that facilitate the simplification of the high-lift mechanism are investigated using the demonstrated approach. The analysis indicates a very strong influence of system total mass flow requirement on architecture performance, both for a typical mission and also over the entire payload-range envelope of the aircraft.

  3. Effects of Active and Passive Control Techniques on Mach 1.5 Cavity Flow Dynamics

    Directory of Open Access Journals (Sweden)

    Selin Aradag


    Full Text Available Supersonic flow over cavities has been of interest since 1960s because cavities represent the bomb bays of aircraft. The flow is transient, turbulent, and complicated. Pressure fluctuations inside the cavity can impede successful weapon release. The objective of this study is to use active and passive control methods on supersonic cavity flow numerically to decrease or eliminate pressure oscillations. Jet blowing at several locations on the front and aft walls of the cavity configuration is used as an active control method. Several techniques are used for passive control including using a cover plate to separate the flow dynamics inside and outside of the cavity, trailing edge wall modifications, such as inclination of the trailing edge, and providing curvature to the trailing edge wall. The results of active and passive control techniques are compared with the baseline case in terms of pressure fluctuations, sound pressure levels at the leading edge, trailing edge walls, and cavity floor and in terms of formation of the flow structures and the results are presented. It is observed from the results that modification of the trailing edge wall is the most effective of the control methods tested leading to up to 40 dB reductions in cavity tones.

  4. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel


    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  5. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson


    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  6. Experimental study of the active control applied to the flow past a backward facing ramp (United States)

    Hlevca, Dan; Gilliéron, Patrick; Grasso, Francesco


    An experimental study of open loop active flow control on a backward facing ramp is presented. The ramp has finite span and a slant angle of 25°. Wind tunnel experiments were performed both for the uncontrolled and the controlled cases where time periodic forcing by pulsed jets is considered. The control system exploits an electro-magnetic valve system to generate pulsed jets with an operating frequency and duty cycle ranging, respectively, between 50 and 250 Hz and between 25 and 60%. A parametric study was carried out for three different freestream velocities and varying the frequency of the pulsed jets and the duty cycle. The control strategy relies on the injection of periodic perturbations before separation at the edge of the slant, considering various combinations of frequencies and duty cycles while keeping constant the blowing time for every Reynolds number, so as to excite the flow with the same jet structure over different actuation cycle extents. The receptivity of the flow to periodic forcing was assessed by characterizing mean and unsteady flow properties, turbulence statistics and flow topology. The study focused on the impact of control on reattachement and showed that the flow locks with excitation frequencies typical of initial Kelvin-Helmholtz instabilities. However, the flow was found to respond to any injected unsteady perturbation locking to the forcing frequencies and the extent of the region where locking occurs was found to be of the order of a few slant heights. A relaxation process was observed and the flow was found to relax past the slant trailing edge toward frequencies close to the natural ones.

  7. Helicopter Fuselage Active Flow Control in the Presence of a Rotor (United States)

    Martin, Preston B; Overmeyer, Austin D.; Tanner, Philip E.; Wilson, Jacob S.; Jenkins, Luther N.


    This work extends previous investigations of active flow control for helicopter fuselage drag and download reduction to include the effects of the rotor. The development of the new wind tunnel model equipped with fluidic oscillators is explained in terms of the previous test results. Large drag reductions greater than 20% in some cases were measured during powered testing without increasing, and in some cases decreasing download in forward flight. As confirmed by Particle Image Velocimetry (PIV), the optimum actuator configuration that provided a decrease in both drag and download appeared to create a virtual (fluidic) boat-tail fairing instead of attaching flow to the ramp surface. This idea of a fluidic fairing shifts the focus of 3D separation control behind bluff bodies from controlling/reattaching surface boundary layers to interacting with the wake flow.

  8. Design of a high-lift experiment in water including active flow control

    International Nuclear Information System (INIS)

    Beutel, T; Schwerter, M; Büttgenbach, S; Leester-Schädel, M; Sattler, S; El Sayed, Y; Radespiel, R; Zander, M; Sinapius, M; Wierach, P


    This paper describes the structural design of an active flow-control experiment. The aim of the experiment is to investigate the increase in efficiency of an internally blown Coanda flap using unsteady blowing. The system uses tailor-made microelectromechanical (MEMS) pressure sensors to determine the state of the oncoming flow and an actuated lip to regulate the mass flow and velocity of a stream near a wall over the internally blown flap. Sensors and actuators are integrated into a highly loaded system that is extremely compact. The sensors are connected to a bus system that feeds the data into a real-time control system. The piezoelectric actuators using the d 33 effect at a comparable low voltage of 120 V are integrated into a lip that controls the blowout slot height. The system is designed for closed-loop control that efficiently avoids flow separation on the Coanda flap. The setup is designed for water-tunnel experiments in order to reduce the free-stream velocity and the system’s control frequency by a factor of 10 compared with that in air. This paper outlines the function and verification of the system’s main components and their development. (technical note)

  9. Plasma actuators for active flow control based on a glow discharge

    International Nuclear Information System (INIS)

    Kühn, M.; Kühn-Kauffeldt, M.; Schein, J.; Belinger, A.


    In this work a glow discharge based active flow control for high flow velocities and low Reynolds numbers is presented. Unlike common plasma actuators such as dielectric barrier discharge (DBD) or spark jets, this actuator uses small impulse bits at frequencies. The actuator is optimized for frequencies up to 40 kHz to counter Tollmien Schlichting wave effects and so reduce overall air foil drag. Several measurements to prove the non-eroding effect of the actuator and the electrical properties were performed. It was found that the actuator is capable of operating at high frequencies without measurable erosion. (paper)

  10. A review of wind turbine-oriented active flow control strategies (United States)

    Aubrun, Sandrine; Leroy, Annie; Devinant, Philippe


    To reduce the levelized cost of energy, the energy production, robustness and lifespan of horizontal axis wind turbines (HAWTs) have to be improved to ensure optimal energy production and operational availability during periods longer than 15-20 years. HAWTs are subject to unsteady wind loads that generate combinations of unsteady mechanical loads with characteristic time scales from seconds to minutes. This can be reduced by controlling the aerodynamic performance of the wind turbine rotors in real time to compensate the overloads. Mitigating load fluctuations and optimizing the aerodynamic performance at higher time scales need the development of fast-response active flow control (AFC) strategies located as close as possible to the torque generation, i.e., directly on the blades. The most conventional actuators currently used in HAWTs are mechanical flaps/tabs (similar to aeronautical accessories), but some more innovative concepts based on fluidic and plasma actuators are very promising since they are devoid of mechanical parts, have a fast response and can be driven in unsteady modes to influence natural instabilities of the flow. In this context, the present paper aims at giving a state-of-the-art review of current research in wind turbine-oriented flow control strategies applied at the blade scale. It provides an overview of research conducted in the last decade dealing with the actuators and devices devoted to developing AFC on rotor blades, focusing on the flow phenomena that they cause and that can lead to aerodynamic load increase or decrease. After providing some general background on wind turbine blade aerodynamics and on the atmospheric flows in which HAWTs operate, the review focuses on flow separation control and circulation control mainly through experimental investigations. It is followed by a discussion about the overall limitations of current studies in the wind energy context, with a focus on a few studies that attempt to provide a global

  11. Active control of annular flow-induced vibration of axisymmetric elastic beam by the local gap width control

    International Nuclear Information System (INIS)

    Takada, Shoji; Shintani, Atsuhiko; Ito, Tomohiro; Fujita, Katsuhisa


    Flow-induced vibration may occur in the structures such as elastic beams subjected to annular flow in the narrow passage. Once the flow-induced vibration occurs, vibration amplitude becomes larger, consequently it causes a lot of troubles such as fatigue or failure in mechanical structures. In this paper, for the purpose to avoid these troubles, the active control of vibration of an axisymmetric elastic beam subjected to annular flow is investigated. An air-pressured actuator is attached on the surface of the circular cylinder for the vibrational control. As the shape of the actuator changes by control, the gap width in narrow passage changes, which causes the change of the fluid pressure. Therefore, the vibration of the fluid-structure coupled system can be suppressed. The fluid-structure coupled equation based on the Euler-Bernoulli type of partial differential equation and the Navier-Stokes equations is analytically derived including control terms. By applying the optimal control law to the coupled system, the unstable behavior is stabilized. The stability of the coupled system is investigated by eigenvalue analyses of controlled coupled equations. Numerical simulations are performed to investigate the efficiency of the proposed control method. (author)

  12. Development of in-series piezoelectric bimorph bending beam actuators for active flow control applications (United States)

    Chan, Wilfred K.; Clingman, Dan J.; Amitay, Michael


    Piezoelectric materials have long been used for active flow control purposes in aerospace applications to increase the effectiveness of aerodynamic surfaces on aircraft, wind turbines, and more. Piezoelectric actuators are an appropriate choice due to their low mass, small dimensions, simplistic design, and frequency response. This investigation involves the development of piezoceramic-based actuators with two bimorphs placed in series. Here, the main desired characteristic was the achievable displacement amplitude at specific driving voltages and frequencies. A parametric study was performed, in which actuators with varying dimensions were fabricated and tested. These devices were actuated with a sinusoidal waveform, resulting in an oscillating platform on which to mount active flow control devices, such as dynamic vortex generators. The main quantification method consisted of driving these devices with different voltages and frequencies to determine their free displacement, blocking force, and frequency response. It was found that resonance frequency increased with shorter and thicker actuators, while free displacement increased with longer and thinner actuators. Integration of the devices into active flow control test modules is noted. In addition to physical testing, a quasi-static analytical model was developed and compared with experimental data, which showed close correlation for both free displacement and blocking force.

  13. Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator

    Directory of Open Access Journals (Sweden)

    Şanlısoy A.


    Full Text Available In this study, effect of plasma actuator on a flat plate and manipulation of flow separation on NACA0015 airfoil with plasma actuator at low Reynolds numbers were experimentally investigated. In the first section of the study, plasma actuator which consists of positive and grounded electrode couple and dielectric layer, located on a flat plate was actuated at different frequencies and peak to peak voltages in range of 3-5 kHz and 6-12 kV respectively. Theinduced air flow velocity on the surface of flat plate was measured by pitot tube at different locations behind the actuator. The influence of dielectricthickness and unsteady actuation with duty cycle was also examined. In the second section, the effect of plasma actuator on NACA0015 airfoil was studied atReynolds number 15000 and 30000. Four plasma actuators were placed at x/C = 0.1, 0.3, 0.5 and 0.9, and different electrode combinations were activated by sinusoidal signal. Flow visualizations were done when the attack angles were 0°, 5°, 10°, 15° and 20°. The results indicate that up to the 15° attack angle, the separated flow was reattached by plasma actuator at 12kV peak to peak voltage and 4 kHz frequency. However, 12 kVpp voltage was insufficient to reattach the flow at 20° angle of attack. The separated flow could be reattached by increasing the voltage up to 13 kV. Lift coefficient was also increased by the manipulated flow over the airfoil. Results showed that even high attack angles, the actuators can control the flow separation and prevent the airfoil from stall at low Reynolds numbers.

  14. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control (United States)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele


    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  15. Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows (United States)

    Sammy, Mo


    Active flow control is often used to manipulate flow instabilities to achieve a desired goal (e.g. prevent separation, enhance mixing, reduce noise, etc.). Instability frequencies normally scale with flow velocity scale and inversely with flow length scale (U/l). In a laboratory setting for such flow experiments, U is high, but l is low, resulting in high instability frequency. In addition, high momentum and high background noise & turbulence in the flow necessitate high amplitude actuation. Developing a high amplitude and high frequency actuator is a major challenge. Ironically, these requirements ease up in application (but other issues arise).

  16. A magnetically actuated, high momentum rate MEMS pulsed microjet for active flow control

    International Nuclear Information System (INIS)

    Ducloux, O; Viard, R; Talbi, A; Pernod, P; Preobrazhensky, V; Gimeno, L; Merlen, A; Deblock, Y


    A small-sized, high momentum rate (>10 −2 N), dynamically actuated microvalve fulfilling the functional specifications for active aerodynamic flow control was designed, fabricated and characterized. The prototype consists of a microfabricated silicon channel pinched by an actuated poly(dimethyl siloxane) (PDMS) polymer membrane. Actuation is provided by coupling an inductive driving coil and a NdFeB permanent magnet fixed on the PDMS elastomeric membrane. The development of a specific microfabrication process, and a complete characterization of the fabricated prototypes are presented in this paper. The yield air microjet performances reach 150 m s −1 for an actuation frequency situated in the range [0 Hz–400 Hz] and an outlet area of about 1 mm 2 . Experimental results also show that the use of a vectoring plate placed at the outlet of the microvalve provided not only easier integration of the microsystem, but also improved the penetration of the microjet into the main flow

  17. Active Flow Control in a Radial Vaned Diffuser for Surge Margin Improvement: A Multislot Suction Strategy

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan


    Full Text Available This work is the final step of a research project that aims at evaluating the possibility of delaying the surge of a centrifugal compressor stage using a boundary-layer suction technique. It is based on Reynolds-Averaged Navier-Stokes numerical simulations. Boundary-layer suction is applied within the radial vaned diffuser. Previous work has shown the necessity to take into account the unsteady behavior of the flow when designing the active flow control technique. In this paper, a multislot strategy is designed according to the characteristics of the unsteady pressure field. Its implementation results in a significant increase of the stable operating range predicted by the unsteady RANS numerical model. A hub-corner separation still exists further downstream in the diffuser passage but does not compromise the stability of the compressor stage.

  18. Drag reduction of motor vehicles by active flow control using the Coanda effect (United States)

    Geropp, D.; Odenthal, H.-J.

    A test facility has been constructed to realistically simulate the flow around a two dimensional car shaped body in a wind tunnel. A moving belt simulator has been employed to generate the relative motion between model and ground. In a first step, the aerodynamic coefficients cL and cD of the model are determined using static pressure and force measurements. LDA-measurements behind the model show the large vortex and turbulence structures of the near and far wake. In a second step, the ambient flow around the model is modified by way of an active flow control which uses the Coanda effect, whereby the base-pressure increases by nearly 50% and the total drag can be reduced by 10%. The recirculating region is completely eliminated. The current work reveals the fundamental physical phenomena of the new method by observing the pressure forces on the model surface as well as the time averaged velocities and turbulence distributions for the near and far wake. A theory resting on this empirical information is developed and provides information about the effectiveness of the blowing method. For this, momentum and energy equations were applied to the flow around the vehicle to enable a validation of the theoretical results using experimental values.

  19. First-In-Flight Full-Scale Application of Active Flow Control: The XV-15 Tiltrotor Download Reduction

    National Research Council Canada - National Science Library

    Nagib, Hassan M; Kiedaisch, John W; Wygnanski, Israel J; Stalker, Aaron D; Wood, Tom; McVeigh, Michael A


    ... the effectiveness of Active flow Control (AFC) in reducing the download during hover. The flaps/ailerons were retrofitted with actuators delivering zero-mass-flux periodic jets emanating from slots positioned tangential to the surface...

  20. Active flow control of the laminar separation bubble on a plunging airfoil near stall (United States)

    Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann


    The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.

  1. Local correlations for flap gap oscillatory blowing active flow control technology

    Directory of Open Access Journals (Sweden)

    Cătălin NAE


    Full Text Available Active technology for oscillatory blowing in the flap gap has been tested at INCAS subsonic wind tunnel in order to evaluate this technology for usage in high lift systems with active flow control. The main goal for this investigation was to validate TRL level 4 for this technology and to extend towards flight testing. CFD analysis was performed in order to identify local correlations with experimental data and to better formulate a design criteria so that a maximum increase in lift is possible under given geometrical constraints. Reference to a proposed metric for noise evaluation is also given. This includes basic 2D flow cases and also 2.5D configurations. In 2.5D test cases this work has been extended so that the proposed system may be selected as a mature technology in the JTI Clean Sky, Smart Fixed Wing Aircraft ITD. Complex post-processing of the experimental and CFD data was mainly oriented towards system efficiency and TRL evaluation for this active technology.

  2. Defining Quantum Control Flow


    Ying, Mingsheng; Yu, Nengkun; Feng, Yuan


    A remarkable difference between quantum and classical programs is that the control flow of the former can be either classical or quantum. One of the key issues in the theory of quantum programming languages is defining and understanding quantum control flow. A functional language with quantum control flow was defined by Altenkirch and Grattage [\\textit{Proc. LICS'05}, pp. 249-258]. This paper extends their work, and we introduce a general quantum control structure by defining three new quantu...

  3. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.


    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  4. Active flow control insight gained from a modified integral boundary layer equation (United States)

    Seifert, Avraham


    Active Flow Control (AFC) can alter the development of boundary layers with applications (e.g., reducing drag by separation delay or separating the boundary layers and enhancing vortex shedding to increase drag). Historically, significant effects of steady AFC methods were observed. Unsteady actuation is significantly more efficient than steady. Full-scale AFC tests were conducted with varying levels of success. While clearly relevant to industry, AFC implementation relies on expert knowledge with proven intuition and or costly and lengthy computational efforts. This situation hinders the use of AFC while simple, quick and reliable design method is absent. An updated form of the unsteady integral boundary layer (UIBL) equations, that include AFC terms (unsteady wall transpiration and body forces) can be used to assist in AFC analysis and design. With these equations and given a family of suitable velocity profiles, the momentum thickness can be calculated and matched with an outer, potential flow solution in 2D and 3D manner to create an AFC design tool, parallel to proven tools for airfoil design. Limiting cases of the UIBL equation can be used to analyze candidate AFC concepts in terms of their capability to modify the boundary layers development and system performance.

  5. RANS Simulation of the Separated Flow over a Bump with Active Control (United States)

    Iaccarino, Gianluca; Marongiu, Claudio; Catalano, Pietro; Amato, Marcello


    The objective of this paper is to investigate the accuracy of Reynolds-Averaged Navier- Stokes (RANS) techniques in predicting the effect of steady and unsteady flow control devices. This is part of a larger effort in applying numerical simulation tools to investigate of the performance of synthetic jets in high Reynolds number turbulent flows. RANS techniques have been successful in predicting isolated synthetic jets as reported by Kral et al. Nevertheless, due to the complex, and inherently unsteady nature of the interaction between the synthetic jet and the external boundary layer flow, it is not clear whether RANS models can represent the turbulence statistics correctly.

  6. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback (United States)

    Humphreys, William M, Jr.; Culliton, William G.


    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  7. Feasibility of missile guidance using MEMS-based active flow control

    International Nuclear Information System (INIS)

    DeChamplain, A.; Hamel, N.; Rainville, P.-A.; Gosselin, P.; Wong, F.


    The aim of this study was to evaluate the feasibility to control a missile or rocket by mean of an active flow control device such as MEMS (Micro Electro Mechanical Systems) in the form of a microbubble. For this simple aerodynamic form coupled to the geometry of a generic missile, different microbubble arrangements can have a very significant impact in steady operation. Using CFD, combinations of different microbubble configurations (ratio between the apparent diameter and apparent height) and positions on the surface of the missile were evaluated for their impact on overall system performance for a missile flying at Mach 2.5 at an altitude of 6 km at a zero angle of attack. From a validation study with the generic missile geometry tested experimentally, the Fluent commercial code gave an excellent accuracy of 2% for the drag coefficient. With the appropriate numerical parameters from the validation, different configurations of microbubble(s) were simulated to give only marginal changes to the coefficient of moment as compared to experimental values at an angle of attack of 14 degrees. Considering the major advantages in weight and space savings, this would certainly be a technology to implement for small changes in guidance parameters. (author)

  8. Experimental Investigation of the Compressor Cascade under an Active Flow Control

    Directory of Open Access Journals (Sweden)

    Lukáč J.


    Full Text Available The paper is concerned with flow past compressor blade cascade (NACA 65 with thickened trailing edge at off-design regimes, which are characteristic by partial or complete flow separation on the suction surface of the blades. An attempt has been made to moderate the flow separation using continuous or periodic blowing from the sidewalls. The flow field was visualized using schlieren technique and surface paint visualization. The visualizations were complemented by measurement of the static pressure distribution on the suction surface of the blades. In agreement with the literature, the visualizations confirmed a complexity of the 3-dimensional flow separation, which was intensified by influence of the sidewall boundary layers developing from upstream parts of the test section. Furthermore, it was found out that the effect of both continuous and periodic blowing was rather minor. Finally, the results agree with the available literature showing that it is highly difficult to considerably control the complex 3-dimensional flow separation in the compressor cascade by control jets issuing (only from the sidewalls

  9. Novel Active Combustion Control Concept for High-Frequency Modulation of Atomized Fuel Flow, Phase I (United States)

    National Aeronautics and Space Administration — This proposal by Jansen's Aircraft Systems Controls, Inc presents an innovative solution for Active Combustion Control. Relative to the state of the art, this...

  10. Traffic flow impacts of adaptive cruise control deactivation and (Re)activation with cooperative driver behavior

    NARCIS (Netherlands)

    Klunder, G.; Li, M.; Minderhoud, M.


    In 2006 in the Netherlands, a field operational test was carried out to study the effect of adaptive cruise control (ACC) and lane departure warning on driver behavior and traffic flow in real traffic. To estimate the effect for larger penetration rates, simulations were needed. For a reliable

  11. Active flow control on a NACA 23012 airfoil model by means of magnetohydrodynamic plasma actuator

    International Nuclear Information System (INIS)

    Kazanskiy, P N; Moralev, I A; Bityurin, V A; Efimov, A V


    The paper is devoted to the study of high speed flow control around the airfoil by means of the Lorentz force. The latter is formed by creating the pulsed arc filament, moving in the magnetic field along the upper airfoil surface. The research was performed for the NACA23012 airfoil model at flow velocities up to 60 m/s (134 mph). The dynamic measurement of the aerodynamic forces on the airfoil was made. Changes up to 5% in an average value of lift and pitching moment were obtained at pulse repetition frequency up to 13 Hz and average discharge power less than 200 W. The amplitude of lift force oscillation was obtained as high as 10%, with the integration time of the balance 30 ms. The dynamic flow visualization of an airfoil model after a single discharge ignition was performed. It is shown that interaction of the main flow with the arc-induced disturbance leads to the dramatic changes in the flow structure. It was shown that the upstream movement of the arc channel (I = 40-700 A) leads to the local flow separation and simultaneously to the formation of a high pressure region above the model surface. Current paper presents investigation of previous work. (paper)

  12. Active control of massively separated high-speed/base flows with electric arc plasma actuators (United States)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  13. An Experimental Study on Active Flow Control Using Synthetic Jet Actuators over S809 Airfoil

    International Nuclear Information System (INIS)

    Gul, M; Uzol, O; Akmandor, I S


    This study investigates the effect of periodic excitation from individually controlled synthetic jet actuators on the dynamics of the flow within the separation and re-attachment regions of the boundary layer over the suction surface of a 2D model wing that has S809 airfoil profile. Experiments are performed in METUWIND's C3 open-loop suction type wind tunnel that has a 1 m × 1 m cross-section test section. The synthetic jet array on the wing consists of three individually controlled actuators driven by piezoelectric diaphragms located at 28% chord location near the mid-span of the wing. In the first part of the study, surface pressure, Constant Temperature Anemometry (CTA) and Particle Image Velocimetry (PIV) measurements are performed over the suction surface of the airfoil to determine the size and characteristics of the separated shear layer and the re-attachment region, i.e. the laminar separation bubble, at 2.3x10 5 Reynolds number at zero angle of attack and with no flow control as a baseline case. For the controlled case, CTA measurements are carried out under the same inlet conditions at various streamwise locations along the suction surface of the airfoil to investigate the effect of the synthetic jet on the boundary layer properties. During the controlled case experiments, the synthetic jet actuators are driven with a sinusoidal frequency of 1.45 kHz and 300Vp-p. Results of this study show that periodic excitation from the synthetic jet actuators eliminates the laminar separation bubble formed over the suction surface of the airfoil at 2.3x10 5 Reynolds number at zero angle of attack

  14. Active technique by suction to control the flow structure over a van model (United States)

    Harinaldi, Budiarso, Warjito, Kosasih, Engkos A.; Tarakka, Rustan; Simanungkalit, Sabar P.


    Today research trend in car aerodynamics are carried out from the point of view of the durable development. Some car companies have the objective to develop control solution that enable to reduce the aerodynamic drag of vehicle. It provides the possibility to modify the flow separation to reduce the development of the swirling structures around the vehicle. In this study, a family van is modeled with a modified form of Ahmed's body by changing the orientation of the flow from its original form (modified/reversed Ahmed Body). This model is equipped with a suction on the rear side to comprehensively examine the pressure field modifications that occur. The investigation combines computational and experimental work. The computational simulation used is k-epsilon flow turbulence model. The reversed Ahmed body used in the investigation has slant angle (φ) 35° at the front part. In the computational work, meshing type is tetra/hybrid element with hex core type and the grid number is more than 1.7 million in order to ensure detail discretization and more accurate calculation results. The boundary condition is upstream velocity of 11.1 m/s. Mean free stream at far upstream region is assumed in a steady state condition and uniform. The suction velocity is set at 1 m/s. Meanwhile in the experimental work a reversed Ahmed model is tested in a controlled wind tunnel experiments. The main measurement is the drag aerodynamic measurement at rear of the body of the model using strain gage. The results show that the application of a suction in the rear part of the van model give the effect of reducing the wake and the vortex is formed. Aerodynamic drag reduction close to 24% for the computational approach and 14.8% for the experimental approach by introducing a suction have been obtained.

  15. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow (United States)

    Kraft, R. E.


    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  16. Optimal Power Flow Control by Rotary Power Flow Controller

    Directory of Open Access Journals (Sweden)

    KAZEMI, A.


    Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.

  17. Numerical Characterisation of Active Drag and Lift Control for a Circular Cylinder in Cross-Flow

    Directory of Open Access Journals (Sweden)

    Philip McDonald


    Full Text Available Synthetic jet actuators have shown promise to control drag and lift for a bluff body in cross-flow. Using unsteady RANS CFD modelling, a significant modification of the drag coefficient for a circular cylinder in cross-flow at R e = 3900 is achieved by varying the actuation frequency. The variation in actuation frequency corresponds to a range in Stokes number of 2.4 < S t o < 6.4. The trends in drag coefficient modification largely agree with the findings of past publications, achieving a maximum drag reduction at S t o = 4.9 for a fixed jet Reynolds number of the synthetic jet of R e U ¯ o = 12. A decrease in the adverse pressure gradient near the jet orifice correlated with a momentum increase in the viscous sublayer and stronger vortical structures at the rear of the cylinder. In these same conditions, a decrease in turbulence intensity was observed in the far field wake, which is a relevant finding in the context of wind and tidal turbine arrays.

  18. Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator (United States)

    Yadong, HUANG; Benmou, ZHOU


    Perturbation is generally considered as the flow noise, and its energy can gain transient growth in the separation bubble. The amplified perturbations may cause unstable Kelvin–Helmohltz vortices which induce the three-dimensional transition. Active control of noise amplification via dielectric barrier discharge plasma actuator in the flow over a square leading-edge flat plate is numerically studied. The actuator is installed near the plate leading-edge where the separation bubble is formed. The maximum energy amplification of perturbations is positively correlated with the separation bubble scale which decreases with the increasing control parameters. As the magnitude of noise amplification is reduced, the laminar-turbulent transition is successfully suppressed.

  19. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number (United States)

    Khodadoust, Abdollah; Washburn, Anthony


    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  20. Video flow active control by means of adaptive shifted foveal geometries (United States)

    Urdiales, Cristina; Rodriguez, Juan A.; Bandera, Antonio J.; Sandoval, Francisco


    This paper presents a control mechanism for video transmission that relies on transmitting non-uniform resolution images depending on the delay of the communication channel. These images are built in an active way to keep the areas of interest of the image at the highest resolution available. In order to shift the area of high resolution over the image and to achieve a data structure easy to process by using conventional algorithms, a shifted fovea multi resolution geometry of adaptive size is used. Besides, if delays are nevertheless too high, the different areas of resolution of the image can be transmitted at different rates. A functional system has been developed for corridor surveillance with static cameras. Tests with real video images have proven that the method allows an almost constant rate of images per second as long as the channel is not collapsed.

  1. Design and Modeling of Turbine Airfoils with Active Flow Control in Realistic Engine Conditions (United States)


    for cylinders make using a simple 2d model less meaningful. The solver used for the cylinder cases was SFELES, a quasi 3D large eddy simulation that...would take into account the 3d aspects of the flow. This is appropriate because the upstream flow in the tunnel is essentially laminar and at the...H2O Druck pressure transducer to measure the local cp distribution. The cp is calculated by taking the inlet total pressure from an upstream pitot

  2. Stochastic cycle selection in active flow networks (United States)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn


    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  3. Content dependent information flow control

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming


    Information flow control extends access control by not only regulating who is allowed to access what data but also the subsequent use of the data. Applications within communications systems require such information flow control to be dependent on the actual contents of the data. We develop...

  4. Active Control of Vortex Induced Vibrations of a Tethered Sphere in a Uniform Air Flow (United States)

    van Hout, Rene; Greenblatt, David; Zvi Katz, Amit


    VIV of two heavy tethered spheres (D = 40 mm, m* = msphere/ ρfVsphere = 21 and 67, L* = L / D = 2.50) were studied in a wind tunnel under uniform free stream velocities up to U* = U /fn D = 15.9, with and without acoustic control. Control was achieved using two speakers mounted on either side of the spheres and driven in-phase at f= 35Hz (f* = 22.3). In the non-controlled case, the bifurcation map of transverse sphere oscillation amplitude, Ay, showed stationary motion as well as periodic and non-stationary oscillations with increasing U*. For m* = 21, Aymax was about twice as large as for m* = 67. Acoustic control dampened Aymax in the periodic region (m* = 67) and increased Aymax in the non-stationary region for both spheres. Sphere boundary layer dynamics in the three different bifurcation regions were studied using time resolved PIV with a horizontal laser sheet positioned at the center of the sphere. The field of view was 55 × 55 mm2 containing one quarter of the sphere. Results will be presented on the vortex dynamics near the sphere's surface with and without acoustic control.

  5. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen


    Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.

  6. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Nathan E.


    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  7. Active control of flow noise sources in turbulent boundary layer on a flat-plate using piezoelectric bimorph film

    International Nuclear Information System (INIS)

    Song, Woo Seog; Lee, Seung Bae; Shin, Dong Shin; Na, Yang


    The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency f b + =0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall-pressure energy spectrum when the 700ν/u τ -long bimorph film is periodically actuated at the non-dimensional frequency f b + =0.008 and 0.028. The bimorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event

  8. Controlling flow time delays in flexible manufacturing cells

    NARCIS (Netherlands)

    Slomp, J.; Caprihan, R.; Bokhorst, J. A. C.


    Flow time delays in Flexible Manufacturing Cells (FMCs) are caused by transport and clamping/reclamping activities. This paper shows how dynamic scheduling parameters may control the flow times of jobs and the available task windows for flow time delays.

  9. Flow Control Technology (United States)


    known as Darrieus turbines or, after the German inventors of these devices, Voith-Schneider propellers. Their main advantage is the ability to produce... turbines (VAWT), named for the typical orientation of the main shaft. While their efficiency is similar to that of the more common horizontal axis wind ...Oscillating Systems’, Cambridge University Press, 2002 [11] G. M. Darrieus , ’ Turbine having its rotating shaft transverse to the flow of the current

  10. Flow Control in a Compact Inlet (United States)

    Vaccaro, John C.


    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  11. Flow Control Enabled Aircraft Design

    National Research Council Canada - National Science Library

    Nangia, Rajendar


    ...: Many future advanced aircraft concepts being considered by the Air Force fall outside the current aerodynamic design practice and will rely heavily on the use of flow control technology to optimize flight performance...

  12. The art and science of flow control (United States)

    Gad-El-hak, Mohamed


    The ability to actively or passively manipulate a flow field to effect a desired change is of immense technological importance. In this article, methods of control to achieve transition delay, separation postponement, lift enhancement, drag reduction, turbulence augmentation, or noise suppression are considered. Emphasis is placed on external boundary-layer flows although applicability of some of the methods reviewed for internal flows will be mentioned. Attempts will be made to present a unified view of the different methods of control to achieve a variety of end results. Performance penalties associated with a particular method such as cost, complexity, or trade-off will be elaborated.

  13. Active combustion flow modulation valve (United States)

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W


    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  14. Subcubic Control Flow Analysis Algorithms

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Van Horn, David

    We give the first direct subcubic algorithm for performing control flow analysis of higher-order functional programs. Despite the long held belief that inclusion-based flow analysis could not surpass the ``cubic bottleneck, '' we apply known set compression techniques to obtain an algorithm...... that runs in time O(n^3/log n) on a unit cost random-access memory model machine. Moreover, we refine the initial flow analysis into two more precise analyses incorporating notions of reachability. We give subcubic algorithms for these more precise analyses and relate them to an existing analysis from...

  15. Controls on summer low flow (United States)

    Graham, C. B.; McNamara, J. P.


    Summer low flow has significant impacts on aquatic flora and fauna, municipal water use, and power generation. However, the controls on the minimum annual summer discharge are complex, including a combination of snowmelt dynamics, summer evapotranspiration demand, and spring, summer precipitation patterns and surface - groundwater interactions. This is especially true in the Rocky Mountain West of the United States, where snowpack provides the majority of water available for spring runoff and groundwater replenishment. In this study, we look at summer low flow conditions at four snow dominated catchments (26 km2 - 2200 km2) in South-central Idaho currently feeling the effects of climate change. Measures of snowmelt dynamics, summer evapotranspiration demand and spring and summer precipitation are used to determine the dominant controls on late summer low flow magnitude, timing and duration. These analyses show that the controls vary between watersheds, with significant implications for the impacts of climate change in snow dominated areas of the Rocky Mountain West.

  16. Flow control arrangements for centrifuges

    International Nuclear Information System (INIS)

    Alderton, G.W.; Davidge, P.C.


    In a centrifuge plant for the separation of uranium isotopes, when a centrifuge machine breaks down, light gas is produced. This gas can cause adjacent machines to break down, so propagating the fault. The present invention provides flow control arrangements in gas pipes to the centrifuge, whereby sudden egress of gas from a failed machine is inhibited. (author)

  17. Locus of control in relation to flow

    Directory of Open Access Journals (Sweden)

    Celeste M Taylor


    Full Text Available The principal objective of the study was to examine the relationship between locus of control and optimal experience (flow in carrying out work and/or study activities. Two questionnaires measuring the aforementioned constructs were administered to a group of first and second-year Human Resource Management students (n=168 between the ages of 16 and 30. The results suggest that more frequent experience of flow is positively correlated with Autonomy and Internal Locus of Control. Limitations, lines of future research, implications and further contributions are discussed.

  18. Multiverse data-flow control. (United States)

    Schindler, Benjamin; Waser, Jürgen; Ribičić, Hrvoje; Fuchs, Raphael; Peikert, Ronald


    In this paper, we present a data-flow system which supports comparative analysis of time-dependent data and interactive simulation steering. The system creates data on-the-fly to allow for the exploration of different parameters and the investigation of multiple scenarios. Existing data-flow architectures provide no generic approach to handle modules that perform complex temporal processing such as particle tracing or statistical analysis over time. Moreover, there is no solution to create and manage module data, which is associated with alternative scenarios. Our solution is based on generic data-flow algorithms to automate this process, enabling elaborate data-flow procedures, such as simulation, temporal integration or data aggregation over many time steps in many worlds. To hide the complexity from the user, we extend the World Lines interaction techniques to control the novel data-flow architecture. The concept of multiple, special-purpose cursors is introduced to let users intuitively navigate through time and alternative scenarios. Users specify only what they want to see, the decision which data are required is handled automatically. The concepts are explained by taking the example of the simulation and analysis of material transport in levee-breach scenarios. To strengthen the general applicability, we demonstrate the investigation of vortices in an offline-simulated dam-break data set.

  19. Liquid-Flow Controller With Trickle Preflow (United States)

    Cox, George B., Jr.


    Liquid-flow controller allows pressure in liquid to increase steeply with flow as flow starts, then provides more-gradual nearly linear rise of pressure with flow as flow and pressure increase beyond preset breakpoint. Controller alternative version of mechanism described in "Liquid-Flow Controller Responds To Pressure" (MFS-28329) and "Liquid-Flow Controller With Preset Break Pressure" (MFS-28330). Material cut out of cone at tip of pintle. Liquid always passes from shell, albeit at low rate. When pressure in shell great enough to force orifice away from pintle, liquid flows at greater rate.

  20. Bypass flow rate control method

    International Nuclear Information System (INIS)

    Kiyama, Yoichi.


    In a PWR type reactor, bypass flow rate is controlled by exchanging existent jetting hole plugs of a plurality of nozzles disposed to the upper end of incore structures in order to flow a portion of primary coolants as a bypass flow to the upper portion of the pressure vessel. Two kinds of exchange plugs, namely, a first plug and a second plug each having a jetting out hole of different diameter are used as exchange plugs. The first plug has the diameter as that of an existent plug and the second plug has a jetting out hole having larger diameter than that of the existent plug. Remained extent plugs are exchanged to a combination of the first and the second plugs without exchanging existent plugs having seizing with the nozzles, in which the number and the diameter of the jetting out holes of the second plugs are previously determined based on predetermined total bypass flow rate to be jetted from the entire plugs after exchange of plugs. (N.H.)

  1. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification (United States)

    Menicovich, David

    By 2050 an estimated 9 billion people will inhabit planet earth and almost all the growth in the next 40 years will be in urban areas putting tremendous pressure on creating sustainable cities. The rapid increase in population, rise in land value and decrease in plot sizes in cities around the world positions tall or more importantly slender buildings as the best suited building typology to address the increasingly critical demand for space in this pressing urbanization trend. However, the majority of new tall building urban developments have not followed principles of environmental and/or sustainable design and incentives to innovate, both technological and economic, are urgently required. The biggest climatic challenge to the design, construction and performance of tall buildings is wind sensitivity. This challenge is further emphasized seeing two market driven trends: on one hand as urban population grows, land value rises while plot sizes decrease; on the other, more cost effective modular construction techniques are introducing much lighter tall building structures. The combination of the two suggests a potential increase in the slenderness ratio of tall buildings (typically less than 6:1 but stretching to 20:1 in the near future) where not-so-tall but much lighter buildings will be the bulk of new construction in densely populated cities, providing affordable housing in the face of fast urbanization but also introducing wind sensitivity which was previously the problem of a very limited number of super tall buildings to a much larger number of buildings and communities. The proposed research aims to investigate a novel approach to the interaction between tall buildings and their environment. Through this approach the research proposes a new relationship between buildings and the flows around, through and inside them, where buildings could adapt to better control and manage the air flow around them, and consequently produce significant opportunities to reduce

  2. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS (United States)

    Lever, M. A.


    The European Cooperation in Science and Technology (COST)-Action FLOWS ( was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  3. Bio-mimetic Flow Control (United States)

    Choi, Haecheon


    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  4. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo

    DEFF Research Database (Denmark)

    Jessen, Sanne Barsballe; Brazhe, Alexey; Lind, Barbara Lykke


    Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect...... of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent...... cytosolic Ca2+ transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca2+ activities in neurons and astrocytes. Intermediate and high...

  5. Plasma Control of Turbine Secondary Flows, Phase I (United States)

    National Aeronautics and Space Administration — We propose Phase I and II efforts that will focus on turbomachinery flow control. Specifically, the present work will investigate active control in a high speed...

  6. Recent progress in flow control for practical flows results of the STADYWICO and IMESCON projects

    CERN Document Server

    Barakos, George; Luczak, Marcin


    This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control. Provides highly relevant and up-to-date information on the topic of flow control; Includes assessments of a wide range of flow-control technologies and application examples for fixed and rotary-wing configurations; Reinforces reader u...

  7. The Control of Junction Flows

    National Research Council Canada - National Science Library

    Smith, Charles


    An experimental study of the effects of spatially-limited (i.e. localized) surface suction on unsteady laminar and turbulent junction flows was performed using hydrogen bubble flow visualization and Particle Image Velocimetry (PIV...

  8. Electromagnetic application device for flow rate/flow speed control

    International Nuclear Information System (INIS)

    Yoshioka, Senji.


    Electric current and magnetic field are at first generated in a direction perpendicular to a flow channel of a fluid, and forces generated by electromagnetic interaction of the current and the magnetic field are combined and exerted on the fluid, to control the flow rate and the flow speed thereby decreasing flowing pressure loss. In addition, an electric current generation means and a magnetic field generation means integrated together are disposed to a structural component constituting the flow channel, and they are combined to attain the aimed effect. The current generating means forms a potential difference by supplying electric power to a pair of electrodes as a cathode and an anode by using structures disposed along the channel, to generate an electric field or electric current in a direction perpendicular to the flow channel. The magnetic field generating means forms a counter current (reciprocal current) by using structures disposed along the flow channel, to generate synthesized or emphasized magnetic field. The fluid can be applied with a force in the direction of the flowing direction by the electromagnetic interaction of the electric current and the magnetic field, thereby capable of propelling the fluid. Accordingly, the flowrate/flowing speed can be controlled inside of the flow channel and flowing pressure loss can be decreased. (N.H.)

  9. Wing Tip Drag Reduction at Nominal Take-Off Mach Number: An Approach to Local Active Flow Control with a Highly Robust Actuator System

    Directory of Open Access Journals (Sweden)

    Matthias Bauer


    Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.

  10. Power flow control using quadrature boosters (United States)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  11. Flow control for oblique shock wave reflections


    Giepman, R.H.M.


    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  12. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient (United States)

    Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.


    The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.

  13. The art and science of flow control - case studies using flow visualization methods (United States)

    Alvi, F. S.; Cattafesta, L. N., III


    Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.

  14. A novel micromechanical flow controller

    NARCIS (Netherlands)

    van Toor, M.W.; van Toor, M.W.; Lammerink, Theodorus S.J.; Gardeniers, Johannes G.E.; Elwenspoek, Michael Curt; Monsma, D.J.

    A new concept for a micromechanical flow regulator is presented. Regulation of the flow is achieved using variation of channel length instead of channel diameter. Several design concepts together with their application in fluidic systems are presented. A regulator for biomedical use, as a part of a

  15. Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control

    Directory of Open Access Journals (Sweden)

    Ivković Sanja


    Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.

  16. Flow Control Over Sharp-Edged Wings (United States)


    Gad-el-Hak (2001) as the ability to actively or passively manipulate a flow field to effect a desired change. The challenge is to achieve that change...combinations. Been able to independently control both is a great challenge . These requirements may appear too stringent for the sharp- edged airfoils...06 0𔄁 08 09 lic Vlc Figure 22: Pressure distributions for Model B at a=13 °. Stations I (left); 2 (right) 1 , -2 1 F - [12 1 -6a -16 08 -08 06 -06

  17. Flow control for oblique shock wave reflections

    NARCIS (Netherlands)

    Giepman, R.H.M.


    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these

  18. Modular Control Flow Analysis for Libraries

    DEFF Research Database (Denmark)

    Probst, Christian W.


    One problem in analyzing object oriented languages is that the exact control flow graph is not known statically due to dynamic dispatching. However, this is needed in order to apply the large class of known interprocedural analysis. Control Flow Analysis in the object oriented setting aims...

  19. Novel Active Combustion Control Valve (United States)

    Caspermeyer, Matt


    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  20. Integrated soft sensor model for flow control. (United States)

    Aijälä, G; Lumley, D


    Tighter discharge permits often require wastewater treatment plants to maximize utilization of available facilities in order to cost-effectively reach these goals. Important aspects are minimizing internal disturbances and using available information in a smart way to improve plant performance. In this study, flow control throughout a large highly automated wastewater treatment plant (WWTP) was implemented in order to reduce internal disturbances and to provide a firm foundation for more advanced process control. A modular flow control system was constructed based on existing instrumentation and soft sensor flow models. Modules were constructed for every unit process in water treatment and integrated into a plant-wide model. The flow control system is used to automatically control recirculation flows and bypass flows at the plant. The system was also successful in making accurate flow estimations at points in the plant where it is not possible to have conventional flow meter instrumentation. The system provides fault detection for physical flow measuring devices. The module construction allows easy adaptation for new unit processes added to the treatment plant.

  1. Flow Control of Flexible Structures (United States)


    levels of modeling [Dowell and Hall, 2001]. Fur- thermore, even for the most complex models, the main research goal has been a mathe - matical description...possibility for localized, discrete actuation to coun- teract detrimental flow developments before they result in significant structural loads and

  2. Efficiency improvements of electromagnetic flow control

    International Nuclear Information System (INIS)

    Spong, E.; Reizes, J.A.; Leonardi, E.


    In turbulent flow, frictional resistance and heat transfer are controlled to a large degree by the intensity of the turbulence fluctuations in the near vicinity of a surface. In the case of a weak electrically conducting fluid, such as seawater, turbulence intensity can be controlled by subjecting the fluid to electromagnetic fields. This technique, known as Electro-magneto-hydro-dynamic (EMHD) flow control, has been shown to have promise as a means of reducing the turbulence intensity, and hence heat transfer or frictional drag of turbulent boundary layers. Unfortunately EMHD flow control currently suffers from poor efficiency due to the high energy requirements of the electromagnetic field. A numerical study has been conducted in which a new electromagnetic actuator design has been developed to provide a more efficient spatial distribution of the electromagnetic forces. The new actuator design has then been coupled to an ideal flow sensor. A flow control subroutine, embedded in the numerical model, uses the velocity information from the ideal sensor to determine the appropriate actuating force to apply to the flow at each time step. The new actuator design has been shown to be capable of successfully attenuating a sequence of artificial low speed streaks in a simplified model of a low Reynolds number turbulent boundary layer. Thus, a potential solution to the poor efficiency of EMHD flow control has been offered by providing the means whereby the expensive electromagnetic forces can be strategically and sparingly applied to the flow

  3. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho


    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  4. Reactive Flow Control of Delta Wing Vortex (Postprint) (United States)


    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  5. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)


    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  6. Compressed-air flow control system. (United States)

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S


    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  7. International Conference on Instability and Control of Massively Separated Flows

    CERN Document Server

    Soria, Julio


    This book contains the outcome of the international meeting on instability, control and noise generated by massive flow separation that was organized at the Monash Center, in Prato, Italy, September 4-6, 2013. The meeting served as the final review of the EU-FP7 Instability and Control of Massively Separated Flows Marie Curie travel grant and was supported by the European Office of Aerospace Research and Development. Fifty leading specialists from twelve countries reviewed the progress made since the 50s of the last century and discussed modern analysis techniques, advanced experimental flow diagnostics, and recent developments in active flow control techniques from the incompressible to the hypersonic regime. Applications involving massive flow separation and associated instability and noise generation mechanisms of interest to the aeronautical, naval and automotive industries have been addressed from a theoretical, numerical or experimental point of view, making this book a unique source containing the stat...

  8. A Lyapunov theory based UPFC controller for power flow control

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, Ali; Kazemi, Ahad; Hajatipour, Majid; Jadid, Shahram [Center of Excellence for Power Systems Automation and Operation, Iran University of Science and Technology, Tehran (Iran)


    Unified power flow controller (UPFC) is the most comprehensive multivariable device among the FACTS controllers. Capability of power flow control is the most important responsibility of UPFC. According to high importance of power flow control in transmission lines, the proper controller should be robust against uncertainty and disturbance and also have suitable settling time. For this purpose, a new controller is designed based on the Lyapunov theory and its stability is also evaluated. The Main goal of this paper is to design a controller which enables a power system to track reference signals precisely and to be robust in the presence of uncertainty of system parameters and disturbances. The performance of the proposed controller is simulated on a two bus test system and compared with a conventional PI controller. The simulation results show the power and accuracy of the proposed controller. (author)

  9. Monitoring And Controlling Hydroponic Flow (United States)

    Dreschel, Thomas W.


    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  10. Recycle flow rate control device

    International Nuclear Information System (INIS)

    Sumida, Susumu; Mizuno, Hiroshi; Oka, Yoko.


    Purpose: To attain stable low hydraulic power operation with no abnormal changes in the reactor water level by smoothly varying the speed control for the recycling pump for regulating the reactor core flowrate in BWR type reactors. Constitution: In a recycling control system equipped with an internal pump having a response characteristic higher by ten and several times or more than that of prior pump, a previously programed recycling run-back signal is inputted to a speed regulator upon load interruption of the electric generator to thereby control the operation of the internal pump driving motor such that the speed is decreased rapidly at the initial state and smoothly thereafter. The run-back singal is passed through a primary delay circuit so that the interruption of the motor operation does not directly performed by the signal interruption upon failure. As the result, the amount of void produced is also made smooth and the reactor water level varies smoothly as well, whereby the reactor power can be reduced with a sufficient margin. (Kamimura, M.)

  11. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim


    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  12. Modelling and control of systems with flow

    NARCIS (Netherlands)

    van Mourik, S.


    In practice, feedback control design consists of three steps: modelling, model reduction and controller design for the reduced model. Systems with flow are often complicated, and there is yet no standard algorithm that integrates these steps. In this thesis we make a modest effort by considering two

  13. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill


    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only inc...... the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation....

  14. Numerical study of MHD supersonic flow control (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.


    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  15. Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics (United States)

    LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark


    Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session

  16. Nocturnal insects use optic flow for flight control


    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie


    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flyin...

  17. Coordinated Control of Cross-Flow Turbines (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian


    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  18. Declarative flow control for distributed instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, Bahram; Taylor, John; Fontenay, Gerald; Callahan, Daniel


    We have developed a 'microscopy channel' to advertise a unique set of on-line scientific instruments and to let users join a particular session, perform an experiment, collaborate with other users, and collect data for further analysis. The channel is a collaborative problem solving environment (CPSE) that allows for both synchronous and asynchronous collaboration, as well as flow control for enhanced scalability. The flow control is a declarative feature that enhances software functionality at the experimental scale. Our testbed includes several unique electron and optical microscopes with applications ranging from material science to cell biology. We have built a system that leverages current commercial CORBA services, Web Servers, and flow control specifications to meet diverse requirements for microscopy and experimental protocols. In this context, we have defined and enhanced Instrument Services (IS), Exchange Services (ES), Computational Services (CS), and Declarative Services (DS) that sit on top of CORBA and its enabling services (naming, trading, security, and notification) IS provides a layer of abstraction for controlling any type of microscope. ES provides a common set of utilities for information management and transaction. CS provides the analytical capabilities needed for online microscopy. DS provides mechanisms for flow control for improving the dynamic behavior of the system.

  19. Flow stabilization with active hydrodynamic cloaks. (United States)

    Urzhumov, Yaroslav A; Smith, David R


    We demonstrate that fluid flow cloaking solutions, based on active hydrodynamic metamaterials, exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers (Re's), up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for Re's in the range of 5-119. The first highly efficient method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigenperturbations; the second method is a direct numerical integration in the time domain. We show that, by suppressing the von Kármán vortex street in the weakly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120 or five times greater than for a bare uncloaked cylinder.

  20. Geometry of thresholdless active flow in nematic microfluidics (United States)

    Green, Richard; Toner, John; Vitelli, Vincenzo


    Active nematics are orientationally ordered but apolar fluids composed of interacting constituents individually powered by an internal source of energy. When activity exceeds a system-size-dependent threshold, spatially uniform active apolar fluids undergo a hydrodynamic instability leading to spontaneous macroscopic fluid flow. Here we show that a special class of spatially nonuniform configurations of such active apolar fluids display laminar (i.e., time-independent) flow even for arbitrarily small activity. We also show that two-dimensional active nematics confined on a surface of nonvanishing Gaussian curvature must necessarily experience a nonvanishing active force. This general conclusion follows from a key result of differential geometry: Geodesics must converge or diverge on surfaces with nonzero Gaussian curvature. We derive the conditions under which such curvature-induced active forces generate thresholdless flow for two-dimensional curved shells. We then extend our analysis to bulk systems and show how to induce thresholdless active flow by controlling the curvature of confining surfaces, external fields, or both. The resulting laminar flow fields are determined analytically in three experimentally realizable configurations that exemplify this general phenomenon: (i) toroidal shells with planar alignment, (ii) a cylinder with nonplanar boundary conditions, and (iii) a Frederiks cell that functions like a pump without moving parts. Our work suggests a robust design strategy for active microfluidic chips and could be tested with the recently discovered living liquid crystals.

  1. Fuel cell with internal flow control (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN


    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  2. Design and Realization of Intelligent Flow Controller

    Directory of Open Access Journals (Sweden)

    Jianxiong Ye


    Full Text Available According to accurate flow rate control requirements in large irrigation zone, a fuzzy controller with dead-band is designed on the characteristics analysis and comparison of PID and Fuzzy. The setting values of water flow for gates are determined by real-time water level detection sensors, and the realistic value of discharged water and gate opening are detected out with relative sensors, simulation manifest that the specific control strategy can adjust the gate swiftly in circumstance of huge offset, and regulate the gate slightly in time of small bias, it is realized with Siemens S315 PLC (Programmable Logical Controller and has being working steadily for 2 years, the aim of regulation is performed properly.

  3. Control Flow Analysis for BioAmbients

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Priami, C.


    This paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We...

  4. X-29 vortex flow control tests (United States)

    Hancock, Regis; Fullerton, Gordon


    A joint Air Force/NASA X-29 aircraft program to improve yaw control at high angle of attack using vortex flow control (VFC) is described. Directional VFC blowing proved to a be a powerful yaw moment generator and was very effective in overriding natural asymmetries, but was essentially ineffective in suppressing wing rock. Symmetric aft blowing also had little effect on suppressing wing rock.

  5. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)


    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  6. Active noise control primer

    CERN Document Server

    Snyder, Scott D


    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  7. Plasma actuators for bluff body flow control (United States)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  8. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)


    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  9. Computational Modeling of Flow Control Systems for Aerospace Vehicles, Phase I (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  10. Transient flows in active porous media

    DEFF Research Database (Denmark)

    Kosmidis, Lefteris I.; Jensen, Kaare Hartvig


    Stimuli-responsivematerials that modify their shape in response to changes in environmental conditions-such as solute concentration, temperature, pH, and stress-are widespread in nature and technology. Applications include micro- and nanoporous materials used in filtration and flow control. The p...

  11. Drag Reduction by Laminar Flow Control

    Directory of Open Access Journals (Sweden)

    Nils Beck


    Full Text Available The Energy System Transition in Aviation research project of the Aeronautics Research Center Niedersachsen (NFL searches for potentially game-changing technologies to reduce the carbon footprint of aviation by promoting and enabling new propulsion and drag reduction technologies. The greatest potential for aerodynamic drag reduction is seen in laminar flow control by boundary layer suction. While most of the research so far has been on partial laminarization by application of Natural Laminar Flow (NLF and Hybrid Laminar Flow Control (HLFC to wings, complete laminarization of wings, tails and fuselages promises much higher gains. The potential drag reduction and suction requirements, including the necessary compressor power, are calculated on component level using a flow solver with viscid/inviscid coupling and a 3D Reynolds-Averaged Navier-Stokes (RANS solver. The effect on total aircraft drag is estimated for a state-of-the-art mid-range aircraft configuration using preliminary aircraft design methods, showing that total cruise drag can be halved compared to today’s turbulent aircraft.

  12. Arduino control of a pulsatile flow rig. (United States)

    Drost, S; de Kruif, B J; Newport, D


    This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Adaptive optimization for active queue management supporting TCP flows

    NARCIS (Netherlands)

    Baldi, S.; Kosmatopoulos, Elias B.; Pitsillides, Andreas; Lestas, Marios; Ioannou, Petros A.; Wan, Y.; Chiu, George; Johnson, Katie; Abramovitch, Danny


    An adaptive decentralized strategy for active queue management of TCP flows over communication networks is presented. The proposed strategy solves locally, at each link, an optimal control problem, minimizing a cost composed of residual capacity and buffer queue size. The solution of the optimal

  14. Corrosion rate of parent and weld materials of F82H and JPCA steels under LBE flow with active oxygen control at 450 and 500 deg. C

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Kamata, Kinya; Ono, Mikinori; Kitano, Teruaki; Hayashi, Kenichi; Oigawa, Hiroyuki


    Corrosion behavior of parent and weld materials of F82H and JPCA was studied in the circulating LBE loop under impinging flow. These are candidate materials for Japanese Accelerator Driven System (ADS) beam windows. Maximum temperatures were kept to 450 and 500 deg. C with 100 deg. C constant temperature difference. Main flow velocity was 0.4-0.6 m/s in every case. Oxygen concentration was controlled to 2-4 x 10 -5 mass% although there was one exception. Testing time durations were 500-3000 h. Round bar type specimens were put in the circular tube of the loop. An electron beam weld in the middle of specimens was also studied. Optical microscopy, electron microscopy, X-ray element analyses and X-ray diffraction were used to investigate corrosion in these materials. Consequently corrosion depth and stability of those oxide layers were characterized based on the analyses. For a long-term behavior a linear law is recommended to predict corrosion in the ADS target design

  15. Visible-light active thin-film WO3 photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    Directory of Open Access Journals (Sweden)

    Nobuto Oka


    Full Text Available A process based on reactive gas flow sputtering (GFS for depositing visible-light active photocatalytic WO3 films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO3 films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH3CHO under visible light irradiation. The decomposition time for 60 ppm of CH3CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO3 films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH3CHO.

  16. Implementation of Logic Flow in Planning and Production Control

    Directory of Open Access Journals (Sweden)

    Ulewicz Robert


    Full Text Available The article presents the results of analysis, the use of continuous flow of logic at the stage of production planning and control of the company producing furniture. The concept of continuous flow tends to regulate the flow of materials in a manner that provides the shortest flow path without unnecessary activities (Muda is a Japanese word meaning waste, a constant takt and defined throughput at constant resource requirements for the so-called transfer of material through the whole process. In the study Glenday’d sieve method was used to identify the correct area, which requires the value stream mapping, and areas called excessive complexity, which do not provide added value. The use of Glenday’s sieve method made it possible to identify areas in which it must be improve production capacity.

  17. Nocturnal insects use optic flow for flight control. (United States)

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie


    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society

  18. Wake flow control using a dynamically controlled wind turbine (United States)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team


    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  19. Flow-controlled magnetic particle manipulation (United States)

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV


    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  20. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control (United States)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh


    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  1. Power flow control of intertied ac microgrids

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Loh, Poh Chiang; Blaabjerg, Frede


    Microgrids are small reliable grids formed by clustering distributed sources and loads together. They can, in principle, operate at different voltages and frequencies like 50, 60, 400 Hz or even dc. Tying them together or to the mains grid for energy sharing would therefore require the insertion...... of interlinking power converters. Active and reactive power flows of these converters should preferably be managed autonomously without demanding for fast communication links. A scheme that can fulfill the objectives is now proposed, which upon realised, will result in more robustly integrated microgrids...

  2. Flow Control Research at NASA Langley in Support of High-Lift Augmentation (United States)

    Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.


    The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

  3. Thermal Mechanisms for High Amplitude Aerodynamic Flow Control (YIP 2012) (United States)


    transport aircraft , much less cruise. The search for a perfect actuator continues, but progress has been limited by the often proprietary nature these...wave generation as a mechanism for high amplitude, high bandwidth actuation has been demonstrated, but the fundamental physics of how this...moving forward with such a definition. 15. SUBJECT TERMS active flow control, energy deposition, plasma actuation 16. SECURITY CLASSIFICATION OF: 17

  4. Information transmission and signal permutation in active flow networks (United States)

    Woodhouse, Francis G.; Fawcett, Joanna B.; Dunkel, Jörn


    Recent experiments show that both natural and artificial microswimmers in narrow channel-like geometries will self-organise to form steady, directed flows. This suggests that networks of flowing active matter could function as novel autonomous microfluidic devices. However, little is known about how information propagates through these far-from-equilibrium systems. Through a mathematical analogy with spin-ice vertex models, we investigate here the input–output characteristics of generic incompressible active flow networks (AFNs). Our analysis shows that information transport through an AFN is inherently different from conventional pressure or voltage driven networks. Active flows on hexagonal arrays preserve input information over longer distances than their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be inferred from marginal input–output distributions alone. This sensitivity further allows controlled permutations on parallel inputs, revealing an unexpected link between active matter and group theory that can guide new microfluidic mixing strategies facilitated by active matter and aid the design of generic autonomous information transport networks.

  5. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling (United States)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin


    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  6. Strategic Management Accounting in Organizations’ Cash Flow Control

    Directory of Open Access Journals (Sweden)

    Y. P. Vetrov


    Full Text Available The article deals with the various interpretations of the term "strategic management accounting". The role and importance of strategic management accounting in the organization’s cash flows control are investigated. The accounting and analytical models of strategic management accounting are analyzed. The territorial scope of this article covers the Russian Federation. The study concludes that the system of assessment parameters of organization’s financial condition should cover all its aspects, namely, financial sustainability, solvency, liquidity and business activity. Hence, strategic management accounting of cash flows makes it possible to correctly set information base to monitor financial flows of a company which responds the tends of market economy and allows to make optimal management decisions.

  7. Power flow controller with a fractionally rated back-to-back converter (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish


    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  8. Variability of sap flow on forest hillslopes: patterns and controls (United States)

    Hassler, Sibylle; Blume, Theresa


    Sap flow in trees is an essential variable in integrated studies of hydrologic fluxes. It gives indication of transpiration rates for single trees and, with a suitable method of upscaling, for whole stands. This information is relevant for hydrologic and climate models, especially for the prediction of change in water fluxes in the soil-plant-atmosphere continuum under climate change. To this end, we do not only need knowledge concerning the response of sapflow to atmospheric forcing but also an understanding of the main controls on its spatial variability. Our study site consists of several subcatchments of the Attert basin in Luxembourg underlain by schists of the Ardennes massif. Within these subcatchments we measure sap flow in more than 20 trees on a range of forested hillslopes covered by a variety of temperate deciduous tree species such as beech, oak, hornbeam and maple as well as conifers such as firs. Our sap flow sensors are based on the heat pulse velocity method and consist of three needles, one needle acting as the heating device and the other two holding three thermistors each, enabling us to simultaneously measure sap flow velocity at three different depths within the tree. In close proximity to the trees we collect additional data on soil moisture, matric potential and groundwater levels. First results show that the sensor design seems promising for an upscaling of the measured sap flow velocities to sap flow at the tree level. The maximum depth of actively used sapwood as well as the decrease in sap flow velocity with increasing depth in the tree can be determined by way of the three thermistors. Marked differences in sap flow velocity profiles are visible between the different species, resulting in differences in sap flow for trees of similar diameter. We examine the range of tree sap flow values and variation due to species, size class, slope position and exposition and finally relate them to the dynamics of soil moisture conditions with the

  9. Orographic Flow over an Active Volcano (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian


    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  10. Active Control Strategies to Optimize Supersonic Fuel-Air Mixing for Combustion Associated with Fully Modulated Transverse Jet in Cross Flow

    National Research Council Canada - National Science Library

    Ghenai, C; Philippidis, G. P; Lin, C. X


    ... (subsonic- supersonic) combustion studies. A high-speed imaging system was used for the visualization of pure liquid jet, aerated liquid jet and pulsed aerated jet injection into a supersonic cross flow at Mach number 1.5...

  11. Stabilising falling liquid film flows using feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Alice B., E-mail:; Gomes, Susana N.; Pavliotis, Grigorios A.; Papageorgiou, Demetrios T. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)


    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

  12. Access control mechanism of wireless gateway based on open flow (United States)

    Peng, Rong; Ding, Lei


    In order to realize the access control of wireless gateway and improve the access control of wireless gateway devices, an access control mechanism of SDN architecture which is based on Open vSwitch is proposed. The mechanism utilizes the features of the controller--centralized control and programmable. Controller send access control flow table based on the business logic. Open vSwitch helps achieve a specific access control strategy based on the flow table.

  13. Active vibration control by robust control techniques

    International Nuclear Information System (INIS)

    Lohar, F.A.


    This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)

  14. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge


    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...... in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches....

  15. CFD Study of NACA 0018 Airfoil with Flow Control (United States)

    Eggert, Christopher A.; Rumsey, Christopher L.


    The abilities of two different Reynolds-Averaged Navier-Stokes codes to predict the effects of an active flow control device are evaluated. The flow control device consists of a blowing slot located on the upper surface of an NACA 0018 airfoil, near the leading edge. A second blowing slot present on the airfoil near mid-chord is not evaluated here. Experimental results from a wind tunnel test show that a slot blowing with high momentum coefficient will increase the lift of the airfoil (compared to no blowing) and delay flow separation. A slot with low momentum coefficient will decrease the lift and induce separation even at low angles of attack. Two codes, CFL3D and FUN3D, are used in two-dimensional computations along with several different turbulence models. Two of these produced reasonable results for this flow, when run fully turbulent. A more advanced transition model failed to predict reasonable results, but warrants further study using different inputs. Including inviscid upper and lower tunnel walls in the simulations was found to be important in obtaining pressure distributions and lift coefficients that best matched experimental data. A limited number of three-dimensional computations were also performed.

  16. Flow visualization of two-phase flows using photochromic dye activation method

    International Nuclear Information System (INIS)

    Kawaji, M.; Ahmad, W.; DeJesus, J.M.; Sutharshan, B.; Lorencez, C.; Ojha, M.


    A non-intrusive flow visualization technique based on light activation of photochromic dye material has been used to obtain velocity profiles in gas-liquid flows including annular, slug and stratified flows. The preliminary results revealed several important two-phase flow mechanisms that have not been clearly seen previously. (orig.)

  17. Redox active polymers and colloidal particles for flow batteries (United States)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin; Cheng, Kevin; Shen, Mei; Lichtenstein, Timothy


    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.

  18. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge


    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...... recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts...

  19. Improving Software Systems By Flow Control Analysis

    Directory of Open Access Journals (Sweden)

    Piotr Poznanski


    Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message flow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be sufficient in projects of this complexity.

  20. Review of hybrid laminar flow control systems (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.


    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  1. Electroosmotically controllable multi-flow microreactor

    NARCIS (Netherlands)

    Kohlheyer, D.; Besselink, G.A.J.; Lammertink, Rob G.H.; Schlautmann, Stefan; Unnikrishnan, S.; Schasfoort, Richardus B.M.


    An adjustable diffusion-based microfluidic reactor is presented here, which is based on electro-osmotic guiding of reagent samples. The device consists of a laminar flow chamber with two separate reagent inlets. The position and the width of the two sample streams in the flow chamber can be

  2. Flow Control for Supersonic Inlet Applications (United States)


    1221-1233, May 2013 3. Loth, E., Titchener, N., Babinsky, H., Povinelli , L., “Canonical NSBLI Flows Relevant to External Compression Inlets”, AIAA J...Tennessee, Jan. 9-12, 2012 7. Loth, E.L., Titchener, N., Babinsky, H., Povinelli , L.A., “A Canonical Normal SBLI Flow Relevant to External

  3. Control of District Heating System with Flow-dependent Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Ledesma, Jorge Val; Kallesøe, Carsten Skovmose


    All flow systems are subject to transport delays, which are governed by the flow rates in the system. When the flow rates themselves are control inputs, the system becomes subject to input-dependent state delays, which poses significant theoretical problems. In an earlier paper, we proposed...

  4. Design and implementation of an Inverse Neural Network Controller applied To VSC Converter for active and reactive Power Flow, based on regions of work

    Directory of Open Access Journals (Sweden)

    José Guillermo Guarnizo Marin


    Full Text Available Los Convertidores de Fuente de Tensión (VSC son usualmente usados con inversores o convertidores en sistemas de transmisión de Alta Tensión de Corriente Continua (HVDC. Una característica fundamental de los sistemas VSC es que permiten de manera independiente el control del flujo de potencia activa y reactiva por medio de diferentes técnicas de control. Los VSC presentan comportamientos no lineales y son sistemas de múltiples entradas y múltiples salidas, por lo que controladores no lineares pueden ser usados para obtener una respuesta de control adecuada. El Control Neuronal Inverso es una alternativa de control inteligente, donde no es necesario tener un modelo matemático del sistema a controlar, y a su vez es capaz de identificar incertidumbres y comportamientos no lineales, típicos en un sistema VSC. En este artículo, se presenta el diseño, simulación y posterior implementación de un Control Neuronal Inverso aplicado al control de la potencia activa y reactiva de un sistema VSC. Inicialmente, es presentado el control en simulación, donde es evaluado el comportamiento del sistema usando un controlador MIMO para el control de los dos parámetros al mismo tiempo. Posteriormente, se realiza la implementación del controlador en el sistema real y se presentan los problemas observados en la implementación. Esto conduce a la implementa un Controlador Modular Neuronal Inverso, cuyos módulos se entrenan y activan dependiendo de la región de trabajo del VSC.

  5. Experimental Studies of Low-Pressure Turbine Flows and Flow Control. Streamwise Pressure Profiles and Velocity Profiles (United States)

    Volino, Ralph


    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy

  6. Homeland Security and Information Control: A Model of Asymmetric Information Flows. (United States)

    Maxwell, Terrence A.


    Summarizes some of the activities the United States government has undertaken to control the dissemination of information since 2001. It also explores, through a conceptual model of information flows, potential impacts and discontinuities between policy purposes and outcomes. (AEF)

  7. Thaw flow control for liquid heat transport systems (United States)

    Kirpich, Aaron S.


    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  8. Microjet flow control in an ultra-compact serpentine inlet

    Directory of Open Access Journals (Sweden)

    Da Xingya


    Full Text Available Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interface plane (AIP face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the momentum coefficient affects the control effectiveness in a dual stepping manner.

  9. Boundary control of fluid flow through porous media

    DEFF Research Database (Denmark)

    Hasan, Agus; Foss, Bjarne; Sagatun, Svein Ivar


    The flow of fluids through porous media can be described by the Boussinesq’s equation with mixed boundary conditions; a Neumann’s boundary condition and a nonlinear boundary condition. The nonlinear boundary condition provides a means to control the fluid flow through porous media. In this paper,......, some stabilizing controllers are constructed for various cases using Lyapunov design.......The flow of fluids through porous media can be described by the Boussinesq’s equation with mixed boundary conditions; a Neumann’s boundary condition and a nonlinear boundary condition. The nonlinear boundary condition provides a means to control the fluid flow through porous media. In this paper...

  10. A compact active grid for stirring pipe flow

    NARCIS (Netherlands)

    Verbeek, A.A.; Pos, R.C.; Stoffels, G.G.M.; Geurts, B.J.; Meer, van der Th.


    A compact active grid is developed with which a pipe flow can be stirred in order to enhance the turbulence. The active grid is composed of a stationary and a rotating disk with characteristic hole patterns. This active grid is placed inside the pipe, allowing flow to pass through it. With only one

  11. A compact active grid for stirring pipe flow

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    A compact active grid is developed with which a pipe flow can be stirred in order to enhance the turbulence. The active grid is composed of a stationary and a rotating disk with characteristic hole patterns. This active grid is placed inside the pipe, allowing flow to pass through it. With only one

  12. Information-flow-based Access Control for Virtualized Systems

    Directory of Open Access Journals (Sweden)

    Dmitriy Aleksandrovich Postoev


    Full Text Available The article is devoted to the method of information-flow-based access control, adopted for virtualized systems. General structure of access control system for virtual infrastructure is proposed.

  13. Anthropogenic effect on avalanche and debris flow activity


    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann


    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  14. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark


    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  15. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.


    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  16. SPIV study of passive flow control on a WT airfoil

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Meyer, Knud Erik


    to free stream velocity U=15 m/s. The objective was to investigate the flow structures induced by and separation controlling behavior of vortex generators on the airfoil. The experimental results show strong separation of the uncontrolled flow whereas an intermittent behavior appears for the controlled...

  17. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav


    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...

  18. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  19. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed (United States)

    Tian, Ye; Song, Qi; Cattafesta, Louis


    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  20. Thermodynamic framework for discrete optimal control in multiphase flow systems (United States)

    Sieniutycz, Stanislaw


    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  1. Reactor core flow rate control system

    International Nuclear Information System (INIS)

    Sakuma, Hitoshi; Tanikawa, Naoshi; Takahashi, Toshiyuki; Miyakawa, Tetsuya.


    When an internal pump is started by a variable frequency power source device, if magnetic fields of an AC generator are introduced after the rated speed is reached, neutron flux high scram occurs by abrupt increase of a reactor core flow rate. Then, in the present invention, magnetic fields for the AC generator are introduced at a speed previously set at which the fluctuation range of the reactor core flow rate (neutron flux) by the start up of the internal pump is within an allowable value. Since increase of the speed of the internal pump upon its start up is suppressed to determine the change of the reactor core flow rate within an allowable range, increase of neutron fluxes is suppressed to enable stable start up. Then, since transition boiling of fuels caused by abrupt decrease of the reactor core flow rate upon occurrence of abnormality in an external electric power system is prevented, and the magnetic fields for the AC generator are introduced in such a manner to put the speed increase fluctuation range of the internal pump upon start up within an allowable value, neutron flux high scram is not caused to enable stable start-up. (N.H.)

  2. Modeling and control of compressor flow instabilities

    NARCIS (Netherlands)

    Willems, F.P.T.; Jager, de A.G.


    Compressors are widely used for the pressurization of fluids. Applications involve air compression for use in aircraft engines and pressurization and transportation of gas in the process and chemical industries. The article focuses on two commonly used types of continuous flow compressors: the axial

  3. ISS Payload Racks Automated Flow Control Calibration Method (United States)

    Simmonds, Boris G.


    Payload Racks utilize MTL and/or LTL station water for cooling of payloads and avionics. Flow control range from valves of fully closed, to up to 300 Ibmhr. Instrument accuracies are as high as f 7.5 Ibm/hr for flow sensors and f 3 Ibm/hr for valve controller, for a total system accuracy of f 10.5 Ibm/hr. Improved methodology was developed, tested and proven that reduces accuracy of the commanded flows to less than f 1 Ibmhr. Uethodology could be packed in a "calibration kit" for on- orbit flow sensor checkout and recalibration, extending the rack operations before return to earth. -

  4. On the properties and mechanisms of microjet arrays in crossflow for the control of flow separation (United States)

    Fernandez, Erik J.

    By utilizing passive and active methods of flow control, the aerodynamic performance of external and internal components can be greatly improved. Recently however, the benefits of applying active flow control methods to turbomachinery components for improved fuel efficiency, reduced engine size, and greater operational envelope has sparked a renewed interest in some of these flow control techniques. The more attractive of these, is active control in the form of jets in cross flow. With their ability to be turned on and off, as well as their negligible effect on drag when not being actuated, they are well suited for applications such as compressor and turbine blades, engine inlet diffusers, internal engine passages, and general external aerodynamics. This study consists of two parts. The first is the application of active control on a low-pressure turbine (LPT) cascade to determine the effectiveness of microjet actuators on flow separation at relatively low speeds. The second study, motivated by the first, involves a parametric study on a more canonical model to examine the effects of various microjet parameters on the efficacy of separation control and to provide a better understanding of the relevant flow physics governing this control approach. With data obtained from velocity measurements across the wide parametric range, correlations for the growth of the counter-rotating vortex pairs generated by these actuators are deduced. From the information and models obtained throughout the study, basic suggestions for microjet actuator design are presented.

  5. Measurement and control systems for an imaging electromagnetic flow metre. (United States)

    Zhao, Y Y; Lucas, G; Leeungculsatien, T


    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  6. Flow control at low Reynolds numbers using periodic airfoil morphing (United States)

    Jones, Gareth; Santer, Matthew; Papadakis, George; Bouremel, Yann; Debiasi, Marco; Imperial-NUS Joint PhD Collaboration


    The performance of airfoils operating at low Reynolds numbers is known to suffer from flow separation even at low angles of attack as a result of their boundary layers remaining laminar. The lack of mixing---a characteristic of turbulent boundary layers---leaves laminar boundary layers with insufficient energy to overcome the adverse pressure gradient that occurs in the pressure recovery region. This study looks at periodic surface morphing as an active flow control technique for airfoils in such a flight regime. It was discovered that at sufficiently high frequencies an oscillating surface is capable of not only reducing the size of the separated region---and consequently significantly reducing drag whilst simultaneously increasing lift---but it is also capable of delaying stall and as a result increasing CLmax. Furthermore, by bonding Macro Fiber Composite actuators (MFCs) to the underside of an airfoil skin and driving them with a sinusoidal frequency, it is shown that this control technique can be practically implemented in a lightweight, energy efficient way. Imperial-NUS Joint Ph.D. Programme.

  7. Device for passive flow control around vertical axis marine turbine (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.


    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  8. Device for passive flow control around vertical axis marine turbine

    International Nuclear Information System (INIS)

    Coşoiu, C I; Georgescu, A M; Degeratu, M; Haşegan, L; Hlevca, D


    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  9. Suboptimal control for drag reduction in turbulent pipe flow

    International Nuclear Information System (INIS)

    Choi, Jung Il; Sung, Hyung Jin; Xu, Chun Xiao


    A suboptimal control law in turbulent pipe flow is derived and tested. Two sensing variables ∂ρ/∂θ / w and ∂ν θ /∂r / w are applied with two actuations φ θ and φ γ . To test the suboptimal control law, direct numerical simulations of turbulent pipe flow at Re τ =150 are performed. When the control law is applied, a 13∼23% drag reduction is achieved. The most effective drag reduction is made at the pair of ∂υ θ /∂r / w and φ γ . An impenetrable virtual wall concept is useful for analyzing the near-wall suction and blowing. The virtual wall concept is useful for analyzing the near-wall behavior of the controlled flow. Comparison of the present suboptimal control with that of turbulent channel flow reveals that the curvature effect is insignificant

  10. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control (United States)

    Cary, Robert E.


    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  11. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Robert B.


    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  12. Photothermally controlled Marangoni flow around a micro bubble

    International Nuclear Information System (INIS)

    Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi


    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size

  13. Photothermally controlled Marangoni flow around a micro bubble (United States)

    Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi


    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size.

  14. Control of flow geometry using electromagnetic body forcing

    International Nuclear Information System (INIS)

    Rossi, L.; Bocquet, S.; Ferrari, S.; Garcia de la Cruz, J.M.; Lardeau, S.


    This paper presents conceptual experiments and simulations aiming at controlling flow geometries. Such flow design is performed by driving electromagnetically a shallow layer of brine, the forcing being generated by a transverse electrical current and different combinations of permanent magnets placed underneath the brine supporting wall. It is shown how different basic flow characteristics can be obtained with a single pair of magnets, by varying the angle with the electrical current. These basic flows are proposed as potential building blocks for advanced and complex flows studies. Three typical flow structures are presented to illustrate these building blocks. The discussion is then extended to multi-scale geometry by using blocks of various sizes. The flow is analysed using complementary experiments and numerical simulations. A good agreement is found between the 3D simulations and the experiments for both velocity and acceleration fields, which allows a higher degree of confidence in designing and modelling such flows. As the control of the flow geometry is important for mixing, in particular at low Reynolds number, we also illustrate the different stirring properties of the electromagnetically forced flows by comparing visualisations of passive scalars. They reveal complementary mixing properties for each of the building blocks.

  15. Bubble gate for in-plane flow control. (United States)

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel


    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  16. Automatic coolant flow control device for a nuclear reactor assembly (United States)

    Hutter, Ernest


    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  17. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke


    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  18. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control. (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph


    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  19. Pick'n'Fix: Capturing Control Flow in Modular Compilers

    DEFF Research Database (Denmark)

    Day, Laurence E.; Bahr, Patrick


    structures, in particular cyclic ones, we employ Oliveira and Cook's purely functional representation of graphs. Moreover, to separate control flow features semantically from other language features, we represent source languages using Johann and Ghani's encoding of generalised algebraic datatypes...


    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  1. Orifice design for the control of coupled region flow

    International Nuclear Information System (INIS)

    Atherton, R.; Spadaro, P.R.; Brummerhop, F.G.


    A fluid system arrangement for nuclear reactors is described comprising a triplate orifice apparatus which simultaneously controls core flow distribution, flow rate ratio between hydraulically coupled regions of the blanket and radial static pressure gradients entering and leaving the blanket fuel region. The design of the apparatus is based on the parameters of the diameter of the orifice holes, the friction factor, and expansion, contraction and turning pressure loss coefficients of the geometry of each orifice region. These above parameters are properly matched to provide the desired pressure drop, flow split and negligible cross flow at the interface of standard and power-flattened open lattice blanket regions. (U.S.)

  2. Flow-Control Unit For Nitrogen And Hydrogen Gases (United States)

    Chang, B. J.; Novak, D. W.


    Gas-flow-control unit installed and removed as one piece replaces system that included nine separately serviced components. Unit controls and monitors flows of nitrogen and hydrogen gases. Designed for connection via fluid-interface manifold plate, reducing number of mechanical fluid-interface connections from 18 to 1. Unit provides increasing reliability, safety, and ease of maintenance, and for reducing weight, volume, and power consumption.

  3. Turbulent Flow Modification With Thermoacoustic Waves for Separation Control (United States)


    respectively. At the outlet, the time-average flow is set to be the target state of the sponge zone. In this section, the effects of momentum thickness...Turbulent Flow Modification With Thermoacoustic Waves For Separation Control The views, opinions and/or findings contained in this report are those...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Florida State University Sponsored Research Administration 874

  4. Optical control of antibacterial activity (United States)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.


    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  5. Exhaust bypass flow control for exhaust heat recovery (United States)

    Reynolds, Michael G.


    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  6. Bluff Body Flow Control Using Dielectric Barrier Discharge Plasma Actuators (United States)

    Thomas, Flint; Kozlov, Alexey


    The results of an experimental investigation involving the use of dielectric barrier discharge plasma actuators to control bluff body flow is presented. The motivation for the work is plasma landing gear noise control for commercial transport aircraft. For these flow control experiments, the cylinder in cross-flow is chosen for study since it represents a generic flow geometry that is similar in all essential aspects to a landing gear strut. The current work is aimed both at extending the plasma flow control concept to Reynolds numbers typical of landing approach and take-off and on the development of optimum plasma actuation strategies. The cylinder wake flow with and without actuation are documented in detail using particle image velocimetry (PIV) and constant temperature hot-wire anemometry. The experiments are performed over a Reynolds number range extending to ReD=10^5. Using either steady or unsteady plasma actuation, it is demonstrated that even at the highest Reynolds number Karman shedding is totally eliminated and turbulence levels in the wake decrease by more than 50%. By minimizing the unsteady flow separation from the cylinder and associated large-scale wake vorticity, the radiated aerodynamic noise is also reduced.

  7. Formal Verification of Effectiveness of Control Activities in Business Processes (United States)

    Arimoto, Yasuhito; Iida, Shusaku; Futatsugi, Kokichi

    It has been an important issue to deal with risks in business processes for achieving companies' goals. This paper introduces a method for applying a formal method to analysis of risks and control activities in business processes in order to evaluate control activities consistently, exhaustively, and to give us potential to have scientific discussion on the result of the evaluation. We focus on document flows in business activities and control activities and risks related to documents because documents play important roles in business. In our method, document flows including control activities are modeled and it is verified by OTS/CafeOBJ Method that risks about falsification of documents are avoided by control activities in the model. The verification is done by interaction between humans and CafeOBJ system with theorem proving, and it raises potential to discuss the result scientifically because the interaction gives us rigorous reasons why the result is derived from the verification.

  8. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov


    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  9. A Numerical Proof of Concept for Thermal Flow Control

    Directory of Open Access Journals (Sweden)

    V. Dragan


    Full Text Available In this paper computational fluid dynamics is used to provide a proof of concept for controlled flow separation using thermal wall interactions with the velocity boundary layer. A 3D case study is presented, using a transition modeling Shear Stress Transport turbulence model. The highly loaded single slot flap airfoil was chosen to be representative for a light aircraft and the flow conditions were modeled after a typical landing speed. In the baseline case, adiabatic walls were considered while in the separation control case, the top surface of the flaps was heated to 500 K. This heating lead to flow separation on the flaps and a significant alteration of the flow pattern across all the elements of the wing. The findings indicate that this control method has potential, with implications in both aeronautical as well as sports and civil engineering applications.

  10. Flow and Noise Control: Review and Assessment of Future Directions (United States)

    Thomas, Russell H.; Choudhari, Meelan M.; Joslin, Ronald D.


    Technologies for developing radically new aerovehicles that would combine quantum leaps in cost, safety, and performance benefits with environmental friendliness have appeared on the horizon. This report provides both an assessment of the current state-of-the-art in flow and noise control and a vision for the potential gains to be made, in terms of performance benefit for civil and military aircraft and a unique potential for noise reduction, via future advances in flow and noise technologies. This report outlines specific areas of research that will enable the breakthroughs necessary to bring this vision to reality. Recent developments in many topics within flow and noise control are reviewed. The flow control overview provides succinct summaries of various approaches for drag reduction and improved maneuvering. Both exterior and interior noise problems are examined, including dominant noise sources, physics of noise generation and propagation, and both established and proposed concepts for noise reduction. Synergy between flow and noise control is a focus and, more broadly, the need to pursue research in a more concurrent approach involving multiple disciplines. Also discussed are emerging technologies such as nanotechnology that may have a significant impact on the progress of flow and noise control.

  11. Sorting catalytically active polymersome nanoreactors by flow cytometry

    NARCIS (Netherlands)

    Nallani, M.; Woestenenk, R.; de Hoog, H.P.M.; van Dongen, S.F.M.; Boezeman, J.; Cornelissen, J.J.L.M.; Nolte, R.J.M.; van Hest, J.C.M.


    A strategy that involves a versatile one-step preparation procedure of enzyme filled porous and stable polymeric catalytically active nanoreactors (polymersomes) by flow cytometry was reported. A 1:1 mixture of the polymerase dispersions was analyzed in a Coulter Epics Elite Flow Cytometer, while

  12. Topology Optimization of Active Transport Flows

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe


    Fluid flows with particle transport are common in many industrial processes and components. The design of components for addition or removal of particles as well as mixing or stratification is of great importance in the specific processes. This work presents a methodology to apply topology....... The paper present the design and optimization of a particle separator and the important interpolation for modeling both solids, fluids and particles with a monolithic problem formulation. The interplay with the physics behind the model are discussed and the influence of parameters are demonstrated....

  13. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.


    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  14. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing (United States)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  15. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.


    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  16. Predicting flow at work: investigating the activities and job characteristics that predict flow states at work. (United States)

    Nielsen, Karina; Cleal, Bryan


    Flow (a state of consciousness where people become totally immersed in an activity and enjoy it intensely) has been identified as a desirable state with positive effects for employee well-being and innovation at work. Flow has been studied using both questionnaires and Experience Sampling Method (ESM). In this study, we used a newly developed 9-item flow scale in an ESM study combined with a questionnaire to examine the predictors of flow at two levels: the activities (brainstorming, planning, problem solving and evaluation) associated with transient flow states and the more stable job characteristics (role clarity, influence and cognitive demands). Participants were 58 line managers from two companies in Denmark; a private accountancy firm and a public elder care organization. We found that line managers in elder care experienced flow more often than accountancy line managers, and activities such as planning, problem solving, and evaluation predicted transient flow states. The more stable job characteristics included in this study were not, however, found to predict flow at work. Copyright 2010 APA, all rights reserved.

  17. Synthetic perspective optical flow: Influence on pilot control tasks (United States)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.


    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  18. A note on supersonic flow control with nanosecond plasma actuator (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.


    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  19. Neural control of adrenal medullary and cortical blood flow during hemorrhage

    International Nuclear Information System (INIS)

    Breslow, M.J.; Jordan, D.A.; Thellman, S.T.; Traystman, R.J.


    Hemorrhagic hypotension produces an increase in adrenal medullary blood flow and a decrease in adrenal cortical blood flow. To determine whether changes in adrenal blood flow during hemorrhage are neurally mediated, the authors compared blood flow responses following adrenal denervation (splanchnic nerve section) with changes in the contralateral, neurally intact adrenal. Carbonized microspheres labeled with 153 Gd, 114 In, 113 Sn, 103 Ru, 95 Nb or 46 Se were used. Blood pressure was reduced and maintained at 60 mmHg for 25 min by hemorrhage into a pressurized bottle system. Adrenal cortical blood flow decreased to 50% of control with hemorrhage in both the intact and denervated adrenal. Adrenal medullary blood flow increased to four times control levels at 15 and 25 min posthemorrhage in the intact adrenal, but was reduced to 50% of control at 3, 5, and 10 min posthemorrhage in the denervated adrenal. In a separate group of dogs, the greater splanchnic nerve on one side was electrically stimulated at 2, 5, or 15 Hz for 40 min. Adrenal medullary blood flow increased 5- to 10-fold in the stimulated adrenal but was unchanged in the contralateral, nonstimulated adrenal. Adrenal cortical blood flow was not affected by nerve stimulation. They conclude that activity of the splanchnic nerve profoundly affects adrenal medullary vessels but not adrenal cortical vessels and mediates the observed increase in adrenal medullary blood flow during hemorrhagic hypotension

  20. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik


    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  1. Multilevel flow modelling of process plant for diagnosis and control

    International Nuclear Information System (INIS)

    Lind, M.


    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as basic for design of control strategies and for the allocation of control tasks to the computer and the plant operator. (author)

  2. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    DEFF Research Database (Denmark)

    Lind, Morten


    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure...... of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator....

  3. Liquid metal flow control by DC electromagnetic pumps

    International Nuclear Information System (INIS)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso


    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  4. Improved oxygen-activation method for determining water flow behind casing

    International Nuclear Information System (INIS)

    McKeon, D.C.; Scott, H.D.; Olesen, J.R.; Patton, G.L.; Mitchell, R.J.


    This paper reports on impulse activation which is a new oxygen-activation technique developed to detect vertical water flow and to provide a quantitative measure of water flow velocity and flow rate. Flow-loop measurements made over a wide range of water velocities are in good agreement with theoretical predictions. Measurements of up- and downward channel flow were made at the U.S. Environmental Protection Agency (EPA) leak test well in Ada, OK, to demonstrate the technique in a controlled environment and to confirm that EPA requirements have been met. A major advantage of this method over previous procedures is that a measurement is a known zero-flow zone is not required. The impulse-activation technique has improved sensitivity to both low and high flow rates. In the EPA leak test well, the technique successfully discriminated between 0- and 1.4 ft/min flow conditions. The lowest quantified velocity was 1.8 ft/min or 10 BWPD, significantly below the EPA requirement of 3 ft/min. The upper limit of detection has not been determined by exceeds 137 ft/min. The water flow log (WFL SM ) measurement uses the impulse-activation technique and a Dual-Bust SM , thermal-decay-time (TDT SM ) tool to detect water flow behind casing. An important application of this measurement is testing for fluid migration in the wellbore as part of the mechanical integrity testing process for Class I and II disposal wells. The new oxygen-activation measurement was used in numerous production wells to identify the presence of water flow behind casing. Additional applications include the identification of open fractures in horizontal wells and the quantification of water flow in the tubing/casing annulus in injection and production wells

  5. Predictive Flow Control to Minimize Convective Time Delays (United States)


    external flows around air vehicles or ground based systems such as bridges and buildings, internal flows in pipes and propulsion systems, acoustical...3437, 1977. [4] Bridges , D. H., "The Asymmetric Vortex Wake Problem - Asking the Right Question," A/AA Paper 2006-3553, 2006. [5) Deng, X. Y., Tian, W...Aircraft, Vol. 42, No. 2, 2003, pp. 42~23. [8] Darden, L. and Komerath, N., "Forebody Vortex Control at High Incidence using a Moveable Nose Stagnation

  6. Steady State Stokes Flow Interpolation for Fluid Control

    DEFF Research Database (Denmark)

    Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert


    — suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures......Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...

  7. Lower cash flow hampers offshore activities

    International Nuclear Information System (INIS)

    Hughes, C.


    This paper reports that the past 18 months have seen many changes in the North Sea petroleum industry. There have been some major corporate deals, resulting in departure of certain players and the introduction of new companies. The Northwest European continental shelf has been notably active in terms of farm-ins/outs, asset sales and swaps, primarily offshore the United Kingdom and Netherlands. As a result of last year's activity, it appears that majors are gradually disposing of some of their interests in mature areas like the North Sea, in favor of frontier regions like the CIS and Far East

  8. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.


    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  9. Vibration-accelerated activation of flow units in a Pd-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: [School of Materials Science and Engineering, and State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Ze [Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072 (China); Wang, Xinyun [School of Materials Science and Engineering, and State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Meng [Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632 (China)


    Controlled activation of flow units and in-situ characterization of mechanical properties in metallic glasses are facing challenges thus far. Here, vibrational loading is introduced through nanoscale dynamic mechanical analysis technique to probe vibration-accelerated atomic level flow that plays a crucial role in the mechanical behavior of metallic glasses. The intriguing finding is that high vibrational frequency induces deep indentation depth, prominent pop-in events on load–depth curves and low storage modulus, exhibiting a vibration-facilitated activation of flow units in Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass. Theoretical analysis revealed that vibration-moderated activation time-scale accelerate the activation of flow units and responsible for the above scenario.

  10. Baseline Validation of Unstructured Grid Reynolds-Averaged Navier-Stokes Toward Flow Control (United States)

    Joslin, Ronald D.; Viken, Sally A.


    The value of the use of the Reynolds-averaged Navier-Stokes methodology for active flow control applications is assessed. An experimental flow control database exists for a NACA0015 airfoil modified at the leading edge to implement a fluidic actuator; hence, this configuration is used. Computational results are documented for the baseline wing configuration (no control) with the experimental results and assumes two-dimensional flow. The baseline wing configuration has discontinuities at the leading edge, trailing edge, and aft of midchord on the upper surface. A limited number of active flow control applications have been tested in the laboratory and in flight. These applications include dynamic stall control using a deformable leading edge, separation control for takeoff and landing flight conditions using piezoelectric devices, pulsed vortex generators, zero-net-mass oscillations, and thrust vectoring with zero-net-mass piezoelectric-driven oscillatory actuation. As yet, there is no definitive comparison with experimental data that indicates current computational capabilities can quantitatively predict the large aerodynamic performance gains achieved with active flow control in the laboratory. However, one study using the Reynolds-averaged Navier-Stokes (RANS) methodology has shown good quantitative agreement with experimental results for an isolated zero-net-mass actuator. In addition, some recent studies have used RANS to demonstrate qualitative performance gains compared with the experimental data for separation control on an airfoil. Those quantitative comparisons for both baseline and flow control cases indicated that computational results were in poor quantitative agreement with the experiments. The current research thrust will investigate the potential use of an unstructured grid RANS approach to predict aerodynamic performance for active flow control applications building on the early studies. First the computational results must quantitatively match

  11. Gas Flows in Dual Active Galactic Nuclei (United States)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky


    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  12. Optogenetic control of epileptiform activity

    DEFF Research Database (Denmark)

    Tønnesen, Jan; Sørensen, Andreas T; Deisseroth, Karl


    such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under...... that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy.......The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether...

  13. Application of Shark Skin Flow Control Techniques to Airflow (United States)

    Morris, Jackson Alexander

    Due to millions of years of evolution, sharks have evolved to become quick and efficient ocean apex predators. Shark skin is made up of millions of microscopic scales, or denticles, that are approximately 0.2 mm in size. Scales located on the shark's body where separation control is paramount (such as behind the gills or the trailing edge of the pectoral fin) are capable of bristling. These scales are hypothesized to act as a flow control mechanism capable of being passively actuated by reversed flow. It is believed that shark scales are strategically sized to interact with the lower 5% of a boundary layer, where reversed flow occurs at the onset of boundary layer separation. Previous research has shown shark skin to be capable of controlling separation in water. This thesis aims to investigate the same passive flow control techniques in air. To investigate this phenomenon, several sets of microflaps were designed and manufactured with a 3D printer. The microflaps were designed in both 2D (rectangular) and 3D (mirroring shark scale geometry) variants. These microflaps were placed in a low-speed wind tunnel in the lower 5% of the boundary layer. Solid fences and a flat plate diffuser with suction were placed in the tunnel to create different separated flow regions. A hot film probe was used to measure velocity magnitude in the streamwise plane of the separated regions. The results showed that low-speed airflow is capable of bristling objects in the boundary layer. When placed in a region of reverse flow, the microflaps were passively actuated. Microflaps fluctuated between bristled and flat states in reverse flow regions located close to the reattachment zone.

  14. A Calculus for Control Flow Analysis of Security Protocols

    DEFF Research Database (Denmark)

    Buchholtz, Mikael; Nielson, Hanne Riis; Nielson, Flemming


    The design of a process calculus for anaysing security protocols is governed by three factors: how to express the security protocol in a precise and faithful manner, how to accommodate the variety of attack scenarios, and how to utilise the strengths (and limit the weaknesses) of the underlying...... analysis methodology. We pursue an analysis methodology based on control flow analysis in flow logic style and we have previously shown its ability to analyse a variety of security protocols. This paper develops a calculus, LysaNS that allows for much greater control and clarity in the description...

  15. Objective function choice for control of a thermocapillary flow using an adjoint-based control strategy

    International Nuclear Information System (INIS)

    Muldoon, Frank H.; Kuhlmann, Hendrik C.


    Highlights: • Suppression of oscillations in a thermocapillary flow is addressed by optimization. • The gradient of the objective function is obtained by solving the adjoint equations. • The issue of choosing an objective function is investigated. - Abstract: The problem of suppressing flow oscillations in a thermocapillary flow is addressed using a gradient-based control strategy. The physical problem addressed is the “open boat” process of crystal growth, the flow in which is driven by thermocapillary and buoyancy effects. The problem is modeled by the two-dimensional unsteady incompressible Navier–Stokes and energy equations under the Boussinesq approximation. The goal of the control is to suppress flow oscillations which arise when the driving forces are such that the flow becomes unsteady. The control is a spatially and temporally varying temperature gradient boundary condition at the free surface. The control which minimizes the flow oscillations is found using a conjugate gradient method, where the gradient of the objective function with respect to the control variables is obtained from solving a set of adjoint equations. The issue of choosing an objective function that can be both optimized in a computationally efficient manner and optimization of which provides control that damps the flow oscillations is investigated. Almost complete suppression of the flow oscillations is obtained for certain choices of the objective function.

  16. Topographic control of oceanic flows in deep passages and straits (United States)

    Whitehead, J. A.


    Saddle points between neighboring deep ocean basins are the sites of unidirectional flow from one basin to the next, depending on the source of bottom water. Flow in these sites appears to be topographically controlled so the interface between the bottom water and the water above adjusts itself to permit bottom water flow from the basin that contains a source of bottom water into the next. Examples in the Atlantic include flow in the Romanche Fracture Zone, the Vema Channel, the Ceara Abyssal Plain, the Anegada-Jungfern passage, and the Discovery Gap, but there are many more. Theoretical predictions of volume flux using a method that requires only conductivity-temperature-depth data archives and detailed knowledge of bathymetry near the saddle point are compared with volume flux estimates using current meters and/or geostrophic estimates for seven cases. The ratio of prediction to volume flux estimate ranges from 1.0 to 2.7. Some ocean straits that separate adjacent seas are also found to critically control bidirectional flows between basins. Theory of the influence of rotation on such critical flows is reviewed. Predictions of volume flux in eight cases are compared with ocean estimates of volume flux from traditional methods.

  17. The Photospheric Flow near the Flare Locations of Active Regions

    Indian Academy of Sciences (India)


    in the active regions along with few locations of upflows. The localised upflows are observed in the light bridges and emerging flux regions with different speeds (Beckers & Schroter 1969). The flow patterns of flare locations in the active regions are observed by using the tower vector magnetograph (TVM) of Marshall.

  18. An active, collaborative approach to learning skills in flow cytometry. (United States)

    Fuller, Kathryn; Linden, Matthew D; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N; Röhrig, Kimberley J


    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow cytometry listmode output (FCS) files and asked to design a gating strategy to diagnose patients with different hematological malignancies on the basis of their immunophenotype. A separate cohort of research trainees was given uncompensated data files on which they performed their own compensation, calculated the antibody staining index, designed a sequential gating strategy, and quantified rare immune cell subsets. Student engagement, confidence, and perceptions of flow cytometry were assessed using a survey. Competency against the learning outcomes was assessed by asking students to undertake tasks that required understanding of flow cytometry dot plot data and gating sequences. The active, collaborative approach allowed students to achieve learning outcomes not previously possible with traditional teaching formats, for example, having students design their own gating strategy, without forgoing essential outcomes such as the interpretation of dot plots. In undergraduate students, favorable perceptions of flow cytometry as a field and as a potential career choice were correlated with student confidence but not the ability to perform flow cytometry data analysis. We demonstrate that this new pedagogical approach to teaching flow cytometry is beneficial for student understanding and interpretation of complex concepts. It should be considered as a useful new method for incorporating complex data analysis tasks such as flow cytometry into curricula. Copyright © 2016 The American Physiological Society.

  19. Verification of the karst flow model under laboratory controlled conditions (United States)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko


    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  20. Controlled synthesis of poly(3-hexylthiophene in continuous flow

    Directory of Open Access Journals (Sweden)

    Helga Seyler


    Full Text Available There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene, P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.

  1. Field-effect Flow Control in Polymer Microchannel Networks (United States)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.


    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  2. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module (United States)

    Motil, Brian; Santen, Mark A.


    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  3. Active control of the noise

    International Nuclear Information System (INIS)

    Rodriguez V, Luis Alfonso; Lopez Q, Jose German


    The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for

  4. Phase Resolved Angular Velocity Control of Cross Flow Turbines (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian


    Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.

  5. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.


    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  6. Numerical study of flow control strategies for a simplified square back ground vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Eulalie, Yoann; Gilotte, Philippe [Plastic Omnium, Avenue du bois des vergnes, F-01150 Sainte-Julie (France); Mortazavi, Iraj, E-mail: [Team M2N, CNAM Paris, 292 Rue St. Martin, 75003 Paris (France)


    Current automotive trends lead to vertical shapes in the region of the rear tailgates, which induce high aerodynamical losses at the rear wall of vehicles. It is therefore important to work on turbulent wake in order to find drag reduction solutions for the current vehicle design. This paper focuses on flow control strategies, which are designed to interact with shear layers backward from the detachment region, in order to increase pressure values in the wake of a square back bluff body. This study involves large eddy simulation results validated by experimental data. After the first section, which represents experimental validation of LES computations with and without active flow control on an Ahmed bluff body, we will present a wide range of numerical results describing several active and passive flow control solutions leading to drag reductions of up to 10%. The last part of this paper will focus on some fluid mechanisms, which could explain these aerodynamical performances. (paper)

  7. Numerical study of flow control strategies for a simplified square back ground vehicle

    International Nuclear Information System (INIS)

    Eulalie, Yoann; Gilotte, Philippe; Mortazavi, Iraj


    Current automotive trends lead to vertical shapes in the region of the rear tailgates, which induce high aerodynamical losses at the rear wall of vehicles. It is therefore important to work on turbulent wake in order to find drag reduction solutions for the current vehicle design. This paper focuses on flow control strategies, which are designed to interact with shear layers backward from the detachment region, in order to increase pressure values in the wake of a square back bluff body. This study involves large eddy simulation results validated by experimental data. After the first section, which represents experimental validation of LES computations with and without active flow control on an Ahmed bluff body, we will present a wide range of numerical results describing several active and passive flow control solutions leading to drag reductions of up to 10%. The last part of this paper will focus on some fluid mechanisms, which could explain these aerodynamical performances. (paper)

  8. Calculated viscosity-distance dependence for some actively flowing lavas

    International Nuclear Information System (INIS)

    Pieri, D.


    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect

  9. Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes

    Directory of Open Access Journals (Sweden)

    Ole M. Aamo


    Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.

  10. Active control of the jet in coaxial arrangement

    Directory of Open Access Journals (Sweden)

    Šafařík P.


    Full Text Available An axisymmetric jet flow, issuing as a fully developed flow from a long straight pipe at Re = 1600 and 5500, was actively controlled by an annular synthetic jet. The Pitot tube, hot-wire anemometry (CTA and flow visualization were used for an experimental investigation of the flow control. The working fluid was air. The effect of varying Strouhal number (St = (0.18÷1.94 on a width and entrainment of the main jet flow was studied. It was found that the main jet is the most sensitive to the actuation at St = 0.28÷0.60 and St = 0.18, for Re = 1600 and Re = 5500, respectively.

  11. Intracycle angular velocity control of cross-flow turbines (United States)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian


    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  12. ac power control in the Core Flow Test Loop

    International Nuclear Information System (INIS)

    McDonald, D.W.


    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report

  13. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik


    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures......An approach to modelling unsteady compressible flow that is primarily one dimensional is presented. The approach was developed for creating distributed models of machines with reciprocating pistons but it is not limited to this application. The approach is based on the integral form of the unsteady...... conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction...

  14. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition.

    Directory of Open Access Journals (Sweden)

    Miriam A Mosing

    Full Text Available Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious and feel that they are in control of their own destiny (internal locus of control. We discuss that some of the genes underlying this relationship may include those influencing the function of

  15. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition. (United States)

    Mosing, Miriam A; Pedersen, Nancy L; Cesarini, David; Johannesson, Magnus; Magnusson, Patrik K E; Nakamura, Jeanne; Madison, Guy; Ullén, Fredrik


    Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious) and feel that they are in control of their own destiny (internal locus of control). We discuss that some of the genes underlying this relationship may include those influencing the function of dopaminergic neural

  16. Evaluation of the FAA Advanced Flow Control Procedures. (United States)


    The report is an evaluation of the present FAA Advanced Flow Control Procedures (AFCP), based on data gathered from its implementation on February 5, 1971 and on a fast-time digital simulation of traffic feeding into the NY airports on that day. The ...

  17. Flow intake control using dry-weather forecast (United States)

    Icke, Otto; van Schagen, Kim; Huising, Christian; Wuister, Jasper; van Dijk, Edward; Budding, Arjan


    Level-based control of the influent flow causes peak discharges at a waste water treatment plant (WWTP) after rainfall events. Furthermore, the capacity of the post-treatment is in general smaller than the maximum hydraulic capacity of the WWTP. This results in a significant bypass of the post-treatment during peak discharge. The optimisation of influent flow reduces peak discharge, and increases the treatment efficiency of the whole water cycle, which benefits the surface water quality. In this paper, it is shown that half of the bypasses of the post-treatment can be prevented by predictive control. A predictive controller for influent flow is implemented using the Aquasuitetext">® Advanced Monitoring and Control platform. Based on real-time measured water levels in the sewerage and both rainfall and dry-weather flow (DWF) predictions, a discharge limitation is determined by a volume optimisation technique. For the analysed period (February-September 2016) results at WWTP Bennekom show that about 50 % of bypass volume can be prevented. Analysis of single rainfall events shows that the used approach is still conservative and that the bypass can be even further decreased by allowing discharge limitation during precipitation.

  18. A stochastic programming approach to manufacturing flow control


    Haurie, Alain; Moresino, Francesco


    This paper proposes and tests an approximation of the solution of a class of piecewise deterministic control problems, typically used in the modeling of manufacturing flow processes. This approximation uses a stochastic programming approach on a suitably discretized and sampled system. The method proceeds through two stages: (i) the Hamilton-Jacobi-Bellman (HJB) dynamic programming equations for the finite horizon continuous time stochastic control problem are discretized over a set of sample...

  19. Biological control of schistosome transmission in flowing water habitats. (United States)

    Jobin, W R; Laracuente, A


    Marisa cornuarietis was evaluated in Puerto Rico for control of schistosome transmission in flowing water. A population of Biomphalaria glabrata and their schistosome infections disappeared after introduction of 20,000 M. cornuarietis to an endemic stream, while in nearby untreated streams the B. glabrata population remained stable and the schistosome prevalence increased. This method cost U.S. $0.10 per capita for over a year of protection, 5%-10% of the cost of chemical control.

  20. Electrogates for stop-and-go control of liquid flow in microfluidics (United States)

    Arango, Y.; Temiz, Y.; Gökçe, O.; Delamarche, E.


    Diagnostics based on microfluidic devices necessitate specific reagents, flow conditions, and kinetics for optimal performance. Such an optimization is often achieved using assay-specific microfluidic chip designs or systems with external liquid pumps. Here, we present "electrogates" for stop-and-go control of flow of liquids in capillary-driven microfluidic chips by combining liquid pinning and electrowetting. Electrogates are simple to fabricate and efficient: a sample pipetted to a microfluidic chip flows autonomously in 15-μm-deep hydrophilic channels until the liquid meniscus is pinned at the edge of a 1.5-μm-deep trench patterned at the bottom of a rectangular microchannel. The flow can then be resumed by applying a DC voltage between the liquid and the trench via integrated electrodes. Using a trench geometry with a semicircular shape, we show that retention times longer than 30 min are achieved for various aqueous solutions such as biological buffers, artificial urine, and human serum. We studied the activation voltage and activation delay of electrogates using a chip architecture having 6 independent flow paths and experimentally showed that the flow can be resumed in less than 1 s for voltages smaller than 10 V, making this technique compatible with low-power and portable microfluidic systems. Electrogates therefore can make capillary-driven microfluidic chips very versatile by adding flow control in microfluidic channels in a flexible manner.

  1. Fast incorporation of optical flow into active polygons. (United States)

    Unal, Gozde; Krim, Hamid; Yezzi, Anthony


    In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.

  2. Microrelief-Controlled Overland Flow Generation: Laboratory and Field Experiments

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu


    Full Text Available Surface microrelief affects overland flow generation and the related hydrologic processes. However, such influences vary depending on other factors such as rainfall characteristics, soil properties, and initial soil moisture conditions. Thus, in-depth research is needed to better understand and evaluate the combined effects of these factors on overland flow dynamics. The objective of this experimental study was to examine how surface microrelief, in conjunction with the factors of rainfall, soil, and initial moisture conditions, impacts overland flow generation and runoff processes in both laboratory and field settings. A series of overland flow experiments were conducted for rough and smooth surfaces that represented distinct microtopographic characteristics and the experimental data were analyzed and compared. Across different soil types and initial moisture conditions, both laboratory and field experiments demonstrated that a rough soil surface experienced a delayed initiation of runoff and featured a stepwise threshold flow pattern due to the microrelief-controlled puddle filling-spilling-merging dynamics. It was found from the field experiments that a smooth plot surface was more responsive to rainfall variations especially during an initial rainfall event. However, enhanced capability of overland flow generation and faster puddle connectivity of a rough field plot occurred during the subsequent rain events.

  3. Flow Control in Wells Turbines for Harnessing Maximum Wave Power (United States)

    Garrido, Aitor J.; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier


    Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness. PMID:29439408

  4. Flow Control in Wells Turbines for Harnessing Maximum Wave Power. (United States)

    Lekube, Jon; Garrido, Aitor J; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier


    Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness.

  5. Characterization of an Actively Controlled Three-Dimensional Turret Wake (United States)

    Shea, Patrick; Glauser, Mark


    Three-dimensional turrets are commonly used for housing optical systems on airborne platforms. As bluff bodies, these geometries generate highly turbulent wakes that decrease the performance of the optical systems and the aircraft. The current experimental study looked to use dynamic suction in both open and closed-loop control configurations to actively control the turret wake. The flow field was characterized using dynamic pressure and stereoscopic PIV measurements in the wake of the turret. Results showed that the suction system was able to manipulate the wake region of the turret and could alter not only the spatial structure of the wake, but also the temporal behavior of the wake flow field. Closed-loop, feedback control techniques were used to determine a more optimal control input for the flow control. Similar control effects were seen for both the steady open-loop control case and the closed-loop feedback control configuration with a 45% reduction in the suction levels when comparing the closed-loop to the open-loop case. These results provide unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations.

  6. On the flow around Glauert-Goldschmied body in the narrow channel and separation control strategy

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel P.; Uruba, Václav


    Roč. 16, č. 1 (2016), s. 643-644 ISSN 1617-7061 R&D Projects: GA ČR(CZ) GP14-25354P Institutional support: RVO:61388998 Keywords : PIV * active flow control * Glauert-Goldschmied body Subject RIV: BK - Fluid Dynamics

  7. Integrated Lateral Flow Device for Flow Control with Blood Separation and Biosensing

    Directory of Open Access Journals (Sweden)

    Veronica Betancur


    Full Text Available Lateral flow devices are versatile and serve a wide variety of purposes, including medical, agricultural, environmental, and military applications. Yet, the most promising opportunities of these devices for diagnosis might reside in point-of-care (POC applications. Disposable paper-based lateral flow strips have been of particular interest, because they utilize low-cost materials and do not require expensive fabrication instruments. However, there are constraints on tuning flow rates and immunoassays functionalization in papers, as well as technical challenges in sensors’ integration and concentration units for low-abundant molecular detection. In the present work, we demonstrated an integrated lateral flow device that applied the capillary forces with functionalized polymer-based microfluidics as a strategy to realize a portable, simplified, and self-powered lateral flow device (LFD. The polydimethylsiloxane (PDMS surface was rendered hydrophilic via functionalization with different concentrations of Pluronic F127. Controlled flow is a key variable for immunoassay-based applications for providing enough time for protein binding to antibodies. The flow rate of the integrated LFD was regulated by the combination of multiple factors, including Pluronic F127 functionalized surface properties and surface treatments of microchannels, resistance of the integrated flow resistor, the dimensions of the microstructures and the spacing between them in the capillary pump, the contact angles, and viscosity of the fluids. Various plasma flow rates were regulated and achieved in the whole device. The LFD combined the ability to separate high quality plasma from human whole blood by using a highly asymmetric plasma separation membrane, and created controlled and steady fluid flow using capillary forces produced by the interfacial tensions. Biomarker immunoglobulin G (IgG detection from plasma was demonstrated with a graphene nanoelectronic sensor integrated

  8. Typing Local Control and State Using Flow Analysis (United States)

    Guha, Arjun; Saftoiu, Claudiu; Krishnamurthi, Shriram

    Programs written in scripting languages employ idioms that confound conventional type systems. In this paper, we highlight one important set of related idioms: the use of local control and state to reason informally about types. To address these idioms, we formalize run-time tags and their relationship to types, and use these to present a novel strategy to integrate typing with flow analysis in a modular way. We demonstrate that in our separation of typing and flow analysis, each component remains conventional, their composition is simple, but the result can handle these idioms better than either one alone.

  9. Analysis of flow instability in steam turbine control valves

    International Nuclear Information System (INIS)

    Pluviose, M.


    With the sponsorship of Electricite de France and the French steam turbine manufacturers, the Gas Turbine Laboratory of CETIM has started a research about the unsteady phenomena of flow in control valves of steam turbines. The existence of unsteady embossment in the valve cone at rise has been as certained, and a conventional computing procedure has been applied to locate the shock waves in the valve. These shock waves may suddenly arise at some valve lifts and give way to fluttering. Valve geometries attenuating instability of flow and increasing therefore the reliability of such equipment are proposed [fr

  10. Quantifying, characterizing, and controlling information flow in ultracold atomic gases

    International Nuclear Information System (INIS)

    Haikka, P.; McEndoo, S.; Maniscalco, S.; De Chiara, G.; Palma, G. M.


    We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

  11. Automatized material and radioactivity flow control tool in decommissioning process

    International Nuclear Information System (INIS)

    Rehak, I.; Vasko, M.; Daniska, V.; Schultz, O.


    In this presentation the automatized material and radioactivity flow control tool in decommissioning process is discussed. It is concluded that: computer simulation of the decommissioning process is one of the important attributes of computer code Omega; one of the basic tools of computer optimisation of decommissioning waste processing are the tools of integral material and radioactivity flow; all the calculated parameters of materials are stored in each point of calculation process and they can be viewed; computer code Omega represents opened modular system, which can be improved; improvement of the module of optimisation of decommissioning waste processing will be performed in the frame of improvement of material procedures and scenarios.

  12. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen


    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  13. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)


    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.


    International Nuclear Information System (INIS)



    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks


    Institute of Scientific and Technical Information of China (English)

    Hui-Pang LIEN


    A new method to a slit dam for controlling the stony debris flow has been derived based on the mass conservation law of the stony debris flow passing through a slit dam and the laboratory experiment results.This new method is then combined with three primary efficiency expressions: the dimensionless sediment outflow ratio,the sediment concentration ratio,and the sediment storage rate to develop a simple module,with which the height and the spacing of the posts,as well as the total spacing of slit dam are determined.Furthermore,these expressions can also be applied to check those slit dams that have already been constructed with their effectiveness against various magnitudes of the debris flow. The comparison between these expressions and laboratory data is in reasonable agreement.

  16. Numerical Studies of a Fluidic Diverter for Flow Control (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya


    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  17. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)


    Highlights: Black-Right-Pointing-Pointer Flow induced vibration studies on Prototype Fast Breeder Reactor control plug model carried out. Black-Right-Pointing-Pointer Velocity similitude was followed for the study. Black-Right-Pointing-Pointer Frequencies and amplitude of vibrations of various control plug components measured. Black-Right-Pointing-Pointer Overall values of vibration are well within permissible limits. - Abstract: The construction of Prototype Fast Breeder Reactor (PFBR), a 500 MWe liquid sodium cooled reactor, is in progress at Kalpakkam in India. Control plug (CP) is located right above the core subassemblies in the hot pool. Control plug is an important component as many of the critical reactor parameters are sensed and controlled by the components housed in the control plug assembly. In PFBR primary circuit, components are basically thin walled, slender shells with diameter to thickness ratio ranging from 100 to 650. These components are prone to flow induced vibrations. The existence of free liquid (sodium) surfaces, which is the source of sloshing phenomenon and the operation of primary sodium pump in the primary pool are other potential sources of vibration of reactor components. Control plug is a hollow cylindrical shell structure and provides passages and support for 12 absorber rod drive mechanisms (ARDM) which consists of 9 control and safety rods and 3 diverse safety rods, 210 thermo wells to measure the sodium temperature at the exit of various fuel subassemblies, three failed fuel localization modules (FFLM) and acoustic detectors. It consists of a core cover plate (CCP), which forms the bottom end, two intermediate supports plate, i.e. lower stay plate (LSP) and upper stay plate (USP) and an outer shell. The CCP is located at a distance of 1.3 m from the core top. With such a gap, there will be long free hanging length of the thermocouple sleeves, Delayed neutron detector (DND) sampling tubes and ARDM shroud tubes and hence they are

  18. Flow shop scheduling algorithm to optimize warehouse activities

    Directory of Open Access Journals (Sweden)

    P. Centobelli


    Full Text Available Successful flow-shop scheduling outlines a more rapid and efficient process of order fulfilment in warehouse activities. Indeed the way and the speed of order processing and, in particular, the operations concerning materials handling between the upper stocking area and a lower forward picking one must be optimized. The two activities, drops and pickings, have considerable impact on important performance parameters for Supply Chain wholesaler companies. In this paper, a new flow shop scheduling algorithm is formulated in order to process a greater number of orders by replacing the FIFO logic for the drops activities of a wholesaler company on a daily basis. The System Dynamics modelling and simulation have been used to simulate the actual scenario and the output solutions. Finally, a t-Student test validates the modelled algorithm, granting that it can be used for all wholesalers based on drop and picking activities.

  19. Assessing debris flow activity in a changing climate : open access

    NARCIS (Netherlands)

    Turkington, T.; Remaitre, A.; Ettema, J.; Hussin, H.Y.; van Westen, C.J.


    Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between

  20. Effects of flow balancing on active magnetic regenerator performance

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian


    Experiments with a recently constructed rotary multi-bed active magnetic regnenerator (AMR) prototype have revealed strong impacts on the temperature span from variations in the resistances of the flow channels carrying heat transfer fluid in and out of the regenerator beds. In this paper we show...

  1. Frequency dependence and frequency control of microbubble streaming flows (United States)

    Wang, Cheng; Rallabandi, Bhargav; Hilgenfeldt, Sascha


    Steady streaming from oscillating microbubbles is a powerful actuating mechanism in microfluidics, enjoying increased use due to its simplicity of manufacture, ease of integration, low heat generation, and unprecedented control over the flow field and particle transport. As the streaming flow patterns are caused by oscillations of microbubbles in contact with walls of the set-up, an understanding of the bubble dynamics is crucial. Here we experimentally characterize the oscillation modes and the frequency response spectrum of such cylindrical bubbles, driven by a pressure variation resulting from ultrasound in the range of 1 kHz raisebox {-.9ex{stackrel{textstyle <}{˜ }} }f raisebox {-.9ex{stackrel{textstyle <}{˜ }} } 100 kHz. We find that (i) the appearance of 2D streaming flow patterns is governed by the relative amplitudes of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct, robust resonance patterns occur independent of details of the set-up, and (iii) the position and width of the resonance peaks can be understood using an asymptotic theory approach. This theory describes, for the first time, the shape oscillations of a pinned cylindrical bubble at a wall and gives insight into necessary mode couplings that shape the response spectrum. Having thus correlated relative mode strengths and observed flow patterns, we demonstrate that the performance of a bubble micromixer can be optimized by making use of such flow variations when modulating the driving frequency.

  2. Climatic and geomorphic controls on low flow hydrograph recession (United States)

    Chandler, D. G.; Daley, M.; Kasaee Roodsari, B.; Shaw, S. B.; McNamara, J.


    Large scale operational hydrologic models should be capable of predicting seasonally low flow and stream intermittency as well as peak flow and inundation. We contrast examples of controls on low flow exerted by geomorphic and climatic setting at small catchment study sites in the Northeast and Northwest of the USA to indicate differences in hydrologic processes. Both regions accumulate winter snowpack and have an extended spring freshet, but the Reynolds Creek CZO and Dry Creek Experimental Watershed (both in Idaho mountains) experience a protracted summer drought, with occasional storms whereas precipitation free periods greater than five days are uncommon in the hilly Sleepers River (Vermont), and Yellow Barn State Forest (New York) and at Ley Creek, on a glacial plain (New York). At both Dry Creek and Reynolds Creek, headwater stream flow direction was transverse to groundwater, and below field capacity discharge was well related to either the ground water surface or corresponded to inversion of the hydraulic gradient over the depth of the soil. At all sites except Ley Creek, the headwaters became intermittent as the main tributary discharge declined, often disconnecting the surface source springs and seeps from the valley bottom stream. At the Idaho sites recession analysis for main stem was further complicated by consumptive use for irrigation and domestic wells. Modeling the recession characteristics of these various settings and across stream orders results in a variety of exponent values for power law scaling approaches that indicate the importance of site context for modeling low flow.

  3. Flow of cortical activity underlying a tactile decision in mice


    Guo, Zengcai V.; Li, Nuo; Huber, Daniel; Ophir, Eran; Gutnisky, Diego; Ting, Jonathan T.; Feng, Guoping; Svoboda, Karel


    Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile “sensation” and “action” (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neo...

  4. Flow control of micro-ramps on supersonic forward-facing step flow

    International Nuclear Information System (INIS)

    Zhang Qing-Hu; Zhu Tao; Wu Anping; Yi Shihe


    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. (paper)

  5. Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien; Ottesen, Johnny T.


    , the heart, and venous valves. We use physiologically based control mechanisms to describe the regulation of cerebral blood velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. Beyond active control mechanisms we also have to include certain passive non......Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture change from sitting......-linearities in some of the compliance-pressure and resistance-pressure relationships. Futhermore, an acurate and physiologically based submodel, describing the dynamics of how gravity effects the blood distribution during suspine changes, is included. To justify the fidelity of our mathematical model and control...

  6. Separation flow control on a generic ground vehicle using steady microjet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Aubrun, Sandrine; Kourta, Azeddine [Universite d' Orleans, Laboratoire PRISME, Orleans cedex (France); McNally, Jonathan; Alvi, Farrukh [Florida State University, FAMU-FSU College of Engineering, Tallahassee, FL (United States)


    A model of a generic vehicle shape, the Ahmed body with a 25 slant, is equipped with an array of blowing steady microjets 6 mm downstream of the separation line between the roof and the slanted rear window. The goal of the present study is to evaluate the effectiveness of this actuation method in reducing the aerodynamic drag, by reducing or suppressing the 3D closed separation bubble located on the slanted surface. The efficiency of this control approach is quantified with the help of aerodynamic load measurements. The changes in the flow field when control is applied are examined using PIV and wall pressure measurements and skin friction visualisations. By activating the steady microjet array, the drag coefficient was reduced by 9-14% and the lift coefficient up to 42%, depending on the Reynolds number. The strong modification of the flow topology under progressive flow control is particularly studied. (orig.)

  7. A New Real Time Lyapunov Based Controller for Power Quality Improvement in Unified Power Flow Controllers Using Direct Matrix Converters

    Directory of Open Access Journals (Sweden)

    Joaquim Monteiro


    Full Text Available This paper proposes a Direct Matrix Converter operating as a Unified Power Flow Controller (DMC-UPFC with an advanced control method for UPFC, based on the Lyapunov direct method, presenting good results in power quality assessment. This control method is used for real-time calculation of the appropriate matrix switching state, determining which switching state should be applied in the following sampling period. The control strategy takes into account active and reactive power flow references to choose the vector converter closest to the optimum. Theoretical principles for this new real-time vector modulation and control applied to the DMC-UPFC with input filter are established. The method needs DMC-UPFC dynamic equations to be solved just once in each control cycle, to find the required optimum vector, in contrast to similar control methods that need 27 vector estimations per control cycle. The designed controller’s performance was evaluated using Matlab/Simulink software. Controllers were also implemented using a digital signal processing (DSP system and matrix hardware. Simulation and experimental results show decoupled transmission line active (P and reactive (Q power control with zero theoretical error tracking and fast response. Output currents and voltages show small ripple and low harmonic content.

  8. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.


    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  9. Integration of power flow controlling devices and HVDC-systems into the optimal power flow; Integration von leistungsflusssteuernden Komponenten und HGUe-Systemen in die Leistungsflussoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Natemeyer, Hendrik; Scheufen, Martin; Roehder, Andreas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. fuer Hochspannungstechnik (IFHT)


    An integration of High Voltage Direct Current Transmission Systems (HVDC) or Flexible AC Transmission Systems (FACTS) into power systems enables the possibility to actively influence and control the corresponding power flows in the electrical network. The systemic benefits are a more efficient utilization of existing transmission capacities and improved controllability in fault situations. This paper introduces methods of a coordinative control of such devices and their representation in stationary power flow calculations including the control in (n-1)-cases. This might be a useful tool for the network operation, especially in face of more frequently occurring fast system changes. Examples of a corresponding implementation and application are provided. (orig.)

  10. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure (United States)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.


    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  11. Particle size control of detergents in mixed flow spray dryers

    Directory of Open Access Journals (Sweden)

    Mark Jonathan Crosby


    Full Text Available Particle size is a key quality parameter of a powder detergent as it determines its performance, the bulk density and the look and feel of the product. Consequently, it is essential that particle size is controlled to ensure the consistency of performance when comparing new formulations. The majority of study reported in the literature relating to particle size control, focuses on the spray produced by the atomisation technique. One approach advocated to achieve particle size control is the manipulation of the ratio of the mass slurry rate and mass flow rate of gas used for atomisation. Within this study, ratio control was compared with an automatic cascade loop approach using online measurements of the powder particle size on a small-scale pilot plant. It was concluded that cascade control of the mean particle size, based on manipulating the mass flow rate of gas, resulted in tighter, more responsive control. The effect of a ratio change varied with different formulations and different slurry rates. Furthermore, changes in slurry rate caused complications, as the impact on particle size growth in the dryer is non-linear and difficult to predict. The cascade loop enables further study into the effect of particle size on detergent performance.

  12. Examples of detection of water flow by oxygen activation on pulsed neutron logs

    International Nuclear Information System (INIS)

    de Rosset, W.H.M.


    Upward flow of water in cased wellbores may be detected with pulsed neutron capture (PNC) and gamma ray (GR) tools. Water entering tubing, casing and flowing behind pipe may similarly be evaluated qualitatively. Gamma ray background anomalies in PNC data and elevation of GR tool response occur when water is flowing above threshold velocities and volumes. The technique requires logging the well under static and flow conditions or logging at different tools speeds in a flowing well. Oxygen activation results in increased gamma ray count rates at each detector. PNC far detector and GR well log curves from each log run (flowing well, static well) are overlain. The increases for each curve are offset from the point of water entry by a distance similar to tool source-detector spacing. These offsets in gamma increase are 15-20 ft. higher for the GR than for the PNC far detector and distinguish oxygen activation due to flowing water from common hot spots. The amount of gamma ray increase is controlled by the velocity of upward flow of water past the tool, the amount of water flowing, and the distance of the flow from the tool. Prior planning is important to gain usable information in flowing wells. The upward relative velocity imposes maximal and minimal tool speeds to produce significant gamma increases, and tool speed must be adjusted to optimize gamma changes. Use of the technique to answer actual production problems is illustrated with examples. Insight was gained which led to the correction of the problem in each case

  13. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.


    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  14. Strategic Management Accounting in Organizations’ Cash Flow Control


    Y. P. Vetrov; O. G. Vandina; A. R. Galustov


    The article deals with the various interpretations of the term "strategic management accounting". The role and importance of strategic management accounting in the organization’s cash flows control are investigated. The accounting and analytical models of strategic management accounting are analyzed. The territorial scope of this article covers the Russian Federation. The study concludes that the system of assessment parameters of organization’s financial condition should cover all its aspect...

  15. Experimental control of natural perturbations in channel flow


    Juillet , Fabien; Mckeon , J.; Schmid , Peter J.


    International audience; A combined approach using system identification and feed-forward control design has been applied to experimental laminar channel flow in an effort to reduce the naturally occurring disturbance level. A simple blowing/suction strategy was capable of reducing the standard deviation of the measured sensor signal by 45 %, which markedly exceeds previously obtained results under comparable conditions. A comparable reduction could be verified over a significant streamwise ex...

  16. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Czech Academy of Sciences Publication Activity Database

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír


    Roč. 58, č. 2 (2014), s. 111-117 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014

  17. Empirical Reduced-Order Modeling for Boundary Feedback Flow Control

    Directory of Open Access Journals (Sweden)

    Seddik M. Djouadi


    Full Text Available This paper deals with the practical and theoretical implications of model reduction for aerodynamic flow-based control problems. Various aspects of model reduction are discussed that apply to partial differential equation- (PDE- based models in general. Specifically, the proper orthogonal decomposition (POD of a high dimension system as well as frequency domain identification methods are discussed for initial model construction. Projections on the POD basis give a nonlinear Galerkin model. Then, a model reduction method based on empirical balanced truncation is developed and applied to the Galerkin model. The rationale for doing so is that linear subspace approximations to exact submanifolds associated with nonlinear controllability and observability require only standard matrix manipulations utilizing simulation/experimental data. The proposed method uses a chirp signal as input to produce the output in the eigensystem realization algorithm (ERA. This method estimates the system's Markov parameters that accurately reproduce the output. Balanced truncation is used to show that model reduction is still effective on ERA produced approximated systems. The method is applied to a prototype convective flow on obstacle geometry. An H∞ feedback flow controller is designed based on the reduced model to achieve tracking and then applied to the full-order model with excellent performance.

  18. Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics

    International Nuclear Information System (INIS)

    Okhotnikov, Ivan; Noroozi, Siamak; Sewell, Philip; Godfrey, Philip


    Highlights: • A novel design of a rotary flow control valve driven by a stepper motor is proposed. • The intended use of the valve in the high flow rate independent metering hydraulic system is suggested. • Pressure drops, steady flow torques of the valve for various flow rates and orifice openings are studied by means of computational fluid dynamics. • The discharge coefficient and flow jet angles dependencies on the orifice opening are obtained. • A design method to decrease the flow forces without reducing the flow rate in single-staged valves is demonstrated. - Abstract: In this paper, a novel design of a rotary hydraulic flow control valve has been presented for high flow rate fluid power systems. High flow rates in these systems account for substantial flow forces acting on the throttling elements of the valves and cause the application of mechanically sophisticated multi-staged servo valves for flow regulation. The suggested design enables utilisation of single-stage valves in power hydraulics operating at high flow rates regimes. A spool driver and auxiliary mechanisms of the proposed valve design were discussed and selection criteria were suggested. Analytical expressions for metering characteristics as well as steady flow torques have been derived. Computational fluid dynamics (CFD) analysis of steady state flow regimes was conducted to evaluate the hydraulic behaviour of the proposed valve. This study represents a special case of an independent metering concept applied to the design of power hydraulic systems with direct proportional valve control operating at flow rates above 150 litres per minute. The result gained using parametric CFD simulations predicted the induced torque and the pressure drops due to a steady flow. Magnitudes of these values prove that by minimising the number of spool's mobile metering surfaces it is possible to reduce the flow-generated forces in the new generation of hydraulic valves proposed in this study

  19. Modification of Flow Structure Over a Van Model By Suction Flow Control to Reduce Aerodynamics Drag

    Directory of Open Access Journals (Sweden)

    Harinaldi Harinaldi


    Full Text Available Automobile aerodynamic studies are typically undertaken to improve safety and increase fuel efficiency as well as to  find new innovation in automobile technology to deal with the problem of energy crisis and global warming. Some car companies have the objective to develop control solutions that enable to reduce the aerodynamic drag of vehicle and  significant modification progress is still possible by reducing the mass, rolling friction or aerodynamic drag. Some flow  control method provides the possibility to modify the flow separation to reduce the development of the swirling structures around the vehicle. In this study, a family van is modeled with a modified form of Ahmed's body by changing the orientation of the flow from its original form (modified/reversed Ahmed body. This model is equipped with a suction on the rear side to comprehensively examine the pressure field modifications that occur. The investigation combines computational and experimental work. Computational approach used  a commercial software with standard k-epsilon flow turbulence model, and the objectives was  to determine the characteristics of the flow field and aerodynamic drag reduction that occurred in the test model. Experimental approach used load cell in order to validate the aerodynamic drag reduction obtained by computational approach. The results show that the application of a suction in the rear part of the van model give the effect of reducing the wake and the vortex formation. Futhermore, aerodynamic drag reduction close to 13.86% for the computational approach and 16.32% for the experimental have been obtained.

  20. A flow-control mechanism for distributed systems (United States)

    Maitan, J.


    A new approach to the rate-based flow control in store-and-forward networks is evaluated. Existing methods display oscillations in the presence of transport delays. The proposed scheme is based on the explicit use of an embedded dynamic model of a store-and-forward buffer in a controller's feedback loop. It is shown that the use of the model eliminates the oscillations caused by the transport delays. The paper presents simulation examples and assesses the applicability of the scheme in the new generation of high-speed photonic networks where transport delays must be considered.

  1. Control of energy flow in residential buildings; Energieflussregelung in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martin


    Energy systems in residential buildings are changing from monovalent, combustion based systems to multivalent systems containing technologies such as solar collectors, pellet boilers, heat pumps, CHP and multiple storages. Multivalent heat and electricity generation and additional storages raise the number of possible control signals in the system. This creates additional degrees of freedom regarding the choice of the energy converter and the instant of time for energy conversion. New functionality of controllers such as prioritisation of energy producers, optimization of electric self consumption and control of storages and energy feed-in are required. Within the scope of this thesis, new approaches for demand-driven optimal control of energy flows in multivalent building energy systems are developed and evaluated. The approaches are evaluated by means of system energy costs and operating emissions. For parametrisation of the controllers an easily understandable operating concept is developed. The energy flow controllers are implemented as a multi agent system (MAS) and a nonlinear model predictive controller (MPC). Proper functionality and stability are demonstrated in simulations of two example energy systems. In both example systems the MPC controller achieves less energy costs and operating emissions due to system wide global optimization and the more detailed system model within the controller. The multi agent approach turns out to perform better for systems with a huge number of components, e.g. in home automation and energy management systems. Due to the good performance of the reference control strategies, a significant reduction of energy costs and operating emissions is only possible with limitations. Systems for heat generation show only an especially low potential for optimization because of marginal variation ins heat production costs. The adaptation of the operation mode to user priorities, changing utilization characteristics and dynamic energy

  2. Forced underwater laminar flows with active magnetohydrodynamic metamaterials (United States)

    Culver, Dean; Urzhumov, Yaroslav


    Theory and practical implementations for wake-free propulsion systems are proposed and proven with computational fluid dynamic modeling. Introduced earlier, the concept of active hydrodynamic metamaterials is advanced by introducing magnetohydrodynamic metamaterials, structures with custom-designed volumetric distribution of Lorentz forces acting on a conducting fluid. Distributions of volume forces leading to wake-free, laminar flows are designed using multivariate optimization. Theoretical indications are presented that such flows can be sustained at arbitrarily high Reynolds numbers. Moreover, it is shown that in the limit Re ≫102 , a fixed volume force distribution may lead to a forced laminar flow across a wide range of Re numbers, without the need to reconfigure the force-generating metamaterial. Power requirements for such a device are studied as a function of the fluid conductivity. Implications to the design of distributed propulsion systems underwater and in space are discussed.


    Directory of Open Access Journals (Sweden)



    Full Text Available Bread and panification products are intended for direct human consumption and underlying nutritional pyramid, it can affect the consumers health in case of biological, chemical or physical contamination, immediate or delayed, by noxious accumulation in the human organism. Only by rigorous compliance of the production rules throughout the technological process can ensure the quality and food safety of these products. If the risk can be prevented, eliminated or reduce to an acceptable level, as a result of a control actions made at that stage, it is considered a Critical Control Point (CCP. There can be checkpoints where it can exert a control action. Thus, the checkpoint is represented by any stage in which the risk factors, biological, chemical or physical, can be controlled in order to prevent, disrupt or reduce them to an acceptable level. This paper is referring to the control points on the technological flow of the bread fabrication, in all phases of this technological flow, laying stress on that points (or phases which can affect security and food safety, through the influence of parameters of any kind on the quality of finished products.

  4. Neural Network Predictive Control for Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Hai-Feng Shen


    Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.

  5. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    International Nuclear Information System (INIS)

    Burjorjee, D.; Gan, B.


    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops

  6. Proportional feedback control of laminar flow over a hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Il [Dept. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of); Son, Dong Gun [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)


    In the present study, we perform a proportional feedback control of laminar flow over a hemisphere at Re = 300 to reduce its lift fluctuations by attenuating the strength of the vortex shedding. As a control input, blowing/suction is distributed on the surface of hemisphere before the separation, and its strength is linearly proportional to the transverse velocity at a sensing location in the centerline of the wake. The sensing location is determined based on a correlation function between the lift force and the time derivative of sensing velocity. The optimal proportional gains for the proportional control are obtained for the sensing locations considered. The present control successfully attenuates the velocity fluctuations at the sensing location and three dimensional vertical structures in the wake, resulting in the reduction of lift fluctuations of hemisphere.

  7. Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot (United States)

    Massey, Brian; Morgansen, Kristi; Dabiri, Dana


    Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.

  8. The effects of surface topography control using liquid crystal elastomers on bodies in flow (United States)

    Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory


    Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.

  9. "Batch" kinetics in flow: online IR analysis and continuous control. (United States)

    Moore, Jason S; Jensen, Klavs F


    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Water flow measurements with the pulsed neutron activation method

    International Nuclear Information System (INIS)

    Linden, P.


    The objective of this work was to develop and study the feasibility of a flow-meter, based on the pulsed neutron activation method. It is a non-invasive method with good potential regarding accuracy. However, the ultimate accuracy has not been fully investigated before. Two series of flow rate measurements have been performed and analysed. The first series was done under moderately accurate flow calibration conditions to get sufficient confidence in the method and to get indication of the obtainable accuracy. The results were encouraging and further measurements with high accuracy flow calibration were planned. A dedicated loop was designed and built, and it was used with satisfactory performance. Two models have been used for analysis of recorded data; time weighting method and a fit to Taylor diffusion theory. The results show that the accuracy in mean flow velocity obtained from the used analysis models is in the range of 2-4% for Reynolds numbers greater than 10,000. Data recorded from high calibration measurements will also be used for validation of future calculations. 19 refs, 4 figs


    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail:, E-mail:, E-mail: [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)


    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  12. Participative planning and information flow within management control

    Directory of Open Access Journals (Sweden)

    Tomasz Dyczkowski


    Full Text Available The paper examines the relationships between two different approaches to planning processes (participa- tive and non-participative and information flows within management control in companies. It augments the existing theoretical and empirical research by coupling management control and management infor- mation with participative planning, not only in operational but also in the strategic perspective. The re- sults presented in the paper stem from two consecutive studies, conducted between November 2010 and January 2012 and between November 2013 and January 2014. The studies comprised 397 and 179 Polish companies respectively. The authors formulated two hypotheses linking participative planning with upward and downward management information flows. The paper employed a quantitative approach, using the Spearman rank correlation analysis and hierarchical clustering using the Ward method, which enabled comparative analyses both in reference to various groups of companies included in particular research samples and over time. The results obtained showed the positive influence of participative plan- ning both on upward and downward information flows in enterprises. In particular, participative planning reduced information imbalances between top (the management and lower (employees of functional departments tiers in organisation structures.

  13. Development of the flow control irradiation facility for JOYO

    International Nuclear Information System (INIS)

    Soroi, Masatoshi; Miyakawa, Shun-ichi


    This report describes the present situation and problems with the development of the flow control irradiation facility (FLORA). The purpose of FLORA is to run the cladding breach (RTCB) irradiation test under loss of flow conditions in the experimental fast reactor 'JOYO'. FLORA is a facility like FPTF (Fuel Performance Test Facility) plus BFTF (Breached Fuel Test Facility) in EBR-II, USA. The technical feature of FLORA is its annular linear induction pump (A-LIP), which was developed in response to a need identified through the experiences in the mechanical flow control of FPTF. We have already designed the basic system facility of FLORA for the JOYO MK-II core. However, to put FLORA to practical use in the future, we have to confirm the stability of the JOYO MK-III core condition, solve problems and improve the design. We are going to freeze and review the FLORA project, taking into consideration the fuel development situation and the research project of JOYO MK-III core. (J.P.N.)

  14. Drag reduction in channel flow using nonlinear control (United States)

    Keefe, Laurence R.


    Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.

  15. Control of open end plasma flow utilizing orbital stochasticity

    International Nuclear Information System (INIS)

    Hojo, Hitoshi


    It has been known that the control of plasma outside the confinement region of diverter plasma and others in a magnetic field confinement device is very important for improveing the confinement of bulk plasma. The control of plasma outside a confinement region bears two roles, one is the reduction of the thermal load on a diverter plate and others due to the plasma particles lost from the confinement region, and another is the restriction of the back flow of cold plasma and impurities generated outside the confinement region to a bulk plasma region. In this study, the new method of controlling plasma outside a confinement region called magnetic diverter is considered. To the plasma particles advancing along magnetic force lines, the reflection and capture of the plasma particles occur in the region of orbital stochasticity, and the thermal load on an end plate and the reverse flow to a bulk plasma region are restricted. The numerical computation model used regarding the particle control utilizing the orbital stochasticity and the results of calculating the orbit of plasma particles in a magnetic field are reported. (K.I.)

  16. Synthetic Jets Flow Control on a vertical stabilizer (United States)

    Rathay, Nicholas; Boucher, Matthew; Amitay, Michael


    The vertical stabilizer on most commercial transport aircraft is much larger than required for stability and control. The tail is significantly oversized in order to maintain controllability in the event of asymmetric engine failure and meet flying qualities requirements related to dynamic motion. Using aerodynamic flow control techniques, it may be possible to reduce the size of the tail while maintaining similar control authority during inclement flight conditions. Reducing the size of the tail decreases the weight and the drag of the airplane, which results in considerable savings in fuel costs. In this work, it is shown that synthetic jet (zero-net-mass-flux) actuators are capable of reattaching the separated flow on the rudder and augmenting the performance of the stabilizer. Experiments were conducted in an open-return wind tunnel on a 1/25th scale model of a vertical stabilizer and a partial fuselage section. The surface pressure, aerodynamic loads and data acquired with a Stereo PIV system were used to investigate the effectiveness of this technology as well as provide a more detailed analysis of the flowfield and showed that the synthetic jets are capable of augmenting the side-force by up to 20%.

  17. Flow controls on lowland river macrophytes: a review. (United States)

    Franklin, Paul; Dunbar, Michael; Whitehead, Paul


    We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.

  18. Active Noise Control Experiments using Sound Energy Flu (United States)

    Krause, Uli


    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  19. Unsteady flow model for circulation-control airfoils (United States)

    Rao, B. M.


    An analysis and a numerical lifting surface method are developed for predicting the unsteady airloads on two-dimensional circulation control airfoils in incompressible flow. The analysis and the computer program are validated by correlating the computed unsteady airloads with test data and also with other theoretical solutions. Additionally, a mathematical model for predicting the bending-torsion flutter of a two-dimensional airfoil (a reference section of a wing or rotor blade) and a computer program using an iterative scheme are developed. The flutter program has a provision for using the CC airfoil airloads program or the Theodorsen hard flap solution to compute the unsteady lift and moment used in the flutter equations. The adopted mathematical model and the iterative scheme are used to perform a flutter analysis of a typical CC rotor blade reference section. The program seems to work well within the basic assumption of the incompressible flow.

  20. Device for controlling a recirculation flow in a reactor

    International Nuclear Information System (INIS)

    Shida, Toichi; Tohei, Kazushige; Hirose, Masao; Nakamura, Hideo.


    Object: To provide an emergency cut-off valve in a recirculation system in a reactor to control the recirculation at the time of turbine trip or load cut-off, thereby relieving excessive increase in heat output of fuel. Structure: A recirculation pump is driven through a recirculation pump motor by an AC generator, which is driven by a driving motor through a fluid coupling, so that reactor water passes the emergency cut-off valve and recirculation flow stop valve and then passes a jet pump into the core. At the time of turbine trip or load cut-off, the emergency cut-off valve is closed by a hydraulic circuit, whereby core flow is merely decreased by 20 to 30% in a short period of time to restrain excessive increase in heat output. (Yoshino, Y.)

  1. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen


    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  2. Plasma-based actuators for turbulent boundary layer control in transonic flow (United States)

    Budovsky, A. D.; Polivanov, P. A.; Vishnyakov, O. I.; Sidorenko, A. A.


    The study is devoted to development of methods for active control of flow structure typical for the aircraft wings in transonic flow with turbulent boundary layer. The control strategy accepted in the study was based on using of the effects of plasma discharges interaction with miniature geometrical obstacles of various shapes. The conceptions were studied computationally using 3D RANS, URANS approaches. The results of the computations have shown that energy deposition can significantly change the flow pattern over the obstacles increasing their influence on the flow in boundary layer region. Namely, one of the most interesting and promising data were obtained for actuators basing on combination of vertical wedge with asymmetrical plasma discharge. The wedge considered is aligned with the local streamlines and protruding in the flow by 0.4-0.8 of local boundary layer thickness. The actuator produces negligible distortion of the flow at the absence of energy deposition. Energy deposition along the one side of the wedge results in longitudinal vortex formation in the wake of the actuator providing momentum exchange in the boundary layer. The actuator was manufactured and tested in wind tunnel experiments at Mach number 1.5 using the model of flat plate. The experimental data obtained by PIV proved the availability of the actuator.

  3. Fast neutron activating detectors for pulsed flow measurements

    International Nuclear Information System (INIS)

    Dyatlov, V.D.; Kunaev, G.T.; Popytaev, A.N.; Cheremukhov, B.V.


    The requirements to the activation detectors of the pulsed flows of the fast neutrons are considered; the criteria of optimum measurement time, geometrical moderator sizes and radioactive detector element properties have been obtained. On their analysis parameter selection has been carried out. The neutron detector to register the short pulses has been designed and calibrated. The ways of further increase of sensitivity and efficiency of such detectors are discussed

  4. Computing an operating parameter of a unified power flow controller (United States)

    Wilson, David G.; Robinett, III, Rush D.


    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  5. Computing an operating parameter of a unified power flow controller (United States)

    Wilson, David G; Robinett, III, Rush D


    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  6. The synthesis of active pharmaceutical ingredients (APIs using continuous flow chemistry

    Directory of Open Access Journals (Sweden)

    Marcus Baumann


    Full Text Available The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  7. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. (United States)

    Baumann, Marcus; Baxendale, Ian R


    The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  8. Multiphase flow dynamics and control; Dynamique et controle des ecoulements polyphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Duret, E.


    Production in the petroleum industry requires a better knowledge of multiphase flow, as the design of pipelines may cause the flow to become strongly unstable. For instance, for low flow rates and when a sea line ends at a riser, the riser base may accumulate liquid and stop the flow of gas. Then, the upstream gas is compressed until its pressure is large enough to push the liquid slug downstream. Under such conditions, a cyclic process occurs which is called severe slugging, generating large and fast fluctuations in pressure and flow rates. This thesis is devoted to two methods to stabilize this undesirable phenomenon. Using the pipeline's ability to separate phases to pick-up the gas upstream the riser base, they are mainly based on the perturbation theory (fast proportional effect, slow integral effect). The first one uses a secondary riser to transport the gas to the surface facilities. A stability study worked out with the phase diagrams technique shows that it is a good method to control this phenomenon. However, it imposes a high pressure in all the system. Thus, the second controller re-injects the gas at a determined height in the riser to decrease the hydrostatic pressure. A first stability study in open loop give a criterion on the minimal reinjection height. Then, the controller is developed by using the two-time scale control techniques. Finally, let us denote that these two controllers have been validated with a small size experimental set up. (author)

  9. Hydrodynamic Capture and Release of Passively Driven Particles by Active Particles Under Hele-Shaw Flows (United States)

    Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun


    The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.

  10. A nuclear data acquisition system flow control model

    International Nuclear Information System (INIS)

    Hack, S.N.


    A general Petri Net representation of a nuclear data acquisition system model is presented. This model provides for the unique requirements of a nuclear data acquisition system including the capabilities of concurrently acquiring asynchronous and synchronous data, of providing multiple priority levels of flow control arbitration, and of permitting multiple input sources to reside at the same priority without the problem of channel lockout caused by a high rate data source. Finally, a previously implemented gamma camera/physiological signal data acquisition system is described using the models presented

  11. Systematic realisation of control flow analyses for CML

    DEFF Research Database (Denmark)

    Gasser, K.L.S.; Nielson, Flemming; Nielson, Hanne Riis


    We present a methodology for the systematic realisation of control flow analyses and illustrate it for Concurrent ML. We start with an abstract specification of the analysis that is next proved semantically sound with respect to a traditional small-step operational semantics; this result holds......) to be defined in a syntax-directed manner, and (iii) to generate a set of constraints that subsequently can be solved by standard techniques. We prove equivalence results between the different versions of the analysis; in particular it follows that the least solution to the constraints generated...

  12. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher


    that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study....

  13. Skin-friction drag reduction in turbulent channel flow based on streamwise shear control

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Lee, Jae Hwa


    Highlights: • We perform DNSs of fully developed turbulent channel flows to explore an active flow control concept using streamwise velocity shear control at the wall. • The structural spacing and wall amplitude parameters are systematically changed to achieve a high-efficient drag reduction rate for longitudinal control surface. • Significant drag reduction is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations. • The generation and evolution of the turbulent vortices in the absence of velocity shear and how they contribute to DR have been examined. - Abstract: It is known that stretching and intensification of a hairpin vortex by mean shear play an important role to create a hairpin vortex packet, which generates the large Reynolds shear stress associated with skin-friction drag in wall-bounded turbulent flows. In order to suppress the mean shear at the wall for high efficient drag reduction (DR), in the present study, we explore an active flow control concept using streamwise shear control (SSC) at the wall. The longitudinal control surface is periodically spanwise-arranged with no-control surface while varying the structural spacing, and an amplitude parameter for imposing the strength of the actuating streamwise velocity at the wall is introduced to further enhance the skin-friction DR. Significant DR is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations, although a further increase in the parameters amplifies the turbulence activity in the near-wall region. In order to study the direct relationship between turbulent vortical structures and DR under the SSC, temporal evolution with initial eddies extracted by conditional averages for Reynolds-stress-maximizing Q2 events are examined. It is shown that the generation of new vortices is dramatically inhibited with an increase in the parameters

  14. Jet flow and premixed jet flame control by plasma swirler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang, E-mail: [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Xi [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhao, Yujun [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liu, Cunxi [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Qi [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xu, Gang; Liu, Fuqiang [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)


    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design. - Highlights: • The discharge does not ignite the mixture nor does it induce flashback. • The prominent advantage of this novel plasma swirler is its swirl number adjustable without any mechanical movement. • The frequency of the plasma swirler is adjustable. • The plasma swirler can be used as an oscillator to the reactants. • The plasma swirler can be used alone or combine with other traditional swirlers.

  15. Simulation Results of Closed Loop Controlled Interline Power Flow Controller System

    Directory of Open Access Journals (Sweden)



    Full Text Available The Interline Power Flow Controller (IPFC is the latest generation of Flexible AC Transmission Systems (FACTS devices which can be used to control power flows of multiple transmission lines. A dispatch strategy is proposed for an IPFC operating at rated capacity, in which the power circulation between the two series converters is used as the parameter to optimize the voltage profile and power transfer. Voltage stability curves for test system are shown to illustrate the effectiveness of this proposed strategy. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB simulink and the results are presented.

  16. Effect of flow and active mixing on bacterial growth in a colon-like geometry (United States)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  17. Development of a flow controller for long-term sampling of gases and vapors using evacuated canisters. (United States)

    Rossner, Alan; Farant, Jean Pierre; Simon, Philippe; Wick, David P


    Anthropogenic activities contribute to the release of a wide variety of volatile organic compounds (VOC) into microenvironments. Developing and implementing new air sampling technologies that allow for the characterization of exposures to VOC can be useful for evaluating environmental and health concerns arising from such occurrences. A novel air sampler based on the use of a capillary flow controller connected to evacuated canisters (300 mL, 1 and 6 L) was designed and tested. The capillary tube, used to control the flow of air, is a variation on a sharp-edge orifice flow controller. It essentially controls the velocity of the fluid (air) as a function of the properties of the fluid, tube diameter and length. A model to predict flow rate in this dynamic system was developed. The mathematical model presented here was developed using the Hagen-Poiseuille equation and the ideal gas law to predict flow into the canisters used to sample for long periods of time. The Hagen-Poiseuille equation shows the relationship between flow rate, pressure gradient, capillary resistance, fluid viscosity, capillary length and diameter. The flow rates evaluated were extremely low, ranging from 0.05 to 1 mL min(-1). The model was compared with experimental results and was shown to overestimate the flow rate. Empirical equations were developed to more accurately predict flow for the 300 mL, 1 and 6 L canisters used for sampling periods ranging from several hours to one month. The theoretical and observed flow rates for different capillary geometries were evaluated. Each capillary flow controller geometry that was tested was found to generate very reproducible results, RSD gas chromatograph. The capillary flow controller was found to exceed the performance of the sorbent samplers in this comparison.

  18. Active control versus recursive backstepping control of a chaotic ...

    African Journals Online (AJOL)

    In this paper active controllers and recursive backstepping controllers are designed for a third order chaotic system. The performances of these controllers in the control of the dynamics of the chaotic system are investigated numerically and are found to be effective. Comparison of their transient performances show that the ...

  19. Anomalous Chained Turbulence in Actively Driven Flows on Spheres (United States)

    Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn


    Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

  20. Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization. (United States)

    Nakajima, M; Watanabe, A; Jimbo, N; Nishizawa, K; Nakao, S


    A forced-flow enzyme membrane reactor system for sucrose inversion was investigated using three ceramic membranes having different pore sizes. Invertase was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-glutaraldehyde technique. With the cross-flow filtration of sucrose solution, the reaction rate was a function of the permeate flux, easily controlled by pressure. Using 0.5 microm support pore size of membrane, the volumetric productivity obtained was 10 times higher than that in a reported immobilized enzyme column reactor, with a short residence time of 5 s and 100% conversion of the sucrose inversion.

  1. Developing Internal Controls through Activities (United States)

    Barnes, F. Herbert


    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  2. Dynamic flow control strategies of vehicle SCR Urea Dosing System (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik


    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  3. Microcomputer-controlled flow meter used on a water loop

    International Nuclear Information System (INIS)

    Haniger, L.


    The report describes a microcomputer-controlled instrument intended for operational measurement on an experimental water loop. On the basis of pressure and temperature input signals the instrument calculates the specific weight, and for ten operator-selectable measuring channels it calculates the mass flow G(kp/s), or the voluminal flow Q(m 3 /h). On pressing the appropriate push-buttons the built-in display indicates the values of pressure (p) and temperature (t), as well as the values of specific weight γ calculated therefrom. For ten individually selectable channels the instrument displays either the values of the pressure differences of the measuring throttling elements (√Δpsub(i)), or the values of Gsub(i) or Qsub(i) as obtained by calculation. In addition, on pressing the Σ-push-button it summarizes the values of Gsub(i) and Qsub(i) for the selected channels. The device is controlled by an 8085 microprocessor, the analog unit MP 6812 being used as the A/D convertor. The instrument algorithm indicates some possible errors which may concern faults of input signals or mistakes in calculation. (author)

  4. Provably correct control flow graphs from Java bytecode programs with exceptions

    NARCIS (Netherlands)

    Amighi, A.; de Carvalho Gomes, Pedro; Gurov, Dilian; Huisman, Marieke


    We present an algorithm for extracting control flow graphs from Java bytecode that captures normal as well as exceptional control flow. We prove its correctness, in the sense that the behaviour of the extracted control flow graph is a sound over-approximation of the behaviour of the original

  5. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy

    Directory of Open Access Journals (Sweden)

    T. Sajid


    Full Text Available The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.

  6. Identifying the best locations to install flow control devices in sewer networks to enable in-sewer storage (United States)

    Leitão, J. P.; Carbajal, J. P.; Rieckermann, J.; Simões, N. E.; Sá Marques, A.; de Sousa, L. M.


    The activation of available in-sewer storage volume has been suggested as a low-cost flood and combined sewer overflow mitigation measure. However, it is currently unknown what the attributes for suitable objective functions to identify the best location for flow control devices are and the impact of those attributes on the results. In this study, we present a novel location model and efficient algorithm to identify the best location(s) to install flow limiters. The model is a screening tool that does not require hydraulic simulations but rather considers steady state instead of simplistic static flow conditions. It also maximises in-sewer storage according to different reward functions that also considers the potential impact of flow control device failure. We demonstrate its usefulness on two real sewer networks, for which an in-sewer storage potential of approximately 2,000 m3 and 500 m3 was estimated with five flow control devices installed.

  7. Active surge control for variable speed axial compressors. (United States)

    Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan


    This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. End-tidal control vs. manually controlled minimal-flow anesthesia: a prospective comparative trial. (United States)

    Wetz, A J; Mueller, M M; Walliser, K; Foest, C; Wand, S; Brandes, I F; Waeschle, R M; Bauer, M


    To ensure safe general anesthesia, manually controlled anesthesia requires constant monitoring and numerous manual adjustments of the gas dosage, especially for low- and minimal-flow anesthesia. Oxygen flow-rate and administration of volatile anesthetics can also be controlled automatically by anesthesia machines using the end-tidal control technique, which ensures constant end-tidal concentrations of oxygen and anesthetic gas via feedback and continuous adjustment mechanisms. We investigated the hypothesis that end-tidal control is superior to manually controlled minimal-flow anesthesia (0.5 l/min). In this prospective trial, we included 64 patients undergoing elective surgery under general anesthesia. We analyzed the precision of maintenance of the sevoflurane concentration (1.2-1.4%) and expiratory oxygen (35-40%) and the number of necessary adjustments. Target-concentrations of sevoflurane and oxygen were maintained at more stable levels with the use of end-tidal control (during the first 15 min 28% vs. 51% and from 15 to 60 min 1% vs. 19% deviation from sevoflurane target, P tidal oxygen (5, IQR 3-6). The target-concentrations were reached earlier with the use of end-tidal compared with manual controlled minimal-flow anesthesia but required slightly greater use of anesthetic agents (6.9 vs. 6.0 ml/h). End-tidal control is a superior technique for setting and maintaining oxygen and anesthetic gas concentrations in a stable and rapid manner compared with manual control. Consequently, end-tidal control can effectively support the anesthetist. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Control of unsteady separated flow associated with the dynamic pitching of airfoils (United States)

    Ahmed, Sajeer


    Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.

  10. A model for investigating the control of muscle blood flow: the masseteric artery in conscious rabbits

    International Nuclear Information System (INIS)

    Roatta, S; Mohammed, M; Turturici, M; Milano, L; Passatore, M


    The complex interplay of neural, metabolic, myogenic and mechanical mechanisms that regulate blood flow in skeletal muscle (MBF) is still incompletely understood. For the first time, a method is presented for high time-resolution recording of MBF from a purely muscular artery in physiological conditions. Ultrasound perivascular flow probes were implanted (n = 15) mono- or bilaterally around the masseteric branch of the facial artery in nine rabbits and tested up to 16 days after implant. Reliable and stable recordings were achieved in 50% of implants. Blood flow was observed to increase from a resting level of 0.2–0.3 ml min −1 up to 4.0–6.0 ml min −1 during spontaneous masticatory activity. In addition, within single masticatory cycles marked back flow transients could be observed (peak flow = −10 ml min −1 ) during powerful masticatory strokes but not during mild mastication. The possibility of (1) surgically removing the sympathetic supply to the relevant vascular bed and of (2) bilaterally monitoring the perfusion of masseter muscles thus allowing to use one side as control side for different types of interventions makes this model a useful tool for disentangling the different mechanisms involved in the control of MBF. (note)

  11. Neural control of blood flow during exercise in human metabolic syndrome. (United States)

    Limberg, Jacqueline K; Morgan, Barbara J; Sebranek, Joshua J; Proctor, Lester T; Eldridge, Marlowe W; Schrage, William G


    α-Adrenergic-mediated vasoconstriction is greater during simulated exercise in animal models of metabolic syndrome (MetSyn) when compared with control animals. In an attempt to translate such findings to humans, we hypothesized that adults with MetSyn (n = 14, 35 ± 3 years old) would exhibit greater α-adrenergic responsiveness during exercise when compared with age-matched healthy control subjects (n = 16, 31 ± 3 years old). We measured muscle sympathetic nerve activity (MSNA; microneurography) and forearm blood flow (Doppler ultrasound) during dynamic forearm exercise (15% of maximal voluntary contraction). α-Adrenergic agonists (phenylephrine and clonidine) and an antagonist (phentolamine) were infused intra-arterially to assess α-adrenergic receptor responsiveness and restraint, respectively. Resting MSNA was ∼35% higher in adults with MetSyn (P exercise. Clonidine-mediated vasoconstriction was greater in adults with MetSyn (P  0.05). Interestingly, exercise-mediated vasodilatation was greater in MetSyn (P exercise blood flow during low-intensity hand-grip exercise when compared with age-matched healthy control subjects. These results suggest that adults with MetSyn exhibit compensatory vascular control mechanisms capable of preserving blood flow responses to exercise in the face of augmented sympathetic adrenergic activity. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  12. Monocular distance estimation from optic flow during active landing maneuvers

    International Nuclear Information System (INIS)

    Van Breugel, Floris; Morgansen, Kristi; Dickinson, Michael H


    Vision is arguably the most widely used sensor for position and velocity estimation in animals, and it is increasingly used in robotic systems as well. Many animals use stereopsis and object recognition in order to make a true estimate of distance. For a tiny insect such as a fruit fly or honeybee, however, these methods fall short. Instead, an insect must rely on calculations of optic flow, which can provide a measure of the ratio of velocity to distance, but not either parameter independently. Nevertheless, flies and other insects are adept at landing on a variety of substrates, a behavior that inherently requires some form of distance estimation in order to trigger distance-appropriate motor actions such as deceleration or leg extension. Previous studies have shown that these behaviors are indeed under visual control, raising the question: how does an insect estimate distance solely using optic flow? In this paper we use a nonlinear control theoretic approach to propose a solution for this problem. Our algorithm takes advantage of visually controlled landing trajectories that have been observed in flies and honeybees. Finally, we implement our algorithm, which we term dynamic peering, using a camera mounted to a linear stage to demonstrate its real-world feasibility. (paper)

  13. Vibration control of active structures an introduction

    CERN Document Server

    Preumont, Andre


    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  14. Activity flow over resting-state networks shapes cognitive task activations. (United States)

    Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H


    Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.

  15. Power flow analysis for islanded microgrid in hierarchical structure of control system using optimal control theory

    Directory of Open Access Journals (Sweden)

    Thang Diep Thanh


    Full Text Available In environmental uncertainties, the power flow problem in islanded microgrid (MG becomes complex and non-trivial. The optimal power flow (OPL problem is described in this paper by using the energy balance between the power generation and load demand. The paper also presents the hierarchical control structure which consists of primary, secondary, tertiary, and emergency controls. Clearly, optimal power flow (OPL which implements a distributed tertiary control in hierarchical control. MG consists of diesel engine generator (DEG, wind turbine generator (WTG, and photovoltaic (PV power. In the control system considered, operation planning is realized based on profiles such that the MG, load, wind and photovoltaic power must be forecasted in short-period, meanwhile the dispatch source (i.e., DEG needs to be scheduled. The aim of the control problem is to find the dispatch output power by minimizing the total cost of energy that leads to the Hamilton-Jacobi-Bellman equation. Experimental results are presented, showing the effectiveness of optimal control such that the generation allows demand profile.

  16. Backbone of complex networks of corporations: The flow of control (United States)

    Glattfelder, J. B.; Battiston, S.


    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  17. Dielectric barrier discharge plasma actuator for flow control (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  18. Two-phase flow measurements using a photochromic dye activation technique

    International Nuclear Information System (INIS)

    Kawaji, M.


    A novel flow visualization method called photochromic dye activation (PDA) technique has been used to investigate flow structures and mechanisms in various two-phase flow regimes. This non-intrusive flow visualization technique utilizes light activation of a photochromic dye material dissolved in a clear liquid and is a molecular tagging technique, requiring no seed particles. It has been used to yield both quantitative and qualitative flow data in the liquid phase in annular flow, slug flow and stratified-wavy flows. (author)

  19. Structure of urban movements: polycentric activity and entangled hierarchical flows.

    Directory of Open Access Journals (Sweden)

    Camille Roth

    Full Text Available The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large scale, real-time 'Oyster' card database of individual person movements in the London subway to reveal the structure and organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume, but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense structure of its centers and it provides an initial approach to modeling flows in an urban system.

  20. Flow Diode and Method for Controlling Fluid Flow Origin of the Invention (United States)

    Dyson, Rodger W (Inventor)


    A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.

  1. TRPV4 activation mediates flow-induced nitric oxide production in the rat thick ascending limb (United States)

    Garvin, Jeffrey L.


    Nitric oxide (NO) regulates renal function. Luminal flow stimulates NO production in the thick ascending limb (TAL). Transient receptor potential vanilloid 4 (TRPV4) is a mechano-sensitive channel activated by luminal flow in different types of cells. We hypothesized that TRPV4 mediates flow-induced NO production in the rat TAL. We measured NO production in isolated, perfused rat TALs using the fluorescent dye DAF FM. Increasing luminal flow from 0 to 20 nl/min stimulated NO from 8 ± 3 to 45 ± 12 arbitrary units (AU)/min (n = 5; P < 0.05). The TRPV4 antagonists, ruthenium red (15 μmol/l) and RN 1734 (10 μmol/l), blocked flow-induced NO production. Also, luminal flow did not increase NO production in the absence of extracellular calcium. We also studied the effect of luminal flow on NO production in TALs transduced with a TRPV4shRNA. In nontransduced TALs luminal flow increased NO production by 47 ± 17 AU/min (P < 0.05; n = 5). Similar to nontransduced TALs, luminal flow increased NO production by 39 ± 11 AU/min (P < 0.03; n = 5) in TALs transduced with a control negative sequence-shRNA while in TRPV4shRNA-transduced TALs, luminal flow did not increase NO production (Δ10 ± 15 AU/min; n = 5). We then tested the effect of two different TRPV4 agonists on NO production in the absence of luminal flow. 4α-Phorbol 12,13-didecanoate (1 μmol/l) enhanced NO production by 60 ± 11 AU/min (P < 0.002; n = 7) and GSK1016790A (10 ηmol/l) increased NO production by 52 ± 15 AU/min (P < 0.03; n = 5). GSK1016790A (10 ηmol/l) did not stimulate NO production in TRPV4shRNA-transduced TALs. We conclude that activation of TRPV4 channels mediates flow-induced NO production in the rat TAL. PMID:24966090

  2. Effects of glycemic control on saliva flow rates and protein composition in non-insulin-dependent diabetes mellitus. (United States)

    Dodds, M W; Dodds, A P


    The objective of this study was to determine whether improvements in the level of diabetic control in a group of subjects with poorly controlled non-insulin-dependent diabetes mellitus influence salivary output and composition. Repeated whole unstimulated and stimulated parotid saliva samples were collected from diabetic patients attending an outpatient diabetes education program and a matched nondiabetic control group. Saliva was analyzed for flow rates, parotid protein concentration and composition, and amylase activity. Subjective responses to questions about salivary hypofunction were tested. There were no significant differences in whole unstimulated and stimulated parotid flow rates or stimulated parotid protein concentration and composition between diabetics and the control group. Amylase activity was higher in diabetics and decreased with improved glycemic control. Subjects reporting taste alterations had higher mean blood glucose levels than subjects with normal taste sensation. Poorly controlled non-insulin-dependent diabetes mellitus has no influence on saliva output, although amylase activity may be elevated, and there may be taste alterations.

  3. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation (United States)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars


    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and

  4. Dynamic evolution process of turbulent channel flow after opposition control

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Mingwei; Tian, De; Yongqian, Liu, E-mail: [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing102206 (China)


    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of 〈 v ′ v ′〉 and 〈− u ′ v ′〉 in the viscous sublayer. (paper)

  5. Chaos control for the plates subjected to subsonic flow (United States)

    Norouzi, Hamed; Younesian, Davood


    The suppression of chaotic motion in viscoelastic plates driven by external subsonic air flow is studied. Nonlinear oscillation of the plate is modeled by the von-Kármán plate theory. The fluid-solid interaction is taken into account. Galerkin's approach is employed to transform the partial differential equations of the system into the time domain. The corresponding homoclinic orbits of the unperturbed Hamiltonian system are obtained. In order to study the chaotic behavior of the plate, Melnikov's integral is analytically applied and the threshold of the excitation amplitude and frequency for the occurrence of chaos is presented. It is found that adding a parametric perturbation to the system in terms of an excitation with the same frequency of the external force can lead to eliminate chaos. Variations of the Lyapunov exponent and bifurcation diagrams are provided to analyze the chaotic and periodic responses. Two perturbation-based control strategies are proposed. In the first scenario, the amplitude of control forces reads a constant value that should be precisely determined. In the second strategy, this amplitude can be proportional to the deflection of the plate. The performance of each controller is investigated and it is found that the second scenario would be more efficient.

  6. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O


    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...... skeletal muscle, cutaneous and subcutaneous tissues of the limbs indicate that the situation is more complex. Measurements have been carried out during acute as well as chronic sympathetic denervation. Spinal sympathetic reflex mechanisms have been evaluated in tetraplegic patients, where supraspinal...

  7. Predesigned surface patterns and topological defects control the active matter. (United States)

    Turiv, Taras; Peng, Chenhui; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg

    Active matter exhibits remarkable patterns of never-ending dynamics with giant fluctuations of concentration, varying order, nucleating and annihilating topological defects. These patterns can be seen in active systems of both biological and artificial origin. A fundamental question is whether and how one can control this chaotic out-of-equilibrium behavior. We demonstrate a robust control of local concentration, trajectories of active self-propelled units and the net flows of active bacteria Bacillus Substilis by imposing pre-designed surface patterns of orientational order in a water-based lyotropic chromonic liquid crystal. The patterns force the bacteria to gather into dynamic swarms with spatially modulated concentration and well-defined polarity of motion. Topological defects produce net motion of bacteria with a unidirectional circulation, while pairs of defects induce a pumping action. The qualitative features of the dynamics can be explained by interplay of curvature and activity, in particular, by ability of mixed splay-bend curvatures to generate threshold-less active flows. The demonstrated level of control opens opportunities in engineering materials and devices that mimic rich functionality of living systems. This work was supported by NSF Grants DMR-1507637, DMS-1434185, CMMI-1436565, by the Petroleum Research Grant PRF# 56046-ND7 administered by the American Chemical Society.

  8. Unsteady Flows Control Hydrologic Turnover Rates in Antarctic Hyporheic Zones (United States)

    Wlostowski, A. N.; Gooseff, M. N.; McKnight, D. M.; Lyons, W. B.; Saelens, E.


    Hydrologic turnover of the hyporheic zone (HZ) is the process of HZ flowpaths receiving water and solutes from the stream channel while simultaneously contributing water and solutes from the HZ back to the stream channel. The influence of hydrologic turnover on HZ solute storage depends on the relative magnitude of hyporheic exchange rates (i.e. physical transport) and biogeochemical reaction rates. Because both exchange rates and reaction rates are unsteady in natural systems, the availability of solutes in the HZ is controlled by the legacy of hydraulic and biological conditions. In this study, we quantify the influence of unsteady flows on hydrologic turnover of the HZ. We study a glacial melt stream in the McMurdo Dry Valleys of Antarctica (MDVs). The MDVs provide an ideal setting for investigating hydrologic and chemical storage characteristics of HZs, because nearly all streamflow is generated from glacier melt and the HZ is vertically bounded by continuous permafrost. A dense network of shallow groundwater wells and piezometers was installed along a 60-meter reach of Von Guerard Stream. 12 days of continuous water level data in each well was used to compute the magnitude and direction of 2D hydraulic gradients between the stream channel and lateral hyporheic aquifer. Piezometers were sampled daily for stable isotope abundances. The direction and magnitude of the cross-valley (CV), perpendicular to the thalweg, component of hydraulic gradients is sensitive to daily flood events and exhibits significant spatial heterogeneity. CV gradients are consistently oriented from the hyporheic aquifer towards the stream channel on 2 sections of the study reach, whereas CV gradients are consistently oriented from the stream channel towards the hyporheic aquifer on 1 section. Three sections show diel changes in orientation of CV gradients, coincident with the passage of daily flood events. During a 4-day period of low flows, the HZ is isotopically distinct from the stream

  9. The friction control of magnetic fluid in the Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Labkovich, O.N., E-mail:; Reks, A.G.; Chernobai, V.A.


    In the work characteristic areas of magnetic fluid flow are experimentally determined in the gap between the cylinders: the area of strong dipole-dipole interaction between magnetite particles 0flow 8flow Ta>41,2. For areas with high flow losses in viscous friction is shown the possibility of reducing the introduction of magnetic fluid of carbon nanotubes and creating a rotating magnetic field. - Highlights: • Typical areas of magnetic fluid flow are determined in the gap. • Influence of dipole-dipole interaction of magnetite particles on the viscous friction. • Features of Taylor vortex flow.

  10. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators (United States)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was

  11. Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model (United States)

    Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.


    The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.

  12. Provably Correct Control-Flow Graphs from Java Programs with Exceptions

    NARCIS (Netherlands)

    Amighi, A.; de Carvalho Gomes, Pedro; Huisman, Marieke


    We present an algorithm to extract flow graphs from Java bytecode, focusing on exceptional control flows. We prove its correctness, meaning that the behaviour of the extracted control-flow graph is an over-approximation of the behaviour of the original program. Thus any safety property that holds

  13. Control of high frequency microactuators using active structures

    International Nuclear Information System (INIS)

    Kreth, P A; Alvi, F S; Reese, B M; Oates, W S


    A fluidically driven microactuator that generates supersonic, pulsed microjets has been implemented with smart materials to actively and precisely control the frequency of the microjets in a closed-loop manner. Since this actuator relies on a number of microscale flow and acoustic phenomena to produce the pulsed microjets, its resonant frequency is determined by its geometry and other flow parameters. The design discussed in this paper integrates piezoelectric stacks by connecting them to movable sidewalls within the actuator such that the microactuator's internal geometry can be controlled by varying the voltage across the piezo-stacks. An open-loop control scheme demonstrates the frequency modulation capabilities that are enabled with this design: very large frequency deviations (up to ±500 Hz) around the actuator design frequency are attained at very high rates (up to 1 kHz). Closed-loop control of the microactuator's frequency was also demonstrated, and the results indicate that (combined with appropriate sensors) this actuator could be used effectively for active, feedback control in high-speed, resonance-dominated flowfields. This proof of concept study clearly illustrates the ability of this robust and compact actuator to produce perturbations that can be modulated and controlled based on the desired control objective. (paper)

  14. Prevalence of active trachoma two years after control activities ...

    African Journals Online (AJOL)

    The prevalence of TF/TI showed significant reduction (p-value <0.001) in all five districts and overall in the two regions. Conclusion: Trachoma control activities over a two-year period in two regions in Ghana had led to significant reduction in the prevalence of active disease. Integrated surveillance and active monitoring will ...

  15. Quality control of the documentation process in electronic economic activities

    Directory of Open Access Journals (Sweden)

    Krutova A.S.


    Full Text Available It is proved that the main tool that will provide adequate information resources e economic activities of social and economic relations are documenting quality control processes as the basis of global information space. Directions problems as formation evaluation information resources in the process of documentation, namely development tools assess the efficiency of the system components – qualitative assessment; development of mathematical modeling tools – quantitative evaluation. A qualitative assessment of electronic documentation of economic activity through exercise performance, efficiency of communication; document management efficiency; effectiveness of flow control operations; relationship management effectiveness. The concept of quality control process documents electronically economic activity to components which include: the level of workflow; forms adequacy of information; consumer quality documents; quality attributes; type of income data; condition monitoring systems; organizational level process documentation; attributes of quality, performance quality consumer; type of management system; type of income data; condition monitoring systems. Grounded components of the control system electronic document subjects of economic activity. Detected components IT-audit management system economic activity: compliance audit; audit of internal control; detailed multilevel analysis; corporate risk assessment methodology. The stages and methods of processing electronic transactions economic activity during condition monitoring of electronic economic activity.

  16. On-Chip Enucleation of Bovine Oocytes using Microrobot-Assisted Flow-Speed Control

    Directory of Open Access Journals (Sweden)

    Akihiko Ichikawa


    Full Text Available In this study, we developed a microfluidic chip with a magnetically driven microrobot for oocyte enucleation. A microfluidic system was specially designed for enucleation, and the microrobot actively controls the local flow-speed distribution in the microfluidic chip. The microrobot can adjust fluid resistances in a channel and can open or close the channel to control the flow distribution. Analytical modeling was conducted to control the fluid speed distribution using the microrobot, and the model was experimentally validated. The novelties of the developed microfluidic system are as follows: (1 the cutting speed improved significantly owing to the local fluid flow control; (2 the cutting volume of the oocyte can be adjusted so that the oocyte undergoes less damage; and (3 the nucleus can be removed properly using the combination of a microrobot and hydrodynamic forces. Using this device, we achieved a minimally invasive enucleation process. The average enucleation time was 2.5 s and the average removal volume ratio was 20%. The proposed new system has the advantages of better operation speed, greater cutting precision, and potential for repeatable enucleation.

  17. Direct numerical simulation of turbulent channel flow with spanwise alternatively distributed strips control (United States)

    Ni, Weidan; Lu, Lipeng; Fang, Jian; Moulinec, Charles; Yao, Yufeng


    The effect of spanwise alternatively distributed strips (SADS) control on turbulent flow in a plane channel has been studied by direct numerical simulations to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuation, and their potential in suppressing flow separation. SADS control is realized by alternatively arranging out-of-phase control (OPC) and in-phase control (IPC) wall actuations on the lower channel wall surface, in the spanwise direction. It is found that the coherent structures are suppressed or enhanced alternatively by OPC or IPC, respectively, leading to the formation of a vertical shear layer, which is responsible for the LSSVs’ presence. Large-scale low-speed region can also be observed above the OPC strips, which resemble large-scale low-speed streaks. LSSVs are found to be in a statistically-converged steady state and their cores are located between two neighboring OPC and IPC strips. Their motions contribute significantly to the momentum transport in the wall-normal and spanwise directions, demonstrating their potential ability to suppress flow separation.

  18. Active Control Of Structure-Borne Noise (United States)

    Elliott, S. J.


    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  19. Thermally activated plastic flow in the presence of multiple obstacle types

    International Nuclear Information System (INIS)

    Dong, Y; Curtin, W A


    The rate- and temperature-dependent plastic flow in a material containing two types of thermally activatable obstacles to dislocation motion is studied both numerically and theoretically in a regime of relative obstacle densities for which the zero-temperature stress is additive. The numerical methods consider the low-density ‘forest’ obstacles first as point obstacles and then as extended obstacles having a finite interaction length with the dislocation, while the high-density ‘solute’ obstacles are treated as point obstacles. Results show that the finite-temperature flow stresses due to different obstacle strengthening mechanisms are additive, as proposed by Kocks et al, only when all strengthening obstacles can be approximated as point-like obstacles. When the activation distance of the low-density extended obstacles exceeds the spacing between the high-density obstacles, the finite-temperature flow stress is non-additive and the effective activation energy differs from that of the Kocks et al model. An analytical model for the activation energy versus flow stress is proposed, based on analysis of the simulation results, to account for the effect of the finite interaction length. In this model, for high forest activation energies, the point-pinning solute obstacles provide a temperature-dependent backstress σ b on dislocation and the overall activation energy is otherwise controlled by the forest activation energy. The model predictions agree well with numerical results for a wide range of obstacle properties, clearly showing the effect due to the finite interaction between dislocation and the obstacles. The implications of our results on the activation volume are discussed with respect to experimental results on solute-strengthened fcc alloys. (paper)

  20. Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints (United States)

    Cassidy, Ian L.

    Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively

  1. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves. (United States)

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H


    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Activity of corrosion products in pool type reactors with ascending flow in the core

    International Nuclear Information System (INIS)

    Andrade e Silva, Graciete S. de; Queiroz Bogado Leite, Sergio de


    A model for the activity of corrosion products in the water of a pool type reactor with ascending flow is presented. The problem is described by a set of coupled differential equations relating the radioisotope concentrations in the core and pool circuits and taking into account two types of radioactive sources: i) those from radioactive species formed in the fuel cladding, control elements, reflector, etc, and afterwards released to the primary stream by corrosion (named reactor sources) and ii) those formed from non radioactive isotopes entering the primary stream by corrosion of the circuit components and being activated when passing through the core (named circuit sources). (author). 6 refs, 3 figs, 4 tabs

  3. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio


    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  4. Activities of the control services; Activites des services du controle

    Energy Technology Data Exchange (ETDEWEB)



    This paper summarizes the control activities of the technical service of electric power and big dams: annual examinations, administrative instructions (draining, floods, granting renewal), decennial examinations etc. (J.S.)

  5. Kidney Rehabilitation Technology by Improving Blood Flow and Nerve Activation

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim


    The rehabilitation of kidney is impossible from doctors point of view. Kidney failure happens when nephron in kidney fail to filter blood and water. Two major causes of kidney failure. First is the shrinkage of kidney and the second is the blockage of kidney medulla. Kidney shrinkage is because nephron damage due to long term diabetes (Nephrology expert point of view). Whereas blockage of kidney is due to food consume which in turn build up deposit at the blood duct connecting to the medulla. Experiment specimen own body. The rehabilitation methodology is to build up your blood flow system and nerve activation. Result from the study is through analyzing blood components such as creatinine, hemoglobin, urea and potassium. Conclusion, creatinine value has lowered and kidney shrinkage has normalize to its original size. It is hopeful I regain my health 100 % when my GFR reading achieved below 100. (author)

  6. A work process and information flow description of control room operations

    International Nuclear Information System (INIS)

    Davey, E.; Matthews, G.


    The control room workplace is the location from which all plant operations are supervised and controlled on a shift-to-shift basis. The activities comprising plant operations are structured into a number of work processes, and information is the common currency that is used to convey work requirements, communicate business and operating decisions, specify work practice, and describe the ongoing plant and work status. This paper describes the motivation for and early experience with developing a work process and information flow model of CANDU control room operations, and discusses some of the insights developed from model examination that suggest ways in which changes in control centre work specification, organization of resources, or asset layout could be undertaken to achieve operational improvements. (author)

  7. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.


    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....

  8. Manually controlled neutron-activation system

    International Nuclear Information System (INIS)

    Johns, R.A.; Carothers, G.A.


    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates

  9. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    International Nuclear Information System (INIS)

    Chen Kang; Liang Hua


    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. (paper)

  10. Insights from field observations into controls on flow front speed in submarine sediment flows (United States)

    Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.


    Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.

  11. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao


    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  12. Active control of multi-input hydraulic journal bearing system (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying


    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  13. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.


    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  14. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle (United States)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi


    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  15. Effect of plasma actuator control parameters on a transitional flow (United States)

    Das Gupta, Arnob; Roy, Subrata


    This study uses a wall-resolved implicit large eddy simulation to investigate the effects of different surface dielectric barrier discharge actuator parameters such as the geometry of the electrodes, frequency, amplitude of actuation and thermal effect. The actuator is used as a tripping device on a zero-pressure gradient laminar boundary layer flow. It is shown that the standard linear actuator creates structures like the Tollmien-Schlichting wave transition. The circular serpentine, square serpentine and spanwise actuators have subharmonic sinuous streak breakdown and behave like oblique wave transition scenario. The spanwise and square actuators cause comparably faster transition to turbulence. The square actuator adds energy into the higher spanwise wavenumber modes resulting in a faster transition compared to the circular actuator. When the Strouhal number of actuation is varied, the transition does not occur for a value below 0.292. Higher frequencies with same amplitude of actuation lead to faster transition. Small changes (<4%) in the amplitude of actuation can have a significant impact on the transition location which suggests that an optimal combination of frequency and amplitude exists for highest control authority. The thermal bumps approximating the actuator heating only shows localized effects on the later stages of transition for temperatures up to 373 K and can be ignored for standard actuators operating in subsonic regimes.

  16. Recycling flow rate control device in BWR type reactor

    International Nuclear Information System (INIS)

    Fujiwara, Tadashi; Koda, Yasushi


    Purpose: To reduce the recycling pump speed if the pressure variation width and the variation ratio in the nuclear reactor exceed predetermined values, to thereby avoid the shutdown of the plant. Constitution: There has been proposed a method of monitoring the neutron flux increase thereby avoiding unnecessary plant shutdown, but it involves a problems of reactor scram depending on the state of the plant and the set values. In view of the above, in the plant using internal pumps put under the thyristor control and having high response to recycling flow rate, the reactor pressure is monitored and the speed of the internal pump is rapidly reduced when the pressure variation width and variation ratio exceed predetermined values to reduce the reactor power and avoid the plant shutdown. This can reduce the possibility of unnecessary power reduction due to neutron flux noises or the possibility of plant shutdown under low power conditions. Further, since the reactor operation can be continued without stopping the recycling pump, the operation upon recovery can be made rapid. (Horiuchi, T.)

  17. Measurement of separase proteolytic activity in single living cells by a fluorogenic flow cytometry assay.

    Directory of Open Access Journals (Sweden)

    Wiltrud Haaß

    Full Text Available ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML. Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110 as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90-180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic

  18. Revealing flow behaviors of metallic glass based on activation of flow units

    Energy Technology Data Exchange (ETDEWEB)

    Ge, T. P.; Wang, W. H.; Bai, H. Y., E-mail: [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)


    Atomic level flow plays a critical role in the mechanical behavior of metallic glass (MG) while the connection between the flow and the heterogeneous microstructure of the glass remains unclear. We describe the heterogeneity of MGs as the elastic matrix with “inclusions” of nano-scale liquid-like flow units, and the plastic flow behavior of MGs is considered to be accommodated by the flow units. We show that the model can explain the various deformation behaviors, the transformation from inhomogeneous deformation to homogeneous flow upon strain rate or temperature, and the deformation map in MGs, which might provide insights into the flow mechanisms in glasses and inspiration for improving the plasticity of MGs.

  19. Structural Control and Groundwater Flow in the Nubian Aquifer (United States)

    Fathy, K.; Sultan, M.; Ahmed, M.; Save, H.; Emil, M. K.; Elkaliouby, B.


    An integrated research approach (remote sensing, field, geophysics) was conducted to investigate the structural control on groundwater flow in large aquifers using the less studied Nubian Sandstone Aquifer System (NSAS) of NE Africa as a test site. The aquifer extends over 2.2 x 106 km2 in Egypt, Libya, Chad, and Sudan and consists of thick (> 3 kms), water-bearing, Paleozoic and Mesozoic sandstone with intercalations of Tertiary shale and clay. It is subdivided into three sub-basins (Northern Sudan Platform [NSP], Dakhla [DAS], and Kufra) that are separated by basement uplifts (e.g., E-W trending Uweinat-Aswan uplift that separates DAS from the NSP). Aquifer recharge occurs in the south (NSP and southern Kufra) where the aquifer is unconfined and precipitation is high (Average Annual Precipitation [AAP]: 117 mm/yr.) and discharge is concentrated in the north (DAS and northern Kufra). Our approach is a three-fold exercise. Firstly, we compared GOCE-based Global Geopotential Models (GGMs) to terrestrial gravity anomalies for 21262 sites to select the optimum model for deriving Bouguer gravity anomalies. Secondly, structures and uplifts were mapped using hill shade images and their extension in the subsurface were mapped using the Eigen_6C4 model-derived Bouguer anomalies and their Tilt Derivative products (TDR). Thirdly, hydrological analysis was conducted using GRACE CSR 1° x 1° mascon solutions to investigate the mass variations in relation to the mapped structures. Our findings include: (1) The Eigen-6C4 is the optimum model having the lowest deviation (9.122 mGal) from the terrestrial gravity anomalies; (2) the surface expressions of structures matched fairly well with their postulated extensions in the subsurface; (3) identified fault systems include: Red Sea rift-related N-S to NW-SE trending grabens formed by reactivating basement structures during Red Sea opening and Syrian arc-related NE-SW trending dextral shear systems; (4) TWS patterns are uniform

  20. Hydrothermal fluid flow within a tectonically active rift-ridge transform junction: Tjörnes Fracture Zone, Iceland (United States)

    Lupi, M.; Geiger, S.; Graham, C. M.


    We investigate the regional fluid flow dynamics in a highly faulted transform area, the Tjörnes Fracture Zone in northern Iceland which is characterized by steep geothermal gradients, hydrothermal activity, and strong seismicity. We simulate fluid flow within the Tjörnes Fracture Zone using a high-resolution model that was based on the available geological and geophysical data and has the aim to represent the complex geological structures and the thermodynamical processes that drive the regional fluid flow in a physically realistic way. Our results show that convective heat flow and mixing of cold and saline seawater with deep hydrothermal fluids controls the large-scale fluid flow. The distribution of faults has a strong influence on the local hydrodynamics by focusing flow around clusters of faults. This explains the nature of isolated upflow zones of hot hydrothermal fluids which are observed in the Tjörnes Fracture Zone. An important emergent characteristic of the regional fluid flow in the Tjörnes Fracture Zone are two separate flow systems: one in the sedimentary basins, comprising more vigorous convection, and one in the crystalline basement, which is dominated by conduction. These two flow systems yield fundamental insight into the connection between regional hydrothermal fluid flow and seismicity because they form the basis of a toggle switch mechanism that is thought to have caused the hydrogeochemical anomalies recorded at Húsavik before and after the 5.8 M earthquake in September 2002.

  1. Forecasting of cash flow from an enterprise’s principal activities


    Kanapickienė, Rasa; Šlekienė, Vaida


    The article deals with the forecasting of a cash flow from primary activities of an enterprise. Different mathematical methods are applied to forecast cash flow. Cash flow forecasts are often introduced in the project of the enterprise budget. Some scientific sources state that it is possible to forecast cash flow from primary activities of an enterprise according to its historical financial data by the means of regression analysis. These sources suggest various models of regression analysis ...

  2. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway. (United States)

    Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A


    Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.

  3. Modeling and control of active twist aircraft (United States)

    Cramer, Nicholas Bryan

    The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.

  4. Active and passive vibration control of structures

    CERN Document Server

    Spelsberg-Korspeter, Gottfried


    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  5. Flow Physics and Control for Internal and External Aerodynamics (United States)

    Wygnanski, I.


    Exploiting instabilities rather than forcing the flow is advantageous. Simple 2D concepts may not always work. Nonlinear effects may result in first order effect. Interaction between spanwise and streamwise vortices may have a paramount effect on the mean flow, but this interaction may not always be beneficial.

  6. Controllability of Non-Newtonian Fluids Under Homogeneous Flows

    National Research Council Canada - National Science Library

    Wilson, Lynda M


    .... The constitutive models are as follows: the Phan-Thien-Tanner model; the Johnson-Segalman model; and the Doi model. The effect of extensional flow on these models and the effect of shear flow on the Doi model have not been explored previous to this work...

  7. PI2 controller based coordinated control with Redox Flow Battery and Unified Power Flow Controller for improved Restoration Indices in a deregulated power system

    Directory of Open Access Journals (Sweden)

    R. Thirunavukarasu


    Full Text Available The nature of power system restoration problem involves status assessment, optimization of generation capability and load pickup. This paper proposes the evaluation of Power System Restoration Indices (PSRI based on the Automatic Generation Control (AGC assessment of interconnected power system in a deregulated environment. The PSRI are useful for system planners to prepare the power system restoration plans and to improve the efficiency of the physical operation of the power system with the increased transmission capacity in the network. The stabilization of frequency and tie-line power oscillations in an interconnected power system becomes challenging when implemented in the future competitive environment. This paper also deals with the concept of AGC in two-area reheat power system having coordinated control action with Redox Flow Battery (RFB and Unified Power Flow Controller (UPFC are capable of controlling the network performance in a very fast manner and improve power transfer limits in order to have a better restoration. In addition to that a new Proportional–Double Integral (PI2 controller is designed and implemented in AGC loop and controller parameters are optimized through Bacterial Foraging Optimization (BFO algorithm. Simulation results reveal that the proposed PI2 controller is that it has good stability during load variations, excellent transient and dynamic responses when compared with the system comprising PI controller. Moreover the AGC loop with RFB coordinated with UPFC has greatly improved the dynamic response and it reduces the control input requirements, to ensure improved PSRI in order to provide the reduced restoration time, thereby improving the system reliability.

  8. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen


    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  9. Control of nucleus accumbens activity with neurofeedback. (United States)

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian


    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Flujo de control en iOS Flow control in iOS

    Directory of Open Access Journals (Sweden)

    Franklin Hernández Castro


    Full Text Available El objetivo de este artículo es explicar los flujos de control que se usan en la programación de las aplicaciones en iOS, con el fin de resumir los aspectos más relevantes que se deben tomar en cuenta para programar una tarea a ser realizada por un dispositivo móvil del tipo iPhone o iPad. Debido a que el ambiente iOS es estrictamente orientado a objetos (OOP, los flujos de control no son obvios; además, los estándares de la firma Apple® definen patrones de diseño en el sistema que son altamente recomendados en este tipo de diseño. En este artículo se introducen algunos de ellos.This paper explain the control flows that are used by programming applications in iOS, trying to summarize the most important aspects to be considered by programming mobile devices like iPhone and iPad. Because iOS environment, is strictly a object-oriented one(OOP, control flows are not obvious, besides Apple® use design patterns highly recommended in this type of programming. Here we introduces some of them.

  11. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)


    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research

  12. Investigation of co-flow jet flow control and its applications (United States)

    Lefebvre, Alexis M.

    This thesis investigates the performance of co-flow jet (CFJ) flow control and its applications using experimental testing and computational fluid dynamics (CFD) simulations. For a stationary airfoil and wing, CFJ increases the lift coefficient (CL), reduces the drag and may produce thrust at a low angle of attack (AoA). The maximum lift coefficient is substantially increased for a 2D CFJ airfoil and reaches a value of 4.8 at Cmicro = 0.30. The power consumption of the CFJ pump, measured by the power coefficient (Pc), is influenced by a variety of parameters, including the momentum coefficient (C micro ), the AoA, the injection slot location, and the internal cavity configuration. A low Cmicro of 0.04 produces a rather small Pc in the range of 0.01--0.02 while a higher Cmicro rapidly increases the Pc. Due to the stronger leading edge suction effect, increasing the AoA decreases the Pc. That is until the flow is near separation, within about 2°--3° of the stall AoA. An injection slot location within 2%--5% chord from the leading edge very effectively reduces the power coefficient. An internal cavity design with no separation is crucial to minimize the CFJ power consumption. Overall, the CFJ effectiveness is enhanced with an increasing Mach number as long as the flow remains subsonic, typically with free stream Mach number less than 0.4. Two pitching airfoil oscillations with dynamic stall are studied in this thesis, namely the mild dynamic stall and the deep dynamic stall. At Mach 0.3, the CFJ with a relatively low Cmicro of 0.08 removes the mild dynamic stall. Thereby, the time-averaged lift is increased by 32% and the time-averaged drag is decreased by 80%. The resulting time-averaged aerodynamic (L/D)ave, which does not take the pumping power into account, reaches 118.3. When C micro is increased, the time-averaged drag becomes negative, which demonstrates the feasibility of a CFJ to propel helicopter blades using its pump as the only source of power. The deep

  13. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...


    Directory of Open Access Journals (Sweden)

    Felicia Sabou


    Full Text Available The paper focused on importance and benefits of control and evaluation of marketing activities. The control of efficiency review the assessment of the resources for marketing activity, checking also the efficiency of the human resources, advertising, promotion activities and distribution activities. In the analyse of human resources the most important ratio are: the average of costumers visits on a day, the number of custom order received from 100 visits, the number of new customers from a period, the number of lost customers from a period, the marketing human expenditures from all the sales.The strategic control is made to check if the objectives and the company strategy are adapted to the marketing environment.

  15. Frequency tuning allows flow direction control in microfluidic networks with passive features. (United States)

    Jain, Rahil; Lutz, Barry


    Frequency tuning has emerged as an attractive alternative to conventional pumping techniques in microfluidics. Oscillating (AC) flow driven through a passive valve can be rectified to create steady (DC) flow, and tuning the excitation frequency to the characteristic (resonance) frequency of the underlying microfluidic network allows control of flow magnitude using simple hardware, such as an on-chip piezo buzzer. In this paper, we report that frequency tuning can also be used to control the direction (forward or backward) of the rectified DC flow in a single device. Initially, we observed that certain devices provided DC flow in the "forward" direction expected from previous work with a similar valve geometry, and the maximum DC flow occurred at the same frequency as a prominent peak in the AC flow magnitude, as expected. However, devices of a slightly different geometry provided the DC flow in the opposite direction and at a frequency well below the peak AC flow. Using an equivalent electrical circuit model, we found that the "forward" DC flow occurred at the series resonance frequency (with large AC flow peak), while the "backward" DC flow occurred at a less obvious parallel resonance (a valley in AC flow magnitude). We also observed that the DC flow occurred only when there was a measurable differential in the AC flow magnitude across the valve, and the DC flow direction was from the channel with large AC flow magnitude to that with small AC flow magnitude. Using these observations and the AC flow predictions from the equivalent circuit model, we designed a device with an AC flowrate frequency profile that was expected to allow the DC flow in opposite directions at two distinct frequencies. The fabricated device showed the expected flow reversal at the expected frequencies. This approach expands the flow control toolkit to include both magnitude and direction control in frequency-tuned microfluidic pumps. The work also raises interesting questions about the

  16. Reservoir Control Center: Activities and Accomplishments of the Southwestern Division of the Army Corps of Engineers Related to Reservoir Regulation and Water Management. Part 3. Instream Flow Study. Appendix A. (United States)


    Inoduction I.. WHITE RIVER BASIN Bover Whilte LRD AR 66 1120,0 1130,0 1652 300 5 Table Rock White LRD AR/MO 58 915.0 931.0 2702 760 526 Bull Shoals...Benbrook Trinity 391 Big Hill Arkansas 120 Birch Arkansas 151 Blue Mountain Arkansas 266 Broken Bow Red 331 Bull Shoals White 15 Canton Arkansas 234 Canyon...RELAT IONS fPqnC FRCcn :324-M24) AT DAM SITE OCTOBER~ FLOWS (PER~ TIpO C REVZR CC?45-1T7NS U.. MY ENGINEER DISTRICT. FORT WORTH TO RCCCMDR4Y tNSTR~qr

  17. A congestion line flow control in deregulated power system

    Directory of Open Access Journals (Sweden)

    Venkatarajan Shanmuga Sundaram


    Full Text Available Under open access, market-driven transactions have become the new independent decision variables defining the behavior of the power system. The possibility of transmission lines getting over-loaded is relatively more under deregulated operation because different parts of the system are owned by separate companies and in part operated under varying service charges. This paper discusses a two-tier algorithm for correcting the lone overloads in conjunction with the conventional power-flow methods. The method uses line flow sensitivities, which are computed by the East Decoupled Power-flow algorithm and can be adapted for on-line implementation.

  18. Demonstration of robust micromachined jet technology and its application to realistic flow control problems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sung Pil [Inha University, Incheon (Korea, Republic of)


    This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

  19. Demonstration of robust micromachined jet technology and its application to realistic flow control problems

    International Nuclear Information System (INIS)

    Chang, Sung Pil


    This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies

  20. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya


    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  1. Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry. (United States)

    Servais; Courties; Lebaron; Troussellier


    > Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 µm(3)). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm.

  2. Power flow control strategy in distribution network for dc type distributed energy resource at load bus

    International Nuclear Information System (INIS)

    Hanif, A.; Choudhry, M.A.


    This research work presents a feed forward power flow control strategy in the secondary distribution network working in parallel with a DC type distributed energy resource (DER) unit with SPWM-IGBT Voltage Source Converter (VSC). The developed control strategy enables the VSC to be used as power flow controller at the load bus in the presence of utility supply. Due to the investigated control strategy, power flow control from distributed energy resource (DER) to common load bus is such that power flows to the load without facing any power quality problem. The technique has an added advantage of controlling power flow without having a dedicated power flow controller. The SPWM-IGBT VSC is serving the purpose of dc-ac converter as well as power flow controller. Simulations for a test system using proposed power flow control strategy are carried out using SimPower Systems toolbox of MATLAB at the rate and Simulink at the rate. The results show that a reliable, effective and efficient operation of DC type DER unit in coordination with main utility network can be achieved. (author)

  3. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold


    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  4. Active Vibration Control of Hydrodynamic Journal Bearings (United States)

    Tůma, J.; Šimek, J.; Škuta, J.; Los, J.; Zavadil, J.

    Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. It is assumed that the journal vibration is measured by a pair of proximity probes. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. The active vibration control was tested with the use of a test rig, which consists of a rotor supported by two controllable journal bearings and driven by an inductive motor up to 23,000 rpm. As it was proved by experiments the active vibration control extends considerably the range of the rotor operational speed.

  5. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.


    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  6. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  7. Effect Of Steel Flow Control Devices On Flow And Temperature Field In The Tundish Of Continuous Casting Machine

    Directory of Open Access Journals (Sweden)

    Sowa L.


    Full Text Available The mathematical model and numerical simulations of the liquid steel flow in a tundish are presented in this paper. The problem was treated as a complex and solved by the finite element method. One takes into consideration in the mathematical model the changes of thermophysical parameters depending on the temperature. The single-strand tundish is used to casting slabs. The internal work space of the tundish was modified by flow control devices. The first device was a pour pad situated in the pouring tundish zone. The second device was a dam. The third device was a baffle with three holes. The dam and baffle were placed in the tundish at different positions depending on the variant. The main purpose of using these was to put barriers in the steel flow path as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulations. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influences of the tundish modifications on the velocity fields in liquid phase of the steel were estimated, because these have essential an influence on high-quality of a continuous steel cast slab.

  8. An iterative method for controlling reactive power flow in boundary transformers

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, Angel L.; Martinez, Jose L.; Riquelme, Jesus; Romero, Esther [Department of Electrical Engineering, University of Seville (Spain)


    This paper presents an operational tool designed to help the system operator to control the reactive power flow in transmission-subtransmission boundary transformers. The main objective is to determine the minimum number of control actions necessary to ensure that reactive power flows in transmission/subtransmission transformers remain within limits. The proposed iterative procedure combines the use of a linear programming problem and a load flow tool. The linear programming assumes a linear behaviour between dependent and control variables around an operating point, modelled with sensitivities. Experimental results regarding IEEE systems are provided comparing the performance of the proposed approach with that of a conventional optimal power flow. (author)

  9. Scenarios for control and data flows in multiprotocol over ATM (United States)

    Kujoory, Ali


    The multiprotocol over ATM (MPOA), specified by the ATM Forum, provides an architecture for transfer of Internetwork layer packets (Layer 3 datagram such as IP, IPX) over ATM subnets or across the emulated LANs. MPOA provides shortcuts that bypass routers to avoid router bottlenecks. It is a grand union of some of the existing standards such as LANE by the ATM Forum, NHRP by the IETF, and the Q.2931 by ITU. The intent of this paper is to clarify the data flows between pairs of source and destination hosts in an MPOA system. It includes scenarios for both the intra- and inter-subnet flows between different pairs of MPOA end-systems. The intrasubnet flows simply use LANE for address resolution or data transfer. The inter-subnet flows may use a default path for short-lived flows or a shortcut for long-lived flows. The default path uses the LANE and router capabilities. The shortcut path uses LANE plus NHRP for ATM address resoluton. An ATM virtual circuit is established before the data transfer. This allows efficient transfer of internetwork layer packets over ATM for real-time applications.

  10. A Computed River Flow-Based Turbine Controller on a Programmable Logic Controller for Run-Off River Hydroelectric Systems

    Directory of Open Access Journals (Sweden)

    Razali Jidin


    Full Text Available The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.

  11. Flow-Control Systems Proof of Concept for Snowmelt Runoff at McMurdo Station, Antarctica (United States)


    ER D C/ CR RE L TR -1 7- 1 Engineering for Polar Operations , Logistics, and Research (EPOLAR) Flow-Control Systems Proof of Concept for...January 2017 Flow-Control Systems Proof of Concept for Snowmelt Runoff at McMurdo Station, Antarctica Rosa Affleck U.S. Army Engineer Research and...runoff can be extreme where the flow can overwhelm both the drainage system and the operations and maintenance (O&M) crew. CRREL has been involved

  12. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System. (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  13. AC field effect flow control of EOF in complex microfluidic systems with integrated electrodes

    NARCIS (Netherlands)

    van der Wouden, E.J.; Pennathur, S.; van den Berg, Albert; Locascio, L.E.; Gaitan, M.; Paegel, B.M.; Ross, D.J.; Vreeland, W.N.


    In this work, we demonstrate that positive net flow can be induced and controlled with relatively low potential due to the parallel alignment of the integrated channel electrodes. Therefore, we present a novel method to exquisitely control Electro Osmotic Flow (EOF) by using integrated electrodes

  14. Routing power flows in distribution networks using locally controlled power electronics

    NARCIS (Netherlands)

    Hamelink, J.; Nguyen, P.H.; Kling, W.L.; Ribeiro, P.F.; Groot, de R.J.W.


    The power grid has gradually changed its operation during the recent decades. These developments have encouraged a shift from centralized to decentralized power flow control. A research has been carried out to investigate the possibilities to control power flows using the Smart Power Router (SPR) in

  15. Inter-eNB Flow Control for Heterogeneous Networks with Dual Connectivity

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus I.


    the gain provided by DC, an efficient flow control of data between the involved macro and small cell eNBs is proposed. It is demonstrated how proper configuration of the proposed flow control algorithm offers efficient trade-offs between reducing the probability that one of the eNBs involved in the DC runs...

  16. Field effect control of electro-osmotic flow in microfluidic networks

    NARCIS (Netherlands)

    van der Wouden, E.J.


    This thesis describes the development of a Field Effect Flow Control (FEFC) system for the control of Electro Osmotic Flow (EOF) in microfluidic networks. For this several aspects of FEFC have been reviewed and a process to fabricate microfluidic channels with integrated electrodes has been

  17. Control-flow analysis of function calls and returns by abstract interpretation

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Jensen, Thomas P.


    Abstract interpretation techniques are used to derive a control-flow analysis for a simple higher-order functional language. The analysis approximates the interprocedural control-flow of both function calls and returns in the presence of first-class functions and tail-call optimization. In additi...... a rational reconstruction of a constraint-based CFA from abstract interpretation principles....

  18. Chapter 13 - Active Rectifiers and Their Control

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Abdelhakim, Ahmed


    This chapter investigates the control design of active rectifiers and their applications in power electronics-based power system. The harmonic emission and measures are firstly addressed as a basis of evaluating the active rectifier's effectiveness. Furthermore, the importance of new coming...... standards is highlighted. Application-oriented design of active rectifiers as a main reason behind evolvement of different topologies is discussed. Then, the main principle in designing different control schemes in single-phase and three-phase rectifiers is investigated, analyzed, and experimentally...... verified. The influence of nonideal operating conditions with possible solutions is addressed. Finally, future prospective of active rectifiers as a one of the key enabler of carbon-free power system is summarized....

  19. Jacket Substructure Fatigue Mitigation through Active Control

    DEFF Research Database (Denmark)

    Hanis, Tomas; Natarajan, Anand


    to the fatigue design loads on the braces of the jacket. Since large wind turbines of 10MW rating have low rotor speeds (p), the modal frequencies of the sub structures approach 3p at low wind speeds, which leads to a modal coupling and resonance. Therefore an active control system is developed which provides...... sufficient structural damping and consequently a fatigue reduction at the substructure. The resulting reduction in fatigue design loads on the jacket structure based on the active control system is presented....

  20. Irreducible Representations of Oscillatory and Swirling Flows in Active Soft Matter (United States)

    Ghose, Somdeb; Adhikari, R.


    Recent experiments imaging fluid flow around swimming microorganisms have revealed complex time-dependent velocity fields that differ qualitatively from the stresslet flow commonly employed in theoretical descriptions of active matter. Here we obtain the most general flow around a finite sized active particle by expanding the surface stress in irreducible Cartesian tensors. This expansion, whose first term is the stresslet, must include, respectively, third-rank polar and axial tensors to minimally capture crucial features of the active oscillatory flow around translating Chlamydomonas and the active swirling flow around rotating Volvox. The representation provides explicit expressions for the irreducible symmetric, antisymmetric, and isotropic parts of the continuum active stress. Antisymmetric active stresses do not conserve orbital angular momentum and our work thus shows that spin angular momentum is necessary to restore angular momentum conservation in continuum hydrodynamic descriptions of active soft matter.

  1. Active versus passive screening for entrance control

    International Nuclear Information System (INIS)

    McCormick, N.J.


    The benefits of different entrance control actions are quantitatively assessed by defining a relative improvement index for the screening activity. Three classes of entrance control measures are investigated: the use of a purely active screening measure (such as a portal monitor), the use of a purely passive screening measure (such as personality typing), and the combined use of active and passive measures. Active entrance control measures have been studied previously [McCormick and Erdmann, Nucl. Mat. Manag. 4, (1975)] where it was determined that the relative improvement index is approximately related to the nondetection probability factor r for the protective system by (1-r + r ln r). It is shown here that the relative improvement index for a purely passive screening system also can be approximately expressed in a convenient manner. Because the probability is very small that a sabotage or diversion action would be attempted, the result for passive screening, multiplied by r, may be combined with the factor (1-r + r ln r) to give the relative improvement index for a combined, active-and-passive entrance control system. Results from simple example calculations indicate that passive screening of nuclear plant personnel or applicants for such positions is orders-of-magnitude less effective than portal monitors or reasonable improvements in them. 5 tables

  2. Energy efficiency analyses of active flow aftertreatment systems for lean burn internal combustion engines

    International Nuclear Information System (INIS)

    Zheng Ming; Reader, Graham T.


    The use of three way catalytic converters in stoichiometric burn reciprocating internal combustion engine systems has proved to be an effective and efficient method for reducing the level of criteria pollutants. However, such passive systems have not been as successful in emission amelioration when combined with lean burn engines. This is because of the thermochemical nature of the exhaust gases generated by such engines. The high content of exhaust oxygen largely negates the effectiveness of three way catalytic converters, and the comparatively low temperature of the combusted gases means that supplemental energy has to be added to these gases to enable the converter to function correctly. This requirement severely reduces the energy efficiency of conventional passive aftertreatment systems. However, initial empirical studies have indicated that a possible means of improving the performance of aftertreatment devices when used with lean burn engine systems is to use active flow control of the exhaust gases. These results are reported in this paper. This concept has been further investigated by developing an energy efficiency analysis that enables the effects on aftertreatment performance of different gas flow rates, flow reversal frequencies and monolith solid properties to be investigated. Simulation results indicate that through active thermal management, the supplemental energy consumption can be drastically reduced

  3. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.


    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  4. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)


    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  5. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience (United States)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo


    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  6. Controlling mixing and segregation in time periodic granular flows (United States)

    Bhattacharya, Tathagata

    Segregation is a major problem for many solids processing industries. Differences in particle size or density can lead to flow-induced segregation. In the present work, we employ the discrete element method (DEM)---one type of particle dynamics (PD) technique---to investigate the mixing and segregation of granular material in some prototypical solid handling devices, such as a rotating drum and chute. In DEM, one calculates the trajectories of individual particles based on Newton's laws of motion by employing suitable contact force models and a collision detection algorithm. Recently, it has been suggested that segregation in particle mixers can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. Further, it has been hypothesized that, for a rotating drum, the effectiveness of this technique can be linked to the probability distribution of the number of times a particle passes through the flowing layer per rotation of the drum. In the first portion of this work, various configurations of solid mixers are numerically and experimentally studied to investigate the conditions for improved mixing in light of these hypotheses. Besides rotating drums, many studies of granular flow have focused on gravity driven chute flows owing to its practical importance in granular transportation and to the fact that the relative simplicity of this type of flow allows for development and testing of new theories. In this part of the work, we observe the deposition behavior of both mono-sized and polydisperse dry granular materials in an inclined chute flow. The effects of different parameters such as chute angle, particle size, falling height and charge amount on the mass fraction distribution of granular materials after deposition are investigated. The simulation results obtained using DEM are compared with the experimental findings and a high degree of agreement is observed. Tuning of the underlying contact force parameters allows the achievement

  7. Using artificial intelligence to control fluid flow computations (United States)

    Gelsey, Andrew


    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  8. Actively controlled shaft seals for aerospace applications (United States)

    Salant, Richard F.


    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  9. Use of integrity control and automatic start of reserve in a multi-channel temperature and flow rate control device

    International Nuclear Information System (INIS)

    Strzalkowski, L.


    A way to increase reliability of process quantity control is control of the integrity of the control plants themselves. The possibilities of integrity control on control devices having simply duplicated control channels or working on the basis of the ''two-from-three'' principle are valued. A highly reliable integrity control is possible by use of test signals. For an appropriate control device, structure and function of the assemblies are described. The integrity control device may be used in the water coolant temperature and flow rate control system for all technological channels of the research reactor ''Maria''

  10. Suboptimal RED Feedback Control for Buffered TCP Flow Dynamics in Computer Network

    Directory of Open Access Journals (Sweden)

    N. U. Ahmed


    Full Text Available We present an improved dynamic system that simulates the behavior of TCP flows and active queue management (AQM system. This system can be modeled by a set of stochastic differential equations driven by a doubly stochastic point process with intensities being the controls. The feedback laws proposed monitor the status of buffers and multiplexor of the router, detect incipient congestion by sending warning signals to the sources. The simulation results show that the optimal feedback control law from the class of linear as well as quadratic polynomials can improve the system performance significantly in terms of maximizing the link utilization, minimizing congestion, packet losses, as well as global synchronization. The optimization process used is based on random recursive search technique known as RRS.

  11. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio


    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.


    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  13. Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances. (United States)

    Kaya, Azmi


    Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…

  14. Active Noise Control for Dishwasher noise (United States)

    Lee, Nokhaeng; Park, Youngjin


    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  15. Experiencing flow in a workplace physical activity intervention for female health care workers

    DEFF Research Database (Denmark)

    Elbe, Anne-Marie; Barene, Svein; Strahler, Katharina


    and adherence to regular physical activity 18 weeks after the end of the intervention was found. Furthermore, repeated measures throughout the intervention period showed a significantly different development of flow values over time for the adherers and nonadherers. Flow therefore may be of importance...... for adherence to regular workplace physical activity. Future research needs to investigate the importance of flow in other physical activity settings, especially also for male participants.......Flow is a rewarding psychological state that motivates individuals to repeat activities. This study explored healthcare workers’ flow experiences during a workplace exercise intervention. Seventy-nine females were assigned to either a 12-week football or Zumba exercise intervention and their flow...

  16. Recent advances in extensional rheology: controlled flows and fracture

    DEFF Research Database (Denmark)

    Hassager, Ole; Huang, Qian

    Extensional deformation and flow occur in a number of polymer processing operations such as fiber spinning and film blowing. To understand and analyze material behavior in such operations, accurate and quantitative measurements of the rheological properties in well-defined extensional deformation...

  17. A Simple CPS Transformation of Control-Flow Information

    DEFF Research Database (Denmark)

    Damian, Daniel; Danvy, Olivier


    We build on Danvy and Nielsen's first-order program transformation into continuation-passing style (CPS) to design a new CPS transformation of flow information that is simpler and more efficient than what has been presented in previous work. The key to simplicity and efficiency is that our CPS tr...

  18. Discretionary Information Flow Control for Interaction-Oriented Specifications

    DEFF Research Database (Denmark)

    Lluch Lafuente, Alberto; Nielson, Flemming; Nielson, Hanne Riis


    system for statically checking if a system specification ensures an information flow policy. The approach is illustrated with two archetypal examples of distributed and parallel computing systems: a protocol for an identity-secured data providing service and a parallel MapReduce computation....

  19. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, H.


    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two

  20. Neurophysiological Basis of Cerebral Blood Flow Control: An ...

    African Journals Online (AJOL)

    The book describes the current understanding of cerebral blood flow ... metaoolism of the central nervous system. The brain ... in stroke it is a deficiency of the book that the clinical correlates are .... Review of Nutrition and Dietetics. Edited by ...

  1. Control algorithm for multiscale flow simulations of water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Walther, Jens Honore; Kaxiras, E.


    We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the description of the atomistic domain and prevents the use of periodic boundary conditions...

  2. Electromagnetic control of oscillating flows in a cavity

    NARCIS (Netherlands)

    Kalter, R.


    In continuous steel casting, liquid steel flows turbulently through a submerged nozzle into a thin, vertical mould. In the mould the liquid steel is cooled, such that it solidifies and plate steel is formed. On top of the liquid steel in the mould, a slag layer is present and due to the turbulent

  3. Controlled generation and use of CO in flow

    DEFF Research Database (Denmark)

    Hansen, Steffen V. F.; Wilson, Zoe E.; Ulven, Trond


    A method for the generation and use of carbon monoxide in flow chemistry has been developed. By using a tube-in-tube reactor, oxalyl chloride can be conveniently and safely hydrolyzed using a NaOH solution to generate CO in the outer stream, which then passes through AF-2400 semi-permeable inner...

  4. Quality control of the activity meter

    International Nuclear Information System (INIS)

    Rodrigues, Marlon da Silva Brandão; Sá, Lídia Vasconcelos de


    Objective: To carry out a comparative analysis of national and international standards regarding the quality control of the activity meter used in Nuclear Medicine Services in Brazil. Material and methods: Quality control protocols from the International Atomic Energy Agency (IAEA), American Association of Physicists in Medicine (AAPM) and International Electrotechnical Commission (IEC) were pointed out and compared with requirements from both regulatory Brazilian agencies, National Surveillance Agency (ANVISA) and National Nuclear Energy Commission (CNEN). Results: The daily routine tests recommended by the regulatory agencies do not have significant differences; in contrast the tests with higher periodicities like (accuracy, linearity and precision) have differences discrepant. Conclusion: In view of the comparative analysis carried out, it is suggested that the national recommendations for the quality control tests of the activity meter should be checked and evaluated, with emphasis on the semiannual and annual periodicity tests. (author)

  5. Flow control by combining radial pulsation and rotation of a cylinder in uniform flow (United States)

    Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.


    Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.

  6. Engineering analysis of mass flow rate for turbine system control and design

    International Nuclear Information System (INIS)

    Yoo, Yong H.; Suh, Kune Y.


    Highlights: → A computer code is written to predict the steam mass flow rate through valves. → A test device is built to study the steam flow characteristics in the control valve. → Mass flow based methodology eases the programming and experimental procedures. → The methodology helps express the characteristics of each device of a turbine system. → The results can commercially be used for design and operation of the turbine system. - Abstract: The mass flow rate is determined in the steam turbine system by the area formed between the stem disk and the seat of the control valve. For precise control the steam mass flow rate should be known given the stem lift. However, since the thermal hydraulic characteristics of steam coming from the generator or boiler are changed going through each device, it is hard to accurately predict the steam mass flow rate. Thus, to precisely determine the steam mass flow rate, a methodology and theory are developed in designing the turbine system manufactured for the nuclear and fossil power plants. From the steam generator or boiler to the first bunch of turbine blades, the steam passes by a stop valve, a control valve and the first nozzle, each of which is connected with piping. The corresponding steam mass flow rate can ultimately be computed if the thermal and hydraulic conditions are defined at the stop valve, control valve and pipes. The steam properties at the inlet of each device are changed at its outlet due to geometry. The Compressed Adiabatic Massflow Analysis (CAMA) computer code is written to predict the steam mass flow rate through valves. The Valve Engineered Layout Operation (VELO) test device is built to experimentally study the flow characteristics of steam flowing inside the control valve with the CAMA input data. The Widows' Creek type control valve was selected as reference. CAMA is expected to be commercially utilized to accurately design and operate the turbine system for fossil as well as nuclear power

  7. Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær


    the control system, a standard PID controller is implemented in a finite volume based incompressible flow solver. An immersed boundary method is applied to treat the problem of simulating a deformable airfoil trailing edge. The flow field is solved using a 2D Reynolds averaged Navier-Stokes finite volume...... solver. In order to more accurately simulate wall bounded flows around the immersed boundary, a modified boundary condition is introduced in the k- ω turbulence model. As an example, turbulent flow over a NACA 64418 airfoil with a deformable trailing edge is investigated. Results from numerical...

  8. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters

    Directory of Open Access Journals (Sweden)

    Amir Ghorbani


    Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter

  9. Improving Accuracy of Processing Through Active Control

    Directory of Open Access Journals (Sweden)

    N. N. Barbashov


    Full Text Available An important task of modern mathematical statistics with its methods based on the theory of probability is a scientific estimate of measurement results. There are certain costs under control, and under ineffective control when a customer has got defective products these costs are significantly higher because of parts recall.When machining the parts, under the influence of errors a range scatter of part dimensions is offset towards the tolerance limit. To improve a processing accuracy and avoid defective products involves reducing components of error in machining, i.e. to improve the accuracy of machine and tool, tool life, rigidity of the system, accuracy of the adjustment. In a given time it is also necessary to adapt machine.To improve an accuracy and a machining rate there, currently  become extensively popular various the in-process gaging devices and controlled machining that uses adaptive control systems for the process monitoring. Improving the accuracy in this case is compensation of a majority of technological errors. The in-cycle measuring sensors (sensors of active control allow processing accuracy improvement by one or two quality and provide a capability for simultaneous operation of several machines.Efficient use of in-cycle measuring sensors requires development of methods to control the accuracy through providing the appropriate adjustments. Methods based on the moving average, appear to be the most promising for accuracy control since they include data on the change in some last measured values of the parameter under control.

  10. Antibacterial Activity of Commercial Dentine Bonding Systems against E. faecalis–Flow Cytometry Study

    Directory of Open Access Journals (Sweden)

    Monika Lukomska-Szymanska


    Full Text Available Literature presents inconsistent results on the antibacterial activity of dentine bonding systems (DBS. Antibacterial activity of adhesive systems depends on several factors, including composition and acidity. Flow cytometry is a novel detection method to measure multiple characteristics of a single cell: total cell number, structural (size, shape, and functional parameters (viability, cell cycle. The LIVE/DEAD® BacLightTM bacterial viability assay was used to evaluate an antibacterial activity of DBS by assessing physical membrane disruption of bacteria mediated by DBS. Ten commercial DBSs: four total-etching (TE, four self-etching (SE and two selective enamel etching (SEE were tested. Both total-etching DBS ExciTE F and OptiBond Solo Plus showed comparatively low antibacterial activity against E. faecalis. The lowest activity of all tested TE systems showed Te-Econom Bond. Among SE DBS, G-ænial Bond (92.24% dead cells followed by Clearfil S3 Bond Plus (88.02% and Panavia F 2.0 ED Primer II (86.67% showed the highest antibacterial activity against E. faecalis, which was comparable to isopropranol (positive control. In the present study, self-etching DBS exhibited higher antimicrobial activity than tested total-etching adhesives against E. faecalis.

  11. Evaluation of cell proliferative activity after irradiation using immunohistochemical approach and flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Tamada, Takashi (Okayama Univ. (Japan). School of Medicine)


    To evaluate a proliferative activity of post-irradiated malignant cells, we studied the kinetics of HeLa cells using immunohistochemical approach and flow cytometry. HeLa cells were stained with two proliferation-associated monoclonal antibodies, Ki-67 and anti-DNA polymerase {alpha} antibody. Nucleoli of non-irradiated cells were granularly stained with Ki-67. After irradiation, only the center of nuclei was diffusely stained with Ki-67. One hundred forty-four hours after low-dose irradiation, the staining patterns became the same as the control. On the other hand, after high-dose irradiation, the center of nuclei was weakly stained. DNA polymerase {alpha} was diffusely labelled with nuclei of the control. It was located around the border of nuclei of low-dose irradiated cells like a ring. But after high-dose irradiation, it was granularly distributed in the periphery of nuclei. FITC conjugated Ki-67/PI two parameter analysis was done by a single laser flow cytometer. Twenty-four hours after irradiation, DNA-histograms showed the accumulation to G{sub 2}/M phase and the increase of DNA content of G{sub 2}/M cells, as exposure dose was increased. Two parameter analysis showed the increase of FITC uptake of G{sub 2}/M phase as dose increased. These changes of flow cytometry were remarkably observed after 24 hours' incubation. It was shown that the difference of Ki-67 antigen and DNA polymerase {alpha} appearance depended on the irradiation dose. These findings suggest that immunohistochemical staining with Ki-67 or anti-DNA polymerase {alpha} antibody and flow cytometry using Ki-67 are available to evaluate cell damages after irradiation. (author).

  12. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities (United States)

    Thorslund, J.; Jarsjo, J.; Destouni, G.


    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the

  13. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon


    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  14. AGC of a multi-area power system under deregulated environment using redox flow batteries and interline power flow controller

    Directory of Open Access Journals (Sweden)

    Tulasichandra Sekhar Gorripotu


    Full Text Available In this paper, Proportional Integral Derivative with Filter (PIDF is proposed for Automatic Generation Control (AGC of a multi-area power system in deregulated environment. Initially, a two area four units thermal system without any physical constraints is considered and the gains of the PIDF controller are optimized employing Differential Evolution (DE algorithm using ITAE criterion. The superiority of proposed DE optimized PIDF controller over Fuzzy Logic controller is demonstrated. Then, to further improve the system performance, an Interline Power Flow Controller (IPFC is placed in the tie-line and Redox Flow Batteries (RFB is considered in the first area and the controller parameters are tuned. Additionally, to get an accurate insight of the AGC problem, important physical constraints such as Time Delay (TD and Generation Rate Constraints (GRC are considered and the controller parameters are retuned. The performance of proposed controller is evaluated under different operating conditions that take place in a deregulated power market. Further, the proposed approach is extended to a two area six units hydro thermal system. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values.

  15. Coherent active polarization control without loss (United States)

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin


    We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  16. Coherent active polarization control without loss

    Directory of Open Access Journals (Sweden)

    Yuqian Ye


    Full Text Available We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  17. Control Systems Cyber Security Standards Support Activities

    Energy Technology Data Exchange (ETDEWEB)

    Robert Evans


    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  18. The effect of flow limitation on the cardiorespiratory response to arousal from sleep under controlled conditions of chemostimulation in healthy older adults. (United States)

    Goff, Elizabeth A; Nicholas, Christian L; Kleiman, Jan; Spear, Owen; Morrell, Mary J; Trinder, John


    The influence of flow limitation on the magnitude of the cardiorespiratory response to arousal from sleep is of interest in older people, because they experience considerable flow limitation and frequent arousals from sleep. We studied older flow-limiting subjects, testing the hypothesis that the cardiorespiratory activation response would be larger when arousal occurred during flow limitation, compared to no flow limitation, and chemical stimuli were controlled. In 11 older adults [mean ± standard deviation (SD) age: 68 ± 5 years] ventilation was stabilized using continuous positive airway pressure, and flow limitation was induced by dialling down the pressure. Partial pressure of end-tidal carbon dioxide (PetCO(2)) was maintained by titration of the inspired CO(2) and hyperoxia was maintained using 40% O(2) balanced with nitrogen. Flow limitation at the time of arousal did not augment cardiovascular activation response (heart rate P = 0.7; systolic blood pressure P = 0.6; diastolic blood pressure P = 0.3), whereas ventilation was greater following arousals during flow limitation compared to no flow limitation (P sleep is not influenced by flow limitation at the time of arousal, when chemical stimuli are controlled in older adults. This finding may contribute to the decreased cardiovascular burden associated with sleep-disordered breathing reported in older adults, although our data do not exclude the possibility that flow limitation in the presence of mild hypoxic hypercapnia could increase the cardiovascular response to arousal. © 2012 European Sleep Research Society.

  19. Development of linear flow rate control system for eccentric butter-fly valve

    International Nuclear Information System (INIS)

    Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.


    Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

  20. Analysis and control of supersonic vortex breakdown flows (United States)

    Kandil, Osama A.


    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  1. Controlling chaos in a fluid flow past a movable cylinder

    International Nuclear Information System (INIS)

    Vallejo, Juan C.; Marino, Ines P.; Sanjuan, Miguel A.F.; Kurths, Juergen


    The model of a two-dimensional fluid flow past a cylinder is a relatively simple problem with a strong impact in many applied fields, such as aerodynamics or chemical sciences, although most of the involved physical mechanisms are not yet well known. This paper analyzes the fluid flow past a cylinder in a laminar regime with Reynolds number, Re, around 200, where two vortices appear behind the cylinder, by using an appropriate time-dependent stream function and applying non-linear dynamics techniques. The goal of the paper is to analyze under which circumstances the chaoticity in the wake of the cylinder might be modified, or even suppressed. And this has been achieved with the help of some indicators of the complexity of the trajectories for the cases of a rotating cylinder and an oscillating cylinder

  2. BWR startup and shutdown activity transport control

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, A.J., E-mail:, E-mail: [Finetech, Inc., Parsippany, New Jersey (United States)


    This paper summarizes BWR industry experience on good practices for controlling the transport of corrosion product activity during shutdowns, particularly refueling outages, and for startup chemistry control to minimize IGSCC (intergranular stress corrosion cracking). For shutdown, overall goals are to minimize adverse impacts of crud bursts and the time required to remove activated corrosion products from the reactor coolant during the shutdown process prior to refueling, and to assist plants in predicting and controlling radiation exposure during outages. For startup, the overall goals are to highlight conditions during early heatup and startup when sources of reactor coolant oxidants are high, when there is a greater likelihood for chemical excursions associated with refueling outage work activities, and when hydrogen injection is not available to mitigate IGSCC due to system design limitations. BWR water chemistry has changed significantly in recent years with the adoption of hydrogen water chemistry, zinc addition and noble metal chemical applications. These processes have, in some instances, resulted in significant activity increases during shutdown evolutions, which together with reduced time for cleanup because of shorter outages, has consequently increased outage radiation exposure. A review several recent outages shows that adverse effects from these conditions can be minimized, leading to the set of good practice recommendations for shutdown chemistry control. Most plants lose the majority of their hydrogen availability hours during early startup because feedwater hydrogen injection systems were not originally designed to inject hydrogen below 20% power. Hydrogen availability has improved through modifications to inject hydrogen at lower power levels, some near 5%. However, data indicate that IGSCC is accelerated during early startup, when dissolved oxygen and hydrogen peroxide levels are high and reactor coolant temperatures are in the 300 to 400 {sup o

  3. Heat transfer enhancement through control of added perturbation velocity in flow field

    International Nuclear Information System (INIS)

    Wang, Jiansheng; Wu, Cui; Li, Kangning


    Highlights: ► Three strategies which restrain the flow drag in heat transfer are proposed. ► Added perturbation induces quasi-streamwise vortices around controlled zone. ► The flow and heat transfer features depend on induced quasi-streamwise vortices. ► Vertical strategy has the best synthesis performance of three control strategies. ► Synthesis performance with control strategy is superior to that without strategy. - Abstract: The characteristics of heat transfer and flow, through an added perturbation velocity, in a rectangle channel, are investigated by Large Eddy Simulation (LES). The downstream, vertical, and upstream control strategy, which can suppress the lift of low speed streaks in the process of improving the performance of heat transfer, are adopted in numerical investigation. Taking both heat transfer and flow properties into consideration, the synthesis performance of heat transfer and flow of three control strategies are evaluated. The numerical results show that the flow structure in boundary layer has been varied obviously for the effect of perturbation velocity and induced quasi-streamwise vortices emerging around the controlled zone. The results indicate that the vertical control strategy has the best synthesis performance of the three control strategies, which also has the least skin frication coefficient. The upstream and downstream strategies can improve the heat transfer performance, but the skin frication coefficient is higher than that with vertical control strategy

  4. Zonal flow dynamics and control of turbulent transport in stellarators. (United States)

    Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H


    The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.

  5. Feedback control for unsteady flow and its application to the stochastic Burgers equation (United States)

    Choi, Haecheon; Temam, Roger; Moin, Parviz; Kim, John


    The study applies mathematical methods of control theory to the problem of control of fluid flow with the long-range objective of developing effective methods for the control of turbulent flows. Model problems are employed through the formalism and language of control theory to present the procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory. Methods of calculus of variations through the adjoint state and gradient algorithms are used to present a suboptimal control and feedback procedure for stationary and time-dependent problems. Two types of controls are investigated: distributed and boundary controls. Several cases of both controls are numerically simulated to investigate the performances of the control algorithm. Most cases considered show significant reductions of the costs to be minimized. The dependence of the control algorithm on the time-descretization method is discussed.

  6. Distributed flow sensing for closed-loop speed control of a flexible fish robot. (United States)

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A


    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  7. Pulsed neutron generator for mass flow measurement using the pulsed neutron activation technique

    International Nuclear Information System (INIS)

    Rochau, G.E.; Hornsby, D.R.; Mareda, J.F.; Riggan, W.C.


    A high-output, transportable neutron generator has been developed to measure mass flow velocities in reactor safety tests using the Pulsed Neutron Activation (PNA) Technique. The PNA generator produces >10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. The Millisecond Pulse (MSP) Neutron Tube, developed for this application, has an expected operational life of 1000 pulses, and it limits the generator pulse repetition rate to 12 pulses/minute. A semiconductor neutron detector is included in the generator package to monitor the neutron output. The control unit, which can be operated manually or remotely, also contains a digital display with a BCD output for the neutron monitor information. The digital logic of the unit controls the safety interlocks and rejects transient signals which could accidently fire the generator

  8. Developed generalised unified power flow controller model in the Newton–Raphson power-flow analysis using combined mismatches method

    DEFF Research Database (Denmark)

    Kamel, Salah; Jurado, Francisco; Chen, Zhe


    values are calculated during the iterative process based on the desired controlled values and buses voltage at the terminals of GUPFC. The parameters of GUPFC can be calculated during the iterative process and the final values are updated after load flow convergence. Using the developed GUPFC model......, the original structure and symmetry of the admittance and Jacobian matrices can still be kept, the changing of Jacobian matrix is eliminated. Consequently, the complexities of the computer load flow program codes with GUPFC are reduced. The HPCIM load flow code with the proposed model is written in C......++ programming language. Where, the SuperLU library is utilised to handle the sparse Jacobian matrix. The proposed model has been validated using the standard IEEE test systems....

  9. A new method for controlling refrigerant flow in automobile air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Xuquan Li; Jiangping Chen; Zhijiu Chen [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics Engineering; Weihua Liu; Wei Hu; Xiaobing Liu [Shanghai Delphi Automotive Air Conditiong Systems Co. Ltd., Changhai (China)


    This paper describes the improvement of the refrigerant flow control method by using an electronic expansion valve (EEV) which is driven by a stepper motor in automobile air conditioning system. An EEV can make a quick response to the abrupt change in the refrigerant flow rate during the change in automobile speed and the thermostatic on/off operation. The flow rate characteristic of the EEV for automobile air conditioning was presented. A microcontroller is used to receive the input signal and generate the output signal to control the opening of the EEV. The fuzzy self-tuning proportional-integral-derivative (PID) control method is employed. Experimental results show that the new control method can feed adequate refrigerant flow into the evaporator in various operations. The evaporator discharge air temperature has dropped by approximately 3{sup o}C as compared with that of the conventional PID control system. (author)

  10. Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network (United States)

    Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.


    We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.

  11. A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference (United States)

    Wang, Yunong; Cheng, Rongjun; Ge, Hongxia


    In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.

  12. Computational Study of pH-sensitive Hydrogel-based Microfluidic Flow Controllers (United States)

    Kurnia, Jundika C.; Birgersson, Erik; Mujumdar, Arun S.


    This computational study investigates the sensing and actuating behavior of a pH-sensitive hydrogel-based microfluidic flow controller. This hydrogel-based flow controller has inherent advantage in its unique stimuli-sensitive properties, removing the need for an external power supply. The predicted swelling behavior the hydrogel is validated with steady-state and transient experiments. We then demonstrate how the model is implemented to study the sensing and actuating behavior of hydrogels for different microfluidic flow channel/hydrogel configurations: e.g., for flow in a T-junction with single and multiple hydrogels. In short, the results suggest that the response of the hydrogel-based flow controller is slow. Therefore, two strategies to improve the response rate of the hydrogels are proposed and demonstrated. Finally, we highlight that the model can be extended to include other stimuli-responsive hydrogels such as thermo-, electric-, and glucose-sensitive hydrogels. PMID:24956303

  13. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    that the basic modes of a wind turbine blade can be effectively addressed by an in-blade ‘active strut’ actuator mechanism. The importance of accounting for background mode flexibility is demonstrated. Also, it is shown that it is generally possible to address multiple beam modes with multiple controllers, given...... in the targeted modes and the observed spill-over to other modes is very limited and generally stabilizing. It is shown that physical controller positioning for reduced background noise is important to the calibration. By simulation of the rotor response to both simple initial conditions and a stochastic wind......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...

  14. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries (United States)

    Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao


    A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.

  15. Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control (United States)

    Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul


    Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  16. Continuous manufacturing of active pharmaceutical ingredients via flow technology

    NARCIS (Netherlands)

    Borukhova, S.; Hessel, V.; Kleinbudde, P.; Khinast, J.; Rantanen, J.


    The main drivers to implement continuous manufacturing are aspects related to logistics, quality of the final product, chemistry to be implemented, process and safety concerns. Flow technology offers a platform to realize those drivers. This chapter introduces the reader to a relatively new

  17. Translanguaging as Dynamic Activity Flows in CLIL Classrooms (United States)

    Lin, Angel M. Y.; He, Peichang


    In this article, the role of translanguaging in facilitating content and language integrated learning (CLIL) is examined in connection with the notion of academic language across the curriculum in multilingual contexts. Ethnographic naturalistic observations and interviews were conducted to analyse translanguaging in the dynamic flow of…

  18. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    International Nuclear Information System (INIS)

    Francioso, L; De Pascali, C; Siciliano, P; Pescini, E; De Giorgi, M G


    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa −1 for the best devices. (paper)

  19. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications (United States)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.


    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  20. Experimental design and analysis for piezoelectric circular actuators in flow control applications

    International Nuclear Information System (INIS)

    Mane, Poorna; Mossi, Karla; Bryant, Robert


    Flow control can lead to saving millions of dollars in fuel costs each year by making an aircraft more efficient. Synthetic jets, a device for active flow control, operate by introducing small amounts of energy locally to achieve non-local changes in the flow field with large performance gains. These devices consist of a cavity with an oscillating diaphragm that divides it into active and passive sides. The active side has a small opening where a jet is formed, while the passive side does not directly participate in the fluidic jet. Over the years, research has shown that synthetic jet behavior is dependent on the active diaphragm and the cavity design; hence, the focus of this work. The performance of the synthetic jet is studied under various factors related to the diaphragm and the cavity geometry. Three diaphragms, manufactured from piezoelectric composites, were selected for this study: Bimorph, Thunder ® and Lipca. The overall factors considered are the driving signals, voltage, frequency, cavity height, orifice size, and passive cavity pressure. Using the average maximum jet velocity as the response variable, these factors are individually studied for each actuator, and statistical analysis tools are used to select the relevant factors in the response variable. The factors are divided into two experimental fractional factorial design matrices, with five and four factors, respectively. Both experiments are chosen to be of resolution V, where main factors are confounded with three-factor interactions. In the first experimental design, the results show that frequency is not a significant factor, while waveform is significant for all the actuators. In addition, the magnitude of the regression coefficients suggests that a model that includes the diaphragm as a factor may be possible. These results are valid within the ranges tested, that is low frequencies and sawtooth and sine waveform as driving signals. In the second experimental design, cavity dimensions are