WorldWideScience

Sample records for active flap rotor

  1. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    Directory of Open Access Journals (Sweden)

    Uğbreve;ur Dalli

    2011-01-01

    Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.

  2. Enhanced Correlation of SMART Active Flap Rotor Loads

    Science.gov (United States)

    Kottapalli, Sesi

    2011-01-01

    This is a follow-on study to a 2010 correlation effort. Measured data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. As background, during the wind tunnel test, unexpectedly high inboard loads were encountered, and it was hypothesized at that time that due to changes in the flexbeams over the years, the flexbeam properties used in the analysis needed updating. Boeing Mesa, recently updated these properties. This correlation study uses the updated flexbeam properties. Compared to earlier studies, the following two enhancements are implemented: i) the inboard loads (pitchcase and flexbeam loads) correlation is included for the first time (reliable prediction of the inboard loads is a prerequisite for any future anticipated flight-testing); ii) the number of blade modes is increased to better capture the flap dynamics and the pitchcase-flexbeam dynamics. Also, aerodynamically, both the rolled-up wake model and the more complex, multiple trailer wake model are used, with the latter slightly improving the blade chordwise moment correlation. This sensitivity to the wake model indicates that CFD is needed. Three high-speed experimental cases, one uncontrolled free flap case and two commanded flap cases, are considered. The two commanded flap cases include a 2o flap deflection at 5P case and a 0o flap deflection case. For the free flap case, selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the commanded 2o flap case, the experimental flap variation is approximately matched by increasing the analytical flap hinge stiffness. This increased flap hinge stiffness is retained for the commanded 0o flap case also, which is treated as a free flap case, but with larger flap hinge stiffness. The change in the mid-span and outboard loads correlation due to the updating of the flexbeam properties is not significant. Increasing the number of blade modes results in an

  3. Adaptive trailing edge flaps for active load alleviation in a smart rotor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.

    2013-08-15

    The work investigates the development of an active smart rotor concept from an aero-servo-elastic perspective. An active smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators, is able to alleviate the fluctuating part of the aerodynamic loads it has to withstand. The investigation focuses on a specific actuator type: the Adaptive Trailing Edge Flap (ATEF), which introduces a continuous deformation of the aft part of the airfoil camber-line. An aerodynamic model that accounts for the steady and unsteady effects of the flap deflection on a 2D airfoil section is developed, and, considering both attached and separated flow conditions, is validated by comparison against Computational Fluid Dynamic solutions and a panel code method. The aerodynamic model is integrated in the BEM-based aeroelastic simulation code HAWC2, thus providing a tool able to simulate the response of a wind turbine equipped with ATEF. A load analysis of the NREL 5 MW reference turbine in its baseline configuration reveals that the highest contribution to the blade flapwise fatigue damage originates from normal operation above rated wind speed, and from loads characterized by frequencies below 1 Hz. The analysis also reports that periodic load variations on the turbine blade account for nearly 11 % of the blade flapwise lifetime fatigue damage, while the rest is ascribed to load variations from disturbances of stochastic nature. The study proposes a smart rotor configuration with flaps laid out on the outer 20 % of the blade span, from 77 % to 97% of the blade length. The configuration is first tested with a simplified cyclic control approach, which gives a preliminary indication of the load alleviation potential, and also reveals the possibility to enhance the rotor energy capture below rated conditions by using the flaps. Two model based control algorithms are developed to actively alleviate the fatigue loads on the smart rotor with ATEF. The first

  4. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ONE: PRELIMINARY DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.; Chow, Ray [Zimitar, Inc.; Nordenholz, Thomas R. [The California Maritime Academy; Wamble, John Lee [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  5. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME TWO: INNOVATION & COST OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  6. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ZERO: OVERVIEW AND COMMERCIAL PATH

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  7. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME THREE: MARKET & TEAM

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  8. A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Poulsen, Niels Kjølstad

    2015-01-01

    The paper proposes a smart rotor configuration where adaptive trailing edge flaps (ATEFs) are employed for active alleviation of the aerodynamic loads on the blades of the NREL 5 MW reference turbine. The flaps extend for 20% of the blade length and are controlled by a linear quadratic (LQ....... The effects of active flap control are assessed with aeroelastic simulations of the turbine in normal operation conditions, as prescribed by the International Electrotechnical Commission standard. The turbine lifetime fatigue damage equivalent loads provide a convenient summary of the results achieved...

  9. Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads

    Science.gov (United States)

    Kottapalli, Sesi B. R.

    2010-01-01

    Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.

  10. Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade

    Science.gov (United States)

    Millott, T. A.; Friedmann, P. P.

    1994-01-01

    This report describes an analytical study of vibration reduction in a four-bladed helicopter rotor using an actively controlled, partial span, trailing edge flap located on the blade. The vibration reduction produced by the actively controlled flap (ACF) is compared with that obtained using individual blade control (IBC), in which the entire blade is oscillated in pitch. For both cases a deterministic feedback controller is implemented to reduce the 4/rev hub loads. For all cases considered, the ACF produced vibration reduction comparable with that obtained using IBC, but consumed only 10-30% of the power required to implement IBC. A careful parametric study is conducted to determine the influence of blade torsional stiffness, spanwise location of the control flap, and hinge moment correction on the vibration reduction characteristics of the ACF. The results clearly demonstrate the feasibility of this new approach to vibration reduction. It should be emphasized than the ACF, used together with a conventional swashplate, is completely decoupled from the primary flight control system and thus it has no influence on the airworthiness of the helicopter. This attribute is potentially a significant advantage when compared to IBC.

  11. Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    section is developed, and, considering both attached and separated flow conditions, is validated by comparison against Computational Fluid Dynamic solutions and a panel code method. The aerodynamic model is integrated in the BEM-based aeroelastic simulation code HAWC2, thus providing a tool able...... on each blade based on measurements of the root flapwise bending moment; each blade is considered as an independent Single Input-Single Output system. The second algorithm is a Multiple Input-Multiple Output Model Predictive Control (MIMO-MPC), which monitors the whole turbine response, and controls all...... the available actuators: ATEF, individual blade pitch, and generator. Both algorithms include frequency-dependent weighting of the control actions in order to limit high frequency control activity, and thus effectively reduce actuators use and wear. The smart rotor performances are evaluated from HAWC2...

  12. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  13. Benchmarking aerodynamic prediction of unsteady rotor aerodynamics of active flaps on wind turbine blades using ranging fidelity tools

    Science.gov (United States)

    Barlas, Thanasis; Jost, Eva; Pirrung, Georg; Tsiantas, Theofanis; Riziotis, Vasilis; Navalkar, Sachin T.; Lutz, Thorsten; van Wingerden, Jan-Willem

    2016-09-01

    Simulations of a stiff rotor configuration of the DTU 10MW Reference Wind Turbine are performed in order to assess the impact of prescribed flap motion on the aerodynamic loads on a blade sectional and rotor integral level. Results of the engineering models used by DTU (HAWC2), TUDelft (Bladed) and NTUA (hGAST) are compared to the CFD predictions of USTUTT-IAG (FLOWer). Results show fairly good comparison in terms of axial loading, while alignment of tangential and drag-related forces across the numerical codes needs to be improved, together with unsteady corrections associated with rotor wake dynamics. The use of a new wake model in HAWC2 shows considerable accuracy improvements.

  14. Simulations of a rotor with active deformable trailing edge flaps in half-wake inflow: Comparison of EllipSys 3D with HAWC2

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; Zahle, Frederik; Sørensen, Niels N.;

    2012-01-01

    . In this study, a comparison between aerodynamic predictions of the aeroelastic code HAWC2 and the Navier-Stokes code EllipSys3D for the NREL 5MW reference wind turbine rotor in a stiff configuration equipped with a deformable trailing edge flap is performed. A case where the half rotor plane experiences...... an inflow resembling the wake from an upstream wind turbine is investigated, which is appropriate for comparing the predictions of the two codes related to the abrupt aerodynamic response and the influence of the controllable flap. The trailing edge flap is actuated to alleviate the added loads from a non...

  15. Flap motion of helicopter rotors with novel, dynamic stall model

    Directory of Open Access Journals (Sweden)

    Han Wei

    2016-01-01

    Full Text Available In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.

  16. Development of a Wind Turbine Test Rig and Rotor for Trailing Edge Flap Investigation: Static Flap Angles Case

    Science.gov (United States)

    Abdelrahman, Ahmed; Johnson, David A.

    2014-06-01

    One of the strategies used to improve performance and increase the life-span of wind turbines is active flow control. It involves the modification of the aerodynamic characteristics of a wind turbine blade by means of moveable aerodynamic control surfaces. Trailing edge flaps are relatively small moveable control surfaces placed at the trailing edge of a blade's airfoil that modify the lift of a blade or airfoil section. An instrumented wind turbine test rig and rotor were specifically developed to enable a wide-range of experiments to investigate the potential of trailing edge flaps as an active control technique. A modular blade based on the S833 airfoil was designed to allow accurate instrumentation and customizable settings. The blade is 1.7 meters long, had a constant 178mm chord and a 6° pitch. The modular aerodynamic parts were 3D printed using plastic PC-ABS material. The blade design point was within the range of wind velocities in the available large test facility. The wind facility is a large open jet wind tunnel with a maximum velocity of 11m/s in the test area. The capability of the developed system was demonstrated through an initial study of the effect of stationary trailing edge flaps on blade load and performance. The investigation focused on measuring the changes in flapwise bending moment and power production for different trailing edge flap spanwise locations and deflection angles. The relationship between the load reduction and deflection angle was linear as expected from theory and the highest reduction was caused by the flap furthest from the rotor center. Overall, the experimental setup proved to be effective in measuring small changes in flapwise bending moment within the wind turbine blade and will provide insight when (active) flap control is targeted.

  17. High-fidelity linear time-invariant model of a smart rotor with adaptive trailing edge flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Hansen, Morten Hartvig

    2017-01-01

    aero-servo-elastic model support the design, systematic tuning and model synthesis of smart rotor control systems. As an example application, the gains of an individual flap controller are tuned using the Ziegler-Nichols method for the full-order poles. The flap controller is based on feedback...... of inverse Coleman transformed and low-pass filtered flapwise blade root moments to the cyclic flap angles through two proportional-integral controllers. The load alleviation potential of the active flap control, anticipated by the frequency response of the linear closed-loop model, is also confirmed by non...

  18. Power performance optimization and loads alleviation with active flaps using individual flap control

    Science.gov (United States)

    Pettas, Vasilis; Barlas, Thanasis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The present article investigates the potential of Active Trailing Edge Flaps (ATEF) in terms of increase in annual energy production (AEP) as well as reduction of fatigue loads. The basis for this study is the DTU 10 MW Reference Wind Turbine (RWT) simulated using the aeroelastic code HAWC2. In an industrial-oriented manner the baseline rotor is upscaled by 5% and the ATEFs are implemented in the outer 30% of the blades. The flap system is kept simple and robust with a single flap section and control with wind speed, rotor azimuth, root bending moments and angle of attack in flap's mid-section being the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple and applicable method that can be a technology enabler for rotor upscaling and lowering cost of energy.

  19. Random gust response statistics for coupled torsion-flapping rotor blade vibrations.

    Science.gov (United States)

    Gaonkar, G. H.; Hohenemser, K. H.; Yin, S. K.

    1972-01-01

    An analysis of coupled torsion-flapping rotor blade vibrations in response to atmospheric turbulence revealed that at high rotor advance ratios anticipated for future high speed pure or convertible rotorcraft both flapping and torsional vibrations can be severe. While appropriate feedback systems can alleviate flapping, they have little effect on torsion. Dynamic stability margins have also no substantial influence on dynamic torsion loads. The only effective means found to alleviate turbulence caused torsional vibrations and loads at high advance ratio was a substantial torsional stiffness margin with respect to local static torsional divergence of the retreating blade.

  20. CALCULATION OF HELICOPTER ROTOR FLAPPING ANGLES AND COMPARISON WITH MEASURED DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Helicopter rotor flapping angles from hover to low-speed forward flight are calculated and compared with the measured data in this paper. The analytical method is based on a second order lifting-line/full-span free wake model as well as a fully coupled rotor trim model. It is shown that, in order to accurately predict the lateral flapping angle at low advance ratio, it is necessary to use free wake analysis to account for the highly non-uniform inflow induced by the distorted wake geometry at rotor disc plane.

  1. Design and performance prediction of swashplateless helicopter rotors with trailing edge flaps and tabs

    Science.gov (United States)

    Falls, Jaye

    This work studies the design of trailing edge controls for swashplateless helicopter primary control, and examines the impact of those controls on the performance of the rotor. The objective is to develop a comprehensive aeroelastic analysis for swashplateless rotors in steady level flight. The two key issues to be solved for this swashplateless control concept are actuation of the trailing edge controls and evaluating the performance of the swashplateless rotor compared to conventionally controlled helicopters. Solving the first requires simultaneous minimization of trailing flap control angles and hinge moments to reduce actuation power. The second issue requires not only the accurate assessment of swashplateless rotor power, but also similar or improved performance compared to conventional rotors. The analysis consists of two major parts, the structural model and the aerodynamic model. The inertial contributions of the trailing edge flap and tab are derived and added to the system equations in the structural model. Two different aerodynamic models are used in the analysis, a quasi-steady thin airfoil theory that includes arbitrary hinge positions for the flap and the tab, and an unsteady lifting line model with airfoil table lookup based on wind tunnel test data and computational fluid dynamics simulation. The design aspect of the problem is investigated through parametric studies of the trailing edge flap and tab for a Kaman-type conceptual rotor and a UH-60A swashplateless variant. The UH-60A model is not changed except for the addition of a trailing edge flap to the rotor blade, and the reduction of pitch link stiffness to imitate a soft root spring. Study of the uncoupled blade response identifies torsional stiffness and flap hinge stiffness as important design features of the swashplateless rotor. Important trailing edge flap and tab design features including index angle, aerodynamic overhang, chord and length are identified through examination of coupled

  2. Primary control of a Mach scale swashplateless rotor using brushless DC motor actuated trailing edge flaps

    Science.gov (United States)

    Saxena, Anand

    The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor

  3. Active Control of Long Bridges Using Flaps

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle

    The main problem in designing ultra-long span suspension bridges is flutter. A solution to this problem might be to introduce an active flap control system to increase the flutter wind velocity. The investigated flap control system consists of flaps integrated in the bridge girder so each flap...... is the streamlined part of the edge of the girder. Additional aerodynamic derivatives are shown for the flaps and it is shown how methods already developed can be used to estimate the flutter wind velocity for a bridge section with flaps. As an example, the flutter wind velocity is calculated for different flap...... configurations for a bridge section model by using aerodynamic derivatives for a flat plate. The example shows that different flap configurations can either increase or decrease the flutter wind velocity. for optimal flap configurations flutter will not occur....

  4. Active control for performance enhancement of electrically controlled rotor

    Institute of Scientific and Technical Information of China (English)

    Lu Yang; Wang Chao

    2015-01-01

    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  5. An experimental and analytical investigation of isolated rotor flap-lag stability in forward flight

    Science.gov (United States)

    Gaonkar, Gopal H.; Mcnulty, Michael J.; Nagabhushanam, J.

    1990-01-01

    The flap-lag stability of an isolated hingeless rotor is investigated, both experimentally and analytically, in hover and in forward flight. The effects of forward flight aerodynamics on regressing lead-lag mode stability are the focus of the investigation. The soft-inplane, three-bladed, isolated model rotor was operated untrimmed at advance ratios from hover to 0.55 and at shaft angles as high as 20 deg. The experimental data base includes forward flight damping data for two lead-lag natural frequencies, for three values of collective pitch, and for both zero and full-lag structural coupling. With the aid of computerized symbolic manipulation, a rigid-blade lag-flap model analysis was developed to calculate the Floquent eigenvalues and to identify the modes. Good correlation is shown for some cases, but other cases show large discrepancies between the theory and experiment.

  6. Aeromechanical Evaluation of Smart-Twisting Active Rotor

    Science.gov (United States)

    Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline; Delrieux, Yves

    2014-01-01

    An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.

  7. Structural and mechanism design of an active trailing-edge flap blade

    DEFF Research Database (Denmark)

    Lee, Jae Hwan; Natarajan, Balakumaran; Eun, Won Jong;

    2013-01-01

    of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design......, as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram....... To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4°, three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin...

  8. Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)

    Science.gov (United States)

    Weisbrich, R.; Perley, R.; Howes, H.

    1977-01-01

    The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.

  9. Wind tunnel testing of a full scale helicopter blade section with an upstream active Gurney flap

    NARCIS (Netherlands)

    Loendersloot, R.; Freire Gomez, J.; Booker, J.D.

    2014-01-01

    Wind tunnel tests were performed on an aerofoil section comparable to that of a full scale helicopter blade section with an upstream active Gurney flap in the framework of the European project CleanSky ITD Green RotorCraft. A modified NACA0012 profile was used, with 23 Kulite pressure transducers em

  10. Development of a resonant trailing-edge flap actuation system for helicopter rotor vibration control

    Science.gov (United States)

    Kim, J.-S.; Wang, K. W.; Smith, E. C.

    2007-12-01

    A resonant trailing-edge flap actuation system for helicopter rotors is developed and evaluated experimentally. The concept involves deflecting each individual trailing-edge flap using a compact resonant piezoelectric actuation system. Each resonant actuation system yields high authority, while operating at a single frequency. By tailoring the natural frequencies of the actuation system (including the piezoelectric actuator and the related mechanical and electrical elements) to the required operating frequencies, one can increase the output authority. The robustness of the device can be enhanced by increasing the high authority bandwidth through electric circuitry design. Such a resonant actuation system (RAS) is analyzed for a full-scale piezoelectric induced-shear tube actuator, and bench-top testing is conducted to validate the concept. An adaptive feed-forward controller is developed to realize the electric network dynamics and adapt to phase variation. The control strategy is then implemented via a digital signal processor (DSP) system. Analysis is also performed to examine the rotor system dynamics in forward flight with piezoelectric resonant actuators, using a perturbation method to evaluate the system's time-varying characteristics. Numerical simulations reveal that the resonant actuator concept can be applied to forward flights as well as to hover conditions.

  11. Design and development of an active Gurney flap for rotorcraft

    Science.gov (United States)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2013-03-01

    The EU's Green Rotorcraft programme will develop an Active Gurney Flap (AGF) for a full-scale helicopter main rotor blade as part of its `smart adaptive rotor blade' technology demonstrators. AGFs can be utilized to provide a localized and variable lift enhancement on the rotor, enabling a redistribution of loading on the rotor blade around the rotor azimuth. Further advantages include the possibility of using AGFs to allow a rotor speed reduction, which subsequently provides acoustic benefits. Designed to be integrable into a commercial helicopter blade, and thereby capable of withstanding real in-flight centrifugal loading, blade vibrations and aerodynamic loads, the demonstrator is expected to achieve a high technology readiness level (TRL). The AGF will be validated initially by a constant blade section 2D wind tunnel test and latterly by full blade 3D whirl tower testing. This paper presents the methodology adopted for the AGF concept topology selection, based on a series of both qualitative and quantitative performance criteria. Two different AGF candidate mechanisms are compared, both powered by a small commercial electromagnetic actuator. In both topologies, the link between the actuator and the control surface consists of two rotating torque bars, pivoting on flexure bearings. This provides the required reliability and precision, while making the design virtually frictionless. The engineering analysis presented suggests that both candidates would perform satisfactorily in a 2D wind tunnel test, but that equally, both have design constraints which limit their potential to be further taken into a whirl tower test under full scale centrifugal and inertial loads.

  12. Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik;

    2016-01-01

    This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...

  13. ANALYSIS OF AN ELECTROSTRICTIVE STACK ACTUATORFOR ACTIVE TRAILING EDGE FLAPS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Helicopter is a complex dynamic system with many rotating components. The rotor blades operate in a highly complex aerodynamic environment. The vibratory hub load, which is caused by cyclic variation of centrifugal and aerodynamic load of the rotating blades in flight, is transmitted to the fuselage, resulting in serious vibration and noise of the structure. It is one of the most important exciting sources in helicopters.  There has long been a desire to reduce helicopter vibration and to improve its performance. Control schemes adopted so far can be classified as either passive or active control technologies. The passive technologies include optimization of rotor hub, blade and the fuselage, hub or blade mounted passive vibration absorbers and anti-resonant vibration isolators. One of the major disadvantages with passive technologies is that they are designed to provide maximum vibration reduction at a specific frequency; therefore, their performance is degraded significantly with changes in the operating conditions of the rotor system.  With the development of computer science and active control technology, increasing efforts have been devoted to active control technologies to benefit helicopter vibration suppression in recent years. Earlier studies include Higher Harmonic Control (HHC)[1] and Individual Blade Control (IBC)[2], which is aimed to reduce the vibratory blade load by oscillating the blade in pitch motion using hydraulic actuators. It is successful in suppressing the vibration of the fuselage; however, its application is limited by serious energy consumption.  To overcome these difficulties, a new concept in helicopter vibration control is the smart rotor system. In this scheme, actuators are embedded in composite blades. They are used to activate the trailing edge flaps in higher harmonic pitch motion to adjust the lift force actively. Under the regulation of a control system, the vibratory hub load can be counteracted actively at

  14. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    Science.gov (United States)

    Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.

  15. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn

  16. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  17. Effect of Smart Rotor Control Using a Deformable Trailing Edge Flap on Load Reduction under Normal and Extreme Turbulence

    Directory of Open Access Journals (Sweden)

    Jian Zhong Xu

    2012-09-01

    Full Text Available This paper presents a newly developed aero-servo-elastic platform for implementing smart rotor control and shows its effectiveness with aerodynamic loads on large-scale offshore wind turbines. The platform was built by improving the FAST/Aerodyn codes with the integration of an external deformable trailing edge flap controller in the Matlab/Simulink software. Smart rotor control was applied to an Upwind/NREL 5 MW reference wind turbine under various operating wind conditions in accordance with the IEC Normal Turbulence Model (NTM and Extreme Turbulence Model (ETM. Results showed that, irrespective of whether the NTM or ETM case was considered, aerodynamic load in terms of blade flapwise root moment and tip deflection were effectively reduced. Furthermore, the smart rotor control also positively affected generator power, pitch system and tower load. These results laying a foundation for a future migration of the “smart rotor control” concept into the design of large-scale offshore wind turbines.

  18. A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control

    NARCIS (Netherlands)

    Lackner, M.A.; van Kuik, G.A.M.

    2009-01-01

    Modern wind turbines have been steadily increasing in size, and have now become very large, with recent models boasting rotor diameters greater than 120 m. Reducing the loads experienced by the wind turbine rotor blades is one means of lowering the cost of energy of wind turbines. Wind turbines are

  19. Stall Inception Process and Prospects for Active Hub-Flap Control in Three-Stage Axial Flow Compressor

    Institute of Scientific and Technical Information of China (English)

    Tomoya OKADA; Atsushi KAWAJIRI; Yutaka OHTA; Eisuke OUTA

    2008-01-01

    The possibility to apply the active hub-flap control method, which is a proven rotating stall control method for a single-stage compressor, to a 3-stage axial compressor is experimentally discussed, where complex rotating stall inception processes ate observed. The research compressor is a 3-stage one and could change the stagger angle settings for rotor blades and stator vanes. Sixteen rotor blade/stator vane configuration patterns were tested by changing stagger angle for the stator vanes. By measurement of surface-pressure fluctuation, stall inception proc-esses are investigated and the measured pressure fluctuation data is used as a predictive signal for rotating stall. The experimental results show that the stall detection system applied to active hub-flap control in a single-stage compressor could be usefully applied to that in a 3-stage compressor with a more complex stall inception process.

  20. Power performance optimization and loads alleviation with active flaps using individual flap control

    DEFF Research Database (Denmark)

    Pettas, Vasilis; Barlas, Athanasios; Gertz, Drew Patrick;

    2016-01-01

    The present article investigates the potential of Active Trailing Edge Flaps (ATEF) in terms of increase in annual energy production (AEP) as well as reduction of fatigue loads. The basis for this study is the DTU 10 MW Reference Wind Turbine (RWT) simulated using the aeroelastic code HAWC2...... the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple...

  1. Sizing and Control of Trailing Edge Flaps on a Smart Rotor for Maximum Power Generation in Low Fatigue Wind Regimes

    DEFF Research Database (Denmark)

    Smit, Jeroen; Berghammer, Lars O.; Navalkar, Sachin;

    2014-01-01

    In this paper an extension of the spectrum of applicability of rotors with active aerody-namic devices is presented. Besides the classical purpose of load alleviation, a secondary objective is established: power capture optimization. As a _rst step, wind speed regions that contribute little...

  2. Sizing and control of trailing edge flaps on a smart rotor for maximum power generation in low fatigue wind regimes

    DEFF Research Database (Denmark)

    Smit, Jeroen; Bernhammer, Lars O.; Navalkar, Sachin T.;

    2016-01-01

    An extension of the spectrum of applicability of rotors with active aerodynamic devices is presented in this paper. Besides the classical purpose of load alleviation, a secondary objective is established: optimization of power capture. As a first step, wind speed regions that contribute little...

  3. Toward comparing experiment and theory for corroborative research on hingeless rotor stability in forward flight (an experimental and analytical investigation of isolated rotor-flap-lag stability in forward flight)

    Science.gov (United States)

    Gaonkar, G.

    1986-01-01

    For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. Accordingly, a soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 degrees. The 1.62 m model rotor is untrimmed with an essentially unrestricted tilt of the tip path plane. In combination with lag natural frequencies, collective pitch settings and flap-lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulation, a linear analytical model is developed in substall to predict stability margins with mode identificaton. To help explain the correlation between theory and data it also predicts substall and stall regions of the rotor disk from equilibrium values. The correlation shows both the strengthts and weaknesses of the theory in substall.

  4. Active damping of flexible rotor blade dynamics using electrorheological-fluid-based actuators

    Science.gov (United States)

    Wereley, Norman M.

    1994-05-01

    Advanced rotor systems including hingeless and bearingless rotors have air and ground resonance instabilities due to coalescence of low-frequency rotor modes with landing gear and fuselage modes, respectively. This coalescence is of difficulty due to the direct connection of the rotor blade in these advanced rotor systems to the rotor hub using a flexure or flexbeam. We are currently exploring the mitigation of this modal coalescence through the use of active damping techniques and electro-rheological fluid technology.

  5. Stability investigation of an airfoil section with active flap control

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac

    2010-01-01

    This work presents a method to determine flutter and divergence instability limits for a two-dimensional (2-D) airfoil section fitted with an actively controlled trailing edge flap. This flap consists of a deformable trailing edge, which deformation is governed by control algorithms based...... for fatigue load alleviation. The structural model of the 2-D airfoil section contains three degrees of freedom: heave translation, pitch rotation and flap deflection. A potential flow model provides the aerodynamic forces and their distribution. The unsteady aerodynamics are described using an indicial...... function approximation. Stability of the full aeroservoelastic system is determined through eigenvalue analysis by state-space formulation of the indicial approximation. Validation is carried out against an implementation of the recursive method by Theodorsen and Garrick for flexure-torsion-aileron flutter...

  6. Robust stabilization of rotor-active magnetic bearing systems

    Science.gov (United States)

    Li, Guoxin

    Active magnetic bearings (AMBs) are emerging as a beneficial technology for high-speed and high-performance suspensions in rotating machinery applications. A fundamental feedback control problem is robust stabilization in the presence of uncertain destabilizing mechanisms in aeroelastic, hydroelastic dynamics, and AMB feedback. As rotating machines are evolving in achieving high speed, high energy density, and high performance, the rotor and the support structure become increasingly flexible, and highly coupled. This makes rotor-AMB system more challenging to stabilize. The primary objective of this research is to develop a systematic control synthesis procedure for achieving highly robust stabilization of rotor-AMB systems. Of special interest is the stabilization of multivariable systems such as the AMB supported flexible rotors and gyroscopic rotors, where the classical control design may encounter difficulties. To this end, we first developed a systematic modeling procedure. This modeling procedure exploited the best advantages of technology developed in rotordynamics and the unique system identification tool provided by the AMBs. A systematic uncertainty model for rotor-AMB systems was developed, eliminating the iterative process of selecting uncertainty structures. The consequences of overestimation or underestimation of uncertainties were made transparent to control engineers. To achieve high robustness, we explored the fundamental performance/robustness limitations due to rotor-AMB system unstable poles. We examined the mixed sensitivity performance that is closely related to the unstructured uncertainty. To enhance transparency of the synthesis, we analyzed multivariable controllers from classical control perspectives. Based on these results, a systematic robust control synthesis procedure was established. For a strong gyroscopic rotor over a wide speed range, we applied the advanced gain-scheduled synthesis, and compared two synthesis frameworks in

  7. ANALYSIS OF AN ELECTROSTRICTIVE STACK ACTUATOR FOR ACTIVE TRAILING EDGE FLAPS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Stack actuator is a solid-state driving component of Active Tailing Edge Flap in smart rotor systems. It is a multi-layer serial structure of basic units composed of electrostrictive and adhesive layers. In this paper, a dynamic model of the actuator is derived based on the constitutive equation of electrostrictive material and the equation of motion. Theoretical analysis is made on the factors involved in the design of the actuator, which reveals that the electrostrictive layer and the adhesive layer should be optimized to compromise between displacement and frequency requirements. In the final part of the paper, the experiment of an ATEF system is introduced. The results show that the model is reasonable. It also suggests that the bending stiffness of elastic mechanism is an important factor in design, which should be carefully studied to provide satisfactory dynamic response of the ATEF system.

  8. Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions

    Science.gov (United States)

    Ahmadi, G.; Marzocca, P.; Jha, R.; Alstorm, B.; Obied, S.; Kabir, P.; Shahrabi, A.

    2010-01-01

    The main objective is to develop effective control strategies for separation control of an airfoil with a single hinge flap. The specific objectives are: Develop an active control architecture for flow control around an airfoil with flap. Design, fabricate, a wind tunnel test of a high lift wing (with flap) with integrated actuators and sensors. Design, development and fabrication of synthetic jet actuators. Develop appropriate control strategy for application to the airfoil. Wind tunnel testing of the high lift wing at various angles of attack and flap positions with closed loop control.

  9. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  10. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    Science.gov (United States)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  11. SMART wind turbine rotor. Data analysis and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  12. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  13. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Pettas, Vasilis; Gertz, Drew Patrick;

    2016-01-01

    Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power...... performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction....

  14. Stress optimization of leaf-spring crossed flexure pivots for an active Gurney flap mechanism

    Science.gov (United States)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2015-04-01

    The EU's Green Rotorcraft programme is pursuing the development of a functional and airworthy Active Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this `smart adaptive rotor blade' technology lies in its potential to provide a number of aerodynamic benefits, which would in turn translate into a reduction in fuel consumption and noise levels. The AGF mechanism selected employs leaf-spring crossed flexure pivots. These provide important advantages over bearings as they are not susceptible to seizing and do not require maintenance (i.e. lubrication or cleaning). A baseline design of this mechanism was successfully tested both in a fatigue rig and in a 2D wind tunnel environment at flight-representative deployment schedules. For full validation, a flight test would also be required. However, the severity of the in-flight loading conditions would likely compromise the mechanical integrity of the pivots' leaf-springs in their current form. This paper investigates the scope for stress reduction through three-dimensional shape optimization of the leaf-springs of a generic crossed flexure pivot. To this end, a procedure combining a linear strain energy formulation, a parametric leaf-spring profile definition and a series of optimization algorithms is employed. The resulting optimized leaf-springs are proven to be not only independent of the angular rotation at which the pivot operates, but also linearly scalable to leaf-springs of any length, minimum thickness and width. Validated using non-linear finite element analysis, the results show very significant stress reductions relative to pivots with constant cross section leaf-springs, of up to as much as 30% for the specific pivot configuration employed in the AGF mechanism. It is concluded that shape optimization offers great potential for reducing stress in crossed flexure pivots and, consequently, for extending their fatigue life and/or rotational range.

  15. Vibration reduction in helicopter rotors using an active control surface located on the blade

    Science.gov (United States)

    Millott, T. A.; Friedmann, P. P.

    1992-01-01

    A feasibility study of vibration reduction in a four-bladed helicopter rotor using individual blade control (IBC), which is implemented by an individually controlled aerodynamic surface located on each blade, is presented. For this exploratory study, a simple offset-hinged spring restrained model of the blade is used with fully coupled flap-lag-torsional dynamics for each blade. Deterministic controllers based on local and global system models are implemented to reduce 4/rev hub loads using both an actively controlled aerodynamic surface on each blade as well as conventional IBC, where the complete blade undergoes cyclic pitch change. The effectiveness of the two approaches for simultaneous reduction of the 4/rev hub shears and hub moments is compared. Conventional IBC requires considerably more power to achieve approximately the same level of vibration reduction as that obtained by implementing IBC using an active control surface located on the outboard segment of the blade. The effect of blade torsional flexibility on the vibration reduction effectiveness of the actively controlled surface was also considered and it was found that this parameter has a very substantial influence.

  16. 2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap

    Science.gov (United States)

    Jaksich, Dylan; Shen, Jinwei

    2014-11-01

    Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.

  17. Influence of time domain unsteady aerodynamics on coupled flap-lag-torsional aeroelastic stability and response of rotor blades

    Science.gov (United States)

    Friedmann, P. P.; Robinson, L. H.

    1988-01-01

    This paper describes the incorporation of finite-state, time-domain aerodynamics in a flag-lag-torsional aeroelastic stability and response analysis in forward flight. Improvements to a previous formulation are introduced which eliminate spurious singularities. The methodology for solving the aeroelastic stability and response problems with augmented states, in the time domain, is presented using an implicit formulation. Results describing the aeroelastic behavior of soft and stiff in-plane hingeless rotor blades, in forward flight, are presented to illustrate the sensitivity of both the stability and response problems to time domain unsteady aerodynamics.

  18. Active Magnetic Bearing Rotor Model Updating Using Resonance and MAC Error

    Directory of Open Access Journals (Sweden)

    Yuanping Xu

    2015-01-01

    Full Text Available Modern control techniques can improve the performance and robustness of a rotor active magnetic bearing (AMB system. Since those control methods usually rely on system models, it is important to obtain a precise rotor AMB analytical model. However, the interference fits and shrink effects of rotor AMB cause inaccuracy to the final system model. In this paper, an experiment based model updating method is proposed to improve the accuracy of the finite element (FE model used in a rotor AMB system. Modelling error is minimized by applying a numerical optimization Nelder-Mead simplex algorithm to properly adjust FE model parameters. Both the error resonance frequencies and modal assurance criterion (MAC values are minimized simultaneously to account for the rotor natural frequencies as well as for the mode shapes. Verification of the updated rotor model is performed by comparing the experimental and analytical frequency response. The close agreements demonstrate the effectiveness of the proposed model updating methodology.

  19. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    Science.gov (United States)

    Flowers, George T.

    1995-02-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  20. Analysis on Dynamic Performance for Active Magnetic Bearing—Rotor System

    Institute of Scientific and Technical Information of China (English)

    YANHui-yan; WANGXi-ping; 等

    2001-01-01

    In the application of active magnetic bearings(AMB),one of the key problems to be solved is the safety and stabiltiy in the sense of rotor dynamics,The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings,and studies its rotor dynamics performance,including calculation of the natural frequencies with their distribution characteristics,and the critical speeds of the system.one of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magntic bearing-rotor systemby combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.

  1. SMART Wind Turbine Rotor: Data Analysis and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yoder, Nathanael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  2. Multiple attractors in the response of a flexible rotor in active magnetic bearings with geometric coupling

    Energy Technology Data Exchange (ETDEWEB)

    Inayat-Hussain, J I [School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan (Malaysia)], E-mail: jawaid.inayat-hussain@eng.monash.edu.my

    2008-02-15

    Numerical results on the response of a flexible rotor supported by nonlinear active magnetic bearings are presented. Nonlinearity arising from the magnetic actuator forces that are nonlinear functions of the coil current and the air gap between the rotor and the stator, and from the geometric coupling of the magnetic actuators is incorporated into the mathematical model of the flexible rotor - active magnetic bearing system. For relatively large values of the geometric coupling parameter, the response of the rotor with the variation of the speed parameter within the range 0.05 {<=}{omega} {<=} 5.0 displayed a rich variety of nonlinear dynamical phenomena including sub-synchronous vibrations of periods -2, -3, -6, -9, and -17, quasi-periodicity and chaos. Numerical results also reveal the occurrence of bi-stable operation within certain ranges of the speed parameter where multiple attractors may co-exist at the same speed parameter value depending on the operating speed of the rotor.

  3. Active magnetic bearings dynamic parameters identification from experimental rotor unbalance response

    Science.gov (United States)

    Xu, Yuanping; Zhou, Jin; Di, Long; Zhao, Chen

    2017-01-01

    Active magnetic bearings (AMBs) support rotors using electromagnetic force rather than mechanical forces. It is necessary to accurately identify the AMBs force coefficients since they play a critical role in the rotordynamic analysis including system stability, bending critical speeds and modes of vibrations. This paper proposes a rotor unbalance response based approach to identifying the AMBs stiffness and damping coefficients during rotation. First, a Timoshenko beam finite element (FE) rotor model is created. Second, an identification procedure based on the FE model is proposed. Then based on the experimental rotor unbalance response data from 1200 rpm to 30,000 rpm, the AMBs dynamic force parameters (stiffness and damping) are obtained. Finally, the identified results are verified by comparing the estimated and experimental rotor unbalance responses, which shows high accuracy.

  4. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations, Phase 1

    Science.gov (United States)

    Hohenemser, K. H.; Gaonkar, G. H.

    1967-01-01

    A number of lifting rotor conditions with random inputs are discussed. The present state of random process theory, applicable to lifting rotor problems is sketched. Possible theories of random blade flapping and random blade flap-bending are outlined and their limitations discussed. A plan for preliminary experiments to study random flapping motions of a see-saw rotor is developed.

  5. Control of flexible rotor systems with active magnetic bearings

    Science.gov (United States)

    Lei, Shuliang; Palazzolo, Alan

    2008-07-01

    An approach is presented for the analysis and design of magnetic suspension systems with large flexible rotordynamics models including dynamics, control, and simulation. The objective is to formulate and synthesize a large-order, flexible shaft rotordynamics model for a flywheel supported with magnetic bearings. A finite element model of the rotor system is assembled and then employed to develop a magnetic suspension compensator to provide good reliability and disturbance rejection. Stable operation over the complete speed range and optimization of the closed-loop rotordynamic properties are obtained via synthesis of eigenvalue analysis, Campbell plots, waterfall plots, and mode shapes. The large order of the rotor model and high spin speed of the rotor present a challenge for magnetic suspension control. A flywheel system is studied as an example for realizing a physical controller that provides stable rotor suspension and good disturbance rejection in all operating states. The baseline flywheel system control is determined from extensive rotordynamics synthesis and analysis for rotor critical speeds, mode shapes, frequency responses, and time responses.

  6. Unbalance and resonance elimination with active bearings on a Jeffcott Rotor

    Science.gov (United States)

    Heindel, Stefan; Becker, Fabian; Rinderknecht, Stephan

    2017-02-01

    In this contribution we have proven theoretically and practically that active bearings are able to eliminate both bearing forces and the resonance of a Jeffcott Rotor system. Active bearings can displace a rotor such that its center of mass always stays in the rotational center. The proposed collocated controller is able to keep this state at any rotational speed, leading to an elimination of bearing forces and resonances. We analytically demonstrated that the closed-loop system is always stable, even without knowledge of the rotor's properties. The generalization of the proposed control approach for force-free operation either using displacement or force actuators enables its use for all kinds of active bearings. Moreover, the control approach allows a real time estimation of the rotor's eccentricity. The low parameter count and the unproblematic stability behavior qualify the controller for many applications.

  7. A New Sensorless MRAS Based on Active Power Calculations for Rotor Position Estimation of a DFIG

    Directory of Open Access Journals (Sweden)

    Gil Domingos Marques

    2011-01-01

    Full Text Available A sensorless method for the estimation of the rotor position of the wound-rotor induction machine is described in this paper. The method is based on the MRAS methodology and consists in the comparison of two models for the evaluation of the active power transferred across the air gap: the reference model and the adaptive model. The reference model obtains the power transferred across the air gap using directly available and measured stator variables. The adaptive model obtains the same quantity in function of electromotive forces and rotor currents that are measurable on the rotor position, which is under estimation. The method does not need any information about the stator or rotor flux and can be implemented in the rotor or in the stator reference frames with a hysteresis or with a PI controller. The stability analysis gives an unstable region on the rotor current dq plane. Simulation and experimental results show that the method is appropriate for the vector control of the doubly fed induction machine under the stability region.

  8. A New Sensorless MRAS Based on Active Power Calculations for Rotor Position Estimation of a DFIG

    OpenAIRE

    Gil Domingos Marques; Duarte Mesquita e Sousa

    2011-01-01

    A sensorless method for the estimation of the rotor position of the wound-rotor induction machine is described in this paper. The method is based on the MRAS methodology and consists in the comparison of two models for the evaluation of the active power transferred across the air gap: the reference model and the adaptive model. The reference model obtains the power transferred across the air gap using directly available and measured stator variables. The adaptive model obtains the same quanti...

  9. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.

    2009-06-01

    Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.

  10. Chaos via torus breakdown in the vibration response of a rigid rotor supported by active magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Inayat-Hussain, Jawaid I. [School of Engineering, Monash University Malaysia, No. 2, Jalan Kolej, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan (Malaysia)]. E-mail: jawaid.inayat-hussain@eng.monash.edu.my

    2007-02-15

    This work reports on a numerical study undertaken to investigate the response of an imbalanced rigid rotor supported by active magnetic bearings. The mathematical model of the rotor-bearing system used in this study incorporates nonlinearity arising from the electromagnetic force-coil current-air gap relationship, and the effects of geometrical cross-coupling. The response of the rotor is observed to exhibit a rich variety of dynamical behavior including synchronous, sub-synchronous, quasi-periodic and chaotic vibrations. The transition from synchronous rotor response to chaos is via the torus breakdown route. As the rotor imbalance magnitude is increased, the synchronous rotor response undergoes a secondary Hopf bifurcation resulting in quasi-periodic vibration, which is characterized by a torus attractor. With further increase in the rotor imbalance magnitude, this attractor is seen to develop wrinkles and becomes unstable resulting in a fractal torus attractor. The fractal torus is eventually destroyed as the rotor imbalance magnitude is further increased. Quasi-periodic and frequency-locked sub-synchronous vibrations are seen to appear and disappear alternately before the emergence of chaos in the response of the rotor. The magnitude of rotor imbalance where sub-synchronous, quasi-periodic and chaotic vibrations are observed in this study, albeit being higher than the specified imbalance level for rotating machinery, may possibly occur due to a gradual degradation of the rotor balance quality during operation.

  11. Control system design for flexible rotors supported by actively lubricated bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2008-01-01

    This article presents a methodology for calculating the gains of an output feedback controller for active vibration control of flexible rotors. The methodology is based on modal reduction. The proportional and derivative gains are obtained by adjusting the first two damping factors of the system...... and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented...

  12. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    Science.gov (United States)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  13. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    In the present paper, the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserte...

  14. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.

    Science.gov (United States)

    Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan

    2015-10-06

    The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic

  15. Lateral vibration control of a flexible overcritical rotor via an active gas bearing – Theoretical and experimental comparisons

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2016-01-01

    The lack of damping of radial gas bearings leads to high vibration levels of a rotor supported by this type of bearing when crossing resonant areas. This is even more relevant for flexible rotors, as studied in this work. In order to reduce these high vibration levels, an active gas bearing is pr...

  16. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part II: Experiment

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    . The remaining two sets of actuators are applied to act directly onto the hub, working as an active radial bearing controlling the rotor lateral movement. The rig is equipped with sensors measuring blade and rotor vibrations. Actuators and sensors are connected to a digital signal processor running the control......This is the second paper in a two-part study on active rotor-blade vibration control. This part presents an experimental contribution into the work of active controller design for rotor-blade systems. The primary aim is to give an experimental validation and show the applicability...... shaft is mounted in a flexible hub, which can perform lateral movement. The blades are designed as simple Euler-Bernoulli beams with tip masses in order to increase the vibration coupling among the rigid rotors and the flexible blades motion. Different schemes of blade configurations, with and without...

  17. Contributions to the dynamics of helicopters with active rotor controls

    Science.gov (United States)

    Malpica, Carlos A.

    This dissertation presents an aeromechanical closed loop stability and response analysis of a hingeless rotor helicopter with a Higher Harmonic Control (HHC) system for vibration reduction. The analysis includes the rigid body dynamics of the helicopter and blade flexibility. The gain matrix is assumed to be fixed and computed off-line. The discrete elements of the HHC control loop are rigorously modeled, including the presence of two different time scales in the loop. By also formulating the coupled rotor-fuselage dynamics in discrete form, the entire coupled helicopter-HHC system could be rigorously modeled as a discrete system. The effect of the periodicity of the equations of motion is rigorously taken into account by converting the system into an equivalent system with constant coefficients and identical stability properties using a time lifting technique. The most important conclusion of the present study is that the discrete elements in the HHC loop must be modeled in any HHC analysis. Not doing so is unconservative. For the helicopter configuration and HHC structure used in this study, an approximate continuous modeling of the HHC system indicates that the closed loop, coupled helicopter-HHC system remains stable for optimal feedback control configurations which the more rigorous discrete analysis shows can result in closed loop instabilities. The HHC gains must be reduced to account for the loss of gain margin brought about by the discrete elements. Other conclusions of the study are: (i) the HHC is effective in quickly reducing vibrations, at least at its design condition, although the time constants associated with the closed loop transient response indicate closed loop bandwidth to be 1 rad/sec on average, thus overlapping with FCS or pilot bandwidths, and raising the issue of potential interactions; (ii) a linearized model of helicopter dynamics is adequate for HHC design, as long as the periodicity of the system is correctly taken into account, i

  18. Active Pedicle Epithelial Flap Transposition Combined with Amniotic Membrane Transplantation for Treatment of Nonhealing Corneal Ulcers

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2016-01-01

    Full Text Available Introduction. The objective was to evaluate the efficacy of active pedicle epithelial flap transposition combined with amniotic membrane transplantation (AMT in treating nonhealing corneal ulcers. Material and Methods. Eleven patients (11 eyes with nonhealing corneal ulcer who underwent the combined surgery were included. Postoperatively, ulcer healing time was detected by corneal fluorescein staining. Visual acuity, intraocular pressure, surgical complications, and recurrence were recorded. Corneal status was inspected by the laser scanning confocal microscopy and anterior segment optical coherence tomography (AS-OCT. Results. The primary diseases were herpes simplex keratitis (8 eyes, corneal graft ulcer (2 eyes, and Stevens-Johnson syndrome (1 eye. All epithelial flaps were intact following surgery, without shedding or displacement. Mean ulcer healing time was 10.8±3.1 days, with a healing rate of 91%. Vision significantly improved from 1.70 to 0.82 log MAR (P=0.001. A significant decrease in inflammatory cell infiltration and corneal stromal edema was revealed 2 months postoperatively by confocal microscopy and AS-OCT. Corneal ulcer recurred in 1 eye. None of the patients developed major complications. Conclusion. Active pedicle epithelial flap transposition combined with AMT is a simple and effective treatment for nonhealing corneal ulcers.

  19. Modal Tilt/Translate Control and Stability of a Rigid Rotor with Gyroscopics on Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Timothy Dimond

    2012-01-01

    Full Text Available Most industrial rotors supported in active magnetic bearings (AMBs are operated well below the first bending critical speed. Also, they are usually controlled using proportional, integral and derivative controllers, which are set up as modally uncoupled parallel and tilt rotor axes. Gyroscopic effects create mode splitting and a speed-dependent plant. Two AMBs with four axes of control must simultaneously control and stabilize the rotor/AMB system. Various analyses have been published considering this problem for different rotor/AMB configurations. There has not been a fully dimensionless analysis of these rigid rotor AMB systems. This paper will perform this analysis with a modal PD controller in terms of translation mode and tilt mode dimensionless eigenvalues and eigenvectors. The number of independent system parameters is significantly reduced. Dimensionless PD controller gains, the ratio of rotor polar to transverse moments of inertia and a dimensionless speed ratio are used to evaluate a fully general system stability rigid rotor analysis. An objective of this work is to quantify the effects of gyroscopics on rigid rotor AMB systems. These gyroscopic forces reduce the system stability margin. The paper is also intended to help provide a common framework for communication between rotating machinery designers and controls engineers

  20. Model-Based Control Design for Flexible Rotors Supported by Active Gas Bearings - Theory & Experiment

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo

    Gas journal bearings have been increasingly adopted in modern turbo-machinery due to their numerous indisputable advantages. They can operate at higher speed than most bearing designs, almost without noise or heat generation and in most cases, as in this work, the gas used is air which is cheap...... work, the control signal design is based on a theoretical model. This approach enables easy modifications of any of the numerous physical parameters in the system if needed. The theoretical model used is based on a modifed version of Reynolds equation where an extra term is added in order to include...... frequencies and damping ratios of the rotor-bearing system) is performed and finally to design controllers that allows improvement of the dynamic properties of the rotor-active gas bearings system and lets the systemto safely cross the critical speeds, using the theoretical model as a design tool. The results...

  1. Numerical analysis of active chordwise flexibility on the performance of non-symmetrical flapping airfoils

    Science.gov (United States)

    Tay, W. B.; Lim, K. B.

    2010-01-01

    This paper investigates the effect of active chordwise flexing on the lift, thrust and propulsive efficiency of three types of airfoils. The factors studied are the flexing center location, standard two-sided flexing as well as a type of single-sided flexing. The airfoils are simulated to flap with four configurations, and the effects of flexing under these configurations are investigated. Results show that flexing is not necessarily beneficial for the performance of the airfoils. However, with the correct parameters, efficiency is as high as 0.76 by placing the flexing centre at the trailing edge. The average thrust coefficient is more than twice as high, from 1.63 to 3.57 with flapping and flexing under the right conditions. Moreover, the single-sided flexing also gives an average lift coefficient as high as 4.61 for the S1020 airfoil. The shape of the airfoil does alter the effect of flexing too. Deviating the flexing phase angle away from 90° does not give a significant improvement to the airfoil’s performance. These results greatly enhance the design of a better performing ornithopter wing.

  2. Study on the application of active balancing device to solve the vibration problem for the rotor with bending fault

    Institute of Scientific and Technical Information of China (English)

    He Lidong; Shen Wei; Gao Jinji; Zhou Weihua

    2006-01-01

    The rotor with bending faults that occurrs on the rotating machinery usually vibrates seriously. This paper investigates to apply the active balancing device on a flexible rotor with bending faults to solve the vibration problem. Two problems are studied by finite element method firstly: Where the balance actuator is fixed on the shaft and how much the balancing capacity of the active balancing device is needed. The experiment is then carried out on the test rig, which consists of a flexible rotor with bending faults. The test results indicate that the bending rotor peak vibration response can be decreased from 550μm to 40μm below by using the active balancing device. The peak vibration response decreases approximately by 93%. The synchronous vibration due to the rotor bending faults can be controlled effectively by using active balancing device. The active balancing device is especially adapted to solve the problem caused by thermal distortion with time-variation and randomness, which is varied with working conditions, thus it has good practical value in practice.

  3. Aeroelastic Modelling and Comparison of Advanced Active Flap Control Concepts for Load Reduction on the Upwind 5MW Wind Turbine

    NARCIS (Netherlands)

    Barlas, A.; Van Kuik, G.A.M.

    2009-01-01

    A newly developed comprehensive aeroelastic model is used to investigate active flap concepts on the Upwind 5MW reference wind turbine. The model is specially designed to facilitate distributed control concepts and advanced controller design. Different concepts of centralized and distributed control

  4. Aeroelastic modelling and comparison of advanced active flap control concepts for load reduction on the Upwind 5MW wind turbine

    NARCIS (Netherlands)

    Barlas, A.; van Kuik, G.A.M.

    2009-01-01

    A newly developed comprehensive aeroelastic model is used to investigate active flap concepts on the Upwind 5MW reference wind turbine. The model is specially designed to facilitate distributed control concepts and advanced controller design. Different concepts of centralized and distributed control

  5. Wind tunnel test on airfoil Riso-B1-18 with an Active Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bak, Christian; Gaunaa, Mac; Andersen, Peter Bjørn;

    2010-01-01

    A wind tunnel test of the wind turbine airfoil Risø-B1-18 equipped with an Active Trailing Edge Flap (ATEF) was carried out. The ATEF was 9% of the total chord, made of piezo electric actuators attached to the trailing edge of a non-deformable airfoil and actuated using an (electric) amplifier...

  6. Active tilting-pad journal bearings supporting flexible rotors: Part I – The hybrid lubrication

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2017-01-01

    This is part I of a twofold paper series, of theoretical and experimental nature, presenting the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting-pad journal bearings (active TPJBs......). In part I, the flexible rotor-active TPJB modelling is thoroughly covered by establishing the link between the mechanical and hydraulic systems for all regimes. The hybrid lubrication is herein covered in depth; from a control viewpoint, an integral controller to aid such a regime is designed using model......-based standard tools. Results show slight improvement on the system dynamic performance by using the hybrid lubrication instead of the passive one. Further improvements are pursued with the active lubrication in part II....

  7. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2005-01-01

    In the present paper the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... into the model by using two different approaches: (a) linearized active oil film forces and the assumption that the hydrodynamic forces and the active hydraulic forces can be decoupled, and (b) equivalent dynamic coefficients of the active oil film and the solution of the modified Reynolds equation...... lubricated tilting-pad bearing. By applying a simple proportional controller it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the feasibility...

  8. Load alleviation potential of active flaps and individual pitch control in a full design load basis

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Bergami, Leonardo; Hansen, Morten Hartvig;

    2015-01-01

    The load alleviation potential of the Controllable Rubber Trailing Edge Flap (CRTEF) is verified on a full Design Load Basis (DLB) setup using the aeroelastic code HAWC2, and by investigating a flap configuration for the NREL 5MW Reference Wind Turbine (RWT) model. The performance of the CRTEF co...

  9. Initial Aerodynamic and Acoustic Study of an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method

    Science.gov (United States)

    Boyd, David D. Jr.

    2009-01-01

    Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.

  10. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Bergami, Leonardo; Andersen, Peter Bjørn

    2013-01-01

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  11. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  12. Local correlations for flap gap oscillatory blowing active flow control technology

    Directory of Open Access Journals (Sweden)

    Cătălin NAE

    2010-09-01

    Full Text Available Active technology for oscillatory blowing in the flap gap has been tested at INCAS subsonic wind tunnel in order to evaluate this technology for usage in high lift systems with active flow control. The main goal for this investigation was to validate TRL level 4 for this technology and to extend towards flight testing. CFD analysis was performed in order to identify local correlations with experimental data and to better formulate a design criteria so that a maximum increase in lift is possible under given geometrical constraints. Reference to a proposed metric for noise evaluation is also given. This includes basic 2D flow cases and also 2.5D configurations. In 2.5D test cases this work has been extended so that the proposed system may be selected as a mature technology in the JTI Clean Sky, Smart Fixed Wing Aircraft ITD. Complex post-processing of the experimental and CFD data was mainly oriented towards system efficiency and TRL evaluation for this active technology.

  13. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part I: Theory

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    This is the first paper in a two-part study on active rotor-blade vibration control. Blade faults are a major problem in bladed machines, such as turbines and compressors. Moreover, increasing demands for higher efficiency, lower weight and higher speed imply that blades become even more suscepti...

  14. Foot and ankle reconstruction: an experience on the use of 14 different flaps in 226 cases.

    Science.gov (United States)

    Zhu, Yue-Liang; Wang, Yi; He, Xiao-Qing; Zhu, Min; Li, Fu-Bin; Xu, Yong-Qing

    2013-11-01

    The aim of this report was to present our experience on the use of different flaps for soft tissue reconstruction of the foot and ankle. From 2007 to 2012, the soft tissue defects of traumatic injuries of the foot and ankle were reconstructed using 14 different flaps in 226 cases (162 male and 64 female). There were 62 pedicled flaps and 164 free flaps used in reconstruction. The pedicled flaps included sural flap, saphenous flap, dorsal pedal neurocutaneous flap, pedicled peroneal artery perforator flap, pedicled tibial artery perforator flap, and medial plantar flap. The free flaps were latissimus musculocutaneous flap, anterolateral thigh musculocutaneous flap, groin flap, lateral arm flap, anterolateral thigh perforator flap, peroneal artery perforator flap, thoracdorsal artery perforator flap, medial arm perforator flap. The sensory nerve coaptation was not performed for all of flaps. One hundred and ninety-four cases were combined with open fractures. One hundred and sixty-two cases had tendon. Among 164 free flaps, 8 flaps were completely lost, in which the defects were managed by the secondary procedures. Among the 57 flaps for plantar foot coverage (25 pedicled flaps and 32 free flaps), ulcers were developed in 5 pedicled flaps and 6 free flaps after weight bearing, and infection was found in 14 flaps. The donor site complications were seen in 3 cases with the free anterolateral thigh perforator flap transfer. All of limbs were preserved and the patients regained walking and daily activities. All of patients except for one regained protective sensation from 3 to 12 months postoperatively. Our experience showed that the sural flap and saphenous flap could be good options for the coverage of the defects at malleolus, dorsal hindfoot and midfoot. Plantar foot, forefoot and large size defects could be reconstructed with free anterolateral thigh perforator flap. For the infected wounds with dead spce, the free latissimus dorsi musculocutaneous flap remained to

  15. 主动电磁轴承系统的动力学性能分析%Analysis on Dynamic Performance for Active Magnetic Bearing-Rotor System

    Institute of Scientific and Technical Information of China (English)

    严慧燕; 汪希平; 朱礼进; 张直明; 万金贵

    2001-01-01

    In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings, and studies its rotor dynamics performance, including calculation of the natural frequencies with their distribution characteristics, and the critical speeds of the system. One of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magnetic bearing-rotor system by combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.

  16. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity

    Science.gov (United States)

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-03-01

    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region.

  17. Cyclic Control Optimization for a Smart Rotor

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Henriksen, Lars Christian

    2012-01-01

    The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic...

  18. Active load reduction by means of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Couchman, Ian; Castaignet, Damien; Poulsen, Niels Kjølstad

    2014-01-01

    damage occurs, i.e. the 1P and 2P frequencies (respectively 1 and 2 events per revolution). Frequency-weighted MPC is chosen for its ability to handle constraints on the trailing edge flap deflection and to optimise its actuation in order to decrease wear and tear of the actuator. The controller...

  19. Fractional Order PID Control of Rotor Suspension by Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Parinya Anantachaisilp

    2017-01-01

    Full Text Available One of the key issues in control design for Active Magnetic Bearing (AMB systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional order Proportional-Integral-Derivative (FOPID controller. The FOPID controller consists of only two additional parameters in comparison with a conventional PID controller. The feasibility of FOPID for AMB systems is investigated for rotor suspension in both the radial and axial directions. Tuning methods are developed based on the evolutionary algorithms for searching the optimal values of the controller parameters. The resulting FOPID controllers are then tested and compared with a conventional PID controller, as well as with some advanced controllers such as Linear Quadratic Gausian (LQG and H ∞ controllers. The comparison is made in terms of various stability and robustness specifications, as well as the dimensions of the controllers as implemented. Lastly, to validate the proposed method, experimental testing is carried out on a single-stage centrifugal compressor test rig equipped with magnetic bearings. The results show that, with a proper selection of gains and fractional orders, the performance of the resulting FOPID is similar to those of the advanced controllers.

  20. Variable Parameters PD Control and Stability of a High Rate Rigid Rotor-Journal Active Magnetic Bearing System

    Institute of Scientific and Technical Information of China (English)

    LUO Kai

    2005-01-01

    Stability is a key problem that means whether a high rate rotor-active magnetic bearings system works reliably or not. Aiming at a bearings system described with nonlinear equations, this paper built a linear model according to the system behavior. Considering realization of the control system and behavior of a high rate rotor system (magnetic force is far smaller than input force produced by mass eccentricity) this paper proposes a design method of variable parameters PD control algorithm that can be used universally. The control system was simplified and a mass of adjusting work of control parameters was reduced. Analysis and simulation indicated that the bearings system could get a wider stable region of harmonic motion, and proved that the algorithm is robust and advanced. The control system can be realized because the winding electric currents are positive. The method is convenient for operation and can easily be used for engineering practice.

  1. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing.

    Science.gov (United States)

    Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin

    2014-07-01

    For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor.

  2. Retrospective study of reverse dorsal metacarpal flap and compound flap: a review of 122 cases

    Institute of Scientific and Technical Information of China (English)

    LU Lai-jin; GONG Xu; LIU Zhi-gang; ZHANG Zhi-xin

    2006-01-01

    Objective:To evaluate the clinical application and discuss the operative indication of the reverse dorsal metacarpal flap and its compound flap on the skin defects of hand.Methods: From 1990 to 2003, we applied the reverse dorsal metacarpal flap and its compound flap to repair soft tissue defects of fingers in 122 cases, which included 90cases of the reverse metacarpal flap and 32 cases of its compound flaps with tendon grafts, nerve grafts or bone grafts. Based on the follow-up observations, we analyzed the indications of the reverse metacarpal flap and its compound flaps, the postoperative contours, flap colors and textures in comparison to contralateral fingers retrospectively.Results: In the series of 122 cases, flaps survived and the donor site defects were closed directly. The follow-up period ranged from 1-12 years. The postoperative contours,colors and textures of the flaps and its compound flaps were similar to those of normal fingers, although linear scar remained. According to standards of sense recovery(British Medical Research Council, BMRC ), the sense function of the flaps resumed S3 after operation for 1 year.In 10 cases with the tendon defects treated by the flap with tendon grafts, function of flexion-extension of fingers resumed 50%-75% in comparison to the contralateral fingers using the method of measurement of total active motion. In 7 cases with the phalangeal nonunion or bone defects treated by the flap with bone grafts, union occurred after operation for 3 months.Conclusions: To soft tissue defects on fingers with bone or tendon exposure, the reverse metacarpal flap and its compound flap are a better choice for repairing. The range of repairing is up to the distal interphalangeal joint of fingers. The second dorsal metacarpal artery is more consistent and larger as the choice of vascular pedicle, in comparison with other dorsal metacarpal arteries.Postoperative flap color and texture are similar to normal fingers.

  3. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    In rotor-blade systems basis as well as parametric vibration modes will appear due to the vibration coupling among flexible rotating blades and hub rigid body motion. Parametric vibration will typically occur when the hub operates at a constant angular velocity. Operating at constant velocity...

  4. Molecular Rotors

    Science.gov (United States)

    2006-10-31

    Nanomaterials and Nanodevices ” (12/15/05). [102] J. Michl, invited lecture, Gordon Conference on Electrochemistry, Santa Ynez Valley Marriott...Aza-norbornadiene rotors have been synthesized, mounted on silicon surfaces, and characterized with UHV STM. Aza-norbornadiene analogs were...aza-norbornadiene analogs are suitable for dipolar rotor array studies. Consequently, it was critical to show that aza-norbornadiene analogs are

  5. Fasciocutaneous flaps

    NARCIS (Netherlands)

    D.E. Tolhurst (David)

    1988-01-01

    textabstractAbout that time the concept of independent myocutaneous vascular territories (Me Craw and Dibbell, 1977) was beginning to take hold but the deep fascia, sandwiched between muscles and the skin, was largely regarded as an isolating layer of dense, avascular fibrous tissue from which flaps

  6. Active tilting-pad journal bearings supporting flexible rotors: Part II–The model-based feedback-controlled lubrication

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2017-01-01

    This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical and experimen......This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical...... and experimental analyses are presented with focus on the reduction of rotor lateral vibration. This part is devoted to synthesising model-based LQG optimal controllers (LQR regulator + Kalman Filter) for the feedback-controlled lubrication and is based upon the mathematical model of the rotor-bearing system...... derived in part I. Results show further suppression of resonant vibrations when using the feedback-controlled or active lubrication, overweighting the reduction already achieved with hybrid lubrication, thus improving the whole machine dynamic performance....

  7. An experimental and analytical investigation of stall effects on flap-lag stability in forward flight

    Science.gov (United States)

    Nagabhushanam, J.; Gaonkar, Gopal H.; Mcnulty, Michael J.

    1987-01-01

    Experiments have been performed with a 1.62 m diameter hingeless rotor in a wind tunnel to investigate flap-lag stability of isolated rotors in forward flight. The three-bladed rotor model closely approaches the simple theoretical concept of a hingeless rotor as a set of rigid, articulated flap-lag blades with offset and spring restrained flap and lag hinges. Lag regressing mode stability data was obtained for advance ratios as high as 0.55 for various combinations of collective pitch and shaft angle. The prediction includes quasi-steady stall effects on rotor trim and Floquet stability analyses. Correlation between data and prediction is presented and is compared with that of an earlier study based on a linear theory without stall effects. While the results with stall effects show marked differences from the linear theory results, the stall theory still falls short of adequate agreement with the experimental data.

  8. The interpectoral fascia flap.

    Science.gov (United States)

    Beer, Gertrude M; Manestar, Andrew; Manestar, Mirjana

    2008-09-01

    Despite the great number of pedicled and free flaps that are available for defect and contour repair, the number of fascia flaps with an axial blood supply are sparse. Such flaps with their gliding function are mandatory, whenever coverage with very thin, well-vascularized tissue is necessary. To the currently established fascia flaps, (the temporoparietal fascia flap, the radial forearm fascia flap, the lateral arm fascia flap, and the serratus anterior fascia flap), we want to add a new fascia flap, the interpectoral fascia flap. We dissected the interpectoral fascia flap from 20 cadavers. In each of the 40 hemichests, the trunk of the thoracoacromial vessels was selectively injected with red polyurethane and the tissue containing the pectoral branches was separated from the overlying pectoralis major muscle and converted into an independent fascia flap. The maximum flap length was 13.5 cm and the maximum breadth was 10.3 cm. The length of the vascular pedicle before entering the flap was 3.9 cm +/- 1.4 cm with a range of 1.5-6.8 cm. Concerning the arc of rotation, all 40 flaps reached the posterior axillary fold, and 29 flaps (73%) reached the mandibular border. This new fascia flap has applications as pedicled and as free flap. The pedicled flap is used in the neck region, in the axillary region and as gliding tissue between the nipple-areola complex and the pectoralis major muscle. The usage of the fascia flap as a free flap has similar characteristics as the other fascia flaps.

  9. An advanced stochastic model for threshold crossing studies of rotor blade vibrations.

    Science.gov (United States)

    Gaonkar, G. H.; Hohenemser, K. H.

    1972-01-01

    A stochastic model to analyze turbulence-excited rotor blade vibrations, previously described by Gaonkar et al. (1971), is generalized to include nonuniformity of the atmospheric turbulence velocity across the rotor disk in the longitudinal direction. The results of the presented analysis suggest that the nonuniformity of the vertical turbulence over the rotor disk is of little influence on the random blade flapping response, at least as far as longitudinal nonuniformity is concerned.

  10. Unbalanced Magnetic Pull Effect on Stiffness Models of Active Magnetic Bearing due to Rotor Eccentricity in Brushless DC Motor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available We firstly report on an investigation into the unbalanced magnetic pull (UMP effect on the static stiffness models of radial active magnetic bearing (RAMB in brushless DC motor (BDCM in no-loaded and loaded conditions using the finite element method (FEM. The influences of the UMP on the force-control current, force-position, current stiffness, and position stiffness of RAMB are clarified in BDCM with 100 kW rated power. We found the position stiffness to be more susceptible to UMP. The primary source of UMP is the permanent magnets of BDCM. In addition, the performance of RAMB is affected by the UMP ripples during motor commutation and also periodically affected by the angular position of rotor. The characteristic curves of RAMB force versus control current (or rotor position and angular position of rotor affected by the UMP are given. The method is useful in design and optimization of RAMB in magnetically suspended BDCMs.

  11. Dynamic Gust Load Analysis for Rotors

    Directory of Open Access Journals (Sweden)

    Yuting Dai

    2016-01-01

    Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.

  12. Solid State Adaptive Rotor Using Postbuckled Precompressed, Bending-Twist Coupled Piezoelectric Actuator Elements

    Directory of Open Access Journals (Sweden)

    Ronald M. Barrett

    2012-01-01

    Full Text Available This paper is centered on a new actuation mechanism which is integrated on a solid state rotor. This paper outlines the application of such a system via a Post-Buckled Precompression (PBP technique at the end of a twist-active piezoelectric rotor blade actuator. The basic performance of the system is handily modeled by using laminated plate theory techniques. A dual cantilevered spring system was used to increasingly null the passive stiffness of the root actuator along the feathering axis of the rotor blade. As the precompression levels were increased, it was shown that corresponding blade pitch levels also increased. The PBP cantilever spring system was designed so as to provide a high level of stabilizing pitch-flap coupling and inherent resistance to rotor propeller moments. Experimental testing showed pitch deflections increasing from just 8° peak-to-peak deflections at 650 V/mm field strength to more than 26° at the same field strength with design precompression levels. Dynamic testing showed the corner frequency of the linear system coming down from 63 Hz (3.8/rev to 53 Hz (3.2/rev. Thrust coefficients manipulation levels were shown to increase from 0.01 to 0.028 with increasing precompression levels. The paper concludes with an overall assessment of the actuator design.

  13. Identification of helicopter rotor dynamic models

    Science.gov (United States)

    Molusis, J. A.; Bar-Shalom, Y.; Warmbrodt, W.

    1983-01-01

    A recursive, extended Kalman-filter approach is applied to the identifiction of rotor damping levels of representative helicopter dynamic systems. The general formulation of the approach is presented in the context of a typically posed stochastic estimation problem, and the method is analytically applied to determining the damping levels of a coupled rotor-body system. The identified damping covergence characteristics are studied for sensitivity to both constant-coefficient and periodic-coefficient measurement models, process-noise covariance levels, and specified initial estimates of the rotor-system damping. A second application of the method to identifying the plant model for a highly damped, isolated flapping blade with a constant-coefficient state model (hover) and a periodic-coefficient state model (forward flight) is also investigated. The parameter-identification capability is evaluated for the effect of periodicity on the plant model coefficients and the influence of different measurement noise levels.

  14. Selected topics on the active control of helicopter aeromechanical and vibration problems

    Science.gov (United States)

    Friedmann, Peretz P.

    1994-01-01

    This paper describes in a concise manner three selected topics on the active control of helicopter aeromechanical and vibration problems. The three topics are as follows: (1) the active control of helicopter air-resonance using an LQG/LTR approach; (2) simulation of higher harmonic control (HHC) applied to a four bladed hingeless helicopter rotor in forward flight; and (3) vibration suppression in forward flight on a hingeless helicopter rotor using an actively controlled, partial span, trailing edge flap, which is mounted on the blade. Only a few selected illustrative results are presented. The results obtained clearly indicate that the partial span, actively controlled flap has considerable potential for vibration reduction in helicopter rotors.

  15. Prediction of BVI Noise for an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method and Comparison to Experimental Data

    Science.gov (United States)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.; Boyd, David Douglas, Jr.

    2012-01-01

    Numerical predictions of the acoustic characteristics of an Active Twist Rotor (ATR), using two methods to compute the rotor blade aerodynamics and elastic blade motion are compared to experimental data from a wind tunnel test in the NASA Langley Transonic Dynamics Tunnel (TDT) in 2000. The first method, a loosely coupled iterative method, utilizes the Computational Fluid Dynamics (CFD) code OVERFLOW 2 and the Computational Structural Dynamics (CSD) code CAMRAD II. The second method utilizes the CAMRAD II free-wake model only. The harmonic active-twist control to the main rotor blade system is identified with three parameters - harmonic actuation frequency, actuation amplitude, and control phase angle. The resulting aerodynamics and blade motion data from the two methods are then used in the acoustics code PSU-WOPWOP to predict acoustic pressure on a spherical array of equally spaced observers surrounding the rotor. This spherical distribution of pressure is used to compute the sound power level representing baseline and actuated conditions. Sound power levels for three categories of noise are defined as - blade-vortex interaction sound power level (BVIPWL), low frequency sound power level (LFPWL), and overall sound power level, OAPWL. Comparisons with measured data indicate the CFD/CSD analysis successfully captures the trends in sound power levels and the effects of active-twist control at advance ratios of 0.14 and 0.17. The free-wake model predictions show inconsistent sound power levels relative to the trends in the experimental and CFD data. This paper presents the first ever comparison between CFD/CSD acoustic predictions for an active-twist rotor and experimental measurements.

  16. Rotor Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2000-01-01

    Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.

  17. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    Science.gov (United States)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  18. Suspension Bridge Flutter for Girder with Separate Control Flaps

    DEFF Research Database (Denmark)

    Huynh, T.; Thoft-Christensen, Palle

    Active vibration control of long span suspension bridge flutter using separated control flaps (SFSC) has shown to increase effectively the critical wind speed of bridges. In this paper, an SFSC calculation based on modal equations of the vertical and torsional motions of the bridge girder including...... the flaps is presented. The length of the flaps attached to the girder, the flap configuration and the flap rotational angles are parameters used to increase the critical wind speed of the bridge. To illustrate the theory a numerical example is shown for a suspension bridge of 1000m+2500m+1000m span based...

  19. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  20. Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors

    Science.gov (United States)

    Yeo, Hyeonsoo; Johnson, Wayne

    2013-01-01

    Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.

  1. Multicyclic jet-flap control for alleviation of helicopter blade stresses and fuselage vibration

    Science.gov (United States)

    Mccloud, J. L., III; Kretz, M.

    1974-01-01

    Results of wind tunnel tests of a 12-meter-diameter rotor utilizing multicyclic jet-flap control deflection are presented. Analyses of these results are shown, and experimental transfer functions are determined by which optimal control vectors are developed. These vectors are calculated to eliminate specific harmonic bending stresses, minimize rms levels (a measure of the peak-to-peak stresses), or minimize vertical vibratory loads that would be transmitted to the fuselage. Although the specific results and the ideal control vectors presented are for a specific jet-flap driven rotor, the method employed for the analyses is applicable to similar investigations. A discussion of possible alternative methods of multicyclic control by mechanical flaps or nonpropulsive jet-flaps is presented.

  2. Wind energy conversion. Volume VI. Nonlinear response of wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, I.

    1978-09-01

    The nonlinear equations of motor for a rigid rotor restrained by three flexible springs representing, respectively, the flapping, lagging, and feathering motions are derived using Lagrange's equations, for arbitrary angular rotations. These are reduced to a consistent set of nonlinear equations using nonlinear terms up to third order. The complete analysis is divided into three parts, A, B, and C. Part A consists of forced response of two-degree flapping-lagging rotor under the excitation of pure gravitational field (i.e., no aerodynamic forces). In Part B, the effect of aerodynamic forces on the dynamic response of two-degree flapping-lagging rotor is investigated. In Part C, the effect of third degree of motion, feathering, is considered.

  3. Control of a flexible rotor active magnetic bearing test rig:a characteristic model based all-coefficient adaptive control approach

    Institute of Scientific and Technical Information of China (English)

    Long DI; Zongli LIN

    2014-01-01

    Active magnetic bearings (AMBs) have found a wide range of applications in high-speed rotating machinery industry. The instability and nonlinearity of AMBs make controller designs difficult, and when AMBs are coupled with a flexible rotor, the resulting complex dynamics make the problems of stabilization and disturbance rejection, which are critical for a stable and smooth operation of the rotor AMB system, even more difficult. Proportional-integral-derivative (PID) control dominates the current AMB applications in the field. Even though PID controllers are easy to implement, there are critical performance limitations associated with them that prevent the more advanced applications of AMBs, which usually require stronger robustness and performance offered by modern control methods such as H-infinity control andμ-synthesis. However, these advanced control designs rely heavily on the relatively accurate plant models and uncertainty characterizations, which are sometimes difficult to obtain. In this paper, we explore and report on the use of the characteristic model based all-coefficient adaptive control method to stabilize a flexible rotor AMB test rig. In spite of the simple structure of such a characteristic model based all-coefficient adaptive controller, both simulation and experimental results show its strong performance.

  4. A VORTEX MODEL OF A HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU

    2009-06-01

    Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.

  5. Open Rotor Development

    Science.gov (United States)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  6. The submental island flap.

    Science.gov (United States)

    Sterne, G D; Januszkiewicz, J S; Hall, P N; Bardsley, A F

    1996-03-01

    The submental island flap is a reliable source of skin of excellent colour, contour and texture match for facial resurfacing and leaves a well hidden donor site. The flap is safe, rapid and simple to raise. We report on its use in 12 cases of facial or intraoral reconstruction. Complications were few. However, there was one case of complete flap loss following its use in a reverse flow manner, due to the presence of an unreported, but constant, valve in the venous system of the face. We believe this flap to be a worthwhile addition to the existing surgical armamentarium.

  7. Propeller TAP flap

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Bille, Camilla; Wamberg, Peter;

    2013-01-01

    The aim of this study was to examine if a propeller thoracodorsal artery perforator (TAP) flap can be used for breast reconstruction. Fifteen women were reconstructed using a propeller TAP flap, an implant, and an ADM. Preoperative colour Doppler ultrasonography was used for patient selection...... major complications needing additional surgery. One flap was lost due to a vascular problem. Breast reconstruction can be performed by a propeller TAP flap without cutting the descending branch of the thoracodorsal vessels. However, the authors would recommend that a small cuff of muscle is left around...

  8. Numerical Analysis of Helicopter Rotor Hovering in Close Proximity to the Ground with a Wall

    Science.gov (United States)

    Itoga, Noriaki; Iboshi, Naohiro; Horimoto, Mitsumasa; Saito, Shigeru; Tanabe, Yasutada

    In rescue operations and emergency medical services, helicopters are frequently required to operate near the ground with obstacles such as buildings and sidewalls of highway. In this paper, numerical analysis of helicopter rotor hovering in close proximity to the ground with an obstacle is done by solving unsteady 3D compressible Euler equations with an overlapped grid system. The obstacle is simulated by a wall vertically set up on the ground. The parameters for numerical analysis are the rotor height and distance from the rotor-hub-center to the wall. The effects of combinations of these parameters on the flowfields around the rotor, inflow distributions on the rotor disc and behaviors of blade flapping motion are discussed. It is also clarified the cause that the helicopter rotor hovering in close proximity to the ground with a wall does not have the enough ground effect depending on the combinations of these parameters.

  9. Development of an aeroelastic methodology for surface morphing rotors

    Science.gov (United States)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for

  10. Cervicofacial flap revisited

    Directory of Open Access Journals (Sweden)

    Dhananjay V. Nakade

    2016-11-01

    Conclusions: Cervicofacial flap is simple, easy to operate, consume less operating time as compared to microvascular flap. It is less complicated and especially useful in diabetic, hypertensives and old debilitated patients with high risk of anaesthesia. [Int J Res Med Sci 2016; 4(11.000: 4669-4674

  11. Molecular Rotors as Switches

    Directory of Open Access Journals (Sweden)

    Kang L. Wang

    2012-08-01

    Full Text Available The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V revealed a temperature-dependent negative differential resistance (NDR associated with the device. The analysis of the device

  12. Pedicled perforator flaps

    DEFF Research Database (Denmark)

    Demirtas, Yener; Ozturk, Nuray; Kelahmetoglu, Osman;

    2009-01-01

    Described in this study is a surgical concept that supports the "consider and use a pedicled perforator flap whenever possible and indicated" approach to reconstruct a particular skin defect. The operation is entirely free-style; the only principle is to obtain a pedicled perforator flap to recon......Described in this study is a surgical concept that supports the "consider and use a pedicled perforator flap whenever possible and indicated" approach to reconstruct a particular skin defect. The operation is entirely free-style; the only principle is to obtain a pedicled perforator flap...... more practical and creative to use a free-style manner during pedicled perforator flap surgery, instead of being obliged to predefined templates for this type of procedure....

  13. Translational damping on high-frequency flapping wings

    Science.gov (United States)

    Parks, Perry A.

    Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.

  14. Development of a Wind Turbine Rotor Flow Panel Method

    Energy Technology Data Exchange (ETDEWEB)

    Van Garrel, A. [ECN Wind Energy, Petten (Netherlands)

    2011-12-15

    The ongoing trend towards larger wind turbines intensifies the demand for more physically realistic wind turbine rotor aerodynamics models that can predict the detailed transient pressure loadings on the rotor blades better than current engineering models. In this report the mathematical, numerical, and practical aspects of a new wind turbine rotor flow simulation code is described. This wind turbine simulation code is designated ROTORFLOW. In this method the fluid dynamics problem is solved through a boundary integral equation which reduces the problem to the surface of the configuration. The derivation of the integral equations is described as well as the assumptions made to arrive at them starting with the full Navier-Stokes equations. The basic numerical aspects in the solution method are described and a verification study is performed to confirm the validity of the implementation. Example simulations with the code show the flow solutions for a stationary wing and for a rotating wing in yawed conditions. With the ROTORFLOW code developed in this project it is possible to simulate the unsteady flow around wind turbine rotors in yawed conditions and obtain detailed pressure distributions, and thus blade loadings, at the surface of the blades. General rotor blade geometries can be handled, opening the way to the detailed flow analysis of winglets, partial span flaps, swept blade tips, etc. The ROTORFLOW solver only requires a description of the rotor surface which keeps simulation preparation time short, and makes it feasible to use the solver in the design iteration process.

  15. Dynamic Analysis of a Helicopter Rotor by Dymore Program

    Science.gov (United States)

    Doğan, Vedat; Kırca, Mesut

    The dynamic behavior of hingeless and bearingless blades of a light commercial helicopter which has been under design process at ITU (İstanbul Technical University, Rotorcraft Research and Development Centre) is investigated. Since the helicopter rotor consists of several parts connected to each other by joints and hinges; rotors in general can be considered as an assembly of the rigid and elastic parts. Dynamics of rotor system in rotation is complicated due to coupling of elastic forces (bending, torsion and tension), inertial forces, control and aerodynamic forces on the rotor blades. In this study, the dynamic behavior of the rotor for a real helicopter design project is analyzed by using DYMORE. Blades are modeled as elastic beams, hub as a rigid body, torque tubes as rigid bodies, control links as rigid bodies plus springs and several joints. Geometric and material cross-sectional properties of blades (Stiffness-Matrix and Mass-Matrix) are calculated by using VABS programs on a CATIA model. Natural frequencies and natural modes of the rotating (and non-rotating) blades are obtained by using DYMORE. Fan-Plots which show the variation of the natural frequencies for different modes (Lead-Lag, Flapping, Feathering, etc.) vs. rotor RPM are presented.

  16. Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment.

    Science.gov (United States)

    Fu, Wei-Li; Ao, Ying-Fang; Ke, Xiao-Yan; Zheng, Zhuo-Zhao; Gong, Xi; Jiang, Dong; Yu, Jia-Kuo

    2014-03-01

    Minimal-invasive procedure and one-step surgery offer autologous mesenchymal stem cells derived from peripheral blood (PB-MSCs) a promising prospective in the field of cartilage regeneration. We report a case of a 19-year-old male athlete of kickboxing with ICRS grade IV chondral lesions at the 60° region of lateral femoral trochlea, which was repaired by activating endogenous PB-MSCs plus autologous periosteum flap transplantation combined with correcting the patellofemoral malalignment. After a 7.5 year follow-up, the result showed that the patient returned to competitive kickboxing. Second-look under arthroscopy showed a smooth surface at 8 months postoperation. The IKDC 2000 subjective score, Lysholm score and Tegner score were 95, 98 and 9 respectively at the final follow up. CT and MRI evaluations showed a significant improvement compared with those of pre-operation.

  17. Spontaneous Flapping Flight

    Science.gov (United States)

    Vandenberghe, Nicolas; Zhang, Jun; Childress, Stephen

    2004-11-01

    As shown in an earlier work [Vandenberghe, et. al. JFM, Vol 506, 147, 2004], a vertically flapping wing can spontaneously move horizontally as a result of symmetry breaking. In the current experimental study, we investigate the dependence of resultant velocity on flapping amplitude. We also describe the forward thrust generation and how the system dynamically selects a Strouhal number by balancing fluid and body forces. We further compare our model system with examples of biological locomotion, such as bird flight and fish swimming.

  18. Free craniotomy versus osteoplastic craniotomy, assessment of flap viability using 99mTC MDP SPECT.

    Science.gov (United States)

    Shelef, Ilan; Golan, Haim; Merkin, Vladimir; Melamed, Israel; Benifla, Mony

    2016-09-01

    There are currently two accepted neurosurgical methods to perform a bony flap. In an osteoplastic flap, the flap is attached to surrounding muscle. In a free flap, the flap is not attached to adjacent tissues. The former is less common due to its complexity and the extensive time required for the surgery; yet the rate of infection is significantly lower, a clear explanation for which is unknown. The objective of this study was to test the hypothesis that the osteoplastic flap acts as a live implant that resumes its blood flow and metabolic activity; contrasting with the free flap, which does not have sufficient blood flow, and therefore acts as a foreign body. Seven patients who underwent craniotomy with osteoplastic flaps and five with free flaps had planar bone and single photon emission computed tomography (SPECT) scans of the skull at 3-7days postoperative, after injection of the radioisotope, 99m-technetium-methylene diphosphonate (99m-Tc-MDP). We compared radioactive uptake as a measure of metabolic activity between osteoplastic and free flaps. Mean normalized radioactive uptakes in the centers of the flaps, calculated as the ratios of uptakes in the flap centers to uptakes in normal contralateral bone, were [mean: 1.7 (SD: 0.8)] and [0.6 (0.1)] for the osteoplastic and free flap groups respectively and were [2.4 (0.8)] and [1.3 (0.4)] in the borders of the flaps. Our analyses suggest that in craniotomy, the use of an osteoplastic flap, in contrast to free flap, retains bone viability.

  19. Large Rotor Test Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  20. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  1. Effects of vascular endothelial growth factor on survival of surgical flaps: a review of experimental studies.

    Science.gov (United States)

    Fang, Taolin; Lineaweaver, William C; Chen, Michael B; Kisner, Carson; Zhang, Feng

    2014-01-01

    Partial or complete necrosis of skin flaps remains a significant problem in plastic and reconstructive surgery. Growth factors have shown promise in improving flap survival through increased angiogenesis and blood supply to the flap. Vascular endothelial growth factor (VEGF) is the most widely investigated and successful one. But the mechanisms of the effects are still not very clear. In the course of a series of experiments, we indicated that tissue survival of surgical flaps could be improved by both preoperative (sustained phase effect) and intraoperative (acute phase effect) application of VEGF. We reviewed both experimental and clinical investigations on the use of VEGF with surgical flaps to summarize the evidence of both phases of VEGF activity in promotion of flaps survival in detail. With the combinations of acute and sustained phases of effects, VEGF protein and gene, VEGF morphologic actions, and VEGF histochemical modulations suggest a pattern of VEGF activity that can be superimposed on classic descriptive mechanisms of tissue survival of flaps.

  2. Variability of extreme flap loads during turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Ronold, K.O. [Det Norske Veritas, Hoevik (Norway); Larsen, G.C. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The variability of extreme flap loads is of utmost importance for design of wind-turbine rotor blades. The flap loads of interest consist of the flap-wise bendin moment response at the blade root whose variability in the short-term, for a given wind climate, can be represented by a stationary process. A model for the short-term bending moment process is presented, and the distribution of its associated maxima is derived. A model for the wind climate is given in terms of the probability distributions for the 10-minute mean wind speed and the standard deviation of the arbitrary wind speed. This is used to establish the distribution of the largest flap-wise bending moment in a specific reference period, and it is outlined how a characteristic bending moment for use in design can be extracted from this distribution. The application of the presented distribution models is demonstrated by a numerical example for a site-specific wind turbine. (au)

  3. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    Science.gov (United States)

    Xu, Xiangbo; Chen, Shao

    2015-08-31

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  4. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  5. Deep inferior epigastric perforator flap for breast reconstruction: experience with 43 flaps

    Institute of Scientific and Technical Information of China (English)

    YAN Xiao-qing; YANG Hong-yan; ZHAO Yu-ming; YOU Lei; XU Jun

    2007-01-01

    Background In the past decade, there has been increasing breast reconstructions after mastectomy. The ideal material for reconstruction of a breast is fat and skin. The transverse rectus abdominis myocutaneous (TRAM) flap has been the gold standard for breast reconstruction until recently. Abdominal wall function is a major concern for plastic surgeons in breast reconstruction with TRAM flaps. The deep inferior epigastric perforator (DIEP) free flap spares the whole rectus abdominis muscle, includes skin and fat only, and therefore preserves adequate abdominal wall competence. The aim of this study was to summarize our experience in breast reconstruction with DIEP flap.Methods Between March 2000 and August 2005, a total of 43 breast reconstructions were performed on 40 patients by our surgeons using DIEP flap (3 patients had bilateral procedures), 14 of them were immediate surgeries and 26 were delayed. Abdominal function, satisfaction with the donor site and reconstructed breast, and the sensation recovery was assessed respectively during follow-up.Results The mean age of the patients was 38.6 years (range, 28-50). The size of the flaps was 11 cm×26 cm in average (height 10-12 cm, width 15-33 cm). The mean length of the vascular pedicles was 9.3 cm (range, 7-12). The patients were followed up for a mean of 16 months (range, 6-30 months). During the follow-up, 2 (5%) patients had total flap loss, 2 (5%) had partial necrosis, 4 (9%) had wound edge necrosis in the abdomen, and 1 had axillary seroma. None of the patients had hernia, and all of them were able to resume their daily activities after the operation. Patient satisfaction with the reconstructed breast rated high, 95% of the patients achieved spontaneous return of sensation in the reconstructed breast, but none of them had a sensation equivalent or approximate to the normal.Conclusions The DIEP flap has the same benefits as the TRAM flap without destroying the continuity of the rectus muscle. It can reduce

  6. The Gradual Expansion Muscle Flap

    Science.gov (United States)

    2014-01-01

    defects can usu- ally be obtained with a rotational flap , larger size defects commonly require free tissue transfer. A number of techni- ques have...feasible.21,22 Because limb salvage situations occur in which rota- tional muscle coverage is inadequate and free flap coverage is less desirable, we...larger defects which previously would have required free tissue transfer. Surgical Technique The GEM flap for large soft tissue defects of the leg requires

  7. Sliding flap tracheoplasty.

    Science.gov (United States)

    Gates, G A; Tucker, J A

    1989-12-01

    The optimal method for surgical management of subglottic stenosis is based upon careful assessment of the location, caliber, length, and maturity of the stenotic segment, as well as associated conditions. For patients with a mature stenosis of short length, excision of the anterior arch of the cricoid and first ring and immediate reconstruction by means of a sliding flap of the next two to three rings of trachea offer a one-stage definitive treatment without the need for grafting. We report four cases of subglottic stenosis and one case of cricoid chondroblastoma in which reconstruction of the airway was successful and prompt. For carefully selected cases, sliding flap tracheoplasty may be a useful alternative to procedures in which the airway is expanded by means of grafting.

  8. Cross finger flaps.

    Science.gov (United States)

    Kisner, W H

    1979-01-01

    Proper fingertip reconstruction requires good skin and soft tissue coverage, preservation of function and as normal an appearance as possible. The cross finger flap results in negligible joint stiffness, minimal morbidity and little work-time loss. An important factor is the conservation of finger length permitted by this technique. This method of repair is underutilized. It is indicated in several types of fingertip amputations where bone shortening would be detrimental.

  9. The Simplified Posterior Interosseous Flap.

    Science.gov (United States)

    Cavadas, Pedro C; Thione, Alessandro; Rubí, Carlos

    2016-09-01

    Several technical modifications have been described to avoid complications and simplify dissection. The authors describe some technical tips that make posterior interosseous flap dissection safer and more straightforward.

  10. The Versatile Modiolus Perforator Flap

    DEFF Research Database (Denmark)

    Gunnarsson, Gudjon Leifur; Thomsen, Jorn Bo

    2016-01-01

    BACKGROUND: Perforator flaps are well established, and their usefulness as freestyle island flaps is recognized. The whereabouts of vascular perforators and classification of perforator flaps in the face are a debated subject, despite several anatomical studies showing similar consistency. In our....... The color Doppler ultrasonography study detected a sizeable perforator at the level of the modiolus lateral to the angle of the mouth within a radius of 1 cm. This confirms the anatomical findings of previous authors and indicates that the modiolus perforator is a consistent anatomical finding, and flaps...

  11. Keystone flaps in coloured skin: Flap technology for the masses?

    Directory of Open Access Journals (Sweden)

    Satish P Bhat

    2013-01-01

    Full Text Available Introduction: Viscoelastic properties of skin in coloured ethnic groups are less favourable compared to Caucasians for executing Keystone flaps. Keystone flaps have so far been evaluated and reported only in Caucasians. The potential of Keystone flaps in a coloured ethnic group is yet unknown. Aim: This article reviews the experience to reconstruct skin defects presenting in a coloured ethnic group, by using Keystone flaps, with a review of existing literature. Design: Uncontrolled case series. Materials and Methods: This retrospective review involves 55 consecutive Keystone flaps used from 2009 to 2012, for skin defects in various locations. Patient demographic data, medical history, co-morbidity, surgical indication, defect features, complications, and clinical outcomes are evaluated and presented. Results: In this population group with Fitzpatrick type 4 and 5 skin, the average patient age was 35.73. Though 60% of flaps (33/55 in the series involved specific risk factors, only two flaps failed. Though seven flaps had complications, sound healing was achieved by suitable intervention giving a success rate of 96.36%. Skin grafts were needed in only four cases. Conclusions: Keystone flaps achieve primary wound healing for a wide spectrum of defects with an acceptable success rate in a coloured skin population with unfavorable biophysical properties. By avoiding conventional local flaps and at times even microsurgical flaps, good aesthetic outcome is achieved without additional skin grafts or extensive operative time. All advantages seen in previous studies were verified. These benefits can be most appreciated in coloured populations, with limited resources and higher proportion of younger patients and unfavorable defects.

  12. The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified

    Directory of Open Access Journals (Sweden)

    Yuval Keren

    2016-07-01

    Full Text Available To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping pattern was designed and manufactured, and a set of experiments for various parameters was performed. The simplified analytical model was updated according to the tests results, compensating for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations. The propelling efficiency of the hovering wing at various design parameters was calculated using the updated model. It was further validated by testing a smaller wing flapping at a higher frequency. Good and consistent test results were obtained in line with the updated model, yielding a simple, yet accurate tool, for flapping wings design.

  13. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations, Phase 2

    Science.gov (United States)

    Hohenemser, K. H.; Gaonkar, G. H.

    1968-01-01

    A comparison with NASA conducted simulator studies has shown that the approximate digital method for computing rotor blade flapping responses to random inputs, tentatively suggested in Phase I Report, gives with increasing rotor advance ratio the wrong trend. Consequently, three alternative methods of solution have been considered and are described: (1) an approximate method based on the functional relation between input and output double frequency spectra, (2) a numerical method based on the system responses to deterministic inputs and (3) a perturbation approach. Among these the perturbation method requires the least amount of computation and has been developed in two forms - the first form to obtain the response correlation function and the second for the time averaged spectra of flapping oscillations.

  14. Papilla Preservation Flap as Aesthetic Consideration in Periodontal Flap Surgery

    Directory of Open Access Journals (Sweden)

    Sandra Olivia

    2013-07-01

    Full Text Available Flap surgery is treatment for periodontal disease with alveolar bone destruction. Surgical periodontal flap with conventional incision will result in gingival recession and loss of interdental papillae after treatment. Dilemma arises in areas required high aesthetic value or regions with a fixed denture. It is challenging to perform periodontal flap with good aesthetic results and minimal gingival recession. This case report aimed to inform and to explain the work procedures, clinical and radiographic outcomes of surgical papilla preservation flap in the area that requires aesthetic. Case 1 was a surgical incision flap with preservation of papillae on the anterior region of teeth 11 and 12, with a full veneer crown on tooth 12. Case 2 was a surgical incision flap with preservation of papillae on the posterior region of tooth 46 with inlay restoration. Evaluation for both cases were obtained by incision papilla preservation of primary closure was perfect, good aesthetic results, minimal gingival recession and the interdental papillae can be maintained properly. In conclusion, periodontal flap surgery on the anterior region or regions that require high aesthetic value could be addressed with papilla preservation incision. Incision papilla preservation should be the primary consideration in periodontal flap surgery if possible.DOI: 10.14693/jdi.v19i3.144

  15. A high voltage DC-DC converter driving a Dielectric Electro Active Polymer actuator for wind turbine flaps

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.;

    2012-01-01

    The Dielectric Electro Active Polymer (DEAP) material is a very thin (~80 μm) silicone elastomer film with a compliant metallic electrode layer on both sides. The DEAP is fundamentally a capacitor that is capable of very high strain. The property that the polymer changes its shape, as a result...

  16. Self-propulsion of flapping bodies in viscous fluids:Recent advances and perspectives

    Institute of Scientific and Technical Information of China (English)

    Shizhao Wang; Guowei He; Xing Zhang

    2016-01-01

    Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the bio-mimetic design of artificial flyers and swimmers.

  17. Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives

    Science.gov (United States)

    Wang, Shizhao; He, Guowei; Zhang, Xing

    2016-12-01

    Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.

  18. 14 CFR 23.701 - Flap interconnection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap interconnection. 23.701 Section 23.701... Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system must— (1) Be synchronized by a mechanical interconnection between the movable flap surfaces that...

  19. Skin flaps and grafts - self-care

    Science.gov (United States)

    ... Regional flaps - self-care; Distant flaps - self-care; Free flap - self-care; Skin autografting - self-care; Pressure ulcer ... your wound To care for the graft or flap site: You may need to rest ... around it clean and free from dirt or sweat. DO NOT let the ...

  20. SMART Wind Turbine Rotor: Design and Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  1. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  2. Adaptive unbalance compensation control of active magnetic bearing supporting rotor system%主动电磁轴承转子系统自适应不平衡补偿控制

    Institute of Scientific and Technical Information of China (English)

    蒋科坚; 祝长生

    2011-01-01

    为了抑制振动,提高转子旋转精度,提出一种基于振动识别的不平衡补偿控制方法.该方法无需控制对象的传递函数,通过对主动电磁轴承施加试探性补偿信号,同时检测转子位移响应中不平衡振动的幅值和相位变化,直接计算出不平衡振动的Fourier系数,产生精确的补偿电磁力,实现不平衡补偿控制.在控制性能测试的实验中,振动响应的功率谱显示转速频率的振动能量有近30 dB的下降.实验结果表明,该方法对不平衡振动的抑制效果是显著的.%For suppressing vibrations and improving the rotor's rotating precision, a novel unbalance compensation method was proposed, which does not need the transfer function of plant model. The proposed method can directly obtain the Fourier coefficients of unbalance vibration and generate the accurate magnetic force to achieve unbalance compensation by injecting a trial signal into the active magnetic bearing (AMB) and meanwhile measuring the variety in magnitude and phase of the rotor's displacement response.Finally, in an experiment for testing the algorithm's efficiency and precision, approximately 30 dB reduction in unbalance vibrations was obtained in the power spectrum of rotor vibration. The experimental results indicate that the proposed algorithm is effective for suppressing rotor unbalance vibration.

  3. Lessons from Rotor 37

    Institute of Scientific and Technical Information of China (English)

    J.D.Denton

    1997-01-01

    NASA rotor 37 was used as a blind test case for turbomachinery CFD by the Turbomachinery Committee of the IGTI.The rotor is a transonic compressor with a tip speed of 454 m/s(1500ft/s)and a relatively high pressure ratio of 2.1.It was tested in isolation with a circumferentially uniform inlet flow so that the flow through it should be steady apart from and effects of passage to passage geometry variation and mechanical vibration.As such it represents the simplest possible type of test for three-dimensional turbomachinery flow solvers.Howerver,the rotor still presents a real challenge to 3D viscous flow solvers because the shock wave-boudary layer interaction is strong and the effects of viscosity are dominant in determining the flow deviation and hence the pressure ration.Eleven blind solutions were submittewd and in addition a non-blind solution was used to prepare for the exercies.This paper reviews the flow in the test case and the comparisons of the CFD solutions with the test data.Lessons for both the Flow physics in transonic fans and for the application of CFD to such machines are pointed out.

  4. Toward comparing experiment and theory for corroborative research on hingeless rotor stability in forward flight

    Science.gov (United States)

    Gaonkar, G.

    1987-01-01

    For flap lag stability of isolated rotors, experimental and analytical investigations were conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic flow. Forward flight effects on lag regressing mode were emphasized. A soft inplane hingeless rotor with three blades was tested at advance ratios as high as 0.55 and at shaft angles as high as 20 deg. The 1.62 m model rotor was untrimmed with an essentially unrestricted tilt of the tip path plane. In combination with lag natural frequencies, collective pitch settings and flap lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulation, a linear model was developed in substall to predict stability margins with mode identification. To help explain the correlation between theory and data it also predicted substall and stall regions of the rotor disk from equilibrium values. The correlation showed both the strengths and weaknesses of the theory in substall ((angle of attack) equal to or less than 12 deg).

  5. Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test

    Science.gov (United States)

    Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.

    2012-01-01

    Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.

  6. Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

    Science.gov (United States)

    Sessarego, Matias; Ramos-García, Néstor; Shen, Wen Zhong; Nørkær Sørensen, Jens

    2016-09-01

    Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor design by incorporating a higher-fidelity free-wake panel aero-elastic coupling code called MIRAS-FLEX. The optimization procedure includes a series of design load cases and a simple structural design code. Due to the heavy MIRAS-FLEX computations, a surrogate-modeling approach is applied to mitigate the overall computational cost of the optimization. Improvements in cost of energy, annual energy production, maximum flap-wise root bending moment, and blade mass were obtained for the NREL 5MW baseline wind turbine.

  7. Variable Speed Rotor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  8. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  9. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...

  10. Flap Edge Noise Reduction Fins

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Choudhan, Meelan M. (Inventor)

    2015-01-01

    A flap of the type that is movably connected to an aircraft wing to provide control of an aircraft in flight includes opposite ends, wherein at least a first opposite end includes a plurality of substantially rigid, laterally extending protrusions that are spaced apart to form a plurality of fluidly interconnected passageways. The passageways have openings adjacent to upper and lower sides of the flap, and the passageways include a plurality of bends such that high pressure fluid flows from a high pressure region to a low pressure region to provide a boundary condition that inhibits noise resulting from airflow around the end of the flap.

  11. Dancing girl flap: a new flap suitable for web release.

    Science.gov (United States)

    Shinya, K

    1999-12-01

    To create a deep web, a flap must be designed to have a high elongation effect in one direction along the mid-lateral line of the finger and also to have a shortening effect in the other direction, crossing at a right angle to the mid-lateral line. The dancing girl flap is a modification of a four-flap Z-plasty with two additional Z-plasties. It has a high elongation effect in one direction (>550%) and a shortening effect in the other direction at a right angle (<33%), creating a deep, U-shaped surface. This new flap can be used to release severe scar contracture with a web, and is most suitable for incomplete syndactyly with webs as high as the proximal interphalangeal joint.

  12. Simulation of Moving Trailing Edge Flaps on a Wind Turbine Blade using a Navier-Stokes based Immersed Boundary Method

    DEFF Research Database (Denmark)

    Behrens, Tim

    As the rotor diameter of wind turbines increases, turbine blades with distributed aerodynamic control surfaces promise significant load reductions. Therefore, they are coming into focus in relation to research in academia and industry. Trailing edge flaps are of particular interest in terms...... conforming meshes. A more flexible method would open up an opportunity to investigate the flow features of complex moving flap geometries in great detail. The immersed boundary method offers this flexibility, as the geometry is represented through the introduction of additional forcing terms in the governing...

  13. Input Shaping enhanced Active Disturbance Rejection Control for a twin rotor multi-input multi-output system (TRMS).

    Science.gov (United States)

    Yang, Xiaoyan; Cui, Jianwei; Lao, Dazhong; Li, Donghai; Chen, Junhui

    2016-05-01

    In this paper, a composite control based on Active Disturbance Rejection Control (ADRC) and Input Shaping is presented for TRMS with two degrees of freedom (DOF). The control tasks consist of accurately tracking desired trajectories and obtaining disturbance rejection in both horizontal and vertical planes. Due to un-measurable states as well as uncertainties stemming from modeling uncertainty and unknown disturbance torques, ADRC is employed, and feed-forward Input Shaping is used to improve the dynamical response. In the proposed approach, because the coupling effects are maintained in controller derivation, there is no requirement to decouple the TRMS into horizontal and vertical subsystems, which is usually performed in the literature. Finally, the proposed method is implemented on the TRMS platform, and the results are compared with those of PID and ADRC in a similar structure. The experimental results demonstrate the effectiveness of the proposed method. The operation of the controller allows for an excellent set-point tracking behavior and disturbance rejection with system nonlinearity and complex coupling conditions.

  14. Vaginoplasty with an M-Shaped Perineo- Scrotal Flap in a Male-to-female Transsexual

    Directory of Open Access Journals (Sweden)

    Nasu,Yasutomo

    2007-12-01

    Full Text Available To date, many techniques have been reported for vaginoplasty in male-to-female trans-sexual (MTFTS patients, such as the use of a rectum transfer, a penile-scrotal flap and a reversed penile flap. However, none of these procedures is without its disadvantages. We developed a newly kind of flap for vaginoplasty, the M-shaped perineo-scrotal flap (M-shaped flap, using skin from both sides of the scrotum, shorn of hair by preoperative laser treatment. We applied this new type of flap in 7 MTFTS patients between January 2006 and January 2007. None of the flaps developed necrosis, and the patients could engage in sexual activity within 3 months of the operation. The M-shaped flap has numerous advantages: it can be elevated safely while retaining good vascularity, it provides for the construction of a sufficient deep vagina without a skin graft, the size of the flap is not influenced entirely by the length of the penis, and it utilizes skin from both sides of the scrotal area, which is usually excised.

  15. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies.

    Science.gov (United States)

    Usherwood, James Richard

    2016-11-01

    Aerodynamically economical flight is steady and level. The high-amplitude flapping and bounding flight style of many small birds departs considerably from any aerodynamic or purely mechanical optimum. Further, many large birds adopt a flap-glide flight style in cruising flight which is not consistent with purely aerodynamic economy. Here, an account is made for such strategies by noting a well-described, general, physiological cost parameter of muscle: the cost of activation. Small birds, with brief downstrokes, experience disproportionately high costs due to muscle activation for power during contraction as opposed to work. Bounding flight may be an adaptation to modulate mean aerodynamic force production in response to (1) physiological pressure to extend the duration of downstroke to reduce power demands during contraction; (2) the prevention of a low-speed downstroke due to the geometric constraints of producing thrust; (3) an aerodynamic cost to flapping with very low lift coefficients. In contrast, flap-gliding birds, which tend to be larger, adopt a strategy that reduces the physiological cost of work due both to activation and contraction efficiency. Flap-gliding allows, despite constraints to modulation of aerodynamic force lever-arm, (1) adoption of moderately large wing-stroke amplitudes to achieve suitable muscle strains, thereby reducing the activation costs for work; (2) reasonably quick downstrokes, enabling muscle contraction at efficient velocities, while being (3) prevented from very slow weight-supporting upstrokes due to the cost of performing 'negative' muscle work.

  16. Monolithically Integrated Micro Flapping Vehicles

    Science.gov (United States)

    2012-08-01

    Mechanical Logic • Memory Mm-Scale Ground Mobility Actuation & Mechanisms Ultrasonic Motors Reversible Adhesion Platform Design...MEMS Mm-Scale Ground Mobility PiezoMEMS Haltere Actuation & Mechanisms Ultrasonic Motors Reversible Adhesion Platform Design Flapping

  17. The rat saphenous flap: a fasciocutaneous free flap model without panniculus carnosus.

    Science.gov (United States)

    Mutaf, M; Tasaki, Y; Tanaka, K; Fujii, T

    1995-10-01

    The rat saphenous flap is described as a new experimental model for free flap studies. This is a fasciocutaneous free flap based on the saphenofemoral vascular pedicle. The flap may include the entire medial aspect of the lower leg between the knee and ankle. Thirty flaps were harvested from 15 inbred rats. Each flap was transferred to the anterior neck of a recipient rat of the same inbred strain so that 15 flaps were vascularized free flaps using the standard end-to-end microvascular technique and the other 15 flaps were nonvascularized free grafts. All but two (technical failure) of the vascularized flaps showed complete survival, whereas all nonvascularized flaps completely necrosed 2 weeks after transfer. It was concluded that the rat saphenous flap has several advantages such as a long and consistent vascular pedicle, ease of harvest, and an all-or-none survival pattern. Furthermore, as a unique feature of this flap, histological analysis revealed that the rat saphenous flap is composed of the skin and underlying fascia without panniculus carnosus. We therefore suggest that the rat saphenous flap is the first true fasciocutaneous free flap model in the rat. In this paper, in addition to illustrating the anatomy of the saphenous vessels and describing a new fasciocutaneous free flap model based on these vessels, we have documented some anatomical details of the rat leg that have never been described in the literature related to the rat anatomy.

  18. Buried free flaps in head and neck reconstruction: higher risk of free flap failure?

    Science.gov (United States)

    Reiter, M; Harréus, U; Kisser, U; Betz, C S; Baumeister, Ph

    2017-01-01

    Thrombosis of the pedicle is central to free flap failure, and early revision of a compromised flap is the key to successfully salvage a flap. Therefore, the majority of free flaps in reconstructive head and neck surgery are used with the ability to visually examine the flap. Sometimes, due to intra-operative circumstances, it is necessary to use a flap that cannot be monitored externally. These flaps are called buried flaps and have the reputation of being put at risk. The current literature provides only limited data to support or disprove this position. A single institution retrospective review of patient charts between 2007 and 2015 was performed. Flap monitoring was carried out with hand-held Doppler of the pedicle hourly for the first 72 h in all cases. Additional duplex ultrasound was performed in the majority of buried flaps. A total of 437 flaps were included into the study. 37 flaps (7.8 %) were identified to fulfill the criteria of a buried free flap. In total, four patients had complications, three of which required operative reexploration. All interventions were successful, resulting in no flap loss in our series. An accurate operation technique combined with meticulous monitoring protocols supported by duplex ultrasound can result in satisfactory outcome of buried flaps. No enhanced risk of flap loss of buried flaps was found in our cohort.

  19. The properties of isolated and coupled Savonius rotors

    Science.gov (United States)

    Bowden, G. J.; McAleese, S. A.

    Some measurments on the Queensland optimum S-shaped rotor are presented. In particular it is shown that the efficiency of the turbine is about 18 percent, which is lower than the figure of about 23 percent given by earlier workers. In addition, detailed measurements of the pulsating wind-flow around a Savonius rotor are presented. These results were obtained using (1) tell-tales and a stroboscope, (2) a hot-wire anemometer (0-5 kHz response), and (3) a turbulence meter. This data can be used to suggest that 'active coupling' between Savonius rotors might be useful in 'redirecting' the wind-flow more efficiently. In particular, it is shown that if two counter-rotating rotors are placed side by side in a wind-tunnel, a natural phase locking occurs.

  20. PIV Measurements on a Blowing Flap

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  1. Free digital artery flap: an ideal flap for large finger defects in situations where local flaps are precluded.

    Science.gov (United States)

    Wong, Chin-Ho; Teoh, Lam-Chuan; Lee, Jonathan Y-L; Yam, Andrew K-T; Khoo, David B-A; Yong, Fok-Chuan

    2008-03-01

    The heterodigital arterialized flap is increasingly accepted as a flap of choice for reconstruction of large finger wounds. However, in situations where the adjacent fingers sustained concomitant injuries, the use of this flap as a local flap is precluded. This paper describes our experience with the free digital artery flap as an evolution of the heterodigital arterialized flap. Four patients with large finger wounds were reconstructed with free digital artery flap. Our indications for digital artery free flap were concomitant injuries to adjacent fingers that precluded their use as donor sites. The arterial supply of the flap was from the digital artery and the venous drainage was from the dominant dorsal vein of the finger. The flap was harvested from the ulnar side of the finger. The digital nerve was left in situ to minimize donor morbidity. The donor site was covered with a full-thickness skin graft and secured with bolster dressings. Early intensive mobilization was implemented for all patients. All flaps survived. No venous congestion was noted and primary healing was achieved in all flaps. In addition to providing well-vascularized tissue for coverage of vital structures, the digital artery was also used as a flow-through flap for finger revascularization in one patient. Donor-site morbidity was minimal, with all fingers retaining protective pulp sensation and the distal and proximal interphalangeal joints retaining full ranges of motion. In conclusion, the free digital artery flap is a versatile flap that is ideal for coverage of large-sized finger defects in situations where local flaps are unavailable. Donor-site morbidity can be minimized by preservation of the digital nerve, firmly securing the skin graft with bolster dressings, and early mobilization of the donor finger.

  2. Beneficial Effects of Aminoguanidine on Skin Flap Survival in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Ayse Ozturk

    2012-01-01

    Full Text Available Random flaps in DM patients have poor reliability for wound coverage, and flap loss remains a complex challenge. The protective effects of aminoguanidine (AG administration on the survival of dorsal random flaps and oxidative stress were studied in diabetic rats. Two months after the onset of DM, dorsal McFarlane flaps were raised. Forty rats were divided into four groups: (1 control, (2 AG, (3 DM, and (4 DM + AG groups. Flap viability, determined with the planimetric method, and free-radical measurements were investigated. In addition, HbA1c and blood glucose levels, body weight measurements, and histopathological examinations were evaluated. The mean flap necrotic areas (% in Groups I to IV were 50.9 ± 13.0, 32.9 ± 12.5, 65.2 ± 11.5, and 43.5 ± 14.7, respectively. The malondialdehyde (MDA and nitric oxide (NO levels were higher in the DM group than in the nondiabetic group, while the reduced glutathione (GSH levels and superoxide dismutase (SOD activity were reduced as a result of flap injury. In the diabetic and nondiabetic groups, AG administration significantly reduced the MDA and NO levels and significantly increased GSH content and SOD enzyme activity. We concluded that AG plays an important role in preventing random pattern flap necrosis.

  3. 14 CFR 27.1509 - Rotor speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  4. 14 CFR 29.1509 - Rotor speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  5. Performance tests on helical Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Kamoji, M.A.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay (India)

    2009-03-15

    Conventional Savonius rotors have high coefficient of static torque at certain rotor angles and a negative coefficient of static torque from 135 to 165 and from 315 to 345 in one cycle of 360 . In order to decrease this variation in static torque from 0 to 360 , a helical Savonius rotor with a twist of 90 is proposed. In this study, tests on helical Savonius rotors are conducted in an open jet wind tunnel. Coefficient of static torque, coefficient of torque and coefficient of power for each helical Savonius rotor are measured. The performance of helical rotor with shaft between the end plates and helical rotor without shaft between the end plates at different overlap ratios namely 0.0, 0.1 and 0.16 is compared. Helical Savonius rotor without shaft is also compared with the performance of the conventional Savonius rotor. The results indicate that all the helical Savonius rotors have positive coefficient of static torque at all the rotor angles. The helical rotors with shaft have lower coefficient of power than the helical rotors without shaft. Helical rotor without shaft at an overlap ratio of 0.0 and an aspect ratio of 0.88 is found to have almost the same coefficient of power when compared with the conventional Savonius rotor. Correlation for coefficient of torque and power is developed for helical Savonius rotor for a range of Reynolds numbers studied. (author)

  6. Traumatic Forefoot Reconstructions With Free Perforator Flaps.

    Science.gov (United States)

    Zhu, Yue-Liang; He, Xiao-Qing; Wang, Yi; Lv, Qian; Fan, Xin-Yv; Xu, Yong-Qing

    2015-01-01

    The forefoot is critical to normal walking; thus, any reconstruction of forefoot defects, including the soft tissues, must be carefully done. The free perforator flap, with its physiologic circulation, lower donor site morbidity, and minimal thickness is the most popular technique in plastic and microsurgery, and is theoretically the most suitable for such forefoot reconstruction. However, these flaps are generally recognized as more difficult and time-consuming to create than other flaps. In 41 patients with traumatic forefoot defects, we reconstructed the forefoot integument using 5 types of free perforator flaps. The overall functional and cosmetic outcomes were excellent. Three flaps required repeat exploration; one survived. The most common complications were insufficient perfusion and the need for second debulking. The key to our success was thoroughly debriding devitalized bone and soft tissue before attaching the flap. Forefoot reconstruction with a free perforator flap provides better function, better cosmesis, better weightbearing, and better gait than the other flaps we have used.

  7. IDENTIFICATION OF CRACKED ROTOR BY WAVELET TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 蒲亚鹏

    2002-01-01

    The dynamic equation of cracked rotor in rotational frame was modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor were obtained. By the wavelet transform, the time-frequency properties of the cracked rotor and the uncracked rotor were discussed, the difference of the time-frequency properties between the cracked rotor and the uncracked rotor was compared. A new detection algorithm using wavelet transform to identify crack was proposed. The experiments verify the availability and validity of the wavelet transform in identification of crack.

  8. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.;

    2015-01-01

    . The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high-temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, such as the magnetic interaction and the axial anisotropy, are in excellent agreement......We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...... measured neutron data and reveal that thermally activated spin canting gives rise to an unusual type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices...

  9. Fibular flap for mandible reconstruction in osteoradionecrosis of the jaw: selection criteria of fibula flap

    OpenAIRE

    Kim, Ji-Wan; Hwang, Jong-Hyun; Ahn, Kang-Min

    2016-01-01

    Background Osteoradionecrosis is the most dreadful complication after head and neck irradiation. Orocutaneous fistula makes patients difficult to eat food. Fibular free flap is the choice of the flap for mandibular reconstruction. Osteocutaneous flap can reconstruct both hard and soft tissues simultaneously. This study was to investigate the success rate and results of the free fibular flap for osteoradionecrosis of the mandible and which side of the flap should be harvested for better recons...

  10. Lightning protection of flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find

    The aim of this PhD project was to investigate the behaviour of a Controllable Rubber Trailing Edge Flap (CRTEF) in a wind turbine blade when it is exposed to lightning discharges, and find the best technical solution to protect the CRTEF and the controlling system against lightning, based...... on the results of simulation models and high voltage tests. Wind turbines are a common target of lightning due to their height and location, and blades are the components most exposed to direct discharges. Protecting the blades against lightning is specially challenging, mainly because of the combination...... of a broader, EUDP funded project, whose overall objective was to develop a prototype active trailing edge flap system for a wind turbine blade which constitutes a complete, reliable and robust load control flap system for a full scale turbine, ready for prototype testing....

  11. The effect of platelet rich plasma on angiogenesis in ischemic flaps in VEGFR2-luc mice.

    Science.gov (United States)

    Sönmez, Tolga Taha; Vinogradov, Alexandra; Zor, Fatih; Kweider, Nisreen; Lippross, Sebastian; Liehn, Elisa Anamaria; Naziroglu, Mustafa; Hölzle, Frank; Wruck, Christoph; Pufe, Thomas; Tohidnezhad, Mersedeh

    2013-04-01

    To improve skin flap healing, one promising strategy in reconstructive surgery might be to optimize platelet rich plasma (PRP) bioactivity and the ischemia-altered expression of genes. We studied both the effect of PRP on ischemic flaps, and whether in vivo bioluminescence imaging (BLI) is a suitable method for the longitudinal monitoring of angiogenesis in surgical wounds. Axial murine skin flaps were created in four experimental groups. In vivo measurements of VEGFR2 expression levels were made every other day until the 14th day. The local VEGF level and microvessel density were quantified on the 14th day via ELISA and immunohistochemistry, and flap survival rates were measured. We demonstrated that PRP and induced ischemia have a beneficial influence on angiogenesis and flap healing. Combining the two resulted in a significantly robust increase in angiogenesis and flap survival rate that was corroborated by bioluminescence imaging of VEGFR2 activity. This study shows that angiogenic effects of PRP may be potentialized by the stimulus of induced ischemia during free flap harvesting, and thus the two procedures appear to have a synergistic effect on flap healing. This study further demonstrates that BLI of modulated genes in reconstructive surgery is a valuable model for longitudinal in vivo evaluation of angiogenesis.

  12. Design of composite flywheel rotor

    Institute of Scientific and Technical Information of China (English)

    Yue BAI; Qingjia GAO; Haiwen LI; Yihui WU; Ming XUAN

    2008-01-01

    A design method for a flywheel rotor com-posed of a composite rim and a metal hub is proposed by studying the connection between the rotor and the driving machine. The influence of some factors such as the rotor material, configuration, connection, and frac-ture techniques on energy density is analyzed. The results show that the ratio of the inner radius to outer radius of the rim is the key factor, and is determined by the rim material. Optimizing the hub can further efficiently improve energy density. The composite flywheel rotor is produced and its rotation stress has been tested at the speed of 20 krpm. The emulation results are consistent with testing results, which proves that the introduced design method is useful.

  13. Results of the AVATAR project for the validation of 2D aerodynamic models with experimental data of the DU95W180 airfoil with unsteady flap

    Science.gov (United States)

    Ferreira, C.; Gonzalez, A.; Baldacchino, D.; Aparicio, M.; Gómez, S.; Munduate, X.; Garcia, N. R.; Sørensen, J. N.; Jost, E.; Knecht, S.; Lutz, T.; Chassapogiannis, P.; Diakakis, K.; Papadakis, G.; Voutsinas, S.; Prospathopoulos, J.; Gillebaart, T.; van Zuijlen, A.

    2016-09-01

    The FP7 AdVanced Aerodynamic Tools for lArge Rotors - Avatar project aims to develop and validate advanced aerodynamic models, to be used in integral design codes for the next generation of large scale wind turbines (10-20MW). One of the approaches towards reaching rotors for 10-20MW size is the application of flow control devices, such as flaps. In Task 3.2: Development of aerodynamic codes for modelling of flow devices on aerofoils and, rotors of the Avatar project, aerodynamic codes are benchmarked and validated against the experimental data of a DU95W180 airfoil in steady and unsteady flow, for different angle of attack and flap settings, including unsteady oscillatory trailing-edge-flap motion, carried out within the framework of WP3: Models for Flow Devices and Flow Control, Task 3.1: CFD and Experimental Database. The aerodynamics codes are: AdaptFoil2D, Foil2W, FLOWer, MaPFlow, OpenFOAM, Q3UIC, ATEFlap. The codes include unsteady Eulerian CFD simulations with grid deformation, panel models and indicial engineering models. The validation cases correspond to 18 steady flow cases, and 42 unsteady flow cases, for varying angle of attack, flap deflection and reduced frequency, with free and forced transition. The validation of the models show varying degrees of agreement, varying between models and flow cases.

  14. On Cup Anemometer Rotor Aerodynamics

    OpenAIRE

    Santiago Pindado; Sergio Avila-Sanchez; Javier Pérez

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a lin...

  15. Control of Magnetic Bearings for Rotor Unbalance With Plug-In Time-Varying Resonators.

    Science.gov (United States)

    Kang, Christopher; Tsao, Tsu-Chin

    2016-01-01

    Rotor unbalance, common phenomenon of rotational systems, manifests itself as a periodic disturbance synchronized with the rotor's angular velocity. In active magnetic bearing (AMB) systems, feedback control is required to stabilize the open-loop unstable electromagnetic levitation. Further, feedback action can be added to suppress the repeatable runout but maintain closed-loop stability. In this paper, a plug-in time-varying resonator is designed by inverting cascaded notch filters. This formulation allows flexibility in designing the internal model for appropriate disturbance rejection. The plug-in structure ensures that stability can be maintained for varying rotor speeds. Experimental results of an AMB-rotor system are presented.

  16. Experimental Study of Active Techniques for Blade/Vortex Interaction Noise Reduction

    Science.gov (United States)

    Kobiki, Noboru; Murashige, Atsushi; Tsuchihashi, Akihiko; Yamakawa, Eiichi

    This paper presents the experimental results of the effect of Higher Harmonic Control (HHC) and Active Flap on the Blade/Vortex Interaction (BVI) noise. Wind tunnel tests were performed with a 1-bladed rotor system to evaluate the simplified BVI phenomenon avoiding the complicated aerodynamic interference which is characteristically and inevitably caused by a multi-bladed rotor. Another merit to use this 1-bladed rotor system is that the several objective active techniques can be evaluated under the same condition installed in the same rotor system. The effects of the active techniques on the BVI noise reduction were evaluated comprehensively by the sound pressure, the blade/vortex miss distance obtained by Laser light Sheet (LLS), the blade surface pressure distribution and the tip vortex structure by Particle Image Velocimetry (PIV). The correlation among these quantities to describe the effect of the active techniques on the BVI conditions is well obtained. The experiments show that the blade/vortex miss distance is more dominant for BVI noise than the other two BVI governing factors, such as blade lift and vortex strength at the moment of BVI.

  17. Flap-lag damping in hover and forward flight with a three-dimensional wake

    Science.gov (United States)

    Manjunath, A. R.; Hagabhushanam, J.; Gaonkar, Gopal H.; Peters, David A.; Su, AY

    1992-01-01

    Prediction of lag damping is difficult owing to the delicate balance of drag, induced drag and Coriolis forces in the in-plane direction. Moreover, induced drag is sensitive to dynamic wake, both shed and trailing components, and thus its prediction requires adequate unsteady-wake representation. Accordingly, rigid-blade flap-lag equations are coupled with a three-dimensional finite-state wake model; three isolated rotor configurations with three, four and five blades are treated over a range of thrust levels, Lock numbers, lag frequencies and advance ratios. The investigation includes convergence characteristics of damping with respect to the number of shape functions and harmonics of the wake model for multiblade modes of low frequency (less than 1/rev.) to high frequency (greater than l/rev.). Predicted flap and lag damping levels are then compared with similar predictions with (1) rigid wake (no unsteady induced flow), (2) Loewy lift deficiency, and (3) dynamic inflow.

  18. A New Fine Damping Method for Solid ESG Rotor

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-ning; TIAN Wei-feng; JIN Zhi-hua

    2006-01-01

    For the electrostatically suspended gyro(ESG) with solid rotor, because the equatorial photoelectric sensor won't sense the equatorial marking line and output the correct damping control information when the nutation angle is small, the active damping with equatorial marking line will bring considerable error. The passive damping method by applying strong DC magnetic field requires too much time. So an active damping method by longitude marking lines is proposed to fulfill the fine damping for solid ESG rotor. The shape of rotor marking lines and the principle of fine damping are introduced. The simulation results prove that this fine damping method can effectively solve the problem of damping error introduced by active damping with equatorial marking line. The estimating results for damping time indicate that the fine damping time is less than 10 percent of passive damping time.

  19. The freestyle pedicle perforator flap

    DEFF Research Database (Denmark)

    Gunnarsson, Gudjon Leifur; Jackson, Ian T; Westvik, Tormod S;

    2015-01-01

    not widely performed by the general plastic surgeons. The aim of this paper is to present the simplicity of pedicled perforator flap reconstruction of moderate-sized defects of the extremities and torso. METHODS: We retrospectively reviewed the charts of 34 patients reconstructed using 34 freestyle pedicled...

  20. Sternocleidomastoid Muscle Flap after Parotidectomy.

    Science.gov (United States)

    Nofal, Ahmad Abdel-Fattah; Mohamed, Morsi

    2015-10-01

    Introduction Most patients after either superficial or total parotidectomy develop facial deformity and Frey syndrome, which leads to a significant degree of patient dissatisfaction. Objective Assess the functional outcome and esthetic results of the superiorly based sternocleidomastoid muscle (SCM) flap after superficial or total parotidectomy. Methods A prospective cohort study for 11 patients subjected to parotidectomy using a partial-thickness superiorly based SCM flap. The functional outcome (Frey syndrome, facial nerve involvement, and ear lobule sensation) and the esthetic results were evaluated subjectively and objectively. Results Facial nerve palsy occurred in 5 cases (45%), and all of them recovered completely within 6 months. The Minor starch iodine test was positive in 3 patients (27%), although only 1 (9%) subjectively complained of gustatory sweating. The designed visual analog score completed by the patients themselves ranged from 0 to 3 with a mean of 1.55 ± 0.93; the scores from the blinded evaluators ranged from 1 to 3 with a mean 1.64 ± 0.67. Conclusion The partial-thickness superiorly based SCM flap offers a reasonable cosmetic option for reconstruction following either superficial or total parotidectomy by improving the facial deformity. The flap also lowers the incidence of Frey syndrome objectively and subjectively with no reported hazard of the spinal accessory nerve.

  1. Sternocleidomastoid Muscle Flap after Parotidectomy

    Directory of Open Access Journals (Sweden)

    Nofal, Ahmad Abdel-Fattah

    2015-04-01

    Full Text Available Introduction Most patients after either superficial or total parotidectomy develop facial deformity and Frey syndrome, which leads to a significant degree of patient dissatisfaction. Objective Assess the functional outcome and esthetic results of the superiorly based sternocleidomastoid muscle (SCM flap after superficial or total parotidectomy. Methods A prospective cohort study for 11 patients subjected to parotidectomy using a partial-thickness superiorly based SCM flap. The functional outcome (Frey syndrome, facial nerve involvement, and ear lobule sensation and the esthetic results were evaluated subjectively and objectively. Results Facial nerve palsy occurred in 5 cases (45%, and all of them recovered completely within 6 months. The Minor starch iodine test was positive in 3 patients (27%, although only 1 (9% subjectively complained of gustatory sweating. The designed visual analog score completed by the patients themselves ranged from 0 to 3 with a mean of 1.55 ± 0.93; the scores from the blinded evaluators ranged from 1 to 3 with a mean 1.64 ± 0.67. Conclusion The partial-thickness superiorly based SCM flap offers a reasonable cosmetic option for reconstruction following either superficial or total parotidectomy by improving the facial deformity. The flap also lowers the incidence of Frey syndrome objectively and subjectively with no reported hazard of the spinal accessory nerve.

  2. Higher harmonic control analysis for vibration reduction of helicopter rotor systems

    Science.gov (United States)

    Nguyen, Khanh Q.

    1994-01-01

    operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.

  3. The possibility for use of venous flaps in plastic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Baytinger, V. F., E-mail: baitinger@mail.tomsknet.ru; Kurochkina, O. S., E-mail: kurochkinaos@yandex.ru; Selianinov, K. V.; Baytinger, A. V. [Research Institute of Microsurgery, Tomsk (Russian Federation); Dzyuman, A. N. [Siberian State Medical University, Tomsk (Russian Federation)

    2015-11-17

    The use of venous flaps is controversial. The mechanism of perfusion of venous flaps is still not fully understood. The research was conducted on 56 white rats. In our experimental work we studied two different models of venous flaps: pedicled venous flap (PVF) and pedicled arterialized venous flap (PAVF). Our results showed that postoperative congestion was present in all flaps. However 66.7% of all pedicled venous flaps and 100% of all pedicled arterialized venous flaps eventually survived. Histological examination revealed that postoperatively the blood flow in the skin of the pedicled arterialized venous flap became «re-reversed» again; there were no differences between mechanism of survival of venous flaps and other flaps. On the 7-14th day in the skin of all flaps were processes of neoangiogenesis and proliferation. Hence the best scenario for the clinical use of venous flaps unfolds when both revascularization and skin coverage are required.

  4. The possibility for use of venous flaps in plastic surgery

    Science.gov (United States)

    Baytinger, V. F.; Kurochkina, O. S.; Selianinov, K. V.; Baytinger, A. V.; Dzyuman, A. N.

    2015-11-01

    The use of venous flaps is controversial. The mechanism of perfusion of venous flaps is still not fully understood. The research was conducted on 56 white rats. In our experimental work we studied two different models of venous flaps: pedicled venous flap (PVF) and pedicled arterialized venous flap (PAVF). Our results showed that postoperative congestion was present in all flaps. However 66.7% of all pedicled venous flaps and 100% of all pedicled arterialized venous flaps eventually survived. Histological examination revealed that postoperatively the blood flow in the skin of the pedicled arterialized venous flap became «re-reversed» again; there were no differences between mechanism of survival of venous flaps and other flaps. On the 7-14th day in the skin of all flaps were processes of neoangiogenesis and proliferation. Hence the best scenario for the clinical use of venous flaps unfolds when both revascularization and skin coverage are required.

  5. Swashplateless Helicopter Experimental Investigation: Primary Control with Trailing Edge Flaps Actuated with Piezobenders

    Science.gov (United States)

    Copp, Peter

    Helicopter rotor primary control is conventionally carried out using a swashplate with pitch links. Eliminating the swashplate promises to reduce the helicopter's parasitic power in high speed forward flight, as well as may lead to a hydraulic-less vehicle. A Mach-scale swashplateless rotor is designed with integrated piezobender-actuated trailing edge flaps and systematically tested on the benchtop, in the vacuum chamber and on the hoverstand. The blade is nominally based on the UH-60 rotor with a hover tip Mach number of 0.64. The blade diameter is 66 inches requiring 2400 RPM for Mach scale simulation. The rotor hub is modified to reduce the blade fundamental torsional frequency to less than 2.0/rev by replacing the rigid pitch links with linear springs, which results in an increase of the blade pitching response to the trailing edge flaps. Piezoelectric multilayer benders provide the necessary bandwidth, stroke and stiffness to drive the flaps for primary control while fitting inside the blade profile and withstanding the high centrifugal forces. This work focuses on several key issues. A piezobender designed from a soft piezoelectric material, PZT-5K4, is constructed. The new material is used to construct multi-layer benders with increased stroke for the same stiffness relative to hard materials such as PZT-5H2. Each layer has a thickness of 10 mils. The soft material with gold electrodes requires a different bonding method than hard material with nickel electrodes. With this new bonding method, the measured stiffness matches precisely the predicted stiffness for a 12 layer bender with 1.26 inch length and 1.0 inch width with a stiffness of 1.04 lb/mil. The final in-blade bender has a length of 1.38 inches and 1.0 inch width with a stiffness of 0.325 lb/mil and stroke of 20.2 mils for an energy output of 66.3 lb-mil. The behavior of piezobenders under very high electric fields is investigated. High field means +18.9 kV/cm (limited by arcing in air) and -3.54k

  6. Lateral Dynamics of Flexible Rotors Supported by Controllable Gas Bearings Theory & Experiment

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2015-01-01

    . The active control principle is built using eddy-current sensor signals to detect the lateral motion of the rotor. A feedback law is used to couple the lateral dynamics of a flexible rotor-bearing system with the pneumatic and dynamic characteristics of a piezoelectric actuated valve system. A proportional...

  7. Forward flight of swallowtail butterfly with simple flapping motion

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiroto [School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Cambridge, MA 02138 (United States); Shimoyama, Isao, E-mail: isao@i.u-tokyo.ac.j [Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2010-06-15

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  8. Forward flight of swallowtail butterfly with simple flapping motion.

    Science.gov (United States)

    Tanaka, Hiroto; Shimoyama, Isao

    2010-06-01

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  9. Liquid Self-Balancing Device Effects on Flexible Rotor Stability

    Directory of Open Access Journals (Sweden)

    Leonardo Urbiola-Soto

    2013-01-01

    Full Text Available Nearly a century ago, the liquid self-balancing device was first introduced by M. LeBlanc for passive balancing of turbine rotors. Although of common use in many types or rotating machines nowadays, little information is available on the unbalance response and stability characteristics of this device. Experimental fluid flow visualization evidences that radial and traverse circulatory waves arise due to the interaction of the fluid backward rotation and the baffle boards within the self-balancer annular cavity. The otherwise destabilizing force induced by trapped fluids in hollow rotors, becomes a stabilizing mechanism when the cavity is equipped with adequate baffle boards. Further experiments using Particle Image Velocimetry (PIV enable to assess the active fluid mass fraction to be one-third of the total fluid mass. An analytical model is introduced to study the effects of the active fluid mass fraction on a flexible rotor supported by flexible supports excited by bwo different destabilizing mechanisms; rotor internal friction damping and aerodynamic cross-coupling. It is found that the fluid radial and traverse forces contribute to the balancing action and to improve the rotor stability, respectively.

  10. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    Science.gov (United States)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  11. Assessment Report on Innovative Rotor Blades (MAREWINT WP1,D1.3)

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Leble, Vladimir; Pereira, Gilmar Ferreira

    the innovative concept development for wind turbine blades. This covers models and experiments with damage measurement systems embedded within the composite material/structure and numerical methods investigating the effects of leading and trailing edge flaps on modifying the aerodynamic loads on the operating......The offshore wind energy industry faces many challenges in the short to medium term if it is to meet the ambitions of the global community for sustainable energy supply in the future. Not least among these challenges is the issue of rotor blades. Innovative design for “smart” rotor blades...... with embedded sensors and actuation are being developed that will deliver an improved whole-life performance, and a structural health management based operational concept. In this report, the work of two early stage researchers within the Initial Training Network MAREWINT is presented that support...

  12. Rotor/Wing Interactions in Hover

    Science.gov (United States)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  13. On cup anemometer rotor aerodynamics.

    Science.gov (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  14. The Diver with a Rotor

    CERN Document Server

    Bharadwaj, Sudarsh; Dullin, Holger R; Leung, Karen; Tong, William

    2015-01-01

    We present and analyse a simple model for the twisting somersault. The model is a rigid body with a rotor attached which can be switched on and off. This makes it simple enough to devise explicit analytical formulas whilst still maintaining sufficient complexity to preserve the shape-changing dynamics essential for twisting somersaults in springboard and platform diving. With `rotor on' and with `rotor off' the corresponding Euler-type equations can be solved, and the essential quantities characterising the dynamics, such as the periods and rotation numbers, can be computed in terms of complete elliptic integrals. Thus we arrive at explicit formulas for how to achieve a dive with m somersaults and n twists in a given total time. This can be thought of as a special case of a geometric phase formula due to Cabrera 2007.

  15. Adjoint-based optimization of flapping plates hinged with a trailing-edge flap

    Directory of Open Access Journals (Sweden)

    Min Xu

    2015-01-01

    Full Text Available It is important to understand the impact of wing-morphing on aerodynamic performance in the study of flapping-wing flight of birds and insects. We use a flapping plate hinged with a trailing-edge flap as a simplified model for flexible/morphing wings in hovering. The trailing-edge flapping motion is optimized by an adjoint-based approach. The optimized configuration suggests that the trailing-edge flap can substantially enhance the overall lift. Further analysis indicates that the lift enhancement by the trailing-edge flapping is from the change of circulation in two ways: the local circulation change by the rotational motion of the flap, and the modification of vortex shedding process by the relative location between the trailing-edge flap and leading-edge main plate.

  16. Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor

    Science.gov (United States)

    2016-05-19

    Sim Research Engineer US Army Aviation Development Directorate Moffett Field, CA ABSTRACT At the most fundamental level, main rotor loading noise...the BVI is strongly dependent on this miss distance. The thrust coefficient also controls the circulation strength of the vortices at their time ...control on the blade, custom tip shapes, and active rotor control systems. Active rotor control, such as Individual Blade Control (IBC) using blade root

  17. Reverse flow first dorsal metacarpal artery flap for covering the defect of distal thumb.

    Science.gov (United States)

    Checcucci, Giuseppe; Galeano, Mariarosaria; Zucchini, Maura; Zampetti, Pier Giuseppe; Ceruso, Massimo

    2014-05-01

    Reconstruction of distal thumb injuries still remains a challenge for hand surgeons. Surgical treatment includes the use of local, regional, and free flaps. The purpose of this report is to present the results of the use of a sensitive reverse flow first dorsal metacarpal artery (FDMA) flap. The skin flap was designed on the radial side of the proximal phalanx of the index finger based on the ulnar and radial branch of the FDMA and a sensory branch of the superficial radial nerve. This neurovascular flap was used in five patients to cover distal soft-tissue thumb defects. All flaps achieved primary healing except for one patient in whom superficial partial necrosis of the flap occurred, and the defect healed by second intention. All patients maintained the thumb original length and were able to return to their previous daily activities. The reverse flow FDMA flap is a reliable option to cover immediate and delayed defects of distal thumb, offering acceptable functional and cosmetic outcomes in respect to sensibility, durability, and skin-match.

  18. The place of nasolabial flap in orofacial reconstruction: A review

    Directory of Open Access Journals (Sweden)

    Amin Rahpeyma

    2016-12-01

    Conclusion: Nasolabial flap is an old flap for reconstructive purposes. Over time different modifications have been introduced to expand its usage. Clear definition of the terms used with this flap is given.

  19. An analytical investigation of the performance of wind-turbines with gyrocopter-like rotors

    Energy Technology Data Exchange (ETDEWEB)

    Kentfield, J.A.C.; Brophy, D.C. [Univ. of Calgary, Alberta (Canada)

    1997-12-31

    The performance was predicted of a wind-turbine, intended for electrical power generation, the rotor of which is similar in configuration to the rotor of an autogyro or gyrocopter as originated by Cierva. Hence the rotor axis of spin is tilted downwind, for maximum power production, by an angle of 40{degrees} to 50{degrees} relative to the vertical with power regulation by modulation of the tilt angle. Because the rotor of a Cierva turbine generates lift the simple, non-twisted, fixed-pitch blades {open_quotes}fly{close_quotes} and are self supporting thereby eliminating flap-wise bending moments when the blades are hinged at their roots. It was found from the analysis that it is possible to reduce tower bending moments substantially relative to a conventional horizontal axis turbine of equal power output and also, for equal maximum hub heights and blade tip altitudes, a Cierva turbine is capable, at a prescribed wind speed, of a greater power output than a conventional horizontal axis machine.

  20. Freestyle Local Perforator Flaps for Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Jun Yong Lee

    2015-01-01

    Full Text Available For the successful reconstruction of facial defects, various perforator flaps have been used in single-stage surgery, where tissues are moved to adjacent defect sites. Our group successfully performed perforator flap surgery on 17 patients with small to moderate facial defects that affected the functional and aesthetic features of their faces. Of four complicated cases, three developed venous congestion, which resolved in the subacute postoperative period, and one patient with partial necrosis underwent minor revision. We reviewed the literature on freestyle perforator flaps for facial defect reconstruction and focused on English articles published in the last five years. With the advance of knowledge regarding the vascular anatomy of pedicled perforator flaps in the face, we found that some perforator flaps can improve functional and aesthetic reconstruction for the facial defects. We suggest that freestyle facial perforator flaps can serve as alternative, safe, and versatile treatment modalities for covering small to moderate facial defects.

  1. Freestyle Local Perforator Flaps for Facial Reconstruction.

    Science.gov (United States)

    Lee, Jun Yong; Kim, Ji Min; Kwon, Ho; Jung, Sung-No; Shim, Hyung Sup; Kim, Sang Wha

    2015-01-01

    For the successful reconstruction of facial defects, various perforator flaps have been used in single-stage surgery, where tissues are moved to adjacent defect sites. Our group successfully performed perforator flap surgery on 17 patients with small to moderate facial defects that affected the functional and aesthetic features of their faces. Of four complicated cases, three developed venous congestion, which resolved in the subacute postoperative period, and one patient with partial necrosis underwent minor revision. We reviewed the literature on freestyle perforator flaps for facial defect reconstruction and focused on English articles published in the last five years. With the advance of knowledge regarding the vascular anatomy of pedicled perforator flaps in the face, we found that some perforator flaps can improve functional and aesthetic reconstruction for the facial defects. We suggest that freestyle facial perforator flaps can serve as alternative, safe, and versatile treatment modalities for covering small to moderate facial defects.

  2. Head and neck reconstruction with pedicled flaps in the free flap era

    NARCIS (Netherlands)

    Mahieu, R.; Colletti, G.; Bonomo, P.; Parrinello, G.; Iavarone, A.; Dolivet, G.; Livi, L.; Deganello, A.

    2016-01-01

    Nowadays, the transposition of microvascular free flaps is the most popular method for management of head and neck defects. However, not all patients are suitable candidates for free flap reconstruction. In addition, not every defect requires a free flap transfer to achieve good functional results.

  3. Pectoralis major flap for head and neck reconstruction in era of free flaps.

    Science.gov (United States)

    Kekatpure, V D; Trivedi, N P; Manjula, B V; Mathan Mohan, A; Shetkar, G; Kuriakose, M A

    2012-04-01

    The aim of this study was to evaluate factors affecting the selection of pectoralis major flap in the era of free tissue reconstruction for post ablative head and neck defects and flap associated complications. The records of patients who underwent various reconstructive procedures between July 2009 and December 2010 were retrospectively analysed. 147 reconstructive procedures including 79 free flaps and 58 pectoralis major flaps were performed. Pectoralis major flap was selected for reconstruction in 21 patients (36%) due to resource constrains, in 12 (20%) patients for associated medical comorbidities, in 11 (19%) undergoing extended/salvage neck dissections, and in 5 patients with vessel depleted neck and free flap failure salvage surgery. None of the flaps was lost, 41% of patients had flap related complications. Most complications were self-limiting and were managed conservatively. Data from this study suggest that pectoralis major flap is a reliable option for head and neck reconstruction and has a major role even in this era of free flaps. The selection of pectoralis major flap over free flap was influenced by patient factors in most cases. Resource constraints remain a major deciding factor in a developing country setting.

  4. Resternal closure versus pectoral muscle flap following omental flap in treatment of deep sternal wound infection

    Directory of Open Access Journals (Sweden)

    Fouad Rassekh

    2016-05-01

    Conclusion: Omental flap is safe, easy and effective technique in management of mediastinitis with DSWI following open heart surgery in CABG patients either this procedure was followed by reclosure of the sternum or bilateral pectoral flap. However, reclosure of the sternum is more physiological and less invasive than doing bilateral pectoral flap leaving the sternum unclosed.

  5. Posterior interosseous free flap: various types.

    Science.gov (United States)

    Park, J J; Kim, J S; Chung, J I

    1997-10-01

    The posterior interosseous artery is located in the intermuscular septum between the extensor carpi ulnaris and extensor digiti minimi muscles. The posterior interosseous artery is anatomically united through two main anastomoses: one proximal (at the level of the distal border of the supinator muscle) and one distal (at the most distal part of the interosseous space). In the distal part, the posterior interosseous artery joins the anterior interosseous artery to form the distal anastomosis between them. The posterior interosseous flap can be widely used as a reverse flow island flap because it is perfused by anastomoses between the anterior and the posterior interosseous arteries at the level of the wrist. The flap is not reliable whenever there is injury to the distal forearm or the wrist. To circumvent this limitation and to increase the versatility of this flap, we have refined its use as a direct flow free flap. The three types of free flaps used were (1) fasciocutaneous, (2) fasciocutaneous-fascia, and (3) fascia only. Described are 23 posterior interosseous free flaps: 13 fasciocutaneous flaps, 6 fasciocutaneous-fascial flaps, and 4 fascial flaps. There were 13 sensory flaps using the posterior antebrachial cutaneous nerve. The length and external diameter of the pedicle were measured in 35 cases. The length of the pedicle was on average 3.5 cm (range, 3.0 to 4.0 cm) and the external diameter of the artery averaged 2.2 mm (range, 2.0 to 2.5 mm). The hand was the recipient in 21 patients, and the foot in 2. All 23 flaps covered the defect successfully.

  6. Free flap pulse oximetry utilizing reflectance photoplethysmography

    OpenAIRE

    Zaman, T.; Kyriacou, P. A.; Pal, S.

    2013-01-01

    The successful salvage of a free flap is dependent on the continuous monitoring of perfusion. To date there is no widely accepted and readily available post-operative monitoring technique to reliably assess the viability of free flaps by continuously monitoring free flap blood oxygen saturation. In an attempt to overcome the limitations of the current techniques a reflectance photoplethysmographic (PPG) processing system has been developed with the capability of real-time estimation of arteri...

  7. Dynamic stall in flapping flight

    Science.gov (United States)

    Hubel, Tatjana; Tropea, Cameron

    2007-11-01

    We report on experiments concerning unsteady effects in flapping flight, conducted in the low-speed wind tunnel of the TU Darmstadt using a mechanical flapping-wing model. Particle Image Velocimetry (PIV) was used for qualitative and quantitative analysis parallel and perpendicular to the flow field. A sensitivity analysis of the main flight parameters has been performed, with specific attention to the flight envelope of 26,500 dynamic stall effect could be verified by the direct force measurement as well as the flow visualization. The observation of the leading-edge vortex for typical bird flight reduced frequencies shows that this flow cannot be approximated as being quasi- steady. This in effect proves that adaptive wings are necessary to fully control these unsteady flow features, such as dynamic stall.

  8. Predictions of Control Inputs, Periodic Responses and Damping Levels of an Isolated Experimental Rotor in Trimmed Flight

    Science.gov (United States)

    Gaonkar, G. H.; Subramanian, S.

    1996-01-01

    Since the early 1990s the Aeroflightdynamics Directorate at the Ames Research Center has been conducting tests on isolated hingeless rotors in hover and forward flight. The primary objective is to generate a database on aeroelastic stability in trimmed flight for torsionally soft rotors at realistic tip speeds. The rotor test model has four soft inplane blades of NACA 0012 airfoil section with low torsional stiffness. The collective pitch and shaft tilt are set prior to each test run, and then the rotor is trimmed in the following sense: the longitudinal and lateral cyclic pitch controls are adjusted through a swashplate to minimize the 1/rev flapping moment at the 12 percent radial station. In hover, the database comprises lag regressive-mode damping with pitch variations. In forward flight the database comprises cyclic pitch controls, root flap moment and lag regressive-mode damping with advance ratio, shaft angle and pitch variations. This report presents the predictions and their correlation with the database. A modal analysis is used, in which nonrotating modes in flap bending, lag bending and torsion are computed from the measured blade mass and stiffness distributions. The airfoil aerodynamics is represented by the ONERA dynamic stall models of lift, drag and pitching moment, and the wake dynamics is represented by a state-space wake model. The trim analysis of finding, the cyclic controls and the corresponding, periodic responses is based on periodic shooting with damped Newton iteration; the Floquet transition matrix (FTM) comes out as a byproduct. The stabillty analysis of finding the frequencies and damping levels is based on the eigenvalue-eigenvector analysis of the FTM. All the structural and aerodynamic states are included from modeling to trim analysis. A major finding is that dynamic wake dramatically improves the correlation for the lateral cyclic pitch control. Overall, the correlation is fairly good.

  9. Flapping Wing Flight Dynamic Modeling

    Science.gov (United States)

    2011-08-22

    von Karman, T. and Burgers, J. M., Gerneral Aerodynamic Theory - Perfect Fluids , Vol. II, Julius Springer , Berlin, 1935. [24] Pesavento, U. and Wang...L., Methods of Analytical Dynamics , McGraw-Hill Book Company, New York, 1970. [34] Deng, X., Schenato, L., Wu, W. C., and Sastry, S. S., Flapping...Micro air vehicle- motivated computational biomechanics in bio ights: aerodynamics, ight dynamics and maneuvering stability, Acta Mechanica

  10. Optimal propulsive flapping in Stokes flows

    CERN Document Server

    Was, Loic

    2014-01-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds number, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propul...

  11. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    OpenAIRE

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Skalko-Basnet, Natasa

    2016-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skinmodels to evaluate skin drug penetration. The isolated perfused human skin flap remainsmetabolically active tissue for up to 6 h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence ...

  12. Genetics Home Reference: Rotor syndrome

    Science.gov (United States)

    ... of these proteins. Without the function of either transport protein, bilirubin is less efficiently taken up by the ... Schinkel AH. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into ...

  13. Advances in tilt rotor noise prediction

    Science.gov (United States)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  14. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices

    Science.gov (United States)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  15. Results of the AVATAR project for the validation of 2D aerodynamic models with experimental data of the DU95W180 airfoil with unsteady flap

    DEFF Research Database (Denmark)

    Ferreira, C.; Gonzalez, A.; Baldacchino, D.;

    2016-01-01

    The FP7 AdVanced Aerodynamic Tools for lArge Rotors - Avatar project aims to develop and validate advanced aerodynamic models, to be used in integral design codes for the next generation of large scale wind turbines (10-20MW). One of the approaches towards reaching rotors for 10-20MW size...... is the application of flow control devices, such as flaps. In Task 3.2: Development of aerodynamic codes for modelling of flow devices on aerofoils and, rotors of the Avatar project, aerodynamic codes are benchmarked and validated against the experimental data of a DU95W180 airfoil in steady and unsteady flow......, for different angle of attack and flap settings, including unsteady oscillatory trailing-edge-flap motion, carried out within the framework of WP3: Models for Flow Devices and Flow Control, Task 3.1: CFD and Experimental Database. The aerodynamics codes are: AdaptFoil2D, Foil2W, FLOWer, MaPFlow, OpenFOAM, Q3UIC...

  16. Analysis of biplane flapping flight with tail

    NARCIS (Netherlands)

    Tay, W.B.; Bijl, H.; Van Oudheusden, B.W.

    2012-01-01

    Numerical simulations have been performed to examine the interference effects between an upstream flapping biplane airfoil arrangement and a downstream stationary tail at a Reynolds number of 1000, which is around the regime of small flapping micro aerial vehicles. The objective is to investigate th

  17. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction.

    Science.gov (United States)

    Algasaier, Sana I; Exell, Jack C; Bennet, Ian A; Thompson, Mark J; Gotham, Victoria J B; Shaw, Steven J; Craggs, Timothy D; Finger, L David; Grasby, Jane A

    2016-04-08

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.

  18. Attitude Control of Small Quad-rotor Based on Active Disturbance Rejection Control Theory%基于自抗扰理论的小型四旋翼飞行器姿态控制

    Institute of Scientific and Technical Information of China (English)

    张广昱; 袁昌盛

    2014-01-01

    To solve the attitude control problem of small quad-rotor according to its complex coupling ,non-linear and serious internal/external disturbance feature ,a control scheme based on active disturbance rejection control technique is proposed .The dynamic model is established with Newton-Euler equations ,and the uncertainty , coupling and parameter perturbation are considered as total disturbance .Extended state observer is used to esti-mate and compensate the total disturbance .The non-linear state error feedback is used to restrain the compen-sate error ,and did simulation experiment of attitude control for small quad-rotor .The result of the simulation shows that the extended state observer of the active disturbance rejection control technique can estimate/com-pensate disturbance well under circumstance of parameter perturbation and disturbance .The attitude controller based on active disturbance rejection control theory shows good dynamic quality ,steady-state accuracy and strong robustness .%针对四旋翼飞行器的强耦合性、非线性、易受外界干扰等控制难点,研究利用自抗扰控制器对四旋翼飞行器进行姿态控制的技术问题。通过牛顿-欧拉方程建立四旋翼飞行器动力学模型,将不确定性、耦合及参数摄动等干扰作为“总和干扰”,利用扩张状态观测器进行估计并动态反馈补偿,再利用非线性反馈抑制补偿残差,进行四旋翼飞行器姿态控制仿真实验。结果表明:在存在模型参数摄动和外界扰动的情况下,扩张状态观测器很好地实时估计和补偿了四旋翼飞行器的总和干扰,基于自抗扰的四旋翼飞行器姿态控制系统具有较好的动态品质、稳态精度以及较强的鲁棒性。

  19. A study of the use of the supraclavicular artery flap for resurfacing of head, neck, and upper torso defects

    Directory of Open Access Journals (Sweden)

    Telang Parag

    2009-01-01

    Full Text Available The head and neck region is an aesthetically demanding area to resurface because of its high visibility. Tissue defects in this area often require distant flaps or free flaps to achieve an aesthetically acceptable result. The use of the Supraclavicular artery flap represents an extremely versatile and useful option for the resurfacing of head, neck and upper torso defects. Furthermore, islanding the flap gives it a wide arc of rotation and the color and texture match is superior to that of free flaps harvested from distant sites. In our study, we used the flap (both unexpanded and expanded predominantly for resurfacing neck defects resulting from the release of post-burn contractures. However, its applicability in other indications would also be similar. Except one, all our flaps survived almost completely and the post-operative morbidity was very low. We conclude that the supraclavicular artery flap not only provides a reasonably good color and texture match but also maintains the multi-directional activity in the neck region.

  20. Energy management - The delayed flap approach

    Science.gov (United States)

    Bull, J. S.

    1976-01-01

    Flight test evaluation of a Delayed Flap approach procedure intended to provide reductions in noise and fuel consumption is underway using the NASA CV-990 test aircraft. Approach is initiated at a high airspeed (240 kt) and in a drag configuration that allows for low thrust. The aircraft is flown along the conventional ILS glide slope. A Fast/Slow message display signals the pilot when to extend approach flaps, landing gear, and land flaps. Implementation of the procedure in commercial service may require the addition of a DME navigation aid co-located with the ILS glide slope transmitter. The Delayed Flap approach saves 250 lb of fuel over the Reduced Flap approach, with a 95 EPNdB noise contour only 43% as large.

  1. Piezoelectrically actuated insect scale flapping wing

    Science.gov (United States)

    Mukherjee, Sujoy; Ganguli, Ranjan

    2010-04-01

    An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

  2. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    INTRODUCTION: Clinical work on the blood perfusion in skin and muscle flaps has suggested that some degree of blood flow autoregulation exists in such flaps. An autoregulatory mechanism would enable the flap to protect itself from changes in the perfusion pressure. The purpose of the present study...... was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......-type calcium channel blocker nimodipine and the vasodilator papaverine. MATERIAL AND METHODS: Pedicled flaps were raised in pigs. Flow in the pedicle was reduced by constriction of the feed artery (n=34). A transit time flow probe measured the effect on blood flow continuously. Following this, three different...

  3. White light spectroscopy for free flap monitoring.

    Science.gov (United States)

    Fox, Paige M; Zeidler, Kamakshi; Carey, Joseph; Lee, Gordon K

    2013-03-01

    White light spectroscopy non-invasively measures hemoglobin saturation at the capillary level rendering an end-organ measurement of perfusion. We hypothesized this technology could be used after microvascular surgery to allow for early detection of ischemia and thrombosis. The Spectros T-Stat monitoring device, which utilizes white light spectroscopy, was compared with traditional flap monitoring techniques including pencil Doppler and clinical exam. Data were prospectively collected and analyzed. Results from 31 flaps revealed a normal capillary hemoglobin saturation of 40-75% with increase in saturation during the early postoperative period. One flap required return to the operating room 12 hours after microvascular anastomosis. The T-stat system recorded an acute decrease in saturation from ~50% to less than 30% 50 min prior to identification by clinical exam. Prompt treatment resulted in flap salvage. The Spectros T-Stat monitor may be a useful adjunct for free flap monitoring providing continuous, accurate perfusion assessment postoperatively.

  4. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  5. DIEP flap sentinel skin paddle positioning algorithm.

    Science.gov (United States)

    Laporta, Rosaria; Longo, Benedetto; Sorotos, Michail; Pagnoni, Marco; Santanelli Di Pompeo, Fabio

    2015-02-01

    Although clinical examination alone or in combination with other techniques is the only ubiquitous method for flap monitoring, it becomes problematic with buried free-tissue transfer. We present a DIEP flap sentinel skin paddle (SSP) positioning algorithm and its reliability is also investigated using a standardized monitoring protocol. All DIEP flaps were monitored with hand-held Doppler examination and clinical observation beginning immediately after surgery in recovery room and continued postoperatively at the ward. Skin paddle (SP) position was preoperatively drawn following mastectomy type incisions; in skin-sparing mastectomies types I-III a small SP (sSP) replaces nipple-areola complex; in skin-sparing mastectomy type IV, SSP is positioned between wise-pattern branches while in type V between medial/lateral branches. In case of nipple-sparing mastectomy SSP is positioned at inframammary fold or in lateral/medial branches of omega/inverted omega incision if used. Three hundred forty-seven DIEP flap breast reconstructions were reviewed and stratified according to SP type into group A including 216 flaps with large SP and group B including 131 flaps with SSP and sSP. Sixteen flaps (4.6%) were taken back for pedicle compromise, 13 of which were salvaged (81.25%), 11 among 13 from group A and 2 among 3 from group B. There was no statistical difference between the groups concerning microvascular complication rate (P = 0.108), and time until take-back (P = 0.521) and flap salvage rate (P = 0.473) resulted independent of SP type. Our results suggest that early detection of perfusion impairment and successful flaps salvage could be achieved using SSP for buried DIEP flap monitoring, without adjunctive expensive monitoring tests.

  6. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    Science.gov (United States)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  7. Exotic wakes of flapping fins

    DEFF Research Database (Denmark)

    Schnipper, Teis

    We present, in 8 chapters, experiments on and numerical simulations of bodies flapping in a fluid. Focus is predominantly on a rigid foil, a model fish, that performs prescribed pitching oscillations where the foil rotates around its leading edge. In a flowing soap film is measured, with unpreced...... of frequencies. Drag reductions up to a factor 3 are measured. Many results presented are obtained through flow visualisations. A great effort is made to produce visualisations of primarily high scientific quality, but often also with a certain aesthetic appeal....

  8. On Cup Anemometer Rotor Aerodynamics

    Directory of Open Access Journals (Sweden)

    Santiago Pindado

    2012-05-01

    Full Text Available The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal, tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.

  9. Use of rotation scalp flaps for treatment of occipital baldness.

    Science.gov (United States)

    Juri, J; Juri, C; Arufe, H N

    1978-01-01

    We have used 25 rotation scalp flaps to treat occipital baldness associated with fronto-parietal baldness (the third flap), and 35 such flaps for the correction of isolated occipital baldness. We have not had any flap necrosis, and our patients have been well satisfied with the results of this surgery.

  10. Total endoscopic free flap harvest of a serratus anterior fascia flap for microsurgical lower leg reconstruction

    Directory of Open Access Journals (Sweden)

    Erdmann, Alfons

    2014-04-01

    Full Text Available [english] Background: A tremendous number of free flaps have been developed in the past. As the surgical result depends not only on a successful flap transfer but also on the harvest, this paper details the procedures for undertaking the first total endoscopic harvest of a serratus fascia flap for free flap transplantation to the lower leg. Patient and methods: In September 2012 we performed the first total endoscopic serratus anterior fascia free flap harvest. The incision of 2.5 cm length was made 10 cm in front of anterior muscle border of the latissimus dorsi at level with the midthorax. After insertion of a flexible laparoscopic single port system we started CO gas insufflation. We used this setting to meticulously prepare a neo cavity between atissimus dorsi and M. serratus anterior. The vessels were dissected and the thoraco-dorsal nerve was separated. With a second auxiliary incision we used a clamp to support the raising of the fascia flap from the underlying muscle. Finally we clipped the vessels to the latissimus dorsi muscle and the flap vessels at the Arteria and Vena axillaris. The flap was extracted via the 2.5 cm incision.Results: We were able to perform a total endoscopic harvest of a serratus fascia flap for free flap reconstruction of soft tissues. With this new operative technique we were able to avoid a long skin incision, which in our view lowers the morbidity at the harvest area.Conclusion: We describe a new method for the total endoscopic harvest of the serratus fascia flap for free flap transfer. The flap was harvested within reasonable time and following surgery leaves the patient with minimal donor site morbidity compared to the open technique.

  11. The DelFly design, aerodynamics, and artificial intelligence of a flapping wing robot

    CERN Document Server

    de Croon, G C H E; Remes, B D W; Ruijsink, R; De Wagter, C

    2016-01-01

    This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Expl...

  12. Design of plywood and paper flywheel rotors

    Science.gov (United States)

    Hagen, D. L.

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Two bulb attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Plywood moisture equilibrium during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. Detailed measurements of the distribution of strengths, densities and specific energy of conventional Finnish Birch plywood and of custom made hexagonal Birch plywood are detailed. High resolution tensile tests were performed while monitoring the acoustic emissions with micoprocessor controlled data acquisition. Preliminary duration of load tests were performed on vacuum dried hexagonal birch plywood. Economics of cellulosic and conventional rotors were examined.

  13. Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off

    Science.gov (United States)

    Platt, Robert C

    1936-01-01

    This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.

  14. Hydrodynamic schooling of flapping swimmers

    Science.gov (United States)

    Becker, Alexander D.; Masoud, Hassan; Newbolt, Joel W.; Shelley, Michael; Ristroph, Leif

    2015-10-01

    Fish schools and bird flocks are fascinating examples of collective behaviours in which many individuals generate and interact with complex flows. Motivated by animal groups on the move, here we explore how the locomotion of many bodies emerges from their flow-mediated interactions. Through experiments and simulations of arrays of flapping wings that propel within a collective wake, we discover distinct modes characterized by the group swimming speed and the spatial phase shift between trajectories of neighbouring wings. For identical flapping motions, slow and fast modes coexist and correspond to constructive and destructive wing-wake interactions. Simulations show that swimming in a group can enhance speed and save power, and we capture the key phenomena in a mathematical model based on memory or the storage and recollection of information in the flow field. These results also show that fluid dynamic interactions alone are sufficient to generate coherent collective locomotion, and thus might suggest new ways to characterize the role of flows in animal groups.

  15. Ontogeny of aerial righting and wing flapping in juvenile birds

    CERN Document Server

    Evangelista, Dennis; Huynh, Tony; Krivitskiy, Igor; Dudley, Robert

    2014-01-01

    Mechanisms of aerial righting in juvenile Chukar Partridge (Alectoris chukar) were studied from hatching through 14 days post hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e., wing assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development, and are potentially relevant to understanding the origins of avian flight.

  16. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  17. Rotor thermal stress monitoring in steam turbines

    Science.gov (United States)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  18. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.

    2015-04-01

    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  19. Reconstruction of lateral forefoot using reversed medial plantar flap with free anterolateral thigh flap.

    Science.gov (United States)

    Fujioka, Masaki; Hayashida, Kenji; Senju, Chikako

    2014-01-01

    Skin defects of the heel have frequently been reconstructed using the medial plantar flap; however, forefoot coverage has remained a challenge, because the alternatives for flap coverage have been very limited. We describe a case of malignant melanoma on the lateral forefoot that was radically removed and reconstructed successfully with a distally based medial plantar flap, together with a free anterolateral thigh flap. The advantages of this flap include that it does not reduce the vascular supply to the foot owing to reconstruction of the medial plantar vascular systems, reduces the risk of flap congestion, minimizes donor site morbidity, and enables the transport of structurally similar tissues to the plantar forefoot. We believe this technique is a reasonable reconstructive option for large lateral plantar forefoot defects.

  20. Pedicled Supraclavicular Artery Island Flap Versus Free Radial Forearm Flap for Tongue Reconstruction Following Hemiglossectomy.

    Science.gov (United States)

    Zhang, Senlin; Chen, Wei; Cao, Gang; Dong, Zhen

    2015-09-01

    This study investigated the tongue function and donor-site morbidity of patients with malignant tumors who had undergone immediate flap reconstruction surgery. Twenty-seven patients who had undergone immediate reconstruction after hemiglossectomy were observed. Twelve patients were reconstructed using the pedicled supraclavicular artery island flap (PSAIF) and 15 patients using the free radial forearm flap (FRFF). Flap survival, speech and swallowing function, and donor-site morbidity at the 6-month follow-up were evaluated. All the flaps were successfully transferred. No obvious complications were found in either the transferred flaps or donor regions. Age, sex, defect extent, speech and swallowing function were comparable between the 2 groups. Donor-site complications were less frequent with PSAIF reconstruction than FRFF reconstruction. The PSAIF is reliable and well suited for hemiglossectomy defect. It has few significant complications, and allows preservation of oral function.

  1. Monitoring of free TRAM flaps with microdialysis.

    Science.gov (United States)

    Udesen, A; Løntoft, E; Kristensen, S R

    2000-02-01

    The aim of this investigation was to follow the metabolism of free TRAM flaps using microdialysis. Microdialysis is a new sampling technique that provide opportunities to follow the biochemistry in specific organs or tissues. A double-lumen microdialysis catheter or probe, with a dialysis membrane at the end, is introduced into the specific tissue. Perfusion fluid is slowly pumped through the catheter and equilibrates across the membrane with surrounding extracellular concentrations of low molecular weight substances. The dialysate is collected in microvials and analyzed by an instrument using very small volumes. Glucose, glycerol, and lactate concentrations were measured in the flaps and compared with those in a reference catheter that was placed subcutaneously in the femur. The investigation continued 72 hr postoperatively. The study group consisted of 14 women who underwent reconstruction with a free TRAM flap, and one woman with a double TRAM flap. During flap ischemia, the concentration of glucose was reduced, while the lactate and glycerol levels increased. The differences between the flaps and controls were statistically highly significant. After reperfusion of the flaps, the concentrations of glucose, lactate, and glycerol approached normal. One flap failed because of an arterial anastomosis thrombosis. This was clearly demonstrated by the samples from the microdialysis: the concentration of glucose fell to an unmeasurable level; the concentration of lactate increased for a period before it stopped due to lack of glucose; and the concentration of glycerol increased to a very high level, probably because ischemia caused damage to the cell membranes of which glycerol is an important part. The authors concluded that microdialysis can detect ischemia in free flaps at an early stage, making early surgical intervention possible.

  2. 基于DSP的微型直升机主动旋翼控制系统硬件设计%Hardware Design of Mini-helicopter Rotor Active Control System Based on DSP

    Institute of Scientific and Technical Information of China (English)

    刘宏; 罗华; 杨淑凤

    2012-01-01

    针对共轴双桨直升机主动旋翼控制的工作原理及其硬件设计方案进行了介绍.该系统主要由三轴加速度计ADXL345和三轴陀螺L3G4200D及TMS320F28335 DSP组成捷联惯导系统.并在捷联惯导姿态控制中增加了旋翼受力反馈环路,提高了惯导对外界扰动的响应速度.通过实验验证,该系统对于提高悬停稳定性和高度控制响应速度具有较好的效果.%The sculls coaxial helicopter active control of the working principle and hardware design solutions were introduced.The system consists of three-axis accelerometer ADXL345 three-axis gyro and L3G4200D and TMS320F28335 DSP components.And attitude control in strap down inertial navigation system(SINS) was added to rotor force feedback loop to improve the response to external disturbances.Experiments show that the system with good results to the hover stability and response speed of height control.

  3. New drag laws for flapping flight

    Science.gov (United States)

    Agre, Natalie; Zhang, Jun; Ristroph, Leif

    2014-11-01

    Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.

  4. The Clinical Application of Anterolateral Thigh Flap

    Directory of Open Access Journals (Sweden)

    Yao-Chou Lee

    2011-01-01

    Furthermore, several modifications widen its clinical applications: the fascia lata can be included for sling or tendon reconstruction, the bulkiness could be created by including vastus lateralis muscle or deepithelization of skin flap, the pliability could be increased by suprafascial dissection or primary thinning, the pedicle length could be lengthening by proximally eccentric placement of the perforator, and so forth. Combined with these technical and conceptual advancements, the anterolateral thigh flap has become the workhorse flap for soft-tissue reconstructions from head to toe.

  5. Fatigue Test Technology of Slat and Flap with Active Driving and Servo Loading Device%一种主动驱动随动加载的前缘缝翼和襟翼疲劳试验技术

    Institute of Scientific and Technical Information of China (English)

    李小军; 陆慧莲; 李凯

    2014-01-01

    前缘缝翼、襟翼活动面及其支承结构的疲劳试验是民用飞机取证前要开展的一项重要工作。在试验中采用主动驱动和随动加载方法加载,不仅能缩小试验规模,同时可提高试验精度。国内某型机采用此技术成功进行了前缘缝翼、襟翼及其悬挂结构的疲劳试验。从试验件及其支承设计、系统构成和载荷与运行三方面,介绍了一种适用于大中型固定翼飞机前缘缝翼和襟翼的疲劳试验技术。%The fatigue tests on slat, flap and their supporting structures are very important work to be launched for a new airplane before technology certification ( TC) being granted. The loading which adopts active driving and ser-vo loading not only reduces the test scale but also enhances the test accuracy. This technology has been applied to make the fatigue test on some civil aircraft successfully. This paper presents the new fatigue test technology in three aspects:test article with its suspension, test system, load and implementation respectively.

  6. Paramedian forehead flap combined with hinge flap for nasal tip reconstruction*

    Science.gov (United States)

    Cerci, Felipe Bochnia; Dellatorre, Gerson

    2016-01-01

    The paramedian forehead flap is a great option for restoration of complex nasal defects. For full-thickness defects, it may be used alone or in combination with other methods. We present a patient with a basal cell carcinoma on the distal nose treated by Mohs micrographic surgery, and a resulting full-thickness defect repaired with paramedian forehead flap combined with a hinge flap. For optimal results with the paramedian forehead flap, adequate surgical planning, patient orientation and meticulous surgical technique are imperative.

  7. Elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Werner, U. [Siemens AG, Nuernberg (Germany). Industry, Drive Technologies, Large Drives, Products R and D

    2011-12-15

    The paper presents an elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors supported in sleeve bearings, considering mechanical unbalances and electromagnetic forces. This model has been especially developed for flexible electrical rotors, which operate near below or near above the first critical bending speed of the rotor. Using this simplified model, a static rotor active part eccentricity can be simulated and the orbital movement of the rotor can be calculated. Additionally, the influence of different balancing concepts - elastic balancing versus rigid balancing - on the shaft vibrations is analyzed. To verify the model, a finite element analysis was performed, which indicates a satisfactory match. On the one hand, the aim of the paper is to derive an elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors for special boundary conditions. On the other hand, the aim is to show the mathematical coherences - based on a simplified model - between the rotordynamics, the oil film characteristics of the sleeve bearings, the elasticity of the rotor structure, the electromagnetics and the balancing concept. (orig.)

  8. [Outcome of relaying anterolateral thigh perforator flap in resurfacing the donor site wound following free anteromedial thigh perforator flap transfer for reconstruction of defect after oral tumor radical resection].

    Science.gov (United States)

    Song, D J; Li, Z; Zhou, X; Zhang, Y X; Peng, X W; Zhou, B; Lyu, C L; Yang, L C; Peng, W

    2017-02-20

    -point discrimination distances of the sites repaired with relaying ALT perforator flaps were ranged from 7 to 12 mm. The function of thigh was not obviously affected, and patients could walk normally and do related daily activities. Conclusions: Reconstruction of defect after oral tumor radical resection with free AMT perforator flap can achieve good outcome, and wound in the donor site of free AMT perforator flap repaired with relaying ALT perforator flap can achieve good appearance and function recovery.

  9. Performance tests of a Benesh wind turbine rotor and a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Moutsoglou, A.; Yan Weng [South Dakota State Univ., Brookings, SD (United States). Dept. of Mechanical Engineering

    1995-12-31

    A study was conducted to compare the performance of a Benesh rotor against a Savonius rotor as a wind power generating device. Rotors of similar dimensions were tested at the exit of a 1.22 m x 0.91 wind tunnel, at two different shaft heights above the ground. In all the tests, the maximum power coefficient for the Benesh rotor was considerably greater than for the Savonius and occurred at a lower tip speed ratio. The Benesh rotor also displayed better starting characteristics throughout. Finally, the present data compared very favourably with the experimental data of Backwell et al. (Author)

  10. Management of Vortices Trailing Flapped Wings via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  11. Periodic and Chaotic Flapping of Insectile Wings

    CERN Document Server

    Huang, Yangyang

    2015-01-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. The maximum power output of these flight muscles is insufficient to maintain such wing oscillations unless there is good elastic storage of energy in the insect flight system. Here, we explore the intrinsic self-oscillatory behavior of an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring. We study the wings behavior as a function of the total energy and spring stiffness. Three types of behavior are identified: end-over-end rotation, chaotic motion, and periodic flapping. Interestingly, the region of periodic flapping decreases as energy increases but is favored as stiffness increases. These findings are consistent with the fact that insect wings and flight muscles are stiff. They further imply that, by adjusting their muscle stiffness to the desired energy level, insects can maintain periodic flapping mechanically for a range of operating condit...

  12. A dynamical system for interacting flapping swimmers

    Science.gov (United States)

    Oza, Anand; Ramananarivo, Sophie; Ristroph, Leif; Shelley, Michael

    2015-11-01

    We present the results of a theoretical investigation into the dynamics of interacting flapping swimmers. Our study is motivated by the recent experiments of Becker et al., who studied a one-dimensional array of self-propelled flapping wings that swim within each other's wakes in a water tank. They discovered that the system adopts certain ``schooling modes'' characterized by specific spatial phase relationships between swimmers. To rationalize these phenomena, we develop a discrete dynamical system in which the swimmers are modeled as heaving airfoils that shed point vortices during each flapping cycle. We then apply our model to recent experiments in the Applied Math Lab, in which two tandem flapping airfoils are free to choose both their speed and relative positions. We expect that our model may be used to understand how schooling behavior is influenced by hydrodynamics in more general contexts. Thanks to the NSF for its support.

  13. Behind the performance of flapping flyers

    CERN Document Server

    Ramananarivo, Sophie; Thiria, Benjamin

    2010-01-01

    Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior ---in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping mo...

  14. The flow around a flapping foil

    Science.gov (United States)

    Mandujano, Francisco; Malaga, Carlos

    2016-11-01

    The flow around a two-dimensional flapping foil immersed in a uniform stream is studied numerically using a Lattice-Boltzmann model, for Reynolds numbers between 100 and 250, and flapping Strouhal numbers between 0 . 01 and 0 . 6 . The computation of the hydrodynamic force on the foil is related to the wake structure. When the foil's is fixed in space, numerical results suggest a relation between drag coefficient behaviour and the flapping frequency which determines the transition from the von Kármán to the inverted von Kármán wake. When the foil is free of translational motion up-stream swimming at constant speed is observed at certain values of the flapping Strouhal. This work was partially supported by UNAM-DGAPA-PAPIIT Grant Number IN115316.

  15. Freestyle Local Perforator Flaps for Facial Reconstruction

    OpenAIRE

    Jun Yong Lee; Ji Min Kim; Ho Kwon; Sung-No Jung; Hyung Sup Shim; Sang Wha Kim

    2015-01-01

    For the successful reconstruction of facial defects, various perforator flaps have been used in single-stage surgery, where tissues are moved to adjacent defect sites. Our group successfully performed perforator flap surgery on 17 patients with small to moderate facial defects that affected the functional and aesthetic features of their faces. Of four complicated cases, three developed venous congestion, which resolved in the subacute postoperative period, and one patient with partial necrosi...

  16. Interpreting laser Doppler recordings from free flaps.

    Science.gov (United States)

    Svensson, H; Holmberg, J; Svedman, P

    1993-01-01

    Although the transfer of free flaps is nowadays accomplished with an increasing degree of safety, thrombosis of the microvascular anastomoses is still a problem. In order to avoid delay in re-operating, various methods for objective blood flow monitoring have been tried, among them Laser Doppler Flowmetry (LDF). When one reviews the literature, it is apparent that opinions differ about whether or not LDF is a reliable technique for this purpose. To focus on the need to interpret continuous recordings, this paper reports our findings in six latissimus dorsi free flaps chosen from our series of LDF monitoring procedures. One uneventful flap, no. 1, had an immediate postoperative LDF value of 4.5 perfusion units (PU). LDF values improved during the recovery period and the graphic recording showed fluctuations due to normal physiological variations of the blood flow in the flap. Another uneventful flap, no. 4, showed the same pattern, though at an appreciably lower level, 2 PU, on average. Flap no. 2 had an acceptably high value of 3.5 PU despite suffering a venous thrombosis. However, the LDF recording showed no fluctuations and the value declined gradually. Another flap, no. 3, showed fluctuations and blood flow was normal although the value decreased to 2.5 PU. In flap no. 5, any value between 2 and 3.5 PU could be obtained merely by adjusting the position of the probe in the holder. In no. 6, the LDF value suddenly dropped, accompanied by a decrease in the total amount of backscattered light, indicating venous obstruction which was confirmed at re-operation.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Pneumatic boot for helicopter rotor deicing

    Science.gov (United States)

    Blaha, B. J.; Evanich, P. L.

    1981-01-01

    Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.

  18. Rotor theories by Professor Joukowsky: Momentum theories

    DEFF Research Database (Denmark)

    van Kuik, G. A. M.; Sørensen, Jens Nørkær; Okulov, V. L.

    2015-01-01

    This paper is the first of two papers on the history of rotor aerodynamics with special emphasis on the role of Joukowsky. The present one focuses on the development of the momentum theory while the second one surveys the development of vortex theory for rotors. Joukowsky has played a major role ...

  19. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  20. Open Rotor - Analysis of Diagnostic Data

    Science.gov (United States)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  1. Computational Analysis of Multi-Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  2. Rotors stress analysis and design

    CERN Document Server

    Vullo, Vincenzo

    2013-01-01

    Stress and strain analysis of rotors subjected to surface and body loads, as well as to thermal loads deriving from temperature variation along the radius, constitutes a classic subject of machine design. Nevertheless attention is limited to rotor profiles for which governing equations are solvable in closed form. Furthermore very few actual engineering issues may relate to structures for which stress and strain analysis in the linear elastic field and, even more, under non-linear conditions (i.e. plastic or viscoelastic conditions) produces equations to be solved in closed form. Moreover, when a product is still in its design stage, an analytical formulation with closed-form solution is of course simpler and more versatile than numerical methods, and it allows to quickly define a general configuration, which may then be fine-tuned using such numerical methods. In this view, all subjects are based on analytical-methodological approach, and some new solutions in closed form are presented. The analytical formul...

  3. Dorsal hand coverage with free serratus fascia flap

    DEFF Research Database (Denmark)

    Fotopoulos, Peter; Holmer, Per; Leicht, Pernille

    2003-01-01

    serratus fascia flap, the connective tissue over the serratus muscle, for dorsal hand coverage. The flap consists of thin and well-vascularized pliable tissue, with gliding properties excellent for covering exposed tendons. It is based on the branches of the thoracodorsal artery, which are raised...... in the flap, leaving the long thoracic nerve intact on the serratus muscle. Coverage of the flap with split-thickness skin graft is done immediately. The free serratus fascia flap is an ideal flap for dorsal hand coverage when the extensor tendons are exposed, especially because of low donor-site morbidity....

  4. The prepuce free flap in 10 patients : modifications in flap design and surgical technique

    NARCIS (Netherlands)

    Werker, Paul M N

    2002-01-01

    The prepuce free flap was used in 10 oral and oropharyngeal reconstructions. During the course of this study, various modifications took place. Residual penile skin necrosis and skin island necrosis early in the series led to modification of flap design. This solved the donor-site problem by placing

  5. A bio-inspired study on tidal energy extraction with flexible flapping wings.

    Science.gov (United States)

    Liu, Wendi; Xiao, Qing; Cheng, Fai

    2013-09-01

    Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.

  6. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility.

    Science.gov (United States)

    Kumalo, H M; Soliman, Mahmoud E

    2016-10-01

    Beta-amyloid precursor protein cleavage enzyme1 (BACE1) and beta-amyloid precursor protein cleavage enzyme2 (BACE2), members of aspartyl protease family, are close homologs and have high similarity in their protein crystal structures. However, their enzymatic properties are different, which leads to different clinical outcomes. In this study, we performed sequence analysis and all-atom molecular dynamic (MD) simulations for both enzymes in their ligand-free states in order to compare their dynamical flap behaviors. This is to enhance our understanding of the relationship between sequence, structure and the dynamics of this protein family. Sequence analysis shows that in BACE1 and BACE2, most of the ligand-binding sites are conserved, indicative of their enzymatic property as aspartyl protease members. The other conserved residues are more or less unsystematically localized throughout the structure. Herein, we proposed and applied different combined parameters to define the asymmetric flap motion; the distance, d1, between the flap tip and the flexible region; the dihedral angle, φ, to account for the twisting motion and the TriCα angle, θ2 and θ1. All four combined parameters were found to appropriately define the observed "twisting" motion during the flaps different conformational states. Additional analysis of the parameters indicated that the flaps can exist in an ensemble of conformations, i.e. closed, semi-open and open conformations for both systems. However, the behavior of the flap tips during simulations is different between BACE1 and BACE2. The BACE1 active site cavity is more spacious as compared to that of BACE2. The analysis of 10S loop and 113S loop showed a similar trend to that of flaps, with the BACE1 loops being more flexible and less stable than those of BACE2. We believe that the results, methods and perspectives highlighted in this report would assist researchers in the discovery of BACE inhibitors as potential Alzheimer's disease therapies.

  7. Versatility of the Anterolateral Thigh Free Flap: The Four Seasons Flap

    Science.gov (United States)

    Di Candia, Michele; Lie, Kwok; Kumiponjera, Devor; Simcock, Jeremy; Cormack, George C.; Malata, Charles M.

    2012-01-01

    Presented at the following academic meetings: ○ 56th Meeting of the Italian Society of Plastic, Reconstructive and Aesthetic Surgery (SICPRE) Fasano (Brindisi), Italy, September 26-29, 2007 ○ 42nd Meeting of the European Society for Surgical Research (ESSR), Warsaw, Poland, May 21-24, 2008 ○ Winter Meeting, British Association of Plastic, Reconstructive and Aesthetic Surgeons, (BAPRAS) London, December 1-3, 2009 Background: The anterolateral free flap has become increasingly popular at our institution year on year. We decided to review our experience with this flap and study the reasons for this trend. Methods: A retrospective review of all anterolateral thigh free flaps performed at Addenbrooke's University Hospital from the available charts was carried out. This chart review included patients' demographics, indications, flap size, recipient vessels used, ischemia time, flap, and donor site outcomes. All flap perforator vessels were located preoperatively using a handheld Doppler ultrasound probe. Results: From October 1999 to December 2008, 55 anterolateral thigh flaps were performed in 55 patients to reconstruct a variety of soft-tissue defects (upper and lower limbs, chest wall, skull base, head and neck). Flap size ranged 12 to 35 cm in length and 4 to 11 cm in width. During flap elevation, the main supply to the flap was found to be a direct septocutaneous perforator in 41% (n = 23) of the cases as opposed to a musculocutaneous perforator, which was found in 59% (n = 32). The mean ischemia time was 82 minutes (range, 62-103). The overall flap success rate was 100%. Two flaps were successfully salvaged after reexploration for venous congestion. The donor site morbidity was minimal. The mean follow-up time was 18 months (range, 2-48). Discussion and Conclusion: The anterolateral thigh free flap was found to be a very reliable flap (100% success) across a wide range of clinical indications. It facilitates microvascular anastomoses as evidenced by the short

  8. Rotor speed estimation for indirect stator flux oriented induction motor drive based on MRAS scheme

    Directory of Open Access Journals (Sweden)

    Youssef Agrebi

    2007-09-01

    Full Text Available In this paper, a conventional indirect stator flux oriented controlled (ISFOC induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the model reference adaptive system (MRAS scheme, the rotor speed is tuned to obtain an exact ISFOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor peed from measured terminal voltages and currents. The IP gains speed controller and PI gains current controller are calculated and tuned at each sampling time according to the new estimated rotor speed. The proposed algorithm has been tested by numerical simulation, showing the capability of driving active load; and stability is preserved. Experimental results obtained with a general-purpose 1-kW induction machine are presented showing the effectiveness of the proposed approach in terms of dynamic performance.

  9. STUDY ON CATASTROPHIC MECHANISM FOR ROTOR DROP TRANSIENT VIBRATION FOLLOWING MAGNETIC BEARING FAILURE

    Institute of Scientific and Technical Information of China (English)

    方之楚

    2002-01-01

    The nonlinear and transient vibration of a rotor, which dropped onto back-up bearings when its active magnetic bearings were out of order, was investigated. After strictly deriving its equations of motion and performing numerical simulations, the timehistories of rotating speed of the dropping rotor, and normal force at the rubbing contact point as well as the frequency spectrum of the vibration displacement of back-up bearings are fully analyzed. It is found that the strong and unsteady forced bending vibration of the unbalanced and damped rotor decelerating through its first bending vibtation of the unbalanced and damped rotor decelerating through its first critical speed as well as chattering at high frequencies caused by the nonlinearity at the rubbing contact point between the journal and back-up bearings may lead to the catastrophic damage of the system.

  10. Experimental modal tests applied to rotor balancing; Pruebas modales experimentales aplicadas al balanceo de rotores

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Solis, Jose Antonio; Munoz Quezada, Rodolfo; Franco Nava, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1993-01-01

    At the Instituto de Investigaciones Electricas (IIE), the experimental modal tests were initiated in order to validate the numerical models used by computer programs for the study of the rotor dynamic behavior. In order to contribute to the application of the rotor balancing methods based in the calculation of their modal forms, currently the capacity to determine these modal forms and the natural frequencies of turbogenerator rotors, is being developed, through experimental modal tests. In this paper a short description is made of the technique and the results of its application in an experimental rotor and in one of the rotors of a turbogenerator, are presented. [Espanol] En el Instituto de Investigaciones Electricas (IIE), las pruebas modales experimentales se iniciaron con la finalidad de validar los modelos numericos empleados por programas de computo para el estudio del comportamiento dinamico de rotores. Con objeto de contribuir a la aplicacion de los metodos de balanceo de rotores basados en el calculo de sus formas modales, actualmente esta desarrollandose la capacidad para determinar esas formas modales y las frecuencias naturales de rotores de turbogeneradores, a traves de las pruebas modales experimentales. En este trabajo se describe brevemente la tecnica y se presentan los resultados de su aplicacion en un rotor experimental y en uno de los tres rotores de un turbogenerador.

  11. A soft rotor concept - design, verification and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, F.; Thirstrup Petersen, J. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)

  12. Aerodynamic flight performance in flap-gliding birds and bats.

    Science.gov (United States)

    Muijres, Florian T; Henningsson, Per; Stuiver, Melanie; Hedenström, Anders

    2012-08-07

    Many birds use a flight mode called undulating or flap-gliding flight, where they alternate between flapping and gliding phases, while only a few bats make use of such a flight mode. Among birds, flap-gliding is commonly used by medium to large species, where it is regarded to have a lower energetic cost than continuously flapping flight. Here, we introduce a novel model for estimating the energetic flight economy of flap-gliding animals, by determining the lift-to-drag ratio for flap-gliding based on empirical lift-to-drag ratio estimates for continuous flapping flight and for continuous gliding flight, respectively. We apply the model to flight performance data of the common swift (Apus apus) and of the lesser long-nosed bat (Leptonycteris yerbabuenae). The common swift is a typical flap-glider while-to the best of our knowledge-the lesser long-nosed bat does not use flap-gliding. The results show that, according to the model, the flap-gliding common swift saves up to 15% energy compared to a continuous flapping swift, and that this is primarily due to the exceptionally high lift-to-drag ratio in gliding flight relative to that in flapping flight for common swifts. The lesser long-nosed bat, on the other hand, seems not to be able to reduce energetic costs by flap-gliding. The difference in relative costs of flap-gliding flight between the common swift and the lesser long-nosed bat can be explained by differences in morphology, flight style and wake dynamics. The model presented here proves to be a valuable tool for estimating energetic flight economy in flap-gliding animals. The results show that flap-gliding flight that is naturally used by common swifts is indeed the most economic one of the two flight modes, while this is not the case for the non-flap-gliding lesser long-nosed bat.

  13. 14 CFR 27.547 - Main rotor structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following...

  14. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  15. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  16. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  17. Wind rotor with vertical axis. Vindrotor med vertikal axel

    Energy Technology Data Exchange (ETDEWEB)

    Colling, J.; Sjoenell, B.

    1987-06-15

    This rotor is of dual type i.e. a paddle wheel shaped rotor close to the vertical axis and a second rotor consisting of vertical blades with wing profile and attached to radial spokes which are fixed to the axis together with the paddle wheel rotor. (L.F.).

  18. On the torque mechanism of Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N. (Dept. of Mechanical Univ., Kiryu (Japan))

    1992-07-01

    The aerodynamic performance and the flow fields of Savonius rotors at various overlap ratios have been investigated by measuring the pressure distributions on the blades and by visualizing the flow fields in and around the rotors with and without rotation. Experiments have been performed on four rotors having two semicircular blades but with different overlap ratios ranging 0 to 0.5. The static torque performance is improved by increasing the overlap ratio especially on the returning blade, which is due to the pressure recovery effect by the flow through the overlap. On the other hand, the torque and the power performance of the rotating rotor reaches a maximum at an overlap of 0.15. This effect is largely created by the Coanda-like flow on the convex side of the advancing blade, which is strengthened by the flow through the overlap at this small overlap ratio. However, this phenomena is weakened as the overlap ratio is further increased, suggesting a deteriorated performance of the rotor. Observations of the flow inside the rotor indicate an increased recirculation region at such large overlap ratios, which also suggests a reduced aerodynamic efficiency for rotors with large overlap. 11 figs., 16 refs.

  19. Microsurgical free flap reconstructions of the head and neck region: Shanghai experience of 34 years and 4640 flaps.

    Science.gov (United States)

    Zhang, C; Sun, J; Zhu, H; Xu, L; Ji, T; He, Y; Yang, W; Hu, Y; Yang, X; Zhang, Z

    2015-06-01

    This study represents the surgical experience of 4481 microvascular free flap cases performed at the authors' institution in China, between 1979 and 2013. Four thousand four hundred and eighty-one patients underwent reconstruction with 4640 flaps: 56% radial forearm flaps, 8% iliac crest flaps, 13% fibula flaps, 10% anterolateral thigh flaps, and other flaps. In the overwhelming majority of cases, the flap transfer was required following tumour resection (97.5%). Three hundred and twenty minor complications (6.9%) occurred. One hundred and eighteen major complications (2.5%) were encountered: 114 cases of failure (2.4%) and four deaths. Among the 118 cases with major complications, 26 - 22.0% - had received radiotherapy; this proportion was higher than the 6.9% in the minor complications group and 8.1% in the non-intervention group. Venous thrombosis was the most common complication at the recipient site and was the main cause of flap failure. When a compromised flap is identified, surgical re-exploration should not be delayed. This study confirms that free flaps are reliable in achieving successful reconstruction in the head and neck region; however this technique requires extensive clinical experience. Owing to the large number of flap options, microsurgeons should always pay attention to the details of the different surgical defects and choose the most appropriate flap.

  20. Modified cup flap for volar oblique fingertip amputations

    Directory of Open Access Journals (Sweden)

    Ahmadli, A.

    2016-02-01

    Full Text Available We describe a modified volar “V-Y cup” flap for volar fingertip defects that do not exceed more than half of the distal phalanx for better aesthetic and functional outcome. In seven cases out of eight, the flap was elevated with a subdermal pedicle, whereas in one case, the flap was elevated as an island on the bilateral neurovascular bundle. The fingertips have been evaluated for sensibility using standard tests, hook nail deformity and patient satisfaction. Seven flaps have survived completely. The flap with skeletonized bilateral digital neurovascular bundle has shown signs of venous insufficiency on the 5 postoperative day with consecutive necrosis. Suturing the distal edges of the flap in a “cupping” fashion provided a normal pulp contour. The modified flap can be used for defects as mentioned above. Subdermally dissected pedicle-based flap is safe and easy to elevate. The aesthetic and functional outcomes have been reported to be satisfactory.

  1. Intraoperative flap complications in lasik surgery performed by ophthalmology residents

    Directory of Open Access Journals (Sweden)

    Lorena Romero-Diaz-de-Leon

    2016-01-01

    Conclusion: Flap-related complications are common intraoperative event during LASIK surgery performed by in-training ophthalmologists. Keratometries and surgeon's first procedure represent a higher probability for flap related complications than some other biometric parameters of patient's eye.

  2. Rotor-Flying Manipulator: Modeling, Analysis, and Control

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2014-01-01

    Full Text Available Equipping multijoint manipulators on a mobile robot is a typical redesign scheme to make the latter be able to actively influence the surroundings and has been extensively used for many ground robots, underwater robots, and space robotic systems. However, the rotor-flying robot (RFR is difficult to be made such redesign. This is mainly because the motion of the manipulator will bring heavy coupling between itself and the RFR system, which makes the system model highly complicated and the controller design difficult. Thus, in this paper, the modeling, analysis, and control of the combined system, called rotor-flying multijoint manipulator (RF-MJM, are conducted. Firstly, the detailed dynamics model is constructed and analyzed. Subsequently, a full-state feedback linear quadratic regulator (LQR controller is designed through obtaining linearized model near steady state. Finally, simulations are conducted and the results are analyzed to show the basic control performance.

  3. Study on wave rotor refrigerators

    Institute of Scientific and Technical Information of China (English)

    Yuqiang DAI; Dapeng HU; Meixia DING

    2009-01-01

    As a novel generation of a rotational gas wave machine, the wave rotor refrigerator (WRR) is an unsteady flow device used for refrigeration, in whose passages pressured streams directly contact and exchange energy due to the movement of pressure waves. In this paper, the working mechanism and refrigeration principle are inves-tigated based on the one-dimensional unsteady flow theory.A basic limitation on main structural parameters and operating parameters is deduced and the wave diagram of WRR to guide designing is sketched. The main influential factors are studied through an experiment. In the DUT Gas Wave Refrigeration Studying and Development Center (GWRSDC) lab, the isentropic efficiency can now reach about 65%. The results show that the WRR is a feasible and promising technology in pressured gas refrigeration cases.

  4. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  5. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration.

  6. Discrete analog computing with rotor-routers.

    Science.gov (United States)

    Propp, James

    2010-09-01

    Rotor-routing is a procedure for routing tokens through a network that can implement certain kinds of computation. These computations are inherently asynchronous (the order in which tokens are routed makes no difference) and distributed (information is spread throughout the system). It is also possible to efficiently check that a computation has been carried out correctly in less time than the computation itself required, provided one has a certificate that can itself be computed by the rotor-router network. Rotor-router networks can be viewed as both discrete analogs of continuous linear systems and deterministic analogs of stochastic processes.

  7. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  8. The aerodynamic and structural study of flapping wing vehicles

    OpenAIRE

    2013-01-01

    This thesis reports on the aerodynamic and structural study carried out on flapping wings and flapping vehicles. Theoretical and experimental investigation of aerodynamic forces acting on flapping wings in simple harmonic oscillations is undertaken in order to help conduct and optimize the aerodynamic and structural design of flapping wing vehicles. The research is focused on the large scale ornithopter design of similar size and configuration to a hang glider. By means of Theodorsen’s th...

  9. 14 CFR 25.1511 - Flap extended speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap extended speed. 25.1511 Section 25... Limitations § 25.1511 Flap extended speed. The established flap extended speed V FE must be established so that it does not exceed the design flap speed V F chosen under §§ 25.335(e) and 25.345, for...

  10. Paramedian forehead flap thinning using a flexible razor blade.

    Science.gov (United States)

    Justiniano, Hilda; Edwards, Julia; Eisen, Daniel B

    2009-03-15

    Paramedian forehead flaps are sometimes required to resurface large or deep nasal defects. The flap often needs to be thinned to match the contour of the surrounding skin at the recipient site. We describe a technique to thin the distal potion of the paramedian forehead flap using a flexible razor blade, the Dermablade. Once familiar with it, this same technique may be applied to thin other interpolation flaps.

  11. "A Free thenar flap – A case report"

    OpenAIRE

    Chow Shew; Fung Boris KK; Garg Rajesh; Ip Wing

    2007-01-01

    Abstract We present a case report of a free thenar flap surgery done for a volar right hand middle finger, distal and middle phalanx degloving injury. A free thenar flap is a fasciocutaneous sensate flap supplied by a constant branch of the superficial radial artery and its variable nerve supply. It has a distinct advantage of low donor site morbidity, better cosmesis and texture of the flap. No immobilization is required postop. The donor site can be closed primiarily.

  12. The forked flap repair for hypospadias

    Directory of Open Access Journals (Sweden)

    Anil Chadha

    2012-01-01

    Full Text Available Context: Despite the abundance of techniques for the repair of Hypospadias, its problems still persist and a satisfactory design to correct the penile curvature with the formation of neourethra from the native urethral tissue or genital or extragenital tissues, with minimal postoperative complications has yet to evolve. Aim: Persisting with such an endeavor, a new technique for the repair of distal and midpenile hypospadias is described. Materials and Methods: The study has been done in 70 cases over the past 11 years. The "Forked-Flap" repair is a single stage method for the repair of such Hypospadias with chordee. It takes advantage of the rich vascular communication at the corona and capitalizes on the established reliability of the meatal based flip-flap. The repair achieves straightening of the curvature of the penis by complete excision of chordee tissue from the ventral surface of the penis beneath the urethral plate. The urethra is reconstructed using the native plate with forked flap extensions and genital tissue relying on the concept of meatal based flaps. Water proofing by dartos tissue and reinforcement by Nesbit′s prepucial tissue transfer completes the one stage procedure. Statistical Analysis: An analysis of 70 cases of this single stage technique of repair of penile hypospadias with chordee, operated at 3 to 5 years of age over the past 11 years is presented. Results and Conclusion: The Forked Flap gives comparable and replicable results; except for a urethrocutaneous fistula rate of 4% no other complications were observed.

  13. The Savonius rotor. A construction guide. 11. ed.; Der Savonius-Rotor. Eine Bauanleitung

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Heinz

    2009-07-01

    The Savonius rotor is particularly suited for medium and low wind velocities and low capacities (up to 500 W). It can be constructed of commercial components and using simple techniques. It requires little wind to start, and the useful energy is transmitted via a shaft. In this lavishly illustrated book, the author describes the construction and operation of a robust Savonius rotor. He also shows how this rotor can be developed into a flow-through rotor for bigger plants, and he presents recommendations for appropriate machinery like pumps and slow generators.

  14. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    Science.gov (United States)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  15. 14 CFR 23.1511 - Flap extended speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap extended speed. 23.1511 Section 23.1511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1511 Flap extended speed. (a) The flap extended speed V FE must be established so that it...

  16. Prospective evaluation of outcome measures in free-flap surgery.

    LENUS (Irish Health Repository)

    Kelly, John L

    2004-08-01

    Free-flap failure is usually caused by venous or arterial thrombosis. In many cases, lack of experience and surgical delay also contribute to flap loss. The authors prospectively analyzed the outcome of 57 free flaps over a 28-month period (January, 1999 to April, 2001). The setting was a university hospital tertiary referral center. Anastomotic technique, ischemia time, choice of anticoagulant, and the grade of surgeon were recorded. The type of flap, medications, and co-morbidities, including preoperative radiotherapy, were also documented. Ten flaps were re-explored (17 percent). There were four cases of complete flap failure (6.7 percent) and five cases of partial failure (8.5 percent). In patients who received perioperative systemic heparin or dextran, there was no evidence of flap failure (p = .08). The mean ischemia time was similar in flaps that failed (95 +\\/- 29 min) and in those that survived (92 +\\/- 34 min). Also, the number of anastomoses performed by trainees in flaps that failed (22 percent), was similar to the number in flaps that survived (28 percent). Nine patients received preoperative radiotherapy, and there was complete flap survival in each case. This study reveals that closely supervised anastomoses performed by trainees may have a similar outcome to those performed by more senior surgeons. There was no adverse effect from radiotherapy or increased ischemia time on flap survival.

  17. Posttraumatic eyebrow reconstruction with hair-bearing temporoparietal fascia flap.

    Science.gov (United States)

    Denadai, Rafael; Raposo-Amaral, Cassio Eduardo; Marques, Frederico Figueiredo; Raposo-Amaral, Cesar Augusto

    2015-01-01

    The temporoparietal fascia flap has been extensively used in craniofacial reconstructions. However, its use for eyebrow reconstruction has been sporadically reported. We describe a successfully repaired hair-bearing temporoparietal fascia flap after traumatic avulsion of eyebrow. Temporoparietal fascia flap is a versatile tool and should be considered as a therapeutic option by all plastic surgeons.

  18. Haemodynamics and viability of skin and muscle flaps

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, H.M.

    1985-01-01

    In reconstructive surgery, occasional free flap failures occur despite the clinical and technical advances in microsurgery of the past few years. To minimize these losses a better understanding of basic flap physiology must be achieved. The objectives of this work were the investigation of the haemodynamic characteristics of skin and muscle flaps in normal and compromised circumstances, the viability of skin and muscle flaps after pedicle ligation or ischaemia, and the possible interrelationship of haemodynamics and viability. A Wistar rat groin island skin flap model was used to assess flap survival following vascular compromise produced by vessel ligation. Survival was seen earliest following loss of the artery and was not dependent on circulation through the vascular pedicle after 5 days. A study using free groin flaps in rats gave similar results. Normal free groin flaps were then transferred to irradiated Fischer F344 rats. Delayed neovascularization was shown at a time corresponding to the onset of the late phase of the response to skin radiation. A canine inferior epigastric free skin flap model was established to determine the normal haemodynamic parameters during free flap transfer. A canine gracilis free muscle flap model was developed. Normal haemodynamic parameters are given. These parameters were examined after ischaemia. Survival of the muscle followed ischaemia of 4 hours or less. Flap survival is not dependent solely on arterial input or venous drainage. More complex phenomena such as the reactive hyperaemia following ischaemia are implicated in survival.

  19. Flap effectiveness appraisal for winged re-entry vehicles

    Science.gov (United States)

    de Rosa, Donato; Pezzella, Giuseppe; Donelli, Raffaele S.; Viviani, Antonio

    2016-05-01

    The interactions between shock waves and boundary layer are commonplace in hypersonic aerodynamics. They represent a very challenging design issue for hypersonic vehicle. A typical example of shock wave boundary layer interaction is the flowfield past aerodynamic surfaces during control. As a consequence, such flow interaction phenomena influence both vehicle aerodynamics and aerothermodynamics. In this framework, the present research effort describes the numerical activity performed to simulate the flowfield past a deflected flap in hypersonic flowfield conditions for a winged re-entry vehicle.

  20. A Method to Transit the Rotor-to-Stator Rubbing to Normal Motion Using the Phase Characteristic

    Directory of Open Access Journals (Sweden)

    Jieqiong Xu

    2014-01-01

    Full Text Available A method is proposed to transit the rotor-to-stator rubbing to no-rub motion through active auxiliary bearing. The key point of this technique is to express the attractive domain of no-rub motion based on the phase characteristic and to represent the desired status. The feedback actuation is applied by an active auxiliary bearing to drive the rotor approaching the desired status. After that, the control actuation is turned off. Although the desired status is still in rubbing, it is in the attractive domain of no-rub motion, and the response of the rotor is automatically attracted to no-rub motion.

  1. Helicopter Rotor Sailing by Non-Smooth Dynamics Co-Simulation

    Directory of Open Access Journals (Sweden)

    Fancello Matteo

    2014-08-01

    Full Text Available This paper presents the application of a co-simulation approach for the simulation of frictional contact in general-purpose multibody dynamics to a rotorcraft dynamics problem. The proposed approach is based on the co-simulation of a main problem, which is described and solved as a set of differential algebraic equations, with a subproblem that is characterized by nonsmooth dynamics events and solved using a timestepping technique. The implementation and validation of the formulation is presented. The method is applied to the analysis of the droop and anti-flap contacts of helicopter rotor blades. Simulations focusing on the problem of blade sailing are conducted to understand the behavior and assess the validity of the method. For this purpose, the results obtained using a contact model based on Hertzian reaction forces at the interface are compared with those of the proposed approach.

  2. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert

    2016-01-01

    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  3. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  4. Double papilla flap technique for dual purpose

    Directory of Open Access Journals (Sweden)

    P Mohan Kumar

    2012-01-01

    Full Text Available Marginal tissue recession exposes the anatomic root on the teeth, which gives rise to -common patient complaints. It is associated with sensitivity, tissue irritation, cervical abrasions, and esthetic concerns. Various types of soft tissue grafts may be performed when recession is deep and marginal tissue health cannot be maintained. Double papilla flap is an alternative technique to cover isolated recessions and correct gingival defects in areas of insufficient attached gingiva, not suitable for a lateral sliding flap. This technique offers the advantages of dual blood supply and denudation of interdental bone only, which is less susceptible to permanent damage after surgical exposure. It also offers the advantage of quicker healing in the donor site and reduces the risk of facial bone height loss. This case report presents the advantages of double papilla flap in enhancing esthetic and functional outcome of the patient.

  5. The angel flap for nipple reconstruction.

    Science.gov (United States)

    Wong, Wendy W; Hiersche, Matthew A; Martin, Mark C

    2013-01-01

    Creation of an aesthetically pleasing nipple plays a significant role in breast reconstruction as a determining factor in patient satisfaction. The goals for nipple reconstruction include minimal donor site morbidity and appropriate, long-lasting projection. Currently, the most popular techniques used are associated with a significant loss of projection postoperatively. Accordingly, the authors introduce the angel flap, which is designed to achieve nipple projection with lasting results. The lateral edges of the flap and the area surrounding the top of the nipple are de-epithelialized and the flaps are wrapped to create a nipple mound composed primarily of dermis. Decreasing the amount of fat within core of the nipple and enhancing dermal content promotes long-lasting projection. Furthermore, the incision pattern fits within a desired areolar size, preventing unnecessary superfluous extension of the incisions. Thus, the technique described herein achieves the goals of nipple reconstruction, including adequate and long-lasting projection, without extension of the lateral limb scars.

  6. Edge states of periodically kicked quantum rotors

    CERN Document Server

    Floß, Johannes

    2015-01-01

    We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  7. Rotor dynamic analysis of main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chong Won; Seo, Jeong Hwan; Kim, Choong Hwan; Shin, Jae Chul; Wang, Lei Tian [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    A rotor dynamic analysis program DARBS/MCP, for the main coolant pump of the integral reactor, has been developed. The dynamic analysis model of the main coolant pump includes a vertical shaft, three grooved radial journal bearings and gaps that represent the structure-fluid interaction effects between the rotor and the lubricant fluid. The electromagnetic force from the motor and the hydro-dynamic force induced by impeller are the major sources of vibration that may affect the rotor system stability. DARBS/MCP is a software that is developed to effectively analyze the dynamics of MCP rotor systems effectively by applying powerful numerical algorithms such as FEM with modal truncation and {lambda}-matrix method for harmonic analysis. Main design control parameters, that have much influence to the dynamic stability, have been found by Taguchi's sensitivity analysis method. Design suggestions to improve the stability of MCP rotor system have been documented. The dynamic bearing parameters of the journal bearings used for main coolant pump have been determined by directly solving the Reynolds equation using FDM method. Fluid-structure interaction effect that occurs at the small gaps between the rotor and the stator were modeled as equivalent seals, the electromagnetic force effect was regarded as a linear negative radial spring and the impeller was modeled as a rigid disk with hydrodynamic and static radial force. Although there exist critical speeds in the range of operational speeds for type I and II rotor systems, the amplitude of vibration appears to be less than the vibration limit set by the API standards. Further more, it has been verified that the main design parameters such as the clearance and length of journal bearings, and the static radial force of impeller should be properly adjusted, in order to the improve dynamic stability of the rotor system. (author). 39 refs., 81 figs., 17 tabs.

  8. Perforator anatomy of the radial forearm free flap versus the ulnar forearm free flap for head and neck reconstruction

    NARCIS (Netherlands)

    Hekner, D.D.; Roeling, TAP; van Cann, EM

    2016-01-01

    The aim of this study was to investigate the vascular anatomy of the distal forearm in order to optimize the choice between the radial forearm free flap and the ulnar forearm free flap and to select the best site to harvest the flap. The radial and ulnar arteries of seven fresh cadavers were injecte

  9. Investigation of rotor control system loads

    Institute of Scientific and Technical Information of China (English)

    Sun Tao; Tan Jianfeng; Wang Haowen

    2013-01-01

    This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.

  10. The transversely split gracilis twin free flaps

    Directory of Open Access Journals (Sweden)

    Upadhyaya Divya

    2010-01-01

    Full Text Available The gracilis muscle is a Class II muscle that is often used in free tissue transfer. The muscle has multiple secondary pedicles, of which the first one is the most consistent in terms of position and calibre. Each pedicle can support a segment of the muscle thus yielding multiple small flaps from a single, long muscle. Although it has often been split longitudinally along the fascicles of its nerve for functional transfer, it has rarely been split transversely to yield multiple muscle flaps that can be used to cover multiple wounds in one patient without subjecting him/her to the morbidity of multiple donor areas .

  11. Feedback-Controlled Lubrication for Reducing the Lateral Vibration of Flexible Rotors supported by Tilting-Pad Journal Bearings

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2014-01-01

    In this work, the feedback-controlled lubrication regime, based on a model-free designed proportional-derivative (PD) controller, is studied and experimentally tested in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing (active TPJB). With such a lubrication regime......-controlled lubrication regime featured via PD controllers. Good experimental results are obtained, and a significant improvement of the flexible rotor-bearing system dynamic performance can be experimentally demonstrated....

  12. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    mode and the combined whirling modes respectively, via a shared set of collocated sensor/actuator pairs. The collective mode controller is decoupled from the whirling mode controller by an exact linear filter, which is identified from the fundamental dynamics of the gyroscopic system. As in the method...

  13. The study of expanded tri-lobed flap in a rabbit model: possible flap model in ear reconstruction?

    Directory of Open Access Journals (Sweden)

    Yüreklý Yakup

    2003-12-01

    Full Text Available Abstract Background Local flaps are widely used in reconstructive surgery. Tri-lobed skin flap is a relatively new flap and there has been no experimental model of this flap. This flap can be used for repair of full thickness defects in the face, ears and alar region. Based on the size of ears in a rabbit, we designed a model of ear reconstruction using expanded tri-lobed flap. Local flaps are more advantageous in that they provide excellent color and texture matching up with those of the face, adequately restore ear contour, place scars in a favorable location and ideally accomplish these goals in a single stage with minimal donor site morbidity. Methods Eight adult New Zealand rabbits were divided into two groups. 50 ml round tissue expander were implanted to four rabbits. After completion of the expansion, a superiorly based tri-lobed flap was elevated and a new ear was created from the superior dorsal skin of each rabbit. Scintigraphy with Technetium-99m pertecnetate was performed to evaluate flap viability. Results Subtotal flap necrosis was seen in all animals in non-expanded group. New ear in dimensions of the original ear was created in expanded group without complication. Perfusion and viability of the flaps were proved by Technetium-99m pertecnetate scintigraphy. Conclusion According to our knowledge this study is the first to demonstrate animal model in tri-lobed flap. Also, our technique is the first application of the trilobed flap to the possible ear reconstruction. We speculated that this flap may be used mastoid based without hair, in human. Also, tri-lobed flap may be an alternative in reconstruction of cylindrical organs such as penis or finger.

  14. A rotor for a high-rise building; Ein Rotor fuer das Hochhaus

    Energy Technology Data Exchange (ETDEWEB)

    Zastrow, F. [Hochschule Bremerhaven (Germany). Inst. fuer Automatisierungs- und Elektrotechnik; Okoth, G.; Boehm, K.; El Naggar, S. [Alfred-Wegener Inst. fuer Polar- und Meeresforschung, Bremerhaven (Germany)

    2004-08-30

    The typical characteristics of the H rotor recommend it not only for use in extreme climate zones but also for installation on buildings and in built-on terrain. It is difficult, however, to make small H rotors efficient and economical. (orig.)

  15. Effect of Systemic Antioxidant Allopurinol Therapy on Skin Flap Survival

    Science.gov (United States)

    Rasti Ardakani, Mehdi; Al-Dam, Ahmed; Rashad, Ashkan; Shayesteh Moghadam, Ali

    2017-01-01

    BACKGROUND It has been reported that systemic administration of allopurinol improves cell survival. This study was aimed to evaluate effects of allopurinol on skin flaps in dogs. METHODS Twenty dogs underwent one skin flap surgery with a 2-week interval. The first procedure was performed according to the standard protocols. The second phase was started by a 1-week pretreatment with allopurinol. Length of the necrotic zone was measured and recorded daily. At each phase, flaps were removed and sent for histopathological study after 1 week observation. RESULTS Mean length of the necrotic zone in allopurinol treated skin flaps has been significantly less than normal flaps over all 7 days of observation (p<0.0001). Histopathology study showed less inflammation and more normal tissue structure in the allopurinol treated skin flaps. CONCLUSION It was demonstrated that systemic administration of allopurinol significantly improved skin flap survival. PMID:28289614

  16. Breast reconstruction by pedicled transverse rectus abdominis myocutaneous flap

    Directory of Open Access Journals (Sweden)

    Kozarski Jefta

    2004-01-01

    Full Text Available Reconstruction of the amputated breast in female patients after surgical management of breast carcinoma is possible with the use of autologous tissue, synthetic implants, or by combining autologous tissue and synthetic materials. Autologous tissue provides soft and sufficiently elastic tissue which is usable for breast reconstruction and eventually obtains original characteristics of the surrounding tissue on the chest wall. The use of the TRAM flap for breast reconstruction was introduced in 1982 by Hartrampf Scheflan, and Black. The amount of the TRAM flap tissue allows breast reconstruction in the shape most adequate to the remaining breast. The possibilities of using the TRAM flap as pedicled myocutaneous flap or as free TRAM flap make this flap a superior choice for breast reconstruction in comparison with other flaps.

  17. Surgical procedure of Free Flap. Main nursing care

    Directory of Open Access Journals (Sweden)

    Manuel Molina López

    2010-05-01

    Full Text Available The free flap surgical technique is used to cover extensive skin loss areas and situations where no flap is available, or in axial zones. The great breackthrough in the field of reconstructive surgical techniques and the creation of new units where these complex techniques are used, means that the nursing staff who work in these hospital units are adquiring greater protagonism in caring for, and the subsequent success of this type of surgery in which the problems of collaboration in all the perioperative phases depend entirely on the nursing team.The collaborative nursing problems could be defined as real or potential health problems, where users need nursing staff to follow the treatment and control procedures prescribed by other professional, generally doctors, who control and are responsible for the final outcome.While planning collaborative objectives and activities it should be taken into account that the function of the nursing staff is twofold: on the one hand, the patient must be taken care of as prescribed by other professionals and, on the other hand, it should bring into play cognitive elements (knowledge and know-how and clinical judgment when executing these in controlling the patients evolution.In this article our intention is to give an interesting and comprehensive description of the free flap surgical technique, its pros and cons, and identify the principal collaborative problems which nursing will have to deal with in each one of the perioperative phases, the number and specific nature of such oblige nursing on many occasions, to update and/or acquire new skills.

  18. BATMAV: a 2-DOF bio-inspired flapping flight platform

    Science.gov (United States)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  19. Spectral analysis of blood perfusion in the free latissimus dorsi myocutaneous flap and in normal skin

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xudong [Department of Orthopaedic Surgery, Shanghai No. 6 People' s Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233 (China); Zeng Bingfang [Department of Orthopaedic Surgery, Shanghai No. 6 People' s Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233 (China); Fan Cunyi [Department of Orthopaedic Surgery, Shanghai No. 6 People' s Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233 (China); Jiang Peizhu [Department of Orthopaedic Surgery, Shanghai No. 6 People' s Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233 (China); Hu Xiao [Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-01-07

    To find the properties in the oscillatory components of the cutaneous blood flow on the successful free flap, a wavelet transform was applied to the laser Doppler flowmetry (LDF) signals which were measured simultaneously on the surfaces of the free latissimus dorsi myocutaneous flap and on the adjacent intact skin of the healthy limb, of 18 patients. The frequency interval from 0.0095 to 1.6 Hz was examined and was divided into five subintervals (I: 0.0095-0.021 Hz; II: 0.021-0.052 Hz; III: 0.052-0.145 Hz; IV: 0.145-0.6 Hz and V: 0.6-1.6 Hz) corresponding to endothelial metabolic, neurogenic, myogenic, respiratory and cardiac origins. The average amplitude and total power in the frequency range 0.0095-1.6 Hz as well as within subintervals I, II, IV and V were significantly lower for signals measured on the free flap than those obtained in the healthy limb. However in interval III, they were significantly higher. The normalized spectral amplitude and power in the free flap were significantly lower in only two intervals, I and II, yet in interval III they were significantly higher; no statistical significance was observed in intervals IV and V. The distinctive finding made in this study, aside from the decrease of endothelial metabolic processes and sympathetic control, was the significant increase of myogenic activity in the free flap. It is hoped that this work will contribute towards knowledge on blood circulation in free flaps and make the monitoring by LDF more reliable.

  20. Dorsalis Pedis Free Flap: The Salvage Option following Failure of the Radial Forearm Flap in Total Lower Lip Reconstruction

    OpenAIRE

    Theodoros Stathas; Georgios Tsinias; Dimitra Tsiliboti; Aris Tsiros; Nicholas Mastronikolis; Panos Goumas

    2014-01-01

    Reconstruction after resection of large tumors of the lower lip requires the use of free flaps in order to restore the shape and the function of the lip, with the free radial forearm flap being the most popular. In this study we describe our experience in using the dorsalis pedis free flap as a salvage option in reconstruction of total lower lip defect in a patient with an extended lower lip carcinoma after failure of the radial forearm free flap, that was initially used. The flap was integra...

  1. Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    C. Ben Regaya

    2014-01-01

    Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.

  2. To flap or not to flap: a discussion between a fish and a jellyfish

    Science.gov (United States)

    Martin, Nathan; Roh, Chris; Idrees, Suhail; Gharib, Morteza

    2016-11-01

    Fish and jellyfish are known to swim by flapping and by periodically contracting respectively, but which is the more effective propulsion mechanism? In an attempt to answer this question, an experimental comparison is made between simplified versions of these motions to determine which generates the greatest thrust for the least power. The flapping motion is approximated by pitching plates while periodic contractions are approximated by clapping plates. A machine is constructed to operate in either a flapping or a clapping mode between Reynolds numbers 1,880 and 11,260 based on the average plate tip velocity and span. The effect of the total sweep angle, total sweep time, plate flexibility, and duty cycle are investigated. The average thrust generated and power required per cycle are compared between the two modes when their total sweep angle and total sweep time are identical. In general, operating in the clapping mode required significantly more power to generate a similar thrust compared to the flapping mode. However, modifying the duty cycle for clapping caused the effectiveness to approach that of flapping with an unmodified duty cycle. These results suggest that flapping is the more effective propulsion mechanism within the range of Reynolds numbers tested. This work was supported by the Charyk Bio-inspired Laboratory at the California Institute of Technology, the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469, and the Summer Undergraduate Research Fellowships program.

  3. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1996-01-01

    with the results of the classical approach using Rayleighquotients. Several rotor systems are tested: a simple Laval rotor, a Laval rotor with additional elasticity and damping in thr bearings, and a number of rotor systems with complex symmetric 4x4 randomly generated matrices.......A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...

  4. Optimum blade loading for a powered rotor in descent

    Institute of Scientific and Technical Information of China (English)

    Ramin Modarres; David A. Peters

    2016-01-01

    The optimum loading for rotors has previously been found for hover, climb and wind turbine conditions;but, up to now, no one has determined the optimum rotor loading in descent. This could be an important design consideration for rotary-wing parachutes and low-speed des-cents. In this paper, the optimal loading for a powered rotor in descent is found from momentum theory based on a variational principle. This loading is compared with the optimal loading for a rotor in hover or climb and with the Betz rotor loading (which is optimum for a lightly-loaded rotor). Wake contraction for each of the various loadings is also presented.

  5. THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ali BEAZIT

    2010-06-01

    Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.

  6. On the nonlinear steady-state response of rigid rotors supported by air foil bearings-Theory and experiments

    Science.gov (United States)

    Larsen, Jon S.; Santos, Ilmar F.

    2015-06-01

    The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.

  7. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight.

  8. Pearls for perfecting the mastoid interpolation flap.

    Science.gov (United States)

    Justiniano, Hilda; Eisen, Daniel B

    2009-06-15

    Helical rim ear defects can present a reconstructive challenge to the Mohs surgeon. Multiple options exist including wedge excision, helical rim advancement flaps, bilobed flap, and grafts, to name a few. Wedge excision of the ear may result in a noticeable anteverted, smaller ear, and disrupts auricular cartilage with the possibility of chondritis and excess pain. Helical rim advancements can result in anteversion of the ear and a smaller lobule. Mastoid interpolation flaps, which are also called retroauricular to auricular flaps, can be a useful alternative in patients who are willing to return for a second procedure. They are easy to perform and can result in a highly aesthetic reconstruction in which the ear size and form are maintained. The donor skin comes from an area that is hidden from view and heals with minimal complications. We present our suggestions for performing these reconstructions. Ways to optimize results, potential pitfalls, and postoperative care instructions are discussed. Step by step videos are included with this manuscript.

  9. [Vestibularly displaced flap with bone augmentation].

    Science.gov (United States)

    Bakalian, V L

    2009-01-01

    The aim of this study is to achieve esthetic gingival contours with the help of less traumatic mucogingival surgeries. 9 Patients were operated with horizontal deficiencies in 9 edentulous sites, planned to be restored with fixed partial dentures. In all cases there was lack of keratinized tissues. Temporary bridges were fabricated to all patients. Before surgery the bridges were removed and the abutment teeth were additionally cleaned with ultrasonic device. A horizontal incision was made from lingual (palatal) side between the abutment teeth, which was connected with two vertical releasing incisions to the mucogingival junction from the vestibular side. The horizontal incision was made on a distance 6-10 mm from the crest of the alveolar ridge. A partial thickness flap in the beginning 3-5 mm, then a full thickness flap up to the mucogingival junction, then a partial thickness flap was made. The flap was mobilized and displaced vestibularly. In the apical part the cortical bone was perforated, graft material was put and the flap was sutured. In all 9 cases the horizontal defect was partially or fully eliminated. The width of the keratinized tissues was also augmented in all cases. The postoperative healing was without complications, discomfort and painless. The donor sites also healed without complications. The application of Solcoseryl Dental Adhesive Paste 3 times a day for 7-10 days helped for painless healing of the donor site. The offered method of soft tissue and bone augmentation is effective in the treatment of horizontal defects of edentulous alveolar ridges of not big sizes. It makes possible to achieve esthetic results without traumatizing an additional donor-site.

  10. Recurrent squamous cell carcinoma of the scalp treated with serial free flaps

    DEFF Research Database (Denmark)

    Ikander, Peder; Sørensen, Jens Ahm

    2015-01-01

    dorsi flaps and one anterolateral thigh flap. No total flap loss was seen, but partial flap necrosis called for secondarily reconstruction. The final result was cosmetically acceptable and the patient is of good health. In conclusion, serial free microvascular flaps may be used with good results when...

  11. Reconstruction of the anterior floor of the mouth with the inferiorly based nasolabial flap

    NARCIS (Netherlands)

    van Wijk, MP; Damen, A; Nauta, JM; Lichtendahl, DHE; Dhar, BK

    2000-01-01

    The results of reconstruction of the anterior floor of the mouth, using 105 nasolabial flaps in 79 patients were reviewed in a retrospective study. Of those flaps, 82% healed uneventfully; flap survival was 95%. Considerable flap loss occurred in 5%. Primary dehiscence was observed in 5% of all flap

  12. Inlet Guide Vane Wakes Including Rotor Effects

    Science.gov (United States)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  13. Performance investigation of the S-Rotors

    Science.gov (United States)

    Bhayo, B. A.; Al-Kayiem, H. H.; Yahaya, N. Z.

    2015-12-01

    This paper presents and discusses results from an experimental investigation of three models of wind S-rotors. Models 1 is modified from conventional Savonius rotor with a single stage and zero offsets zero overlaps; model 2 is three blade single stage wind rotor; and model 3 is double stage conventional Savonius rotor. The three models were designed, fabricated and characterized in terms of their coefficient of performance and dynamic torque coefficient. A special open wind simulator was designed for the test. The optimum parameters for the models were based on previous studies. The results showed that the model 1, model 2 and model 3 has the maximum power coefficient of 0.26, 0.17, and 0.21 at the correspondence tip speed ratio (TSR) of 0.42, 0.39 and 0.46, respectively. Model 1 is further optimized in terms of the aspect ratio resulting in improved power coefficient by 24%. The maximum dynamic torque coefficient of model 1, model 2 and model 3 was found as 0.81, 0.56 and 0.67 at the correspondence minimum TSR of 0.28, 0.21 and 0.17, respectively. It was noted that the all three models have high torque coefficient because the models were tested at higher applied torque on the rotors.

  14. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    Science.gov (United States)

    DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well

    2013-01-01

    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean

  15. Pedicle versus free flap reconstruction in patients receiving intraoperative brachytherapy.

    Science.gov (United States)

    Geiger, Erik J; Basques, Bryce A; Chang, Christopher C; Son, Yung; Sasaki, Clarence T; McGregor, Andrew; Ariyan, Stephan; Narayan, Deepak

    2016-08-01

    Introduction This study compared complication rates between pedicle flaps and free flaps used for resurfacing of intraoperative brachytherapy (IOBT) implants placed following head and neck tumour extirpation to help clarify the ideal reconstructive procedure for this scenario. Patients and methods A retrospective review of reconstructions with IOBT at our institution was conducted. Patient and treatment details were recorded, as were the number and type of flap complications, including re-operations. Logistic regressions compared complications between flap groups. Results Fifty free flaps and 55 pedicle flaps were included. On multivariate analysis, free flap reconstruction with IOBT was significantly associated with both an increased risk of having any flap complication (OR = 2.9, p = 0.037) and with need for operative revision (OR = 3.5, p = 0.048) compared to pedicle flap reconstruction. Conclusions In the setting of IOBT, free flaps are associated with an increased risk of having complications and requiring operative revisions.

  16. Effect of flapping trajectories on the dragonfly aerodynamics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of translational, figure-eight and double-figure-eight flapping trajectories on the dragonfly aerodynamics were numerically studied by solving the Navier-Stokes equations. There is a common characteristic regarding the lift/drag force coefficients that the downstroke flapping provides the lift forces while the upstroke flapping creates the thrust forces for different flapping trajectories. The maximum lift force coefficient exceeds five for the translational trajectory. It is greater than six for the figure-eight and double-figure-eight flapping trajectories, which is sufficiently larger than unity under the steady state flight condition. The ellipse and double-figure-eight flapping trajectories yield the decrease of the lift force, while the figure-eight flapping trajectory yields higher lift force as well as the thrust force than the translational flapping one. During the insect flight, the wing flapping status should be changed instantaneously to satisfy various requirements. Study of the flapping trajectories on the insect aerodynamics is helpful for the design of the Micro-air-vehicles (MAVs).

  17. RESEARCH ON KNOWLEDGE-BASED CAPP SYSTEM FOR ROTOR FORGING

    Institute of Scientific and Technical Information of China (English)

    Wang Leigang; Deng Dongrnei; Liu Zhubai

    2000-01-01

    Guided by developing forging technology theory,designing rules on rotor forging process are summed up.Knowledge-based CAPP system for rotor forging is created.The system gives a rational and optimum process.

  18. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Science.gov (United States)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  19. Leg morbidity and function following fibular free flap harvest.

    Science.gov (United States)

    Shpitzer, T; Neligan, P; Boyd, B; Gullane, P; Gur, E; Freeman, J

    1997-05-01

    Over a period of 3 years, 50 consecutive free fibular flaps for mandibular reconstruction were performed on 47 patients. In 38 patients (81%) a skin paddle was included with the flap to provide either mucosal lining or skin cover; in 9 patients (19%) bone alone was used. Thirty-one patients (66%) required a skin graft to close the donor defect in the leg. Donor leg morbidity and function were determined by patient questionnaire and by physical examination. Forty-one donor sites in 40 patients were available for long-term follow-up. The follow-up ranged from 4 to 39 months with an average of 17 months. Immediate postoperative infection occurred in the donor site of 1 patient (2%) and required additional surgery. There was no other immediate donor site complications when closure required skin grafting. Eleven patients (27%) had late donor site morbidity, consisting of motor weakness of the great toe in 5 patients, ankle instability and/or stiffness in 3 patients, donor site pain in 1 patient, and edema in 2 patients. All complications were graded as mild in severity by the patient and by the examiner. In this series, although most donor site defects required skin grafting, short- and long-term morbidity was minimal. After a short rehabilitation period, all patients were fully able to engage in all daily and recreational activities.

  20. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...... is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor...... system that can be diagnosed and monitored are: actuator faults, sensor faults and internal blade changes as e.g. change in mass of a blade....

  1. STABILITY OF ROTOR-BEARING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Uğur YÜCEL

    2003-03-01

    Full Text Available In various industrial applications there is a need for higher speed, yet reliably operating rotating machinery. A key factor in achieving this type of machinery continues to be the ability to accurately predict the dynamic response and stability of a rotor-bearing system. This paper introduces and explains the nature of rotordynamic phenomena from comparatively simple analytic models. Starting with the most simple rotor model that is supported in two rigid bearings at its ends, the more realistic and more involved cases are considered by incorporating the effects of flexible bearings. Knowledge of these phenomena is fundamental to an understanding of the behavior of complex models, which corresponds to the real rotors of turbomachines.

  2. Eigenfrequency sensitivity analysis of flexible rotors

    Directory of Open Access Journals (Sweden)

    Šašek J.

    2007-10-01

    Full Text Available This paper deals with sensitivity analysis of eigenfrequencies from the viewpoint of design parameters. The sensitivity analysis is applied to a rotor which consists of a shaft and a disk. The design parameters of sensitivity analysis are the disk radius and the disk width. The shaft is modeled as a 1D continuum using shaft finite elements. The disks of rotating systems are commonly modeled as rigid bodies. The presented approach to the disk modeling is based on a 3D flexible continuum discretized using hexahedral finite elements. The both components of the rotor are connected together by special proposed couplings. The whole rotor is modeled in rotating coordinate system with considering rotation influences (gyroscopic and dynamics stiffness matrices.

  3. Analysis on structural characteristics of rotors in twin-rotor cylinder-embedded piston engine

    Institute of Scientific and Technical Information of China (English)

    陈虎; 潘存云; 徐海军; 邓豪; 韩晨

    2014-01-01

    Twin-rotor cylinder-embedded piston engine is proposed for dealing with the sealing problems of rotors in twin-rotor piston engine where the existent mature sealing technologies for traditional reciprocating engine can be applied. The quantity and forms of its sealing surfaces are reduced and simplified, and what’s more, the advantages of twin-rotor piston engine are inherited, such as high power density and no valve mechanism. Given the motion law of two rotors, its kinematic model is established, and the general expression for some parameters related to engine performance, such as the trajectory, displacement, velocity and acceleration of the piston and centroid trajectory, angular displacement, velocity and acceleration of the rod are presented. By selecting different variation patterns of relative angle of two rotors, the relevant variables are compared. It can be concluded that by designing the relative angle function of two rotors, the volume variation of working chamber can be changed. However, a comprehensive consideration for friction and vibration is necessary because velocity and acceleration are quite different in the different functions, the swing magnitude of rod is proportional to link ratioλ, and the position of rod swing center is controlled by eccentricitye. In order to reduce the lateral force, a smaller value ofλshould be selected in the case of the structure, and the value ofe should be near 0.95. There is no relationship between the piston stroke and the variation process of relative angle of two rotors, the former is only proportional to the amplitude of relative angle of two rotors.

  4. Temporal-based pericranial flaps for orbitofrontal Dural repair: A technical note and Review of the literature

    Directory of Open Access Journals (Sweden)

    Esther Dupépé

    2016-03-01

    Conclusions: A temporal-based pericranial flap represents an alternative vascularized pedicle flap to the classic frontal-based pericranial flap used in orbitofrontal dural repair. In certain clinical settings, the temporal-based flap may be preferable.

  5. On aerodynamic design of the Savonius windmill rotor

    Science.gov (United States)

    Mojola, O. O.

    This paper examines under field conditions the performance characteristics of the Savonius windmill rotor. Test data were collected on the speed, torque and power of the rotor at a large number of wind speeds for each of seven values of the rotor overlap ratio. Field testing procedures are critically appraised and a unified approach is suggested. The performance data of the Savonius rotor are also fully discussed and design criteria established.

  6. Comparison of outcome of microvascular bony head and neck reconstructions using the fibular free flap and the iliac crest flap.

    Science.gov (United States)

    Mücke, Thomas; Loeffelbein, Denys J; Kolk, Andreas; Wagenpfeil, Stefan; Kanatas, Anastasios; Wolff, Klaus-Dietrich; Mitchell, David A; Kesting, Marco R

    2013-09-01

    Several microvascular free flaps are available for reconstruction of the osseous components after resections for head and neck cancer. We have prospectively evaluated patients treated by bony microsurgical reconstruction to identify predictors of adverse outcomes for delayed wound healing and failure of free flaps. All patients from July 2007 to June 2011 who had reconstructions with microvascular fibular or iliac crest flaps immediately after resection of the tumour were evaluated. There were a total of 156 bony free flaps: 120 (77%) fibular and 36 (23%) iliac crest flaps. A total of 133 (85%) were successful. Delayed wound healing was more common with the iliac crest flap (p=0.01) at the intraoral site (p=0.04). Significantly more iliac crest free flaps failed (p=0.02). Anastomosis to the facial artery (p=0.05) and facial vein (p=0.04), and duration of overall operating time were associated with a significantly higher risk of failure of the flap. Patients with cancer of the head and neck who require microsurgical bony reconstruction are at increased risk of postoperative complications. Significantly more complications were found with the iliac crest flap, whereas the fibular flap was associated with a significantly longer operating time.

  7. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Zahle, Frederik; Sørensen, Niels N.

    2013-01-01

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  8. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  9. APPLICATION OF MECHANIZED MATHEMATICS TO ROTOR DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    胡超; 王岩; 王立国; 黄文虎

    2002-01-01

    Based on the mechanized mathematics and WU Wen-tsun elimination method,using oil film forces of short-bearing model and Muszynska's dynamic model, the dynamical behavior of rotor-bearing system and its stability of motion are investigated. As example,the concept of Wu characteristic set and Maple software, whirl parameters of short- bearing model, which is usually solved by the numerical method, are analyzed. At the same time,stability of zero solution of Jeffcott rotor whirl equation and stability of self-excited vibration are studied. The conditions of stable motion are obtained by using theory of nonlinear vibration.

  10. A Recurrent Rotor-Router Configuration in Z^3

    CERN Document Server

    A, Tulasi Ram Reddy

    2010-01-01

    Rotor Router models were first introduced by James Propp in 2002. A recurrent Rotor configuration is the one in which every state is visited infinitely often. In this project we investigated whether there is a recurrent Rotor configuration in Z^d (d>2).

  11. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  12. Fine tuning of molecular rotor function in photochemical molecular switches

    NARCIS (Netherlands)

    ter Wiel, Matthijs K. J.; Feringa, Ben L.

    2009-01-01

    Molecular switches are used as scaffolds for the construction of controlled molecular rotors. The internal position of the switching entity in the molecule controls the dynamic behaviour of the rotor moiety in the molecule. Six new molecular motors with o-xylyl rotor moieties were prepared on the ba

  13. 14 CFR 33.92 - Rotor locking tests.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued rotation is prevented by a means to lock the rotor(s), the engine must be subjected to a test that...

  14. On the Classification of Universal Rotor-Routers

    CERN Document Server

    He, Xiaoyu

    2011-01-01

    The combinatorial theory of rotor-routers has connections with problems of statistical mechanics, graph theory, chaos theory, and computer science. A rotor-router network defines a deterministic walk on a digraph G in which a particle walks from a source vertex until it reaches one of several target vertices. Motivated by recent results due to Giacaglia et al., we study rotor-router networks in which all non-target vertices have the same type. A rotor type r is universal if every hitting sequence can be achieved by a homogeneous rotor-router network consisting entirely of rotors of type r. We give a conjecture that completely classifies universal rotor types. Then, this problem is simplified by a theorem we call the Reduction Theorem that allows us to consider only two-state rotors. A rotor-router network called the compressor, because it tends to shorten rotor periods, is introduced along with an associated algorithm that determines the universality of almost all rotors. New rotor classes, including boppy ro...

  15. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understandi

  16. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  17. Experimental Investigation for Dynamic Characteristics of the Active Magnetic Bearing Rotor System with Zero Bias Current%零偏置电流磁轴承转子系统动态性能的试验研究

    Institute of Scientific and Technical Information of China (English)

    谢振宇; 龙亚文; 徐欣

    2013-01-01

    建立5自由度磁悬浮轴承转子试验系统,分析有偏置和零偏置电流方式的工作原理,将5自由度零偏置电流方式应用于试验系统中,采用锤击法模态试验、基于频率响应函数的模型修正方法和系统高速旋转试验等方法研究该系统的动态性能,并与有偏置电流方式进行比较.研究结果表明,与有偏置电流方式相比,零偏置电流方式将导致控制参数的稳定区域、系统的模态阻尼以及磁轴承的刚度和阻尼明显减小,系统在各阶临界转速时的振幅较大,但系统仍然可以安全稳定越过第一阶弯曲临界转速.在实际应用中,合理的设计仍可保证零偏置电流磁悬浮轴承转子系统安全稳定运行,特别是在低速或载荷平稳等应用场合,零偏置电流方式能够使得系统具有较好的综合性能.%An experimental setup of five degree-of-freedom active magnetic bearing (AMB) rotor system is built up.The modes of bias current and zero bias current are presented.Dynamic characteristics of the system with zero bias current are investigated by stamping modal test,method of model updating based on frequency response function (FRF) and actual operation of the system,and compared with the results of the system with bias current.The results show that,for the system with zero bias current,the stability region of control parameters,modal damping and stiffness and damping of AMB are reduced obviously and its vibration amplitudes in motion on the critical speeds are larger than the system with bias current,however it can still get across the first bending critical speed safely.If the design of the system is proper,the mode of zero bias current can be adopted in actual application,especially in the application of low rotation speed and stable load,so that the system has better over-all properties.

  18. Pedicled perforator flaps in the head and neck.

    Science.gov (United States)

    Hofer, Stefan O P; Mureau, Marc A M

    2010-10-01

    Perforator flaps, since their first description in 1989, have in many ways revolutionized reconstructive surgery. Whereas little more than a decade ago many surgeons were still hesitant to fully trust perforator flaps to be a reliable option, nowadays these flaps are often first choice. Investigators have to remain critical, however, of their advances and realize that not every reconstruction will require or benefit from a perforator flap, as previously well-established, nonperforator flaps still have their indication and can give excellent results. The most important skill in reconstructive surgery of the head and neck is not cutting the flap but assessing the defect, planning the reconstruction, and choosing wisely from the ever-increasing options available.

  19. The "Gent" consensus on perforator flap terminology: preliminary definitions.

    Science.gov (United States)

    Blondeel, Phillip N; Van Landuyt, Koen H I; Monstrey, Stan J M; Hamdi, Moustapha; Matton, Guido E; Allen, Robert J; Dupin, Charles; Feller, Axel-Mario; Koshima, Isao; Kostakoglu, Naci; Wei, Fu-Chan

    2003-10-01

    Due to its increasing popularity, more and more articles on the use of perforator flaps have been reported in the literature during the past few years. Because the area of perforator flaps is new and rapidly evolving, there are no definitions and standard rules on terminology and nomenclature, which creates confusion when surgeons try to communicate and compare surgical techniques. This article attempts to represent the opinion of a group of pioneers in the field of perforator flap surgery. This consensus was reached after a terminology consensus meeting held during the Fifth International Course on Perforator Flaps in Gent, Belgium, on September 29, 2001. It stipulates not only the definitions of perforator vessels and perforator flaps but also the correct nomenclature for different perforator flaps. The authors believe that this consensus is a foundation that will stimulate further discussion and encourage further refinements in the future.

  20. Incidence of flap procedures in the management of burn patients.

    Science.gov (United States)

    Lineaweaver, William C; Craft-Coffman, Beretta; Oswald, Tanya M

    2015-03-01

    Increased survival of burn patients presents opportunities for reconstructive strategies to improve outcomes in management of acute and secondary burn injuries. To assess one such strategy, namely flap reconstruction, we reviewed cases performed during the first 4.5 years of the JMS Burn and Reconstruction Center. We found that flap procedures accounted for 0.8% of acute cases (23 of 2723 procedures) and 33% of secondary cases (260 of 790 procedures). This initial finding shows that in this practice flap procedures are applied to a small number of acute problems while flap procedures comprise 33% of secondary procedures. Reconstructive flap surgery plays a measurable role in burn treatment at this center. Further study of outcomes and timing could lead to better understanding of optimal strategies for flap reconstruction in burns.

  1. 电控旋翼气动特性建模与风洞试验验证%Aerodynamic characteristic modeling of electrically controlled rotor and wind tunnel test verification

    Institute of Scientific and Technical Information of China (English)

    陆洋; 王超

    2013-01-01

    Firstly, the unsteady aerodynamic model of the airfoil with trailing-edge flap was developed. Secondly, the finite state wake model of electrically controlled rotor (ECR) based on the Peters-He generalized dynamic wake theory was developed, in which the effect of the trailing-edge flap on the rotor aerodynamic environment was considered. Combined with the relationship among the blade flapping angle, the blade pitch and the deflection angle of the trailing-edge flap, the model of calculating the aerodynamic characteristics of ECR was established finally. Then, wind tunnel tests were conducted, in which the aerodynamic force, the blade pitch, the deflection angle of the trailing-edge flap and the blade flapping angle varying with different test statuses were measured. Theoretical results basically coincided with the experimental data, which verified the correction of the theoretical model. Conclusions are drawn as follows: with the fixed rotor speed, there is a linear relationship between blade pitch response and flap control; rotor thrust decreases with the increase of flap collective control, and actual aerodynamic efficiency of the flap decreases under large collective control; in forward flight, flap collective control can cause changes of blade cyclic pitch.%首先建立了带襟翼翼型的非定常气动力模型,继而基于Peters-He广义动态尾迹理论,考虑襟翼偏转对电控旋翼叶素环境的影响,建立了电控旋翼有限状态尾迹模型;进一步基于Theodorsen理论推导出电控旋翼桨叶挥舞响应与桨叶变距和襟翼操纵量的关系,综合以上建立了电控旋翼气动特性分析模型.以改进型电控旋翼试验系统为平台进行了风洞试验,测量了不同风速、不同襟翼操纵条件下的电控旋翼气动力、桨距、襟翼偏角及旋翼挥舞角的变化情况.理论计算结果与试验数据符合情况良好,验证了所建立的分析模型的正确性,并得出以下结论:旋翼转速一定

  2. [Pedicled versus free TRAM flap for breast reconstruction].

    Science.gov (United States)

    Galla, T J; Lukas, B; Feller, A M

    1999-03-01

    In breast reconstruction, the free TRAM-flap offers many advantages over the pedicled TRAM-flap. Due to its superior perfusion, the free flap rarely develops necrosis. Shaping of the flap is easier due to the lack of the thick muscle pedicle. Because the rectus muscle is spared, there is minimal donor site morbidity. However, the necessary microvascular anastomoses reduced the acceptance of the free TRAM-flap. During a 13-months period, 51 breast reconstructions were performed in 41 patients, 31 unilateral and ten bilateral. 45 flaps served for delayed reconstruction and six flaps for immediate reconstruction. The operations were performed by two teams working simultaneously. The average operating time was 3.9 hours for unilateral and 6.9 hours for bilateral delayed reconstruction. For immediate reconstruction, 6.2 and 6.3 hours were required for uni- and bilateral procedures, respectively. In 38 flaps, the thoracodorsal vessels served as recipient vessels; 13 flaps were anastomosed to the internal mammary artery and vein. Postoperative complications were observed in 13 patients. Three vessel anastomoses had to be revised. In one flap, a partial necrosis occurred; in two flaps hematoma evacuation was necessary. Two patients suffered from fat necroses at the abdomen and one umbilicus was lost. Skin irritations and seromas at the abdomen occurred in five patients. Pulmonary embolism was diagnosed in one patient three weeks postoperatively. Abdominal hernias or bulging in the epigastric area were not observed up to 15 months after reconstruction. These results reveal a low complication rate for breast reconstruction with the free TRAM-flap. The advantages of this technique as compared to the pedicled technique are discussed.

  3. Design, manufacturing and testing of Controllable Rubber Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Løgstrup Andersen, Tom; Aagaard Madsen, Helge; Barlas, Thanasis K

    The overall goal for the INDUFLAP project was realization of a test facility for development and test of Controllable Rubber Trailing Edge Flaps (CRTEF) for wind turbines. This report covers experimental work at DTU Wind Energy including design, manufacture and test of different configurations...... of flaps with voids in chord- or spanwise direction. Development of rubber flaps has involved further design improvements. Non-metallic spring elements and solutions for sealing of continuous extruded rubber profiles have been investigated....

  4. Surgical Excision of Multiple Penile Syringomas With Scrotal Flap Reconstruction

    OpenAIRE

    2014-01-01

    Objective: Penile syringomas are rare lesions usually occurring in isolation. We report the excision and reconstruction of multiple synchronous penile shaft syringomas with local scrotal flaps. Methods: We report a rare case of excision of multiple penile syringomas and reconstruction with scrotal flaps in a 29-year-old man. Results: Penile syringomas were excised and reconstructed with scrotal flaps in a single-stage procedure. Conclusions: In addition to providing wound coverage, this recon...

  5. Herpes Simplex Virus 1 Infection on a Reconstructive Free Flap

    OpenAIRE

    Parys, Simon P.; Leman, Thea; Gurfinkel, Reuven

    2013-01-01

    Objective: Herpes simplex virus 1 (HSV1) is a widespread virus that primarily causes orofacial infection. Methods: We present a case of HSV1 infection on a free radial forearm flap used to reconstruct a palate defect. Initially, the free flap appeared healthy; however, after 48 hours the free flap appeared in distress, with dark red colour and fast capillary refill. Venous congestion was suspected, and the patient underwent a second operation where no vascular compromise was found. Vesicles w...

  6. Microdialysis in clinical practice: monitoring intraoral free flaps.

    Science.gov (United States)

    Jyränki, Janne; Suominen, Sinikka; Vuola, Jyrki; Bäck, Leif

    2006-04-01

    Clinical examination is still the gold standard of postoperative free flap monitoring, but with intraorally situated and/or buried flaps, it can be difficult or impossible. Microdialysis is a sampling technique which offers the possibility to monitor the metabolism of a flap continuously. Ischemia can be detected by monitoring the changes in glucose, lactate, and pyruvate levels in interstitial fluid of the specific tissue. Our aim was to use microdialysis to monitor the metabolism of free flaps used for reconstructions inside the oral cavity/oropharynx and to evaluate the reliability and usefulness of this new monitoring method.Twenty-five consecutive patients who underwent oral cavity/oropharynx cancer resection and immediate reconstruction with free flap were included in the study. A microdialysis catheter was placed into the subcutaneous adipose tissue of the flap in the end of the surgical procedure. Dialysate samples were taken on an hourly basis for 72 hours postoperatively. Routine clinical monitoring was carried out by experienced nursing staff. Clinical findings were recorded and later compared with microdialysis values. Two flaps out of 25 failed in spite of reoperations. In both problem cases, microdialysis indicated ischemia 1 to 2 hours before it became clinically evident. During flap ischemia, the lactate/pyruvate ratio increased, glucose concentrations reduced, whereas lactate level increased when compared with normal values. Our results indicate that microdialysis is safe for the patient and the flap. It can reliably detect flap ischemia at an early stage. This is especially useful in buried flaps when clinical monitoring is difficult. Microdialysis may also reduce the patient discomfort caused by repeated clinical examination of the flap.

  7. [Osteomuscular serrato-costal free flap: application to mandibular reconstruction].

    Science.gov (United States)

    Breton, P; Henry, J F; Crezoit, E; Souchere, B; Freidel, M

    1992-06-01

    The serrato-costal free flap provides a large costal flap vascularized by a digitation of the serratus anterior muscle supplied by the dorsal thoracic artery. The flap is easy and rapid to raise with low morbidity. The repair obtained is functionally very satisfactory, but does not allow insertion of an implant. Six cases are reported. The indications of this technique of mandibular reconstruction are discussed.

  8. CATERPILLAR ADVANCEMENT FOR PARTIALLY NECROSED DELTOPECTORAL FLAP

    Directory of Open Access Journals (Sweden)

    Anand Narayan

    2015-04-01

    Full Text Available Development of electric lamp by Thomas Elva Edison had significant impact on human civilization. With increasing production of electrical energy to meet ongoing demands of increased frequency of electrical injuries. Despite increased awareness of potential dangers, elect ricity is responsible for many fatalities all over the world. Electrical burn accounts for ~3% of all burn related injuries. Estimated 3, 000 annual admittions to burn units. Electrical burn have bimodal distribution ~1/3 children <6 yrs ( E lectric cords & wall outlets ~2/3 miners, construction, & electrical workers. Our case is one that of a 12 year old male child having electrical injury over face and neck with exposed angle of mandible which was covered by Deltopectoral flap with caterpillar advancement of flap.

  9. Numerical and Experimental Modal Control of Flexible Rotor Using Electromagnetic Actuator

    Directory of Open Access Journals (Sweden)

    Edson Hideki Koroishi

    2014-01-01

    Full Text Available The present work is dedicated to active modal control applied to flexible rotors. The effectiveness of the corresponding techniques for controlling a flexible rotor is tested numerically and experimentally. Two different approaches are used to determine the appropriate controllers. The first uses the linear quadratic regulator and the second approach is the fuzzy modal control. This paper is focused on the electromagnetic actuator, which in this case is part of a hybrid bearing. Due to numerical reasons it was necessary to reduce the size of the model of the rotating system so that the design of the controllers and estimator could be performed. The role of the Kalman estimator in the present contribution is to estimate the modal states of the system and to determine the displacement of the rotor at the position of the hybrid bearing. Finally, numerical and experimental results demonstrate the success of the methodology conveyed.

  10. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors.

    Science.gov (United States)

    Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  11. A crosslinguistic lexicon of the labial flap

    Directory of Open Access Journals (Sweden)

    Kenneth S. Olson

    2004-01-01

    Full Text Available We provide a large sample of the occurrences of the labial flap in the world’s languages, including audio and video data from the Mono dialect of Mid-Southern Banda. This sample provides the evidence for Olson and Hajek’s (2003 crosslinguistic generalizations concerning the articulation, the geographic distribution, the genetic distribution, and the phonological status of the speech sound.

  12. MicroRNA-126 effects on free flap activity by regulating bone marrow mesenchymal stem cells%miR-126调节骨髓间充质干细胞对游离皮瓣组织学活性的作用

    Institute of Scientific and Technical Information of China (English)

    陈勇; 范龙坤

    2016-01-01

    背景:miRNA具有组织特异性及细胞特异性,其中内皮细胞特异性高表达miRNA-126(miR-126)在血管新生中具有举足轻重的作用。  目的:研究miR-126调节游离皮瓣移植后皮瓣成活以及组织学活性的影响,探讨其在血管新生中的作用机制。  方法:①利用瞬时转染技术提高骨髓间充质干细胞中miR-126的表达,利用Real-Time PCR检测巨噬细胞炎性蛋白1α、肿瘤坏死因子α及血管细胞黏附分子1 mRNA表达及Western blot检测ERK1/2、AKT、pERK1/2、pAKT蛋白表达;②将48只SD大鼠随机分为3组,每组16只,均制备腹部游离皮瓣模型。A-C组分别在游离皮瓣远端1 cm和3 cm处注射miR-126 mimics转染的骨髓间充质干细胞、miR-126 mimics control转染的骨髓间充质干细胞及PBS。  结果与结论:①转染miR-126 mimics后的骨髓间充质干细胞较对照组骨髓间充质干细胞中巨噬细胞炎性蛋白1α、肿瘤坏死因子α及血管细胞黏附分子1 mRNA表达量分别下降36倍、3.5倍和14倍;②A组大鼠皮瓣远端组织中 ERK1/2、AKT、pERK1/2、pAKT 的蛋白表达水平比B和C组明显增高,且pAKT/AKT及pERK1/2/ERK1/2比值高于B和C组,且皮瓣组织液中巨噬细胞炎性蛋白1α、肿瘤坏死因子α及血管细胞黏附分子1蛋白水平明显低于B和C组;③结果提示miR-126可以促进游离皮瓣组织中血管新生腺管蛋白的活化,进而促进皮瓣的成活。%BACKGROUND:MicroRNA has tissue and cel specificity, and high expression of endothelial cel-specific microRNA-126 (miR-126) plays an important role in angiogenesis. OBJECTIVE:To explore the effect of miR-126 on transplanted free flap survival and histological activity as wel as its mechanism in angiogenesis. METHODS:Transient transfection technology was used to enhance the expression of miR-126 in bone marrow mesenchymal stem cel s. Expression levels of macrophage inflammatory protein-1α, tumor

  13. Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.

    2016-04-01

    Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.

  14. Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    K. P. Preethi Manohari Sai

    2016-01-01

    Full Text Available Flapping flight has the potential to revolutionize micro air vehicles (MAVs due to increased aerodynamic performance, improved maneuverability and hover capabilities. The purpose of this project is to design and fabrication of flapping wing micro air vehicle. The designed MAV will have a wing span of 40cm. The drive mechanism will be a gear mechanism to drive the flapping wing MAV, along with one actuator. Initially, a preliminary design of flapping wing MAV is drawn and necessary calculation for the lift calculation has been done. Later a CAD model is drawn in CATIA V5 software. Finally we tested by Flying.

  15. Staged retroauricular flap for helical reconstruction after Mohs micrographic surgery*

    Science.gov (United States)

    Cerci, Felipe Bochnia

    2016-01-01

    Staged retroauricular flap is a great option for full-thickness defects along the helical rim and antihelix. Donor site consists of the posterior ear, postauricular sulcus and mastoid area. The advantages of this flap include hidden donor scar, donor tissue similarity and rich vascularity. We present a case of collision tumor on the left helix treated with Mohs micrographic surgery and the resulting full-thickness defect repaired with a staged retroauricular flap. This flap is an effective technique for full-thickness helical defect repair with relatively little operative morbidity. High esthetic and functional results may be obtained restoring the ear size and shape.

  16. A novel animal model for skin flap prelamination with biomaterials

    Science.gov (United States)

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-09-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible.

  17. Rotational flaps in oncologic breast surgery. Anatomical and technical considerations.

    Science.gov (United States)

    Acea Nebril, Benigno; Builes Ramírez, Sergio; García Novoa, Alejandra; Varela Lamas, Cristina

    2016-01-01

    Local flaps are a group of surgical procedures that can solve the thoracic closure of large defects after breast cancer surgery with low morbidity. Its use in skin necrosis complications after conservative surgery or skin sparing mastectomies facilitates the initiation of adjuvant treatments and reduces delays in this patient group. This article describes the anatomical basis for the planning of thoracic and abdominal local flaps. Also, the application of these local flaps for closing large defects in the chest and selective flaps for skin coverage by necrosis in breast conserving surgery.

  18. [Expanded pedicled forearm flap for reconstruction of multiple finger amputations].

    Science.gov (United States)

    Alvarez Jorge, A; Martelo Villar, F

    2000-05-01

    Soft-tissue injuries of the hand frequently require flap coverage to preserve structures damaged at the time of injury or to facilitate later reconstruction. The radial forearm flap makes local tissue readily available and offers a simple method of reconstruction. Secondary augmentation of the skin flap by means of tissue expansion appears to be a useful alternative to improve the possibilities of reconstruction. This case report describes a primary reconstruction of a hand with multiple finger amputations using both techniques: Forearm flap and tissue expansion.

  19. Epiglottis reconstruction with free radial forearm flap after supraglottic laryngectomy.

    Science.gov (United States)

    Hsiao, Hung-Tao; Leu, Yi-Shing; Tung, Kwang-Yi

    2010-01-01

    A bilobed free radial forearm flap was designed to reconstruct a defect in the epiglottis and tongue base in 2 patients who underwent supraglottic laryngectomy. The flap was initially sutured in the shape of the epiglottis to prevent aspiration during deglutition. Six months after surgery, after a full course of radiation therapy, the flap had flattened and underwent atrophy, but the patients still had good voice production and were able to swallow well without any aspiration. Regardless of the final shape of the reconstructed epiglottis, it will suffice to prevent aspiration if the flap is large enough to occlude the tracheal outlet.

  20. A novel animal model for skin flap prelamination with biomaterials

    Science.gov (United States)

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-01-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible. PMID:27659066

  1. Mastectomy skin flap necrosis: challenges and solutions

    Science.gov (United States)

    Robertson, Stuart A; Jeevaratnam, Johann A; Agrawal, Avi; Cutress, Ramsey I

    2017-01-01

    Introduction Mastectomy skin flap necrosis (MSFN) has a reported incidence of 5%–30% in the literature. It is often a significant and underappreciated problem. The aim of this article was to review the associated challenges and possible solutions. Methods A MEDLINE search was performed using the search term “mastectomy skin flap necrosis”. Titles and abstracts from peer-reviewed publications were screened for relevance. Results MSFN is a common complication and may present as partial- or full-thickness necrosis. Predictive patient risk factors include smoking, diabetes, obesity, radiotherapy, previous scars and severe medical comorbidity. MSFN leads to a number of challenges, including wound management problems, delays to adjuvant therapy, esthetic compromise, implant extrusion, patient distress and financial loss. Careful preoperative planning and meticulous surgical technique may reduce the incidence of MSFN. A number of intraoperative techniques are available to try and predict skin flaps at risk of MSFN. MSFN may be managed operatively or nonoperatively. Early intervention may reduce the morbidity of MSFN in selected cases. Topical nitroglycerin ointment may be beneficial in reducing MSFN following immediate reconstruction, but the evidence base is still limited. Conclusion MSFN can result in considerable challenges for the patient and the health care service. This review discusses the management options for this problem. PMID:28331365

  2. Computational Study of Flow Interactions in Coaxial Rotors

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Although the first idea of coaxial rotors appeared more than 150 years ago, most helicopters have used single main-rotor/tail-rotor combination. Since reactive moments of coaxial rotors are canceled by contra-rotation, no tail rotor is required to counter the torque generated by the main rotor. Unlike the single main rotor design that distributes power to both main and tail rotors, all of the power for coaxial rotors is used for vertical thrust. Thus, no power is wasted for anti-torque or directional control. The saved power helps coaxial rotors reach a higher hover ceiling than single rotor helicopters. Another advantage of coaxial rotors is that the overall rotor diameter can be reduced for a given vehicle gross weight because each rotor provides a maximum contribution to vertical thrust to overcome vehicle weight. However, increased mechanical complexity of the hub has been one of the challenges for manufacturing coaxial rotorcraft. Only the Kamov Design Bureau of Russia had been notably successful in production of coaxial helicopters until Sikorsky built X2, an experimental compound helicopter. Recent developments in unmanned aircraft systems and high-speed rotorcraft have renewed interest in the coaxial configuration. Multi-rotors are frequently used for small electric unmanned rotorcraft partly due to mechanical simplicity. The use of multiple motors provides redundancy as well as cost-efficiency. The multi-rotor concept has rarely been used until recently because of its inherent stability and control problems. However, advances in inexpensive electronic flight control systems have opened the floodgates for small drones using multirotors. Coaxial rotors have started to appear in some multi-rotor configurations. Small coaxial rotors have often been designed using a hundred year old approach that is "sketch, build, fly, and iterate." In that approach, there is no systematic way to explore trade-offs or determine logical next steps. It is neither possible to

  3. Nonlinear Vibration of Rotor Rubbing Stator Caused by Initial Perturbation

    Institute of Scientific and Technical Information of China (English)

    张小章; 隆锦胜; 李正光

    2001-01-01

    The vibration of a rotor rubbing a stator caused by an initial perturbation was studied analytically.The analytical model consists of a simple disc shaft rotor and a fixed stator. The perturbation is aninstantaneous change of the radial velocity when the rotor is operating in its normal steady state. The analysisshowed that the rotor may continue rubbing the stator for small clearance, even if the initial perturbation nolonger exists. For the interest of engineering applications, we investigated various rotating speeds,perturbation amplitudes and clearances between the rotor and the stator. Various friction coefficients on thecontact surface were also considered. The graphical results can be used for the design of rotating machines.``

  4. Numerical evaluation of tandem rotor for highly loaded transonic fan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bin; LIU Bao-jie

    2011-01-01

    Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-dimensional (3-D) numerical simulation. The aft blade solidity and its impact on total loading level were studied in depth. The result indicates that tandem rotor has potential to achieve higher loading level and attain favorable aerodynamic performance in a wide range of loading coefficient 0. 55 ~ 0.68, comparing with the conventional rotor which produced a total pressure ratio of 2.0 and loading coefficient of 0. 42.

  5. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    Science.gov (United States)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  6. Time Frequency Features of Rotor Systems with Slowly Varying Mass

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2011-01-01

    Full Text Available With the analytic method and numerical method respectively, the asymptotic solutions and finite element model of rotor system with single slowly varying mass is obtained to investigate the time frequency features of such rotor system; furthermore, with given model of slowly varying mass, the rotor system with dual slowly varying mass is studied. For the first order approximate solution is used, there exists difference between the results with analytic method and numerical method. On the base of common characteristics of rotor system with dual slowly varying mass, the general rules and formula describing the frequency distribution of rotor system with multiple slowly varying mass are proposed.

  7. T700 power turbine rotor multiplane/multispeed balancing demonstration

    Science.gov (United States)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  8. On the flow field around a Savonius rotor

    Science.gov (United States)

    Bergeles, G.; Athanassiadis, N.

    A model of a two-bucket Savonius rotor windmill was constructed and tested in a wind tunnel. The flow field around the rotor was examined visually and also quantitatively with the use of a hot wire. The flow visualization revealed an upstream influence on the flow field up to 3 rotor diameters away and a strong downwash downstream. Hot wire measurements showed a large velocity deficit behind the rotor and a quick velocity recovery downstream due to strong mixing; the latter was associated with high levels of turbulence. Energy spectra revealed that all turbulence was concentrated in a single harmonic corresponding to twice the rotational speed of the rotor.

  9. Flywheel system using wire-wound rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  10. Development of the optimum rotor theories

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær; van Kuik, Gijs A.M.

    The purpose of this study is the examination of optimum rotor theories with ideal load distributions along the blades, to analyze some of the underlying ideas and concepts, as well as to illuminate them. The book gives the historical background of the issue and presents the analysis of the proble...

  11. Eigenvalue assignment strategies in rotor systems

    Science.gov (United States)

    Youngblood, J. N.; Welzyn, K. J.

    1986-01-01

    The work done to establish the control and direction of effective eigenvalue excursions of lightly damped, speed dependent rotor systems using passive control is discussed. Both second order and sixth order bi-axis, quasi-linear, speed dependent generic models were investigated. In every case a single, bi-directional control bearing was used in a passive feedback stabilization loop to resist modal destabilization above the rotor critical speed. Assuming incomplete state measurement, sub-optimal control strategies were used to define the preferred location of the control bearing, the most effective measurement locations, and the best set of control gains to extend the speed range of stable operation. Speed dependent control gains were found by Powell's method to maximize the minimum modal damping ratio for the speed dependent linear model. An increase of 300 percent in stable speed operation was obtained for the sixth order linear system using passive control. Simulations were run to examine the effectiveness of the linear control law on nonlinear rotor models with bearing deadband. The maximum level of control effort (force) required by the control bearing to stabilize the rotor at speeds above the critical was determined for the models with bearing deadband.

  12. 14 CFR 33.34 - Turbocharger rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34...

  13. MODIFIED SAVONIUS ROTOR FOR DOMESTIC POWER PRODUCTION

    Directory of Open Access Journals (Sweden)

    VINAY P V

    2012-07-01

    Full Text Available Conventional fuels which are fast depleting, have ever fluctuating price and polluting characteristic of theirs is pushing mankind towards energies which are renewable and green. Wind being one of the renewable energies among solar, geothermal, biomass, ocean and others is being more patronized in places where wind is copious by governmental and with private partnership to generate electricity. Vertical axis rotor was selected over the horizontal ones due to its simplicity and reliability. At a selected location a prototype was built and installed. The design and development process and the need of the new type of machine will be described in this paper. This paper produces an investigational exploration of a vertical axis rotor (Savonius rotor wind turbine adapted for household/domestic electricity generation. The model machine collects wind energy and generates a 12 volt output which is used to charge one heavy duty battery. As a result, the home is served simultaneously by the wind turbine and the utility. The wind turbine responds well to low wind velocities and also various materials for vanes, various transmission mechanisms were also tried to evaluate the performance of the rotor.

  14. Wind rotors and birds; Windraeder: neue Vogelperspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Loenker, O.; Jensen, D.

    2005-01-01

    Although most birds are not shy of wind rotors, authorities tend to use environmental protection arguments in their attempt to prevent wind power projects. Planners should be careful to establish ecological expert opinions for envisaged sites at an early stage. (orig.)

  15. Comparative study of visual acuity and aberrations after intralase femtosecond LASIK: small corneal flap versus big corneal flap

    Institute of Scientific and Technical Information of China (English)

    Ya-Li; Zhang; Lei; Liu; Chang-Xia; Cui; Ming; Hu; Zhao-Na; Li; Li-Jun; Cao; Xiu-Hua; Jing; Guo-Ying; Mu

    2014-01-01

    AIM:To study the effects of different flap sizes on visual acuity, refractive outcomes, and aberrations after femtosecond laser for laser keratomileusis (LASIK). ·METHODS: In each of the forty patients enrolled, 1 eye was randomly assigned to receive treatment with a 8.1mm diameter corneal flap, defined as the small flap, while the other eye was treated with a 8.6mm diameter corneal flap, defined as the big flap. Refractive errors, visual acuity, and higher -order aberrations were compared between the two groups at week 1, month 1 and 3 postoperatively. · RESULTS: The postoperative refractive errors and visual acuity all conformed to the intended goal. Postoperative higher -order aberrations were increased, especially in spherical aberration (Z12) and vertical coma (Z7). There were no statistically significant differences between the two groups in terms of postoperative refractive errors, visual acuity, root mean square of total HOAs (HO -RMS), trefoil 30° (Z6), vertical coma (Z7), horizontal coma (Z8), trefoil 0° (Z9), and spherical aberration (Z12) at any point during the postoperative follow-up. ·CONCLUSION: Both the small and big flaps are safe and effective procedures to correct myopia, provided the exposure stroma meets the excimer laser ablations. The personalized size corneal flap is feasible, as we can design the size of corneal flap based on the principle that the corneal flap diameter should be equal to or greater than the sum of the maximum ablation diameter and apparatus error.

  16. Comparison of a new flap design with the routinely used triangular flap design in third molar surgery.

    Science.gov (United States)

    Yolcu, Ü; Acar, A H

    2015-11-01

    The aim of this study is to introduce a new flap design in the surgical removal of impacted mandibular third molars - a lingually based triangular flap - and to compare this flap design with the routinely used triangular flap. This randomized, prospective, split-mouth study involved 22 patients with impacted bilateral mandibular third molars that were symmetrically positioned, mesially angulated, and retained in bone. The impacted teeth were removed in two sessions, using two different flap designs: the new alternative flap and the traditional triangular flap. Postoperative complications (pain, swelling, trismus, alveolar osteitis, and wound dehiscence) were recorded on days 2, 7, 14, and 21. The data obtained were analysed using the χ(2) test, the Mann-Whitney U-test, and Pearson's correlation. In terms of the severity of postoperative facial swelling and trismus, there were no statistically significant differences between the flap designs (P>0.05). The alternative flap exhibited higher pain scores at 12h post-surgery (Pthird molar surgery.

  17. Complex lower face reconstruction using a combined technique of Estlander flap and subscapular artery system free flaps.

    Science.gov (United States)

    Hamahata, Atsumori; Saitou, Takashi; Beppu, Takeshi; Shirakura, Satoshi; Hatanaka, Akio; Yamaki, Takashi; Sakurai, Hiroyuki

    2013-12-01

    When advanced mandibular carcinoma is resected, the defect may include lip and oral commissure. Free flap insertion is commonly used to reconstruct the lip defect. Although improvements in the oral reconstructive method via free flap use have been reported, functional and aesthetic results of the oral sphincter remain limited. This case report describes two individuals presenting with massive lower face defects, including a lower lip defect and a mandibular bone defect. Reconstruction was accomplished using the Estlander flap and free subscapular system of flaps. In both cases, the free subscapular artery system flap was elevated from the mandibular bone defect and other mucosal defect. The lower lip and oral commissure defect was reconstructed via Estlander flap. Free flaps survived 100% and both cases healed without complication. Patients regained good oral sphincter function with no reports of drooling. Thus, in cases involving massive lower face resection, including that of the lower lip and mandibular bone, this method of reconstruction when combined with lip-switch flap and subscapular artery system flap can prove to be useful.

  18. Effect of wing aspect ratio and flap span on aerodynamic characteristics of an externally blown jet-flap STOL model

    Science.gov (United States)

    Smith, C. C., Jr.

    1973-01-01

    An investigation has been conducted to determine the effects of flap span and wing aspect ratio on the static longitudinal aerodynamic characteristics and chordwise and spanwise pressure distributions on the wing and trailing-edge flap of a straight-wing STOL model having an externally blown jet flap without vertical and horizontal tail surfaces. The force tests were made over an angle-of-attack range for several thrust coefficients and two flap deflections. The pressure data are presented as tabulated and plotted chordwise pressure-distribution coefficients for angles of attack of 1 and 16. Pressure-distribution measurements were made at several spanwise stations.

  19. Dynamical localization of coupled relativistic kicked rotors

    Science.gov (United States)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  20. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  1. Unsteady aerodynamics and flow control for flapping wing flyers

    Science.gov (United States)

    Ho, Steven; Nassef, Hany; Pornsinsirirak, Nick; Tai, Yu-Chong; Ho, Chih-Ming

    2003-11-01

    The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (10 4-10 5) flight conditions as their biological counterparts. In this flow regime, rigid fixed wings drop dramatically in aerodynamic performance while flexible flapping wings gain efficacy and are the preferred propulsion method for small natural fliers. Researchers have long realized that steady-state aerodynamics does not properly capture the physical phenomena or forces present in flapping flight at this scale. Hence, unsteady flow mechanisms must dominate this regime. Furthermore, due to the low flight speeds, any disturbance such as gusts or wind will dramatically change the aerodynamic conditions around the MAV. In response, a suitable feedback control system and actuation technology must be developed so that the wing can maintain its aerodynamic efficiency in this extremely dynamic situation; one where the unsteady separated flow field and wing structure are tightly coupled and interact nonlinearly. For instance, birds and bats control their flexible wings with muscle tissue to successfully deal with rapid changes in the flow environment. Drawing from their example, perhaps MAVs can use lightweight actuators in conjunction with adaptive feedback control to shape the wing and achieve active flow control. This article first reviews the scaling laws and unsteady flow regime constraining both biological and man-made fliers. Then a summary of vortex dominated unsteady aerodynamics follows. Next, aeroelastic coupling and its effect on lift and thrust are discussed. Afterwards, flow control strategies found in nature and devised by man to deal with separated flows are examined. Recent work is also presented in using microelectromechanical systems (MEMS) actuators and angular speed

  2. Deltoid muscular flap transfer for the treatment of irreparable rotator cuff tears

    Directory of Open Access Journals (Sweden)

    Justus Gille

    2009-09-01

    Full Text Available The purpose of this study was to evaluate the outcome of deltoid muscle flap transfer for the treatment of irreparable rotator cuff tears. In a retrospective study 20 consecutive patients were evaluated. The index procedure took place between 2000 and 2003. Fifteen patients were male, mean age was 62 years. Inclusion criterion was a rotator cuff defect Bateman grade IV. Exclusion criteria were smaller defects, shoulder instability and fractures of the injured shoulder. An open reconstruction with acromioplasty and a pedicled delta flap was performed. Follow up period was mean 42 months. Follow-up included clinical examination, Magnetic Resonance Imaging (MRI and the Constant and Simple (CS shoulder tests. According to the Constant shoulder test the results were good in 13 patients, fair in 5 and unsatisfactory in 2. The pre-operative Constant Score improved from mean 25.7 points (±5.3 to 72.3 (±7.8 at follow-up. The mean values for the subcategories of CS increased significantly from 3.9 to 14.4 points for pain and from 4.2 to 15.9 points for activities daily routine (p0.05. Results of the Simple Shoulder Test showed a significant increase of the mean values from pre-operative 4.3 to 14.7 points post-operatively. MRI showed a subacromial covering of the defect in all cases, all flaps where intact on MRI but always the flap showed marked fatty degeneration. In conclusion, the delta flap is a simple method for the repair of large defects of the rotator cuff leading to satisfying medium results.

  3. Quadrilobed superior gluteal artery perforator flap for sacrococcygeal defects

    Institute of Scientific and Technical Information of China (English)

    HAI Heng-lin; SHEN Chuan-an; CHAI Jia-ke; LI Hua-tao; YU Yong-ming; LI Da-wei

    2013-01-01

    Background Perforator flaps are used extensively in repairing soft tissue defects.Superior gluteal artery perforatorflaps are used for repairing sacral defects,but the tension required for direct closure of the donor area after harvesting ofrelatively large flaps carries a risk of postoperative dehiscence.This research was to investigate a modified superiorgluteal artery perforator flap for repairing sacrococcygeal soft tissue defects.Methods From June 2003 to April 2010,we used our newly designed superior gluteal artery perforator flap for repair of sacrococcygeal soft tissue defects in 10 patients (study group).The wound and donor areas were measured,and the flaps were designed accordingly.Wound healing was assessed over a follow-up period of 6-38 months.From January 1998 to February 2003,twelve patients with sacrococcygeal pressure sores were treated with traditional methods,VY advancement flaps or oblong flaps,as control group.Results After debridement,the soft tissue defects ranged from 12 cm × 10 cm to 26 cm × 22 cm (mean 16.3 cm x 13.5cm).Four patients were treated using right-sided flaps ranging from 15 cm × 11 cm to 25 cm × 20 cm (mean 18.2 cm × 14cm).Four patients were treated using left-sided flaps,and two were treated using both right-and left-sided flaps.Suction drains were removed on postoperative Days 3-21 (mean 5.9) and sutures were removed on postoperative Days 12-14.Each flap included 1-2 perforators for each of the donor and recipient sites.Donor sites were closed directly.All flaps survived.In eight patients,the wounds healed after single-stage surgery.After further debridement,the wounds of the remaining two patients were considered healed on postoperative Days 26 and 33,respectively.The rate of first intention in the study group (80%,8/10) significantly increased than that of control group ((25%,3/12),X2=4.583,P=-0.032).Follow-up examinations found that the flaps had a soft texture without ulceration.In the two patients without

  4. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  5. Intraoperative Flap Complications in LASIK Surgery Performed by Ophthalmology Residents

    Science.gov (United States)

    Romero-Diaz-de-Leon, Lorena; Serna-Ojeda, Juan Carlos; Navas, Alejandro; Graue-Hernández, Enrique O.; Ramirez-Miranda, Arturo

    2016-01-01

    Purpose: To report the rate of flap-related complications in LASIK surgery performed by in-training ophthalmology residents and to analyze the risk factors for these complications. Methods: We analyzed 273 flap dissections in 145 patients from March 2013 to February 2014. We included all LASIK surgeries performed by 32 ophthalmology residents using a Moria M2 microkeratome. All the flap-related complications were noted. Comparison between both groups with and without complications was performed with an independent Student's t-test and relative risks were calculated. Results: There were 19 flap-related complications out of the 273 flap dissections (6.95%). The most common complication was incomplete flap dissection (n = 10; 3.66%), followed by free-cap (n = 5; 1.83%), and flap-buttonhole (n = 2; 0.73%). There was no significant difference between the complicated and uncomplicated cases in terms of the right versus the left eye, pachymetry results, white-to-white diameter, and spherical equivalent. But this difference was significant for mean keratometry (P = 0.008), K-min (P = 0.01), and K-max (P = 0.03) between these groups. Final visual acuity after rescheduling laser treatment was similar in both groups. Relative risks for flap-related complications were 2.03 for the first LASIK surgery (CI 95% 0.64 to 6.48; P = 0.22) and 1.26 (CI 95% 0.43 to 3.69; P = 0.66) for the surgeon's flap-related complications. Female gender presented an odds ratio of 2.48 (CI 95% 0.68 to 9.00; P = 0.16) for complications. Conclusion: Flap-related complications are common intraoperative event during LASIK surgery performed by in-training ophthalmologists. Keratometries and surgeon's first procedure represent a higher probability for flap related complications than some other biometric parameters of patient's eye. PMID:27621782

  6. The application of island myocutaneous flap for challenging wounds on cervico-thoracic region

    Institute of Scientific and Technical Information of China (English)

    XING Xin; XUE Chun-yu; LI Li; HUAN Jing-ning; GUO En-tan

    2006-01-01

    Objective:To introduce the experiences in the application of island myocutaneous flap for challenging wound on cervico-thoracic region. Methods: Different myocutaneous flaps were selected according to the location, peculiarity and etiological factor of wound. There were 28 cases of island pectoralis major island myocutanuous flaps, 34 cases of latissimus dorsi island myocutaneous flaps, 19 cases of trapizius island myocutaneous flaps and 17 cases of rectus abdominis island myocutaneous flaps in this report. Results: All 98 patients with challenging wound on cervico-thoracic region were successfully treated with this method without complications, and obtained functional and cosmetic effectiveness. Conclusion:Challenging wounds in cervico-nuchal region can be repaired with pertoralis major island myocutaneous flap, latissimus dorsi island myocutaneous flap and trapizius island myocutaneous flap, while challenging wounds in thoracic region can be repaired with latissimus dorsi island myocutaneous flap and rectus abdominis island myocutaneous flap. Satisfactory functional and cosmetic results can be obtained.

  7. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 2: Run log and tabulated data

    Science.gov (United States)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.

  8. Complex Technique of Large Sural Flap: An Alternative Option for Free Flap in Large Defect of the Traumatized Foot

    Directory of Open Access Journals (Sweden)

    Naser Mohammadkhah

    2011-04-01

    Full Text Available The distally based sural fasciocutaneous flap has become a main part of the reconstruction of the lower leg, heel and foot. However, perfusion problems and venous congestion have been reported. Over the past decade, several flap modifications have been reported to improve flap viability and to solve a myriad of reconstructive needs. The purpose of this paper is to describe our experience in harvesting the reversed large sural flap from the proximal and middle third of the leg for large defects on the foot. We applied the extended reversed sural flap from the proximal third of the leg in traumatized patients which had large defects on their foot. The technique was done in 3 parts: 1- the flaps were designed in the proximal third of the leg five centimeter lipofascial tissue was protected around the pedicle in distal part; 3- The pivot point was located in seven to eight cm proximal the lateral malleolus before the first fasciocutaneous perforators arising from the peroneal artery. Sural flaps from the proximal and middle third of the leg were designed in13 patients who had large defects on their foot. No flap necrosis or split thickness skin graft loss occurred. The flaps healed by the 3rd week excluding two patients. This study supports the application of our technique as a safe, easy and useable method in large defects of the foot. The results showed low rates of ischemia, venous congestion, dehiscence, infection and flap necrosis. Proximal extended and large distally based sural flap is an alternative to free tissue transfer for large defect reconstruction of the foot.

  9. Artificial Neural Network Based Rotor Capacitive Reactance Control for Energy Efficient Wound Rotor Induction Motor

    Directory of Open Access Journals (Sweden)

    K. Siva Kumar

    2012-01-01

    Full Text Available Problem statement: The Rotor reactance control by inclusion of external capacitance in the rotor circuit has been in recent research for improving the performances of Wound Rotor Induction Motor (WRIM. The rotor capacitive reactance is adjusted such that for any desired load torque the efficiency of the WRIM is maximized. The rotor external capacitance can be controlled using a dynamic capacitor in which the duty ratio is varied for emulating the capacitance value. This study presents a novel technique for tracking maximum efficiency point in the entire operating range of WRIM using Artificial Neural Network (ANN. The data for ANN training were obtained on a three phase WRIM with dynamic capacitor control and rotor short circuit at different speed and load torque values. Approach: A novel neural network model based on the back-propagation algorithm has been developed and trained in determining the maximum efficiency of the motor with no prior knowledge of the machine parameters. The input variables to the ANN are stator current (Is, Speed (N and Torque (Tm and the output variable is the duty ratio (D. Results: The target is pre-set and the accuracy of the ANN model is measured using Mean Square Error (MSE and R2 parameters. The result of R2 value of the proposed ANN model is found to be 0.99980. Conclusion: The optimal duty ratio and corresponding optimal rotor capacitance for improving the performances of the motor are predicted for low, medium and full loads by using proposed ANN model.

  10. Derivation of airfoil characteristics for the LM 19.1 blade based on 3D CFD rotor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.; Soerensen, N.N.; Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Airfoil characteristics for the LM 19.1 blade are derived from 3D CFD computations on a full-scale 41-m rotor. Based on 3D CFD the force distributions on the blades are determined, from which airfoil characteristics are derived using the momentum theory. The final airfoil characteristics are constructed using both wind tunnel measurements and 3D CFD. Compared to 2D wind tunnel measurements they show a low lift in stall for the airfoil sections at the tip. At the airfoil sections at the inner part of the blade, they show a high lift in stall. At about 60% radius the lift agrees well to 2D wind tunnel measurements. Aero-elastic calculations using the final airfoil characteristics show good agreement to measured power and flap moments. Furthermore, a fatigue load analysis shows a reduction of up to 15% of the load compared to commonly used data. (au)

  11. Bifurcation to forward flapping flight at intermediate Reynolds number.

    Science.gov (United States)

    Vandenberghe, Nicolas; Zhang, Jun; Childress, Stephen

    2003-11-01

    The locomotion of most fish and birds is realized by flapping wings or fins transverse to the direction of travel. According to early theoretical studies, a flapping wing translating at finite speed in an inviscid fluid experiences a propulsive force. In steady forward flight this thrust is balanced by drag. Such "lift-based mechanisms" of thrust production are characteristic of the Eulerian realm, where discrete vortical structures are shed. But, when the Reynolds number is small, viscous forces dominate and reciprocal flapping motions are ineffective. A flapping wing experiences a net drag and cannot be used to propel an organism. We have devised an experiment to bridge the two regimes, and to examine the transition to forward flight at intermediate Reynolds numbers. We study the dynamics of an horizontal wing that is flapped up and down and is free to move either forwards or backwards. This very simple kinematics emphasizes the demarcation between low and high Reynolds number because it is effective in the Eulerian realm but has no effect in the Stokesian realm. We show that flapping flight occurs abruptly as a symmetry breaking bifurcation at a critical flapping frequency. Beyond the bifurcation the forward speed increases linearly with the flapping frequency. The experiment establishes a clear demarcation between the different strategies of locomotion at large and small Reynolds number.

  12. Repair of large palatal fistula using tongue flap

    Directory of Open Access Journals (Sweden)

    Fejjal Nawfal

    2014-01-01

    Full Text Available Large palatal fistulas are a challenging problem in cleft surgery. Many techniques are used to close the defect. The tongue flap is an easy and reproductible procedure for managing this complication. The authors report a case of a large palatal fistula closure with anteriorly based tongue flap.

  13. 14 CFR 25.701 - Flap and slat interconnection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap and slat interconnection. 25.701....701 Flap and slat interconnection. (a) Unless the airplane has safe flight characteristics with the... sides of the plane of symmetry must be synchronized by a mechanical interconnection or...

  14. Pectoralis myocutaneous flap for salvage of necrotic wounds

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.C.; Davis, R.K.; Koltai, P.J.

    1985-02-01

    The authors have utilized six pectoralis major myocutaneous flaps in attempts to salvage extensive necrotic wounds of the pharynx and neck. The flap was employed in the following situations: massive necrosis of the entire neck skin with both carotid artery systems exposed, radiation necrosis of the neck skin with exposure of carotid artery, dehiscence of gastric pull-up from pharynx with resultant carotid exposure, failed trapezius flap in a radionecrotic oral cavity, and two cases of pharyngocutaneous fistula with extensive soft tissue necrosis. These flaps achieved healing in all cases. One death occurred 3 weeks following complete cutaneous healing secondary to a ruptured carotid pseudoaneurysm. One flap underwent total skin loss but the entirety of the muscle survived and the fistula was successfully closed with the back of the muscle being subsequently skin grafted. One case of dehiscence of the flap from oral mucosa resulted in a minor exposure of mandible with limited osteoradionecrosis controlled by topical means. This flap has performed extremely well in these precarious and difficult situations that previously may not have been salvageable. It has also been effective in abbreviating the required hospitalization and wound care. The authors conclude that the pectoralis myocutaneous flap should be the primary choice for the management of extensive postsurgical wound necrosis.

  15. Dorsalis pedis arterialized venous flap for hand and foot reconstruction

    Institute of Scientific and Technical Information of China (English)

    YU Guang; LEI Hong-yu; GUO Shuang; HUANG Jian-hua; YU Hao

    2012-01-01

    Objective:To report the results of repair of skin defects in the extremities with arterialized venous flap harvested from the lateral aspect of the dorsum of the foot.Methods:Six cases of skin and soft tissue defects over the foot and hands were resurfaced by free arterialized venous flaps,including five patients with skin defects of the hands,and one with defects at the dorsum of the foot.The flaps were harvested from the lateral aspect of the dorsum of the foot with the sizes ranging from 2 cm×5.5 cm to 6 cm×11 cm.Two veins at the proximal margin of the flap were retained,one of which was anastomosed to a recipient bed artery to provide arterial inflow and the other was anastomosed to a recipient bed vein for venous outflow.Results:All flaps demonstrated mild edema and survived completely.Blisters appeared on four flaps.Using this technique,we achieved good functional and cosmetic results in this series.Conclusions:Dorsalis pedis arterialized venous flap with rich vascular communications could enhance peripheral perfusion and decrease congestion of venous flaps,thereby improves reliability and utility for extremity reconstruction.

  16. Experimental and numerical study of an autonomous flap

    NARCIS (Netherlands)

    Bernhammer, L.O.; Navalkar, S.T.; Sodja, J.; De Breuker, R.; Karpel, M.

    2015-01-01

    This paper presents the experimental and numerical study of an autonomous load alleviation concept using trailing edge flaps. The flaps are autonomous units, which for instance can be used for gust load alleviation. The unit is self-powered and self-actuated through trailing edge tabs which are moun

  17. Coverage of soft tissue defect in palm with prefabricated flap

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gong-lin; CAI Guo-rong; ZHANG Ming; ZHENG Liang-jun; ZHANG Yan

    2008-01-01

    @@ The coverage of large soft tissue defects in palm remains a challenge in the plastic recon-structive surgery. There are many local tissue transfers described for small-sized defects of hand, whereas large defect require regional flaps such as the radial forearm flap or free tissue transfer.1-5

  18. The versatility of the pectoralis major flap in reconstructive surgery

    NARCIS (Netherlands)

    Corten, E.M.L.

    2008-01-01

    Background The pectoralis major flap is frequently being applied as a pedicled flap for head and neck reconstruction. To reduce donor-site morbidity, muscle-preserving methods using only a segment of this muscle for transplantation, were described. The nerve supply to the clavicular part of the pect

  19. Monitoring microvascular free flaps with tissue oxygen measurement and PET.

    Science.gov (United States)

    Schrey, Aleksi R; Kinnunen, Ilpo A J; Grénman, Reidar A; Minn, Heikki R I; Aitasalo, Kalle M J

    2008-07-01

    Tissue oxygen measurement and positron emission tomography (PET) were evaluated as methods for predicting ischemia in microvascular free flaps of the head and neck. Ten patients with head and neck squamous cell cancer underwent resection of the tumour followed by microvascular reconstruction with a free flap. Tissue oxygenation of the flap (P(ti)O(2)) was continuously monitored for three postoperative (POP) days and the blood flow of the flap was assessed using oxygen-15 labelled water and PET. In three free flaps a perfusion problem was suspected due to a remarkable drop in P(ti)O(2)-values, due to two anastomosis problems and due to POP turgor. No flap losses occurred. During the blood flow measurements with PET [mean 8.5 mL 100 g(-1) min(-1 )(SD 2.5)], the mean P(ti)O(2) of the flaps [46.8 mmHg (SD 17.0)] appeared to correlate with each other in each patient (pmonitoring system of free flaps. The perfusion-study with PET correlates with P(ti)O(2)-measurement.

  20. The use of free flaps in skull base reconstruction.

    Science.gov (United States)

    Macía, G; Picón, M; Nuñez, J; Almeida, F; Alvarez, I; Acero, J

    2016-02-01

    Skull base tumours are rare, comprising less than 1% of all tumours of the head and neck. Surgical treatment of these tumours involves the approach, the resection, and the reconstruction of the defect, which present a challenge due to the technical difficulty and anatomical complexity. A retrospective study of 17 patients with tumours involving the skull base, treated by resection and immediate reconstruction using microsurgical free flaps, is presented; 11 were men and six were women. The following types of flap were used: osteocutaneous fibula flaps, fasciocutaneous anterolateral thigh flaps, and myocutaneous latissimus dorsi flaps. The most common histology of the tumours was squamous cell carcinoma. The most frequent point of origin was the paranasal sinuses (58.8%). All of the free flaps used for reconstruction were viable. A cerebrospinal fluid fistula occurred in two patients, and in one of these cases, meningoencephalitis led to death. In conclusion, the reconstruction of large defects of the skull base after ablation requires a viable tissue that in many cases can be obtained only through the use of microvascular free flaps. The type of flap to be selected depends on the anatomical structures and size of the defect to be restored.

  1. A Case Report on Bilateral Knee Coverage Following Septic Arthritis: Lateral Distal Thigh Island Flap and Medial Head Gastrocnemius Flap Methods

    Directory of Open Access Journals (Sweden)

    Abdolrazaghi

    2016-03-01

    Full Text Available Introduction Septic arthritis is the rheumatological and orthopedic emergency that causes the most difficulties with joints–especially knee and hip joints. The clinical symptoms include pain, swelling, inflammation, stiffness, and a limited range of motion in both active and passive joints. Debridement of the necrotic tissue is one beneficial method for septic arthritis treatment, although soft tissue defects around joints are a challenging issue for surgeons. Our purpose was to investigate the consequences of two flap surgery methods undertaken to repair soft tissue damaged during knee joint debridement caused by septic arthritis. Case Presentation This is a case report concerning a patient who had septic arthritis in the knee area and so underwent soft tissue surgery. The reconstruction methods were not the same for both knees as the lateral distal thigh island flap reparation method was used on the left knee and the medial head gastrocnemius flap method was utilized on the right. We then investigated the results and outcomes of the surgery three months later. Conclusions Lower extremity movement extent was carefully evaluated and, in respect to muscle strength, the patient was able to walk independently three months after the surgery. The patient’s balance was studied and the results showed moderate levels of stability.

  2. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  3. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  4. Reduction mechanism of dynamic loads on down wind rotor; Furyoku hatsuden system down wind rotor no doteki kaju no keigen kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K.; Shimizu, Y.; Yasui, T. [Tokai University, Tokyo (Japan)

    1997-11-25

    Dynamic force on blades in a large wind mill changes with rotational speed for various reasons, such as wind shear that causes vertical distribution of wind velocity or titling angle. Therefore, a 2-blade system on a teetered hub is a practical selection for the coned, down-wind type. Use of teetered axis greatly reduces bending moment in the flap direction and that at the axis of rotation. An attempt was made to understand dynamic loads by inertial force resulting from oscillation of the blade rotating on the teetered axis, and thereby to avoid them. The in-plane load can be diminished to zero when the teetered axis is coincided with the center of gravity, but generally cannot be avoided when the blade is strained significantly, except it is operated at the rated condition. The in-plane load and bending moment can be avoided, when rotational freedom is given around the y axis. Dynamic load on a down-wind rotor can be avoided by use of universal joint. 3 refs., 6 figs.

  5. Coarse-grained models for interacting, flapping swimmers

    Science.gov (United States)

    Oza, Anand; Ristroph, Leif; Shelley, Michael; Courant Institute Applied Math Lab Collaboration

    2016-11-01

    We present the results of a theoretical investigation into the dynamics of interacting flapping swimmers. Our study is motivated by ongoing experiments in the NYU Applied Math Lab, in which freely-translating, heaving airfoils interact hydrodynamically to choose their relative positions and velocities. We develop a discrete dynamical system in which flapping swimmers shed point vortices during each flapping cycle, which in turn exert forces on the swimmers. We present a framework for finding exact solutions to the evolution equations and for assessing their stability, giving physical insight into the preference for certain observed "schooling states". The model may be extended to arrays of flapping swimmers, and configurations in which the swimmers' flapping frequencies are incommensurate. Generally, our results indicate how hydrodynamics may mediate schooling and flocking behavior in biological contexts. A. Oza acknowledges the support of the NSF Mathematical Sciences Postdoctoral Fellowship.

  6. Reconstruction of weightbearing forefoot defects with digital artery flaps.

    Science.gov (United States)

    Liu, Lifeng; Cao, Xuecheng; Cai, Jinfang

    2015-01-01

    Reconstruction of a defect of the weightbearing forefoot region remains a challenging problem owing to the limited alternatives available. The digital artery flap can be used for coverage of defects in the weightbearing forefoot. The present study reports our results using a digital artery flap for reconstruction of soft tissue defects of the weightbearing forefoot in 8 patients. The mean patient age was 35 ± 11.3 years. The etiology of the soft tissue defects included 4 (50%) traumatic events, 2 (25%) dysfunctional scars, and 2 (25%) neuropathic ulcerations. The mean postoperative follow-up duration was 22 ± 11.1 months (range 12 months to 4 years). All 8 flaps survived successfully. The complications included 1 case of delayed healing of a neuropathic ulceration. The digital artery flap is a good alternative for soft tissue defects of the weightbearing forefoot. The surgical techniques for harvesting the flaps are easy to manage.

  7. Distally Based Abductor Hallucis Adipomuscular Flap for Forefoot Plantar Reconstruction.

    Science.gov (United States)

    Lee, Sanglim; Kim, Min Bom; Lee, Young Ho; Baek, Jeong Kook; Baek, Goo Hyun

    2015-09-01

    Soft tissue and bone defects of the lower leg, ankle, and heel region often require coverage by local or distant flaps. The authors successfully used the distally based adipomuscular abductor hallucis flap for the treatment of 7 patients with soft tissue defect on the plantar forefoot after diabetic ulcer (n = 2), excision of melanoma at the medial forefoot (n = 3), and posttraumatic defects of the plantar forefoot (n = 2). The size of the defects ranged from 6 to 36 cm. All defects were covered successfully without major complications. The distally based adipomuscular flap from the abductor hallucis muscle provides a reliable coverage for small and moderate defects of the plantar and medial forefoot. This flap is often preferable to the use of free flaps because the surgery is rapidly performed and does not require microsurgical expertise.

  8. Free Flap Procedures for Reconstruction After Head and Neck Cancer.

    Science.gov (United States)

    Kini, Erin

    2015-12-01

    Patients with head and neck cancer are seeking improved surgical procedures to avoid severe defects that result from head and neck cancer resection. Free flap reconstruction provides vascularized tissue that has been transferred from a distant donor site on a patient's body to a recipient site, markedly improving wound closure and protecting structures of the head and neck. This article discusses free flap procedures for reconstruction after head and neck cancer resection, including the following procedure phases: airway protection and neck dissections, tumor resection, flap harvest, microvascular anastomosis of the flap, and reconstruction and closure. The article also explains specific risk factors for patients undergoing free flap procedures that have been identified in the literature and include procedure length, hypothermia, and pressure injuries. Each of these factors is discussed regarding its specific effect on this patient population, and the nursing interventions to reduce these risks are identified.

  9. Vaginal reconstruction using perineal-thigh flaps with subcutaneous pedicle.

    Science.gov (United States)

    Chen, Z; Chen, C; Chen, M; Zhang, J; Wu, N; Wang, J

    1991-03-01

    A technique of vaginal reconstruction using bilateral, perineal-thigh flaps with subcutaneous pedicle is described. In this procedure, the flaps were raised bilaterally and introduced into an artificial space between the urinary bladder and rectum. The blood supply for the flaps flows from the perineal artery through anastomotic branches to the external pudendal artery. The authors used the technique on four patients, and all the flaps survived entirely. There was no complication. According to a more than two-year follow-up survey, the reconstructed vaginas are expansible and contract little. No stent is needed. There is good sensitivity in the wall of the artificial vagina because sensory nerves run through the flaps.

  10. Active control of tiltrotor blade in-plane loads during maneuvers

    Science.gov (United States)

    Miller, David G.; Ham, Norman D.

    1988-01-01

    The origin of one/rev rotor aerodynamic loads which arise in tiltrotor aircraft during airplane-mode high speed pull-up and push-over maneuvers is examined using a coupled rotor/fuselage dynamic simulation. A modified eigenstructure assignment technique is used to design a controller which alleviates the in-plane loads during high pitch rate maneuvers. The controller utilizes rotor cyclic pitch inputs to restructure the aircraft short period and phugoid responses in order to achieve the coupling between pitch rate and rotor flapping responses which minimizes the rotor aerodynamic loading. Realistic time delays in the feedback path are considered during the controller design. Stability robustness in the presence of high frequency modeling errors is ensured through the use of singular value analysis.

  11. Application of skin flaps transplantation in burn surgery in China%皮瓣移植在我国烧伤外科中的应用

    Institute of Scientific and Technical Information of China (English)

    黄晓元

    2008-01-01

    The history and application of surgical flap transplantation in burn wound were briefly reviewed. We outlined skin flap, muscuiocutaneous flap, fascia flap and neurocutaneous vascular flap in this paper and recommended repair deep wounds with flap. All in all, in this review, we hope to provide a meaningful option for clinical application of surgical flap in the future.

  12. Infrahyoid myofascial flap for tongue reconstruction.

    Science.gov (United States)

    Windfuhr, Jochen P; Remmert, Stephan

    2006-11-01

    For selected cases, reconstruction of the tongue may be required after tumor removal. This study was undertaken to demonstrate a simplified concept of tongue reconstruction with emphasis on infrahyoid myofascial flaps (IMF). The defects of the tongue were classified in 23 patients according to the extent of tumor growth, functional and surgical aspects. The oral tongue (OT; n = 1), base of tongue (BT; n = 12) or both areas (OT and BT; n = 10) were involved, with (n = 14) or without (n = 9) infiltration of adjacent tissues. Minor defects (extent (1/4) or less) required no reconstructive procedure at any area. Major defect closure (extent (1/2)-3/4) was accomplished with a combination of IMF covered by a radial forearm flap (RFF). A complete reconstruction of the OT was achieved with a combination of a bilateral IMF covered by a RFF. Whenever the complete BT has to be removed, interposition of a vein graft to establish a sufficient arterial blood supply to the remaining OT is mandatory. Moreover, a larynx lift to prevent aspiration is recommendable. Resection of adjacent soft tissues requires a larger RFF (OT; BT) or flaps from the shoulder-back region (BT and OT). Whenever the integrity of the mandible has to be sacrificed, a free fibula graft serves as an excellent tool for reconstruction. IMF serves as a reliable tool for minor or major reconstructive procedures of the tongue. Reliability and versatility of IMF may contribute to a reduced time required for surgery since harvesting is performed in the neck area immediately after neck dissection. Moreover, harvesting of the IMF does not result in an increased postoperative morbidity. Hence, functional restoration can be achieved with a more cost-effective procedure.

  13. Reconstructive Surgery for Severe Penile Inadequacy: Phalloplasty with a Free Radial Forearm Flap or a Pedicled Anterolateral Thigh Flap

    Directory of Open Access Journals (Sweden)

    N. Lumen

    2008-01-01

    Full Text Available Objectives. Severe penile inadequacy in adolescents is rare. Phallic reconstruction to treat this devastating condition is a major challenge to the reconstructive surgeon. Phallic reconstruction using the free radial forearm flap (RFF or the pedicled anterolateral thigh flap (ALTF has been routinely used in female-to-male transsexuals. Recently we started to use these techniques in the treatment of severe penile inadequacy. Methods. Eleven males (age 15 to 42 years were treated with a phallic reconstruction. The RFF is our method of choice; the ALTF is an alternative when a free flap is contraindicated or less desired by the patient. The RFF was used in 7 patients, the ALTF in 4 patients. Mean followup was 25 months (range: 4–49 months. Aesthetic and functional results were evaluated. Results. There were no complications related to the flap. Aesthetic results were judged as “good” in 9 patients and “moderate” in 2 patients. Sensitivity in the RFF was superior compared to the ALTF. Four patients developed urinary complications (stricture and/or fistula. Six patients underwent erectile implant surgery. In 2 patients the erectile implant had to be removed due to infection or erosion. Conclusion. In case of severe penile inadequacy due to whatever condition, a phalloplasty is the preferred treatment nowadays. The free radial forearm flap is still the method of choice. The anterolateral thigh flap can be a good alternative, especially when free flaps are contraindicated, but sensitivity is markedly inferior in these flaps.

  14. Rotor-rotor interaction for counter-rotating fans. Part 1: Three-dimensional flowfield measurements

    Science.gov (United States)

    Shin, Hyoun-Woo; Whitfield, Charlotte E.; Wisler, David C.

    1994-11-01

    The rotor wake/vortex flowfield generated in a scale model simulator of General Electric's counter-rotating unducted fan (UDF) engine was investigated using three-dimensional hot-wire anemometry. The purpose was to obtain a set of benchmark experimental aerodynamic data defining the rotor wake and vortex structure, particularly in the tip region, and to relate this observed flow structure to its acoustic signature. The tests were conducted in a large, freejet anechoic chamber. Measurements of the three components of velocity were made at axial stations upstream and downstream of each rotor for conditions that simulate takeoff, cutback, and approach power. Two different forward blade designs were evaluated. The tip vortices, the axial velocity defect in the vortex core, and differences in the interaction of the wakes and vortices generated by the forward and aft rotor are used to explain differences in noise generated by the two different rotor designs. Part 1 presents the three-dimensional flowfield measurements. Part 2 (aeroacoustic prediction and analysis), which will be presented later, will give an acoustic prediction using the measured data.

  15. The Dynamics of Rotor with Rubbing

    Directory of Open Access Journals (Sweden)

    Jerzy T. Sawicki

    1999-01-01

    characteristics of rub-induced rotor response, initial conditions, as well as appropriate ranges of system parameters. Of special interest are the changes in the apparent nonlinearity of the system dynamics as rubs are induced at different rotor speeds. In particular, starting with 2nd order sub/superharmonics, which are symptomatic of quadratic nonlinearity, progressively higher order polynomial behavior is excited, i.e., cubic, giving rise to 3rd order sub/superharmonics. As the speed is transitioned between such apparent nonlinearities, chaotic like behavior is induced because of the lack of whole or rational tone tuning between the apparent system frequency and the external source noise. The cause of such behavior will be discussed in detail along with the results of several parametric studies.

  16. CFD simulations of the MEXICO rotor

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik

    2011-01-01

    The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...... the experimental results using the Reynold‐Averaged Navier‐Stokes method. Second, three‐dimensional airfoil characteristics are extracted that allow simulations with simpler wake models. Copyright © 2011 John Wiley & Sons, Ltd....

  17. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  18. Vortex shedding by a Savonius rotor

    Science.gov (United States)

    Botrini, M.; Beguier, C.; Chauvin, A.; Brun, R.

    1984-05-01

    A series of flow visualizations was performed to characterize the wake vortices of a Savonius rotor. The trials were undertaken in an attempt to account for discrepancies between theoretical and experimentally-derived power coefficients. The Savonius examined was two-bladed with a center offset. All tests were made in a water tunnel. Dye injection provided the visualization, and average velocities and velocity fluctuations were measured using a laser Doppler anemometer. A system of three vortices was found to be periodically shed by the rotor. Flow velocity fluctuation intensity peaked as a vortex was shed. The vortex shedding alternated from blade to blade, so that one was shed from a blade moving upstream.

  19. Simulation of flow around rotating Savonius rotors

    Science.gov (United States)

    Ishimatsu, Katsuya; Shinohara, Toshio

    1993-09-01

    Flow around Savonius rotors was simulated by solving 2-D (two-dimensional) Navier-Stokes equations. The equations were discretized by finite volume method for space and fractional step method for time. Convection terms were specially discretized by an upwinding scheme for unstructured grid. Only rotating rotors were simulated in this report. The values of parameters were as follows: Reynolds number, 10(exp 5); overlap ratio, zero and 0.16; and tip speed ratio, 0.25 to 1.75. Results showed good agreement with experimental data for the following points: optimum tip speed ratio is 0.75 to 1.0; overlapping is effective to increase power coefficient. Moreover, simulated flow fields showed that vortex shedding occur at not only tips of bucket but back of bucket and the shed vortex decrease torque.

  20. Endoscopic, assisted, modified turbinoplasty with mucosal flap.

    Science.gov (United States)

    Puterman, M M; Segal, N; Joshua, B-Z

    2012-05-01

    A variety of surgical methods have been developed to reduce the volume of the inferior turbinates, in order to create a more patent nasal airway. We describe a technique used in our department since February 2002 for all patients undergoing inferior turbinectomy. We resect with endoscopic assistance the lateral mucosa and bony inferior turbinate. This technique can reduce a large volume of the turbinate while preserving the mucosal continuity and the submucosa by covering the raw surface with a mucosal flap. We believe our method minimises post-operative side effects and complications such as dryness, infection, bleeding and pain.

  1. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  2. Wake vortex alleviation using rapidly actuated segmented Gurney flaps

    Science.gov (United States)

    Matalanis, Claude G.

    All bodies that generate lift also generate circulation. The circulation generated by large commercial aircraft remains in their wake in the form of trailing vortices. These vortices can be hazardous to following aircraft due to their strength and persistence. To account for this, airports abide by spacing rules which govern the frequency with which aircraft can use their runways when operating in instrument flight rules. These spacing rules are the limiting factor on increasing airport capacity. We conducted an experimental and computational study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation. Wind tunnel tests were performed on a half-span model NACA 0012 wing equipped with an array of 13 independent MITE pairs. The chord-based Reynolds number was around 350,000. Each MiTE could extend 0.015 chord lengths perpendicular to the freestream on the pressure side of the wing. Pressure profiles and a five-hole probe survey in the near wake were used to examine the influence that the MiTEs had upon the wing aerodynamics and the vortex rollup process. Particle image velocimetry was used to measure the static and time-dependent response of the vortex in the intermediate wake to various MiTE actuation schemes. These results were used to form complete initial conditions for vortex filament computations of the far wake evolution. Results from these computations showed that the perturbations created by MiTEs could be used to excite a variety of three-dimensional inviscid vortex instabilities. Finally, the research performed on MiTEs led to the invention of a more practical wake alleviation device: the spanwise actuating Gurney flap. Prototype tests showed that this device could produce similar perturbations to the MiTEs.

  3. Dark rotors in the late universe.

    Science.gov (United States)

    Mayer, Frederick J

    2015-11-01

    The tresino phase-transition that took place about 300 years after the big-bang, converted most baryons into almost equal numbers of protons and tresinos. Many of these become oppositely-charged rotating pairs or "rotors". This paper examines the formation, evolution, disposition and observations of the protons and tresinos from the phase-transition to the present era. The solar corona is further examined within the same tresino phase-transition picture.

  4. Increased Flap Weight and Decreased Perforator Number Predict Fat Necrosis in DIEP Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Carolyn L. Mulvey, BS

    2013-05-01

    Conclusions: Flaps with increasing weight have increased risk of fat necrosis. These data suggest that inclusion of more than 1 perforator may decrease odds of fat necrosis in large flaps. Perforator flap breast reconstruction can be performed safely; however, considerations concerning race, body mass index, staging with tissue expanders, perforator number, and flap weight may optimize outcomes.

  5. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures

    Science.gov (United States)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.

  6. Flap prefabrication and stem cell-assisted tissue expansion: how we acquire a monoblock flap for full face resurfacing.

    Science.gov (United States)

    Li, Qingfeng; Zan, Tao; Li, Haizhou; Zhou, Shuangbai; Gu, Bin; Liu, Kai; Xie, Feng; Xie, Yun

    2014-01-01

    Total face skin and soft-tissue defects remain one of the biggest challenges in reconstructive surgery. Reconstruction of the entire face with uniform coverage and delicate features is difficult to achieve. To avoid the patchwork result seen in multiple flaps and skin grafts, 1 monoblock flap that has similar color, texture, and thickness might be an ideal option to minimize the incisional scars and several surgical procedures but is unavailable with current approaches because of the lack of sufficient matched tissue and the unreliable blood supply for such a large flap. To acquire a monoblock flap for full face reconstruction, we combine the prefabricated flaps, skin overexpansion, and bone marrow mononuclear stem cell transplantation for total facial resurfacing. In this article, we present our experience from our case series that provides universally matched skin and near-normal facial contour. It is a reliable and an excellent reconstructive option for massive facial skin defect.

  7. Stopped-Rotor Cyclocopter for Venus Exploration

    Science.gov (United States)

    Husseyin, Sema; Warmbrodt, William G.

    2016-01-01

    The cyclocopter system can use two or more rotating blades to create lift, propulsion and control. This system is explored for its use in a mission to Venus. Cyclocopters are not limited to speed and altitude and can provide 360 degrees of vector thrusting which is favorable for good maneuverability. The novel aspect of this study is that no other cyclocopter configuration has been previously proposed for Venus or any (terrestrial or otherwise) exploration application where the cyclocopters rotating blades are stopped, and act as fixed wings. The design considerations for this unique planetary aerial vehicle are discussed in terms of implementing the use of a cyclorotor blade system combined with a fixed wing and stopped rotor mechanism. This proposed concept avoids many of the disadvantages of conventional-rotor stopped-rotor concepts and accounts for the high temperature, pressure and atmospheric density present on Venus while carrying out the mission objectives. The fundamental goal is to find an ideal design that implements the combined use of cyclorotors and fixed wing surfaces. These design concepts will be analyzed with the computational fluid dynamics tool RotCFD for aerodynamic assessment. Aspects of the vehicle design is 3D printed and tested in a small water tunnel or wind tunnel.

  8. Investigation of piezoelectric flaps for load alleviation using CFD; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, J.C.

    2010-03-15

    Cost efficient wind power generation demands for large wind turbines with a long lifetime. These demands place high interests on sophisticated load control techniques such as deformable trailing edge flaps. In this work a previously tested prototype airfoil was investigated by using the 2D incompressible RANS solver EllipSys2D. The prototype was built with a Risoe-B1-18 airfoil where piezoelectric actuators THUNDER TH-6R were attached at the trailing edge to realize a movable flap. The results of the simulation were compared to measurements of the previous wind tunnel test and comprehensive steady state computations were conducted to gain information about the general airfoil properties. The model was subsequently used to investigate aero-servo-elastic effects on the 2D airfoil section exposed to a fluctuating inflow. It is explained how a fluctuating inflow was simulated with EllipSys2D and how the CFD solver was coupled with a 3 DOF structural model and with two different control algorithms. Control 1 used the measured AOA in front of the LE as input, Control 2 used the pressure difference between suction and pressure side as input. The model showed a substantial load reduction potential for the present prototype airfoil. For a wind step from 10 m/s to 10.5 m/s the standard deviation of the structural deflection normal to the rotor plane could be reduced with up to 98 % (Control 1) and 96 % (Control 2). A 4 s turbulent inflow with TI=2.2 % could be reduced with up to 81 % (Control 1) and 82 % (Control 2). For a 12 s inflow with TI=2.4 % the standard deviation could be reduced with up to 68 % (Control 1) and 67 % (Control 2). The influence of possible time lags inside the control loop on the reduction potential of the prototype was also investigated. For a 12 s inflow with a tripled turbulence intensity of TI=7.7 % the prototype airfoil could still reach a reduction of up to 54 %. For an extended flap range of -6 to +6 degrees the reduction could be returned to 66

  9. Turbine flowmeter for liquid helium with the rotor magnetically levitated

    Science.gov (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.

  10. Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine

    Science.gov (United States)

    Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine. A model of a two-bucket Savonius type hydraulic turbine was constructed and tested in a water tunnel to arrive at an optimum installation condition. Effects of two installation parameters, namely a distance between a rotor and a bottom wall of the tunnel, a rotation direction of the rotor, on the power performance were studied. A flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of these parameters. From this study it was found that the power performances of Savonius hydraulic turbine were changed with the distance between the rotor and the bottom wall of the tunnel and with a rotation direction of the rotor.

  11. An experimental study on improvement of Savonius rotor performance

    Directory of Open Access Journals (Sweden)

    N.H. Mahmoud

    2012-03-01

    In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.

  12. Expanded retroauricular skin and fascial flap in congenital microtia reconstruction.

    Science.gov (United States)

    Zhang, Qingguo; Quan, Yuzhu; Su, Yuanda; Shi, Lei; Xie, Yangchun; Liu, Xinhai

    2010-04-01

    The aim of this article is to report the application of expanding retroauricular skin fascia flap, and autogenous costal cartilage for congenital microtia reconstruction. Microtia reconstruction was generally completed in 3 surgical stages. In the first surgical stage, a 50 or 80 mL kidney-shaped tissue expander was inserted subcutaneously in the retroauricular mastoid region. Inflation of saline volume increased up to 60 to 80 mL, and skin flap was expanded for 2 to 3 months postoperatively. In the second surgical stage, removal of tissue expander, formation of retroauricular skin flap, elevation of retroauricular fascia flap, and pedicles of both flaps in remnant ear side were performed. Costal cartilage was harvested from ipsilateral side chest to the ear for reconstruction. The 3D ear framework was sculpted with stabilization of structure, contour and erection. Simultaneously, intermediate full thickness skin graft of 4 x 8 cm was obtained from previous incision site from where costal cartilage was harvested. Cartilage ear framework was anchored between skin flap and fascia flap, and fixed it symmetrically to the opposite normal ear, inferior portion of the ear framework was wrapped by remnant ear lobule, expanded skin flap covered the anterior portion of the framework, fascial flap was draped to the posterior side of framework and helical rim, then fascial flap was surfaced by intermediate full thickness skin graft. Suction drain was inserted and coated between skin flap and framework, drain was removed fifth postoperative day. Tragus construction and conchal excavation with skin graft was performed in the third stage of microtia reconstruction. Between October 2000 and October 2007, 426 cases were diagnosed as unilateral microtia patients and 22 cases were bilateral microtia patients. Therefore, 448 microtia ears were treated with tissue expander and autogenous costal cartilage. In 262 cases, structure of the helix, tragus, conchal excavation

  13. Free Medial Plantar Flap Connection with a Posterior Tibial Artery Flap in Reconstruction of Fore–Mid Foot Skin Defect

    Science.gov (United States)

    Wu, Hao; Sheng, Jia-Gen

    2016-01-01

    Background: Although there are many surgical treatments for covering the skin defect of the fore–mid foot, how to reconstruct the weight-bearing region remains a challenge. The weight-bearing region of the sole needs to withstand the pressure and shearing stresses of walking, so the plantar skin is anatomically different from other skins in the areas of texture, thickness, subcutaneous tissue, etc. Medial plantar flaps that are harvested from the instep region are regarded as the first choice for weight-bearing region reconstruction because of their excellent functional and aesthetic long-term result. However, when facing an extensive skin defect on a weight-bearing area such as a fore–mid foot avulsion, the application of this flap is limited because if we put the flap in a weight-bearing area of the forefoot, the set of vessels will be exposed to outside. Methods: We suggest 2 connected free flaps (posterior tibial artery flap and medial plantar flap) pedicled with 1 set of vessels. The medial plantar flap was used to cover the skin defect of the weight-bearing area in the forefoot. The dorsal skin defect of the injured foot was covered with a posterior tibial artery flap and supplied the medial plantar flap with the posterior tibial vessel. The midfoot skin defect was repaired by a full-skin grafting. Results: Long-term follow-up results showed that the shape and function of the injured limbs recovered almost entirely. Conclusion: This method of connected flaps is suitable for repairing large skin defects of the fore–mid foot. PMID:27975013

  14. Systemic preconditioning by a prolyl hydroxylase inhibitor promotes prevention of skin flap necrosis via HIF-1-induced bone marrow-derived cells.

    Directory of Open Access Journals (Sweden)

    Mitsuru Takaku

    Full Text Available BACKGROUND: Local skin flaps often present with flap necrosis caused by critical disruption of the blood supply. Although animal studies demonstrate enhanced angiogenesis in ischemic tissue, no strategy for clinical application of this phenomenon has yet been defined. Hypoxia-inducible factor 1 (HIF-1 plays a pivotal role in ischemic vascular responses, and its expression is induced by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG. We assessed whether preoperative stabilization of HIF-1 by systemic introduction of DMOG improves skin flap survival. METHODS AND RESULTS: Mice with ischemic skin flaps on the dorsum were treated intraperitoneally with DMOG 48 hr prior to surgery. The surviving area with neovascularization of the ischemic flaps was significantly greater in the DMOG-treated mice. Significantly fewer apoptotic cells were present in the ischemic flaps of DMOG-treated mice. Interestingly, marked increases in circulating endothelial progenitor cells (EPCs and bone marrow proliferative progenitor cells were observed within 48 hr after DMOG treatment. Furthermore, heterozygous HIF-1α-deficient mice exhibited smaller surviving flap areas, fewer circulating EPCs, and larger numbers of apoptotic cells than did wild-type mice, while DMOG pretreatment of the mutant mice completely restored these parameters. Finally, reconstitution of wild-type mice with the heterozygous deficient bone marrow cells significantly decreased skin flap survival. CONCLUSION: We demonstrated that transient activation of the HIF signaling pathway by a single systemic DMOG treatment upregulates not only anti-apoptotic pathways but also enhances neovascularization with concomitant increase in the numbers of bone marrow-derived progenitor cells.

  15. A Study of Coaxial Rotor Performance and Flow Field Characteristics

    Science.gov (United States)

    2016-01-22

    present work , a difference of < 1% was considered a balanced system. The thrust for the coaxial lower rotor is less than the coaxial upper rotor which is... balanced as the baseline grid cases, however. In summary, the baseline grid is sufficient for performance predictions but a detailed study of wake...fidelity CFD and acoustic analyses will be used to study noise mitigation of a coaxial rotor system. With the insights gained from the present work , future

  16. Abrasion Resistance Comparison between Rotor and Ring Spun Yarn

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-ping; YU Chong-wen

    2002-01-01

    On the base of literature review and the analysis of yarn properties, yarn structure and some other facts, the abrasion resistance of both rotor spun yarn and ring spun yarns are discussed. The results show that with the same raw material and twist, the rotor spun yarn has lower abrasion resistance than that of ring spun yarn, because of the higher twist employed, the abrasion resistance of rotor spun yarn is higher than that of ring spun yarn.

  17. Theoretical study on the flow about Savonius rotor

    Science.gov (United States)

    Ogawa, T.

    1984-03-01

    A method for the two-dimensional analysis of the separated flow about Savonius rotors is presented. Calculations are performed by combining the singularity method and the discrete vortex method. The method is applied to the simulation of flows about a stationary rotor and a rotating rotor. Moreover, torque and power coefficients are computed and compared with the experimental results presented by Sheldahl et al. Theoretical and experimental results agree well qualitatively.

  18. Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting

    OpenAIRE

    Jinxiang Xi; Rhode, David L.

    2006-01-01

    Rotors in high-performance steam turbines experience a significant axial shifting during starting and stopping processes due to thermal expansion, for example. This axial shifting could significantly alter the flow pattern and the flow-induced rotordynamic forces in labyrinth seals, which in turn, can considerably affect the rotor-seal system performance. This paper investigates the influence of the rotor axial shifting on leakage rate as well as rotordynamic forces in hi...

  19. Helicopter

    NARCIS (Netherlands)

    Van Holten, T.

    2004-01-01

    The invention relates to a helicopter provided with a rotor with at least one rotor blade (5), wherein drive means are provided for actively moving the or each rotor blade up and down during rotation of the rotor, in particular about a flapping hinge (8) thereof, so that moments, applied by the roto

  20. Sequential and Multistep Substrate Interrogation Provides the Scaffold for Specificity in Human Flap Endonuclease 1

    KAUST Repository

    Sobhy, M.

    2013-06-06

    Human flap endonuclease 1 (FEN1), one of the structure-specific 5\\' nucleases, is integral in replication, repair, and recombination of cellular DNA. The 5\\' nucleases share significant unifying features yet cleave diverse substrates at similar positions relative to 5\\' end junctions. Using single-molecule Förster resonance energy transfer, we find a multistep mechanism that verifies all substrate features before inducing the intermediary-DNA bending step that is believed to unify 5\\' nuclease mechanisms. This is achieved by coordinating threading of the 5\\' flap of a nick junction into the conserved capped-helical gateway, overseeing the active site, and bending by binding at the base of the junction. We propose that this sequential and multistep substrate recognition process allows different 5\\' nucleases to recognize different substrates and restrict the induction of DNA bending to the last common step. Such mechanisms would also ensure the protection ofDNA junctions from nonspecific bending and cleavage. 2013 The Authors.

  1. From flapping wings to underactuated fingers and beyond: a broad look to self-adaptive mechanisms

    Directory of Open Access Journals (Sweden)

    L. Birglen

    2010-12-01

    Full Text Available In this paper, the author first reviews the different terminologies used in underactuated grasping and illustrates the current increase of activity on this topic. Then, the (probably oldest known self-adaptive mechanism is presented and its performance as an underactuated finger is discussed. Its original application, namely a flapping wing, is also shown. Finally, it is proposed that the mechanisms currently used in underactuated grasping have actually other applications similarly to the previously discussed architecture could be used for both an underactuated finger and a flapping wing.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  2. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  3. Numerical modeling of a rotor misalignment; Modelado numerico del desalineamiento de un rotor

    Energy Technology Data Exchange (ETDEWEB)

    Leon Pina, Roberto

    2009-12-15

    In the turbo-machinery area after an unbalancing, the misalignment is the fault that most frequently appears, and this one has been little studied compared to the unbalance. The misalignment appears when the geometric centers of two shafts and/or bearings do not coincide, these differences take place by different factors such as: incorrect installation of the bearings or rotors, thermal effects, or rotor weight, to mention some of them. The of the misalignment diagnosis continues being an area little studied, since the effects it generates are complex and include diverse physical processes reason why it presents/displays similar symptoms to those of other faults; thus, one of the methods that are used to diagnose this fault, is based on analyzing the vibration phantoms but this works only under particular conditions. In order to reproduce the dynamic behavior of a misaligned rotor, in the present work non-linear simplified models of the supports are used, whose objective is to contribute to facilitate future studies of the flow-dynamic behavior of the bearing, helping to identify the type and magnitude of the existing non-linearity in the supports and leaning in the analysis of the vibratory behavior of misaligned rotors observed in the field. [Spanish] En el area de turbomaquinaria despues del desbalance, el desalineamiento es la falla que se presenta con mayor frecuencia, y esta se ha estudiado poco comparada con el desbalance. El desalineamiento se presenta cuando los centros geometricos de dos flechas y/o chumaceras no coinciden, estas diferencias se producen por diferentes factores como: instalacion incorrecta de las chumaceras o rotores, efectos termicos, o el peso del rotor, por mencionar algunos. El diagnostico del desalineamiento sigue siendo una area poco estudiada, ya que los efectos que genera son complejos y abarcan diversos procesos fisicos por lo que presenta sintomas similares a los de otras fallas; asi, uno de los metodos que se utilizan para

  4. Microdialysis in reconstructive surgery : a clinical and experimental study focusing on monitoring flap metabolism and viability

    OpenAIRE

    Röjdmark, Jonas

    2000-01-01

    When flap procedures are used to repair complex tissue wounds adequate flap circulation is of supreme importance. If the circulation is disturbed by either vascular occlusion, hemorrhage, or infection, delayed healing and flap necrosis may ensue. Early recognition of flap ischemia followed by appropriate surgical and/or pharmacotherapeutical measures may be crucial for flap survival. In the present thesis the microdialysis (MD) technique was used for the first time in recons...

  5. Goal-directed fluid therapy for microvascular free flap reconstruction following mastectomy: A pilot study

    OpenAIRE

    Funk, Duane; Bohn, James; Mutch, WAC; Hayakawa, Tom; Buchel, Edward W

    2015-01-01

    Fluid replacement is an important aspect of surgery and is particularly challenging in patients undergoing microvascular free flap reconstruction. The use of vasopressors can compromise blood flow to the flap, a problem also encountered with inadequate volume replacement, which can lead to ischemia and flap loss. However, excessive perioperative fluid administration may lead to flap loss resulting from venous engorgement and flap edema. This uncertainty, in part, prompted the authors of this ...

  6. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  7. Position Sensing for Rotor in Hybrid Stepper Motor

    Science.gov (United States)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)

    2011-01-01

    A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.

  8. Numerical Analysis of Nonlinear Rotor-bearing-seal System

    Institute of Scientific and Technical Information of China (English)

    CHENG Mei; MENG Guang; JING Jian-ping

    2008-01-01

    The system state trajectory, Poincaré maps, largest Lyapunov exponents, frequency spectra and bifurcation diagrams were used to investigate the non-linear dynamic behaviors of a rotor-bearing-seal coupled system and to analyze the influence of the seal and bearing on the nonlinear characteristics of the rotor system. Various nonlinear phenomena in the rotor-bearing-seal system, such as periodic motion, double-periodicmotion, multi-periodic motion and quasi-periodic motion were investigated. The results may contribute to a further understanding of the non-linear dynamics of the rotor-bearing-seal coupled system.

  9. NONLINEAR DYNAMICS OF A CRACKED ROTOR IN A MANEUVERING AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    LIN Fu-sheng 林富生; MENG Guang 孟光; Eric Hahn

    2004-01-01

    The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated. The influence of the aircraft climbing angle on the cracked rotor system response is of particular interest and the results show that the climbing angle can markedly affect the parameter range for bifurcation, for quasi-periodic response and for chaotic response as well as for system stability. Aircraft acceleration is also shown to significantly affect the nonlinear behavior of the cracked rotor system, illustrating the possibility for on-line rotor crack fault diagnosis.

  10. Coupled Thermal Field of the Rotor of Liquid Floated Gyroscope

    Directory of Open Access Journals (Sweden)

    Wang Zhengjun

    2015-01-01

    Full Text Available Inertial navigation devices include star sensor, GPS, and gyroscope. Optical fiber and laser gyroscopes provide high accuracy, and their manufacturing costs are also high. Magnetic suspension rotor gyroscope improves the accuracy and reduces the production cost of the device because of the influence of thermodynamic coupling. Therefore, the precision of the gyroscope is reduced and drift rate is increased. In this study, the rotor of liquid floated gyroscope, particularly the dished rotor gyroscope, was placed under a thermal field, which improved the measurement accuracy of the gyroscope. A dynamic theory of the rotor of liquid floated gyroscope was proposed, and the thermal field of the rotor was simulated. The maximum stress was in x, 1.4; y, 8.43; min 97.23; and max 154.34. This stress occurred at the border of the dished rotor at a high-speed rotation. The secondary flow reached 5549 r/min, and the generated heat increased. Meanwhile, the high-speed rotation of the rotor was volatile, and the dished rotor movement was unstable. Thus, nanomaterials must be added to reduce the thermal coupling fluctuations in the dished rotor and improve the accuracy of the measurement error and drift rate.

  11. Rotor dynamic considerations for large wind power generator systems

    Science.gov (United States)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  12. Experimental study on the aerodynamic performance of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki; Gotoh, Futoshi (Gunma Univ., Kiryu (Japan). Dept. of Mechanical Engineering)

    1994-08-01

    The aerodynamic performance of a Savonius rotor has been studied by measuring the pressure distributions on the blade surfaces at various rotor angles and tip-speed ratios. It is found that the pressure distributions on the rotating rotor differ remarkably from those on the still rotor especially on the convex side of the advancing blade, where a low pressure region is formed by the moving wall effect of the blade. The torque and power performances, evaluated by integrating the pressure, are in close agreement with those by the direct torque measurement. The drag and side force performance is also studied.

  13. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    Science.gov (United States)

    Shi, Jun; Bombara, David; Green, Kevin E.; Bird, Connic; Holowczak, John

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  14. THEORY OF MUM FOR METAL SPHERICAL ROTOR WITH CONTACTLESS SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    He Xiaoxia; Gao Zhongyu; Wang Yongliang

    2004-01-01

    Based on the motion equations of an unbalanced spherical rotor with contactless suspension,three methods of MUM (mass unbalance measurement) are put forward to measure the total mass unbalance,radical mass unbalance and radical mass unbalance of the rotor.Total mass unbalance is obtained when the unbalanced rotor plays as a simple pendulum in static situation.The pendulant period and pendulant midpoint indicate magnitude and direction of total mass unbalance of the rotor respectively.Analysis of the motion equations by using the averaging method yields that the rotor will do a special side oscillation when an auxiliary system makes the rotor spin about its pole axis which is orientating toward the local vertical.The radical mass unbalance can be obtained by building a proper displacement sensor to sense the amplitude of the side oscillation.Necessary analysis of the motion equations also shows that when the rotor spins at a small angular velocity and the rotary axis is perpendicular to the vertical,the pole axis of the rotor will precess slowly about the vertical by virtue of the axial mass unbalance.The axial mass unbalance can be estimated from the time history of the spin vector of the rotor.Finally,measurement precision of the three methods is compared and how the external torque affects the measurement precision for the three methods are examined.

  15. Optimum design configuration of Savonius rotor through wind tunnel experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Thotla, S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Maity, D. [Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039 (India)

    2008-08-15

    Wind tunnel tests were conducted to assess the aerodynamic performance of single-, two- and three-stage Savonius rotor systems. Both semicircular and twisted blades have been used in either case. A family of rotor systems has been manufactured with identical stage aspect ratio keeping the identical projected area of each rotor. Experiments were carried out to optimize the different parameters like number of stages, number of blades (two and three) and geometry of the blade (semicircular and twisted). A further attempt was made to investigate the performance of two-stage rotor system by inserting valves on the concave side of blade. (author)

  16. Performance testing of a Savonius windmill rotor in shear flows

    Science.gov (United States)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteady behavior on the power generation capability of a Savonius wind turbine rotor are assessed in view of measurements conducted, both in two statistically steady shear flows and in the wind, of rotor tip speed and torque at a number of streamwise stations for each of four values of the rotor bucket overlap ratio. It is found that, even in the absence of shear, the power coefficient of a Savonius wind turbine rotor is most strongly dependent on tip speed ratio.

  17. Versatility of the buccinator myomucosal flap in atypical palate reconstructions.

    Science.gov (United States)

    Franco, Diogo; Rocha, Diógenes; Arnaut, Marcio; Freitas, Renato; Alonso, Nivaldo

    2014-10-01

    Initially described for the treatment of cleft palate, the anatomical bases of the buccinator myomucosal flap were described by Bozola et al. (1989). A meticulous search found several reports of its use for the correction of post-palatoplasty oronasal fistulas, with only a few reports of its use for other palate-related pathologies. A retrospective analysis was undertaken of patients treated by the Plastic Surgery Units at the Rio de Janeiro Federal University Hospital (HU-UFRJ) and the São Paulo University Hospital (HC-USP), suffering from palatal lesions not associated with a cleft palate and treated through the use of buccinator myomucosal flaps. The average age was 47 years, with 70% of the patients being male. Assorted aetiologies were noted for palatal defects. When there was significant damage to the soft palate, a superior base pharyngeal flap was used. Of this total, in 71% of the cases only the buccinator myomucosal flap was used. In all cases, the flaps were unilateral, adequately covering the defects in question. The buccinator myomucosal flap is a good option for reconstructing medium to large palate defects, as it is a flap with good vascularization and dimension, in addition to an ample arc of rotation, with primary closure of the donor site, without adding significant morbidity.

  18. Free jejunal flaps can be monitored by use of microdialysis.

    Science.gov (United States)

    Sorensen, Hanne Birke

    2008-08-01

    When new combinations of preoperative treatments of carcinoma of the esophagus are implemented, surgical morbidity and mortality become even more important risk factors. This study investigated whether the risk of postoperative complications caused by ischemia in the reconstructed esophagus can be reduced using microdialysis as monitoring method. This is a retrospective study of 14 patients undergoing resection of carcinoma in the upper part of the esophagus and reconstruction with a free jejunal flap. The metabolism in all 14 jejunal transfers was monitored by use of microdialysis. The data were analyzed looking for reliable parameters detecting critical ischemia. Critical ischemia was suspected in two cases. Both of these cases were surgically revised, ischemia in the jejunal flap was verified, and the jejunal flaps were revascularized. All 14 jejunal flaps survived. Using the concentration of glucose in the microdialysate, it was possible to detect the two cases of critical ischemia. Yet, the most reliable parameter seemed to be the retrospectively calculated lactate:glucose ratio; in both the ischemic flaps, the lactate:glucose ratio exceeded more than 1000% the maximum values found in all the nonischemic flaps. Microdialysis is a promising monitoring method for surveillance of free jejunal flaps.

  19. Induction motor rotor fault diagnosis method based on double PQ transformation

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin; NIU Faliang; YANG Jiaqiang

    2007-01-01

    This Paper presents a new rotor fault diagnosis method for induction motors which is based on the double PQ transformation.We construct the PQ transformation matrix with the positive sequence fundamental voltage components and their Hilbert transformation as elements.The active power P and the reactive power Q are obtained through the PO transformation of the stator currents.As both P and Q are constant for a healthy motor,they are represented by a dot on the PQ plane.Whereas the P and Q for a rotor broken bar motor are represented by an ellipse because they comprise an additional frequency component 2sfs (s is the slip and js is the supply frequency).Thus,by distinguishing these two different patterns.the rotor broken bar fault is detected.We use the major radius of the ellipse as the fault indicator and the distance between the point of no-load condition and the center of the ellipse on the PQ plane as its normalization value.We thus arrive at the fault severity factor which is fairly independent of the load level and the inertia value of the induction motors.Experimental results have demonstrated that the proposed method is effective in identifying the rotor-broken-bars fault and at determining the severity of the fault.

  20. Subcutaneous pedicle propeller flap: An old technique revisited and modified!

    Directory of Open Access Journals (Sweden)

    Durga Karki

    2016-01-01

    Full Text Available Background: Post-burn axillary and elbow scar contracture is a challenging problem to the reconstructive surgeon owing to the wide range of abduction and extension that should be achieved, respectively, while treating either of the joint. The aim of this paper is to highlight the use of subcutaneous pedicle propeller flap for the management of post-burn axillary and elbow contractures. Methodology: This is a prospective case study of axillary and elbow contractures managed at a tertiary care hospital using propeller flap based on subcutaneous pedicle from 2009 to 2014. Surgical treatment comprised of subcutaneous-based pedicle propeller flap from the normal tissue within the contracture based on central axis pedicle. The flap was rotated axially to break the contracture. The technique further encompassed a modification, a Zig-Zag incision of the flap, which was seen to prevent hypertrophy along the incision line. There was a mean period of 12 months of follow-up. Results: Thirty-eight patients consisting of 22 males and 16 females were included in this study among which 23 patients had Type II axillary contractures and 15 had moderate flexion contractures at elbow joint. The post-operative abduction achieved at shoulder joint had a mean of 168° whereas extension achieved at elbow had a mean of 175°. The functional and aesthetic results were satisfactory. Conclusion: The choice of surgical procedure for reconstruction of post-burn upper extremity contractures should be made according to the pattern of scar contracture and the state of surrounding skin. The choice of subcutaneous pedicle propeller flap should be emphasised because of the superior functional results of flap as well as ease to learn it. Moreover, the modification of propeller flap described achieves better results in terms of scar healing. There is an inter-positioning of healthy skin in between the graft, so it prevents scar band formation all around the flap.