WorldWideScience

Sample records for active flap rotor

  1. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    Directory of Open Access Journals (Sweden)

    Uğbreve;ur Dalli

    2011-01-01

    Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.

  2. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  3. Enhanced Correlation of SMART Active Flap Rotor Loads

    Science.gov (United States)

    Kottapalli, Sesi

    2011-01-01

    This is a follow-on study to a 2010 correlation effort. Measured data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. As background, during the wind tunnel test, unexpectedly high inboard loads were encountered, and it was hypothesized at that time that due to changes in the flexbeams over the years, the flexbeam properties used in the analysis needed updating. Boeing Mesa, recently updated these properties. This correlation study uses the updated flexbeam properties. Compared to earlier studies, the following two enhancements are implemented: i) the inboard loads (pitchcase and flexbeam loads) correlation is included for the first time (reliable prediction of the inboard loads is a prerequisite for any future anticipated flight-testing); ii) the number of blade modes is increased to better capture the flap dynamics and the pitchcase-flexbeam dynamics. Also, aerodynamically, both the rolled-up wake model and the more complex, multiple trailer wake model are used, with the latter slightly improving the blade chordwise moment correlation. This sensitivity to the wake model indicates that CFD is needed. Three high-speed experimental cases, one uncontrolled free flap case and two commanded flap cases, are considered. The two commanded flap cases include a 2o flap deflection at 5P case and a 0o flap deflection case. For the free flap case, selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the commanded 2o flap case, the experimental flap variation is approximately matched by increasing the analytical flap hinge stiffness. This increased flap hinge stiffness is retained for the commanded 0o flap case also, which is treated as a free flap case, but with larger flap hinge stiffness. The change in the mid-span and outboard loads correlation due to the updating of the flexbeam properties is not significant. Increasing the number of blade modes results in an

  4. Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    The work investigates the development of an active smart rotor concept from an aero-servo-elastic perspective. An active smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators, is able to alleviate the fluctuating part of the aerodynamic loads it has......-MPC requires lower flap activity, and also achieves higher reductions of the tower fatigue loads, thus indicating that a combined control approach that coordinates and integrates all available sensors and actuators has the potential for overall better results than achieved by a series of independent control...

  5. Application of Sequential Quadratic Programming to Minimize Smart Active Flap Rotor Hub Loads

    Science.gov (United States)

    Kottapalli, Sesi; Leyland, Jane

    2014-01-01

    In an analytical study, SMART active flap rotor hub loads have been minimized using nonlinear programming constrained optimization methodology. The recently developed NLPQLP system (Schittkowski, 2010) that employs Sequential Quadratic Programming (SQP) as its core algorithm was embedded into a driver code (NLP10x10) specifically designed to minimize active flap rotor hub loads (Leyland, 2014). Three types of practical constraints on the flap deflections have been considered. To validate the current application, two other optimization methods have been used: i) the standard, linear unconstrained method, and ii) the nonlinear Generalized Reduced Gradient (GRG) method with constraints. The new software code NLP10x10 has been systematically checked out. It has been verified that NLP10x10 is functioning as desired. The following are briefly covered in this paper: relevant optimization theory; implementation of the capability of minimizing a metric of all, or a subset, of the hub loads as well as the capability of using all, or a subset, of the flap harmonics; and finally, solutions for the SMART rotor. The eventual goal is to implement NLP10x10 in a real-time wind tunnel environment.

  6. Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor

    Science.gov (United States)

    Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo

    2009-01-01

    Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured

  7. Adaptive trailing edge flaps for active load alleviation in a smart rotor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.

    2013-08-15

    The work investigates the development of an active smart rotor concept from an aero-servo-elastic perspective. An active smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators, is able to alleviate the fluctuating part of the aerodynamic loads it has to withstand. The investigation focuses on a specific actuator type: the Adaptive Trailing Edge Flap (ATEF), which introduces a continuous deformation of the aft part of the airfoil camber-line. An aerodynamic model that accounts for the steady and unsteady effects of the flap deflection on a 2D airfoil section is developed, and, considering both attached and separated flow conditions, is validated by comparison against Computational Fluid Dynamic solutions and a panel code method. The aerodynamic model is integrated in the BEM-based aeroelastic simulation code HAWC2, thus providing a tool able to simulate the response of a wind turbine equipped with ATEF. A load analysis of the NREL 5 MW reference turbine in its baseline configuration reveals that the highest contribution to the blade flapwise fatigue damage originates from normal operation above rated wind speed, and from loads characterized by frequencies below 1 Hz. The analysis also reports that periodic load variations on the turbine blade account for nearly 11 % of the blade flapwise lifetime fatigue damage, while the rest is ascribed to load variations from disturbances of stochastic nature. The study proposes a smart rotor configuration with flaps laid out on the outer 20 % of the blade span, from 77 % to 97% of the blade length. The configuration is first tested with a simplified cyclic control approach, which gives a preliminary indication of the load alleviation potential, and also reveals the possibility to enhance the rotor energy capture below rated conditions by using the flaps. Two model based control algorithms are developed to actively alleviate the fatigue loads on the smart rotor with ATEF. The first

  8. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ZERO: OVERVIEW AND COMMERCIAL PATH

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  9. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ONE: PRELIMINARY DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.; Chow, Ray [Zimitar, Inc.; Nordenholz, Thomas R. [The California Maritime Academy; Wamble, John Lee [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  10. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME THREE: MARKET & TEAM

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  11. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME TWO: INNOVATION & COST OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  12. A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Poulsen, Niels Kjølstad

    2015-01-01

    . The effects of active flap control are assessed with aeroelastic simulations of the turbine in normal operation conditions, as prescribed by the International Electrotechnical Commission standard. The turbine lifetime fatigue damage equivalent loads provide a convenient summary of the results achieved......The paper proposes a smart rotor configuration where adaptive trailing edge flaps (ATEFs) are employed for active alleviation of the aerodynamic loads on the blades of the NREL 5 MW reference turbine. The flaps extend for 20% of the blade length and are controlled by a linear quadratic (LQ...

  13. Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration

    OpenAIRE

    Bergami, Leonardo; Gaunaa, Mac; Poulsen, Niels Kjølstad; Buhl, Thomas

    2013-01-01

    Denne afhandling omhandler udviklingen af et aktivt smart rotor koncept fra et aeroservoelastisk perspektiv. En aktiv smart rotor er en vindmøllerotor som igennem en kombination af sensorer, reguleringsenhed og aktuatorer, aktivt kan reducere den fluktuerende del af de aerodynamiske kræfter møllen skal modstå. Undersøgelsen omhandler en specifik aktuator type: Adaptive Trailing Edge Flap (ATEF), der består af en kontinuert deformation af den bagerste del af vingeprofilernes tværsnitsform.Der ...

  14. Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads

    Science.gov (United States)

    Kottapalli, Sesi B. R.

    2010-01-01

    Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.

  15. Simulations of a rotor with active deformable trailing edge flaps in half-wake inflow: Comparison of EllipSys 3D with HAWC2

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; Zahle, Frederik; Sørensen, Niels N.;

    2012-01-01

    . In this study, a comparison between aerodynamic predictions of the aeroelastic code HAWC2 and the Navier-Stokes code EllipSys3D for the NREL 5MW reference wind turbine rotor in a stiff configuration equipped with a deformable trailing edge flap is performed. A case where the half rotor plane experiences......Various research projects have focused on active aerodynamic load control of wind turbines using control devices on the blades, for example flaps. The aerodynamic load predictions of utilized aeroelastic codes have not yet been fully validated with full rotor CFD or experimental results...... an inflow resembling the wake from an upstream wind turbine is investigated, which is appropriate for comparing the predictions of the two codes related to the abrupt aerodynamic response and the influence of the controllable flap. The trailing edge flap is actuated to alleviate the added loads from a non...

  16. Smart dynamic rotor control using active flaps on a small-scale wind turbine: aeroelastic modeling and comparison with wind tunnel measurements

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; van Wingerden, W.; Hulskamp, A.W.;

    2013-01-01

    using the aeroelastic tool, load predictions are compared with the wind tunnel measurements, and similar control concepts are compared and evaluated in the numerical environment. Conclusions regarding evaluation of the performance of smart rotor concepts for wind turbines are drawn from this threefold......In this paper, the proof of concept of a smart rotor is illustrated by aeroelastic simulations on a small-scale rotor and comparison with wind tunnel experiments. The application of advanced feedback controllers using actively deformed flaps in the wind tunnel measurements is shown to alleviate...

  17. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  18. Effects of torsion frequencies on rotor performance and structural loads with trailing edge flap

    International Nuclear Information System (INIS)

    The effects of variation of blade torsion frequency on rotor performance and structural loads are investigated for a 1/rev active flap rotor and baseline rotor (no active control). The UH-60A four-bladed articulated main rotor is studied at a high-speed forward flight condition. The torsion frequencies are varied by modifying the spanwise torsional stiffness of the blade and/or the pitch link stiffness. First, a parametric/optimization study on the flap deployment schedule is carried out using lifting-line comprehensive analysis for the soft, baseline, and stiff rotor configurations, and then a higher fidelity coupled computational fluid dynamics–computational structural dynamics analysis is carried out for the optimal flap deployment. It is shown that with the soft rotor there is degradation in performance—of about 6% with respect to the baseline rotor in the case where the flaps are not activated, and of about 1% if flap deflections are applied. On the other hand, for the stiff rotor there is a slight improvement in performance of about 2.3% when the flaps are not activated, and no appreciable change in the case where active flap deflections are applied. It appears that the peak performance achievable with using active flaps on a baseline stiffness rotor cannot be further improved significantly by varying the torsional frequencies. Variation of torsion frequency does not appear to have a significant influence on blade torsion moments and pitch link loads, although the 1/rev flap activation examined has an important role. (paper)

  19. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model...... control the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field....... code HAWC2. The investigated smart rotor configuration mainly aims at alleviating the fatigue loads the turbine rotor has to withstand during normal operation. First, the characteristics of the prevailing loads are identified; then, two model-based control algorithms are outlined: the algorithms...

  20. Effects of primary rotor parameters on flapping dynamics

    Science.gov (United States)

    Chen, R. T. N.

    1980-01-01

    The effects of flapping dynamics of four main rotor design features that influence the agility, stability, and operational safety of helicopters are studied. The parameters include flapping hinge offset, flapping hinge restraint, pitch-flap coupling, and blade lock number. First, the flapping equations of motion are derived that explicitly contain the design parameters. The dynamic equations are then developed for the tip-path plane, and the influence of individual and combined variations in the design parameters determined. The steady state flapping response is examined with respect to control input and aircraft angular rate which leads to a feedforward control law for control decoupling through cross feed, and a feedback control law to decouple the steady state flapping response. The condition for achieving perfect decoupling of the flapping response due to aircraft pitch and roll rates without using feedback control is also found for the hover case. It is indicated that the frequency of the regressing flapping mode of the rotor system can become low enough to require consideration in the assessment of handling characteristics.

  1. Flap motion of helicopter rotors with novel, dynamic stall model

    Directory of Open Access Journals (Sweden)

    Han Wei

    2016-07-01

    Full Text Available In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.

  2. Smart helicopter rotor with active blade tips

    Science.gov (United States)

    Bernhard, Andreas Paul Friedrich

    2000-10-01

    The smart active blade tip (SABT) rotor is an on-blade rotor vibration reduction system, incorporating active blade tips that can be independently pitched with respect to the main blade. The active blade tip rotor development included an experimental test program culminating in a Mach scale hover test, and a parallel development of a coupled, elastic actuator and rotor blade analysis for preliminary design studies and hover performance prediction. The experimental testing focussed on a small scale rotor on a bearingless Bell-412 hub. The fabricated Mach-scale active-tip rotor has a diameter of 1.524 m, a blade chord of 76.2 mm and incorporated a 10% span active tip. The nominal operating speed is 2000 rpm, giving a tip Mach number of 0.47. The blade tips are driven by a novel piezo-induced bending-torsion coupled actuator beam, located spanwise in the hollow mid-cell of the main rotor blade. In hover at 2000 rpm, at 2 deg collective, and for an actuation of 125 Vrms, the measured blade tip deflection at the first four rotor harmonics is between +/-1.7 and +/-2.8 deg, increasing to +/-5.3 deg at 5/rev with resonant amplification. The corresponding oscillatory amplitude of the rotor thrust coefficient is between 0.7 · 10-3 and 1.3 · 10-1 at the first four rotor harmonics, increasing to 2.1 · 10-3 at 5/rev. In general, the experimental blade tip frequency response and corresponding rotor thrust response are well captured by the analysis. The flexbeam root flap bending moment is predicted in trend, but is significantly over-estimated. The blade tips did not deflect as expected at high collective settings, because of the blade tip shaft locking up in the bearing. This is caused by the high flap bending moment on the blade tip shaft. Redesign of the blade tip shaft assembly and bearing support is identified as the primary design improvement for future research. The active blade tip rotor was also used as a testbed for the evaluation of an adaptive neural-network based

  3. Power performance optimization and loads alleviation with active flaps using individual flap control

    Science.gov (United States)

    Pettas, Vasilis; Barlas, Thanasis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The present article investigates the potential of Active Trailing Edge Flaps (ATEF) in terms of increase in annual energy production (AEP) as well as reduction of fatigue loads. The basis for this study is the DTU 10 MW Reference Wind Turbine (RWT) simulated using the aeroelastic code HAWC2. In an industrial-oriented manner the baseline rotor is upscaled by 5% and the ATEFs are implemented in the outer 30% of the blades. The flap system is kept simple and robust with a single flap section and control with wind speed, rotor azimuth, root bending moments and angle of attack in flap's mid-section being the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple and applicable method that can be a technology enabler for rotor upscaling and lowering cost of energy.

  4. CALCULATION OF HELICOPTER ROTOR FLAPPING ANGLES AND COMPARISON WITH MEASURED DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Helicopter rotor flapping angles from hover to low-speed forward flight are calculated and compared with the measured data in this paper. The analytical method is based on a second order lifting-line/full-span free wake model as well as a fully coupled rotor trim model. It is shown that, in order to accurately predict the lateral flapping angle at low advance ratio, it is necessary to use free wake analysis to account for the highly non-uniform inflow induced by the distorted wake geometry at rotor disc plane.

  5. Design and performance prediction of swashplateless helicopter rotors with trailing edge flaps and tabs

    Science.gov (United States)

    Falls, Jaye

    This work studies the design of trailing edge controls for swashplateless helicopter primary control, and examines the impact of those controls on the performance of the rotor. The objective is to develop a comprehensive aeroelastic analysis for swashplateless rotors in steady level flight. The two key issues to be solved for this swashplateless control concept are actuation of the trailing edge controls and evaluating the performance of the swashplateless rotor compared to conventionally controlled helicopters. Solving the first requires simultaneous minimization of trailing flap control angles and hinge moments to reduce actuation power. The second issue requires not only the accurate assessment of swashplateless rotor power, but also similar or improved performance compared to conventional rotors. The analysis consists of two major parts, the structural model and the aerodynamic model. The inertial contributions of the trailing edge flap and tab are derived and added to the system equations in the structural model. Two different aerodynamic models are used in the analysis, a quasi-steady thin airfoil theory that includes arbitrary hinge positions for the flap and the tab, and an unsteady lifting line model with airfoil table lookup based on wind tunnel test data and computational fluid dynamics simulation. The design aspect of the problem is investigated through parametric studies of the trailing edge flap and tab for a Kaman-type conceptual rotor and a UH-60A swashplateless variant. The UH-60A model is not changed except for the addition of a trailing edge flap to the rotor blade, and the reduction of pitch link stiffness to imitate a soft root spring. Study of the uncoupled blade response identifies torsional stiffness and flap hinge stiffness as important design features of the swashplateless rotor. Important trailing edge flap and tab design features including index angle, aerodynamic overhang, chord and length are identified through examination of coupled

  6. Active control for performance enhancement of electrically controlled rotor

    Institute of Scientific and Technical Information of China (English)

    Lu Yang; Wang Chao

    2015-01-01

    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  7. Active control for performance enhancement of electrically controlled rotor

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2015-10-01

    Full Text Available Electrically controlled rotor (ECR system has the potential to enhance the rotor performance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor performance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3% rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  8. Structural and mechanism design of an active trailing-edge flap blade

    DEFF Research Database (Denmark)

    Lee, Jae Hwan; Natarajan, Balakumaran; Eun, Won Jong;

    2013-01-01

    , as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram...... of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design....... To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4°, three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin...

  9. Stress optimization of leaf-spring crossed flexure pivots for an active Gurney flap mechanism

    OpenAIRE

    Freire Gomez, Jon; Booker, Julian D; Mellor, Phil

    2015-01-01

    The EU’s Green Rotorcraft programme is pursuing the development of a functional and airworthy Active Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this ‘smart adaptive rotor blade’ technology lies in its potential to provide a number of aerodynamic benefits, which would in turn translate into a reduction in fuel consumption and noise levels. The AGF mechanism selected employs leaf-spring crossed flexure pivots. These provide important advantages ove...

  10. A flight-dynamic helicopter mathematical model with a single flap-lag-torsion main rotor

    Science.gov (United States)

    Takahashi, Marc D.

    1990-01-01

    A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using three-state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim linearization, and time-integration operations are described and can be applied to a subset of the model in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by comparing its results with those of other analytical and experimental studies. This publication presents the results of research compiled in November 1989.

  11. High-fidelity linear time-invariant model of a smart rotor with adaptive trailing edge flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Hansen, Morten Hartvig

    2016-01-01

    aero-servo-elastic model support the design, systematic tuning and model synthesis of smart rotor control systems. As an example application, the gains of an individual flap controller are tuned using the Ziegler-Nichols method for the full-order poles. The flap controller is based on feedback......A high-fidelity linear time-invariant model of the aero-servo-elastic response of a wind turbine with trailing-edge flaps is presented and used for systematic tuning of an individual flap controller. The model includes the quasi-steady aerodynamic effects of trailing-edge flaps on wind turbine...... blades and is integrated in the linear aeroelastic code HAWCStab2. The dynamic response predicted by the linear model is validated against non-linear simulations, and the quasi-steady assumption does not cause any significant response bias for flap deflection with frequencies up to 2-3 Hz. The linear...

  12. Aeromechanical Evaluation of Smart-Twisting Active Rotor

    Science.gov (United States)

    Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline; Delrieux, Yves

    2014-01-01

    An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.

  13. Nonlinear Equations for Bending of Rotating Beams with Application to Linear Flap-Lag Stability of Hingeless Rotors

    Science.gov (United States)

    Hodges, D. H.; Ormiston, R. A.

    1973-01-01

    The nonlinear partial differential equations for the flapping and lead-lag degrees of freedom of a torisonally rigid, rotating cantilevered beam are derived. These equations are linearized about an equilibrium condition to study the flap-lag stability characteristics of hingeless helicopter rotor blades with zero twist and uniform mass and stiffness in the hovering flight condition. The results indicate that these configurations are stable because the effect of elastic coupling more than compensates for the destabilizing flap-lag Coriolis and aerodynamic coupling. The effect of higher bending modes on the lead-lag damping was found to be small and the common, centrally hinged, spring restrained, rigid blade approximation for elastic rotor blades was shown to be resonably satisfactory for determining flap-lag stability. The effect of pre-cone was generally stabilizing and the effects of rotary inertia were negligible.

  14. Wind tunnel testing of a full scale helicopter blade section with an upstream active Gurney flap

    NARCIS (Netherlands)

    Loendersloot, R.; Freire Gomez, J.; Booker, J.D.

    2014-01-01

    Wind tunnel tests were performed on an aerofoil section comparable to that of a full scale helicopter blade section with an upstream active Gurney flap in the framework of the European project CleanSky ITD Green RotorCraft. A modified NACA0012 profile was used, with 23 Kulite pressure transducers em

  15. Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor

    Science.gov (United States)

    Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei

    2014-01-01

    The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.

  16. ANALYSIS OF AN ELECTROSTRICTIVE STACK ACTUATORFOR ACTIVE TRAILING EDGE FLAPS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Helicopter is a complex dynamic system with many rotating components. The rotor blades operate in a highly complex aerodynamic environment. The vibratory hub load, which is caused by cyclic variation of centrifugal and aerodynamic load of the rotating blades in flight, is transmitted to the fuselage, resulting in serious vibration and noise of the structure. It is one of the most important exciting sources in helicopters.  There has long been a desire to reduce helicopter vibration and to improve its performance. Control schemes adopted so far can be classified as either passive or active control technologies. The passive technologies include optimization of rotor hub, blade and the fuselage, hub or blade mounted passive vibration absorbers and anti-resonant vibration isolators. One of the major disadvantages with passive technologies is that they are designed to provide maximum vibration reduction at a specific frequency; therefore, their performance is degraded significantly with changes in the operating conditions of the rotor system.  With the development of computer science and active control technology, increasing efforts have been devoted to active control technologies to benefit helicopter vibration suppression in recent years. Earlier studies include Higher Harmonic Control (HHC)[1] and Individual Blade Control (IBC)[2], which is aimed to reduce the vibratory blade load by oscillating the blade in pitch motion using hydraulic actuators. It is successful in suppressing the vibration of the fuselage; however, its application is limited by serious energy consumption.  To overcome these difficulties, a new concept in helicopter vibration control is the smart rotor system. In this scheme, actuators are embedded in composite blades. They are used to activate the trailing edge flaps in higher harmonic pitch motion to adjust the lift force actively. Under the regulation of a control system, the vibratory hub load can be counteracted actively at

  17. Cooperative Self-Propulsion of Active and Passive Rotors

    OpenAIRE

    Fily, Yaouen; Baskaran, Aparna; Marchetti, M. Cristina

    2011-01-01

    Using minimal models for low Reynolds number passive and active rotors in a fluid, we characterize the hydrodynamic interactions among rotors and the resulting dynamics of a pair of interacting rotors. This allows us to treat in a common framework passive or externally driven rotors, such as magnetic colloids driven by a rotating magnetic field, and active or internally driven rotors, such as sperm cells confined at boundaries. The hydrodynamic interaction of passive rotors is known to contai...

  18. Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik;

    2016-01-01

    This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...... are integrated in the design taking into account their achieved fatigue load reduction. The optimized ‘smart blade’ design is compared to an aeroelastically optimized design with no flaps and the baseline design....

  19. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn

  20. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system targeting the collective...

  1. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  2. Stall Inception Process and Prospects for Active Hub-Flap Control in Three-Stage Axial Flow Compressor

    Institute of Scientific and Technical Information of China (English)

    Tomoya OKADA; Atsushi KAWAJIRI; Yutaka OHTA; Eisuke OUTA

    2008-01-01

    The possibility to apply the active hub-flap control method, which is a proven rotating stall control method for a single-stage compressor, to a 3-stage axial compressor is experimentally discussed, where complex rotating stall inception processes ate observed. The research compressor is a 3-stage one and could change the stagger angle settings for rotor blades and stator vanes. Sixteen rotor blade/stator vane configuration patterns were tested by changing stagger angle for the stator vanes. By measurement of surface-pressure fluctuation, stall inception proc-esses are investigated and the measured pressure fluctuation data is used as a predictive signal for rotating stall. The experimental results show that the stall detection system applied to active hub-flap control in a single-stage compressor could be usefully applied to that in a 3-stage compressor with a more complex stall inception process.

  3. Sizing and Control of Trailing Edge Flaps on a Smart Rotor for Maximum Power Generation in Low Fatigue Wind Regimes

    DEFF Research Database (Denmark)

    Smit, Jeroen; Berghammer, Lars O.; Navalkar, Sachin;

    2014-01-01

    In this paper an extension of the spectrum of applicability of rotors with active aerody-namic devices is presented. Besides the classical purpose of load alleviation, a secondary objective is established: power capture optimization. As a _rst step, wind speed regions that contribute little...... theory. The investigation then focuses on operation in non-uniform wind _eld conditions. Firstly, the deterministic uctuation in local tip speed ratio due to wind shear was evaluated. The second e_ect is associated with delays in adapting the rotor speed to time varying inow. The increase of power...

  4. Sizing and control of trailing edge flaps on a smart rotor for maximum power generation in low fatigue wind regimes

    DEFF Research Database (Denmark)

    Smit, Jeroen; Bernhammer, Lars O.; Navalkar, Sachin T.;

    2016-01-01

    An extension of the spectrum of applicability of rotors with active aerodynamic devices is presented in this paper. Besides the classical purpose of load alleviation, a secondary objective is established: optimization of power capture. As a first step, wind speed regions that contribute little...... generation has been using blade element momentum theory. As a first step, the operation in non-uniform wind field conditions was analysed. Firstly, the deterministic fluctuation in local tip speed ratio due to wind shear was evaluated. The second effect is associated with time delays in adapting the rotor...

  5. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    Science.gov (United States)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  6. ANALYSIS OF AN ELECTROSTRICTIVE STACK ACTUATOR FOR ACTIVE TRAILING EDGE FLAPS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Stack actuator is a solid-state driving component of Active Tailing Edge Flap in smart rotor systems. It is a multi-layer serial structure of basic units composed of electrostrictive and adhesive layers. In this paper, a dynamic model of the actuator is derived based on the constitutive equation of electrostrictive material and the equation of motion. Theoretical analysis is made on the factors involved in the design of the actuator, which reveals that the electrostrictive layer and the adhesive layer should be optimized to compromise between displacement and frequency requirements. In the final part of the paper, the experiment of an ATEF system is introduced. The results show that the model is reasonable. It also suggests that the bending stiffness of elastic mechanism is an important factor in design, which should be carefully studied to provide satisfactory dynamic response of the ATEF system.

  7. Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions

    Science.gov (United States)

    Ahmadi, G.; Marzocca, P.; Jha, R.; Alstorm, B.; Obied, S.; Kabir, P.; Shahrabi, A.

    2010-01-01

    The main objective is to develop effective control strategies for separation control of an airfoil with a single hinge flap. The specific objectives are: Develop an active control architecture for flow control around an airfoil with flap. Design, fabricate, a wind tunnel test of a high lift wing (with flap) with integrated actuators and sensors. Design, development and fabrication of synthetic jet actuators. Develop appropriate control strategy for application to the airfoil. Wind tunnel testing of the high lift wing at various angles of attack and flap positions with closed loop control.

  8. Dynamics and interactions of active rotors

    OpenAIRE

    de Leoni, M. (Massimiliano); Liverpool, T. B.

    2010-01-01

    We consider a simple model of an internally driven self-rotating object; a rotor, confined to two dimensions by a thin film of low Reynolds number fluid. We undertake a detailed study of the hydrodynamic interactions between a pair of rotors and find that their effect on the resulting dynamics is a combination of fast and slow motions. We analyse the slow dynamics using an averaging procedure to take account of the fast degrees of freedom. Analytical results are compared with numerical simula...

  9. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  10. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    Science.gov (United States)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  11. Wind Turbine Rotors with Active Vibration Control

    OpenAIRE

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    I denne afhandling præsenteres en metoderamme for modellering, analyse og aktiv vibrationsdæmpning af roterende vindmølleblade og rotorer. En strukturel model udvikles i form af rumlige bjælkelementer i en roterende referenceramme. Elementet indeholder en repræsentation af generelle, varierende tværsnitsegenskaber og antager små tværsnitsflytninger og rotationer, hvorved de tilhørende elastiske led og inertialled bliver lineære. Formuleringen beskriver på konsistent vis alle inertialled, inkl...

  12. Human exonuclease 1 (EXO1) activity characterization and its function on FLAP structures

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bohr, Vilhelm A; Juel Rasmussen, Lene

    2015-01-01

    Human exonuclease 1 (EXO1) is involved in multiple DNA metabolism processes, including DNA repair and replication. Most of the fundamental roles of EXO1 have been described in yeast. Here, we report a biochemical characterization of human full-length EXO1. Prior to assay EXO1 on different DNA flap...... structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading...... double stranded DNA and has a modest endonuclease or 5' flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates...

  13. SMART wind turbine rotor. Data analysis and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  14. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  15. Optimization of an Active Twist Rotor Blade Planform for Improved Active Response and Forward Flight Performance

    Science.gov (United States)

    Sekula, Martin K; Wilbur, Matthew L.

    2014-01-01

    A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight.

  16. 2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap

    Science.gov (United States)

    Jaksich, Dylan; Shen, Jinwei

    2014-11-01

    Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.

  17. Development of Air Vehicle with Active Flapping and Twisting of Wing

    Institute of Scientific and Technical Information of China (English)

    Sangyol Yoon; Lae-Hyong Kang; Sungho Jo

    2011-01-01

    This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.

  18. Influence of time domain unsteady aerodynamics on coupled flap-lag-torsional aeroelastic stability and response of rotor blades

    Science.gov (United States)

    Friedmann, P. P.; Robinson, L. H.

    1988-01-01

    This paper describes the incorporation of finite-state, time-domain aerodynamics in a flag-lag-torsional aeroelastic stability and response analysis in forward flight. Improvements to a previous formulation are introduced which eliminate spurious singularities. The methodology for solving the aeroelastic stability and response problems with augmented states, in the time domain, is presented using an implicit formulation. Results describing the aeroelastic behavior of soft and stiff in-plane hingeless rotor blades, in forward flight, are presented to illustrate the sensitivity of both the stability and response problems to time domain unsteady aerodynamics.

  19. 加装格尼襟翼的自转旋翼气动特性研究%Study on Aerodynamic Characteristics of Auto-rotating Rotors with Gurney Flaps

    Institute of Scientific and Technical Information of China (English)

    崔钊; 韩东; 李建波; 姬乐强; 朱清华

    2012-01-01

    为了研究格尼襟翼对自转旋翼气动特性的影响,首先建立了翼型加装格尼襟翼的二维气动特性计算模型,分析了NACA0012翼型及该翼型加装1%、2%弦长高度格尼襟翼的气动特性,理论计算结果与试验结果的对比表明了本计算模型的正确性.基于叶素理论建立了自转旋翼动力学模型,采用Pitt-Peters动态入流模型捕捉自转旋翼诱导速度沿桨盘的非均匀分布特性.最后进行了自转旋翼加装不同高度格尼襟翼的气动特性分析,结果表明:翼型加装1%弦长高度的格尼襟翼后,在20 m/s到35m/s的来流速度下,自转旋翼的阻力平均减小可达26%;加装高度为2%弦长的格尼襟翼后,在20m/s到35 m/s的来流速度下,自转旋翼的阻力平均减小达17%.自转旋翼的气动效率得到明显提高.%In order to investigate the aerodynamic characteristics of auto-rotating rotors equipped with Gurney flaps, a numerical model of airfoils equipped with Gurney flaps is established. The aerodynamic characteristics of airfoil NACA0012 with Gurney flaps of the height of 1 % and 2% of chord are calculated respectively. The validity of the model is also provided by the test data. The aerodynamic model of auto-rotating rotors is established based on the blade element theory, with a Pitt-Peters dynamic inflow model to capture the non-uniform induced velocity distribution on the rotor disk. The aerodynamic characteristics of auto-rotating rotors equipped with Gurney flaps with different heights are analyzed. The results show that from 20 m/s to 35 m/s forward flight velocity, the average drag reduction of auto-rotating rotors is up to 26% with the 1 % chord height Gurney flap, and the average drag reduction of auto-rotating rotor is up to 17% with the 2% chord height Gurney flap. Thus, the aerodynamic efficiency of the autogiro rotor is improved significantly with Gurney flaps.

  20. The Effect of the Active Ingredient Thymoquinone on Flap Viability in Random Pattern Flaps in Rats.

    Science.gov (United States)

    Kocak, Omer Faruk; Bozan, Nazim; Oksuz, Mustafa; Yuce, Serdar; Demir, Canser Yılmaz; Bulut, Gulay; Ragbetli, Murat Cetin

    2016-08-01

    Thymoquinone (TQ) is a plant extract that has been shown to have antioxidant, anti-inflammatory, angiogenic, antimicrobial, and anticarcinogenic effects. The aim of this study is to research how the use of TQ affects flap viability. 42 rats were placed into 6 groups, with 7 rats in each. A 3 × 10 cm McFarlane flap model was used on the test animals. The sham group had used neither surgical nor TQ treatment. The control group had surgery but no treatment afterwards. The preoperative TQ group was given oral doses of 2 mg/kg. TQ for 10 days preoperatively with no treatment after the surgical procedure. The postoperative TQ group received oral doses of 2 mg/kg TQ for 10 days after the surgical process. The preoperative + postoperative (pre + postoperative) TQ group was given oral doses of 2 mg/kg TQ for 10 days both preoperatively and postoperatively. Finally, the dimethylsulfoxide group received 10 mg/kg dimethylsulfoxide (DMSO) for 10 days both preoperatively and postoperatively. Ten days after surgery the findings were evaluated. The average rates of necrosis were found to be 29.7 % in the control group, 19.18 % in the preoperative TQ group, 13.05 % in the postoperative TQ group, 8.42 % in the pre + postoperative TQ group, and 29.03 % in the DMSO group. The experimental groups had better area measurement, histopathological, and electron microscopic results than the control group (All; p < 0.05). We believe that, because of its antioxidant, anti-inflammatory, and angiogenic properties, thymoquinone is an agent that can prevent ischemia-reperfusion damage and, therefore, prevent necrosis. PMID:27072137

  1. Stability investigation of an airfoil section with active flap control

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac

    2010-01-01

    fatigue load alleviation. The structural model of the 2-D airfoil section contains three degrees of freedom: heave translation, pitch rotation and flap deflection. A potential flow model provides the aerodynamic forces and their distribution. The unsteady aerodynamics are described using an indicial...

  2. Active vibration control of a rotor-bearing system based on dynamic stiffness

    OpenAIRE

    Andrés Blanco Ortega; Francisco Beltrán Carbajal; Gerardo Silva Navarro; Marco Antonio Oliver Salazar

    2010-01-01

    This paper presents an active vibration control scheme to reduce unbalance induced synchronous vibration in rotorbearing systems supported on two ball bearings, one of which can be automatically moved to control the effective rotor length and, as an immediate consequence, the rotor stiffness. This dynamic stiffness control scheme, based on frequency analysis, speed control and acceleration scheduling, is used to avoid resonant vibration of a rotor system when it passes (runup or coast down) t...

  3. SMART Wind Turbine Rotor: Data Analysis and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yoder, Nathanael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  4. Analysis on Dynamic Performance for Active Magnetic Bearing—Rotor System

    Institute of Scientific and Technical Information of China (English)

    YANHui-yan; WANGXi-ping; 等

    2001-01-01

    In the application of active magnetic bearings(AMB),one of the key problems to be solved is the safety and stabiltiy in the sense of rotor dynamics,The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings,and studies its rotor dynamics performance,including calculation of the natural frequencies with their distribution characteristics,and the critical speeds of the system.one of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magntic bearing-rotor systemby combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.

  5. Role of induced vortex interaction in a semi-active flapping foil based energy harvester

    Science.gov (United States)

    Wu, J.; Chen, Y. L.; Zhao, N.

    2015-09-01

    The role of induced vortex interaction in a semi-active flapping foil based energy harvester is numerically examined in this work. A NACA0015 airfoil, which acts as an energy harvester, is placed in a two-dimensional laminar flow. It performs an imposed pitching motion that subsequently leads to a plunging motion. Two auxiliary smaller foils, which rotate about their centers, are arranged above and below the flapping foil, respectively. As a consequence, the vortex interaction between the flapping foil and the rotating foil is induced. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between two auxiliary foils, the phase difference between the rotating motion and the pitching motion as well as the frequency of pitching motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency improvement of overall power extraction for the flapping foil with two auxiliary foils can be achieved. Based on the numerical analysis, it is indicated that the enhanced power extraction, which is caused by the increased lift force, thanks to the induced vortex interaction, directly benefits the efficiency enhancement.

  6. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT

    International Nuclear Information System (INIS)

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University of China. The helium turbine and generator system of 10 MW high-temperature gas-cooled reactor (HTR-10GT) is the second phase for the HTR-10 project. It is to set up a direct helium cycle to replace the current steam cycle. The active magnetic bearing (AMB) instead of ordinary mechanical bearing was chosen to support the rotor in the HTR-10GT. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1500 kg and the rotating speed is 15,000 rpm. The structure of the rotor is so complicated that dynamic analysis of the rotor becomes difficult. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. The dynamic analysis of the rotor is the base for the design of control system. It is important for the rotor to exceed critical speeds. Some kinds of softwares and methods, such as MSC.Marc, Ansys, and the transfer matrix method (TMM), are compared to fully analyze rotor dynamics characteristic in this paper. The modal analysis has been done for the HTR-10GT rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. The design characteristics of the AMB control system for the HTR-10GT were studied and the related experiment to exceed natural frequencies was introduced. The experimental results demonstrate the system functions and validate the control scheme, which will be used in the HTR-10GT project

  7. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT

    International Nuclear Information System (INIS)

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University of China. The helium turbine and generator system of 10 MW high temperature gas-cooled reactor (HTR-10GT) is the second phase for the HTR-10 project. It is to set up a direct helium cycle to replace the current steam cycle. The active magnetic bearing (AMB) instead of ordinary mechanical bearing was chosen to support the rotor in the HTR-10GT. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1500 kg and the rotating speed is 15000 r/min. The structure of the rotor is so complicated that dynamic analysis of the rotor becomes difficult. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. The dynamic analysis of the rotor is the base for the design of control system. It is important for the rotor to exceed critical speeds. Some kinds of software and methods, such as MSC.Marc, Ansys, and the Transfer Matrix Method, are compared to fully analyze rotor dynamics characteristic in this paper. The modal analysis has been done for the HTR-10GT rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. The design characteristics of the AMB control system for the HTR-10GT were studied and the related experiment to exceed natural frequencies was introduced. The experimental results demonstrate the system functions and validate the control scheme, which will be used in the HTR-10GT project. (authors)

  8. Design and experimental results for a turbine with jet flap stator and jet flap

    Science.gov (United States)

    Bettner, J. L.; Blessing, J. O.

    1973-01-01

    The overall performance and detailed stator performance of a negative hub reaction turbine design featuring a moderately low solidity jet flap stator and a jet flap rotor were determined. Testing was conducted over a range of turbine expansion ratios at design speed. At each expansion ratio, the stator jet flow and rotor jet flow ranged up to about 7 and 8 percent, respectively, of the turbine inlet flow. The performance of the jet flap stator/jet flap rotor turbine was compared with that of a turbine which used the same jet flap rotor and a conventional, high solidity plan stator. The effect on performance of increased axial spacing between the jet stator and rotor was also investigated.

  9. Structural and aerodynamic considerations of an active piezoelectric trailing-edge tab on a helicopter rotor

    Science.gov (United States)

    Murray, Gabriel Jon

    This dissertation is concerned with an active tab for use on a rotorcraft for noise and vibration reduction. The tab is located at the trailing edge of the airfoil. The tab consists of a shim sandwiched by layers of the piezoelectric actuators, macro fiber composites, of varying length. This configuration is similar to a bimorph. The modus operandi is similar to that of a trailing edge flap. The actuators deform the tab, bending it to achieve a tip displacement. This provides a change in the lift, moment, and drag coefficients of the airfoil. By actuating the system at 3/rev to 5/rev, reductions in noise and vibration can be realized. The system was examined and designed around using the UH-60 Blackhawk as the model rotorcraft. The tab is envisioned to operate between 65% to 85% of the main rotor span. The tab's chordwise dimensions considered were 20% and 15% of the blade chord. In order to assess the potential of the tab to change the lift and moment coefficients of the airfoil-tab system, a steady computational fluid dynamics study was conducted. The results were generated via the University of Maryland's Transonic Unsteady Navier-Stokes code. Various tab deflection angles, Mach numbers, and angle-of-attack values were computed. These results were compared to a trailing edge flap of similar size. The comparison shows that the tab produces lift and moment increments similar to that of the trailing edge flap. The design of the tab---composed of both active piezoelectric actuators and passive materials---was conducted using finite element analysis. The objectives were to maximize the tip deflection due to the actuators, while minimizing the deformation due to inertial and aerodynamic forces and loads. The inertial loads (acceleration terms) come from both blade motion, such as flapping and pitch, as well as the rotation of the rotor (centrifugal force). All of these previously mentioned terms cause the tab to undergo undesirable deflections. The original concept

  10. Coupled CFD/CSD Computation of Airloads of an Active-Twist Rotor

    Science.gov (United States)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K

    2013-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code for blade trim and aeroelastic effects is presented for a second-generation Active-Twist Rotor. Mesh and temporal sensitives of computed airloads are evaluated. In the final paper, computed airloads will be compared with wind tunnel data for the Active-Twist Rotor test that is currently underway.

  11. Vibration characterization of an active magnetic bearing supported rotor / J. Bean

    OpenAIRE

    Bean, Jaco

    2011-01-01

    The McTronX Research group at the Potchefstroom campus of the North-West University, aims to establish a knowledge base on active magnetic bearing (AMB) systems. Up to date, the group has established a firm knowledge base on various topics related to AMB systems. A recent focus was the design and development of a high speed AMB supported rotor system called the rotor delevitation system (RDS) to analyse rotor drops. During the testing phase of the RDS, the machine exhibited vibrations, of whi...

  12. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.

    2009-06-01

    Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.

  13. Active Pedicle Epithelial Flap Transposition Combined with Amniotic Membrane Transplantation for Treatment of Nonhealing Corneal Ulcers

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2016-01-01

    Full Text Available Introduction. The objective was to evaluate the efficacy of active pedicle epithelial flap transposition combined with amniotic membrane transplantation (AMT in treating nonhealing corneal ulcers. Material and Methods. Eleven patients (11 eyes with nonhealing corneal ulcer who underwent the combined surgery were included. Postoperatively, ulcer healing time was detected by corneal fluorescein staining. Visual acuity, intraocular pressure, surgical complications, and recurrence were recorded. Corneal status was inspected by the laser scanning confocal microscopy and anterior segment optical coherence tomography (AS-OCT. Results. The primary diseases were herpes simplex keratitis (8 eyes, corneal graft ulcer (2 eyes, and Stevens-Johnson syndrome (1 eye. All epithelial flaps were intact following surgery, without shedding or displacement. Mean ulcer healing time was 10.8±3.1 days, with a healing rate of 91%. Vision significantly improved from 1.70 to 0.82 log MAR (P=0.001. A significant decrease in inflammatory cell infiltration and corneal stromal edema was revealed 2 months postoperatively by confocal microscopy and AS-OCT. Corneal ulcer recurred in 1 eye. None of the patients developed major complications. Conclusion. Active pedicle epithelial flap transposition combined with AMT is a simple and effective treatment for nonhealing corneal ulcers.

  14. Control system design for flexible rotors supported by actively lubricated bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2008-01-01

    and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented...... displacement and velocity of the shaft at the bearing positions....

  15. Active magnetic bearing-supported rotor with misaligned cageless backup bearings: A dropdown event simulation model

    Science.gov (United States)

    Halminen, Oskari; Kärkkäinen, Antti; Sopanen, Jussi; Mikkola, Aki

    2015-01-01

    Active magnetic bearings (AMB) offer considerable benefits compared to regular mechanical bearings. On the other hand, they require backup bearings to avoid damage resulting from a failure in the component itself, or in the power or control system. During a rotor-bearing contact event - when the magnetic field has disappeared and the rotor drops on the backup bearings - the structure of the backup bearings has an impact on the dynamic actions of the rotor. In this paper, the dynamics of an active magnetic bearing-supported rotor during contact with backup bearings is studied with a simulation model. Modeling of the backup bearings is done using a comprehensive cageless ball bearing model. The elasticity of the rotor is described using the finite element method (FEM) and the degrees of freedom (DOF) of the system are reduced using component mode synthesis. Verification of the misaligned cageless backup bearings model is done by comparing the simulation results against the measurement results. The verified model with misaligned cageless backup bearings is found to correspond to the features of a real system.

  16. Evaluation of the Effectiveness of an Active Magnetic Damper (AMD) in Damping Subsynchronous Vibrations in a Flexible Rotor

    OpenAIRE

    Mendoza, Hector

    2000-01-01

    Subsynchronous vibrations such as those caused by rotor instability represent one of the most harrowing scenarios of rotor vibration. They are related to a great diversity of destabilizing forces and some of them are not well understood yet. Therefore, special attention must be paid to this type of vibration. Active Magnetic Bearings (AMBs) monitor the position of the shaft and change the dynamics of the system accordingly to keep the rotor in a desired position, offering the possibility of...

  17. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part II: Experiment

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    This is the second paper in a two-part study on active rotor-blade vibration control. This part presents an experimental contribution into the work of active controller design for rotor-blade systems. The primary aim is to give an experimental validation and show the applicability of the theoreti...

  18. Preliminary results of the first static calibration of the RSRA helicopter active-isolator rotor balance system

    Science.gov (United States)

    Acree, C. W., Jr.

    1983-01-01

    The helicopter version of the Rotor Systems Research Aircraft (RSRA) is designed to make simultaneous measurements of all rotor forces and moments in flight analogous to a wind tunnel balance. Loads are measured by a combination of load cells, strain gages, and hydropneumatic active isolators which use pressure gages to measure loads. Complete evaluation of system performance required calibration of the rotor force and moment measuring system when installed in the aircraft. Measurement system responses to rotor loads obtained during the first static calibration of the RSRA helicopter are plotted and discussed. Plots of the raw transducer data are included.

  19. Stability and coupling dynamic behavior of nonlinear journal active electromagnetic bearing rotor system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The stability and coupling dynamic behavior of a journal active electromagnetic bearing rotor system are analyzed.The gyroscopic effect is considered in the rotor model.The system equations are formulated by combining equations for rotor motion and decentralized proportional integral differential (PID) controllers.A method combining the predictor-corrector mechanism and the Netwon-Raphson method is presented to calculate the critical speed at the corresponding Hopf bifurcation point of the system.For periodic motions,a continuation method combining the predictor-corrector mechanism and shooting method is presented.Non-linear unbalanced periodic motions and their stability margins are obtained using the shooting method and established continuation method for periodic motions.With the change of control parameters,the system local stability and bifurcation behaviors are obtained using the Floquet theory.The numerical examples show that the schemes not only significantly save computing cost,but also have high precision.

  20. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    Science.gov (United States)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  1. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    Science.gov (United States)

    Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

    2014-09-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

  2. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    International Nuclear Information System (INIS)

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi. (paper)

  3. Modal Tilt/Translate Control and Stability of a Rigid Rotor with Gyroscopics on Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Timothy Dimond

    2012-01-01

    Full Text Available Most industrial rotors supported in active magnetic bearings (AMBs are operated well below the first bending critical speed. Also, they are usually controlled using proportional, integral and derivative controllers, which are set up as modally uncoupled parallel and tilt rotor axes. Gyroscopic effects create mode splitting and a speed-dependent plant. Two AMBs with four axes of control must simultaneously control and stabilize the rotor/AMB system. Various analyses have been published considering this problem for different rotor/AMB configurations. There has not been a fully dimensionless analysis of these rigid rotor AMB systems. This paper will perform this analysis with a modal PD controller in terms of translation mode and tilt mode dimensionless eigenvalues and eigenvectors. The number of independent system parameters is significantly reduced. Dimensionless PD controller gains, the ratio of rotor polar to transverse moments of inertia and a dimensionless speed ratio are used to evaluate a fully general system stability rigid rotor analysis. An objective of this work is to quantify the effects of gyroscopics on rigid rotor AMB systems. These gyroscopic forces reduce the system stability margin. The paper is also intended to help provide a common framework for communication between rotating machinery designers and controls engineers

  4. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    OpenAIRE

    Ferfecki P.

    2009-01-01

    The development and the design of a radial active magnetic bearing (AMB) reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead ...

  5. Dynamics of inert spheres in active suspensions of micro-rotors.

    Science.gov (United States)

    Yeo, Kyongmin; Lushi, Enkeleida; Vlahovska, Petia M

    2016-07-01

    Inert particles suspended in active fluids of self-propelled particles are known to often exhibit enhanced diffusion and novel coherent structures. Here we numerically investigate the dynamical behavior and self-organization in a system consisting of passive and actively rotating spheres of the same size. The particles interact through direct collisions and the fluid flows generated as they move. In the absence of passive particles, three states emerge in a binary mixture of spinning spheres depending on particle fraction: a dilute gas-like state where the rotors move chaotically, a phase-separated state where like-rotors move in lanes or vortices, and a jammed state where crystals continuously assemble, melt and move (K. Yeo, E. Lushi, and P. M. Vlahovska, Phys. Rev. Lett., 2015, 114, 188301). Passive particles added to the rotor suspension modify the system dynamics and pattern formation: while states identified in the pure active suspension still emerge, they occur at different densities and mixture proportions. The dynamical behavior of the inert particles is also non-trivially dependent on the system composition. PMID:27265340

  6. Development of an aeroelastic stability boundary for a rotor in autorotation

    OpenAIRE

    Trchalík, J.; Gillies, E.A.; Thomson, D. G.

    2008-01-01

    For the present study, a mathematical model AMRA was created to simulate the aeroelastic behaviour of a rotor during autorotation. Our model: Aeroelastic Model of a Rotor in Autorotation (AMRA) captures transverse bending and teeter, torsional twist and lag-wise motion of the rotor blade and hence it is used to investigate couplings between blade flapping, torsion and rotor speed. Lagrange’s method was used for the modelling of blade flapping and chord-wise bendi...

  7. Numerical analysis of the first static calibration of the RSRA helicopter active-isolator rotor balance system

    Science.gov (United States)

    Acree, C. W., Jr.

    1985-01-01

    The helicopter version of the Rotor Systems Research Aircraft (RSRA) is designed to make simultaneous measurements of all rotor forces and moments in a manner analogous to a wind-tunnel balance. Loads are measured by a combination of load cells, strain gages, and hydropneumatic active isolators with built-in pressure gages. Complete evaluation of system performance requires calibration of the rotor force- and moment-measurement system when installed in the aircraft. Derivations of calibration corrections for various combinations of calibration data are discussed.

  8. Load alleviation potential of active flaps and individual pitch control in a full design load basis

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Bergami, Leonardo; Hansen, Morten Hartvig;

    2015-01-01

    configuration is evaluated by comparing four setups: 1) baseline with collective pitch, 2) individual pitch control, 3) individual flap control and 4) individual flap control combined with individual pitch control. The CRTEF allows for a significant reduction of the lifetime fatigue on various load channels...

  9. Preliminary modal analysis and structure design of an HTR-10 PCU rotor with an active magnetic bearing

    International Nuclear Information System (INIS)

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by INET at Tsinghua University of China. The second phase of the HTR-10 project is to set up a direct helium cycle to replace the current steam cycle. An Active Magnetic Bearing (AMB) was chosen to support the rotor. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1000 kg and the rotating speed is 15,000 r/min. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. Some kinds of FEM software and methods, such as MSC.Marc, Ansys, and the Transfer Matrix Method, are compared to fully analyze rotor dynamics characteristic. The modal analysis and preliminary structure design have been done for the HTR-10 phase II rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. These results offer the basis for design of the AMB control system, and also provide research data for large magnetic bearings. (author)

  10. A study of autogiro rotor-blade oscillations in the plane of the rotor disk

    Science.gov (United States)

    Wheatley, John B

    1936-01-01

    An analysis of the factors governing the oscillation of an autogiro rotor blade in the plane of the rotor disk showed that the contribution of the air forces to the resultant motion was small and that the oscillation is essentially a direct effect of the rotor-blade flapping motion. A comparison of calculated oscillations with those measured in flight on three different rotors disclosed that the calculations gave satisfactory agreement with experiment. The calculated air forces on the rotor blade appear to be larger than the experimental ones, but this discrepancy can be attributed to the deficiencies in the strip analysis.

  11. Local correlations for flap gap oscillatory blowing active flow control technology

    Directory of Open Access Journals (Sweden)

    Cătălin NAE

    2010-09-01

    Full Text Available Active technology for oscillatory blowing in the flap gap has been tested at INCAS subsonic wind tunnel in order to evaluate this technology for usage in high lift systems with active flow control. The main goal for this investigation was to validate TRL level 4 for this technology and to extend towards flight testing. CFD analysis was performed in order to identify local correlations with experimental data and to better formulate a design criteria so that a maximum increase in lift is possible under given geometrical constraints. Reference to a proposed metric for noise evaluation is also given. This includes basic 2D flow cases and also 2.5D configurations. In 2.5D test cases this work has been extended so that the proposed system may be selected as a mature technology in the JTI Clean Sky, Smart Fixed Wing Aircraft ITD. Complex post-processing of the experimental and CFD data was mainly oriented towards system efficiency and TRL evaluation for this active technology.

  12. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  13. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Bergami, Leonardo; Andersen, Peter Bjørn

    2013-01-01

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  14. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2005-01-01

    In the present paper the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... lubricated tilting-pad bearing. By applying a simple proportional controller it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the feasibility...

  15. Study on the application of active balancing device to solve the vibration problem for the rotor with bending fault

    Institute of Scientific and Technical Information of China (English)

    He Lidong; Shen Wei; Gao Jinji; Zhou Weihua

    2006-01-01

    The rotor with bending faults that occurrs on the rotating machinery usually vibrates seriously. This paper investigates to apply the active balancing device on a flexible rotor with bending faults to solve the vibration problem. Two problems are studied by finite element method firstly: Where the balance actuator is fixed on the shaft and how much the balancing capacity of the active balancing device is needed. The experiment is then carried out on the test rig, which consists of a flexible rotor with bending faults. The test results indicate that the bending rotor peak vibration response can be decreased from 550μm to 40μm below by using the active balancing device. The peak vibration response decreases approximately by 93%. The synchronous vibration due to the rotor bending faults can be controlled effectively by using active balancing device. The active balancing device is especially adapted to solve the problem caused by thermal distortion with time-variation and randomness, which is varied with working conditions, thus it has good practical value in practice.

  16. Control of Flap Vortices

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A wind tunnel investigation was carried out on a semi-span wing model to assess the feasibility of controlling vortices emanating from outboard flaps and tip-flaps by actively varying the degree of boundary layer separation. Separation was varied by means of perturbations produced from segmented zero-efflux oscillatory blowing slots, while estimates of span loadings and vortex sheet strengths were obtained by integrating wing surface pressures. These estimates were used as input to inviscid rollup relations as a means of predicting changes to the vortex characteristics resulting from the perturbations. Surveys of flow in the wake of the outboard and tip-flaps were made using a seven-hole probe, from which the vortex characteristics were directly deduced. Varying the degree of separation had a marked effect on vortex location, strength, tangential velocity, axial velocity and size for both outboard and tip-flaps. Qualitative changes in vortex characteristics were well predicted by the inviscid rollup relations, while the failure to account for viscosity was presumed to be the main reason for observed discrepancies. Introducing perturbations near the outboard flap-edges or on the tip-flap exerted significant control over vortices while producing negligible lift excursions.

  17. Pattern formation in chemically interacting active rotors with self-propulsion.

    Science.gov (United States)

    Liebchen, Benno; Cates, Michael E; Marenduzzo, Davide

    2016-09-21

    We demonstrate that active rotations in chemically signalling particles, such as autochemotactic E. coli close to walls, create a route for pattern formation based on a nonlinear yet deterministic instability mechanism. For slow rotations, we find a transient persistence of the uniform state, followed by a sudden formation of clusters contingent on locking of the average propulsion direction by chemotaxis. These clusters coarsen, which results in phase separation into a dense and a dilute region. Faster rotations arrest phase separation leading to a global travelling wave of rotors with synchronized roto-translational motion. Our results elucidate the physics resulting from the competition of two generic paradigms in active matter, chemotaxis and active rotations, and show that the latter provides a tool to design programmable self-assembly of active matter, for example to control coarsening. PMID:27526180

  18. Model-Based Control Design for Flexible Rotors Supported by Active Gas Bearings - Theory & Experiment

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo

    the critical speeds. In order to overcome such limitations, a mechatronic device has been proposed as a possible solution. This device named "hybrid active radial gas bearing" or simply "active gas bearing", combines an aerodynamic gas journal bearing with piezoelectrically controlled injectors. In the present...... the effect of external pressurization. In order to validate the theoretical model, a test rig is used, which consists of a flexible rotor supported by a ball bearing and the active gas bearing. This thesis has three main focuses and original contributions: Firstly, contribute to improving a existing...... theoretical model for active gas bearings, with special attention to the modelling of the injection system. Secondly, experimentally validate the improved mathematical model in terms of static properties (journal equilibrium position and resulting aerodynamic forces) and dynamic properties (natural...

  19. Initial Aerodynamic and Acoustic Study of an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method

    Science.gov (United States)

    Boyd, David D. Jr.

    2009-01-01

    Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.

  20. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    Science.gov (United States)

    Flowers, George T.

    1995-01-01

    Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.

  1. Axial flow effects on robustness of vortical structures about actively deflected wings in flapping flight

    Science.gov (United States)

    Medina, Albert; Kweon, Jihoon; Choi, Haecheon; Eldredge, Jeff D.

    2012-11-01

    Flapping wing flight has garnered much attention in the past decade driven by our desire to understand capabilities observed in nature and to develop agile small-scale aerial vehicles. Nature has demonstrated the breadth of maneuverability achievable by flapping wing flight. However, despite recent advances the role of wing flexibility remains poorly understood. In an effort to develop a deeper understanding of wing deflection effects and to explore novel approaches to increasing leading-edge vortex robustness, this three-dimensional computational study explores the aerodynamics of low aspect ratio plates, in hovering kinematics, with isolated flexion lines undergoing prescribed deflection. Major flexion lines, recognized as the primary avenue for deflection in biological fliers, are isolated here in two distinct configurations, resulting in deflection about the wing root and the wing tip, respectively. Of interest is the interaction between axial flow along the span and the vortical structures about the wing. It is proposed that the modes of deflection explored may provide a means of axial flow control for favorably promoting LEV robustness over a broad range of flapping conditions, and provide insight into the nature of flexibility in flapping wing flight. National Science Foundation, National Research Foundation of Korea.

  2. Lateral vibration control of a flexible overcritical rotor via an active gas bearing – Theoretical and experimental comparisons

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2016-01-01

    The lack of damping of radial gas bearings leads to high vibration levels of a rotor supported by this type of bearing when crossing resonant areas. This is even more relevant for flexible rotors, as studied in this work. In order to reduce these high vibration levels, an active gas bearing...... aided by the finite element method and the rotor–fluid interaction in the gas bearing is included using the solution of a modified version of the Reynolds equation for compressible fluids, taking into account the piezoelectrically controlled jet action. Performance and accuracy of both model...

  3. Helicopter Fuselage Active Flow Control in the Presence of a Rotor

    Science.gov (United States)

    Martin, Preston B; Overmeyer, Austin D.; Tanner, Philip E.; Wilson, Jacob S.; Jenkins, Luther N.

    2014-01-01

    This work extends previous investigations of active flow control for helicopter fuselage drag and download reduction to include the effects of the rotor. The development of the new wind tunnel model equipped with fluidic oscillators is explained in terms of the previous test results. Large drag reductions greater than 20% in some cases were measured during powered testing without increasing, and in some cases decreasing download in forward flight. As confirmed by Particle Image Velocimetry (PIV), the optimum actuator configuration that provided a decrease in both drag and download appeared to create a virtual (fluidic) boat-tail fairing instead of attaching flow to the ramp surface. This idea of a fluidic fairing shifts the focus of 3D separation control behind bluff bodies from controlling/reattaching surface boundary layers to interacting with the wake flow.

  4. Adaptive Control of Active Balancing System for a Fast Speed-varying Jeffcott Rotor with Actuator Time Delay

    Institute of Scientific and Technical Information of China (English)

    HU Bing; FANG Zhi-chu

    2008-01-01

    Due to actuator time delay existing in an adaptive control of the active balancing system for a fastspeed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system,it may lead to degradation in control efficiency and instability of the control system. In order to avoid theseshortcomings, a simple adaptive controller was designed for a strictly positive real rotor system with actuatortime delay, then a Lyapunov-Krasovskii functional was constructed after an appropriate transform of this sys-tem model, the stability conditions of this adaptive control system with actuator time delay were derived. Afteradding a filter function, the active balancing system for the fast speed-varying Jeffcott rotor with actuator timedelay can easily be converted to a strictly positive real system, and thus it can use the above adaptive controllersatisfying the stability conditions. Finally, numerical simulations show that the adaptive controller proposedworks very well to perform the active balancing for the fast speed-varying Jeffcott rotor with actuator timedelay.

  5. 主动电磁轴承系统的动力学性能分析%Analysis on Dynamic Performance for Active Magnetic Bearing-Rotor System

    Institute of Scientific and Technical Information of China (English)

    严慧燕; 汪希平; 朱礼进; 张直明; 万金贵

    2001-01-01

    In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings, and studies its rotor dynamics performance, including calculation of the natural frequencies with their distribution characteristics, and the critical speeds of the system. One of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magnetic bearing-rotor system by combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.

  6. Retrospective study of reverse dorsal metacarpal flap and compound flap: a review of 122 cases

    Institute of Scientific and Technical Information of China (English)

    LU Lai-jin; GONG Xu; LIU Zhi-gang; ZHANG Zhi-xin

    2006-01-01

    Objective:To evaluate the clinical application and discuss the operative indication of the reverse dorsal metacarpal flap and its compound flap on the skin defects of hand.Methods: From 1990 to 2003, we applied the reverse dorsal metacarpal flap and its compound flap to repair soft tissue defects of fingers in 122 cases, which included 90cases of the reverse metacarpal flap and 32 cases of its compound flaps with tendon grafts, nerve grafts or bone grafts. Based on the follow-up observations, we analyzed the indications of the reverse metacarpal flap and its compound flaps, the postoperative contours, flap colors and textures in comparison to contralateral fingers retrospectively.Results: In the series of 122 cases, flaps survived and the donor site defects were closed directly. The follow-up period ranged from 1-12 years. The postoperative contours,colors and textures of the flaps and its compound flaps were similar to those of normal fingers, although linear scar remained. According to standards of sense recovery(British Medical Research Council, BMRC ), the sense function of the flaps resumed S3 after operation for 1 year.In 10 cases with the tendon defects treated by the flap with tendon grafts, function of flexion-extension of fingers resumed 50%-75% in comparison to the contralateral fingers using the method of measurement of total active motion. In 7 cases with the phalangeal nonunion or bone defects treated by the flap with bone grafts, union occurred after operation for 3 months.Conclusions: To soft tissue defects on fingers with bone or tendon exposure, the reverse metacarpal flap and its compound flap are a better choice for repairing. The range of repairing is up to the distal interphalangeal joint of fingers. The second dorsal metacarpal artery is more consistent and larger as the choice of vascular pedicle, in comparison with other dorsal metacarpal arteries.Postoperative flap color and texture are similar to normal fingers.

  7. Wind tunnel test on airfoil Riso-B1-18 with an Active Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bak, Christian; Gaunaa, Mac; Andersen, Peter Bjørn;

    2010-01-01

    A wind tunnel test of the wind turbine airfoil Risø-B1-18 equipped with an Active Trailing Edge Flap (ATEF) was carried out. The ATEF was 9% of the total chord, made of piezo electric actuators attached to the trailing edge of a non-deformable airfoil and actuated using an (electric) amplifier....... The airfoil was tested at Re = 1.66 × 106. Steady state and dynamic tests were carried out with prescribed deflections of the ATEF. The steady state tests showed that deflecting the ATEF towards the pressure side (positive ) translated the lift curve to higher lift values and deflecting the ATEF towards...

  8. An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover

    Science.gov (United States)

    Chen, Robert T. N.

    1992-01-01

    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used.

  9. Cyclic Control Optimization for a Smart Rotor

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Henriksen, Lars Christian

    2012-01-01

    The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic...

  10. Fasciocutaneous flaps

    NARCIS (Netherlands)

    D.E. Tolhurst (David)

    1988-01-01

    textabstractAbout that time the concept of independent myocutaneous vascular territories (Me Craw and Dibbell, 1977) was beginning to take hold but the deep fascia, sandwiched between muscles and the skin, was largely regarded as an isolating layer of dense, avascular fibrous tissue from which flaps

  11. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity

    Science.gov (United States)

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-03-01

    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region.

  12. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP).

    Science.gov (United States)

    Banoglu, Erden; Çelikoğlu, Erşan; Völker, Susanna; Olgaç, Abdurrahman; Gerstmeier, Jana; Garscha, Ulrike; Çalışkan, Burcu; Schubert, Ulrich S; Carotti, Andrea; Macchiarulo, Antonio; Werz, Oliver

    2016-05-01

    In this article, we report novel leukotriene (LT) biosynthesis inhibitors that may target 5-lipoxygenase-activating protein (FLAP) based on the previously identified isoxazole derivative (8). The design and synthesis was directed towards a subset of 4,5-diaryl-isoxazole-3-carboxylic acid derivatives as LT biosynthesis inhibitors. Biological evaluation disclosed a new skeleton of potential anti-inflammatory agents, exemplified by 39 and 40, which potently inhibit cellular 5-LO product synthesis (IC50 = 0.24 μM, each) seemingly by targeting FLAP with weak inhibition on 5-LO (IC50 ≥ 8 μM). Docking studies and molecular dynamic simulations with 5-LO and FLAP provide valuable insights into potential binding modes of the inhibitors. Together, these diaryl-isoxazol-3-carboxylic acids may possess potential as leads for development of effective anti-inflammatory drugs through inhibition of LT biosynthesis. PMID:26922224

  13. Active Magnetic Bearings used as an Actuator for Rotor Health Monitoring in Conjunction with Conventional Support Bearings

    OpenAIRE

    Bash, Travis Joel

    2005-01-01

    This thesis describes the test rig and results from a project expanding the field of rotor health monitoring by using Active Magnetic Bearings (AMBs) as actuators for applying a variety of known force inputs to a spinning. Similar to modal analysis and other nondestructive evaluation (NDE) techniques which apply input signals to static structures in order to monitor responses; this approach allows for the measurement of both input and output response in a rotating system for evaluation. How...

  14. Adjustable ETHD lubrication applied to the improvement of dynamic performance of flexible rotors supported by active TPJB

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2013-01-01

    This paper reports the dynamic study of a flexible rotor-bearing test rig which resembles a large overhung centrifugal compressor. The rotor is supported by an active tilting pad journal bearing (TPJB) able to perform the adjustable lubrication regime. Such a regime is obtained by injecting...... the full dynamic coefficients matrices obtained by an Elasto-Thermo-Hydrodynamic (ETHD) model of the TPJB. Theoretical results are presented in Campbell diagram, stability map, mode shapes and frequency response functions (FRFs). The experimental FRFs and the modal parameters of the test rig are also...... obtained and compared against the theoretical results. The main contribution of this work is to present theoretically and experimentally the feasibility of modifying the dynamic performance of the test rig by means of the adjustable ETHD lubrication. Fair agreements between the theoretical...

  15. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing.

    Science.gov (United States)

    Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin

    2014-07-01

    For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor.

  16. Variable Parameters PD Control and Stability of a High Rate Rigid Rotor-Journal Active Magnetic Bearing System

    Institute of Scientific and Technical Information of China (English)

    LUO Kai

    2005-01-01

    Stability is a key problem that means whether a high rate rotor-active magnetic bearings system works reliably or not. Aiming at a bearings system described with nonlinear equations, this paper built a linear model according to the system behavior. Considering realization of the control system and behavior of a high rate rotor system (magnetic force is far smaller than input force produced by mass eccentricity) this paper proposes a design method of variable parameters PD control algorithm that can be used universally. The control system was simplified and a mass of adjusting work of control parameters was reduced. Analysis and simulation indicated that the bearings system could get a wider stable region of harmonic motion, and proved that the algorithm is robust and advanced. The control system can be realized because the winding electric currents are positive. The method is convenient for operation and can easily be used for engineering practice.

  17. Separators for flywheel rotors

    Science.gov (United States)

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  18. Solid State Adaptive Rotor Using Postbuckled Precompressed, Bending-Twist Coupled Piezoelectric Actuator Elements

    Directory of Open Access Journals (Sweden)

    Ronald M. Barrett

    2012-01-01

    Full Text Available This paper is centered on a new actuation mechanism which is integrated on a solid state rotor. This paper outlines the application of such a system via a Post-Buckled Precompression (PBP technique at the end of a twist-active piezoelectric rotor blade actuator. The basic performance of the system is handily modeled by using laminated plate theory techniques. A dual cantilevered spring system was used to increasingly null the passive stiffness of the root actuator along the feathering axis of the rotor blade. As the precompression levels were increased, it was shown that corresponding blade pitch levels also increased. The PBP cantilever spring system was designed so as to provide a high level of stabilizing pitch-flap coupling and inherent resistance to rotor propeller moments. Experimental testing showed pitch deflections increasing from just 8° peak-to-peak deflections at 650 V/mm field strength to more than 26° at the same field strength with design precompression levels. Dynamic testing showed the corner frequency of the linear system coming down from 63 Hz (3.8/rev to 53 Hz (3.2/rev. Thrust coefficients manipulation levels were shown to increase from 0.01 to 0.028 with increasing precompression levels. The paper concludes with an overall assessment of the actuator design.

  19. Suspension Bridge Flutter for Girder with Separate Control Flaps

    DEFF Research Database (Denmark)

    Huynh, T.; Thoft-Christensen, Palle

    Active vibration control of long span suspension bridge flutter using separated control flaps (SFSC) has shown to increase effectively the critical wind speed of bridges. In this paper, an SFSC calculation based on modal equations of the vertical and torsional motions of the bridge girder including...... the flaps is presented. The length of the flaps attached to the girder, the flap configuration and the flap rotational angles are parameters used to increase the critical wind speed of the bridge. To illustrate the theory a numerical example is shown for a suspension bridge of 1000m+2500m+1000m span based...

  20. Unbalanced Magnetic Pull Effect on Stiffness Models of Active Magnetic Bearing due to Rotor Eccentricity in Brushless DC Motor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available We firstly report on an investigation into the unbalanced magnetic pull (UMP effect on the static stiffness models of radial active magnetic bearing (RAMB in brushless DC motor (BDCM in no-loaded and loaded conditions using the finite element method (FEM. The influences of the UMP on the force-control current, force-position, current stiffness, and position stiffness of RAMB are clarified in BDCM with 100 kW rated power. We found the position stiffness to be more susceptible to UMP. The primary source of UMP is the permanent magnets of BDCM. In addition, the performance of RAMB is affected by the UMP ripples during motor commutation and also periodically affected by the angular position of rotor. The characteristic curves of RAMB force versus control current (or rotor position and angular position of rotor affected by the UMP are given. The method is useful in design and optimization of RAMB in magnetically suspended BDCMs.

  1. Dynamic Gust Load Analysis for Rotors

    Directory of Open Access Journals (Sweden)

    Yuting Dai

    2016-01-01

    Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.

  2. Prediction of BVI Noise for an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method and Comparison to Experimental Data

    Science.gov (United States)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.; Boyd, David Douglas, Jr.

    2012-01-01

    Numerical predictions of the acoustic characteristics of an Active Twist Rotor (ATR), using two methods to compute the rotor blade aerodynamics and elastic blade motion are compared to experimental data from a wind tunnel test in the NASA Langley Transonic Dynamics Tunnel (TDT) in 2000. The first method, a loosely coupled iterative method, utilizes the Computational Fluid Dynamics (CFD) code OVERFLOW 2 and the Computational Structural Dynamics (CSD) code CAMRAD II. The second method utilizes the CAMRAD II free-wake model only. The harmonic active-twist control to the main rotor blade system is identified with three parameters - harmonic actuation frequency, actuation amplitude, and control phase angle. The resulting aerodynamics and blade motion data from the two methods are then used in the acoustics code PSU-WOPWOP to predict acoustic pressure on a spherical array of equally spaced observers surrounding the rotor. This spherical distribution of pressure is used to compute the sound power level representing baseline and actuated conditions. Sound power levels for three categories of noise are defined as - blade-vortex interaction sound power level (BVIPWL), low frequency sound power level (LFPWL), and overall sound power level, OAPWL. Comparisons with measured data indicate the CFD/CSD analysis successfully captures the trends in sound power levels and the effects of active-twist control at advance ratios of 0.14 and 0.17. The free-wake model predictions show inconsistent sound power levels relative to the trends in the experimental and CFD data. This paper presents the first ever comparison between CFD/CSD acoustic predictions for an active-twist rotor and experimental measurements.

  3. The platysma myocutaneous flap.

    Science.gov (United States)

    Baur, Dale A; Williams, Jonathan; Alakaily, Xena

    2014-08-01

    Reconstructing defects of the oral mucosa or skin of the lower one-third of the face can be accomplished by a variety of techniques. This article presents two versions of the platysma myocutaneous flap, which is a reliable, axial pattern, pedicled flap capable of providing excellent one-stage reconstruction of such defects. As discussed herein, the superiorly based and posteriorly based versions of the flap have wide application in the oral and facial region. Also provided is a review of other uses of this flap in head and neck surgery. PMID:24958382

  4. Propeller TAP flap

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Bille, Camilla; Wamberg, Peter;

    2013-01-01

    The aim of this study was to examine if a propeller thoracodorsal artery perforator (TAP) flap can be used for breast reconstruction. Fifteen women were reconstructed using a propeller TAP flap, an implant, and an ADM. Preoperative colour Doppler ultrasonography was used for patient selection...... major complications needing additional surgery. One flap was lost due to a vascular problem. Breast reconstruction can be performed by a propeller TAP flap without cutting the descending branch of the thoracodorsal vessels. However, the authors would recommend that a small cuff of muscle is left around...

  5. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    Science.gov (United States)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  6. A Fuzzy Logic System For Ground Based Structural Health Monitoring of a Helicopter Rotor Using Modal Data

    OpenAIRE

    Ganguli, Ranjan

    2001-01-01

    A fuzzy logic system (FLS) is developed for ground based health monitoring of a helicopter rotor blade. Structural damage is modeled as a loss of stiffness at the damaged location that can result from delamination. Composite materials, which are widely used for fabricating rotor blades, are susceptible to such delaminations from barely visible impact damage. The rotor blade is modeled as an elastic beam undergoing transverse (flap) and inplane (lag) bending, axial and torsion deformations. A ...

  7. Cervicofacial flap revisited

    Directory of Open Access Journals (Sweden)

    Dhananjay V. Nakade

    2016-11-01

    Conclusions: Cervicofacial flap is simple, easy to operate, consume less operating time as compared to microvascular flap. It is less complicated and especially useful in diabetic, hypertensives and old debilitated patients with high risk of anaesthesia. [Int J Res Med Sci 2016; 4(11.000: 4669-4674

  8. Pedicled perforator flaps

    DEFF Research Database (Denmark)

    Demirtas, Yener; Ozturk, Nuray; Kelahmetoglu, Osman;

    2009-01-01

    Described in this study is a surgical concept that supports the "consider and use a pedicled perforator flap whenever possible and indicated" approach to reconstruct a particular skin defect. The operation is entirely free-style; the only principle is to obtain a pedicled perforator flap to recon......Described in this study is a surgical concept that supports the "consider and use a pedicled perforator flap whenever possible and indicated" approach to reconstruct a particular skin defect. The operation is entirely free-style; the only principle is to obtain a pedicled perforator flap...... more practical and creative to use a free-style manner during pedicled perforator flap surgery, instead of being obliged to predefined templates for this type of procedure....

  9. Investigation of Vertical Drag and Periodic Airloads Acting on Flat Panels in a Rotor Slipstream

    Science.gov (United States)

    Makofski, Robert A; Menkick, George F

    1956-01-01

    Tests have been conducted on the Langley helicopter test tower to determine the vertical drag and pressure distributions on flat panels mounted below a helicopter rotor. Calculations of the vertical drag by use of a strip-analysis procedure outlined in the paper and the assumption of a fully contracted wake agreed well with the experimental results over the range from 0.2 to 0.64 rotor radius beneath the plane of zero flapping. The pressure increase caused by the passage of the blade over the panel is a maximum at about the 0.8 radius spanwise station. At this station, the pressure decreases from 10 times the disk loading per blade at 0.05 radius beneath the rotor plane of zero flapping to one-half of the disk loading per blade at 0.64 radius beneath the plane of zero flapping.

  10. Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors

    Science.gov (United States)

    Yeo, Hyeonsoo; Johnson, Wayne

    2013-01-01

    Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.

  11. Handling Qualities Results of an Initial Geared Flap Tilt Wing Piloted Simulation

    Science.gov (United States)

    Guerrero, Lourdes M.; Corliss, Lloyd D.

    1991-01-01

    An exploratory simulation study of a novel approach to pitch control for a tilt wing aircraft was conducted in 1990 on the NASA-Ames Vertical Motion Simulator. The purpose of the study was to evaluate and compare the handling qualities of both a conventional and a geared flap tilt wing control configuration. The geared flap is an innovative control concept which has the potential for reducing or eliminating the horizontal pitch control tail rotor or reaction jets required by prior tilt wing designs. The handling qualities results of the geared flap control configuration are presented in this paper and compared to the conventional (programmed flap) tilt wing control configuration. This paper also describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, and the pilot evaluation tasks and procedures.

  12. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  13. On the use of first order rotor dynamics in multiblade coordinates. [for compound helicopter

    Science.gov (United States)

    Hohenemser, K. H.; Yin, S. K.

    1974-01-01

    This paper is directed to the question of how to represent most efficiently rotor/body coupling in a linear flight dynamics analysis. Rigid body pitch, roll and vertical motions are considered for the rotor/body coupling studies. Flapping stability limits, eigenvalues, transient responses to control step inputs, to step gusts and to random gusts are determined for a hypothetical hingeless compound helicopter operating up to .8 advance ratio. Data are obtained for the basic helicopter and for the craft with two simple control feedback systems. While complete periodic system modeling is necessary for determining flapping stability limits and vibrations, constant system modeling using first order dynamics in each of the multiblade rotor coordinates was found to be adequate for rotor-craft stability and response computations.

  14. Numerical Analysis of Helicopter Rotor Hovering in Close Proximity to the Ground with a Wall

    Science.gov (United States)

    Itoga, Noriaki; Iboshi, Naohiro; Horimoto, Mitsumasa; Saito, Shigeru; Tanabe, Yasutada

    In rescue operations and emergency medical services, helicopters are frequently required to operate near the ground with obstacles such as buildings and sidewalls of highway. In this paper, numerical analysis of helicopter rotor hovering in close proximity to the ground with an obstacle is done by solving unsteady 3D compressible Euler equations with an overlapped grid system. The obstacle is simulated by a wall vertically set up on the ground. The parameters for numerical analysis are the rotor height and distance from the rotor-hub-center to the wall. The effects of combinations of these parameters on the flowfields around the rotor, inflow distributions on the rotor disc and behaviors of blade flapping motion are discussed. It is also clarified the cause that the helicopter rotor hovering in close proximity to the ground with a wall does not have the enough ground effect depending on the combinations of these parameters.

  15. Flapping of Insectile Wings

    Science.gov (United States)

    Huang, Yangyang; Kanso, Eva

    2015-11-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. Yet the effects of muscle stiffness on the performance of insect wings remain unclear. Here, we construct an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring and submerged in an oscillatory flow. The wing system is free to rotate and flap. We first explore the extent to which the flyer can withstand roll perturbations, then study its flapping behavior and performance as a function of spring stiffness. We find an optimal range of spring stiffness that results in large flapping amplitudes, high force generation and good storage of elastic energy. We conclude by conjecturing that insects may select and adjust the muscle spring stiffness to achieve desired movement. These findings may have significant implications on the design principles of wings in micro air-vehicles.

  16. Whirl flutter analysis of a horizontal-axis wind turbine with a two-bladed teetering rotor

    Science.gov (United States)

    Janetzke, D. C.; Kaza, K. R. V.

    1981-01-01

    Whirl flutter and the effect of pitch-flap coupling on teetering motion of a wind turbine were investigated. The equations of motion are derived for an idealized five-degree-of-freedom mathematical model of a horizontal-axis wind turbine with a two-bladed teetering rotor. The model accounts for the out-of-plane bending motion of each blade, the teetering motion of the rotor, and both the pitching and yawing motions of the rotor support. Results show that the design is free from whirl flutter. Selected results are presented indicating the effect of variations in rotor support damping, rotor support stiffness, and pitch-flap coupling on pitching, yawing, teetering, and blade bending motions.

  17. Control of a flexible rotor active magnetic bearing test rig:a characteristic model based all-coefficient adaptive control approach

    Institute of Scientific and Technical Information of China (English)

    Long DI; Zongli LIN

    2014-01-01

    Active magnetic bearings (AMBs) have found a wide range of applications in high-speed rotating machinery industry. The instability and nonlinearity of AMBs make controller designs difficult, and when AMBs are coupled with a flexible rotor, the resulting complex dynamics make the problems of stabilization and disturbance rejection, which are critical for a stable and smooth operation of the rotor AMB system, even more difficult. Proportional-integral-derivative (PID) control dominates the current AMB applications in the field. Even though PID controllers are easy to implement, there are critical performance limitations associated with them that prevent the more advanced applications of AMBs, which usually require stronger robustness and performance offered by modern control methods such as H-infinity control andμ-synthesis. However, these advanced control designs rely heavily on the relatively accurate plant models and uncertainty characterizations, which are sometimes difficult to obtain. In this paper, we explore and report on the use of the characteristic model based all-coefficient adaptive control method to stabilize a flexible rotor AMB test rig. In spite of the simple structure of such a characteristic model based all-coefficient adaptive controller, both simulation and experimental results show its strong performance.

  18. THE EXPERIMENTAL TESTING OF AN ACTIVE MAGNETIC BEARING/ROTOR SYSTEM UNDERGOING BASE EXCITATION

    OpenAIRE

    Clements, Joshua Ryan

    2000-01-01

    Active Magnetic Bearings (AMB) are a relatively recent innovation in bearing technology. Unlike conventional bearings, which rely on mechanical forces originating from fluid films or physical contact to support bearing loads, AMB systems utilize magnetic fields to levitate and support a shaft in an air-gap within the bearing stator. This design has many benefits over conventional bearings. The potential capabilities that AMB systems offer are allowing this new technology to be considered f...

  19. Perforator Flaps for Perineal Reconstructions

    OpenAIRE

    Niranjan, Niri S.

    2006-01-01

    Whenever there is soft tissue loss from the perineum there are many options for reconstruction. These include allowing the wound to heal by secondary intention and the use of local random or axial pattern flaps, regional flaps, or free flaps. The axial skin flap can be defined as a flap based on known constant vessels of the subcutaneous tissue and its vena comitantes. The perforator flap on the other hand is a randomly selected perforator consisting of an artery with vena comitantes, which p...

  20. Source localization for active control of turbofan rotor-stator broadband noise

    Science.gov (United States)

    Walker, Bruce E.

    2005-09-01

    In order to identify a reference signal source for an active noise cancellation system, cross-correlation techniques were used to localize broadband noise source regions on exit guide vanes of the NASA Glenn Research Center Advance Noise Control Fan (ANCF). Arrays of surface pressure sensors were imbedded in one guide vane and in the wall of the fan. Synchronous sampling was used with a multichannel data acquisition system to allow removal of periodic components from the signals. The signals were then cross-correlated to assess radiation directivity and the relationship between vane surface pressure and in-duct acoustic noise. The results of these measurements indicated that broadband unsteady pressures near the leading edge tip of the guide vane were well enough correlated with acoustic radiation that 2-3 dB active noise cancellation could be achieved using a simple gain-delay control algorithm and actuator array. After successful simulation in a wind tunnel environment the concept was incorporated on 15 guide vanes and tested in ANCF. Cross-correlation measurements were further used to evaluate system performance and to identify competing noises from rotating and stationary sources within the fan.

  1. Blood Pump Having a Magnetically Suspended Rotor

    Science.gov (United States)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  2. Analysis and control of the transient aeroelastic response of rotors during shipboard engagement and disengagement operations

    Science.gov (United States)

    Keller, Jonathan Allen

    2001-11-01

    An analysis has been developed to predict the transient aeroelastic response of a helicopter rotor system during shipboard engagement and disengagement operations. The coupled flap-lag-torsion equations of motion were developed using Hamilton's Principle and discretized spatially using the finite element method. Aerodynamics were simulated using nonlinear quasi-steady or time domain nonlinear unsteady models. The ship airwake environment was simulated with simple deterministic airwake distributions, results from experimental measurements or numerical predictions. The transient aeroelastic response of the rotor blades was then time-integrated along a specified rotor speed profile. The control of the rotor response for an analytic model of the H-46 Sea Knight rotor system was investigated with three different passive control techniques. Collective pitch scheduling was only successful in reducing the blade flapping response in a few isolated cases. In the majority of cases, the blade transient response was increased. The use of a discrete flap damper in the very low rotor speed region was also investigated. Only by raising the flap stop setting and using a flap damper four times the strength of the lag damper could the downward flap deflections be reduced. However, because the flap stop setting was raised the upward flap deflections were often increased. The use of extendable/retractable, gated leading-edge spoilers in the low rotor speed region was also investigated. Spoilers covering the outer 15% R of the rotor blade were shown to significantly reduce both the upward and downward flap response without increasing rotor torque. Previous aeroelastic analyses developed at the University of Southampton and at Penn State University were completed with flap-torsion degrees of freedom only. The addition of the lag degree of freedom was shown to significantly influence the blade response. A comparison of the two aerodynamic models showed that the nonlinear quasi

  3. Blowing Flap Experiment: PIV Measurements

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.; Bremmer, David M.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the flap vortex system. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  4. Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects

    Science.gov (United States)

    Schaeffler, Norman W.; Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Mace, W. Derry; Wong, Oliver D.; Tanner, Philip E.

    2016-01-01

    The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.

  5. Vibration active control of tilting pad journal bearing rotor system based on the active lubrication%基于主动润滑可倾瓦轴承转子系统的振动主动控制

    Institute of Scientific and Technical Information of China (English)

    刘宏; 宫晓春; 王晋麟

    2011-01-01

    研究一类可倾瓦支承的单盘非对称转子系统的振动主动控制问题.首先建立了系统的非线性动力学方程,针对主动润滑控制系统设计了BP神经网络PID控制器对转子系统进行振动主动控制.通过计算分析可知,采用基于BP-PID的主动润滑系统能够很好的抑制系统的振幅,使系统在很高的转速时才发生油膜失稳,拓宽转子系统稳定运转的转速范围,在转子系统发生油膜失稳时系统的振幅也能够得到极大程度的控制.%The vibration active control of an unsymmetrical rotor supported by two tilting pad journal bearings is investigated in this paper. Firstly, the nonlinear governing equation of the rotor system is formulated. Then the BP neural network PID controller is designed with regard to the active lubricated control system is applied to suppress the vibration of the concerning rotor system. After calculation and analysis the persuasive results are obtained. The vibration amplitude of the rotor system is greatly reduced by means of the active lubricated control system through the BP neural network PID controller. The whip instability of the controlled system occurs at a very high rotational speed and the stable operation range is greatly broadened. The vibration amplitude can be significantly suppressed by the active lubricated control system when the rotor runs up against the whip instability.

  6. The Evolution of Perforator Flaps

    OpenAIRE

    Khan, Farah N.; Spiegel, Aldona J.

    2006-01-01

    Perforator flaps have recently become ubiquitous in the field of plastic surgery. To understand and appreciate their unique nature, it is necessary to compare and contrast them with the development of other types of flaps. A complete yet abridged version of the history of flap surgery is presented in this article. Beginning with Sushruta's Indian cheek flap method for nasal reconstruction, a trip through time and space is taken to highlight the milestones leading to the evolution of the perfo...

  7. Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports

    Science.gov (United States)

    Flowers, George T.

    1996-01-01

    This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.

  8. Molecular Rotors as Switches

    Directory of Open Access Journals (Sweden)

    Kang L. Wang

    2012-08-01

    Full Text Available The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V revealed a temperature-dependent negative differential resistance (NDR associated with the device. The analysis of the device

  9. The Versatile Modiolus Perforator Flap

    DEFF Research Database (Denmark)

    Gunnarsson, Gudjon Leifur; Thomsen, Jorn Bo

    2016-01-01

    BACKGROUND: Perforator flaps are well established, and their usefulness as freestyle island flaps is recognized. The whereabouts of vascular perforators and classification of perforator flaps in the face are a debated subject, despite several anatomical studies showing similar consistency. In our...

  10. Genetics Home Reference: Rotor syndrome

    Science.gov (United States)

    ... Me Understand Genetics Home Health Conditions Rotor syndrome Rotor syndrome Enable Javascript to view the expand/collapse boxes. Print All Open All Close All Description Rotor syndrome is a relatively mild condition characterized by ...

  11. Variability of extreme flap loads during turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Ronold, K.O. [Det Norske Veritas, Hoevik (Norway); Larsen, G.C. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The variability of extreme flap loads is of utmost importance for design of wind-turbine rotor blades. The flap loads of interest consist of the flap-wise bendin moment response at the blade root whose variability in the short-term, for a given wind climate, can be represented by a stationary process. A model for the short-term bending moment process is presented, and the distribution of its associated maxima is derived. A model for the wind climate is given in terms of the probability distributions for the 10-minute mean wind speed and the standard deviation of the arbitrary wind speed. This is used to establish the distribution of the largest flap-wise bending moment in a specific reference period, and it is outlined how a characteristic bending moment for use in design can be extracted from this distribution. The application of the presented distribution models is demonstrated by a numerical example for a site-specific wind turbine. (au)

  12. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight

    Science.gov (United States)

    Rigsby, James Michael

    Interest in high speed rotorcraft has directed attention toward the slowed-rotor, high advance ratio compound autogyro concept as evidenced by the current DARPA Heliplane project. The behavior of partially unloaded rotors, autorotating at high advance ratio is not well understood and numerous technical issues must be resolved before the vehicle can be realized. Autorotation in helicopters usually indicates an emergency loss of power. For the concept vehicle autorotation is the normal working state of the rotor. The necessity for a reduction in rotor speed with increasing flight speed results in high advance ratio operation where the retreating side of the rotor is dominated by the reverse flow region. Further, rotor speed changes also affect the rotor dynamics and the associated hub moments generated by cyclic flapping. The result is rotor characteristics that vary widely depending on advance ratio. In the present work, rotor behavior is characterized in terms of issues relevant to the control system conceptual design and the rotor impact on the intrinsic vehicle flight dynamics characteristics. A series of trim, stability, and control analyses, based on features inherent in the concept vehicle, are performed. Trends are identified through parametric variation of rotor operating conditions, augmented by inclusion of the sensitivities to blade mass and blade stiffness properties. In this research, non-linear models, including the rotor speed degree of freedom, were created and analyzed with FLIGHTLAB(TM) rotorcraft modeling software. Performance analysis for rotors trimmed to autorotate with zero average hub pitching and rolling moments indicates reduced rotor thrust is achieved primarily through rotor speed reduction at lower shaft incidence angle, and imposing hub moment trim constraints results in a thrust increment sign reversal with collective pitch angle above advance ratio mu ˜ 1.0. Swashplate control perturbations from trim indicate an increase in control

  13. Vibratory hub load data reduction and analysis from the reverse velocity rotor wind tunnel test, phase 2B

    Science.gov (United States)

    Taylor, R. B.

    1976-01-01

    The vibratory hub loads data analysis from the reverse velocity rotor wind tunnel test is reported. Vibratory loads were obtained from the rotating hub balance and also by synthesis of generalized coordinates from the blade flap bending moments. Load trends were defined as a function of speed, rotor thrust and 2 per rev cyclic from each of the data methods. These trends were compared to determine the degree of agreement between each method and provide substantiation for the generalized coordinate approach.

  14. Papilla Preservation Flap as Aesthetic Consideration in Periodontal Flap Surgery

    OpenAIRE

    Sandra Olivia; Natalina Natalina; Felix Hartono

    2013-01-01

    Flap surgery is treatment for periodontal disease with alveolar bone destruction. Surgical periodontal flap with conventional incision will result in gingival recession and loss of interdental papillae after treatment. Dilemma arises in areas required high aesthetic value or regions with a fixed denture. It is challenging to perform periodontal flap with good aesthetic results and minimal gingival recession. This case report aimed to inform and to explain the work procedures, clinical and rad...

  15. Flexible rotor dynamics analysis

    Science.gov (United States)

    Shen, F. A.

    1973-01-01

    A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.

  16. Engineered Vascularized Muscle Flap.

    Science.gov (United States)

    Egozi, Dana; Shandalov, Yulia; Freiman, Alina; Rosenfeld, Dekel; Ben-Shimol, David; Levenberg, Shulamit

    2016-01-01

    One of the main factors limiting the thickness of a tissue construct and its consequential viability and applicability in vivo, is the control of oxygen supply to the cell microenvironment, as passive diffusion is limited to a very thin layer. Although various materials have been described to restore the integrity of full-thickness defects of the abdominal wall, no material has yet proved to be optimal, due to low graft vascularization, tissue rejection, infection, or inadequate mechanical properties. This protocol describes a means of engineering a fully vascularized flap, with a thickness relevant for muscle tissue reconstruction. Cell-embedded poly L-lactic acid/poly lactic-co-glycolic acid constructs are implanted around the mouse femoral artery and vein and maintained in vivo for a period of one or two weeks. The vascularized graft is then transferred as a flap towards a full thickness defect made in the abdomen. This technique replaces the need for autologous tissue sacrifications and may enable the use of in vitro engineered vascularized flaps in many surgical applications. PMID:26779840

  17. Flag flapping in a channel

    Science.gov (United States)

    Alben, Silas; Shoele, Kourosh; Mittal, Rajat; Jha, Sourabh; Glezer, Ari

    2015-11-01

    We study the flapping of a flag in an inviscid channel flow. We focus especially on how quantities vary with channel spacing. As the channel walls move inwards towards the flag, heavier flags become more unstable, while light flags' stability is less affected. We use a vortex sheet model to compute large-amplitude flapping, and find that the flag undergoes a series of jumps to higher flapping modes as the channel walls are moved towards the flag. Meanwhile, the drag on the flag and the energy lost to the wake first rise as the walls become closer, then drop sharply as the flag moves to a higher flapping mode.

  18. Effect of AFT Rotor on the Inter-Rotor Flow of an Open Rotor Propulsion System

    Science.gov (United States)

    Slaboch, Paul E.; Stephens, David B.; Van Zante, Dale E.

    2016-01-01

    The effects of the aft rotor on the inter-rotor flow field of an open rotor propulsion rig were examined. A Particle Image Velocimetry (PIV) dataset that was acquired phase locked to the front rotor position has been phase averaged based on the relative phase angle between the forward and aft rotors. The aft rotor phase was determined by feature tracking in raw PIV images through an image processing algorithm. The effect of the aft rotor potential field on the inter-rotor flow were analyzed and shown to be in good agreement with Computational Fluid Dynamics (CFD) simulations. It was shown that the aft rotor had no substantial effect on the position of the forward rotor tip vortex but did have a small effect on the circulation strength of the vortex when the rotors were highly loaded.

  19. Synchronization and Collective Dynamics in a Carpet of Microfluidic Rotors

    OpenAIRE

    Uchida, Nariya; Golestanian, Ramin

    2009-01-01

    We study synchronization of an array of rotors on a substrate that are coupled by hydrodynamic interaction. The rotors that are modeled by an effective rigid body, are driven by an internal torque and exerts an active force on the surrounding fluid. The long-ranged nature of the hydrodynamic interaction between the rotors causes a rich pattern of dynamical behaviors including phase ordering and turbulent spiral waves. The model provides a novel example of coupled oscillators with long-range i...

  20. Bursting calcium rotors in cultured cardiac myocyte monolayers

    OpenAIRE

    Bub, Gil; Glass, Leon; Publicover, Nelson G.; Shrier, Alvin

    1998-01-01

    Rotating waves (rotors) of cellular activity were observed in nonconfluent cultures of embryonic chick heart cells by using a macroscopic imaging system that detected fluorescence from intracellular Ca2+. Unlike previous observations of rotors or spiral waves in other systems, the rotors did not persist but exhibited a repetitive pattern of spontaneous onset and offset leading to a bursting rhythm. Similar dynamics were observed in a cellular automaton model of excitable media that incorporat...

  1. Open Rotor Aeroacoustic Modelling

    Science.gov (United States)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  2. Open Rotor Aeroacoustic Modeling

    Science.gov (United States)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  3. A Miniature Controllable Flapping Wing Robot

    Science.gov (United States)

    Arabagi, Veaceslav Gheorghe

    The agility and miniature size of nature's flapping wing fliers has long baffled researchers, inspiring biological studies, aerodynamic simulations, and attempts to engineer their robotic replicas. Flapping wing flight is characterized by complex reciprocating wing kinematics, transient aerodynamic effects, and very small body lengths. These characteristics render robotic flapping wing aerial vehicles ideal for surveillance and defense applications, search and rescue missions, and environment monitoring, where their ability to hover and high maneuverability is immensely beneficial. One of the many difficulties in creating flapping wing based miniature robotic aerial vehicles lies in generating a proper wing trajectory that would result in sufficient lift forces for hovering and maneuvering. Since design of a flapping wing system is a balance between overall weight and the number of actuated inputs, we take the approach of having minimal controlled inputs, allowing passive behavior wherever possible. Hence, we propose a completely passive wing pitch reversal design that relies on wing inertial dynamics, an elastic energy storage mechanism, and low Reynolds number aerodynamic effects. Theoretical models, compiling previous research on piezoelectric actuators, four-bar transmissions, and aerodynamics effects, are developed and used as basis for a complete numerical simulation. Limitations of the model are discussed in comparison to experimental results obtained from a working prototype of the proposed passive pitch reversal flapping wing mechanism. Given that the mechanism is under-actuated, methods to control lift force generation by actively varying system parameters are proposed, discussed, and tested experimentally. A dual wing aerial platform is developed based on the passive pitch reversal wing concept. Design considerations are presented, favoring controllability and structural rigidity of the final platform. Finite element analysis and experimental

  4. Papilla Preservation Flap as Aesthetic Consideration in Periodontal Flap Surgery

    Directory of Open Access Journals (Sweden)

    Sandra Olivia

    2013-07-01

    Full Text Available Flap surgery is treatment for periodontal disease with alveolar bone destruction. Surgical periodontal flap with conventional incision will result in gingival recession and loss of interdental papillae after treatment. Dilemma arises in areas required high aesthetic value or regions with a fixed denture. It is challenging to perform periodontal flap with good aesthetic results and minimal gingival recession. This case report aimed to inform and to explain the work procedures, clinical and radiographic outcomes of surgical papilla preservation flap in the area that requires aesthetic. Case 1 was a surgical incision flap with preservation of papillae on the anterior region of teeth 11 and 12, with a full veneer crown on tooth 12. Case 2 was a surgical incision flap with preservation of papillae on the posterior region of tooth 46 with inlay restoration. Evaluation for both cases were obtained by incision papilla preservation of primary closure was perfect, good aesthetic results, minimal gingival recession and the interdental papillae can be maintained properly. In conclusion, periodontal flap surgery on the anterior region or regions that require high aesthetic value could be addressed with papilla preservation incision. Incision papilla preservation should be the primary consideration in periodontal flap surgery if possible.DOI: 10.14693/jdi.v19i3.144

  5. The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified

    Directory of Open Access Journals (Sweden)

    Yuval Keren

    2016-07-01

    Full Text Available To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping pattern was designed and manufactured, and a set of experiments for various parameters was performed. The simplified analytical model was updated according to the tests results, compensating for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations. The propelling efficiency of the hovering wing at various design parameters was calculated using the updated model. It was further validated by testing a smaller wing flapping at a higher frequency. Good and consistent test results were obtained in line with the updated model, yielding a simple, yet accurate tool, for flapping wings design.

  6. Flap-Edge Blowing Experiments

    Science.gov (United States)

    Gaeta, R. J.; Englar, R. J.; Ahuja, K. K.

    2003-01-01

    This Appendix documents the salient results from an effort to mitigate the so-called flap-edge noise generated at the split between a flap edge that is deployed and the undeployed flap. Utilizing a Coanda surface installed at the flap edge, steady blowing was used in an attempt to diminish the vortex strength resulting from the uneven lift distribution. The strength of this lifting vortex was augmented by steady blowing over the deployed flap. The test article for this study was the same 2D airfoil used in the steady blowing program reported earlier (also used in pulsed blowing tests, see Appendix G), however its trailing edge geometry was modified. An exact duplicate of the airfoil shape was made out of fiberglass with no flap, and in the clean configuration. It was attached to the existing airfoil to make an airfoil that has half of its flap deployed and half un-deployed. Figure 1 shows a schematic of the planform showing the two areas where steady blowing was introduced. The flap-edge blowing or the auxiliary blowing was in the direction normal to the freestream velocity vector. Slot heights for the blowing chambers were on the order of 0.0 14 inches.

  7. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    Science.gov (United States)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  8. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  9. How far is smart rotor research and what steps need to be taken to build a full-scale prototype?

    NARCIS (Netherlands)

    Bernhammer, L.O.; Van Kuik, G.A.M.; De Breuker, R.

    2014-01-01

    During the last decade research on the field of smart rotor has advanced significantly. Fundamental aerodynamics, structural and control concepts have been established and simulators created for distributed flaps on wind turbine blades, which are considered the most promising option. Also a proof of

  10. Rotor internal friction instability

    Science.gov (United States)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  11. The Effect of Composite Flexures on Aeroelastic Stability of a Hingeless Rotor Blade

    Institute of Scientific and Technical Information of China (English)

    Shi; Qinghua

    2007-01-01

    The effects of ply orientation angle of composite flexures on stability of hingeless rotor blade system are studied.The composite hingeless rotor blade system is simplified as a hub,a flap flexure and a lag flexure.pitch bearing and main blade.The kinematics formulations are inferred by employing the moderate deflection beam theory.The shear deformation and warping related to torsion are considered.The quasi-steady strip theory with dynamic inflow effects is applied to obtain the aerodynamic loads acting on the blade.Based on these.the set of finite element formulations of a hingeless rotor blade system is worked out.The numerical results show that the ply angle of the composite flexures has great effects on the aeroelastic stability of rotor blade.

  12. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    Science.gov (United States)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  13. A high voltage DC-DC converter driving a Dielectric Electro Active Polymer actuator for wind turbine flaps

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.;

    2012-01-01

    The Dielectric Electro Active Polymer (DEAP) material is a very thin (~80 μm) silicone elastomer film with a compliant metallic electrode layer on both sides. The DEAP is fundamentally a capacitor that is capable of very high strain. The property that the polymer changes its shape, as a result....... With the DEAP based high power actuator, it is expected to make a reliable and light solution with superior controllability. The current DEAP technology requires high DC voltage in the range of kV to fully utilize the DEAP material as an actuator. In this paper we propose a flyback converter topology to obtain...

  14. 14 CFR 23.701 - Flap interconnection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap interconnection. 23.701 Section 23.701... Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system must— (1) Be synchronized by a mechanical interconnection between the movable flap surfaces that...

  15. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    Science.gov (United States)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  16. Flap Conformations in HIV-1 Protease are Altered by Mutations

    Science.gov (United States)

    Fanucci, Gail; Blackburn, Mandy; Veloro, Angelo; Galiano, Luis; Fangu, Ding; Simmerling, Carlos

    2009-03-01

    HIV-1 protease (PR) is an enzyme that is a major drug target in the treatment of AIDS. Although the structure and function of HIV-1 PR have been studied for over 20 years, questions remain regarding the conformations and dynamics of the β-hairpin turns (flaps) that cover the active site cavity. Distance measurements with pulsed EPR spectroscopy of spin labeled constructs of HIV-1 PR have been used to characterize the flap conformations in the apo and inhibitor bound states. From the most probably distances and the breadth of the distance distribution profiles from analysis of the EPR data, insights regarding the flap conformations and flexibility are gained. The EPR results clearly show how drug pressure selected mutations alter the average conformation of the flaps and the degree of opening of the flaps. Molecular dynamics simulations successfully regenerate the experimentally determined distance distribution profiles, and more importantly, provide structural models for full interpretation of the EPR results. By combining experiment and theory to understand the role that altered flap flexibility/conformations play in the mechanism of drug resistance, key insights are gained toward the rational development of new inhibitors of this important enzyme.

  17. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...

  18. Radiated noise from an externally blown flap

    Science.gov (United States)

    Reddy, N. N.; Yu, J. C.

    1975-01-01

    The far field noise from subsonic jet impingement on a wing-flap with a 45 deg bend was experimentally investigated. The test parameters are jet Mach number and flap length. For long flaps, the primary source mechanisms are found to be turbulent mixing and flow impingement. For short flaps, the interaction of turbulent flow with the flap trailing edge appears to strongly influence the radiated noise.

  19. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  20. A review of progress and challenges in flapping foil power generation

    Science.gov (United States)

    Young, John; Lai, Joseph C. S.; Platzer, Max F.

    2014-05-01

    Power may be extracted from a flowing fluid in a variety of ways. Turbines using one or more oscillating foils are under increasingly active investigation, as an alternative to rotary wind turbines and river, oceanic and tidal current water turbines, although industrial development is at a very nascent stage. Such flapping foil turbines promise some key potential advantages, including lower foil velocities (and hence lower noise and wildlife impact), and more effective small-scale and shallow water operation. The role of a number of parameters is investigated, including foil kinematics (modes, frequencies, amplitudes and time histories of motion), foil and system geometry (shape, configuration and structural flexibility), and flow physics effects (Reynolds number and turbulence, shear flows and ground effect). Details of the kinematics are shown to have the single largest influence on power output and efficiency (measured as the ratio of power output to that available and accessible in the fluid stream). The highest levels of power and efficiency are associated with very large foil pitch angles (upwards of 70°) and angles of attack (30-40°), such that the flow is massively separated for much of the flapping cycle, in contrast to rotary turbines which rely on attached flow over as much of the rotor disk as possible. This leads to leading edge vortices comparable in size to the foil chord, and the evolution and interaction of these vortices with the foil as it moves play a central role in determining performance. The other parameters also influence the vortex behaviour, but in general to a lesser degree. Numerous gaps in the research literature and outstanding issues are highlighted.

  1. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    Directory of Open Access Journals (Sweden)

    Xiangbo Xu

    2015-08-01

    Full Text Available Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs, offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  2. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    Science.gov (United States)

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  3. Assessment Report on Innovative Rotor Blades (MAREWINT WP1,D1.3)

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Leble, Vladimir; Pereira, Gilmar Ferreira

    The offshore wind energy industry faces many challenges in the short to medium term if it is to meet the ambitions of the global community for sustainable energy supply in the future. Not least among these challenges is the issue of rotor blades. Innovative design for “smart” rotor blades with...... innovative concept development for wind turbine blades. This covers models and experiments with damage measurement systems embedded within the composite material/structure and numerical methods investigating the effects of leading and trailing edge flaps on modifying the aerodynamic loads on the operating...

  4. THE RESEARCH OF VIBRATIONS LEVELS ONTO THE DAMAGE OF THE TURBOGENERATOR ENGINE ROTORS

    OpenAIRE

    Adamovic, Zivoslav; Radovanovic, Ljiljaan

    2009-01-01

    The amplitude of vibrations and the phase angles and their changes when the rotor of turbogenerator has cracks are researched in this paper. This paper deals with two kinds of generator rotors damage. In the first case of damage of turbogenerator rotor, the cracks appeared at the end of the cogs of the rotors active part. In the second case cracks occurred in the middle of the cross section of the shaft, on the exciting side at the end of the shaft.

  5. The Influence of Rotor Unbalance on Turbocharger Rotor Dynamics

    OpenAIRE

    Knotek Jiří; Novotný Pavel; Maršálek Ondřej; Raffai Peter; Dlugoš Jozef

    2015-01-01

    This paper describes the influence of an unbalance on turbocharger rotor dynamics. The structural model of the turbocharger rotor and the hydrodynamic model of the journal floating ring bearing are described and assembled in multibody dynamics software. Moreover, the paper presents various results describing rotor dynamics where the influence of an unbalance is discussed.

  6. The Influence of Rotor Unbalance on Turbocharger Rotor Dynamics

    Directory of Open Access Journals (Sweden)

    Knotek Jiří

    2015-12-01

    Full Text Available This paper describes the influence of an unbalance on turbocharger rotor dynamics. The structural model of the turbocharger rotor and the hydrodynamic model of the journal floating ring bearing are described and assembled in multibody dynamics software. Moreover, the paper presents various results describing rotor dynamics where the influence of an unbalance is discussed.

  7. Managing Flap Vortices via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2006-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management by means of boundary layer separation control. Passive control was achieved using a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressures, was used to predict vortex characteristics based on inviscid rollup relations and vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over either outboard or inboard edge vortices while producing small lift and moment excursions. Unsteady surface pressures indicated that dynamic separation and attachment control can be exploited to perturb vortices at wavelengths shorter than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  8. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies.

    Science.gov (United States)

    Usherwood, James Richard

    2016-11-01

    Aerodynamically economical flight is steady and level. The high-amplitude flapping and bounding flight style of many small birds departs considerably from any aerodynamic or purely mechanical optimum. Further, many large birds adopt a flap-glide flight style in cruising flight which is not consistent with purely aerodynamic economy. Here, an account is made for such strategies by noting a well-described, general, physiological cost parameter of muscle: the cost of activation. Small birds, with brief downstrokes, experience disproportionately high costs due to muscle activation for power during contraction as opposed to work. Bounding flight may be an adaptation to modulate mean aerodynamic force production in response to (1) physiological pressure to extend the duration of downstroke to reduce power demands during contraction; (2) the prevention of a low-speed downstroke due to the geometric constraints of producing thrust; (3) an aerodynamic cost to flapping with very low lift coefficients. In contrast, flap-gliding birds, which tend to be larger, adopt a strategy that reduces the physiological cost of work due both to activation and contraction efficiency. Flap-gliding allows, despite constraints to modulation of aerodynamic force lever-arm, (1) adoption of moderately large wing-stroke amplitudes to achieve suitable muscle strains, thereby reducing the activation costs for work; (2) reasonably quick downstrokes, enabling muscle contraction at efficient velocities, while being (3) prevented from very slow weight-supporting upstrokes due to the cost of performing 'negative' muscle work.

  9. PIV Measurements on a Blowing Flap

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  10. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  11. Chlorogenic Acid Enhances Abdominal Skin Flap Survival Based on Epigastric Artery in Nondiabetic and Diabetic Rats.

    Science.gov (United States)

    Bagdas, Deniz; Etoz, Betul Cam; Gul, Zulfiye; Ozyigit, Musa Ozgur; Cinkilic, Nilufer; Inan, Sevda; Buyukcoskun, Naciye Isbil; Ozluk, Kasim; Gurun, Mine Sibel

    2016-08-01

    Previous studies showed that chlorogenic acid (CGA) accelerates wound healing via its antioxidant activity. We aimed to investigate the effect of CGA in an experimental epigastric abdominal skin flap model in nondiabetic and diabetic rats. Rats were firstly divided into 2 groups: nondiabetic and diabetic. Diabetes was induced by streptozotocin. Then, 4 subgroups were created for each group: vehicle as well as 0.2 mg/0.5 mL, 1 mg/0.5 mL, and 5 mg/0.5 mL CGA treatments. Right epigastric artery-based abdominal skin flaps were elevated and sutured back into their original position. Chlorogenic acid or vehicle was injected once into the femoral arteries by leaving the epigastric artery as the single artery feeding the flaps during the injection. On postoperative day 7, flap survivals were evaluated, and the rats were killed. Distal flap tissues were collected for histopathological and biochemical assays. Chlorogenic acid showed greater flap survival in both nondiabetic and diabetic rats. Capillary density was increased, and necrosis was reduced in the CGA-treated rats. Chlorogenic acid decreased malondialdehyde levels as well as increased reduced glutathione and superoxide dismutase levels in the flap tissues. This study showed that CGA significantly improved flap survival by its antioxidant activities with intra-arterial local injections. PMID:25356637

  12. SMART Wind Turbine Rotor: Design and Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  13. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    Science.gov (United States)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2011-01-01

    Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0 amplitude at = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with the IBC phase reasonably well at = 0.35. However, the correlation degrades at = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with the IBC phase at both = 0.35 and = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.

  14. Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test

    Science.gov (United States)

    Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.

    2012-01-01

    Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.

  15. Rotor dynamic state and parameter identification from simulated forward flight transients, part 1

    Science.gov (United States)

    Hohenemser, K. H.; Banerjee, D.; Yin, S. K.

    1976-01-01

    State and parameter identifications from simulated forward flight blade flapping measurements are presented. The transients were excited by progressing cyclic pitch stirring or by hub stirring with constant stirring acceleration. Rotor dynamic inflow models of varying degree of sophistication were used from a one parameter inflow model (equivalent Lock number) to an eight parameter inflow model. The maximum likelihood method with assumed fixed measurement error covariance matrix was applied. The rotor system equations for both fixed hub and tilting hub are given. The identified models were verified by comparing true responses with predicted responses. An optimum utilization of the simulated measurement data can be defined. From the numerical results it can be anticipated that brief periods of either accelerated cyclic pitch stirring or of hub stirring are sufficient to extract with adequate accuracy up to 8 rotor dynamic inflow parameters plus the blade Lock number from the transients.

  16. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  17. Rotor blade dynamic design

    Science.gov (United States)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The rotor dynamic design considerations are essentially limitations on the vibratory response of the blades which in turn limit the dynamic excitation of the fuselage by forces and moments transmitted to the hub. Quantities which are associated with the blade response and which are subject to design constraints are discussed. These include blade frequencies, vertical and inplane hub shear, rolling and pitching moments, and aeroelastic stability margin.

  18. Full-scale test of trailing edge flaps on a Vestas V27 wind turbine: active load reduction and system identification

    DEFF Research Database (Denmark)

    Castaignet, Damien; Barlas, Thanasis K.; Buhl, Thomas;

    2014-01-01

    predictive control was tested successfully on this demonstrator turbine. An average flapwise blade root load reduction of 14% was achieved during a 38 minute test, and a reduction of 20% of the amplitude of the 1P loads was measured. A system identification test was also performed, and an identified linear...... model, from trailing edge flap angle to flapwise blade root moment, was derived and compared with the linear analytical model used in the model predictive control design model. Flex5 simulations run with the same model predictive control showed a good correlation between the simulations...... and the measurements in terms of flapwise blade root moment spectral densities, in spite of significant differences between the identified linear model and the model predictive control design model....

  19. Lessons from Rotor 37

    Institute of Scientific and Technical Information of China (English)

    J.D.Denton

    1997-01-01

    NASA rotor 37 was used as a blind test case for turbomachinery CFD by the Turbomachinery Committee of the IGTI.The rotor is a transonic compressor with a tip speed of 454 m/s(1500ft/s)and a relatively high pressure ratio of 2.1.It was tested in isolation with a circumferentially uniform inlet flow so that the flow through it should be steady apart from and effects of passage to passage geometry variation and mechanical vibration.As such it represents the simplest possible type of test for three-dimensional turbomachinery flow solvers.Howerver,the rotor still presents a real challenge to 3D viscous flow solvers because the shock wave-boudary layer interaction is strong and the effects of viscosity are dominant in determining the flow deviation and hence the pressure ration.Eleven blind solutions were submittewd and in addition a non-blind solution was used to prepare for the exercies.This paper reviews the flow in the test case and the comparisons of the CFD solutions with the test data.Lessons for both the Flow physics in transonic fans and for the application of CFD to such machines are pointed out.

  20. Dynamics of Anisotropically Supported Rotors

    OpenAIRE

    Agnes Muszynska; Hatch, Charles T.; Donald E. Bently

    1997-01-01

    The paper discusses dynamic effects occurring in machinery rotors supported in bearings and pedestals with laterally different characteristics. In the considered rotor model the anisotropy of radial stiffness and tangential (“cross”) stiffness components are included. Within certain ranges of the rotative speed the support anisotropy leads to the specific, excited-by-unbalance rotor lateral synchronous vibrations in a form of backward (reverse) precession. In addition, one section of the roto...

  1. Dynamical properties of granular rotors

    OpenAIRE

    Cleuren, Bart; Eichhorn, Ralf

    2008-01-01

    The stochastic motion of an arbitrarily shaped rotor, free to rotate around a fixed axis as a result of dissipative collisions with a surrounding thermalized gas, is investigated. A Boltzmann master equation is derived, starting from the elementary gas–rotor collisions. Analytical expressions for the moments of the rotational speed and the rotational temperature are obtained in the form of a series expansion, using the mass ratio of the gas particle and the rotor as the expansion parameter. W...

  2. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  3. Homopolar motor with dual rotors

    Science.gov (United States)

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  4. Variable Speed Rotor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  5. Input Shaping enhanced Active Disturbance Rejection Control for a twin rotor multi-input multi-output system (TRMS).

    Science.gov (United States)

    Yang, Xiaoyan; Cui, Jianwei; Lao, Dazhong; Li, Donghai; Chen, Junhui

    2016-05-01

    In this paper, a composite control based on Active Disturbance Rejection Control (ADRC) and Input Shaping is presented for TRMS with two degrees of freedom (DOF). The control tasks consist of accurately tracking desired trajectories and obtaining disturbance rejection in both horizontal and vertical planes. Due to un-measurable states as well as uncertainties stemming from modeling uncertainty and unknown disturbance torques, ADRC is employed, and feed-forward Input Shaping is used to improve the dynamical response. In the proposed approach, because the coupling effects are maintained in controller derivation, there is no requirement to decouple the TRMS into horizontal and vertical subsystems, which is usually performed in the literature. Finally, the proposed method is implemented on the TRMS platform, and the results are compared with those of PID and ADRC in a similar structure. The experimental results demonstrate the effectiveness of the proposed method. The operation of the controller allows for an excellent set-point tracking behavior and disturbance rejection with system nonlinearity and complex coupling conditions.

  6. Internal Mammary Artery Perforator flap

    NARCIS (Netherlands)

    Schellekens, P.P.A.

    2012-01-01

    Reconstructive surgery evolved as a result of the enormous numbers of World War I and II victims, long before profound knowledge of the vascularity of flaps was present. Sophisticated imaging techniques have given us at present a thorough understanding of the vascularity of tissues so that randomly

  7. The possibility for use of venous flaps in plastic surgery

    International Nuclear Information System (INIS)

    The use of venous flaps is controversial. The mechanism of perfusion of venous flaps is still not fully understood. The research was conducted on 56 white rats. In our experimental work we studied two different models of venous flaps: pedicled venous flap (PVF) and pedicled arterialized venous flap (PAVF). Our results showed that postoperative congestion was present in all flaps. However 66.7% of all pedicled venous flaps and 100% of all pedicled arterialized venous flaps eventually survived. Histological examination revealed that postoperatively the blood flow in the skin of the pedicled arterialized venous flap became «re-reversed» again; there were no differences between mechanism of survival of venous flaps and other flaps. On the 7-14th day in the skin of all flaps were processes of neoangiogenesis and proliferation. Hence the best scenario for the clinical use of venous flaps unfolds when both revascularization and skin coverage are required

  8. The possibility for use of venous flaps in plastic surgery

    Science.gov (United States)

    Baytinger, V. F.; Kurochkina, O. S.; Selianinov, K. V.; Baytinger, A. V.; Dzyuman, A. N.

    2015-11-01

    The use of venous flaps is controversial. The mechanism of perfusion of venous flaps is still not fully understood. The research was conducted on 56 white rats. In our experimental work we studied two different models of venous flaps: pedicled venous flap (PVF) and pedicled arterialized venous flap (PAVF). Our results showed that postoperative congestion was present in all flaps. However 66.7% of all pedicled venous flaps and 100% of all pedicled arterialized venous flaps eventually survived. Histological examination revealed that postoperatively the blood flow in the skin of the pedicled arterialized venous flap became «re-reversed» again; there were no differences between mechanism of survival of venous flaps and other flaps. On the 7-14th day in the skin of all flaps were processes of neoangiogenesis and proliferation. Hence the best scenario for the clinical use of venous flaps unfolds when both revascularization and skin coverage are required.

  9. The possibility for use of venous flaps in plastic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Baytinger, V. F., E-mail: baitinger@mail.tomsknet.ru; Kurochkina, O. S., E-mail: kurochkinaos@yandex.ru; Selianinov, K. V.; Baytinger, A. V. [Research Institute of Microsurgery, Tomsk (Russian Federation); Dzyuman, A. N. [Siberian State Medical University, Tomsk (Russian Federation)

    2015-11-17

    The use of venous flaps is controversial. The mechanism of perfusion of venous flaps is still not fully understood. The research was conducted on 56 white rats. In our experimental work we studied two different models of venous flaps: pedicled venous flap (PVF) and pedicled arterialized venous flap (PAVF). Our results showed that postoperative congestion was present in all flaps. However 66.7% of all pedicled venous flaps and 100% of all pedicled arterialized venous flaps eventually survived. Histological examination revealed that postoperatively the blood flow in the skin of the pedicled arterialized venous flap became «re-reversed» again; there were no differences between mechanism of survival of venous flaps and other flaps. On the 7-14th day in the skin of all flaps were processes of neoangiogenesis and proliferation. Hence the best scenario for the clinical use of venous flaps unfolds when both revascularization and skin coverage are required.

  10. Internal rotor friction instability

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  11. Formation of a reliable capsular flap in a rat model.

    NARCIS (Netherlands)

    Schuringa, M.C.; Hartman, E.H.M.; Ruhe, P.Q.; Jansen, J.A.; Spauwen, P.H.M.

    2007-01-01

    Prefabrication can be used to produce capsular flaps; other researchers have confirmed the feasibility of such flaps. Before the possibilities of capsular flaps can be explored, a reliable method to create these flaps has to be established first. METHODS: To produce capsular flaps in a rat model, th

  12. MACROSCOPIC ROTORS AND GRAVITATIONAL EFFECTS

    OpenAIRE

    Ritter, R.

    1981-01-01

    Astronomical bodies have, in the past, provided essentially the only macroscopic basis for studies of gravitation by means of rotations. Now new technology provides the possibility that laboratory rotors may be made more precise than astronomical ones. This article surveys the properties of some of both types of rotors and describes several laboratory experiments for tests of General Relativity.

  13. Flapping propulsion with tip pitch control

    Science.gov (United States)

    Huera-Huarte, Francisco; Gharib, Morteza

    2014-11-01

    The effect of flexibility in the propulsion performance and efficiency of oscillating pitching foils has received a large amount of attention in the past years. Scientists have used simplified robotic models that mimic the kinematics of flying and swimming animals, in order to get inspiration to build more efficient engineering systems. Compliance is one of the aspects that has received more attention, as it seems to be a common feature in nature's flyers and swimmers. Active or passive control elements are also common in nature. We will show how thrust generation in a pitching fin, can be greatly affected by controlling the tip pitch motion dynamically and independently of the fin itself. This is in fact a controlled local change of curvature of the end of the fin. A robotic system has been designed in a way that not only flapping amplitudes and frequencies can be controlled, but also the amplitudes and frequencies of the tip and the phase difference between the tip and the fin. We measured thrust forces and the vortex dynamics in the near wake of the system, by using planar DPIV (Digital Particle Image Velocimetry) in a wide variety of flapping situations with tip control. Funding from Spanish Ministry of Science through Grant DPI2012-37904 is gratefully acknowledged.

  14. The properties of isolated and coupled Savonius rotors

    Science.gov (United States)

    Bowden, G. J.; McAleese, S. A.

    Some measurments on the Queensland optimum S-shaped rotor are presented. In particular it is shown that the efficiency of the turbine is about 18 percent, which is lower than the figure of about 23 percent given by earlier workers. In addition, detailed measurements of the pulsating wind-flow around a Savonius rotor are presented. These results were obtained using (1) tell-tales and a stroboscope, (2) a hot-wire anemometer (0-5 kHz response), and (3) a turbulence meter. This data can be used to suggest that 'active coupling' between Savonius rotors might be useful in 'redirecting' the wind-flow more efficiently. In particular, it is shown that if two counter-rotating rotors are placed side by side in a wind-tunnel, a natural phase locking occurs.

  15. Adjoint-based optimization of flapping plates hinged with a trailing-edge flap

    Directory of Open Access Journals (Sweden)

    Min Xu

    2015-01-01

    Full Text Available It is important to understand the impact of wing-morphing on aerodynamic performance in the study of flapping-wing flight of birds and insects. We use a flapping plate hinged with a trailing-edge flap as a simplified model for flexible/morphing wings in hovering. The trailing-edge flapping motion is optimized by an adjoint-based approach. The optimized configuration suggests that the trailing-edge flap can substantially enhance the overall lift. Further analysis indicates that the lift enhancement by the trailing-edge flapping is from the change of circulation in two ways: the local circulation change by the rotational motion of the flap, and the modification of vortex shedding process by the relative location between the trailing-edge flap and leading-edge main plate.

  16. Evaluation of Rotor Structural and Aerodynamic Loads using Measured Blade Properties

    Science.gov (United States)

    Jung, Sung N.; You, Young-Hyun; Lau, Benton H.; Johnson, Wayne; Lim, Joon W.

    2012-01-01

    The structural properties of Higher harmonic Aeroacoustic Rotor Test (HART I) blades have been measured using the original set of blades tested in the wind tunnel in 1994. A comprehensive rotor dynamics analysis is performed to address the effect of the measured blade properties on airloads, blade motions, and structural loads of the rotor. The measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. The measured properties are correlated against the estimated values obtained initially by the manufacturer of the blades. The previously estimated blade properties showed consistently higher stiffnesses, up to 30% for the flap bending in the blade inboard root section. The measured offset between the center of gravity and the elastic axis is larger by about 5% chord length, as compared with the estimated value. The comprehensive rotor dynamics analysis was carried out using the measured blade property set for HART I rotor with and without HHC (Higher Harmonic Control) pitch inputs. A significant improvement on blade motions and structural loads is obtained with the measured blade properties.

  17. Fault diagnosis of a Wind Turbine Rotor using a Multi-blade Coordinate Framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2012-01-01

    Fault diagnosis of a wind turbine rotor is considered. The faults considered are sensor faults and blades mounted with a pitch offset. A fault at a single blade will result in asymmetries in the rotor, which can be applied for fault diagnosis. The diagnosis is derived by using the multiblade...... coordinate (MBC) transformation also known as the Coleman transformation together with active fault diagnosis (AFD). This transforms the setup from rotating to fixed frame coordinates. The rotor speed acts as the auxiliary input for the active diagnosis. The applied method take the varying rotor speed...

  18. Blade lock for a rotor disk and rotor blade assembly

    Science.gov (United States)

    Moore, Jerry H. (Inventor)

    1992-01-01

    A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.

  19. Exotic wakes of flapping fins

    DEFF Research Database (Denmark)

    Schnipper, Teis

    We present, in 8 chapters, experiments on and numerical simulations of bodies flapping in a fluid. Focus is predominantly on a rigid foil, a model fish, that performs prescribed pitching oscillations where the foil rotates around its leading edge. In a flowing soap film is measured, with unpreced......We present, in 8 chapters, experiments on and numerical simulations of bodies flapping in a fluid. Focus is predominantly on a rigid foil, a model fish, that performs prescribed pitching oscillations where the foil rotates around its leading edge. In a flowing soap film is measured......-speed and the strength ratio of the vortices formed at the foil’s leading and trailing edge. The simulated vortex particles and measured thickness variations in the soap film show similar behaviour which indicates that the soap film provides a good approximation the flow of a two-dimensional incompressible and Newtonian...

  20. Root coverage with bridge flap

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2013-01-01

    Full Text Available Gingival recession in anterior teeth is a common concern due to esthetic reasons or root sensitivity. Gingival recession, especially in multiple anterior teeth, is of huge concern due to esthetic reasons. Various mucogingival surgeries are available for root coverage. This case report presents a new bridge flap technique, which allows the dentist not only to cover the previously denuded root surfaces but also to increase the zone of attached gingiva at a single step. In this case, a coronally advanced flap along with vestibular deepening technique was used as root coverage procedure for the treatment of multiple recession-type defect. Here, vestibular deepening technique is used to increase the width of the attached gingiva. The predictability of this procedure results in an esthetically healthy periodontium, along with gain in keratinized tissue and good patient′s acceptance.

  1. 14 CFR 27.1509 - Rotor speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  2. 14 CFR 29.1509 - Rotor speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  3. 14 CFR 27.921 - Rotor brake.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 27.921 Section 27.921... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  4. 14 CFR 29.921 - Rotor brake.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 29.921 Section 29.921... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  5. Performance tests on helical Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Kamoji, M.A.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay (India)

    2009-03-15

    Conventional Savonius rotors have high coefficient of static torque at certain rotor angles and a negative coefficient of static torque from 135 to 165 and from 315 to 345 in one cycle of 360 . In order to decrease this variation in static torque from 0 to 360 , a helical Savonius rotor with a twist of 90 is proposed. In this study, tests on helical Savonius rotors are conducted in an open jet wind tunnel. Coefficient of static torque, coefficient of torque and coefficient of power for each helical Savonius rotor are measured. The performance of helical rotor with shaft between the end plates and helical rotor without shaft between the end plates at different overlap ratios namely 0.0, 0.1 and 0.16 is compared. Helical Savonius rotor without shaft is also compared with the performance of the conventional Savonius rotor. The results indicate that all the helical Savonius rotors have positive coefficient of static torque at all the rotor angles. The helical rotors with shaft have lower coefficient of power than the helical rotors without shaft. Helical rotor without shaft at an overlap ratio of 0.0 and an aspect ratio of 0.88 is found to have almost the same coefficient of power when compared with the conventional Savonius rotor. Correlation for coefficient of torque and power is developed for helical Savonius rotor for a range of Reynolds numbers studied. (author)

  6. IDENTIFICATION OF CRACKED ROTOR BY WAVELET TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 蒲亚鹏

    2002-01-01

    The dynamic equation of cracked rotor in rotational frame was modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor were obtained. By the wavelet transform, the time-frequency properties of the cracked rotor and the uncracked rotor were discussed, the difference of the time-frequency properties between the cracked rotor and the uncracked rotor was compared. A new detection algorithm using wavelet transform to identify crack was proposed. The experiments verify the availability and validity of the wavelet transform in identification of crack.

  7. Inferior Gluteal Perforator Flaps for Breast Reconstruction

    OpenAIRE

    Allen, Robert J.; LoTempio, Maria M.; Granzow, Jay W.

    2006-01-01

    Perforator flaps represent the latest in the evolution of soft tissue flaps. They allow the transfer of the patient's own skin and fat in a reliable manner with minimal donor-site morbidity. The powerful perforator flap concept allows transfer of tissue from numerous, well-described donor sites to almost any distant site with suitable recipient vessels. The inferior gluteal artery perforator (I-GAP) flap is one option that allows a large volume of tissue to be used for breast reconstruction w...

  8. Optimal propulsive flapping in Stokes flows

    CERN Document Server

    Was, Loic

    2014-01-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds number, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propul...

  9. Basic Perforator Flap Hemodynamic Mathematical Model

    Science.gov (United States)

    Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Hallock, Geoffrey G.

    2016-01-01

    Background: A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. Methods: There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. Results: The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. Conclusions: This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations.

  10. Design of composite flywheel rotor

    Institute of Scientific and Technical Information of China (English)

    Yue BAI; Qingjia GAO; Haiwen LI; Yihui WU; Ming XUAN

    2008-01-01

    A design method for a flywheel rotor com-posed of a composite rim and a metal hub is proposed by studying the connection between the rotor and the driving machine. The influence of some factors such as the rotor material, configuration, connection, and frac-ture techniques on energy density is analyzed. The results show that the ratio of the inner radius to outer radius of the rim is the key factor, and is determined by the rim material. Optimizing the hub can further efficiently improve energy density. The composite flywheel rotor is produced and its rotation stress has been tested at the speed of 20 krpm. The emulation results are consistent with testing results, which proves that the introduced design method is useful.

  11. LAVA Applications to Open Rotors

    Science.gov (United States)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  12. [The super extended sub-mental flap or combo sub-mental flap].

    Science.gov (United States)

    Martin, D

    2014-08-01

    The author presents a technical variation of the sub-mental flap including in a conventional pedicled flap both sub-mental axes and their anastomoses on the midline. The assessment of the first flaps raised according to this method confirms the improvement of the distal blood supply. It allows the possibility to harvest "super extended" flaps reaching the contralateral auricular lobula. This variation can be considered as an axial flap which only the tip, located beyond the mandibular angle, is at random. The evolution of the sub-mental flap from its original description to this variation called "combo sub-mental flap" is then presented. Its reliability and the technical simplification it provides will have to be assessed in the future. PMID:24840945

  13. Secondary onlay free flap reconstruction of glossectomy defects following initial successful flap restoration.

    Science.gov (United States)

    Rihani, Jordan; Lee, Thomas; Ducic, Yadranko

    2013-08-01

    Patients who undergo tongue reconstruction over time may develop gradual worsening of dysarthria and dysphagia secondary to flap atrophy. At our institution, these patients undergo a secondary flap onlay procedure for augmentation of the neotongue. We review a total of 11 patients with total glossectomy defect who underwent secondary tongue augmentation with secondary onlay free flap consisting of radial forearm free flap (n = 6) and rectus free flap (n = 5). There was improvement in swallowing in 7 of 11 patients. Five (45.4%) patients achieved gastric tube independence. Seven (63.6%) patients achieved a varying degree of oral intake. All patients achieved tracheostomy independence. Dysarthria was improved in all patients. There were no flap failures. Therefore, a secondary onlay flap technique is feasible and may improve dysphagia and dysarthria to achieve gastric tube and tracheostomy independence in total glossectomy patients with delayed tongue atrophy. PMID:23625797

  14. Quantum rotor in nanostructured superconductors

    OpenAIRE

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F.M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure...

  15. Effects of Bezafibrate on the Survival of Random Skin Flaps in Rats.

    Science.gov (United States)

    Lin, Bin; Lin, Yuting; Lin, Dingsheng; Cao, Bin

    2016-06-01

    Background Bezafibrate is widely used in clinics for its comparable angiogenic effect. Our research is to investigate the effect of bezafibrate on random skin flap survival. Materials and Methods The "McFarlane flap" rat models were established in 30 male Sprague-Dawley rats which were divided into two groups. The treatment group was given bezafibrate (400 mg/kg/day; gavage administration), and the control group received the vehicle. The flap surviving area was measured after 7 days, and the tissue samples were taken for histological analysis and edema measurement. Vascular endothelial growth factor (VEGF) was determined using immunohistochemical methods. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were examined with kits. Results Seven days after the operation, the surviving area in the treatment group was larger than in the control group (p Bezafibrate improves the survival of random skin flaps effectively. PMID:26872027

  16. Analysis of tail effects in flapping flight

    NARCIS (Netherlands)

    Tay, W.B.; Bijl, H.; Van Oudheusden, B.W.

    2011-01-01

    Numerical simulations have been performed to examine the interference effects between an upstream flapping airfoil and a downstream stationary airfoil in a tandem configuration at a Reynolds number of 1000, which is around the regime of small flapping micro aerial vehicles. The object

  17. Prefabricated flaps for bone reconstructive surgery

    NARCIS (Netherlands)

    Hartman, E.H.M.

    2004-01-01

    Tissue engineering of bone could help minimise donor site defects of conventional bone flaps like the fibula, iliac crest, radius and scapula. First a review is given on the literature of donor site morbidity of these flaps. Then the use of MRI is investigated for longitudinal study of ectopic bone

  18. Piezoelectrically actuated insect scale flapping wing

    Science.gov (United States)

    Mukherjee, Sujoy; Ganguli, Ranjan

    2010-04-01

    An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

  19. Fasciocutaneous flap for vaginal and perineal reconstruction

    International Nuclear Information System (INIS)

    A skin and fascia flap from the medial thigh is proposed for vaginal and perineal reconstruction. Dissection, vascular injection, and radiographs of 20 fresh cadaver limbs uniformly demonstrated the presence of a communicating suprafascial vascular plexus in the medial thigh. Three to four nonaxial vessels were consistently found to enter the proximal plexus from within 5 cm of the perineum. Preservation of these vessels permitted reliable elevation of a 9 X 20 cm fasciocutaneous flap without using the gracilis muscle as a vascular carrier. Fifteen flaps in 13 patients were used for vaginal replacement and coverage of vulvectomy, groin, and ischial defects. Depending on the magnitude of the defect, simultaneous and independent elevation of the gracilis muscle provided additional vascularized coverage as needed. Our experience indicates that the medial thigh fasciocutaneous flap is a durable, less bulky, and potentially sensate alternative to the gracilis musculocutaneous flap for vaginal and perineal reconstruction

  20. Fasciocutaneous flap for vaginal and perineal reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.N.; Whetzel, T.; Mathes, S.J.; Vasconez, L.O.

    1987-07-01

    A skin and fascia flap from the medial thigh is proposed for vaginal and perineal reconstruction. Dissection, vascular injection, and radiographs of 20 fresh cadaver limbs uniformly demonstrated the presence of a communicating suprafascial vascular plexus in the medial thigh. Three to four nonaxial vessels were consistently found to enter the proximal plexus from within 5 cm of the perineum. Preservation of these vessels permitted reliable elevation of a 9 X 20 cm fasciocutaneous flap without using the gracilis muscle as a vascular carrier. Fifteen flaps in 13 patients were used for vaginal replacement and coverage of vulvectomy, groin, and ischial defects. Depending on the magnitude of the defect, simultaneous and independent elevation of the gracilis muscle provided additional vascularized coverage as needed. Our experience indicates that the medial thigh fasciocutaneous flap is a durable, less bulky, and potentially sensate alternative to the gracilis musculocutaneous flap for vaginal and perineal reconstruction.

  1. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    INTRODUCTION: Clinical work on the blood perfusion in skin and muscle flaps has suggested that some degree of blood flow autoregulation exists in such flaps. An autoregulatory mechanism would enable the flap to protect itself from changes in the perfusion pressure. The purpose of the present study...... was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......-type calcium channel blocker nimodipine and the vasodilator papaverine. MATERIAL AND METHODS: Pedicled flaps were raised in pigs. Flow in the pedicle was reduced by constriction of the feed artery (n=34). A transit time flow probe measured the effect on blood flow continuously. Following this, three different...

  2. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction.

    Science.gov (United States)

    Algasaier, Sana I; Exell, Jack C; Bennet, Ian A; Thompson, Mark J; Gotham, Victoria J B; Shaw, Steven J; Craggs, Timothy D; Finger, L David; Grasby, Jane A

    2016-04-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.

  3. Influence of the rotor slit depth on the performance of the solid-rotor induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Aho, T.; Nerg, J.; Pyrhoenen, J. [Lappeenranta Univ. of Tech., Dept. of Electrical Engineering (Finland)

    2005-07-01

    The polyphase induction motor with solid iron rotor offers undoubted advantages in terms of construction simplicity and strength over conventional induction motors when the elevated rotation speed is needed. In this paper a three-phase induction motor with slitted solid-rotor is analyzed using two-dimensional finite-element method. Different rotor designs are studied in order to find out the influence of the rotor slit depth on the motor performance characteristics. It was found that the rotor slits should reach very deep inside the rotor. The depth of the rotor slitting is restricted by the saturation of the rotor material between the slits. Also the mechanical strength of the rotor material limits the depth of the rotor slitting. It is shown that in order to reduce the mechanical stress and the saturation of the rotor material between the slits the slitting should be made in such a way that every second slit is deeper than the other. (orig.)

  4. The range of a rotor walk

    OpenAIRE

    Florescu, Laura; Levine, Lionel; Peres, Yuval

    2014-01-01

    In a \\emph{rotor walk} the exits from each vertex follow a prescribed periodic sequence. On an infinite Eulerian graph embedded periodically in $\\R^d$, we show that any simple rotor walk, regardless of rotor mechanism or initial rotor configuration, visits at least on the order of $t^{d/(d+1)}$ distinct sites in $t$ steps. We prove a shape theorem for the rotor walk on the comb graph with i.i.d.\\ uniform initial rotors, showing that the range is of order $t^{2/3}$ and the asymptotic shape of ...

  5. Pudendal thigh flap for repair of rectovaginal fistula.

    Science.gov (United States)

    Sathappan, S; Rica, M A I

    2006-08-01

    The pudendal thigh flap or the Singapore flap is a versatile flap that can be used in the repair of recto-vaginal fistulae. Apart from the potential problem of hair growth, this neurovascular flap proves to be surprisingly simple in technique, robust and has a high potential for normal or near-normal function. PMID:17240589

  6. Total endoscopic free flap harvest of a serratus anterior fascia flap for microsurgical lower leg reconstruction

    Directory of Open Access Journals (Sweden)

    Erdmann, Alfons

    2014-04-01

    Full Text Available [english] Background: A tremendous number of free flaps have been developed in the past. As the surgical result depends not only on a successful flap transfer but also on the harvest, this paper details the procedures for undertaking the first total endoscopic harvest of a serratus fascia flap for free flap transplantation to the lower leg. Patient and methods: In September 2012 we performed the first total endoscopic serratus anterior fascia free flap harvest. The incision of 2.5 cm length was made 10 cm in front of anterior muscle border of the latissimus dorsi at level with the midthorax. After insertion of a flexible laparoscopic single port system we started CO gas insufflation. We used this setting to meticulously prepare a neo cavity between atissimus dorsi and M. serratus anterior. The vessels were dissected and the thoraco-dorsal nerve was separated. With a second auxiliary incision we used a clamp to support the raising of the fascia flap from the underlying muscle. Finally we clipped the vessels to the latissimus dorsi muscle and the flap vessels at the Arteria and Vena axillaris. The flap was extracted via the 2.5 cm incision.Results: We were able to perform a total endoscopic harvest of a serratus fascia flap for free flap reconstruction of soft tissues. With this new operative technique we were able to avoid a long skin incision, which in our view lowers the morbidity at the harvest area.Conclusion: We describe a new method for the total endoscopic harvest of the serratus fascia flap for free flap transfer. The flap was harvested within reasonable time and following surgery leaves the patient with minimal donor site morbidity compared to the open technique.

  7. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  8. Liquid Self-Balancing Device Effects on Flexible Rotor Stability

    Directory of Open Access Journals (Sweden)

    Leonardo Urbiola-Soto

    2013-01-01

    Full Text Available Nearly a century ago, the liquid self-balancing device was first introduced by M. LeBlanc for passive balancing of turbine rotors. Although of common use in many types or rotating machines nowadays, little information is available on the unbalance response and stability characteristics of this device. Experimental fluid flow visualization evidences that radial and traverse circulatory waves arise due to the interaction of the fluid backward rotation and the baffle boards within the self-balancer annular cavity. The otherwise destabilizing force induced by trapped fluids in hollow rotors, becomes a stabilizing mechanism when the cavity is equipped with adequate baffle boards. Further experiments using Particle Image Velocimetry (PIV enable to assess the active fluid mass fraction to be one-third of the total fluid mass. An analytical model is introduced to study the effects of the active fluid mass fraction on a flexible rotor supported by flexible supports excited by bwo different destabilizing mechanisms; rotor internal friction damping and aerodynamic cross-coupling. It is found that the fluid radial and traverse forces contribute to the balancing action and to improve the rotor stability, respectively.

  9. Hydrodynamic schooling of flapping swimmers

    Science.gov (United States)

    Becker, Alexander D.; Masoud, Hassan; Newbolt, Joel W.; Shelley, Michael; Ristroph, Leif

    2015-10-01

    Fish schools and bird flocks are fascinating examples of collective behaviours in which many individuals generate and interact with complex flows. Motivated by animal groups on the move, here we explore how the locomotion of many bodies emerges from their flow-mediated interactions. Through experiments and simulations of arrays of flapping wings that propel within a collective wake, we discover distinct modes characterized by the group swimming speed and the spatial phase shift between trajectories of neighbouring wings. For identical flapping motions, slow and fast modes coexist and correspond to constructive and destructive wing-wake interactions. Simulations show that swimming in a group can enhance speed and save power, and we capture the key phenomena in a mathematical model based on memory or the storage and recollection of information in the flow field. These results also show that fluid dynamic interactions alone are sufficient to generate coherent collective locomotion, and thus might suggest new ways to characterize the role of flows in animal groups.

  10. An analytical investigation of the performance of wind-turbines with gyrocopter-like rotors

    Energy Technology Data Exchange (ETDEWEB)

    Kentfield, J.A.C.; Brophy, D.C. [Univ. of Calgary, Alberta (Canada)

    1997-12-31

    The performance was predicted of a wind-turbine, intended for electrical power generation, the rotor of which is similar in configuration to the rotor of an autogyro or gyrocopter as originated by Cierva. Hence the rotor axis of spin is tilted downwind, for maximum power production, by an angle of 40{degrees} to 50{degrees} relative to the vertical with power regulation by modulation of the tilt angle. Because the rotor of a Cierva turbine generates lift the simple, non-twisted, fixed-pitch blades {open_quotes}fly{close_quotes} and are self supporting thereby eliminating flap-wise bending moments when the blades are hinged at their roots. It was found from the analysis that it is possible to reduce tower bending moments substantially relative to a conventional horizontal axis turbine of equal power output and also, for equal maximum hub heights and blade tip altitudes, a Cierva turbine is capable, at a prescribed wind speed, of a greater power output than a conventional horizontal axis machine.

  11. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    Science.gov (United States)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives, resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  12. Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off

    Science.gov (United States)

    Platt, Robert C

    1936-01-01

    This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.

  13. The DelFly design, aerodynamics, and artificial intelligence of a flapping wing robot

    CERN Document Server

    de Croon, G C H E; Remes, B D W; Ruijsink, R; De Wagter, C

    2016-01-01

    This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Expl...

  14. Fibrin glue for Gundersen flap surgery

    Directory of Open Access Journals (Sweden)

    Chung HW

    2013-03-01

    Full Text Available Hsi-Wei Chung,1 Jodhbir S Mehta1–31Singapore National Eye Centre, Singapore; 2Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore; 3Department of Clinical Sciences, Duke-NUS Graduate Medical School, SingaporePurpose: To evaluate the feasibility of fibrin glue in Gundersen flap surgery.Design: Prospective case series.Study subjects: Seven eyes of seven subjects who had undergone Gundersen flap surgery from 2009 to 2011 at the Singapore National Eye Centre, Singapore.Methods: Review of case records for outcomes after Gundersen flap surgery.Main outcome measures: Surgical success was defined as achieving a stable ocular surface. Complications to be noted included flap retraction or exposure of underlying corneal surface.Results: Surgical success was achieved in all eyes with significant reduction in ocular surface inflammation. No retractions were noted and recovery was uncomplicated.Conclusion: Fibrin glue application is a viable alternative to sutures in Gundersen flap surgery. It reduces surgical downtime, gives faster ocular surface rehabilitation, and offers similar outcomes to conventional conjunctival flap surgery.Keywords: Gundersen, conjunctival flap, fibrin glue

  15. Use of Martius flap in the complex female urethral surgery

    OpenAIRE

    Kasyan, George; Tupikina, Nataliya; Pushkar, Dmitry

    2014-01-01

    Introduction Objectives were to evaluate safety and patient reported perception of the Martius fibroadipose flap for complex female urethra reconstruction. Material and methods Patients operated with a Martius flap were contacted again via telephone to rate their self–perception on cosmetic appearance, pain or numbness of the flap harvest site. Results 37 women (mean age of 46.8 yrs.) were operated with Martius flaps. Complications were limited to bleeding from the flap bed in 19% (7/37); hem...

  16. Ontogeny of aerial righting and wing flapping in juvenile birds

    CERN Document Server

    Evangelista, Dennis; Huynh, Tony; Krivitskiy, Igor; Dudley, Robert

    2014-01-01

    Mechanisms of aerial righting in juvenile Chukar Partridge (Alectoris chukar) were studied from hatching through 14 days post hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e., wing assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development, and are potentially relevant to understanding the origins of avian flight.

  17. Rotor-to-stator Partial Rubbing and Its Effects on Rotor Dynamic Response

    Science.gov (United States)

    Muszynska, Agnes; Franklin, Wesley D.; Hayashida, Robert D.

    1991-01-01

    Results from experimental and analytical studies on rotor to stationary element partial rubbings at several locations and their effects on rotor dynamic responses are presented. The mathematical model of a rubbing rotor is given. The computer program provides numerical results which agree with experimentally obtained rotor responses.

  18. The plane problem of the flapping wing

    Science.gov (United States)

    Birnbaum, Walter

    1954-01-01

    In connection with an earlier report on the lifting vortex sheet which forms the basis of the following investigations this will show how the methods developed there are also suitable for dealing with the air forces for a wing with a circulation variable with time. The theory of a propulsive wing flapping up and down periodically in the manner of a bird's wing is developed. This study shows how the lift and its moment result as a function of the flapping motion, what thrust is attainable, and how high is the degree of efficiency of this flapping propulsion unit if the air friction is disregarded.

  19. Flap-augmented shrouds for aerogenerators

    Science.gov (United States)

    Seginer, A.

    1976-01-01

    Axisymmetrical shrouds for windmills are augmented by ring-shaped 'flaps' and their performance is studied experimentally. The concept of the shroud as an annular 'wing' is justified, leading to the conclusion that high-lift techniques should be used in shroud design, and that high-lift devices, such as flaps, would increase the power output of the windmill. It is shown experimentally that the ideal power output of a flap-augmented shrouded turbine can be more than 4 times the power of unshrouded turbines of the same diameter.

  20. Neural Anatomy of the Anterolateral Thigh Flap

    OpenAIRE

    Luenam, Suriya; Prugsawan, Krit; Kosiyatrakul, Arkaphat; Chotanaphuti, Thanainit; Sriya, Piyanee

    2015-01-01

    The anterolateral thigh (ALT) flap is one of the commonly used sensate flaps for intra-oral, hand, and foot reconstruction. The objective of this study was to describe the anatomic location of the sensory nerves supplying the ALT flap in relation to the surface landmarks and with the vascular pedicles. The dissections were carried out in 28 embalmed specimens. An axial line from the anterior superior iliac spine to the superolateral border of the patella and two circles with radii of 5 and 10...

  1. The Diver with a Rotor

    CERN Document Server

    Bharadwaj, Sudarsh; Dullin, Holger R; Leung, Karen; Tong, William

    2015-01-01

    We present and analyse a simple model for the twisting somersault. The model is a rigid body with a rotor attached which can be switched on and off. This makes it simple enough to devise explicit analytical formulas whilst still maintaining sufficient complexity to preserve the shape-changing dynamics essential for twisting somersaults in springboard and platform diving. With `rotor on' and with `rotor off' the corresponding Euler-type equations can be solved, and the essential quantities characterising the dynamics, such as the periods and rotation numbers, can be computed in terms of complete elliptic integrals. Thus we arrive at explicit formulas for how to achieve a dive with m somersaults and n twists in a given total time. This can be thought of as a special case of a geometric phase formula due to Cabrera 2007.

  2. Quantum rotor in nanostructured superconductors

    Science.gov (United States)

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  3. Propeller Flap Reconstruction in Post Oncological Thigh Defect: "The Move in Flap".

    Science.gov (United States)

    Nambi, G I; Salunke, Abhijeet Ashok

    2015-06-01

    Reconstruction of soft tissue defects of the limb after tumor resection is challenging question for oncosurgeons. The management differs from reconstruction of post traumatic defects due to the complexity of the primary surgery and subsequent radiation. The conventional propeller flap is based on a perforator which is located close to the defect; but in present case the perforator was located far away from the defect. So we describe it as "Move in flap" as the flap rotated a large volume of soft tissue lying between the defect and the perforator. We present a case of post oncological thigh defect with reconstruction using a propeller flap based on distal anteromedial perforator. PMID:26405422

  4. Computer program for flexible rotor dynamics analysis

    Science.gov (United States)

    Shen, F. A.

    1974-01-01

    Program analyzes general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of bending- and shear-wise flexible rotor-bearing system under various operating conditions. Program can be used as analytical study tool for general transient spin-speed and/or non-axisymmetric rotor motion.

  5. Dielectric anomaly in coupled rotor systems

    OpenAIRE

    Shima, Hiroyuki; Nakayama, Tsuneyoshi

    2004-01-01

    The correlated dynamics of coupled quantum rotors carrying electric dipole moment is theoretically investigated. The energy spectra of coupled rotors as a function of dipolar interaction energy is analytically solved. The calculated dielectric susceptibilities of the system show the peculiar temperature dependence different from that of isolated rotors.

  6. 14 CFR 29.1565 - Tail rotor.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail rotor. 29.1565 Section 29.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS....1565 Tail rotor. Each tail rotor must be marked so that its disc is conspicuous under normal...

  7. Dielectric anomaly in coupled rotor systems

    OpenAIRE

    Shima, Hiroyuki; Nakayama, Tsuneyoshi

    2004-01-01

    The correlated dynamics of coupled quantum rotors carrying electric dipole moment is theoretically investigated. The energy spectra of coupled rotors as a function of dipolar interaction energy are analytically solved. The calculated dielectric susceptibilities of the system show a peculiar temperature dependence different from that of isolated rotors.

  8. 14 CFR 27.1565 - Tail rotor.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail rotor. 27.1565 Section 27.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Tail rotor. Each tail rotor must be marked so that its disc is conspicuous under normal daylight...

  9. Fatigue Test Technology of Slat and Flap with Active Driving and Servo Loading Device%一种主动驱动随动加载的前缘缝翼和襟翼疲劳试验技术

    Institute of Scientific and Technical Information of China (English)

    李小军; 陆慧莲; 李凯

    2014-01-01

    前缘缝翼、襟翼活动面及其支承结构的疲劳试验是民用飞机取证前要开展的一项重要工作。在试验中采用主动驱动和随动加载方法加载,不仅能缩小试验规模,同时可提高试验精度。国内某型机采用此技术成功进行了前缘缝翼、襟翼及其悬挂结构的疲劳试验。从试验件及其支承设计、系统构成和载荷与运行三方面,介绍了一种适用于大中型固定翼飞机前缘缝翼和襟翼的疲劳试验技术。%The fatigue tests on slat, flap and their supporting structures are very important work to be launched for a new airplane before technology certification ( TC) being granted. The loading which adopts active driving and ser-vo loading not only reduces the test scale but also enhances the test accuracy. This technology has been applied to make the fatigue test on some civil aircraft successfully. This paper presents the new fatigue test technology in three aspects:test article with its suspension, test system, load and implementation respectively.

  10. Investigation of Rotor Radial Rotating Error upon AMB System

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; LI Yan

    2006-01-01

    This paper first suggests the use of the Fourier frequency transmission method of two dimensions function (2D FFT) to analyze radial rotating errors that occurred in a rotor. Based on this method a magnetic rotor is measured. The authors point out that the main cause to affect radial rotating accuracy of the rotating shaft at a high speed is the dynamic imbalance of the shaft itself. Finally the feed-forward control scheme is suggested to improve the accuracy of the shaft in an active magnetic bearing (AMB) system.

  11. Behind the performance of flapping flyers

    CERN Document Server

    Ramananarivo, Sophie; Thiria, Benjamin

    2010-01-01

    Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior ---in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping mo...

  12. Periodic and Chaotic Flapping of Insectile Wings

    CERN Document Server

    Huang, Yangyang

    2015-01-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. The maximum power output of these flight muscles is insufficient to maintain such wing oscillations unless there is good elastic storage of energy in the insect flight system. Here, we explore the intrinsic self-oscillatory behavior of an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring. We study the wings behavior as a function of the total energy and spring stiffness. Three types of behavior are identified: end-over-end rotation, chaotic motion, and periodic flapping. Interestingly, the region of periodic flapping decreases as energy increases but is favored as stiffness increases. These findings are consistent with the fact that insect wings and flight muscles are stiff. They further imply that, by adjusting their muscle stiffness to the desired energy level, insects can maintain periodic flapping mechanically for a range of operating condit...

  13. A dynamical system for interacting flapping swimmers

    Science.gov (United States)

    Oza, Anand; Ramananarivo, Sophie; Ristroph, Leif; Shelley, Michael

    2015-11-01

    We present the results of a theoretical investigation into the dynamics of interacting flapping swimmers. Our study is motivated by the recent experiments of Becker et al., who studied a one-dimensional array of self-propelled flapping wings that swim within each other's wakes in a water tank. They discovered that the system adopts certain ``schooling modes'' characterized by specific spatial phase relationships between swimmers. To rationalize these phenomena, we develop a discrete dynamical system in which the swimmers are modeled as heaving airfoils that shed point vortices during each flapping cycle. We then apply our model to recent experiments in the Applied Math Lab, in which two tandem flapping airfoils are free to choose both their speed and relative positions. We expect that our model may be used to understand how schooling behavior is influenced by hydrodynamics in more general contexts. Thanks to the NSF for its support.

  14. Management of Vortices Trailing Flapped Wings via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  15. Interpreting laser Doppler recordings from free flaps.

    Science.gov (United States)

    Svensson, H; Holmberg, J; Svedman, P

    1993-01-01

    Although the transfer of free flaps is nowadays accomplished with an increasing degree of safety, thrombosis of the microvascular anastomoses is still a problem. In order to avoid delay in re-operating, various methods for objective blood flow monitoring have been tried, among them Laser Doppler Flowmetry (LDF). When one reviews the literature, it is apparent that opinions differ about whether or not LDF is a reliable technique for this purpose. To focus on the need to interpret continuous recordings, this paper reports our findings in six latissimus dorsi free flaps chosen from our series of LDF monitoring procedures. One uneventful flap, no. 1, had an immediate postoperative LDF value of 4.5 perfusion units (PU). LDF values improved during the recovery period and the graphic recording showed fluctuations due to normal physiological variations of the blood flow in the flap. Another uneventful flap, no. 4, showed the same pattern, though at an appreciably lower level, 2 PU, on average. Flap no. 2 had an acceptably high value of 3.5 PU despite suffering a venous thrombosis. However, the LDF recording showed no fluctuations and the value declined gradually. Another flap, no. 3, showed fluctuations and blood flow was normal although the value decreased to 2.5 PU. In flap no. 5, any value between 2 and 3.5 PU could be obtained merely by adjusting the position of the probe in the holder. In no. 6, the LDF value suddenly dropped, accompanied by a decrease in the total amount of backscattered light, indicating venous obstruction which was confirmed at re-operation.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. TLR4信号转导通路活化在皮瓣缺血再灌注损伤中的作用%The role of toll like receptor-4 signal pathways activation in ischemia-reperfusion injury of island skin flap

    Institute of Scientific and Technical Information of China (English)

    简麒超; 吴小蔚; 宋海臣; 郑梁

    2012-01-01

    目的 探讨Toll样受体4(Toll-like receptors 4,TLR4)在皮瓣缺血再灌注(ischmeia-reperfusion,I/R)损伤中的意义.方法 将50只雄性SD大鼠进行编号,盲视下随机分为:假手术组(10只)、I/R组(20只)、TLR4抑制剂组(20只).制备右下腹岛状皮瓣I/R模型.TLR4抑制剂组处理组于再灌注前静脉注射E5564(5 mg/kg),分别于缺血再灌注后1、2、4和6h,采用免疫组化学法检测TLR4在皮瓣组织中的表达及分布,并行组织学观察.于术后7d,应用图像分析软件计算皮瓣存活比例.应用SPSS 18.0进行统计分析,两组间比较采用F检验.结果 免疫组织化学法显示I/R组比TLR4抑制组TLR4表达明显增强,且阳性部位主要是血管壁细胞及中性粒细胞.TLR4抑制剂组再灌注后TLR4活性受到抑制,中性粒细胞浸润及组织水肿程度较I/R组明显改善.术后7 d I/R组皮瓣存活比例为(51.70 ±7.62)%,TLR4抑制剂组皮瓣存活比例明显增高,达(80.31±11.63)%,与I/R组比较差异有统计学意义(P<0.01).结论 大鼠皮瓣缺血再灌注损伤后,皮瓣组织TLR4的表达上调中性粒细胞浸润增多.E5564能通过抑制TLR4活化,减少中性粒细胞浸润,减轻皮瓣I/R损伤.%Objective To determine the role of toll like receptor-4 signal pathways activation in ischemia-reperfusion injury of island skin flap.Methods A totol of 50 adult male SD rats were randomized into 3 groups: sham-operated group (n =10),ischemia/reperfusion group (n =20) and TLR4 inhibitor-eritoran tetrasodium (E5564)-treated group(n =20).The inguinal island skin flaps models were set up.A bolus of E5564 (5 mg/kg) was infused intravenously 60 min before reper fusionm.TLR4 binding activity in flap tissue was analyzed at 1,2,4 and 6 h of reperfusion by immunohistochemical technique and flaps were assessed histologically at 6 h of reperfusion.The viability of flaps was assessed 7 days postoperatively.Results Exprerssion TLR4 in skin flap tissue was significantly increased

  17. Rotor disk cooling and rim sealing to prevent hot gas ingestion. Rotor reikyaku to hot gas no seal

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, K. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1993-03-01

    In designing a high-temperature gas turbine disc, it is necessary to know pressure distribution around a disc, which correlates with flows inside and outside the disc. With design conditions becoming very stringent for efficiency improvement as a background, this paper describes latest trends in technologies on heat transfer around a disc and hot gas sealing while introducing reports on various studies. Generally speaking, fundamental researches on rotors without mainstreams have conventionally been carried out mainly in Europe and the U.S.A. Researches have become active recently on entrainment of mainstream gas where there is a mainstream that renders practical problems. The number of research papers is increasing sharply that relate to rotor shapes closer to those used in practical turbines incorporating moving and static blades, and high rotation Reynolds numbers. Further, studies using numerical analysis are on the increase, and rotor cooling studies are advancing remarkably in recent years. 36 refs., 10 figs.

  18. 232Th, a rigid rotor

    International Nuclear Information System (INIS)

    We undertake the present work to treat 232Th with a soft rotor formula used recently by C. Bihari et. al for γ-band and modified by J.B. Gupta et. al. It describes energy in terms of moment of inertia and softness parameter

  19. Topological dynamics in supramolecular rotors.

    Science.gov (United States)

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules. PMID:25078022

  20. Rotor damage detection by using piezoelectric impedance

    Science.gov (United States)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  1. Advances in tilt rotor noise prediction

    Science.gov (United States)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  2. The dog-ear flap as an alternative for breast reconstruction in patients who have already undergone a DIEAP flap.

    Science.gov (United States)

    Colebunders, Britt; Depypere, Bernard; Van Landuyt, Koenraad

    2016-05-01

    Breast reconstruction in patients who have previously undergone deep inferior epigastric artery perforator flap (DIEAP) reconstruction or abdominoplasty is often challenging. Depending on patients' body habitus, several second-choice flaps have been described such as the transverse upper gracilis (TUG) flap, profundus femoris artery perforator (PFAP) flap, superior gluteal artery perforator (SGAP) flap, and lumbar artery perforator (LAP) flap. Patients who have undergone a DIEAP flap reconstruction or abdominoplasty occasionally present with dog ears on both sides of the abdominal scar. The adipose tissue and skin of these dog ears are supplied by perforators of the deep circumflex iliac artery (DCIA). The DCIA flap was first described in 1979 by Taylor. We introduce this abdominal "dog-ear" flap for autologous breast reconstruction. PMID:26951847

  3. Maxillofacial reconstruction with nasolabial and facial artery musculomucosal flaps.

    Science.gov (United States)

    Braasch, Daniel Cameron; Lam, Din; Oh, Esther S

    2014-08-01

    The nasolabial and facial artery musculomucosal (FAMM) flaps are predictable methods to reconstruct perioral and intraoral defects with vascularized tissue. The nasolabial flap can be harvested as an axial or random patterned flap, whereas the FAMM flap is truly an axial patterned flap, with either a superior or an inferior base. Both flaps have been widely used to provide predictable results, with low morbidity. Future studies are needed to further prove their use in compromised patients, including patients with a history of head and neck radiation and neck dissections. PMID:25086694

  4. Dorsal hand coverage with free serratus fascia flap

    DEFF Research Database (Denmark)

    Fotopoulos, Peter; Holmer, Per; Leicht, Pernille;

    2003-01-01

    serratus fascia flap, the connective tissue over the serratus muscle, for dorsal hand coverage. The flap consists of thin and well-vascularized pliable tissue, with gliding properties excellent for covering exposed tendons. It is based on the branches of the thoracodorsal artery, which are raised...... in the flap, leaving the long thoracic nerve intact on the serratus muscle. Coverage of the flap with split-thickness skin graft is done immediately. The free serratus fascia flap is an ideal flap for dorsal hand coverage when the extensor tendons are exposed, especially because of low donor-site morbidity....

  5. Rescue of Primary Incomplete Microkeratome Flap with Secondary Femtosecond Laser Flap in LASIK

    Directory of Open Access Journals (Sweden)

    E. A. Razgulyaeva

    2014-01-01

    Full Text Available For laser-assisted in situ keratomileusis (LASIK retreatments with a previous unsuccessful mechanical microkeratome-assisted surgery, some surgical protocols have been described as feasible, such as relifting of the flap or the creation of a new flap and even the change to a surface ablation procedure (photorefractive keratectomy (PRK. This case shows the use of femtosecond technology for the creation of a secondary flap to perform LASIK in a cornea with a primary incomplete flap obtained with a mechanical microkeratome. As we were unable to characterize the interface of the first partial lamellar cut, a thick flap was planned and created using a femtosecond laser platform. As the primary cut was very thick in the nasal quadrant, a piece of loose corneal tissue appeared during flap lifting which was fitted in its position and not removed. Despite this condition and considering the regularity of the new femtosecond laser cut, the treatment was uneventful. This case report shows the relevance of a detailed corneal analysis with an advanced imaging technique before performing a secondary flap in a cornea with a primary incomplete flap. The femtosecond laser technology seems to be an excellent tool to manage such cases successfully.

  6. The prepuce free flap in 10 patients : modifications in flap design and surgical technique

    NARCIS (Netherlands)

    Werker, Paul M N

    2002-01-01

    The prepuce free flap was used in 10 oral and oropharyngeal reconstructions. During the course of this study, various modifications took place. Residual penile skin necrosis and skin island necrosis early in the series led to modification of flap design. This solved the donor-site problem by placing

  7. Crystal structure of type I 3-dehydroquinate dehydratase of Aquifex aeolicus suggests closing of active site flap is not essential for enzyme action.

    Science.gov (United States)

    Devi, Aribam Swarmistha; Ebihara, Akio; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2013-03-01

    Structural analyses of enzymes involved in biosynthetic pathways that are present in micro-organisms, but absent from mammals (for example Shikimate pathway) are important in developing anti-microbial drugs. Crystal structure of the Shikimate pathway enzyme, type I 3-dehydroquinate dehydratase (3-DHQase) from the hyperthermophilic bacterium Aquifex aeolicus was solved both as an apo form and in complex with a ligand. The complex structure revealed an interesting structural difference when compared to other ligand-bound type I 3-DHQases suggesting that closure of the active site loop is not essential for catalysis. This provides new insights into the catalytic mechanism of type I 3-DHQases. PMID:23396056

  8. Attitude Control of Small Quad-rotor Based on Active Disturbance Rejection Control Theory%基于自抗扰理论的小型四旋翼飞行器姿态控制

    Institute of Scientific and Technical Information of China (English)

    张广昱; 袁昌盛

    2014-01-01

    针对四旋翼飞行器的强耦合性、非线性、易受外界干扰等控制难点,研究利用自抗扰控制器对四旋翼飞行器进行姿态控制的技术问题。通过牛顿-欧拉方程建立四旋翼飞行器动力学模型,将不确定性、耦合及参数摄动等干扰作为“总和干扰”,利用扩张状态观测器进行估计并动态反馈补偿,再利用非线性反馈抑制补偿残差,进行四旋翼飞行器姿态控制仿真实验。结果表明:在存在模型参数摄动和外界扰动的情况下,扩张状态观测器很好地实时估计和补偿了四旋翼飞行器的总和干扰,基于自抗扰的四旋翼飞行器姿态控制系统具有较好的动态品质、稳态精度以及较强的鲁棒性。%To solve the attitude control problem of small quad-rotor according to its complex coupling ,non-linear and serious internal/external disturbance feature ,a control scheme based on active disturbance rejection control technique is proposed .The dynamic model is established with Newton-Euler equations ,and the uncertainty , coupling and parameter perturbation are considered as total disturbance .Extended state observer is used to esti-mate and compensate the total disturbance .The non-linear state error feedback is used to restrain the compen-sate error ,and did simulation experiment of attitude control for small quad-rotor .The result of the simulation shows that the extended state observer of the active disturbance rejection control technique can estimate/com-pensate disturbance well under circumstance of parameter perturbation and disturbance .The attitude controller based on active disturbance rejection control theory shows good dynamic quality ,steady-state accuracy and strong robustness .

  9. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility.

    Science.gov (United States)

    Kumalo, H M; Soliman, Mahmoud E

    2016-10-01

    Beta-amyloid precursor protein cleavage enzyme1 (BACE1) and beta-amyloid precursor protein cleavage enzyme2 (BACE2), members of aspartyl protease family, are close homologs and have high similarity in their protein crystal structures. However, their enzymatic properties are different, which leads to different clinical outcomes. In this study, we performed sequence analysis and all-atom molecular dynamic (MD) simulations for both enzymes in their ligand-free states in order to compare their dynamical flap behaviors. This is to enhance our understanding of the relationship between sequence, structure and the dynamics of this protein family. Sequence analysis shows that in BACE1 and BACE2, most of the ligand-binding sites are conserved, indicative of their enzymatic property as aspartyl protease members. The other conserved residues are more or less unsystematically localized throughout the structure. Herein, we proposed and applied different combined parameters to define the asymmetric flap motion; the distance, d1, between the flap tip and the flexible region; the dihedral angle, φ, to account for the twisting motion and the TriCα angle, θ2 and θ1. All four combined parameters were found to appropriately define the observed "twisting" motion during the flaps different conformational states. Additional analysis of the parameters indicated that the flaps can exist in an ensemble of conformations, i.e. closed, semi-open and open conformations for both systems. However, the behavior of the flap tips during simulations is different between BACE1 and BACE2. The BACE1 active site cavity is more spacious as compared to that of BACE2. The analysis of 10S loop and 113S loop showed a similar trend to that of flaps, with the BACE1 loops being more flexible and less stable than those of BACE2. We believe that the results, methods and perspectives highlighted in this report would assist researchers in the discovery of BACE inhibitors as potential Alzheimer's disease therapies

  10. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    Science.gov (United States)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  11. Extended thoracodorsal artery perforator flap for breast reconstruction.

    Science.gov (United States)

    Angrigiani, Claudio; Rancati, Alberto; Escudero, Ezequiel; Artero, Guillermo

    2015-12-01

    A total of 45 patients underwent partial or total autologous breast reconstruction after skin-sparing mastectomy, skin-reducing mastectomy, and quadrantectomy using a thoracodorsal artery perforator (TDAP) flap. The detailed surgical technique with its variations is explained in this report. The propeller, flip-over, conventional perforator, and muscle-sparing flaps have been described and evaluated. The flaps were partially or completely de-epithelialized. The conventional TDAP can be enlarged or "extended" as the traditional latissimus dorsi musculocutaneous (LD-MC) flap by incorporating the superior and inferior fat compartments. It can be referred to as the "extended TDAP flap". This technique augments the flap volume. In addition, this flap can serve as a scaffold for lipofilling to obtain autologous breast reconstruction in medium to large cases. There were two complete failures due to technical errors during flap elevation. Distal partial tissue suffering was observed in four flaps. These flaps were longer than usual; they reached the midline of the back. It is advisable to discard the distal medial quarter of the flap when it is designed up to the midline to avoid steatonecrosis or fibrosis. A retrospective analysis of the 39 flaps that survived completely revealed a satisfactory result in 82% of the cases. The main disadvantage of this procedure is the final scar. The TDAP flap is a reliable and safe method for partial or total breast autologous reconstruction. PMID:26645006

  12. Darmstadt Rotor No. 2, II: Design of Leaning Rotor Blades

    OpenAIRE

    Jörg Bergner; Dietmar K. Hennecke; Martin Hoeger; Karl Engel

    2003-01-01

    For Darmstadt University of Technology's axial singlestage transonic compressor rig, a new three-dimensional aft-swept rotor was designed and manufactured at MTU Aero Engines in Munich, Germany. The application of carbon fiber–reinforced plastic made it possible to overcome structural constraints and therefore to further increase the amount of lean and sweep of the blade. The aim of the design was to improve the mechanical stability at operation that is close to stall.

  13. Darmstadt Rotor No. 2, II: Design of Leaning Rotor Blades

    Directory of Open Access Journals (Sweden)

    Jörg Bergner

    2003-01-01

    Full Text Available For Darmstadt University of Technology's axial singlestage transonic compressor rig, a new three-dimensional aft-swept rotor was designed and manufactured at MTU Aero Engines in Munich, Germany. The application of carbon fiber–reinforced plastic made it possible to overcome structural constraints and therefore to further increase the amount of lean and sweep of the blade. The aim of the design was to improve the mechanical stability at operation that is close to stall.

  14. Modified cup flap for volar oblique fingertip amputations

    Directory of Open Access Journals (Sweden)

    Ahmadli, A.

    2016-02-01

    Full Text Available We describe a modified volar “V-Y cup” flap for volar fingertip defects that do not exceed more than half of the distal phalanx for better aesthetic and functional outcome. In seven cases out of eight, the flap was elevated with a subdermal pedicle, whereas in one case, the flap was elevated as an island on the bilateral neurovascular bundle. The fingertips have been evaluated for sensibility using standard tests, hook nail deformity and patient satisfaction. Seven flaps have survived completely. The flap with skeletonized bilateral digital neurovascular bundle has shown signs of venous insufficiency on the 5 postoperative day with consecutive necrosis. Suturing the distal edges of the flap in a “cupping” fashion provided a normal pulp contour. The modified flap can be used for defects as mentioned above. Subdermally dissected pedicle-based flap is safe and easy to elevate. The aesthetic and functional outcomes have been reported to be satisfactory.

  15. Intraoperative flap complications in lasik surgery performed by ophthalmology residents

    Directory of Open Access Journals (Sweden)

    Lorena Romero-Diaz-de-Leon

    2016-01-01

    Conclusion: Flap-related complications are common intraoperative event during LASIK surgery performed by in-training ophthalmologists. Keratometries and surgeon's first procedure represent a higher probability for flap related complications than some other biometric parameters of patient's eye.

  16. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  17. Deltopectoral Flap in the Era of Microsurgery

    Directory of Open Access Journals (Sweden)

    R. C. L. Chan

    2014-01-01

    Full Text Available Background. Our study aimed to review the role of deltopectoral (DP flap as a reconstructive option for defects in the head and neck region in the microvascular era. Methods. All patients who received DP flap reconstruction surgery at the Department of Surgery, Queen Mary Hospital, between 1999 and 2011 were recruited. Demographic data, indications for surgery, defect for reconstruction, and surgical outcomes were analyzed. Results. Fifty-four patients were included. All but two patients were operated for reconstruction after tumour resection. The remaining two patients were operated for necrotizing fasciitis and osteoradionecrosis. The majority of DP flaps were used to cover neck skin defect (63.0%. Other reconstructed defects included posterior pharyngeal wall (22.2%, facial skin defect (11.1%, and tracheal wall (3.7%. All donor sites were covered with partial thickness skin graft. Two patients developed partial flap necrosis at the tip and were managed conservatively. The overall flap survival rate was 96.3%. Conclusions. Albeit the technical advancements in microvascular surgery, DP still possesses multiple advantages (technical simplicity, reliable axial blood supply, large size, thinness, and pliability which allows it to remain as a useful, reliable, and versatile surgical option for head and neck reconstruction.

  18. The forked flap repair for hypospadias

    Directory of Open Access Journals (Sweden)

    Anil Chadha

    2012-01-01

    Full Text Available Context: Despite the abundance of techniques for the repair of Hypospadias, its problems still persist and a satisfactory design to correct the penile curvature with the formation of neourethra from the native urethral tissue or genital or extragenital tissues, with minimal postoperative complications has yet to evolve. Aim: Persisting with such an endeavor, a new technique for the repair of distal and midpenile hypospadias is described. Materials and Methods: The study has been done in 70 cases over the past 11 years. The "Forked-Flap" repair is a single stage method for the repair of such Hypospadias with chordee. It takes advantage of the rich vascular communication at the corona and capitalizes on the established reliability of the meatal based flip-flap. The repair achieves straightening of the curvature of the penis by complete excision of chordee tissue from the ventral surface of the penis beneath the urethral plate. The urethra is reconstructed using the native plate with forked flap extensions and genital tissue relying on the concept of meatal based flaps. Water proofing by dartos tissue and reinforcement by Nesbit′s prepucial tissue transfer completes the one stage procedure. Statistical Analysis: An analysis of 70 cases of this single stage technique of repair of penile hypospadias with chordee, operated at 3 to 5 years of age over the past 11 years is presented. Results and Conclusion: The Forked Flap gives comparable and replicable results; except for a urethrocutaneous fistula rate of 4% no other complications were observed.

  19. The aerodynamic and structural study of flapping wing vehicles

    OpenAIRE

    Zhou, Liangchen

    2013-01-01

    This thesis reports on the aerodynamic and structural study carried out on flapping wings and flapping vehicles. Theoretical and experimental investigation of aerodynamic forces acting on flapping wings in simple harmonic oscillations is undertaken in order to help conduct and optimize the aerodynamic and structural design of flapping wing vehicles. The research is focused on the large scale ornithopter design of similar size and configuration to a hang glider. By means of Theodorsen’s th...

  20. 14 CFR 25.1511 - Flap extended speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap extended speed. 25.1511 Section 25... Limitations § 25.1511 Flap extended speed. The established flap extended speed V FE must be established so that it does not exceed the design flap speed V F chosen under §§ 25.335(e) and 25.345, for...

  1. Pharyngo oesophageal strictures and its reconstruction by delto pectoral flaps

    OpenAIRE

    Guha, Goutam; S Gupta; Chakraborty, S

    2005-01-01

    Delto pectoral flap is a thin and pliable cutaneous axial flap suitable for the reconstruction of pharynx and upper oesophagus. Corrosive stricture of the pharyngo oesophageal area can very well be reconstructed by deltopectoral flap. Oesophageal reconstruction by viscera like stomach or colon often produces anastomic stricture at the upper anastomic site with hypopharynx or upper oesophagus. Delto pectoral flap can also be used to reconstruct this anastomotic stricture. Postoperative swallow...

  2. The Use of the Juri Temporo-Parieto-Occipital Flap

    OpenAIRE

    Juri, Jose; Valotta, Marìa Fernanda

    2005-01-01

    The temporo-parieto-occipital flap, introduced in 1969, was the first large monopedicled flap performed in the scalp for reconstructive and aesthetic purposes. Its versatility for correction of many areas of the scalp relies on its wide arch of rotation, based in the flap's pedicle, which is the superficial temporal artery and vein. The axial pattern of the flap is explained by the unique kind of vascularization present in the scalp, based on a profuse intraparietal blood flow with multiple a...

  3. The submental island flap for reconstruction of facial defects.

    OpenAIRE

    Prabhune K; Patni S; Gomes D.; Bhathena H; Kavarana N

    1998-01-01

    The procedure of facial resurfacing dictates that there should be an excellent colour and texture match between the facial and the transposed skin. Cervical flaps e.g. platysma flap are commonly used for reconstruction of facial defects but, with disadvantages like limited mobility, unacceptable donor site and unpredictable outcomes. The submental island flap is a new addition to the armamentorium of the Plastic Surgeon. It is an axial pattern flap based on the submental branch of facial arte...

  4. Perforator plus flaps: Optimizing results while preserving function and esthesis

    Directory of Open Access Journals (Sweden)

    Mehrotra Sandeep

    2010-01-01

    Full Text Available Background: The tenuous blood supply of traditional flaps for wound cover combined with collateral damage by sacrifice of functional muscle, truncal vessels, or nerves has been the bane of reconstructive procedures. The concept of perforator plus flaps employs dual vascular supply to flaps. By safeguarding perforators along with supply from its base, robust flaps can be raised in diverse situations. This is achieved while limiting collateral damage and preserving nerves, vessels, and functioning muscle with better function and aesthesis. Materials and Methods: The perforator plus concept was applied in seven different clinical situations. Functional muscle and fasciocutaneous flaps were employed in five and adipofascial flaps in two cases, primarily involving lower extremity defects and back. Adipofascial perforator plus flaps were employed to provide cover for tibial fracture in one patients and chronic venous ulcer in another. Results: All flaps survived without any loss and provided long-term stable cover, both over soft tissue and bone. Functional preservation was achieved in all cases where muscle flaps were employed with no clinical evidence of loss of power. There was no sensory loss or significant oedema in or distal to the flap in both cases where neurovascular continuity was preserved during flap elevation. Fracture union and consolidation were satisfactory. One patient had minimal graft loss over fascia which required application of stored grafts with subsequent take. No patient required re-operation. Conclusions: Perforator plus concept is holistic and applicable to most flap types in varied situations. It permits the exercise of many locoregional flap options while limiting collateral functional damage. Aesthetic considerations are also addressed while raising adipofascial flaps because of no appreciable donor defects. With quick operating times and low failure risk, these flaps can be a better substitute to traditional flaps and at

  5. Material sampling for rotor evaluation

    International Nuclear Information System (INIS)

    Decisions regarding continued operation of aging rotating machinery must often be made without adequate knowledge of rotor material conditions. Physical specimens of the material are not generally available due to lack of an appropriate sampling technique or the high cost and inconvenience of obtaining such samples. This is despite the fact that examination of such samples may be critical to effectively assess the degradation of mechanical properties of the components in service or to permit detailed examination of microstructure and surface flaws. Such information permits a reduction in the uncertainty of remaining life estimates for turbine rotors to avoid unnecessarily premature and costly rotor retirement decisions. This paper describes the operation and use of a recently developed material sampling device which machines and recovers an undeformed specimen from the surface of rotor bores or other components for metallurgical analysis. The removal of the thin, wafer-like sample has a negligible effect on the structural integrity of these components, due to the geometry and smooth surface finish of the resulting shallow depression. Samples measuring approximately 0.03 to 0.1 inches (0.76 to 2.5 mm) thick by 0.5 to 1.0 inch (1.3 to 2.5 cm) in diameter can be removed without mechanical deformation or thermal degradation of the sample or the remaining component material. The device is operated remotely from a control console and can be used externally or internally on any surface for which there is at least a three inch (7.6 cm) working clearance. Application of the device in two case studies of turbine-generator evaluations are presented

  6. The fractional symmetric rigid rotor

    OpenAIRE

    Herrmann, Richard

    2006-01-01

    Based on the Riemann fractional derivative the Casimir operators and multipletts for the fractional extension of the rotation group SO(n) are calculated algebraically. The spectrum of the corresponding fractional symmetric rigid rotor is discussed. It is shown, that the rotational, vibrational and $\\gamma$-unstable limits of the standard geometric collective models are particular limits of this spectrum. A comparison with the ground state band spectra of nuclei shows an agreement with experim...

  7. Design of plywood and paper flywheel rotors

    Science.gov (United States)

    Hagen, D. L.

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Two bulb attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Plywood moisture equilibrium during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. Detailed measurements of the distribution of strengths, densities and specific energy of conventional Finnish Birch plywood and of custom made hexagonal Birch plywood are detailed. High resolution tensile tests were performed while monitoring the acoustic emissions with micoprocessor controlled data acquisition. Preliminary duration of load tests were performed on vacuum dried hexagonal birch plywood. Economics of cellulosic and conventional rotors were examined.

  8. 14 CFR 23.1511 - Flap extended speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap extended speed. 23.1511 Section 23.1511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1511 Flap extended speed. (a) The flap extended speed V FE must be established so that it...

  9. Fibula free flap splitting for mandible reconstruction: A technical note

    OpenAIRE

    López-Arcas, José María; M. Burgueño; Del Castillo, J. L.

    2009-01-01

    Conformation of the fibula flap to passively adapt to the remaining mandible may be indeed challenging. A review of the ‘axial splitting’ technique for fibula free flaps is presented with a novel method of osteosynthesis. Adequate mandibular angle shape is achieved by performing this type of osteotomy with a minimal use of titanium hardware for flap insetting.

  10. Prospective evaluation of outcome measures in free-flap surgery.

    LENUS (Irish Health Repository)

    Kelly, John L

    2004-08-01

    Free-flap failure is usually caused by venous or arterial thrombosis. In many cases, lack of experience and surgical delay also contribute to flap loss. The authors prospectively analyzed the outcome of 57 free flaps over a 28-month period (January, 1999 to April, 2001). The setting was a university hospital tertiary referral center. Anastomotic technique, ischemia time, choice of anticoagulant, and the grade of surgeon were recorded. The type of flap, medications, and co-morbidities, including preoperative radiotherapy, were also documented. Ten flaps were re-explored (17 percent). There were four cases of complete flap failure (6.7 percent) and five cases of partial failure (8.5 percent). In patients who received perioperative systemic heparin or dextran, there was no evidence of flap failure (p = .08). The mean ischemia time was similar in flaps that failed (95 +\\/- 29 min) and in those that survived (92 +\\/- 34 min). Also, the number of anastomoses performed by trainees in flaps that failed (22 percent), was similar to the number in flaps that survived (28 percent). Nine patients received preoperative radiotherapy, and there was complete flap survival in each case. This study reveals that closely supervised anastomoses performed by trainees may have a similar outcome to those performed by more senior surgeons. There was no adverse effect from radiotherapy or increased ischemia time on flap survival.

  11. Posttraumatic eyebrow reconstruction with hair-bearing temporoparietal fascia flap.

    Science.gov (United States)

    Denadai, Rafael; Raposo-Amaral, Cassio Eduardo; Marques, Frederico Figueiredo; Raposo-Amaral, Cesar Augusto

    2015-01-01

    The temporoparietal fascia flap has been extensively used in craniofacial reconstructions. However, its use for eyebrow reconstruction has been sporadically reported. We describe a successfully repaired hair-bearing temporoparietal fascia flap after traumatic avulsion of eyebrow. Temporoparietal fascia flap is a versatile tool and should be considered as a therapeutic option by all plastic surgeons.

  12. Flywheel Rotor Safe-Life Technology

    Science.gov (United States)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  13. Vibration Analysis of Hollow Tapered Shaft Rotor

    OpenAIRE

    P. M. G. Bashir Asdaque; Behera, R. K.

    2014-01-01

    Shafts or circular cross-section beams are important parts of rotating systems and their geometries play important role in rotor dynamics. Hollow tapered shaft rotors with uniform thickness and uniform bore are considered. Critical speeds or whirling frequency conditions are computed using transfer matrix method and then the results were compared using finite element method. For particular shaft lengths and rotating speeds, response of the hollow tapered shaft-rotor system is determined for t...

  14. The Dynamics of Rotor with Rubbing

    OpenAIRE

    Jerzy T. Sawicki; Joe Padovan; Rabih Al-Khatib

    1999-01-01

    This paper presents the description of some phenomena associated with dynamic behavior of rotors interacting with stationary components. Numerical simulations show rotor vibration spectrum rich in subharmonic, quasi-periodic, and chaotic vibrations. The nonlinear calculation techniques are applied to demonstrate the changes of the vibration patterns for different operating conditions. Some conclusions are discussed with regard to unique characteristics of rub-induced rotor response, initial c...

  15. Rotor fatigue monitoring data acquisition system

    Science.gov (United States)

    Smith, Scott M.

    1993-01-01

    The 40 by 80 Foot Wind Tunnel of the National Full Scale Aerodynamics Complex (NFAC) had a requirement to monitor rotor fatigue during a test. This test subjected various rotor components to stress levels higher than their structural fatigue limits. A data acquisition system was developed to monitor the cumulative fatigue damage of rotor components using National Instruments hardware and LabVIEW software. A full description of the data acquisition system including its configuration and salient features, is presented in this paper.

  16. Double papilla flap technique for dual purpose

    Directory of Open Access Journals (Sweden)

    P Mohan Kumar

    2012-01-01

    Full Text Available Marginal tissue recession exposes the anatomic root on the teeth, which gives rise to -common patient complaints. It is associated with sensitivity, tissue irritation, cervical abrasions, and esthetic concerns. Various types of soft tissue grafts may be performed when recession is deep and marginal tissue health cannot be maintained. Double papilla flap is an alternative technique to cover isolated recessions and correct gingival defects in areas of insufficient attached gingiva, not suitable for a lateral sliding flap. This technique offers the advantages of dual blood supply and denudation of interdental bone only, which is less susceptible to permanent damage after surgical exposure. It also offers the advantage of quicker healing in the donor site and reduces the risk of facial bone height loss. This case report presents the advantages of double papilla flap in enhancing esthetic and functional outcome of the patient.

  17. Numerical linearized MHD model of flapping oscillations

    Science.gov (United States)

    Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.

    2016-06-01

    Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.

  18. Scalp Free Flap Reconstruction Using Anterolateral Thigh Flap Pedicle for Interposition Artery and Vein Grafts

    OpenAIRE

    Chin Whan Kim; Sung Hee Hong; Jong Hoon Lee; Suk Chan Eun; Kyung Hee Min; Jun Hyung Park

    2012-01-01

    We experienced satisfactory outcomes by synchronously transplanting an artery and vein using an anterolateral thigh flap pedicle between the vascular pedicle and recipient vessel of a flap for scalp reconstruction. A 45-year-old man developed a subdural hemorrhage due to a fall injury. In this patient, the right temporal cranium was missing and the patient had 4×3 cm and 6×5 cm scalp defects. We planned a scalp reconstruction using a latissimus dorsi free flap. Intraoperatively, there was a s...

  19. Damping in flapping flight and its implications for manoeuvring, scaling and evolution.

    Science.gov (United States)

    Hedrick, Tyson L

    2011-12-15

    Flying animals exhibit remarkable degrees of both stability and manoeuvrability. Our understanding of these capabilities has recently been improved by the identification of a source of passive damping specific to flapping flight. Examining how this damping effect scales among different species and how it affects active manoeuvres as well as recovery from perturbations provides general insights into the flight of insects, birds and bats. These new damping models offer a means to predict manoeuvrability and stability for a wide variety of flying animals using prior reports of the morphology and flapping motions of these species. Furthermore, the presence of passive damping is likely to have facilitated the evolution of powered flight in animals by providing a stability benefit associated with flapping. PMID:22116750

  20. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  1. Unsteady Flow Variability Driven by Rotor-stator Interaction at Rotor Exit

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ben; YANG Ce; CHEN Shan; QI Mingxu; ZHOU Mi

    2012-01-01

    Numerical investigation of the unsteady flow variability driven by rotor-stator interaction in a transonic axial compressor is performed.Two models with close and far axial gap between rotor and stator rows are studied in the simulation.Particular attention is attached to the analysis of mechanisms involved in driving rotor wake oscillation,rotor wake skewing and flow angle fluctuation at rotor exit.The results show that smaller axial gap is favorable to enhance the interaction in the region between two adjacent rows,and the fluctuation of the static pressure difference between two sides of rotor wake is improved by potential field from down stator,which is the driving force for rotor wake oscillation.The interaction between rotor and stator is weakened by increasing axial distance,rotor wake shifts to suction side of rotor blade with 5%-10% of rotor pitch,the absolute value of flow angle at rotor exit is less than that in the case of close interspace for every time step,and the fluctuation amplitude is also decreased.

  2. Optimum Power Output Control of a Wind Turbine Rotor

    Directory of Open Access Journals (Sweden)

    S. Wijewardana

    2016-01-01

    Full Text Available An active and optimum controller is applied to regulate the power output from a wind turbine rotor. The controller is synthesized in two steps. The first step defines the equilibrium operation point and ensures that the desired equilibrium point is stable. The stability of the equilibrium point is guaranteed by a control law that is synthesized by applying the methodology of model predictive control (MPC. The method of controlling the turbine involves pitching the turbine blades. In the second step the blade pitch angle demand is defined. This involves minimizing the mean square error between the actual and desired power coefficient. The actual power coefficient of the wind turbine rotor is evaluated assuming that the blade is capable of stalling, using blade element momentum theory. This ensures that the power output of the rotor can be reduced to any desired value which is generally not possible unless a nonlinear stall model is introduced to evaluate the blade profile coefficients of lift and drag. The relatively simple and systematic nonlinear modelling and MPC controller synthesis approach adopted in this paper clearly highlights the main features on the controller that is capable of regulating the power output of the wind turbine rotor.

  3. Bifurcation analysis of a preloaded Jeffcott rotor

    International Nuclear Information System (INIS)

    A model of two-degrees-of-freedom Jeffcott rotor system with bearing clearance subjected of an out-of-balance excitation is considered. The influence of preloading and viscous damping of the snubber ring is introduced in the mathematical description. A programme of numerical simulations is conducted to show how the preloading and viscous damping change the dynamics of the rotor system. Bifurcation diagrams and Lyapunov exponents are constructed to explore stability. It is shown that dynamics of the rotor system can be effectively controlled by varying the preloading and the damping both of the rotor and the snubber ring. In the most considered cases preloading stabilises the dynamic responses

  4. Bifurcation analysis of a preloaded Jeffcott rotor

    Energy Technology Data Exchange (ETDEWEB)

    Karpenko, Evgueni V.; Pavlovskaia, Ekaterina E.; Wiercigroch, Marian E-mail: m.wiercigroch@eng.abdn.ac.uk

    2003-01-01

    A model of two-degrees-of-freedom Jeffcott rotor system with bearing clearance subjected of an out-of-balance excitation is considered. The influence of preloading and viscous damping of the snubber ring is introduced in the mathematical description. A programme of numerical simulations is conducted to show how the preloading and viscous damping change the dynamics of the rotor system. Bifurcation diagrams and Lyapunov exponents are constructed to explore stability. It is shown that dynamics of the rotor system can be effectively controlled by varying the preloading and the damping both of the rotor and the snubber ring. In the most considered cases preloading stabilises the dynamic responses.

  5. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.

    2015-04-01

    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  6. The transversely split gracilis twin free flaps

    Directory of Open Access Journals (Sweden)

    Upadhyaya Divya

    2010-01-01

    Full Text Available The gracilis muscle is a Class II muscle that is often used in free tissue transfer. The muscle has multiple secondary pedicles, of which the first one is the most consistent in terms of position and calibre. Each pedicle can support a segment of the muscle thus yielding multiple small flaps from a single, long muscle. Although it has often been split longitudinally along the fascicles of its nerve for functional transfer, it has rarely been split transversely to yield multiple muscle flaps that can be used to cover multiple wounds in one patient without subjecting him/her to the morbidity of multiple donor areas .

  7. Elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Werner, U. [Siemens AG, Nuernberg (Germany). Industry, Drive Technologies, Large Drives, Products R and D

    2011-12-15

    The paper presents an elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors supported in sleeve bearings, considering mechanical unbalances and electromagnetic forces. This model has been especially developed for flexible electrical rotors, which operate near below or near above the first critical bending speed of the rotor. Using this simplified model, a static rotor active part eccentricity can be simulated and the orbital movement of the rotor can be calculated. Additionally, the influence of different balancing concepts - elastic balancing versus rigid balancing - on the shaft vibrations is analyzed. To verify the model, a finite element analysis was performed, which indicates a satisfactory match. On the one hand, the aim of the paper is to derive an elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors for special boundary conditions. On the other hand, the aim is to show the mathematical coherences - based on a simplified model - between the rotordynamics, the oil film characteristics of the sleeve bearings, the elasticity of the rotor structure, the electromagnetics and the balancing concept. (orig.)

  8. Aerodynamic and acoustic integral characteristics of porous rotors

    OpenAIRE

    Benedik, Gašper; Eberlinc, Matjaž; Hočevar, Marko; Širok, Brane

    2015-01-01

    This paper describes porous rotors manufactured from open cell aluminium foam. Rotor construction and theoretical description of fluid flow through rotating porous material are presented. Nine porous rotors made of materials with three different average pore sizes, with or without inducer, three rotor heights and two inlet diameters were selected and compared to a classical rotor with blades. Measurements involved two parts, measurement of pressure drop on non-rotating rotors while integral f...

  9. Orienting coupled quantum rotors by ultrashort laser pulses

    OpenAIRE

    Shima, Hiroyuki; Nakayama, Tsuneyoshi

    2004-01-01

    We point out that the non-adiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most efficiently enhances the orientation of quantum paired rotors.

  10. Orienting coupled quantum rotors by ultrashort laser pulses

    OpenAIRE

    Shima, Hiroyuki; Nakayama, Tsuneyoshi

    2004-01-01

    We pointed out that the nonadiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most efficiently enhance the orientation of quantum paired rotors.

  11. Darmstadt Rotor No. 2, II: Design of Leaning Rotor Blades

    OpenAIRE

    Bergner J.; Hennecke K. D.; Hoeger M.; Engel K.

    2003-01-01

    For Darmstadt University of Technology's axial singlestage transonic compressor rig, a new three-dimensional aft-swept rotor was designed and manufactured at MTU Aero Engines in Munich, Germany. The application of carbon fiber–reinforced plastic made it possible to overcome structural constraints and therefore to further increase the amount of lean and sweep of the blade. The aim of the design was to improve the mechanical stability at operation that is close to stall.To avoid the hazard of r...

  12. [The gracilis muscle as musculocutaneous flap. Evaluation of 20 cases].

    Science.gov (United States)

    Gholam, D; Trevidic, P; Kleimann, P; Hautefeuille, P; Nicoletis, C

    1991-01-01

    The use of gracilis as muscular or myocutaneous flap is very well-known. The authors report 20 cases of gracilis flap including 13 reconstructions of the vaginal cavity following extended abdomino-perineal resection. Some technical points concerning the localization of the cutaneous part of the flap and the pedicle dissection are discussed. The use of gracilis flap is still limited in surgical teams following extended abdomino-perineal resection, nevertheless it is a very useful flap because of its low morbidity, the shortening of patient hospitalization and the very satisfying aesthetic result of the neo-vaginal cavity. PMID:1726389

  13. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.;

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K....... However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all...... measured neutron data and reveal that thermally activated spin canting gives rise to an unusual type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The...

  14. Recent developments in the dynamics of advanced rotor systems

    Science.gov (United States)

    Johnson, W.

    1985-01-01

    The problems that were encountered in the dynamics of advanced rotor systems are described. The methods for analyzing these problems are discussed, as are past solutions of the problems. To begin, the basic dynamic problems of rotors are discussed: aeroelastic stability, rotor and airframe loads, and aircraft vibration. Next, advanced topics that are the subject of current research are described: vibration control, dynamic upflow, finite element analyses, and composite materials. Finally, the dynamics of various rotorcraft configurations are considered: hingeless rotors, bearingless rotors, rotors with circulation control, coupled rotor/engine dynamics, articulated rotors, and tilting proprotor aircraft.

  15. The study of expanded tri-lobed flap in a rabbit model: possible flap model in ear reconstruction?

    Directory of Open Access Journals (Sweden)

    Yüreklý Yakup

    2003-12-01

    Full Text Available Abstract Background Local flaps are widely used in reconstructive surgery. Tri-lobed skin flap is a relatively new flap and there has been no experimental model of this flap. This flap can be used for repair of full thickness defects in the face, ears and alar region. Based on the size of ears in a rabbit, we designed a model of ear reconstruction using expanded tri-lobed flap. Local flaps are more advantageous in that they provide excellent color and texture matching up with those of the face, adequately restore ear contour, place scars in a favorable location and ideally accomplish these goals in a single stage with minimal donor site morbidity. Methods Eight adult New Zealand rabbits were divided into two groups. 50 ml round tissue expander were implanted to four rabbits. After completion of the expansion, a superiorly based tri-lobed flap was elevated and a new ear was created from the superior dorsal skin of each rabbit. Scintigraphy with Technetium-99m pertecnetate was performed to evaluate flap viability. Results Subtotal flap necrosis was seen in all animals in non-expanded group. New ear in dimensions of the original ear was created in expanded group without complication. Perfusion and viability of the flaps were proved by Technetium-99m pertecnetate scintigraphy. Conclusion According to our knowledge this study is the first to demonstrate animal model in tri-lobed flap. Also, our technique is the first application of the trilobed flap to the possible ear reconstruction. We speculated that this flap may be used mastoid based without hair, in human. Also, tri-lobed flap may be an alternative in reconstruction of cylindrical organs such as penis or finger.

  16. Propeller thoracodorsal artery perforator flap for breast reconstruction

    Science.gov (United States)

    Angrigiani, Claudio; Escudero, Ezequiel; Artero, Guillermo; Gercovich, Gustavo; Deza, Ernesto Gil

    2014-01-01

    Background The thoracodorsal artery perforator (TDAP) flap has been described for breast reconstruction. This flap requires intramuscular dissection of the pedicle. A modification of the conventional TDAP surgical technique for breast reconstruction is described, utilizing instead a propeller TDAP flap. The authors present their clinical experience with the propeller TDAP flap in breast reconstruction alone or in combination with expanders or permanent implants. Methods From January 2009 to February 2013, sixteen patients had breast reconstruction utilizing a propeller TDAP flap. Retrospective analysis of patient characteristics, clinical indications, procedure and outcomes were performed. The follow-up period ranged from 4 to 48 months. Results Sixteen patients had breast reconstruction using a TDAP flap with or without simultaneous insertion of an expander or implant. All flaps survived, while two cases required minimal resection due to distal flap necrosis, healing by second intention. There were not donor-site seromas, while minimal wound dehiscence was detected in two cases. Conclusions The propeller TDAP flap appears to be safe and effective for breast reconstruction, resulting in minimal donor site morbidity. The use of this propeller flap emerges as a true alternative to the traditional TDAP flap. PMID:25207210

  17. Breast reconstruction by pedicled transverse rectus abdominis myocutaneous flap

    Directory of Open Access Journals (Sweden)

    Kozarski Jefta

    2004-01-01

    Full Text Available Reconstruction of the amputated breast in female patients after surgical management of breast carcinoma is possible with the use of autologous tissue, synthetic implants, or by combining autologous tissue and synthetic materials. Autologous tissue provides soft and sufficiently elastic tissue which is usable for breast reconstruction and eventually obtains original characteristics of the surrounding tissue on the chest wall. The use of the TRAM flap for breast reconstruction was introduced in 1982 by Hartrampf Scheflan, and Black. The amount of the TRAM flap tissue allows breast reconstruction in the shape most adequate to the remaining breast. The possibilities of using the TRAM flap as pedicled myocutaneous flap or as free TRAM flap make this flap a superior choice for breast reconstruction in comparison with other flaps.

  18. NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration

    Science.gov (United States)

    Erickson, R. E.; Kufeld, R. M.; Cross, J. L.; Hodge, R. W.; Ericson, W. F.; Carter, R. D. G.

    1984-01-01

    The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg.

  19. Results of instrumental and operative implementation of T-Flap

    Science.gov (United States)

    Marcelli, M.; Madonia, A.; Piermattei, V.; Mainardi, U.

    2012-04-01

    The development of new technologies for the study of the ocean processes is one of the most innovative aspects of oceanographic research that increasingly requires a large amount of data for an integrated approach to in situ observations, forecasting models and remotely sensed data. At now the marine measurement technologies are too expensive for an extensive utilization. The T-Flap technology (Temperature-Fluorescence LAunchable Probe) meets these needs by providing low cost and user-friendly in situ measuring of physical and bio-optical variables of water bodies, as opposed to traditional methods. Many experimental laboratory tests were carried out in order to increase the instrumental sensitivity of the fluorimetric sensor for the detection of chlorophyll a concentration. To test the selected components (LEDs, diodes, filters) and their new configurations, an optical circuit has been realized consisting on three prototypes of the measuring cell. Fluorescence excitation and detection efficiency of the new electro-optical assemblages were also tested by the comparison between the voltage output signals and spectroscopic in vivo fluorescence measures both of natural seawater samples and marine cultures at different concentrations. The upgraded sensors were tested during different oceanographic surveys performed in the last years both in the Tyrrhenian Sea and Adriatic Sea. The technological achievements were applied in different operative conditions: profiler along the water column (not expendable) and stand alone (in continuous surface acquisitions along tracks, in continuous acquisition on a buoy). In this work we present the results of the latest research activities on T-Flap evolution. In addition preliminary results about new sensors currently under development are shown, such as CDOM (Cromophoric Dissolved Organic Matter) fluorimetric sensor, based on T-Flap fluorescence technology, and conductivity sensor.

  20. Surgical procedure of Free Flap. Main nursing care

    Directory of Open Access Journals (Sweden)

    Manuel Molina López

    2010-05-01

    Full Text Available The free flap surgical technique is used to cover extensive skin loss areas and situations where no flap is available, or in axial zones. The great breackthrough in the field of reconstructive surgical techniques and the creation of new units where these complex techniques are used, means that the nursing staff who work in these hospital units are adquiring greater protagonism in caring for, and the subsequent success of this type of surgery in which the problems of collaboration in all the perioperative phases depend entirely on the nursing team.The collaborative nursing problems could be defined as real or potential health problems, where users need nursing staff to follow the treatment and control procedures prescribed by other professional, generally doctors, who control and are responsible for the final outcome.While planning collaborative objectives and activities it should be taken into account that the function of the nursing staff is twofold: on the one hand, the patient must be taken care of as prescribed by other professionals and, on the other hand, it should bring into play cognitive elements (knowledge and know-how and clinical judgment when executing these in controlling the patients evolution.In this article our intention is to give an interesting and comprehensive description of the free flap surgical technique, its pros and cons, and identify the principal collaborative problems which nursing will have to deal with in each one of the perioperative phases, the number and specific nature of such oblige nursing on many occasions, to update and/or acquire new skills.

  1. BATMAV: a 2-DOF bio-inspired flapping flight platform

    Science.gov (United States)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  2. Spectral analysis of blood perfusion in the free latissimus dorsi myocutaneous flap and in normal skin

    International Nuclear Information System (INIS)

    To find the properties in the oscillatory components of the cutaneous blood flow on the successful free flap, a wavelet transform was applied to the laser Doppler flowmetry (LDF) signals which were measured simultaneously on the surfaces of the free latissimus dorsi myocutaneous flap and on the adjacent intact skin of the healthy limb, of 18 patients. The frequency interval from 0.0095 to 1.6 Hz was examined and was divided into five subintervals (I: 0.0095-0.021 Hz; II: 0.021-0.052 Hz; III: 0.052-0.145 Hz; IV: 0.145-0.6 Hz and V: 0.6-1.6 Hz) corresponding to endothelial metabolic, neurogenic, myogenic, respiratory and cardiac origins. The average amplitude and total power in the frequency range 0.0095-1.6 Hz as well as within subintervals I, II, IV and V were significantly lower for signals measured on the free flap than those obtained in the healthy limb. However in interval III, they were significantly higher. The normalized spectral amplitude and power in the free flap were significantly lower in only two intervals, I and II, yet in interval III they were significantly higher; no statistical significance was observed in intervals IV and V. The distinctive finding made in this study, aside from the decrease of endothelial metabolic processes and sympathetic control, was the significant increase of myogenic activity in the free flap. It is hoped that this work will contribute towards knowledge on blood circulation in free flaps and make the monitoring by LDF more reliable

  3. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  4. Nonlinear Analysis Of Rotor Dynamics

    Science.gov (United States)

    Day, William B.; Zalik, Richard

    1988-01-01

    Study explores analytical consequences of nonlinear Jeffcott equations of rotor dynamics. Section 1: Summary of previous studies. Section 2: Jeffcott Equations. Section 3: Proves two theorems that provide inequalities on coefficients of differential equations and magnitude of forcing function in absence of side force. Section 4: Numerical investigation of multiple-forcing-function problem by introducing both side force and mass imbalance. Section 5: Examples of numberical solutions of complex generalized Jeffcott equation with two forcing functions of different frequencies f1 and f2. Section 6: Boundedness and stability of solutions.Section 7: Concludes report reviewing analytical results and significance.

  5. Clinical application of free omental flap transfer

    Energy Technology Data Exchange (ETDEWEB)

    Harii, K.

    1978-04-01

    In the field of reconstruction surgery, the greater omentum has been used as a transposed flap for the treatment of chronic lymphedema, radionecrosis, and so forth. Its transferable range was limited by the length of its pedicle. Microvascular anastomosis allows for free transplantation of this organ and has vastly expanded its usefulness.

  6. Neural Anatomy of the Anterolateral Thigh Flap.

    Science.gov (United States)

    Luenam, Suriya; Prugsawan, Krit; Kosiyatrakul, Arkaphat; Chotanaphuti, Thanainit; Sriya, Piyanee

    2015-06-01

    The anterolateral thigh (ALT) flap is one of the commonly used sensate flaps for intra-oral, hand, and foot reconstruction. The objective of this study was to describe the anatomic location of the sensory nerves supplying the ALT flap in relation to the surface landmarks and with the vascular pedicles. The dissections were carried out in 28 embalmed specimens. An axial line from the anterior superior iliac spine to the superolateral border of the patella and two circles with radii of 5 and 10 cm centered on the midpoint of the former line were used for the surface landmarks. At the intersection point of the axial line and the 10-cm circle, the main lateral femoral cutaneous nerve (LFCN) and its anterior branch were located within 1 and 2.4 cm, respectively. At the intersection point of the axial line and the 5-cm circle, the anterior branch of the LFCN was located within 2.8 cm. The anterior branch of the LFCN can be detected within 3 cm from the central perforator pedicle in all specimens. The posterior branch of the LFCN, superior perforator nerve, and median perforator nerve were found in more variable locations. The findings from our study provide additional information for clinical use in the planning of sensate ALT flap harvest. PMID:26078503

  7. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  8. Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism.

    Science.gov (United States)

    Meher, Biswa Ranjan; Wang, Yixuan

    2012-09-01

    Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50V(PR), V82A(PR) and I84V(PR)) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-atom MD simulations for the complexes. The conformational dynamics of HIV-PR with a 20 ns trajectory reveals that the SWCNT can effectively bind to the HIV-1-PR active site and regulate the flap dynamics such as maintaining the flap-flap closed. To gain an insight into the binding affinity, we also performed the MM-PBSA based binding free energy calculations for the four HIV-PR/SWCNT complexes. It was observed that, although the binding between the SWCNT and the HIV-PR decreases due to the mutations, the SWCNTs bind to the HIV-PRs 3-5 folds stronger than the most potent HIV-1-PR inhibitor, TMC114. Remarkably, the significant interactions with binding energy higher than 1kcal/mol focus on the flap and active regions, which favors closing flap-flap and deactivating the active residues of the HIV-PR. The flap dynamics and binding strength information for HIV-PR and SWCNTs can help design SWCNT-based HIV-1-PR inhibitors. PMID:23142620

  9. Assessing safety of negative-pressure wound therapy over pedicled muscle flaps: A retrospective review of gastrocnemius muscle flap.

    Science.gov (United States)

    Lance, Samuel; Harrison, Lindsey; Orbay, Hakan; Boudreault, David; Pereira, Gavin; Sahar, David

    2016-04-01

    The use of negative-pressure wound therapy (NPWT) for management of open wounds and immobilization of split-thickness skin grafts (STSGs) over wounds has been well described. However, there is a concern for potential compromise of flap viability when NPWT is used for skin grafts over pedicled muscle flaps. We have used NPWT to immobilize STSGs in eight patients who underwent a pedicled gastrocnemius muscle flap operation in our department. We applied a negative pressure of -75 mmHg on the muscle flaps for 5 days postoperatively. All wounds healed successfully, with a 97.5 ± 5.5% mean STSG uptake. No flap necrosis was observed. In our series, the use of NPWT for fixation of STSGs over pedicled gastrocnemius muscle flap was effective and had no negative impact on flap viability. PMID:26732293

  10. Computational Analysis of Multi-Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  11. Open Rotor - Analysis of Diagnostic Data

    Science.gov (United States)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  12. Dynamics and stability of turbocharger rotors

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Bernhard [University of Kassel (Germany). Department of Mechanical Engineering, Multibody Systems

    2010-09-15

    The paper discusses the bifurcation and stability behavior of (automotive) turbochargers with full-floating ring bearings. Turbocharger rotors exhibit a highly nonlinear behavior due to the nonlinearities introduced by the floating ring bearings. A flexible multibody model of the rotor/bearing system is presented. Numerical run-up simulations are compared with corresponding test rig measurements. The nonlinear oscillation effects are thoroughly investigated by means of simulated and measured rotor vibrations. The influence of various system parameters on the bifurcation behavior of the rotor/bearing system is analyzed. The article examines rotors supported in full-floating ring bearings with plain circular bearing geometry in the inner and outer oil gap. By recapitulating the well-known oil whirl and oil whip phenomena for single and double oil film bearings, the paper gives an overview on the fundamental dynamic effects occurring in turbocharger systems. (orig.)

  13. Substantially parallel flux uncluttered rotor machines

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  14. Advanced disk-type LP turbine rotors

    International Nuclear Information System (INIS)

    This paper addresses the application of these design considerations. After twenty years experience with disk-type rotors, the Siemens/KWU ten-disk rotor for low-speed nuclear LP turbines was developed in 1969. Full volumetric disk hub inspections after 83,000 service hours did not reveal any stress corrosion cracking. In the meantime, this rotor design has been further improved. In 1987, two advanced eight-disk rotors went into operation at the Connecticut Yankee station. This rotor design together with the advanced LP turbine blading has been delivered to the Unterweser station. First test results indicated a remarkably improved thermodynamic performance. Avoidance of stress corrosion cracking can be accomplished by a combination of various measures: Proper keyway design; Low metal temperature; Low tensile stressing (by design); Low yield strength; High fracture toughness; Low surface stresses (by manufacturing); Proper steam/water cycle chemistry

  15. STUDY ON CATASTROPHIC MECHANISM FOR ROTOR DROP TRANSIENT VIBRATION FOLLOWING MAGNETIC BEARING FAILURE

    Institute of Scientific and Technical Information of China (English)

    方之楚

    2002-01-01

    The nonlinear and transient vibration of a rotor, which dropped onto back-up bearings when its active magnetic bearings were out of order, was investigated. After strictly deriving its equations of motion and performing numerical simulations, the timehistories of rotating speed of the dropping rotor, and normal force at the rubbing contact point as well as the frequency spectrum of the vibration displacement of back-up bearings are fully analyzed. It is found that the strong and unsteady forced bending vibration of the unbalanced and damped rotor decelerating through its first bending vibtation of the unbalanced and damped rotor decelerating through its first critical speed as well as chattering at high frequencies caused by the nonlinearity at the rubbing contact point between the journal and back-up bearings may lead to the catastrophic damage of the system.

  16. 磁悬浮轴承-转子系统非线性行为的控制%Control of Nonlinear Behaviors of an Active Magnetic Bearing - Rotor System

    Institute of Scientific and Technical Information of China (English)

    孙保苍; 梁荣生; 陈威

    2011-01-01

    利用状态反馈法,对磁悬浮轴承-转子系统的振动进行控制.通过理论推导,证明在原点附近,可近似地将受控系统分解为两个渐近稳定的子系统之和.借助数值仿真对转子受控前后的运动响应进行分析,以验证该控制方案的有效性.通过比较发现,提出的状态反馈控制方案不但能控制转子的周期运动,而且对该系统的概周期运动和混沌运动也能进行有效控制.%In this paper, the nonlinear dynamical behaviors of an active magnetic beating-rotor system are investigated.In order to control the vibration of the system, a state feedback method is adopted.It is theoretically proved that the controlled system can be approximately divided into two asymptotically stable subsystems near the origin.Based on this conclusion, kinematic responses to both controlled and uncontrolled systems are analyzed by numerical simulations to verify the validity of the control scheme.Mutual comparison of the results of both systems reveals that the state feedback control scheme presented here can effectively control not only periodic vibrations, but also quasi-periodic and chaotic vibrations.

  17. A soft rotor concept - design, verification and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, F.; Thirstrup Petersen, J. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)

  18. Robot-Assisted Free Flap in Head and Neck Reconstruction

    Directory of Open Access Journals (Sweden)

    Han Gyeol Song

    2013-07-01

    Full Text Available Background  Robots have allowed head and neck surgeons to extirpate oropharyngealtumors safely without the need for lip-split incision or mandibulotomy. Using robots inoropharyngealreconstruction is newbut essentialfor oropharyngeal defectsthatresultfromrobotic tumor excision. We report our experience with robotic free-flap reconstruction ofhead and neck defectsto exemplify the necessity forrobotic reconstruction.Methods  We investigated head and neck cancer patients who underwent ablation surgeryand free-flap reconstruction by robot. Between July 1, 2011 andMarch 31, 2012, 5 caseswereperformed and patient demographics, location of tumor, pathologic stage, reconstructionmethods, flap size, recipient vessel, necessary pedicle length, and operation time wereinvestigated.Results  Among five free-flap reconstructions, four were radial forearm free flaps and onewas an anterolateral thigh free-flap. Four flaps used the superior thyroid artery and oneflap used a facial artery as the recipient vessel. The average pedicle length was 8.8 cm. Flapinsetting and microanastomosis were achieved using a specially manufactured roboticinstrument. The total operation timewas 1,041.0 minutes(range, 814 to 1,132 minutes, andcomplicationsincluding flap necrosis, hematoma, andwound dehiscence did not occur.Conclusions  Thisstudy demonstratesthe clinically applicable use ofrobotsin oropharyngealreconstruction, especially using a free flap. A robot can assist the operator in insettingthe flap at a deep portion of the oropharynx without the need to perform a traditionalmandibulotomy. Robot-assisted reconstruction may substitute for existing surgical methodsand is accepted asthemost up-to-datemethod.

  19. Pedicle versus free flap reconstruction in patients receiving intraoperative brachytherapy.

    Science.gov (United States)

    Geiger, Erik J; Basques, Bryce A; Chang, Christopher C; Son, Yung; Sasaki, Clarence T; McGregor, Andrew; Ariyan, Stephan; Narayan, Deepak

    2016-08-01

    Introduction This study compared complication rates between pedicle flaps and free flaps used for resurfacing of intraoperative brachytherapy (IOBT) implants placed following head and neck tumour extirpation to help clarify the ideal reconstructive procedure for this scenario. Patients and methods A retrospective review of reconstructions with IOBT at our institution was conducted. Patient and treatment details were recorded, as were the number and type of flap complications, including re-operations. Logistic regressions compared complications between flap groups. Results Fifty free flaps and 55 pedicle flaps were included. On multivariate analysis, free flap reconstruction with IOBT was significantly associated with both an increased risk of having any flap complication (OR = 2.9, p = 0.037) and with need for operative revision (OR = 3.5, p = 0.048) compared to pedicle flap reconstruction. Conclusions In the setting of IOBT, free flaps are associated with an increased risk of having complications and requiring operative revisions. PMID:26983038

  20. Effect of flapping trajectories on the dragonfly aerodynamics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of translational, figure-eight and double-figure-eight flapping trajectories on the dragonfly aerodynamics were numerically studied by solving the Navier-Stokes equations. There is a common characteristic regarding the lift/drag force coefficients that the downstroke flapping provides the lift forces while the upstroke flapping creates the thrust forces for different flapping trajectories. The maximum lift force coefficient exceeds five for the translational trajectory. It is greater than six for the figure-eight and double-figure-eight flapping trajectories, which is sufficiently larger than unity under the steady state flight condition. The ellipse and double-figure-eight flapping trajectories yield the decrease of the lift force, while the figure-eight flapping trajectory yields higher lift force as well as the thrust force than the translational flapping one. During the insect flight, the wing flapping status should be changed instantaneously to satisfy various requirements. Study of the flapping trajectories on the insect aerodynamics is helpful for the design of the Micro-air-vehicles (MAVs).

  1. STUDY OF VARIOUS MODIFICATIONS OF REVERSE SURAL ARTERY FLAP

    Directory of Open Access Journals (Sweden)

    Jainath

    2013-10-01

    Full Text Available A BS T R ACT : Soft tissue reconstruction of distal third leg, heel and ankle reg ion is a challenging problem because of poor vascularity and limited mobility of skin. The reverse sural artery with ideal flap thickness, minimal donor site morbidity, lack of functional muscle loss, short recovery time, wide arc of rotation and safe vasc ularity makes it a preferable flap for covering such defects. AIMS A N D OBJECTIVES : To study various modifications of distally based reverse sural artery flap to suit the defects and for better survival of flaps. RESULTS : It is a retrospective study conduct ed in our institute to cover the distal leg and foot defects.60 cases of distal leg defects exposing vital structure who underwent reverse sural artery flap coverage were included in the study .5 of the 60 flaps had complete flap necrosis and another11 fla ps had partial necrosis.73.4% of the flaps survived during the follow up period of 1 years with good functional outcome. CONCLUSIONS : Reverse sural artery flap with its modifications is a good flap for the defects of distal leg, heel and ankle defects

  2. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1996-01-01

    with the results of the classical approach using Rayleighquotients. Several rotor systems are tested: a simple Laval rotor, a Laval rotor with additional elasticity and damping in thr bearings, and a number of rotor systems with complex symmetric 4x4 randomly generated matrices....

  3. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  4. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  5. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  6. 14 CFR 27.661 - Rotor blade clearance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  7. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 29.411... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  8. 14 CFR 29.547 - Main and tail rotor structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main and tail rotor structure. 29.547... Requirements § 29.547 Main and tail rotor structure. (a) A rotor is an assembly of rotating components, which includes the rotor hub, blades, blade dampers, the pitch control mechanisms, and all other parts...

  9. 14 CFR 29.661 - Rotor blade clearance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  10. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 27.411... System Loads § 27.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  11. 14 CFR 27.547 - Main rotor structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following...

  12. Helicopter Rotor Sailing by Non-Smooth Dynamics Co-Simulation

    Directory of Open Access Journals (Sweden)

    Fancello Matteo

    2014-08-01

    Full Text Available This paper presents the application of a co-simulation approach for the simulation of frictional contact in general-purpose multibody dynamics to a rotorcraft dynamics problem. The proposed approach is based on the co-simulation of a main problem, which is described and solved as a set of differential algebraic equations, with a subproblem that is characterized by nonsmooth dynamics events and solved using a timestepping technique. The implementation and validation of the formulation is presented. The method is applied to the analysis of the droop and anti-flap contacts of helicopter rotor blades. Simulations focusing on the problem of blade sailing are conducted to understand the behavior and assess the validity of the method. For this purpose, the results obtained using a contact model based on Hertzian reaction forces at the interface are compared with those of the proposed approach.

  13. Temporal-based pericranial flaps for orbitofrontal Dural repair: A technical note and Review of the literature

    Directory of Open Access Journals (Sweden)

    Esther Dupépé

    2016-03-01

    Conclusions: A temporal-based pericranial flap represents an alternative vascularized pedicle flap to the classic frontal-based pericranial flap used in orbitofrontal dural repair. In certain clinical settings, the temporal-based flap may be preferable.

  14. Quasi-static rotor morphing concepts for rotorcraft performance improvements

    Science.gov (United States)

    Mistry, Mihir

    The current research is focused on two separate quasi-static rotor morphing concepts: Variable span and variable camber. Both concepts were analyzed from the perspective of the performance improvements they allow for, as well as their design requirements. The goal of this body of work is to develop a comprehensive understanding of the benefits and implementation challenges of both systems. For the case of the variable span rotor concept, the effects on aircraft performance were evaluated for a UH-60A type aircraft. The parametric analysis included the performance effects of the rotor span and rotor speed variation, both individually as well as in combination. The design space considered the effect of three different gross weights (16000 lbs, 18300 lbs and 24000 lbs), for a window of +/-11% variation of the rotor speed and a range between +17% to --16% of radius variation (about the baseline) for a range of altitudes. The results of the analysis showed that variable span rotors by themselves are capable of reducing the power requirement of the helicopter by up to 20% for high altitude and gross weight conditions. However, when combined with rotor speed variation, it was possible to reduce the overall power required by the aircraft by up to 30%. Complimentary to the performance analysis, an analytical study of actuation concepts for a variable span rotor was also conducted. This study considered the design of two active actuation systems: Hydraulic pistons and threaded rods (jackscrews), and two passive systems which employed the use of an internal spring type restraining device. For all the configurations considered, it was determined that the design requirements could not be satisfied when considering the constraints defined. The performance improvements due to a variable camber system were evaluated for a BO-105 type rotor in hover. The design space considered included three different thrust levels (4800 lbs, 5500 lbs and 6400 lbs) for a range of altitudes and

  15. Rotor-Flying Manipulator: Modeling, Analysis, and Control

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2014-01-01

    Full Text Available Equipping multijoint manipulators on a mobile robot is a typical redesign scheme to make the latter be able to actively influence the surroundings and has been extensively used for many ground robots, underwater robots, and space robotic systems. However, the rotor-flying robot (RFR is difficult to be made such redesign. This is mainly because the motion of the manipulator will bring heavy coupling between itself and the RFR system, which makes the system model highly complicated and the controller design difficult. Thus, in this paper, the modeling, analysis, and control of the combined system, called rotor-flying multijoint manipulator (RF-MJM, are conducted. Firstly, the detailed dynamics model is constructed and analyzed. Subsequently, a full-state feedback linear quadratic regulator (LQR controller is designed through obtaining linearized model near steady state. Finally, simulations are conducted and the results are analyzed to show the basic control performance.

  16. Incidence of flap procedures in the management of burn patients.

    Science.gov (United States)

    Lineaweaver, William C; Craft-Coffman, Beretta; Oswald, Tanya M

    2015-03-01

    Increased survival of burn patients presents opportunities for reconstructive strategies to improve outcomes in management of acute and secondary burn injuries. To assess one such strategy, namely flap reconstruction, we reviewed cases performed during the first 4.5 years of the JMS Burn and Reconstruction Center. We found that flap procedures accounted for 0.8% of acute cases (23 of 2723 procedures) and 33% of secondary cases (260 of 790 procedures). This initial finding shows that in this practice flap procedures are applied to a small number of acute problems while flap procedures comprise 33% of secondary procedures. Reconstructive flap surgery plays a measurable role in burn treatment at this center. Further study of outcomes and timing could lead to better understanding of optimal strategies for flap reconstruction in burns.

  17. Application of Out-of-Plane Warping to Control Rotor Blade Twist

    Science.gov (United States)

    VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh

    2012-01-01

    The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.

  18. Study on wave rotor refrigerators

    Institute of Scientific and Technical Information of China (English)

    Yuqiang DAI; Dapeng HU; Meixia DING

    2009-01-01

    As a novel generation of a rotational gas wave machine, the wave rotor refrigerator (WRR) is an unsteady flow device used for refrigeration, in whose passages pressured streams directly contact and exchange energy due to the movement of pressure waves. In this paper, the working mechanism and refrigeration principle are inves-tigated based on the one-dimensional unsteady flow theory.A basic limitation on main structural parameters and operating parameters is deduced and the wave diagram of WRR to guide designing is sketched. The main influential factors are studied through an experiment. In the DUT Gas Wave Refrigeration Studying and Development Center (GWRSDC) lab, the isentropic efficiency can now reach about 65%. The results show that the WRR is a feasible and promising technology in pressured gas refrigeration cases.

  19. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  20. A Method to Transit the Rotor-to-Stator Rubbing to Normal Motion Using the Phase Characteristic

    Directory of Open Access Journals (Sweden)

    Jieqiong Xu

    2014-01-01

    Full Text Available A method is proposed to transit the rotor-to-stator rubbing to no-rub motion through active auxiliary bearing. The key point of this technique is to express the attractive domain of no-rub motion based on the phase characteristic and to represent the desired status. The feedback actuation is applied by an active auxiliary bearing to drive the rotor approaching the desired status. After that, the control actuation is turned off. Although the desired status is still in rubbing, it is in the attractive domain of no-rub motion, and the response of the rotor is automatically attracted to no-rub motion.

  1. Pumping by flapping in a viscoelastic fluid

    CERN Document Server

    Pak, On Shun

    2010-01-01

    In a world without inertia, Purcell's scallop theorem states that in a Newtonian fluid a time-reversible motion cannot produce any net force or net flow. Here we consider the extent to which the nonlinear rheological behavior of viscoelastic fluids can be exploited to break the constraints of the scallop theorem in the context of fluid pumping. By building on previous work focusing on force generation, we consider a simple, biologically-inspired geometrical example of a flapper in a polymeric (Oldroyd-B) fluid, and calculate asymptotically the time-average net fluid flow produced by the reciprocal flapping motion. The net flow occurs at fourth order in the flapping amplitude, and suggests the possibility of transporting polymeric fluids using reciprocal motion in simple geometries even in the absence of inertia. The induced flow field and pumping performance are characterized and optimized analytically. Our results may be useful in the design of micro-pumps handling complex fluids.

  2. CATERPILLAR ADVANCEMENT FOR PARTIALLY NECROSED DELTOPECTORAL FLAP

    Directory of Open Access Journals (Sweden)

    Anand Narayan

    2015-04-01

    Full Text Available Development of electric lamp by Thomas Elva Edison had significant impact on human civilization. With increasing production of electrical energy to meet ongoing demands of increased frequency of electrical injuries. Despite increased awareness of potential dangers, elect ricity is responsible for many fatalities all over the world. Electrical burn accounts for ~3% of all burn related injuries. Estimated 3, 000 annual admittions to burn units. Electrical burn have bimodal distribution ~1/3 children <6 yrs ( E lectric cords & wall outlets ~2/3 miners, construction, & electrical workers. Our case is one that of a 12 year old male child having electrical injury over face and neck with exposed angle of mandible which was covered by Deltopectoral flap with caterpillar advancement of flap.

  3. Dynamics of Flapping Flag in Axial Flow

    Science.gov (United States)

    Abderrahmane, Hamid Ait; Fayed, Mohamed; Gunter, Amy-Lee; Paidoussis, Michael P.; Ng, Hoi Dick

    2010-11-01

    We investigate experimentally the phenomenon of the flapping of a flag, placed within a low turbulent axial flow inside a small scale wind tunnel test section. Flags of different sizes and flexural rigidities were used. Image processing technique was used and the time series of a given point on the edge of the flag was analyzed. The stability condition of the flag was obtained and compared to the recent theoretical models and numerical simulations. Afterwards, the nonlinear dynamics of the flapping was investigated using nonlinear time series method. The nonlinear dynamics is depicted in phase space and the correlation dimension of the attractors is determined. On the basis of observations made in this study, some conclusions on the existing models were drawn.

  4. Flight test pilot evaluation of a delayed flap approach procedure

    Science.gov (United States)

    Bull, J. S.; Edwards, F. G.; Foster, J. D.; Hegarty, D. M.; Drinkwater, F. J., III

    1977-01-01

    Using NASA's CV-990 aircraft, a delayed flap approach procedure was demonstrated to nine guest pilots from the air transport industry. Four demonstration flights and 37 approaches were conducted under VFR weather conditions. A limited pilot evaluation of the delayed flap procedure was obtained from pilot comments and from questionaires they completed. Pilot acceptability, pilot workload, and ATC compatibility were quantitatively rated. The delayed flap procedure was shown to be feasible, and suggestions for further development work were obtained.

  5. Medial circumflex femoral artery flap for ischial pressure sore

    OpenAIRE

    Palanivelu S

    2009-01-01

    A new axial pattern flap based on the terminal branches of the medial circumflex femoral artery is described for coverage of ischial pressure sore. Based on the terminal branches of the transverse branch of medial circumflex femoral artery, which exit through the gap between the quadratus femoris muscle above and the upper border of adductor magnus muscle below, this fascio cutaneous flap is much smaller than the posterior thigh flap but extremely useful to cover ischeal pressure sores. The s...

  6. Fenestration of bone flap during decompressive craniotomy for subdural hematoma

    OpenAIRE

    Ha Son Nguyen; Ninh Doan; Christopher Wolfla; Glen Pollock

    2016-01-01

    Background: Persistent/recurrent extra-axial hemorrhage may occur after decompression of a subdural hematoma (SDH) followed by an immediate replacement of bone flap. A fenestration of the bone flap may encourage extra-axial fluid absorption; however, the literature has not explored this technique. Methods: Forty-four consecutive patients who underwent surgical decompression of SDH with immediate replacement of bone flap were divided into two groups: Fenestration (F), n = 33, and no fenest...

  7. Design of Insect-Scale Flapping Wing Vehicles

    OpenAIRE

    Ahmed Nabawy, Mostafa Ramadan

    2015-01-01

    This thesis contributes to the state of the art in integrated design of insect-scale piezoelectric actuated flapping wing vehicles through the development of novel theoretical models for flapping wing aerodynamics and piezoelectric actuator dynamics, and integration of these models into a closed form design process.A comprehensive literature review of available engineered designs of miniature rotary and flapping wing vehicles is provided. A novel taxonomy based on wing and actuator kinematics...

  8. USB noise reduction by nozzle and flap modifications

    Science.gov (United States)

    Hayden, R. E.

    1976-01-01

    The development of concepts for reducing upper surface blown flap noise at the source through flap modifications and special nozzles is reviewed. In particular, recent results obtained on the aerodynamic and acoustic performance of flaps with porous surfaces near the trailing edge and multi-slotted nozzles are reviewed. Considerable reduction (6-10 db) of the characteristic low frequency peak is shown. The aerodynamic performance is compared with conventional systems, and prospects for future improvements are discussed.

  9. [Pedicled versus free TRAM flap for breast reconstruction].

    Science.gov (United States)

    Galla, T J; Lukas, B; Feller, A M

    1999-03-01

    In breast reconstruction, the free TRAM-flap offers many advantages over the pedicled TRAM-flap. Due to its superior perfusion, the free flap rarely develops necrosis. Shaping of the flap is easier due to the lack of the thick muscle pedicle. Because the rectus muscle is spared, there is minimal donor site morbidity. However, the necessary microvascular anastomoses reduced the acceptance of the free TRAM-flap. During a 13-months period, 51 breast reconstructions were performed in 41 patients, 31 unilateral and ten bilateral. 45 flaps served for delayed reconstruction and six flaps for immediate reconstruction. The operations were performed by two teams working simultaneously. The average operating time was 3.9 hours for unilateral and 6.9 hours for bilateral delayed reconstruction. For immediate reconstruction, 6.2 and 6.3 hours were required for uni- and bilateral procedures, respectively. In 38 flaps, the thoracodorsal vessels served as recipient vessels; 13 flaps were anastomosed to the internal mammary artery and vein. Postoperative complications were observed in 13 patients. Three vessel anastomoses had to be revised. In one flap, a partial necrosis occurred; in two flaps hematoma evacuation was necessary. Two patients suffered from fat necroses at the abdomen and one umbilicus was lost. Skin irritations and seromas at the abdomen occurred in five patients. Pulmonary embolism was diagnosed in one patient three weeks postoperatively. Abdominal hernias or bulging in the epigastric area were not observed up to 15 months after reconstruction. These results reveal a low complication rate for breast reconstruction with the free TRAM-flap. The advantages of this technique as compared to the pedicled technique are discussed.

  10. The Savonius rotor. A construction guide. 11. ed.; Der Savonius-Rotor. Eine Bauanleitung

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Heinz

    2009-07-01

    The Savonius rotor is particularly suited for medium and low wind velocities and low capacities (up to 500 W). It can be constructed of commercial components and using simple techniques. It requires little wind to start, and the useful energy is transmitted via a shaft. In this lavishly illustrated book, the author describes the construction and operation of a robust Savonius rotor. He also shows how this rotor can be developed into a flow-through rotor for bigger plants, and he presents recommendations for appropriate machinery like pumps and slow generators.

  11. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    Science.gov (United States)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  12. Propeller Perforator Flaps in Distal Lower Leg:Evolution and Clinical Applications

    OpenAIRE

    Georgescu, Alexandru V.

    2012-01-01

    Simple or complex defects in the lower leg, and especially in its distal third, continue to be a challenging task for reconstructive surgeons. A variety of flaps were used in the attempt to achieve excellence in form and function. After a long evolution of the reconstructive methods, including random pattern flaps, axial pattern flaps, musculocutaneous flaps and fasciocutaneous flaps, the reappraisal of the works of Manchot and Salmon by Taylor and Palmer opened the era of perforator flaps. T...

  13. Computational studies of the effects of active and passive circulation enhancement concepts on wind turbine performance

    Science.gov (United States)

    Tongchitpakdee, Chanin

    With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the

  14. Acetylcysteine in random skin flap in rats

    Directory of Open Access Journals (Sweden)

    Abla Luiz Eduardo Felipe

    2005-01-01

    Full Text Available PURPOSE: Analyze the ability of Acetylcysteine to reduce distal necrosis in a random skin flap, in the rat. METHODS: The present study utilized 28 adult male Wistar-EPM rats distributed, at random, in two groups of 14 animals. Control group rats (CG received distilled water and Acetylcysteine group animals (NACG received NAC (300 mg/kg by oral infusion, 15 minutes before flap elevation. On the seventh postoperative day, percentage of distal necrosis was determined and skin samples collected in order to allow determination of MDA levels. RESULTS: The mean necrotic area in CG group (control was 66 % and in NACG group (Acetylcysteine 52 %, a statistically significant difference according to the Mann-Whitney test (U calc = 25; U crit = 45. MDA levels were lower in the CG flap skin samples than in the NACG samples (U calc = 24; U crit = 45, the oposite being true in the normal skin samples (U calc = 10; U crit = 45. CONCLUSION: Acetylcysteine was effective, according to the model used, reducing the percentage of distal necrosis in NACG rats.

  15. Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    K. P. Preethi Manohari Sai

    2016-01-01

    Full Text Available Flapping flight has the potential to revolutionize micro air vehicles (MAVs due to increased aerodynamic performance, improved maneuverability and hover capabilities. The purpose of this project is to design and fabrication of flapping wing micro air vehicle. The designed MAV will have a wing span of 40cm. The drive mechanism will be a gear mechanism to drive the flapping wing MAV, along with one actuator. Initially, a preliminary design of flapping wing MAV is drawn and necessary calculation for the lift calculation has been done. Later a CAD model is drawn in CATIA V5 software. Finally we tested by Flying.

  16. Rotational flaps in oncologic breast surgery. Anatomical and technical considerations.

    Science.gov (United States)

    Acea Nebril, Benigno; Builes Ramírez, Sergio; García Novoa, Alejandra; Varela Lamas, Cristina

    2016-01-01

    Local flaps are a group of surgical procedures that can solve the thoracic closure of large defects after breast cancer surgery with low morbidity. Its use in skin necrosis complications after conservative surgery or skin sparing mastectomies facilitates the initiation of adjuvant treatments and reduces delays in this patient group. This article describes the anatomical basis for the planning of thoracic and abdominal local flaps. Also, the application of these local flaps for closing large defects in the chest and selective flaps for skin coverage by necrosis in breast conserving surgery.

  17. Thoracodorsal artery perforator flap for upper limb reconstruction

    International Nuclear Information System (INIS)

    Thoracodorsal artery perforator flap (TAP) is a feasible option to reconstruct defects in upper limb where only skin and subcutaneous tissue is required. Methods: This case series was carried out at department of Plastic and Reconstructive Surgery Combined Military Hospital Rawalpindi. A total of 5 patients with upper limb defects were reconstructed with thoracodorsal artery musculocutaneous perforator flaps. Among them, 3 were pedicled and two free TAP flaps. All flaps except one pedicled flap were raised on a single perforator pedicle. Recipient sites were one axilla, two shoulder regions and two hands. The soft tissue defects in the patients had resulted from burns, trauma, wide local excision of synovial sarcoma and surgery for hidradenitis suppurativa. Preoperative hand held Doppler ultrasound was used to locate and mark the perforator. Results: All flaps survived without significant complications. All flaps were hyperemic in the immediate postoperative period. We designed and raised all the five flaps on eccentrically placed perforators. All the raised perforators originated from the descending branch of the thoracodorsal artery. The donor sites were closed primarily with linear scars in all cases except one, in which partial closure was accomplished with split thickness skin grafting (STSG). Conclusion: The thoracodorsal artery perforator flap has great potential for reconstructing large, relatively shallow, defects of upper limb because of its suitable skin quality, texture and appropriate thickness, as well as hidden donor site, a reliable pedicle and sparing of muscle unit. (author)

  18. Medial circumflex femoral artery flap for ischial pressure sore

    Directory of Open Access Journals (Sweden)

    Palanivelu S

    2009-01-01

    Full Text Available A new axial pattern flap based on the terminal branches of the medial circumflex femoral artery is described for coverage of ischial pressure sore. Based on the terminal branches of the transverse branch of medial circumflex femoral artery, which exit through the gap between the quadratus femoris muscle above and the upper border of adductor magnus muscle below, this fascio cutaneous flap is much smaller than the posterior thigh flap but extremely useful to cover ischeal pressure sores. The skin redundancy below the gluteal fold allows a primary closure of the donor defect. It can also be used in combination with biceps femoris muscle flap.

  19. Oropharyngeal reconstruction with a pedicled submandibular gland flap.

    Science.gov (United States)

    Mashrah, Mubarak A; Zhou, Shang-Hui; Abdelrehem, Ahmed; Ma, Chunyue; Xu, Liqun; He, Yue; Zhang, Chen-Ping

    2016-05-01

    Locoregional flaps are widely used for reconstruction of small and medium defects in the oral cavity. The submandibular gland flap is a pedicled flap, which derives its blood supply from the facial artery, based on the submandibular gland. We describe the use of the flap in 20 patients who required oropharyngeal reconstruction with a pedicled submandibular gland flap after resection of a tumour between July 2012 and October 2014. Patients with squamous cell carcinoma were excluded. All flaps were pedicled on the facial vessels (inferiorly in 17 patients and superiorly in 3). The indications were: reconstruction of intraoral mucosal defects (n=13), filling the parapharyngeal dead space (n=6), and obliteration of the mastoid (n=1). All the flaps atrophied, but with no clinical effect. One patient developed partial loss of the flap, and one early leakage. There were no cases of xerostomia, and no signs of recurrence during the postoperative follow-up period of 3-26 months. The flap is useful, as it is simple and reliable for reconstruction of small to medium oropharyngeal defects in carefully selected cases, and gives good cosmetic and functional results. PMID:26388070

  20. Cervicopectoral flap in head and neck cancer surgery

    Directory of Open Access Journals (Sweden)

    Sivrioglu Nazan S

    2003-12-01

    Full Text Available Abstract Background Reconstruction of the head and neck after adequate resection of primary tumor and neck dissection is a challenge. It should be performed at one sitting in advanced tumors. Defects caused by the resection should be closed with flaps which match in color, texture and hair bearing characteristics with the face. Cervicopectoral flap is a one such flap from chest and neck skin mainly used to cover the cheek defects. Methods This study included twelve patients presenting with cancer of the head and neck to Izmir Ataturk Training Hospital and Adnan Menderes University Hospital. Tumor resection and neck dissection was performed in one session by the same surgeon. A single incision was made and a medially based cervicopectoral fascio-cutaneous flap was used for surgical exposure in neck dissection and for closure of defects after tumor resection. Results There was no major complication. Two flaps had partial superficial epidermolysis at the suture line. Good aesthetic and functional results were achieved. Conclusion The cervicopectoral flap is an excellent alternative for the reconstruction of head and neck. Harvesting and application of the flap is rapid and safe. Only a single incision is sufficient for dissection and flap elevation. This flap achieves perfect surgical exposure, makes neck dissection easy and allows one to perform both tumor resection and neck dissection in one session.

  1. A novel animal model for skin flap prelamination with biomaterials

    Science.gov (United States)

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-01-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible. PMID:27659066

  2. Interlayer toughening of fiber composite flywheel rotors

    Science.gov (United States)

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  3. Superconducting motor with multiple winding rotor

    International Nuclear Information System (INIS)

    This patent describes a poly-phase, self- energizing, air-core superconducting motor. It comprises a stator having three sets of windings; a rotor including a large rotor winding and a small rotor winding, the windings being installed so their axes are orthogonal to each other and connected to form a current loop which is exposed to a magnetic field, the stator and rotor each being made from a superconductive material, and the ratio of turns of the large winding to the small winding being between 5:1 and 10:1; and, means for trapping a maximum number of magnetic flux lines in the loop when the magnetic field is impressed thereon and for thereafter transferring the trapped flux between the large and small winding to run the motor, the loop acting as a perfect conductor whereby no flux change occurs within the loop after the flux lines are trapped

  4. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  5. Direct integration of transient rotor dynamics

    Science.gov (United States)

    Kascak, A. F.

    1980-01-01

    An implicit method was developed for integrating the equations of motion for a lumped mass model of a rotor dynamics system. As an aside, a closed form solution to the short bearing theory was also developed for a damper with arbitrary motion. The major conclusions are that the method is numerically stable and that the computation time is proportional to the number of elements in the rotor dynamics model rather than to the cube of the number. This computer code allowed the simulation of a complex rotor bearing system experiencing nonlinear transient motion and displayed the vast amount of results in an easily understood motion picture format - a 10 minute, 16 millimeter, color, sound motion picture supplement. An example problem with 19 mass elements in the rotor dynamics model took 0.7 second of central processing unit time per time step on an IBM 360-67 computer in a time sharing mode.

  6. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert

    2016-01-01

    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  7. Prediction of the Aero-Acoustic Performance of Open Rotors

    Science.gov (United States)

    VanZante, Dale; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  8. Edge states of periodically kicked quantum rotors

    CERN Document Server

    Floß, Johannes

    2015-01-01

    We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  9. Thermomechanical Behavior of Rotor with Rubbing

    OpenAIRE

    Jerzy T. Sawicki; Alberto Montilla-Bravo; Zdzislaw Gosiewski

    2003-01-01

    This article presents an analytical study of the dynamics and stability of rotors subjected to rubbing due to contact with seals, taking account of associated thermal effects. The seal interaction force acting on the shaft gives rise to a friction force, which is a source of heating and can induce so-called spiral vibrations. A mathematical model that has been developed couples the heat-conduction equation with the equations for motion of the rotor. Numerical simulations have been conducted t...

  10. Nonlinear Analysis of Shape Memory Alloy Component in Rotor System

    Institute of Scientific and Technical Information of China (English)

    王洪礼; 赵涛; 竺致文

    2004-01-01

    The active control of rotor vibration was studied while shape memory alloy (SMA) spring component was chosen as bearing of rotor system. The vibration of rotor system was controlled by the phase transformation of SMA with electric heating method. The SMA spring component has nonlinear coupling problem of thermal stress and thermal elasticity,because thermal constants α,β and elasticity constants λ,G vary with temperature when temperature changes sharply. Because δ,ε were both small parameters, their square items could be ignored and approximate results were obtained by perturbation. The characters of α,β,λ,G changing with temperature were analyzed. Results show that the character of thermal diffusivity α changes with temperature, which cannot influence U,Ψ,So the nonlinearity of α can be ignored; the character of β changes with temperature, which cannot influence U, but influences Ψ at high temperature; the character of λ,G change with temperature, which cannot influence Ψ, but influences U with U(01)ε. The more λ,G, the more their influence on U; the nonlinearity of (βT)/(ρcv)εkk influences U and Ψ, which must be calculated.

  11. Comparative study of visual acuity and aberrations after intralase femtosecond LASIK: small corneal flap versus big corneal flap

    Institute of Scientific and Technical Information of China (English)

    Ya-Li; Zhang; Lei; Liu; Chang-Xia; Cui; Ming; Hu; Zhao-Na; Li; Li-Jun; Cao; Xiu-Hua; Jing; Guo-Ying; Mu

    2014-01-01

    AIM:To study the effects of different flap sizes on visual acuity, refractive outcomes, and aberrations after femtosecond laser for laser keratomileusis (LASIK). ·METHODS: In each of the forty patients enrolled, 1 eye was randomly assigned to receive treatment with a 8.1mm diameter corneal flap, defined as the small flap, while the other eye was treated with a 8.6mm diameter corneal flap, defined as the big flap. Refractive errors, visual acuity, and higher -order aberrations were compared between the two groups at week 1, month 1 and 3 postoperatively. · RESULTS: The postoperative refractive errors and visual acuity all conformed to the intended goal. Postoperative higher -order aberrations were increased, especially in spherical aberration (Z12) and vertical coma (Z7). There were no statistically significant differences between the two groups in terms of postoperative refractive errors, visual acuity, root mean square of total HOAs (HO -RMS), trefoil 30° (Z6), vertical coma (Z7), horizontal coma (Z8), trefoil 0° (Z9), and spherical aberration (Z12) at any point during the postoperative follow-up. ·CONCLUSION: Both the small and big flaps are safe and effective procedures to correct myopia, provided the exposure stroma meets the excimer laser ablations. The personalized size corneal flap is feasible, as we can design the size of corneal flap based on the principle that the corneal flap diameter should be equal to or greater than the sum of the maximum ablation diameter and apparatus error.

  12. A propeller flap for single-stage nose reconstruction in selected patients: supratrochlear artery axial propeller flap.

    Science.gov (United States)

    Cordova, Adriana; D'Arpa, Salvatore; Massimiliano, Tripoli; Toia, Francesca; Moschella, Francesco

    2014-06-01

    The paramedian forehead flap is the gold standard technique for nose reconstruction. It requires two different surgical operations which prolonged the postoperative dressing and care. We present our 5-year experience with a propeller flap based on the supratrochlear artery, which allows one-stage transfer of the forehead skin to the nose without the need for pedicle division. This technique is indicated in a selected group of patients who are not suitable for multiple-stage reconstructions because they have concurrent medical conditions, reduced mobility, or live far away from specialized medical centers. We have renamed this procedure as supratrochlear artery axial propeller flap, from the acronym STAAP flap, to stress the axial, well known and constant, vascularization of the flap. In the past 5 years, we have been performing 25 STAAP flaps; full-thickness nasal reconstruction was performed in 11 cases. The patients were 16 males and 9 females, with a mean age of 79.5 years. All patients had multiple comorbidities. Complete flap survival was observed in 23 cases and healing was complete in 7 days. In two cases, there was a partial distal necrosis of the flap treated conservatively. Cosmetic results were good and the patient's satisfaction was significant. These results indicate that the STAAP flap is a reliable and useful technique in selected cases, as old or noncompliant patients who benefit from a one-stage technique of nose reconstruction. PMID:24918712

  13. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface

    Science.gov (United States)

    Boyd, D. Douglas, Jr.

    2005-01-01

    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  14. Investigation of rotor control system loads

    Institute of Scientific and Technical Information of China (English)

    Sun Tao; Tan Jianfeng; Wang Haowen

    2013-01-01

    This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.

  15. Stress corrosion cracking of steam turbine rotors

    International Nuclear Information System (INIS)

    In the wake of the catastrophic failure of a low-pressure (LP) turbine disk at the Hinkley Point Nuclear Station in 1969, considerable research and development has been devoted to the problem of stress corrosion cracking (SCC) in steam turbine rotors. Principle factors affecting the susceptibility of rotors to SCC have been identified as disk yield strength, applied stress level, and surface film/crevice chemistry. Microstructure and cleanliness of the steel have been found to have relatively little effect. Advances in steel making and forging over the last 20 years have provided manufacturers with additional design and material options to mitigate the problem. Increases in forging size capabilities of steel companies and the welded construction of rotors now permit designing with integral and partial integral rotors that use materials with lower yield strength (more SCC resistant) as well as eliminating the SCC problem in bores and keyways. However, a recent survey of US utilities has shown that SCC in the blade attachment legion of LP rotors is an increasing concern. This problem has led to development of repair and refurbishment methods for rim attachments, especially weld buildup of rims with corrosion-resistant alloys. Life prediction of rotors under SCC conditions currently involves estimating crack growth time from assumed defects to critical size. Factors that govern the location and time of crack initiation are not understood adequately. 50 refs., 23 figs., 1 tab

  16. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  17. Quadrilobed superior gluteal artery perforator flap for sacrococcygeal defects

    Institute of Scientific and Technical Information of China (English)

    HAI Heng-lin; SHEN Chuan-an; CHAI Jia-ke; LI Hua-tao; YU Yong-ming; LI Da-wei

    2013-01-01

    Background Perforator flaps are used extensively in repairing soft tissue defects.Superior gluteal artery perforatorflaps are used for repairing sacral defects,but the tension required for direct closure of the donor area after harvesting ofrelatively large flaps carries a risk of postoperative dehiscence.This research was to investigate a modified superiorgluteal artery perforator flap for repairing sacrococcygeal soft tissue defects.Methods From June 2003 to April 2010,we used our newly designed superior gluteal artery perforator flap for repair of sacrococcygeal soft tissue defects in 10 patients (study group).The wound and donor areas were measured,and the flaps were designed accordingly.Wound healing was assessed over a follow-up period of 6-38 months.From January 1998 to February 2003,twelve patients with sacrococcygeal pressure sores were treated with traditional methods,VY advancement flaps or oblong flaps,as control group.Results After debridement,the soft tissue defects ranged from 12 cm × 10 cm to 26 cm × 22 cm (mean 16.3 cm x 13.5cm).Four patients were treated using right-sided flaps ranging from 15 cm × 11 cm to 25 cm × 20 cm (mean 18.2 cm × 14cm).Four patients were treated using left-sided flaps,and two were treated using both right-and left-sided flaps.Suction drains were removed on postoperative Days 3-21 (mean 5.9) and sutures were removed on postoperative Days 12-14.Each flap included 1-2 perforators for each of the donor and recipient sites.Donor sites were closed directly.All flaps survived.In eight patients,the wounds healed after single-stage surgery.After further debridement,the wounds of the remaining two patients were considered healed on postoperative Days 26 and 33,respectively.The rate of first intention in the study group (80%,8/10) significantly increased than that of control group ((25%,3/12),X2=4.583,P=-0.032).Follow-up examinations found that the flaps had a soft texture without ulceration.In the two patients without

  18. Deltoid muscular flap transfer for the treatment of irreparable rotator cuff tears

    Directory of Open Access Journals (Sweden)

    Justus Gille

    2009-09-01

    Full Text Available The purpose of this study was to evaluate the outcome of deltoid muscle flap transfer for the treatment of irreparable rotator cuff tears. In a retrospective study 20 consecutive patients were evaluated. The index procedure took place between 2000 and 2003. Fifteen patients were male, mean age was 62 years. Inclusion criterion was a rotator cuff defect Bateman grade IV. Exclusion criteria were smaller defects, shoulder instability and fractures of the injured shoulder. An open reconstruction with acromioplasty and a pedicled delta flap was performed. Follow up period was mean 42 months. Follow-up included clinical examination, Magnetic Resonance Imaging (MRI and the Constant and Simple (CS shoulder tests. According to the Constant shoulder test the results were good in 13 patients, fair in 5 and unsatisfactory in 2. The pre-operative Constant Score improved from mean 25.7 points (±5.3 to 72.3 (±7.8 at follow-up. The mean values for the subcategories of CS increased significantly from 3.9 to 14.4 points for pain and from 4.2 to 15.9 points for activities daily routine (p0.05. Results of the Simple Shoulder Test showed a significant increase of the mean values from pre-operative 4.3 to 14.7 points post-operatively. MRI showed a subacromial covering of the defect in all cases, all flaps where intact on MRI but always the flap showed marked fatty degeneration. In conclusion, the delta flap is a simple method for the repair of large defects of the rotator cuff leading to satisfying medium results.

  19. Intraoperative Flap Complications in LASIK Surgery Performed by Ophthalmology Residents

    Science.gov (United States)

    Romero-Diaz-de-Leon, Lorena; Serna-Ojeda, Juan Carlos; Navas, Alejandro; Graue-Hernández, Enrique O.; Ramirez-Miranda, Arturo

    2016-01-01

    Purpose: To report the rate of flap-related complications in LASIK surgery performed by in-training ophthalmology residents and to analyze the risk factors for these complications. Methods: We analyzed 273 flap dissections in 145 patients from March 2013 to February 2014. We included all LASIK surgeries performed by 32 ophthalmology residents using a Moria M2 microkeratome. All the flap-related complications were noted. Comparison between both groups with and without complications was performed with an independent Student's t-test and relative risks were calculated. Results: There were 19 flap-related complications out of the 273 flap dissections (6.95%). The most common complication was incomplete flap dissection (n = 10; 3.66%), followed by free-cap (n = 5; 1.83%), and flap-buttonhole (n = 2; 0.73%). There was no significant difference between the complicated and uncomplicated cases in terms of the right versus the left eye, pachymetry results, white-to-white diameter, and spherical equivalent. But this difference was significant for mean keratometry (P = 0.008), K-min (P = 0.01), and K-max (P = 0.03) between these groups. Final visual acuity after rescheduling laser treatment was similar in both groups. Relative risks for flap-related complications were 2.03 for the first LASIK surgery (CI 95% 0.64 to 6.48; P = 0.22) and 1.26 (CI 95% 0.43 to 3.69; P = 0.66) for the surgeon's flap-related complications. Female gender presented an odds ratio of 2.48 (CI 95% 0.68 to 9.00; P = 0.16) for complications. Conclusion: Flap-related complications are common intraoperative event during LASIK surgery performed by in-training ophthalmologists. Keratometries and surgeon's first procedure represent a higher probability for flap related complications than some other biometric parameters of patient's eye. PMID:27621782

  20. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-04-01

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  1. Dynamics of High-Speed Rotors Supported in Sliding Bearings

    Science.gov (United States)

    Šimek, J.; Svoboda, R.

    The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.

  2. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    The demands for high efficiency machines initiate a demand for monitoring and active control of vibrations to improve machinery performance and to prolong machinery lifetime. Applying active control to reduce vibrations in flexible bladed rotor-systems imply that several difficulties have...... of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  3. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    The demands for high efficiency machines initiate a demand for monitoring and active control of vibrations to improve machinery performance and to prolong machinery lifetime. Applying active control to reduce vibrations in flexible bladed rotor-systems imply that several difficulties have...... of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  4. The application of island myocutaneous flap for challenging wounds on cervico-thoracic region

    Institute of Scientific and Technical Information of China (English)

    XING Xin; XUE Chun-yu; LI Li; HUAN Jing-ning; GUO En-tan

    2006-01-01

    Objective:To introduce the experiences in the application of island myocutaneous flap for challenging wound on cervico-thoracic region. Methods: Different myocutaneous flaps were selected according to the location, peculiarity and etiological factor of wound. There were 28 cases of island pectoralis major island myocutanuous flaps, 34 cases of latissimus dorsi island myocutaneous flaps, 19 cases of trapizius island myocutaneous flaps and 17 cases of rectus abdominis island myocutaneous flaps in this report. Results: All 98 patients with challenging wound on cervico-thoracic region were successfully treated with this method without complications, and obtained functional and cosmetic effectiveness. Conclusion:Challenging wounds in cervico-nuchal region can be repaired with pertoralis major island myocutaneous flap, latissimus dorsi island myocutaneous flap and trapizius island myocutaneous flap, while challenging wounds in thoracic region can be repaired with latissimus dorsi island myocutaneous flap and rectus abdominis island myocutaneous flap. Satisfactory functional and cosmetic results can be obtained.

  5. How far is smart rotor research and what steps need to be taken to build a full-scale prototype?

    Science.gov (United States)

    Bernhammer, L. O.; van Kuik, G. A. M.; De Breuker, R.

    2014-12-01

    During the last decade research on the field of smart rotor has advanced significantly. Fundamental aerodynamics, structural and control concepts have been established and simulators created for distributed flaps on wind turbine blades, which are considered the most promising option. Also a proof of concept has been done under laboratory conditions. However, the results obtained under these conditions can only be partially transfer to the real application as the control authority of smart rotors is limited compared to full pitch control. The steps that need to be taken before smart rotors can be successfully exploited are in the design of reliable systems that can operate under environmental conditions without inspections. Besides that, other potential advantages of distributed control need to be established such as the effect on other components of a wind turbine for example the gear box or the power system. Finally, it is necessary to investigate what benefits can be achieved if blades are designed with distributed control right from the start instead of applying control schemes to already existing turbines.

  6. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...

  7. On the nonlinear steady-state response of rigid rotors supported by air foil bearings-Theory and experiments

    Science.gov (United States)

    Larsen, Jon S.; Santos, Ilmar F.

    2015-06-01

    The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.

  8. Thick-osteochondral Flap Deepening Trochleoplasty for Patellar Instability

    Science.gov (United States)

    Donel, Simon; Ali, Khameinei; Smith, Dr. Tobi; McNamara, Iain

    2016-01-01

    Aims and Objectives: In patients with patellar instability and severe trochlear dysplasia, trochleoplasty has become increasingly used as part of the surgical management. The aim to report the mid-term results of this trochleoplasty including the sports and exercise activities of the cohort. Our hypothesis was that the operation would improve knee function and lead to an increase in sports participation in the patients. Materials and Methods: Between 1995 and 2010 the thick-flap deepening trochleoplasty was performed in 90 patients (107 knees) with severe trochlear dysplasia. Data was collected prospectively pre-operatively, at 6 weeks and 1-year follow-up. A standard pre-operative clinical assessment that included assessment of patellar apprehension , patellar tracking and patellofemoral crepitus. Post-operative outcome scores were performed by postal questionnaire and collected between June and December 2013, to determine the clinical and functional outcomes, including sports and exercise participation at a minimum of 2 years, with complete data available in 92%. Results: With a minimum follow-up of 2 years, average of 6 years (range 2 to 19 years). The Kujala score had a median and interquartile range (IQR) of 63 (47-75) pre-operatively rising to 79 (68-91) at 1 year follow-up and 84 (73-92) at final follow-up (pbadminton), participation increased from 16 (18%) to 22 (24%), whereas non-twisting sports (e.g. running, swimming, cycling) increased from 24 (27%) to 47 (52%) of whom 14 (16%) used walking as exercise. Conclusion: The thick-flap deepening trochleoplasty improves the clinical and functional outcomes for patients with symptomatic patellar instability with severe trochlear dysplasia. These results improve over time and beyond the 1 year clinical follow-up. However trochleoplasty does not lead to a significant improvement in sports participation at a competitive level. It does improve the sports and exercise patient participation, principally in non

  9. THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ali BEAZIT

    2010-06-01

    Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.

  10. Optimum blade loading for a powered rotor in descent

    Institute of Scientific and Technical Information of China (English)

    Ramin Modarres; David A. Peters

    2016-01-01

    The optimum loading for rotors has previously been found for hover, climb and wind turbine conditions;but, up to now, no one has determined the optimum rotor loading in descent. This could be an important design consideration for rotary-wing parachutes and low-speed des-cents. In this paper, the optimal loading for a powered rotor in descent is found from momentum theory based on a variational principle. This loading is compared with the optimal loading for a rotor in hover or climb and with the Betz rotor loading (which is optimum for a lightly-loaded rotor). Wake contraction for each of the various loadings is also presented.

  11. Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    C. Ben Regaya

    2014-01-01

    Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.

  12. Pectoralis myocutaneous flap for salvage of necrotic wounds

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.C.; Davis, R.K.; Koltai, P.J.

    1985-02-01

    The authors have utilized six pectoralis major myocutaneous flaps in attempts to salvage extensive necrotic wounds of the pharynx and neck. The flap was employed in the following situations: massive necrosis of the entire neck skin with both carotid artery systems exposed, radiation necrosis of the neck skin with exposure of carotid artery, dehiscence of gastric pull-up from pharynx with resultant carotid exposure, failed trapezius flap in a radionecrotic oral cavity, and two cases of pharyngocutaneous fistula with extensive soft tissue necrosis. These flaps achieved healing in all cases. One death occurred 3 weeks following complete cutaneous healing secondary to a ruptured carotid pseudoaneurysm. One flap underwent total skin loss but the entirety of the muscle survived and the fistula was successfully closed with the back of the muscle being subsequently skin grafted. One case of dehiscence of the flap from oral mucosa resulted in a minor exposure of mandible with limited osteoradionecrosis controlled by topical means. This flap has performed extremely well in these precarious and difficult situations that previously may not have been salvageable. It has also been effective in abbreviating the required hospitalization and wound care. The authors conclude that the pectoralis myocutaneous flap should be the primary choice for the management of extensive postsurgical wound necrosis.

  13. Fenestration of bone flap during interval autologous cranioplasty

    Directory of Open Access Journals (Sweden)

    Ha Son Nguyen

    2015-01-01

    Conclusion: Presumably, fenestrations augment surface area for extra-axial fluid absorption through the bone flap. Our results, regarding MLS and postoperative volume, provide support for this concept. Accordingly, bone flap fenestration has the potential to reduce extra-axial fluid accumulation.

  14. Breast ptosis managed by mastopexy using the triple flaps procedure.

    Science.gov (United States)

    Gheita, Alaa; Moftah, Ali

    2011-02-01

    Breast ptosis is a highly unattractive appearance of the breast. In the mind, it is associated with aging, multiple pregnancies, lactation, and senile changes. Its correction by mastopexy presents one of the greatest challenges to the breast surgeon aiming at a pleasant full conical shape and stability of the results. The authors present their mastopexy procedure using a triple-flap method based on the principle of a superior pedicle flap mammaplasty. The technique, presented in detail, basically consists of a superior pedicle dermaglandular flap that carries the nipple-areola complex between outer and inner flaps. The outer flap is rotated inward and upward behind the main superior pedicle to give fullness to the breast and fixed to the chest wall. The inner flap is double-breasted on top or superficial to outer flap, and both are sutured to each other resembling a hammock or a cradle that carries the main superior pedicle middle flap. The results are presented and advantages discussed. This method, besides its simplicity, gives good projection with a pleasant and attractive conical shape to the breast and upper fullness, frequently negating the need for an implant. In addition, the results were stable in the long term, with no need for a mesh or any other foreign material. PMID:20652567

  15. Repair of large palatal fistula using tongue flap

    Directory of Open Access Journals (Sweden)

    Fejjal Nawfal

    2014-01-01

    Full Text Available Large palatal fistulas are a challenging problem in cleft surgery. Many techniques are used to close the defect. The tongue flap is an easy and reproductible procedure for managing this complication. The authors report a case of a large palatal fistula closure with anteriorly based tongue flap.

  16. 14 CFR 25.701 - Flap and slat interconnection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap and slat interconnection. 25.701....701 Flap and slat interconnection. (a) Unless the airplane has safe flight characteristics with the... sides of the plane of symmetry must be synchronized by a mechanical interconnection or...

  17. Pectoralis myocutaneous flap for salvage of necrotic wounds

    International Nuclear Information System (INIS)

    The authors have utilized six pectoralis major myocutaneous flaps in attempts to salvage extensive necrotic wounds of the pharynx and neck. The flap was employed in the following situations: massive necrosis of the entire neck skin with both carotid artery systems exposed, radiation necrosis of the neck skin with exposure of carotid artery, dehiscence of gastric pull-up from pharynx with resultant carotid exposure, failed trapezius flap in a radionecrotic oral cavity, and two cases of pharyngocutaneous fistula with extensive soft tissue necrosis. These flaps achieved healing in all cases. One death occurred 3 weeks following complete cutaneous healing secondary to a ruptured carotid pseudoaneurysm. One flap underwent total skin loss but the entirety of the muscle survived and the fistula was successfully closed with the back of the muscle being subsequently skin grafted. One case of dehiscence of the flap from oral mucosa resulted in a minor exposure of mandible with limited osteoradionecrosis controlled by topical means. This flap has performed extremely well in these precarious and difficult situations that previously may not have been salvageable. It has also been effective in abbreviating the required hospitalization and wound care. The authors conclude that the pectoralis myocutaneous flap should be the primary choice for the management of extensive postsurgical wound necrosis

  18. Oral functional outcome after intraoral reconstruction with nasolabial flaps

    NARCIS (Netherlands)

    Hofstra, EI; Hofer, SOP; Nauta, JM; Roodenburg, JLN; Lichtendahl, DHE

    2004-01-01

    In this study, the functional and aesthetic outcome of patients with nasolabial flaps in the floor of the mouth was examined. Sixteen patients underwent reconstruction of the floor of the mouth with 19 nasolabial flaps after resection of a squamous cell carcinoma. Eight patients received postoperati

  19. Dorsalis pedis arterialized venous flap for hand and foot reconstruction

    Institute of Scientific and Technical Information of China (English)

    YU Guang; LEI Hong-yu; GUO Shuang; HUANG Jian-hua; YU Hao

    2012-01-01

    Objective:To report the results of repair of skin defects in the extremities with arterialized venous flap harvested from the lateral aspect of the dorsum of the foot.Methods:Six cases of skin and soft tissue defects over the foot and hands were resurfaced by free arterialized venous flaps,including five patients with skin defects of the hands,and one with defects at the dorsum of the foot.The flaps were harvested from the lateral aspect of the dorsum of the foot with the sizes ranging from 2 cm×5.5 cm to 6 cm×11 cm.Two veins at the proximal margin of the flap were retained,one of which was anastomosed to a recipient bed artery to provide arterial inflow and the other was anastomosed to a recipient bed vein for venous outflow.Results:All flaps demonstrated mild edema and survived completely.Blisters appeared on four flaps.Using this technique,we achieved good functional and cosmetic results in this series.Conclusions:Dorsalis pedis arterialized venous flap with rich vascular communications could enhance peripheral perfusion and decrease congestion of venous flaps,thereby improves reliability and utility for extremity reconstruction.

  20. The use of free flaps in skull base reconstruction.

    Science.gov (United States)

    Macía, G; Picón, M; Nuñez, J; Almeida, F; Alvarez, I; Acero, J

    2016-02-01

    Skull base tumours are rare, comprising less than 1% of all tumours of the head and neck. Surgical treatment of these tumours involves the approach, the resection, and the reconstruction of the defect, which present a challenge due to the technical difficulty and anatomical complexity. A retrospective study of 17 patients with tumours involving the skull base, treated by resection and immediate reconstruction using microsurgical free flaps, is presented; 11 were men and six were women. The following types of flap were used: osteocutaneous fibula flaps, fasciocutaneous anterolateral thigh flaps, and myocutaneous latissimus dorsi flaps. The most common histology of the tumours was squamous cell carcinoma. The most frequent point of origin was the paranasal sinuses (58.8%). All of the free flaps used for reconstruction were viable. A cerebrospinal fluid fistula occurred in two patients, and in one of these cases, meningoencephalitis led to death. In conclusion, the reconstruction of large defects of the skull base after ablation requires a viable tissue that in many cases can be obtained only through the use of microvascular free flaps. The type of flap to be selected depends on the anatomical structures and size of the defect to be restored.

  1. Preoperative CT angiography reduces surgery time in perforator flap reconstruction

    NARCIS (Netherlands)

    Smit, Jeroen M.; Dimopoulou, Angeliki; Liss, Anders G.; Zeebregts, Clark J.; Kildal, Morten; Whitaker, Iain S.; Magnusson, Anders; Acosta, Rafael

    2009-01-01

    The use of perforator flaps in breast reconstructions has increased considerably in the past decade. A disadvantage of the perforator flap is difficult dissection, which results in a longer procedure. During spring 2006, we introduced CT angiography (CTA) as part of the diagnostic work-up in perfora

  2. Perforator propeller flaps for sacral and ischial soft tissue reconstruction

    Directory of Open Access Journals (Sweden)

    Korambayil Pradeoth

    2010-01-01

    Full Text Available The perforator-based flaps in the sacral and ischial region is designed according to the localization of perforators that penetrate the gluteus maximus muscle, reach the intra-fascial and supra-fascial planes with the overlying skin forming a rich vascular plexus. The perforator-based flaps described in this article are highly vascularized, have minimal donor site morbidity, and do not require the sacrifice of the gluteus maximus muscle. In a period between April 2008 and March 2009, six patients with sacral pressure sore were reconstructed with propeller flap method based on superior gluteal and parasacral artery perforators. One flap loss was noted. Three cases of ischial pressure sore were reconstructed with longitudinal propeller flap cover, based on inferior gluteal artery perforator. One flap suffered wound infection and dehiscence. Two cases of pilonidal sinus were reconstructed with propeller flap based on parasacral perforators. Both the flaps survived without any complications. Donor sites were closed primarily. In the light of this, they can be considered among the first surgical choices to re-surface soft tissue defects of the sacral and ischial regions. In the series of 11 patients, two patients (18% suffered complications.

  3. Perforator propeller flaps for sacral and ischial soft tissue reconstruction

    Science.gov (United States)

    Korambayil, Pradeoth M.; Allalasundaram, KV; Balakrishnan, TM

    2010-01-01

    The perforator-based flaps in the sacral and ischial region is designed according to the localization of perforators that penetrate the gluteus maximus muscle, reach the intra-fascial and supra-fascial planes with the overlying skin forming a rich vascular plexus. The perforator-based flaps described in this article are highly vascularized, have minimal donor site morbidity, and do not require the sacrifice of the gluteus maximus muscle. In a period between April 2008 and March 2009, six patients with sacral pressure sore were reconstructed with propeller flap method based on superior gluteal and parasacral artery perforators. One flap loss was noted. Three cases of ischial pressure sore were reconstructed with longitudinal propeller flap cover, based on inferior gluteal artery perforator. One flap suffered wound infection and dehiscence. Two cases of pilonidal sinus were reconstructed with propeller flap based on parasacral perforators. Both the flaps survived without any complications. Donor sites were closed primarily. In the light of this, they can be considered among the first surgical choices to re-surface soft tissue defects of the sacral and ischial regions. In the series of 11 patients, two patients (18%) suffered complications. PMID:21217972

  4. Clinical study of dorsal ulnar artery flap in hand reconstruction

    Directory of Open Access Journals (Sweden)

    Khan Manal

    2009-01-01

    Full Text Available Soft tissue defects of hand with exposed tendons, joints, nerves and bone represent a challenge to plastic surgeons. Such defects necessitate early flap coverage to protect underlying vital structures, preserve hand functions and to allow for early rehabilitation. Becker and Gilbert described flap based on the dorsal branch of the ulnar artery for defects around the wrist. We evaluated the use of a dorsal ulnar artery island flap in patients with soft tissue defects of hand. Twelve patients of soft tissue defects of hand underwent dorsal ulnar artery island flap between August 2006 and May 2008. In 10 male and 2 female patients this flap was used to reconstruct defects of the palm, dorsum of hand and first web space. Ten flaps survived completely. Marginal necrosis occurred in two flaps. In one patient suturing was required after debridement and in other patient wound healed by secondary intention. The final outcome was satisfactory. Donor areas which were skin grafted, healed with acceptable cosmetic results. The dorsal ulnar artery island flap is convenient, reliable, and easy to manage and is a single-stage technique for reconstructing soft tissue defects of the palm, dorsum of hand and first web space. Donor site morbidity is minimal, either closed primarily or covered with split thickness skin graft.

  5. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    Science.gov (United States)

    DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well

    2013-01-01

    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean

  6. Development of magnetic shape memory alloy actuators for a swashplateless helicopter rotor

    Science.gov (United States)

    Couch, Ronald Newton

    Actuator concepts utilizing NiMnGa, ferromagnetic shape memory alloy are investigated for potential use on a smart rotor for trailing edge flap actuation. With their high energy density, large dynamic stroke, and wide operating bandwidth, ferromagnetic shape memory alloys (FSMA) like NiMnGa, seem like attractive candidates for smart rotor actuators, potentially able to fulfill the requirements for both primary rotor control and vibration suppression. However, because of the recent discovery of the material, current experimental data and analytical tools are limited. To rectify these shortcomings, an extensive set of detailed experiments were conducted on samples of NiMnGa to characterize the response of the alloy for a wide variety of mechanical and magnetic loading conditions. Measurements of the material performance parameters such as power density, damping properties, magneto-mechanical coupling, and transduction efficiency were included. Once characterized, the experimental data were used to develop a series of analytical tools to predict the behavior of the material. A model, developed in parallel to thermal shape memory alloy models is proposed to predict the quasi-static stress-strain behavior. A simple, low frequency, parameter based model was also developed to predict the alloy's dynamic strain response. A method for developing conceptual actuators utilizing NiMnGa as the actuation element was proposed. This approach incorporates experimental data into a process that down-selects a series of possible actuator configurations to obtain a single configuration optimized for volumetric and weight considerations. The proposed actuator was designed to deliver 2 mm of stroke and 60 N of force at an actuation frequency of 50 Hz. However, to generate the 1.0 T magnetic field, the actuator mass was determined to be 2.8 kg and required a minimum of 320 Watts of power for operation. The mass of the NiMnGa element was only 18.3 g. It was concluded that although the Ni

  7. A Case Report on Bilateral Knee Coverage Following Septic Arthritis: Lateral Distal Thigh Island Flap and Medial Head Gastrocnemius Flap Methods

    Directory of Open Access Journals (Sweden)

    Abdolrazaghi

    2016-03-01

    Full Text Available Introduction Septic arthritis is the rheumatological and orthopedic emergency that causes the most difficulties with joints–especially knee and hip joints. The clinical symptoms include pain, swelling, inflammation, stiffness, and a limited range of motion in both active and passive joints. Debridement of the necrotic tissue is one beneficial method for septic arthritis treatment, although soft tissue defects around joints are a challenging issue for surgeons. Our purpose was to investigate the consequences of two flap surgery methods undertaken to repair soft tissue damaged during knee joint debridement caused by septic arthritis. Case Presentation This is a case report concerning a patient who had septic arthritis in the knee area and so underwent soft tissue surgery. The reconstruction methods were not the same for both knees as the lateral distal thigh island flap reparation method was used on the left knee and the medial head gastrocnemius flap method was utilized on the right. We then investigated the results and outcomes of the surgery three months later. Conclusions Lower extremity movement extent was carefully evaluated and, in respect to muscle strength, the patient was able to walk independently three months after the surgery. The patient’s balance was studied and the results showed moderate levels of stability.

  8. Propeller Flaps: A Review of Indications, Technique, and Results

    Science.gov (United States)

    D'Arpa, Salvatore; Toia, Francesca; Pirrello, Roberto; Moschella, Francesco; Cordova, Adriana

    2014-01-01

    In the last years, propeller flaps have become an appealing option for coverage of a large range of defects. Besides having a more reliable vascular pedicle than traditional flap, propeller flaps allow for great freedom in design and for wide mobilization that extend the possibility of reconstructing difficult wounds with local tissues and minimal donor-site morbidity. They also allow one-stage reconstruction of defects that usually require multiple procedures. Harvesting of a propeller flap requires accurate patient selection, preoperative planning, and dissection technique. Complication rate can be kept low, provided that potential problems are prevented, promptly recognized, and adequately treated. This paper reviews current knowledge on propeller flaps. Definition, classification, and indications in the different body regions are discussed based on a review of the literature and on the authors' experience. Details about surgical technique are provided, together with tips to avoid and manage complications. PMID:24971367

  9. Propeller Flaps: A Review of Indications, Technique, and Results

    Directory of Open Access Journals (Sweden)

    Salvatore D'Arpa

    2014-01-01

    Full Text Available In the last years, propeller flaps have become an appealing option for coverage of a large range of defects. Besides having a more reliable vascular pedicle than traditional flap, propeller flaps allow for great freedom in design and for wide mobilization that extend the possibility of reconstructing difficult wounds with local tissues and minimal donor-site morbidity. They also allow one-stage reconstruction of defects that usually require multiple procedures. Harvesting of a propeller flap requires accurate patient selection, preoperative planning, and dissection technique. Complication rate can be kept low, provided that potential problems are prevented, promptly recognized, and adequately treated. This paper reviews current knowledge on propeller flaps. Definition, classification, and indications in the different body regions are discussed based on a review of the literature and on the authors’ experience. Details about surgical technique are provided, together with tips to avoid and manage complications.

  10. Vaginal reconstruction using perineal-thigh flaps with subcutaneous pedicle.

    Science.gov (United States)

    Chen, Z; Chen, C; Chen, M; Zhang, J; Wu, N; Wang, J

    1991-03-01

    A technique of vaginal reconstruction using bilateral, perineal-thigh flaps with subcutaneous pedicle is described. In this procedure, the flaps were raised bilaterally and introduced into an artificial space between the urinary bladder and rectum. The blood supply for the flaps flows from the perineal artery through anastomotic branches to the external pudendal artery. The authors used the technique on four patients, and all the flaps survived entirely. There was no complication. According to a more than two-year follow-up survey, the reconstructed vaginas are expansible and contract little. No stent is needed. There is good sensitivity in the wall of the artificial vagina because sensory nerves run through the flaps.

  11. Experimental investigation of a flapping wing model

    Science.gov (United States)

    Hubel, Tatjana Y.; Tropea, Cameron

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  12. A Novel Degree of Freedom in Flapping Wings Shows Promise for a Dual Aerial/Aquatic Vehicle Propulsor

    CERN Document Server

    Izraelevitz, Jacob S

    2014-01-01

    Ocean sampling for highly temporal phenomena, such as harmful algal blooms, necessitates a vehicle capable of fast aerial travel interspersed with an aquatic means of acquiring in-situ measurements. Vehicle platforms with this capability have yet to be widely adopted by the oceanographic community. Several animal examples successfully make this aerial/aquatic transition using a flapping foil actuator, offering an existence proof for a viable vehicle design. We discuss a preliminary realization of a flapping wing actuation system for use in both air and water. The wing employs an active in-line motion degree of freedom to generate the large force envelope necessary for propulsion in both fluid media.

  13. Reconstructive Surgery for Severe Penile Inadequacy: Phalloplasty with a Free Radial Forearm Flap or a Pedicled Anterolateral Thigh Flap

    Directory of Open Access Journals (Sweden)

    N. Lumen

    2008-01-01

    Full Text Available Objectives. Severe penile inadequacy in adolescents is rare. Phallic reconstruction to treat this devastating condition is a major challenge to the reconstructive surgeon. Phallic reconstruction using the free radial forearm flap (RFF or the pedicled anterolateral thigh flap (ALTF has been routinely used in female-to-male transsexuals. Recently we started to use these techniques in the treatment of severe penile inadequacy. Methods. Eleven males (age 15 to 42 years were treated with a phallic reconstruction. The RFF is our method of choice; the ALTF is an alternative when a free flap is contraindicated or less desired by the patient. The RFF was used in 7 patients, the ALTF in 4 patients. Mean followup was 25 months (range: 4–49 months. Aesthetic and functional results were evaluated. Results. There were no complications related to the flap. Aesthetic results were judged as “good” in 9 patients and “moderate” in 2 patients. Sensitivity in the RFF was superior compared to the ALTF. Four patients developed urinary complications (stricture and/or fistula. Six patients underwent erectile implant surgery. In 2 patients the erectile implant had to be removed due to infection or erosion. Conclusion. In case of severe penile inadequacy due to whatever condition, a phalloplasty is the preferred treatment nowadays. The free radial forearm flap is still the method of choice. The anterolateral thigh flap can be a good alternative, especially when free flaps are contraindicated, but sensitivity is markedly inferior in these flaps.

  14. Application of skin flaps transplantation in burn surgery in China%皮瓣移植在我国烧伤外科中的应用

    Institute of Scientific and Technical Information of China (English)

    黄晓元

    2008-01-01

    The history and application of surgical flap transplantation in burn wound were briefly reviewed. We outlined skin flap, muscuiocutaneous flap, fascia flap and neurocutaneous vascular flap in this paper and recommended repair deep wounds with flap. All in all, in this review, we hope to provide a meaningful option for clinical application of surgical flap in the future.

  15. Inlet Guide Vane Wakes Including Rotor Effects

    Science.gov (United States)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  16. Rotor instability due to loose rotating part

    Science.gov (United States)

    Muszynska, A.

    1985-01-01

    Loosening of a rotating part from its fixed position on the shaft or a part of the stator which comes loose and begins to turn with the rotor very frequently represents machinery malfunction. The loose part becomes involved in rotative motion mostly due to dry or fluid friction, and thus its motion is very erratic. The loose part can also move axially along the shaft. Detachment of the rotating part causes changes in the rotor balance state. Most often this results in higher unbalance. During steady-state operation the effect of a loose rotating part can manifest itself through heat vibration. It can be diagnosed by observing periodic changes of amplitude and phase of the synchronous response. During start-up (or shutdown) a loose rotating part carrying some amount of unbalance may manifest its dynamic action in the form of subsynchronous vibrations, very similar to those of other instabilities. The objective of this demonstration is to observe the effect of a loose rotating part (fixed, however, in the axial direction) under both steady-state (rotor constant speed) and transient (rotor start-up or shutdown) operation. The dynamic response depends very much on the amount of damping in the system: lubrication of the loose part/shaft surfaces and addition/elimination of aerodynamic drag blades, mounted on the loose disk, significantly change the rotor response.

  17. Performance investigation of the S-Rotors

    Science.gov (United States)

    Bhayo, B. A.; Al-Kayiem, H. H.; Yahaya, N. Z.

    2015-12-01

    This paper presents and discusses results from an experimental investigation of three models of wind S-rotors. Models 1 is modified from conventional Savonius rotor with a single stage and zero offsets zero overlaps; model 2 is three blade single stage wind rotor; and model 3 is double stage conventional Savonius rotor. The three models were designed, fabricated and characterized in terms of their coefficient of performance and dynamic torque coefficient. A special open wind simulator was designed for the test. The optimum parameters for the models were based on previous studies. The results showed that the model 1, model 2 and model 3 has the maximum power coefficient of 0.26, 0.17, and 0.21 at the correspondence tip speed ratio (TSR) of 0.42, 0.39 and 0.46, respectively. Model 1 is further optimized in terms of the aspect ratio resulting in improved power coefficient by 24%. The maximum dynamic torque coefficient of model 1, model 2 and model 3 was found as 0.81, 0.56 and 0.67 at the correspondence minimum TSR of 0.28, 0.21 and 0.17, respectively. It was noted that the all three models have high torque coefficient because the models were tested at higher applied torque on the rotors.

  18. Dynamics and Efficiency of Brownian Rotors

    CERN Document Server

    Bauer, Wolfgang R

    2008-01-01

    Brownian rotors play an important role in biological systems and in future nano-technological applications. However the mechanisms determining their dynamics, efficiency and performance remain to be characterized. Here the F0 portion of the F-ATP synthase is considered as a paradigm of a Brownian rotor. In a generic analytical model we analyze the stochastic rotation of F0-like motors as a function of the driving free energy difference and of the free energy profile the rotor is subjected to. The latter is composed of the rotor interaction with its surroundings, of the free energy of chemical transitions, and of the workload. The dynamics and mechanical efficiency of the rotor depends on the magnitude of its stochastic motion driven by the free energy energy difference and its rectification on the reaction-diffusion path. We analyze which free energy profiles provide maximum flow and how their arrangement on the underlying reaction-diffusion path affects rectification and -- by this -- the efficiency.

  19. Submental flap as an alternative to microsurgical flap in intraoral post-oncological reconstruction in the elderly.

    Science.gov (United States)

    Schonauer, Fabrizio; Di Martino, Annalena; Nele, Gisella; Santoro, Mariangela; Dell'Aversana Orabona, Giovanni; Califano, Luigi

    2016-09-01

    Oral and oropharyngeal squamous cell carcinoma (Scc) occur most commonly in middle-aged and elderly individuals. Free flaps are commonly used for reconstruction of extensive tumor resection defects in the oral cavity. Age alone is not an independent variable for increased risk in microvascular reconstruction; however operative time and ASA risk score correlated with medical complications but not with surgical complications. The submental island flap has proven to be a reliable alternative in reconstruction of composite oral cavity defects for its thinness, pliability and versatility in design, shared by the radial forearm free flap, and its advantageous donor site. The submental flap can be easily raised and involves shorter operative time and hospital stay compared to the free-flap procedure. It can be an excellent choice in patients with a high ASA risk score, moreover in elderly patients, where the potential complications linked to microsurgical procedures are avoided. PMID:27255573

  20. Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    In a thermally driven rotary motor made from double-walled carbon nanotubes, the rotor (inner tube) can be actuated to rotate within the stator (outer tube) when the environmental temperature is high enough. A sudden stoppage of the rotor can occur when the inner tube has been actuated to rotate at a stable high speed. To find the mechanisms of such sudden stoppages, eight motor models with the same rotor but different stators are built and simulated in the canonical NVT ensembles. Numerical results demonstrate that the sudden stoppage of the rotor occurs when the difference between radii is near 0.34 nm at a high environmental temperature. A smaller difference between radii does not imply easier activation of the sudden rotor stoppage. During rotation, the positions and electron density distribution of atoms at the ends of the motor show that a sp1 bonded atom on the rotor is attracted by the sp1 atom with the biggest deviation of radial position on the stator, after which they become two sp2 atoms. The strong bond interaction between the two atoms leads to the loss of rotational speed of the rotor within 1 ps. Hence, the sudden stoppage is attributed to two factors: the deviation of radial position of atoms at the stator’s ends and the drastic thermal vibration of atoms on the rotor in rotation. For a stable motor, sudden stoppage could be avoided by reducing deviation of the radial position of atoms at the stator’s ends. A nanobrake can be, thus, achieved by adjusting a sp1 atom at the ends of stator to stop the rotation of rotor quickly. (paper)

  1. RESEARCH ON KNOWLEDGE-BASED CAPP SYSTEM FOR ROTOR FORGING

    Institute of Scientific and Technical Information of China (English)

    Wang Leigang; Deng Dongrnei; Liu Zhubai

    2000-01-01

    Guided by developing forging technology theory,designing rules on rotor forging process are summed up.Knowledge-based CAPP system for rotor forging is created.The system gives a rational and optimum process.

  2. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    Science.gov (United States)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  3. Effect of heparin on prevention of flap loss in microsurgical free flap transfer: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xuan-Liang Pan

    Full Text Available The effectiveness of heparin for thromboprophylaxis during microvascular free flap transfer is uncertain. The purpose of this meta-analysis was to determine the effect of heparin on the prevention of flap loss in microsurgical free flap transfer.A search of PubMed, Cochrane databases, and Google Scholar using combinations of the search terms heparin, free flap, flap loss, free tissue transfer was conducted on March 15, 2013. Inclusion criteria were: 1 Prospective randomized trials. 2 Retrospective, non-randomized studies. 3 Patients received free tissue transfer. Flap loss rate was used to evaluate treatment efficacy. Odds ratios (ORs with 95% confidence intervals (CI were calculated and compared between therapies. Four studies meet the criteria for analysis and were included. Two studiescompared aspirin and heparin, and the ORs of the 2 studies were 1.688 and 2.087. The combined OR of 2.003 (95% CI 0.976-4.109, p = 0.058 did not indicate any significant difference between heparin and aspirin therapies. Two studiescompared high and low doses of dalteparin/heparin therapies, and the ORs of the 2 studies were 4.691 and 11.00. The combined OR of 7.810 (95% CI 1.859-32.808, p = 0.005 revealed a significant difference indicating that high dose dalteparin or heparin therapy is associated with a greater flap loss rate than low dose therapy. Heparin and aspirin prophylaxis are associated with similar flap loss rates after free flap transfer, and high dose dalteparin or heparin therapy is associated with a greater flap loss rate than low dose therapy.

  4. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Science.gov (United States)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  5. Analysis on structural characteristics of rotors in twin-rotor cylinder-embedded piston engine

    Institute of Scientific and Technical Information of China (English)

    陈虎; 潘存云; 徐海军; 邓豪; 韩晨

    2014-01-01

    Twin-rotor cylinder-embedded piston engine is proposed for dealing with the sealing problems of rotors in twin-rotor piston engine where the existent mature sealing technologies for traditional reciprocating engine can be applied. The quantity and forms of its sealing surfaces are reduced and simplified, and what’s more, the advantages of twin-rotor piston engine are inherited, such as high power density and no valve mechanism. Given the motion law of two rotors, its kinematic model is established, and the general expression for some parameters related to engine performance, such as the trajectory, displacement, velocity and acceleration of the piston and centroid trajectory, angular displacement, velocity and acceleration of the rod are presented. By selecting different variation patterns of relative angle of two rotors, the relevant variables are compared. It can be concluded that by designing the relative angle function of two rotors, the volume variation of working chamber can be changed. However, a comprehensive consideration for friction and vibration is necessary because velocity and acceleration are quite different in the different functions, the swing magnitude of rod is proportional to link ratioλ, and the position of rod swing center is controlled by eccentricitye. In order to reduce the lateral force, a smaller value ofλshould be selected in the case of the structure, and the value ofe should be near 0.95. There is no relationship between the piston stroke and the variation process of relative angle of two rotors, the former is only proportional to the amplitude of relative angle of two rotors.

  6. Algebraic realization of coupled rotor dynamics

    International Nuclear Information System (INIS)

    The relation between shape variables (β,γ) of the collective model and irrep labels (λ,μ) of the SU(3) shell model is generalized to a coupled rotor picture, with one rotor representing protons π and one neutrons (ν).The joint distribution (β,γ) is characterized by the parameters (βπ, γπ), (βν,γν) and three Euler angles describing the relative orientation of proton and neutron sub-systems. It is shown analytically that the rotor construction for a triaxial and an axially symmetric shape corresponds to a (λπ,μπ)direct-product(λν,μν=0) → (λ,μ)ρ=1 coupling in the SU(3) model

  7. Eigenfrequency sensitivity analysis of flexible rotors

    Directory of Open Access Journals (Sweden)

    Šašek J.

    2007-10-01

    Full Text Available This paper deals with sensitivity analysis of eigenfrequencies from the viewpoint of design parameters. The sensitivity analysis is applied to a rotor which consists of a shaft and a disk. The design parameters of sensitivity analysis are the disk radius and the disk width. The shaft is modeled as a 1D continuum using shaft finite elements. The disks of rotating systems are commonly modeled as rigid bodies. The presented approach to the disk modeling is based on a 3D flexible continuum discretized using hexahedral finite elements. The both components of the rotor are connected together by special proposed couplings. The whole rotor is modeled in rotating coordinate system with considering rotation influences (gyroscopic and dynamics stiffness matrices.

  8. Wobbling geometry in simple triaxial rotor

    CERN Document Server

    Shi, W X

    2014-01-01

    The spectroscopy properties and angular momentum geometry for the wobbling motion of a simple triaxial rotor are investigated within the triaxial rotor model up to spin $I=40\\hbar$. The obtained exact solutions of energy spectra and reduced quadrupole transition probabilities are compared to the approximate analytic solutions by harmonic approximation formula and Holstein-Primakoff formula. It is found that the low lying wobbling bands can be well described by the analytic formulas. The evolution of the angular momentum geometry as well as the $K$-distribution with respect to the rotation and the wobbling phonon excitation are studied in detail. It is demonstrated that with the increasing of wobbling phonon number, the triaxial rotor changes its wobbling motions along the axis with the largest moment of inertia to the axis with the smallest moment of inertia. In this process, a specific evolutionary track that can be used to depict the motion of a triaxial rotating nuclei is proposed.

  9. On aerodynamic design of the Savonius windmill rotor

    Science.gov (United States)

    Mojola, O. O.

    This paper examines under field conditions the performance characteristics of the Savonius windmill rotor. Test data were collected on the speed, torque and power of the rotor at a large number of wind speeds for each of seven values of the rotor overlap ratio. Field testing procedures are critically appraised and a unified approach is suggested. The performance data of the Savonius rotor are also fully discussed and design criteria established.

  10. A study of helicopter rotor dynamics and modeling methods

    OpenAIRE

    Hiatt, Daniel S.

    1995-01-01

    The rotor system is the primary source of vibratory forces on a helicopter. Vibratory forces result from the rotor system response to dynamic and aerodynamic loading. This thesis discusses sources of excitation, and investigates rotor system modeling methods. Computer models based on finite element and Mykiestad methods are developed and compared for the free and forced vibration cases of a nniform rotor blade. The modeling assumptions and the effects of non-iniform physical parameters are di...

  11. Multiresolution Wavelet Analysis of the Dynamics of a Cracked Rotor

    OpenAIRE

    Jerzy T. Sawicki; Sen, Asok K.; Grzegorz Litak

    2009-01-01

    We examine the dynamics of a healthy rotor and a rotor with a transverse crack, which opens and closes due to its self weight. Using discrete wavelet transform, we perform a multiresolution analysis of the measured vibration signal from each of these rotors. In particular, the measured vibration signal is decomposed into eight frequency bands, and the rms amplitude values of the healthy and cracked rotors are compared in the three lowest-frequency bands. The results indicate that the rms vibr...

  12. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    OpenAIRE

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understanding the rotor performance and blade condition. A discussion on the dual character of blades as rotating structures results in two different interrogation strategies for external and internal dynamic...

  13. Hybrid algorithm for rotor angle security assessment in power systems

    OpenAIRE

    D. Prasad Wadduwage; Udaya D. Annakkage; Christine Qiong Wu

    2015-01-01

    Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA) in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on ...

  14. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  15. Investigation of piezoelectric flaps for load alleviation using CFD; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, J.C.

    2010-03-15

    Cost efficient wind power generation demands for large wind turbines with a long lifetime. These demands place high interests on sophisticated load control techniques such as deformable trailing edge flaps. In this work a previously tested prototype airfoil was investigated by using the 2D incompressible RANS solver EllipSys2D. The prototype was built with a Risoe-B1-18 airfoil where piezoelectric actuators THUNDER TH-6R were attached at the trailing edge to realize a movable flap. The results of the simulation were compared to measurements of the previous wind tunnel test and comprehensive steady state computations were conducted to gain information about the general airfoil properties. The model was subsequently used to investigate aero-servo-elastic effects on the 2D airfoil section exposed to a fluctuating inflow. It is explained how a fluctuating inflow was simulated with EllipSys2D and how the CFD solver was coupled with a 3 DOF structural model and with two different control algorithms. Control 1 used the measured AOA in front of the LE as input, Control 2 used the pressure difference between suction and pressure side as input. The model showed a substantial load reduction potential for the present prototype airfoil. For a wind step from 10 m/s to 10.5 m/s the standard deviation of the structural deflection normal to the rotor plane could be reduced with up to 98 % (Control 1) and 96 % (Control 2). A 4 s turbulent inflow with TI=2.2 % could be reduced with up to 81 % (Control 1) and 82 % (Control 2). For a 12 s inflow with TI=2.4 % the standard deviation could be reduced with up to 68 % (Control 1) and 67 % (Control 2). The influence of possible time lags inside the control loop on the reduction potential of the prototype was also investigated. For a 12 s inflow with a tripled turbulence intensity of TI=7.7 % the prototype airfoil could still reach a reduction of up to 54 %. For an extended flap range of -6 to +6 degrees the reduction could be returned to 66

  16. On the Classification of Universal Rotor-Routers

    CERN Document Server

    He, Xiaoyu

    2011-01-01

    The combinatorial theory of rotor-routers has connections with problems of statistical mechanics, graph theory, chaos theory, and computer science. A rotor-router network defines a deterministic walk on a digraph G in which a particle walks from a source vertex until it reaches one of several target vertices. Motivated by recent results due to Giacaglia et al., we study rotor-router networks in which all non-target vertices have the same type. A rotor type r is universal if every hitting sequence can be achieved by a homogeneous rotor-router network consisting entirely of rotors of type r. We give a conjecture that completely classifies universal rotor types. Then, this problem is simplified by a theorem we call the Reduction Theorem that allows us to consider only two-state rotors. A rotor-router network called the compressor, because it tends to shorten rotor periods, is introduced along with an associated algorithm that determines the universality of almost all rotors. New rotor classes, including boppy ro...

  17. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  18. 14 CFR 33.92 - Rotor locking tests.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued rotation is prevented by a means to lock the rotor(s), the engine must be subjected to a test that...

  19. Versatility of the buccinator myomucosal flap in atypical palate reconstructions.

    Science.gov (United States)

    Franco, Diogo; Rocha, Diógenes; Arnaut, Marcio; Freitas, Renato; Alonso, Nivaldo

    2014-10-01

    Initially described for the treatment of cleft palate, the anatomical bases of the buccinator myomucosal flap were described by Bozola et al. (1989). A meticulous search found several reports of its use for the correction of post-palatoplasty oronasal fistulas, with only a few reports of its use for other palate-related pathologies. A retrospective analysis was undertaken of patients treated by the Plastic Surgery Units at the Rio de Janeiro Federal University Hospital (HU-UFRJ) and the São Paulo University Hospital (HC-USP), suffering from palatal lesions not associated with a cleft palate and treated through the use of buccinator myomucosal flaps. The average age was 47 years, with 70% of the patients being male. Assorted aetiologies were noted for palatal defects. When there was significant damage to the soft palate, a superior base pharyngeal flap was used. Of this total, in 71% of the cases only the buccinator myomucosal flap was used. In all cases, the flaps were unilateral, adequately covering the defects in question. The buccinator myomucosal flap is a good option for reconstructing medium to large palate defects, as it is a flap with good vascularization and dimension, in addition to an ample arc of rotation, with primary closure of the donor site, without adding significant morbidity.

  20. Superballistic wavepacket spreading in double kicked rotors

    Science.gov (United States)

    Fang, Ping; Wang, Jiao

    2016-08-01

    We investigate possible ways in which a quantum wavepacket spreads. We show that in a general class of double kicked rotor system, a wavepacket may undergo superballistic spreading; i.e., its variance increases as the cubic of time. The conditions for the observed superballistic spreading and two related characteristic time scales are studied. Our results suggest that the symmetry of the studied model and whether it is a Kolmogorov-Arnold-Moser system are crucial to its wavepacket spreading behavior. Our study also sheds new light on the exponential wavepacket spreading phenomenon previously observed in the double kicked rotor system.

  1. Edge states of periodically kicked quantum rotors.

    Science.gov (United States)

    Floss, Johannes; Averbukh, Ilya Sh

    2015-05-01

    We present a quantum localization phenomenon that exists in periodically kicked three-dimensional rotors, but is absent in the commonly studied two-dimensional ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at J=0. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  2. Component mode synthesis of large rotor systems

    Science.gov (United States)

    Li, D. F.; Gunter, E. J.

    1981-01-01

    A scheme is presented for calculating the vibrations of large multi-component flexible rotor systems based on the component mode synthesis method. It is shown that, by a modal expansion of the elastic interconnecting elements, the system modal equation can be conveniently constructed from the undamped eigen representations of the component subsystems. The capability of the component mode method is demonstrated in two examples: a transient simulation of a two-spool gas turbine engine equipped with a squeeze-film damper; and an unbalance response analysis of the Space Shuttle Main Engine oxygen turbopump in which the dynamics of the rotor and the housing are both considered.

  3. CFD simulations of the MEXICO rotor

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik

    2011-01-01

    The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...

  4. Rotor/bearing system dynamic stiffness measurements

    Science.gov (United States)

    Muszynska, A.

    1985-01-01

    Sweep perturbation testing as used in Modal Analysis when applied to a rotating machine has to take into consideration the machine dynamic state of equilibrium at its operational rotative speed. This stands in contrasts to a static equilibrium of nonrotating structures. The rotational energy has a significant influence on rotor dynamic characteristics. The best perturbing input for rotating machines is a forward or reverse rotating, circular force applied directly to the shaft. Determination of Dynamic Stiffness Characteristics of the rotor bearing system by nonsynchronous perturbation of a symmetric rotating shaft supported in one relatively rigid and one oil lubricated bearing.

  5. Buccinator-based myomucosal flaps in intraoral reconstruction: A review and new classification

    OpenAIRE

    Rahpeyma, Amin; Khajehahmadi, Saeedeh

    2013-01-01

    The buccinator-based myomucosal flaps are axial pattern flaps that are suitable in reconstruction of medium sized oral soft tissue defects; they are rich in blood supply, have appropriate thickness and considerable mucosal paddle, and they can secrete saliva. The present study describes surgical anatomy and blood supply of these flaps and demonstrates all possible modifications of these flaps (9 modifications). Many terms (> 10) have been used to refer to buccinator-based myomucosal flaps in ...

  6. Sequential and Multistep Substrate Interrogation Provides the Scaffold for Specificity in Human Flap Endonuclease 1

    KAUST Repository

    Sobhy, M.

    2013-06-06

    Human flap endonuclease 1 (FEN1), one of the structure-specific 5\\' nucleases, is integral in replication, repair, and recombination of cellular DNA. The 5\\' nucleases share significant unifying features yet cleave diverse substrates at similar positions relative to 5\\' end junctions. Using single-molecule Förster resonance energy transfer, we find a multistep mechanism that verifies all substrate features before inducing the intermediary-DNA bending step that is believed to unify 5\\' nuclease mechanisms. This is achieved by coordinating threading of the 5\\' flap of a nick junction into the conserved capped-helical gateway, overseeing the active site, and bending by binding at the base of the junction. We propose that this sequential and multistep substrate recognition process allows different 5\\' nucleases to recognize different substrates and restrict the induction of DNA bending to the last common step. Such mechanisms would also ensure the protection ofDNA junctions from nonspecific bending and cleavage. 2013 The Authors.

  7. AN ANATOMIC STUDY OF ADIPOFASCIAL FLAP OF THE LEG

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate the vascular anatomy of the subcutaneous tissues and fascias of the leg. Methods Four fresh cadaver legs which had been injected with colored latex were dissected under magnification to identify the origin, course an distribution of vessels from the subfascial level to the skin. The adipofascial flap was harvested from the whole medial side of the leg and fascial flap from other leg of the same cadaver. The posterior tibial artery and its first and second supra-malleolus septal arteries were retained in these flaps. Selective injection of China ink through posterior tibial artery was carried out, and dimension of ink- stained areas was recorded. Results Three main trunk vessels of the leg gave off branches to deep fascia and subcutaneous tissues, forming a large vascular plexus in the subcutaneous tissues on the deep fascia and a deli- cate, but dense and well anastomosed vascular plexus beneath the deep fascia. The vascular plexus in the subcu- taneous tissues ran deeper than the superficial venous system. The areas stained by selective injection in adipo- fascial flaps were larger than those in the fascial flaps. Conclusion Subcutaneous tissues and deep fascia can be considered as an anatomic entity nourished by two very well developed vascular networks which lie on both sides of deep fascia. Incorporation of the deep fascia can not only protect the subcutaneous tissue from being lacerated during raising of the flap, but also enhance vascularity of the adipofascial flap. Leaving superficial veins intact while raising the skin flap does not jeopardize the vascular plexus in the subcutaneous tissues and can preserve the superficial lymnphatic vessels, so that postoperative edema of the flap or the leg could be avoided.

  8. Vascular Endothelium Growth Factor, Surgical Delay, and Skin Flap Survival

    Science.gov (United States)

    Lineaweaver, William C.; Lei, Man-Ping; Mustain, William; Oswald, Tanya M.; Cui, Dongmei; Zhang, Feng

    2004-01-01

    Objective: Cytokines may be a mechanism by which surgical delay can increase flap survival. We previously found that preoperative vascular endothelium growth factor (VEGF) administration in the rat transverse rectus abdominis myocutaneous (TRAM) flap could improve skin paddle survival. In this study, we used partial elevation of the rat TRAM flap as a surgical delay to assess endogenous cytokine expression and tissue survival comparable to undelayed TRAM flaps. Methods: In Part I, TRAM flaps underwent surgical delay procedures; 7 days later, the flaps were completely elevated and reinset. At the same time, other flaps were raised and reinset without delay. Skin paddle survival in both groups was evaluated at 7 days. In Part II, skin biopsies from TRAM zones I to IV were taken at the time of delay and at intervals of 12, 24, 48, and 72 hours. Specimens were assessed for selected cytokine gene expression by reverse transcription-polymerase chain reaction analysis (TR-PCR). Results: Surgical delay significantly (P < 0.001) increased skin paddle survival in the delayed TRAM flaps (16.14 ± 1.53 cm, 81.9%) compared with undelayed flaps (7.68 ± 3.16 cm, 40.9%). TGF-β and PDGF expressions were not changed by surgical delay, but basic fibroblast growth factor (bFGF) and VEGF expressions increased significantly (P < 0.05 and P < 0.01) after delay. Conclusions: In the rat TRAM model, surgical delay resulted in increased VEGF expression and increased skin paddle survival. These results correlate with previous studies showing the preoperative injection of VEGF increases skin paddle survival. VEGF may be an important element in the delay phenomenon and may be an agent for pharmacological delay. PMID:15166966

  9. Adipofascial Anterolateral Thigh Flap Safety: Applications and Complications

    Directory of Open Access Journals (Sweden)

    Tommaso Agostini

    2013-03-01

    Full Text Available Background A thinned anterolateral thigh (ALT flap is often harvested to achieve optimalskin resurfacing. Several techniques have been described to thin an ALT flap including anadipocutaneous flap, an adipofascial flap and delayed debulking.Methods By systematically reviewing all of the available literature in English and French, thepresent manuscript attempts to identify the common surgical indications, complications anddonor site morbidity of the adipofascial variant of the ALT flap. The studies were identifiedby performing a systematic search on Medline, Ovid, EMBASE, the Cochrane Database ofSystematic Reviews, Current Contents, PubMed, Google, and Google Scholar.Results The study selection process was adapted from the Preferred Reporting Items forSystematic Reviews and Meta-Analyses statement, and 15 articles were identified usingthe study inclusion criteria. These articles were then reviewed for author name(s, year ofpublication, flap dimensions and thickness following defatting, perforator type, type of transfer,complications, thinning technique, number of cases with a particular area of application anddonor site morbidity.Conclusions The adipofascial variant of the ALT flap provides tissue to fill large defects andimprove pliability. Its strong and safe blood supply permits adequate immediate or delayeddebulking without vascular complications. The presence of the deep fascia makes it possibleto prevent sagging by suspending and fixing the flap for functional reconstructive purposes(e.g., the intraoral cavity. Donor site morbidity is minimal, and thigh deformities can bereduced through immediate direct closure or liposuction and direct closure. A safe bloodsupply was confirmed by the rate of secondary flap debulking.

  10. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors

    Science.gov (United States)

    Hisao, Grant S.; Harland, Michael A.; Brown, Robert A.; Berthold, Deborah A.; Wilson, Thomas E.; Rienstra, Chad M.

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  11. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors.

    Science.gov (United States)

    Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries. PMID:26905816

  12. Numerical and Experimental Modal Control of Flexible Rotor Using Electromagnetic Actuator

    Directory of Open Access Journals (Sweden)

    Edson Hideki Koroishi

    2014-01-01

    Full Text Available The present work is dedicated to active modal control applied to flexible rotors. The effectiveness of the corresponding techniques for controlling a flexible rotor is tested numerically and experimentally. Two different approaches are used to determine the appropriate controllers. The first uses the linear quadratic regulator and the second approach is the fuzzy modal control. This paper is focused on the electromagnetic actuator, which in this case is part of a hybrid bearing. Due to numerical reasons it was necessary to reduce the size of the model of the rotating system so that the design of the controllers and estimator could be performed. The role of the Kalman estimator in the present contribution is to estimate the modal states of the system and to determine the displacement of the rotor at the position of the hybrid bearing. Finally, numerical and experimental results demonstrate the success of the methodology conveyed.

  13. The flap by flap dissection in terminal ballistic applied to less lethal weapons.

    Science.gov (United States)

    de Freminville, Humbert; Rongieras, Fréderic; Prat, Nicolas; Voiglio, Eric J

    2011-06-01

    Medical examiners often have to solve questions such as firing distance and bullet trajectory for lethal weapons. Knowledge in the field of terminal ballistics has increased during the last 30 years and layer by layer dissection reveals superficial wounds that can be linked with the permanent cavity. At the end of the 1990s, terminal ballistics also focused on less lethal weapons and their wounds. Here, 2 different less lethal weapons with single bullets were tested on nonembalmed and undressed cadavers (N = 26) at different ranges and speeds. We have developed a technique for dissection which we call flap by flap dissection that reveals the advantage of the bullet-skin-bone entity, the absence of wounds linking its components and range of less lethal weapons. PMID:20110799

  14. State of the art and prospectives of smart rotor control for wind turbines

    Science.gov (United States)

    Barlas, T. K.; van Kuik, G. A. M.

    2007-07-01

    The continued reduction in cost of energy of wind turbines, especially with the increasingly upscaling of the rotor, will require contribution from technology advances in many areas. Reducing loads on the rotor can offer great reduction to the total cost of wind turbines. With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for locally distributed aerodynamic control systems with built-in intelligence on the blades. Such concepts are often named in popular terms "smart structures" or "smart rotor control". This paper focuses on research regarding active rotor control and smart structures for load reduction. It presents an overview of available knowledge and future concepts on the application of active aerodynamic control and smart structures for wind turbine applications. The goal of the paper is to provide a perspective on the current status and future directions of the specific area of research. It comprises a novel attempt to summarize and analyze possible advanced control systems for future wind turbines. The overview builds on existing research on helicopter rotors and expands similar concepts for wind turbine applications, based on ongoing research in the field. Research work has been analyzed through UPWIND project's work package on Smart Rotor Blades and Rotor Control. First, the specifications of unsteady loads, the state of the art of modern control for load reduction and the need for more advanced and detailed active aerodynamic control are analyzed. Also, overview of available knowledge in application of active aerodynamic control on rotating blades, from helicopter research, is provided. Concepts, methods, and achieved results are presented. Furthermore, R&D so far and up-to-date ongoing progress of similar applications for wind turbines are presented. Feasibility studies for wind turbine applications, preliminary performance evaluation and novel computational and experimental

  15. The infrahyoid flap: a comprehensive review of an often overlooked reconstructive method.

    Science.gov (United States)

    Deganello, Alberto; Leemans, C René

    2014-08-01

    The infrahyoid flap is a myocutaneous pedicled flap mainly nourished by the superior thyroid vessels through the perforators of the infrahyoid muscles. This thin and pliable flap provides a skin island of about 7 by 4 cm from the central part of the anterior neck. The flap can be transferred on its pedicle of superior thyroid artery and vein to reconstruct medium sized head and neck defects created after cancer ablation. We have successfully used this flap in a series of 40 cases with no total flap loss and with 1 case of superficial skin necrosis. The aim of this review is to highlight the clinical usefulness of this pedicled flap even in the microvascular free flap era. A comprehensive review of the available literature reporting on the infrahyoid flap has been carried out using a web search. The history of the infrahyoid flap, the surgical technique with technical innovations, the clinical utility and limitations of this flap, are reported and discussed. Among the 7 larger series (cohort larger than 50 cases) a total of 956 flaps were performed, and the global success rate was 91.7%, with failures being mainly related to partial skin necrosis, as the rate of total (skin and muscle) flap necrosis was only 1%. This flap is reliable, easy to harvest during neck dissection, oncologically safe, it does carry a negligible donor site morbidity. This paper highlights how the infrahyoid flap can represent an excellent reconstructive solution in selected patients and head and neck sites. PMID:24856306

  16. Tolerance of gastric mucosal flap to postoperative irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Devineni, V.R.; Hayden, R.; Fredrickson, J.; Sicard, G. (Washington Univ. Medical Center, St. Louis, MO (USA))

    1991-05-01

    When malignant lesions of the oral cavity, base of tongue, and oropharynx are treated with radical resection, adequate reconstruction is required. The free gastric mucosal flap with microvascular transfer is being used with increasing frequency at Washington University Medical Center. Because of the advanced nature of the primary lesions, most patients also require postoperative radiation therapy. In this paper the tolerance of the gastric mucosal flap to postoperative radiation therapy is reviewed. The changes resulting from radiation therapy in the mucosal flap were found to be acceptable, and no major complications were encountered.

  17. Management of a Traumatic Flap Dislocation Seven Years after LASIK

    Directory of Open Access Journals (Sweden)

    Majid Moshirfar

    2011-01-01

    Full Text Available Seven years after uneventful laser in situ keratomileusis (LASIK, a 48-year-old woman presented one week after being hit with an iron cord with blurry vision, pain, and irritation. The injury resulted in traumatic flap dislocation, epithelial ingrowth, and macrostriae. Following epithelial removal, the flap was refloated and repositioned. Nine interrupted sutures were used to secure the flap. Three-weeks after surgery with no sutures remaining, the epithelial ingrowth and macrostriae had resolved with a visual acuity of 20/20.

  18. Rotation-precession and rotor-rotor coupling in 4-methyl- pyridine

    International Nuclear Information System (INIS)

    The low temperature rotational dynamics of methyl groups in 4-methyl-pyridine is explained in terms of rotation-precession and rotor-rotor coupling. Initial estimates of the precession angle and the rotational potentials are obtained from molecular mechanics calculations. Experimental spectra are calculated from these potentials by numerical solution of Schroedinger's equation for clusters of coupled rotors embedded into a greater ensemble of rotors treated in the mean field approximation. The precession angle and the rotational potentials are adjusted to reproduce new high resolution INS spectra of protonated 4-methyl-pyridine measured at well defined spin temperatures. Excellent agreement with the experimental data is obtained for fully protonated 4-methyl-pyridine. Studying methyl group dynamics in 4MP offers the opportunity to measure potential energy changes on experimentally determined trajectories, thus providing valuable information that can be used to test the reliability of ab initio calculations and empirical force fields for the solid state

  19. Computational Study of Flow Interactions in Coaxial Rotors

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Although the first idea of coaxial rotors appeared more than 150 years ago, most helicopters have used single main-rotor/tail-rotor combination. Since reactive moments of coaxial rotors are canceled by contra-rotation, no tail rotor is required to counter the torque generated by the main rotor. Unlike the single main rotor design that distributes power to both main and tail rotors, all of the power for coaxial rotors is used for vertical thrust. Thus, no power is wasted for anti-torque or directional control. The saved power helps coaxial rotors reach a higher hover ceiling than single rotor helicopters. Another advantage of coaxial rotors is that the overall rotor diameter can be reduced for a given vehicle gross weight because each rotor provides a maximum contribution to vertical thrust to overcome vehicle weight. However, increased mechanical complexity of the hub has been one of the challenges for manufacturing coaxial rotorcraft. Only the Kamov Design Bureau of Russia had been notably successful in production of coaxial helicopters until Sikorsky built X2, an experimental compound helicopter. Recent developments in unmanned aircraft systems and high-speed rotorcraft have renewed interest in the coaxial configuration. Multi-rotors are frequently used for small electric unmanned rotorcraft partly due to mechanical simplicity. The use of multiple motors provides redundancy as well as cost-efficiency. The multi-rotor concept has rarely been used until recently because of its inherent stability and control problems. However, advances in inexpensive electronic flight control systems have opened the floodgates for small drones using multirotors. Coaxial rotors have started to appear in some multi-rotor configurations. Small coaxial rotors have often been designed using a hundred year old approach that is "sketch, build, fly, and iterate." In that approach, there is no systematic way to explore trade-offs or determine logical next steps. It is neither possible to

  20. 基于复合前馈补偿的混合磁悬浮CMG转子主动振动控制%Active vibration control of an active-passive hybrid magnetically suspended rotor based on composite feedforward compensation method

    Institute of Scientific and Technical Information of China (English)

    崔培玲; 盖玉欢; 李海涛

    2015-01-01

    Whenanactive-passivehybridmagneticallysuspendedControlMomentGyro(CMG)rotorrotates, synchronous vibrations will be caused.To achieve its active control,the coupling characteristics along with the change of the radial deflection angles between passive and active bearings were analyzed.On this basis,a composite feedforward compensation method for active vibration control of active-passive hybrid magnetically suspended rotor was proposed.The impact of coupling magnetic forces between active and passive bearings was taken into account in the process of lead feedforward compensation for displacement stiffness forces.And the coupling current stiffness forces were compensated between the two radial passages.The simulation results show that,the proposed method can reduce the synchronous bearing forces to 9 .3% of those without compensating the couplings.%为实现混合磁悬浮控制力矩陀螺转子高速旋转时产生与转速同频振动的主动控制,分析被动磁轴承径向平动自由度耦合磁力随转子径向扭转角的变化规律,提出基于复合前馈补偿的混合磁悬浮转子主动振动控制方法;在同频位移刚度力超前前馈补偿中考虑被动磁轴承径向耦合磁力影响,并在两径向通道之间补偿同频耦合电流刚度力。仿真结果表明,该方法可使同频轴承力减小至未补偿前的9.3%,从而验证该方法的有效性。