WorldWideScience

Sample records for active fault isolation

  1. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  2. Active Fault Detection and Isolation for Hybrid Systems

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas

    2009-01-01

    An algorithm for active fault detection and isolation is proposed. In order to observe the failure hidden due to the normal operation of the controllers or the systems, an optimization problem based on minimization of test signal is used. The optimization based method imposes the normal and faulty...... models predicted outputs such that their discrepancies are observable by passive fault diagnosis technique. Isolation of different faults is done by implementation a bank of Extended Kalman Filter (EKF) where the convergence criterion for EKF is confirmed by Genetic Algorithm (GA). The method is applied...

  3. Robust Mpc for Actuator–Fault Tolerance Using Set–Based Passive Fault Detection and Active Fault Isolation

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-03-01

    Full Text Available In this paper, a fault-tolerant control (FTC scheme is proposed for actuator faults, which is built upon tube-based model predictive control (MPC as well as set-based fault detection and isolation (FDI. In the class of MPC techniques, tubebased MPC can effectively deal with system constraints and uncertainties with relatively low computational complexity compared with other robust MPC techniques such as min-max MPC. Set-based FDI, generally considering the worst case of uncertainties, can robustly detect and isolate actuator faults. In the proposed FTC scheme, fault detection (FD is passive by using invariant sets, while fault isolation (FI is active by means of MPC and tubes. The active FI method proposed in this paper is implemented by making use of the constraint-handling ability of MPC to manipulate the bounds of inputs.

  4. Fault isolation techniques

    Science.gov (United States)

    Dumas, A.

    1981-01-01

    Three major areas that are considered in the development of an overall maintenance scheme of computer equipment are described. The areas of concern related to fault isolation techniques are: the programmer (or user), company and its policies, and the manufacturer of the equipment.

  5. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  6. Active fault detection and isolation of discrete-time linear time-varying systems: a set-membership approach

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba

    2013-01-01

    Active fault detection and isolation (AFDI) is used for detection and isolation of faults that are hidden in the normal operation because of a low excitation signal or due to the regulatory actions of the controller. In this paper, a new AFDI method based on set-membership approaches is proposed...... un-falsified, the AFDI method is used to generate an auxiliary signal that is injected into the system for detection and isolation of faults that remain otherwise hidden or non-isolated using passive FDI (PFDI) methods. Having the set-valued estimation of the states for each model, the proposed AFDI...... method finds an optimal input signal that guarantees FDI in a finite time horizon. The input signal is updated at each iteration in a decreasing receding horizon manner based on the set-valued estimation of the current states and un-falsified models at the current sample time. The problem is solved...

  7. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  8. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2010-01-01

    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...... to the quality of decisions given to navigators....

  9. Fault Detection and Isolation for Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2002-01-01

    This article realizes nonlinear Fault Detection and Isolation for actuators, given there is no measurement of the states in the actuators. The Fault Detection and Isolation of the actuators is instead based on angular velocity measurement of the spacecraft and knowledge about the dynamics...... of the satellite. The algorithms presented in this paper are based on a geometric approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithms are discussed....

  10. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...... and Kucera) parameterization. Conditions are given for exact detection and isolation of parametric faults in closed-loop uncertain systems....

  11. Fault Detection and Isolation using Eigenstructure Assignment

    DEFF Research Database (Denmark)

    Jørgensen, R. B.; Patton, R.; Chen, J.

    1994-01-01

    The purpose of this article is to investigate the robustness to model uncertainties of observer based fault detection and isolation. The approach is designed with a straight forward dynamic nad the observer.......The purpose of this article is to investigate the robustness to model uncertainties of observer based fault detection and isolation. The approach is designed with a straight forward dynamic nad the observer....

  12. Fault Detection/Isolation Verification,

    Science.gov (United States)

    1982-08-01

    63 - A I MCC ’I UNCLASSIFIED SECURITY CLASSIPICATION OP THIS PAGE tMh*f Dal f&mered, REPORT D00CUMENTATION PAGE " .O ORM 1. REPORT NUM.9ft " 2. GOVT...test the performance of th .<ver) DO 2" 1473 EoIoTON OP iNov os i OSoLTe UNCLASSIFIED SECURITY CLASSIPICATION 0 T"IS PAGE (P 3 . at Sted) I...UNCLASSIFIED Acumy, C .AMICATIN Of THIS PAGS. (m ... DO&.m , Algorithm on these netowrks , several different fault scenarios were designed for each network. Each

  13. Multi-thresholds for fault isolation in the presence of uncertainties.

    Science.gov (United States)

    Touati, Youcef; Mellal, Mohamed Arezki; Benazzouz, Djamel

    2016-05-01

    Monitoring of the faults is an important task in mechatronics. It involves the detection and isolation of faults which are performed by using the residuals. These residuals represent numerical values that define certain intervals called thresholds. In fact, the fault is detected if the residuals exceed the thresholds. In addition, each considered fault must activate a unique set of residuals to be isolated. However, in the presence of uncertainties, false decisions can occur due to the low sensitivity of certain residuals towards faults. In this paper, an efficient approach to make decision on fault isolation in the presence of uncertainties is proposed. Based on the bond graph tool, the approach is developed in order to generate systematically the relations between residuals and faults. The generated relations allow the estimation of the minimum detectable and isolable fault values. The latter is used to calculate the thresholds of isolation for each residual. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Methanogenic archaea isolated from Taiwan's Chelungpu fault.

    Science.gov (United States)

    Wu, Sue-Yao; Lai, Mei-Chin

    2011-02-01

    Terrestrial rocks, petroleum reservoirs, faults, coal seams, and subseafloor gas hydrates contain an abundance of diverse methanoarchaea. However, reports on the isolation, purification, and characterization of methanoarchaea in the subsurface environment are rare. Currently, no studies investigating methanoarchaea within fault environments exist. In this report, we succeeded in obtaining two new methanogen isolates, St545Mb(T) of newly proposed species Methanolobus chelungpuianus and Methanobacterium palustre FG694aF, from the Chelungpu fault, which is the fault that caused a devastating earthquake in central Taiwan in 1999. Strain FG694aF was isolated from a fault gouge sample obtained at 694 m below land surface (mbls) and is an autotrophic, mesophilic, nonmotile, thin, filamentous-rod-shaped organism capable of using H(2)-CO(2) and formate as substrates for methanogenesis. The morphological, biochemical, and physiological characteristics and 16S rRNA gene sequence analysis revealed that this isolate belongs to Methanobacterium palustre. The mesophilic strain St545Mb(T), isolated from a sandstone sample at 545 mbls, is a nonmotile, irregular, coccoid organism that uses methanol and trimethylamine as substrates for methanogenesis. The 16S rRNA gene sequence of strain St545Mb(T) was 99.0% similar to that of Methanolobus psychrophilus strain R15 and was 96 to 97.5% similar to the those of other Methanolobus species. However, the optimal growth temperature and total cell protein profile of strain St545Mb(T) were different from those of M. psychrophilus strain R15, and whole-genome DNA-DNA hybridization revealed less than 20% relatedness between these two strains. On the basis of these observations, we propose that strain St545Mb(T) (DSM 19953(T); BCRC AR10030; JCM 15159) be named Methanolobus chelungpuianus sp. nov. Moreover, the environmental DNA database survey indicates that both Methanolobus chelungpuianus and Methanobacterium palustre are widespread in the

  15. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  16. Active fault diagnosis based on stochastic tests

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2008-01-01

    The focus of this paper is on stochastic change detection applied in connection with active fault diagnosis (AFD). An auxiliary input signal is applied in AFD. This signal injection in the system will in general allow us to obtain a fast change detection/isolation by considering the output...

  17. Fault Detection, Isolation, and Accommodation for LTI Systems Based on GIMC Structure

    Directory of Open Access Journals (Sweden)

    D. U. Campos-Delgado

    2008-01-01

    Full Text Available In this contribution, an active fault-tolerant scheme that achieves fault detection, isolation, and accommodation is developed for LTI systems. Faults and perturbations are considered as additive signals that modify the state or output equations. The accommodation scheme is based on the generalized internal model control architecture recently proposed for fault-tolerant control. In order to improve the performance after a fault, the compensation is considered in two steps according with a fault detection and isolation algorithm. After a fault scenario is detected, a general fault compensator is activated. Finally, once the fault is isolated, a specific compensator is introduced. In this setup, multiple faults could be treated simultaneously since their effect is additive. Design strategies for a nominal condition and under model uncertainty are presented in the paper. In addition, performance indices are also introduced to evaluate the resulting fault-tolerant scheme for detection, isolation, and accommodation. Hard thresholds are suggested for detection and isolation purposes, meanwhile, adaptive ones are considered under model uncertainty to reduce the conservativeness. A complete simulation evaluation is carried out for a DC motor setup.

  18. Nonlinear Actuator Fault Detection and Isolation for a VTOL aircraft

    NARCIS (Netherlands)

    De Persis, Claudio; De Santis, Raffaella; Isidori, Alberto

    2001-01-01

    The recently introduced geometric approach to the nonlinear fault detection and isolation problem is used in this paper to detect actuator faults for the vertical takeoff and landing aircraft. The approach leads to a filter which, by processing the outputs of the plant, detects the faults and

  19. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults...... in fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers reduced performance after occurrence of a fault to the shut down of (sub-) systems. Hence, the idea of fault......-output decoupling is described. It is a new idea based on the solution of the input-output decoupling problem. The idea is to include FDI considerations already during the control design....

  20. Controller modification applied for active fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... with the result that the detection and isolation time can be long. In this paper it will be shown, that this problem can be handled by using a modification of the feedback controller. By applying the YJBK-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify...... the frequency for the auxiliary input is selected. This gives that it is possible to apply an auxiliary input with a reduced amplitude. An example is included to show the results....

  1. Fault Isolation and quality assessment for shipboard monitoring

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam; Blanke, Mogens

    2010-01-01

    system and to improve multi-sensor data fusion for the particular system. Fault isolation is an important part of the fault tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault isolation will be presented. Several possible faults...... will be simulated and isolated using residuals and the generalized likelihood ratio (GLR) algorithm. It will be demonstrated that the approach can be used to increase accuracy of sea state estimations employing sensor fusion quality test....

  2. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System

    OpenAIRE

    後藤, 秀昭

    1996-01-01

    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  3. Active fault diagnosis by temporary destabilization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  4. Fault isolation in parallel coupled wind turbine converters

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Thøgersen, Paul Bach; Stoustrup, Jakob

    2010-01-01

    Parallel converters in wind turbine give a number advantages, such as fault tolerance due to the redundant converters. However, it might be difficult to isolate gain faults in one of the converters if only a combined power measurement is available. In this paper a scheme using orthogonal power...... references to the converters is proposed. Simulations on a wind turbine with 5 parallel converters show a clear potential of this scheme for isolation of this gain fault to the correct converter in which the fault occurs....

  5. Major earthquakes occur regularly on an isolated plate boundary fault.

    Science.gov (United States)

    Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar

    2012-06-29

    The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.

  6. Evaluation of Wind Farm Controller based Fault Detection and Isolation

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Shafiei, Seyed Ehsan

    2015-01-01

    detection and isolation and fault tolerant control has previously been proposed. Based on this model, and international competition on wind farm FDI was organized. The contributions were presented at the IFAC World Congress 2014. In this paper the top three contributions to this competition are shortly......In the process of lowering cost of energy of power generated by wind turbines, some focus has been drawn towards fault detection and isolation and as well as fault tolerant control of wind turbines with the purpose of increasing reliability and availability of the wind turbines. Most modern wind...

  7. A weighted dissimilarity index to isolate faults during alarm floods

    CERN Document Server

    Charbonnier, S; Gayet, P

    2015-01-01

    A fault-isolation method based on pattern matching using the alarm lists raised by the SCADA system during an alarm flood is proposed. A training set composed of faults is used to create fault templates. Alarm vectors generated by unknown faults are classified by comparing them with the fault templates using an original weighted dissimilarity index that increases the influence of the few alarms relevant to diagnose the fault. Different decision strategies are proposed to support the operator in his decision making. The performances are evaluated on two sets of data: an artificial set and a set obtained from a highly realistic simulator of the CERN Large Hadron Collider process connected to the real CERN SCADA system.

  8. Development of methods for evaluating active faults

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The report for long-term evaluation of active faults was published by the Headquarters for Earthquake Research Promotion on Nov. 2010. After occurrence of the 2011 Tohoku-oki earthquake, the safety review guide with regard to geology and ground of site was revised by the Nuclear Safety Commission on Mar. 2012 with scientific knowledges of the earthquake. The Nuclear Regulation Authority established on Sep. 2012 is newly planning the New Safety Design Standard related to Earthquakes and Tsunamis of Light Water Nuclear Power Reactor Facilities. With respect to those guides and standards, our investigations for developing the methods of evaluating active faults are as follows; (1) For better evaluation on activities of offshore fault, we proposed a work flow to date marine terrace (indicator for offshore fault activity) during the last 400,000 years. We also developed the analysis of fault-related fold for evaluating of blind fault. (2) To clarify the activities of active faults without superstratum, we carried out the color analysis of fault gouge and divided the activities into thousand of years and tens of thousands. (3) To reduce uncertainties of fault activities and frequency of earthquakes, we compiled the survey data and possible errors. (4) For improving seismic hazard analysis, we compiled the fault activities of the Yunotake and Itozawa faults, induced by the 2011 Tohoku-oki earthquake. (author)

  9. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...

  10. Research of fault activity in Japan

    International Nuclear Information System (INIS)

    Nohara, T.; Nakatsuka, N.; Takeda, S.

    2004-01-01

    Six hundreds and eighty earthquakes causing significant damage have been recorded since the 7. century in Japan. It is important to recognize faults that will or are expected to be active in future in order to help reduce earthquake damage, estimate earthquake damage insurance and siting of nuclear facilities. Such faults are called 'active faults' in Japan, the definition of which is a fault that has moved intermittently for at least several hundred thousand years and is expected to continue to do so in future. Scientific research of active faults has been ongoing since the 1930's. Many results indicated that major earthquakes and fault movements in shallow crustal regions in Japan occurred repeatedly at existing active fault zones during the past. After the 1995 Southern Hyogo Prefecture Earthquake, 98 active fault zones were selected for fundamental survey, with the purpose of efficiently conducting an active fault survey in 'Plans for Fundamental Seismic Survey and Observation' by the headquarters for earthquake research promotion, which was attached to the Prime Minister's office of Japan. Forty two administrative divisions for earthquake disaster prevention have investigated the distribution and history of fault activity of 80 active fault zones. Although earthquake prediction is difficult, the behaviour of major active faults in Japan is being recognised. Japan Nuclear Cycle Development Institute (JNC) submitted a report titled 'H12: Project to Establish the. Scientific and Technical Basis for HLW Disposal in Japan' to the Atomic Energy Commission (AEC) of Japan for official review W. The Guidelines, which were defined by AEC, require the H12 Project to confirm the basic technical feasibility of safe HLW disposal in Japan. In this report the important issues relating to fault activity were described that are to understand the characteristics of current fault movements and the spatial extent and magnitude of the effects caused by these movements, and to

  11. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...... such that it is possible to detect these faults....

  12. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  13. Fault detection and isolation in processes involving induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Zell, K; Medvedev, A [Control Engineering Group, Luleaa University of Technology, Luleaa (Sweden)

    1998-12-31

    A model-based technique for fault detection and isolation in electro-mechanical systems comprising induction machines is introduced. Two coupled state observers, one for the induction machine and another for the mechanical load, are used to detect and recognize fault-specific behaviors (fault signatures) from the real-time measurements of the rotor angular velocity and terminal voltages and currents. Practical applicability of the method is verified in full-scale experiments with a conveyor belt drive at SSAB, Luleaa Works. (orig.) 3 refs.

  14. Fault detection and isolation in processes involving induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Zell, K.; Medvedev, A. [Control Engineering Group, Luleaa University of Technology, Luleaa (Sweden)

    1997-12-31

    A model-based technique for fault detection and isolation in electro-mechanical systems comprising induction machines is introduced. Two coupled state observers, one for the induction machine and another for the mechanical load, are used to detect and recognize fault-specific behaviors (fault signatures) from the real-time measurements of the rotor angular velocity and terminal voltages and currents. Practical applicability of the method is verified in full-scale experiments with a conveyor belt drive at SSAB, Luleaa Works. (orig.) 3 refs.

  15. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    Science.gov (United States)

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  16. A setup for active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    A setup for active fault diagnosis (AFD) of parametric faults in dynamic systems is formulated in this paper. It is shown that it is possible to use the same setup for both open loop systems, closed loop systems based on a nominal feedback controller as well as for closed loop systems based...... on a reconfigured feedback controller. This will make the proposed AFD approach very useful in connection with fault tolerant control (FTC). The setup will make it possible to let the fault diagnosis part of the fault tolerant controller remain unchanged after a change in the feedback controller. The setup for AFD...... is based on the YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all stabilizing feedback controllers and the dual YJBK parameterization. It is shown that the AFD is based directly on the dual YJBK transfer function matrix. This matrix will be named the fault signature matrix when...

  17. Active fault tolerant control of piecewise affine systems with reference tracking and input constraints

    DEFF Research Database (Denmark)

    Gholami, M.; Cocquempot, V.; Schiøler, H.

    2014-01-01

    An active fault tolerant control (AFTC) method is proposed for discrete-time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable...... performance of the faulty system are held. The design of the supervisory scheme is not considered here. The set of controllers is composed of a normal controller for the fault-free case, an active fault detection and isolation controller for isolation and identification of the faults, and a set of passive...... fault tolerant controllers (PFTCs) modules designed to be robust against a set of actuator faults. In this research, the piecewise nonlinear model is approximated by a PWA system. The PFTCs are state feedback laws. Each one is robust against a fixed set of actuator faults and is able to track...

  18. Stochastic Change Detection based on an Active Fault Diagnosis Approach

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2007-01-01

    The focus in this paper is on stochastic change detection applied in connection with active fault diagnosis (AFD). An auxiliary input signal is applied in AFD. This signal injection in the system will in general allow to obtain a fast change detection/isolation by considering the output or an err...

  19. Data driven fault detection and isolation: a wind turbine scenario

    Directory of Open Access Journals (Sweden)

    Rubén Francisco Manrique Piramanrique

    2015-04-01

    Full Text Available One of the greatest drawbacks in wind energy generation is the high maintenance cost associated to mechanical faults. This problem becomes more evident in utility scale wind turbines, where the increased size and nominal capacity comes with additional problems associated with structural vibrations and aeroelastic effects in the blades. Due to the increased operation capability, it is imperative to detect system degradation and faults in an efficient manner, maintaining system integrity, reliability and reducing operation costs. This paper presents a comprehensive comparison of four different Fault Detection and Isolation (FDI filters based on “Data Driven” (DD techniques. In order to enhance FDI performance, a multi-level strategy is used where:  the first level detects the occurrence of any given fault (detection, while  the second identifies the source of the fault (isolation. Four different DD classification techniques (namely Support Vector Machines, Artificial Neural Networks, K Nearest Neighbors and Gaussian Mixture Models were studied and compared for each of the proposed classification levels. The best strategy at each level could be selected to build the final data driven FDI system. The performance of the proposed scheme is evaluated on a benchmark model of a commercial wind turbine. 

  20. Functional Fault Modeling Conventions and Practices for Real-Time Fault Isolation

    Science.gov (United States)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the conventions, best practices, and processes that were established based on the prototype development of a Functional Fault Model (FFM) for a Cryogenic System that would be used for real-time Fault Isolation in a Fault Detection, Isolation, and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using a suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FFMs were created offline but would eventually be used by a real-time reasoner to isolate faults in a Cryogenic System. Through their development and review, a set of modeling conventions and best practices were established. The prototype FFM development also provided a pathfinder for future FFM development processes. This paper documents the rationale and considerations for robust FFMs that can easily be transitioned to a real-time operating environment.

  1. Fault Detection and Isolation and Fault Tolerant Control of Wind Turbines Using Set-Valued Observers

    DEFF Research Database (Denmark)

    Casau, Pedro; Rosa, Paulo Andre Nobre; Tabatabaeipour, Seyed Mojtaba

    2012-01-01

    Research on wind turbine Operations & Maintenance (O&M) procedures is critical to the expansion of Wind Energy Conversion systems (WEC). In order to reduce O&M costs and increase the lifespan of the turbine, we study the application of Set-Valued Observers (SVO) to the problem of Fault Detection...... and Isolation (FDI) and Fault Tolerant Control (FTC) of wind turbines, by taking advantage of the recent advances in SVO theory for model invalidation. A simple wind turbine model is presented along with possible faulty scenarios. The FDI algorithm is built on top of the described model, taking into account...

  2. Bayesian fault detection and isolation using Field Kalman Filter

    Science.gov (United States)

    Baranowski, Jerzy; Bania, Piotr; Prasad, Indrajeet; Cong, Tian

    2017-12-01

    Fault detection and isolation is crucial for the efficient operation and safety of any industrial process. There is a variety of methods from all areas of data analysis employed to solve this kind of task, such as Bayesian reasoning and Kalman filter. In this paper, the authors use a discrete Field Kalman Filter (FKF) to detect and recognize faulty conditions in a system. The proposed approach, devised for stochastic linear systems, allows for analysis of faults that can be expressed both as parameter and disturbance variations. This approach is formulated for the situations when the fault catalog is known, resulting in the algorithm allowing estimation of probability values. Additionally, a variant of algorithm with greater numerical robustness is presented, based on computation of logarithmic odds. Proposed algorithm operation is illustrated with numerical examples, and both its merits and limitations are critically discussed and compared with traditional EKF.

  3. Selected fault testing of electronic isolation devices used in nuclear power plant operation

    International Nuclear Information System (INIS)

    Villaran, M.; Hillman, K.; Taylor, J.; Lara, J.; Wilhelm, W.

    1994-05-01

    Electronic isolation devices are used in nuclear power plants to provide electrical separation between safety and non-safety circuits and systems. Major fault testing in an earlier program indicated that some energy may pass through an isolation device when a fault at the maximum credible potential is applied in the transverse mode to its output terminals. During subsequent field qualification testing of isolators, concerns were raised that the worst case fault, that is, the maximum credible fault (MCF), may not occur with a fault at the maximum credible potential, but rather at some lower potential. The present test program investigates whether problems can arise when fault levels up to the MCF potential are applied to the output terminals of an isolator. The fault energy passed through an isolated device during a fault was measured to determine whether the levels are great enough to potentially damage or degrade performance of equipment on the input (Class 1E) side of the isolator

  4. Methods for recognition and segmentation of active fault

    International Nuclear Information System (INIS)

    Hyun, Chang Hun; Noh, Myung Hyun; Lee, Kieh Hwa; Chang, Tae Woo; Kyung, Jai Bok; Kim, Ki Young

    2000-03-01

    In order to identify and segment the active faults, the literatures of structural geology, paleoseismology, and geophysical explorations were investigated. The existing structural geological criteria for segmenting active faults were examined. These are mostly based on normal fault systems, thus, the additional criteria are demanded for application to different types of fault systems. Definition of the seismogenic fault, characteristics of fault activity, criteria and study results of fault segmentation, relationship between segmented fault length and maximum displacement, and estimation of seismic risk of segmented faults were examined in paleoseismic study. The history of earthquake such as dynamic pattern of faults, return period, and magnitude of the maximum earthquake originated by fault activity can be revealed by the study. It is confirmed through various case studies that numerous geophysical explorations including electrical resistivity, land seismic, marine seismic, ground-penetrating radar, magnetic, and gravity surveys have been efficiently applied to the recognition and segmentation of active faults

  5. Nonlinear observer based fault detection and isolation for a momentum wheel

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This article realizes nonlinear Fault Detection and Isolation for a momentum wheel. The Fault Detection and Isolation is based on a Failure Mode and Effect Analysis, which states which faults might occur and can be detected. The algorithms presented in this paper are based on a geometric approach...... toachieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithm are discussed....

  6. Active, capable, and potentially active faults - a paleoseismic perspective

    Science.gov (United States)

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  7. Development of methods for evaluating active faults

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The HERP report for long-term evaluation of active faults and the NSC safety review guide with regard to geology and ground of site were published on Nov. 2010 and on Dec. 2010, respectively. With respect to those reports, our investigation is as follows; (1) For assessment of seismic hazard, we estimated seismic sources around NPPs based on information of tectonic geomorphology, earthquake distribution and subsurface geology. (2) For evaluation on the activity of blind fault, we calculated the slip rate on the 2008 Iwate-Miyagi Nairiku Earthquake fault, using information on late Quaternary fluvial terraces. (3) To evaluate the magnitude of earthquakes whose sources are difficult to identify, we proposed a new method for calculation of the seismogenic layer thickness. (4) To clarify the activities of active faults without superstratum, we carried out the color analysis of fault gouge and divided the activities into thousand of years and tens of thousands. (5) For improving chronology of sediments, we detected new widespread cryptotephras using mineral chemistry and developed late Quaternary cryptotephrostratigraphy around NPPs. (author)

  8. Active fault traces along Bhuj Fault and Katrol Hill Fault, and ...

    Indian Academy of Sciences (India)

    face, passing through the alluvial-colluvial fan at location 2. The gentle warping of the surface was completely modified because of severe cultivation practice. Therefore, it was difficult to confirm it in field. To the south ... scarp has been modified by present day farming. At location 5 near Wandhay village, an active fault trace ...

  9. Model based Fault Detection and Isolation for Driving Motors of a Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Young-Joon Kim

    2016-04-01

    Full Text Available This paper proposes model based current sensor and position sensor fault detection and isolation algorithm for driving motor of In-wheel independent drive electric vehicle. From low level perspective, fault diagnosis conducted and analyzed to enhance robustness and stability. Composing state equation of interior permanent magnet synchronous motor (IPMSM, current sensor fault and position sensor fault diagnosed with parity equation. Validation and usefulness of algorithm confirmed based on IPMSM fault occurrence simulation data.

  10. Aircraft applications of fault detection and isolation techniques

    Science.gov (United States)

    Marcos Esteban, Andres

    In this thesis the problems of fault detection & isolation and fault tolerant systems are studied from the perspective of LTI frequency-domain, model-based techniques. Emphasis is placed on the applicability of these LTI techniques to nonlinear models, especially to aerospace systems. Two applications of Hinfinity LTI fault diagnosis are given using an open-loop (no controller) design approach: one for the longitudinal motion of a Boeing 747-100/200 aircraft, the other for a turbofan jet engine. An algorithm formalizing a robust identification approach based on model validation ideas is also given and applied to the previous jet engine. A general linear fractional transformation formulation is given in terms of the Youla and Dual Youla parameterizations for the integrated (control and diagnosis filter) approach. This formulation provides better insight into the trade-off between the control and the diagnosis objectives. It also provides the basic groundwork towards the development of nested schemes for the integrated approach. These nested structures allow iterative improvements on the control/filter Youla parameters based on successive identification of the system uncertainty (as given by the Dual Youla parameter). The thesis concludes with an application of Hinfinity LTI techniques to the integrated design for the longitudinal motion of the previous Boeing 747-100/200 model.

  11. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    Science.gov (United States)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  12. Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper

    International Nuclear Information System (INIS)

    Wang, Han; Song, Gangbing

    2011-01-01

    Fault detection and isolation (FDI) in real-time systems can provide early warnings for faulty sensors and actuator signals to prevent events that lead to catastrophic failures. The main objective of this paper is to develop FDI and fault tolerant control techniques for base isolation systems with magneto-rheological (MR) dampers. Thus, this paper presents a fixed-order FDI filter design procedure based on linear matrix inequalities (LMI). The necessary and sufficient conditions for the existence of a solution for detecting and isolating faults using the H ∞ formulation is provided in the proposed filter design. Furthermore, an FDI-filter-based fuzzy fault tolerant controller (FFTC) for a base isolation structure model was designed to preserve the pre-specified performance of the system in the presence of various unknown faults. Simulation and experimental results demonstrated that the designed filter can successfully detect and isolate faults from displacement sensors and accelerometers while maintaining excellent performance of the base isolation technology under faulty conditions

  13. Active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2005-01-01

    Active fault diagnosis (AFD) of parametric faults is considered in connection with closed loop feedback systems. AFD involves auxiliary signals applied on the closed loop system. A fault signature matrix is introduced in connection with AFD and it is shown that if a limited number of faults can...

  14. Integration of Fault Detection and Isolation with Control Using Neuro-fuzzy Scheme

    Directory of Open Access Journals (Sweden)

    A. Asokan

    2009-10-01

    Full Text Available In this paper an algorithms is developed for fault diagnosis and fault tolerant control strategy for nonlinear systems subjected to an unknown time-varying fault. At first, the design of fault diagnosis scheme is performed using model based fault detection technique. The neuro-fuzzy chi-square scheme is applied for fault detection and isolation. The fault magnitude and time of occurrence of fault is obtained through neuro-fuzzy chi-square scheme. The estimated magnitude of the fault magnitude is normalized and used by the feed-forward control algorithm to make appropriate changes in the manipulated variable to keep the controlled variable near its set value. The feed-forward controller acts along with feed-back controller to control the multivariable system. The performance of the proposed scheme is applied to a three- tank process for various types of fault inputs to show the effectiveness of the proposed approach.

  15. Fault isolability with different forms of the faults–symptoms relation

    Directory of Open Access Journals (Sweden)

    Kóscielny Jan Maciej

    2016-12-01

    Full Text Available The definitions and conditions for fault isolability of single faults for various forms of the diagnostic relation are reviewed. Fault isolability and unisolability on the basis of a binary diagnostic matrix are analyzed. Definitions for conditional and unconditional isolability and unisolability on the basis of a fault information system (FIS, symptom sequences and directional residuals are formulated. General definitions for conditional and unconditional isolability and unisolability in the cases of simultaneous evaluation of diagnostic signal values and a sequence of symptoms are provided. A comprehensive example is discussed.

  16. Analytical Model-based Fault Detection and Isolation in Control Systems

    DEFF Research Database (Denmark)

    Vukic, Z.; Ozbolt, H.; Blanke, M.

    1998-01-01

    The paper gives an introduction and an overview of the field of fault detection and isolation for control systems. The summary of analytical (quantitative model-based) methodds and their implementation are presented. The focus is given to mthe analytical model-based fault-detection and fault...

  17. THE ACTIVE FAULTS OF EURASIA DATABASE

    Directory of Open Access Journals (Sweden)

    D. M. Bachmanov

    2017-01-01

    Full Text Available This paper describes the technique used to create and maintain the Active Faults of Eurasia Database (AFED based on the uniform format that ensures integrating the materials accumulated by many researchers, inclu­ding the authors of the AFED. The AFED includes the data on more than 20 thousand objects: faults, fault zones and associated structural forms that show the signs of latest displacements in the Late Pleistocene and Holocene. The geographical coordinates are given for each object. The AFED scale is 1:500000; the demonstration scale is 1:1000000. For each object, the AFED shows two kinds of characteristics: justification attributes, and estimated attributes. The justification attributes inform the AFED user about an object: the object’s name; morphology; kinematics; the amplitudes of displacement for different periods of time; displacement rates estimated from the amplitudes; the age of the latest recorded signs of activity, seismicity and paleoseismicity; the relationship of the given objects with the parameters of crustal earthquakes; etc. The sources of information are listed in the AFED appendix. The estimated attributes are represented by the system of indices reflecting the fault kinematics according to the classification of the faults by types, as accepted in structural geology, and includes three ranks of the Late Quaternary movements and four degrees of reliability of identifying the structures as active ones. With reference to the indices, the objects can be compared with each other, considering any of the attributes, or with any other digitized information. The comparison can be performed by any GIS software. The AFED is an efficient tool for obtaining the information on the faults and solving general problems, such as thematic mapping, determining the parameters of modern geodynamic processes, estima­ting seismic and other geodynamic hazards, identifying the tectonic development trends in the Pliocene–Quaternary stage of

  18. Fault Detection and Isolation for a Supermarket Refrigeration System - Part One

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Rasmussen, Karsten B.; Kieu, Anh T.

    2011-01-01

    Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario, n....... The test results show that the EKF-based FDI method generally performances better and faster than the KF-based method does. However, both methods can not handle the isolation between sensor faults and parametric fault.......Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario...... isolation purpose, a bank of KFs arranged by splitting measurements is constructed for sensor fault isolation, while the Multi-Model Adaptive Estimation (MMAE) method is employed to handle parametric fault isolation. All these approaches are extended and checked by using Extended KF technique afterwards...

  19. Model-based fault detection and isolation of a PWR nuclear power plant using neural networks

    International Nuclear Information System (INIS)

    Far, R.R.; Davilu, H.; Lucas, C.

    2008-01-01

    The proper and timely fault detection and isolation of industrial plant is of premier importance to guarantee the safe and reliable operation of industrial plants. The paper presents application of a neural networks-based scheme for fault detection and isolation, for the pressurizer of a PWR nuclear power plant. The scheme is constituted by 2 components: residual generation and fault isolation. The first component generates residuals via the discrepancy between measurements coming from the plant and a nominal model. The neutral network estimator is trained with healthy data collected from a full-scale simulator. For the second component detection thresholds are used to encode the residuals as bipolar vectors which represent fault patterns. These patterns are stored in an associative memory based on a recurrent neutral network. The proposed fault diagnosis tool is evaluated on-line via a full-scale simulator detected and isolate the main faults appearing in the pressurizer of a PWR. (orig.)

  20. Flow meter fault isolation in building central chilling systems using wavelet analysis

    International Nuclear Information System (INIS)

    Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei

    2006-01-01

    This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters

  1. Three dimensional investigation of oceanic active faults. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Kuramoto, Shinichi; Sato, Mikio [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    1998-02-01

    In order to upgrade probability of activity and action potential evaluation of oceanic active faults which have some important effects on nuclear facilities, trench type oceanic active fault was investigated three dimensionally. Contents of the investigation were high precision sea bottom topographic survey and sea bottom back scattering wave image data observation by using a sea bottom topography acoustic imaginator. And, by high resolution earthquake wave survey, high precision survey of an active fault under sea bottom was conducted to detect oceanic active faults three-dimensionally. Furthermore, the generally issued data were summarized to promote to construct a data base for evaluating the active faults. (G.K.)

  2. Three dimensional investigation of oceanic active faults. A demonstration survey

    International Nuclear Information System (INIS)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Kuramoto, Shinichi; Sato, Mikio

    1998-01-01

    In order to upgrade probability of activity and action potential evaluation of oceanic active faults which have some important effects on nuclear facilities, trench type oceanic active fault was investigated three dimensionally. Contents of the investigation were high precision sea bottom topographic survey and sea bottom back scattering wave image data observation by using a sea bottom topography acoustic imaginator. And, by high resolution earthquake wave survey, high precision survey of an active fault under sea bottom was conducted to detect oceanic active faults three-dimensionally. Furthermore, the generally issued data were summarized to promote to construct a data base for evaluating the active faults. (G.K.)

  3. 78 FR 31592 - T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania...

    Science.gov (United States)

    2013-05-24

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,371] T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania; Notice of Affirmative Determination...., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania (subject firm). The...

  4. ASCS online fault detection and isolation based on an improved MPCA

    Science.gov (United States)

    Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan

    2014-09-01

    Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.

  5. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  6. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems. These ...

  7. Three dimensional investigation of oceanic active faults. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio [Geological Survey of Japan, Kawasaki, Kanagawa (Japan)

    1999-02-01

    Oceanic active faults were classified into trench and in-land types, and a bottom survey was conducted on an aim of estimation on activity of a trench type oceanic active faults. For both sides of an oceanic active fault found at high precision sonic investigations in 1996 fiscal year, it was attempted from a record remained in sediments how a fault changed by a fault motion and how long time it acted. And, construction of a data base for evaluation of the active faults was promoted by generalizing the issued publications. As a result, it was found that a method to estimate a fault activity using turbidite in success at shallow sea could not easily be received at deep sea, and that as sedimentation method in deep sea changed largely by topography and so on, the turbidite did not play always a rule of key layer. (G.K.)

  8. Application of a Fault Detection and Isolation System on a Rotary Machine

    Directory of Open Access Journals (Sweden)

    Silvia M. Zanoli

    2013-01-01

    Full Text Available The paper illustrates the design and the implementation of a Fault Detection and Isolation (FDI system to a rotary machine like a multishaft centrifugal compressor. A model-free approach, that is, the Principal Component Analysis (PCA, has been employed to solve the fault detection issue. For the fault isolation purpose structured residuals have been adopted while an adaptive threshold has been designed in order to detect and to isolate the faults. To prove the goodness of the proposed FDI system, historical data of a nitrogen centrifugal compressor employed in a refinery plant are considered. Tests results show that detection and isolation of single as well as multiple faults are successfully achieved.

  9. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    Science.gov (United States)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  10. Examination of faults active motion on buried pipelines | Parish ...

    African Journals Online (AJOL)

    ... lateral spreading, landslides and slope failures. Since the pipelines are widely spread, and in some areas necessarily cross through the areas with faults, therefore, improvement study of pipelines in areas with faults is very important. This article explores faults active motion on buried pipelines. Keywords: water utilities ...

  11. Incipient Fault Detection and Isolation of Field Devices in Nuclear Power Systems Using Principal Component Analysis

    International Nuclear Information System (INIS)

    Kaistha, Nitin; Upadhyaya, Belle R.

    2001-01-01

    An integrated method for the detection and isolation of incipient faults in common field devices, such as sensors and actuators, using plant operational data is presented. The approach is based on the premise that data for normal operation lie on a surface and abnormal situations lead to deviations from the surface in a particular way. Statistically significant deviations from the surface result in the detection of faults, and the characteristic directions of deviations are used for isolation of one or more faults from the set of typical faults. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data and fit a hyperplane to the data. The fault direction for each of the scenarios is obtained using the singular value decomposition on the state and control function prediction errors, and fault isolation is then accomplished from projections on the fault directions. This approach is demonstrated for a simulated pressurized water reactor steam generator system and for a laboratory process control system under single device fault conditions. Enhanced fault isolation capability is also illustrated by incorporating realistic nonlinear terms in the PCA data matrix

  12. Fault isolation through no-overhead link level CRC

    Science.gov (United States)

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.

    2007-04-24

    A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.

  13. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  14. Mine-hoist active fault tolerant control system and strategy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Wang, Y.; Meng, J.; Zhao, P.; Chang, Y. [China University of Mining and Technology, Xuzhou (China)] wzjsdstu@163.com

    2005-06-01

    Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control model (FCM). When a fault is judged from some sensor by the FDM, FCM reconfigures the state of the MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliability and safety of the mine hoist. The simulating result shows that MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there is quite a difference between the real data and the prior fault modes. 7 refs., 5 figs., 1 tab.

  15. Fault displacement along the Naruto-South fault, the Median Tectonic Line active fault system in the eastern part of Shikoku, southwestern Japan

    OpenAIRE

    高田, 圭太; 中田, 高; 後藤, 秀昭; 岡田, 篤正; 原口, 強; 松木, 宏彰

    1998-01-01

    The Naruto-South fault is situated of about 1000m south of the Naruto fault, the Median Tectonic Line active fault system in the eastern part of Shikoku. We investigated fault topography and subsurface geology of this fault by interpretation of large scale aerial photographs, collecting borehole data and Geo-Slicer survey. The results obtained are as follows; 1) The Naruto-South fault runs on the Yoshino River deltaic plain at least 2.5 km long with fault scarplet. the Naruto-South fault is o...

  16. Dynamic Output Feedback Based Active Decentralized Fault-Tolerant Control for Reconfigurable Manipulator with Concurrent Failures

    Directory of Open Access Journals (Sweden)

    Yuanchun Li

    2015-01-01

    Full Text Available The goal of this paper is to describe an active decentralized fault-tolerant control (ADFTC strategy based on dynamic output feedback for reconfigurable manipulators with concurrent actuator and sensor failures. Consider each joint module of the reconfigurable manipulator as a subsystem, and treat the fault as the unknown input of the subsystem. Firstly, by virtue of linear matrix inequality (LMI technique, the decentralized proportional-integral observer (DPIO is designed to estimate and compensate the sensor fault online; hereafter, the compensated system model could be derived. Then, the actuator fault is estimated similarly by another DPIO using LMI as well, and the sufficient condition of the existence of H∞ fault-tolerant controller in the dynamic output feedback is presented for the compensated system model. Furthermore, the dynamic output feedback controller is presented based on the estimation of actuator fault to realize active fault-tolerant control. Finally, two 3-DOF reconfigurable manipulators with different configurations are employed to verify the effectiveness of the proposed scheme in simulation. The main advantages of the proposed scheme lie in that it can handle the concurrent faults act on the actuator and sensor on the same joint module, as well as there is no requirement of fault detection and isolation process; moreover, it is more feasible to the modularity of the reconfigurable manipulator.

  17. Diesel Engine Actuator Fault Isolation using Multiple Models Hypothesis Tests

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    1994-01-01

    Detection of current faults in a D.C. motor with unknown load torques is not feasible with linear methods and threshold logic......Detection of current faults in a D.C. motor with unknown load torques is not feasible with linear methods and threshold logic...

  18. Active current control in wind power plants during grid faults

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Phillip C.; Rodriguez, Pedro

    2010-01-01

    Modern wind power plants are required and designed to ride through faults in electrical networks, subject to fault clearing. Wind turbine fault current contribution is required from most countries with a high amount of wind power penetration. In order to comply with such grid code requirements......, wind turbines usually have solutions that enable the turbines to control the generation of reactive power during faults. This paper addresses the importance of using an optimal injection of active current during faults in order to fulfil these grid codes. This is of relevant importance for severe...... faults, causing low voltages at the point of common coupling. As a consequence, a new wind turbine current controller for operation during faults is proposed. It is shown that to achieve the maximum transfer of reactive current at the point of common coupling, a strategy for optimal setting of the active...

  19. Active faults, paleoseismology, and historical fault rupture in northern Wairarapa, North Island, New Zealand

    International Nuclear Information System (INIS)

    Schermer, E.R.; Van Dissen, R.; Berryman, K.R.; Kelsey, H.M.; Cashman, S.M.

    2004-01-01

    Active faulting in the upper plate of the Hikurangi subduction zone, North Island, New Zealand, represents a significant seismic hazard that is not yet well understood. In northern Wairarapa, the geometry and kinematics of active faults, and the Quaternary and historical surface-rupture record, have not previously been studied in detail. We present the results of mapping and paleoseismicity studies on faults in the northern Wairarapa region to document the characteristics of active faults and the timing of earthquakes. We focus on evidence for surface rupture in the 1855 Wairarapa (M w 8.2) and 1934 Pahiatua (M w 7.4) earthquakes, two of New Zealand's largest historical earthquakes. The Dreyers Rock, Alfredton, Saunders Road, Waitawhiti, and Waipukaka faults form a northeast-trending, east-stepping array of faults. Detailed mapping of offset geomorphic features shows the rupture lengths vary from c. 7 to 20 km and single-event displacements range from 3 to 7 m, suggesting the faults are capable of generating M >7 earthquakes. Trenching results show that two earthquakes have occurred on the Alfredton Fault since c. 2900 cal. BP. The most recent event probably occurred during the 1855 Wairarapa earthquake as slip propagated northward from the Wairarapa Fault and across a 6 km wide step. Waipukaka Fault trenches show that at least three surface-rupturing earthquakes have occurred since 8290-7880 cal. BP. Analysis of stratigraphic and historical evidence suggests the most recent rupture occurred during the 1934 Pahiatua earthquake. Estimates of slip rates provided by these data suggest that a larger component of strike slip than previously suspected is occurring within the upper plate and that the faults accommodate a significant proportion of the dextral component of oblique subduction. Assessment of seismic hazard is difficult because the known fault scarp lengths appear too short to have accommodated the estimated single-event displacements. Faults in the region are

  20. Active Fault Detection Based on a Statistical Test

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2016-01-01

    In this paper active fault detection of closed loop systems using dual Youla-Jabr-Bongiorno-Kucera(YJBK) parameters is presented. Until now all detector design for active fault detection using the dual YJBK parameters has been based on CUSUM detectors. Here a method for design of a matched filter...

  1. Model-Based Fault Detection and Isolation of a Liquid-Cooled Frequency Converter on a Wind Turbine

    DEFF Research Database (Denmark)

    Li, Peng; Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    advanced fault detection and isolation schemes. In this paper, an observer-based fault detection and isolation method for the cooling system in a liquid-cooled frequency converter on a wind turbine which is built up in a scalar version in the laboratory is presented. A dynamic model of the scale cooling...... system is derived based on energy balance equation. A fault analysis is conducted to determine the severity and occurrence rate of possible component faults and their end effects in the cooling system. A method using unknown input observer is developed in order to detect and isolate the faults based...... on the developed dynamical model. The designed fault detection and isolation algorithm is applied on a set of measured experiment data in which different faults are artificially introduced to the scaled cooling system. The experimental results conclude that the different faults are successfully detected...

  2. A geometric approach for fault detection and isolation of stator short circuit failure in a single asynchronous machine

    KAUST Repository

    Khelouat, Samir; Benalia, Atallah; Boukhetala, Djamel; Laleg-Kirati, Taous-Meriem

    2012-01-01

    in nonlinear systems, we will study some structural properties which are fault detectability and isolation fault filter existence. We will then design filters for residual generation. We will consider two approaches: a two-filters structure and a single filter

  3. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    Science.gov (United States)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  4. Development and Test of Methods for Fault Detection and Isolation

    DEFF Research Database (Denmark)

    Jørgensen, R.B.

    Almost all industrial systemns are automated to ensure optimal production both in relation to energy consumtion and safety to equipment and humans. All working parts are individually subject to faults. This can lead to unacceptable economic loss or injury to people. This thesis deals with a monit......Almost all industrial systemns are automated to ensure optimal production both in relation to energy consumtion and safety to equipment and humans. All working parts are individually subject to faults. This can lead to unacceptable economic loss or injury to people. This thesis deals...

  5. A geometric approach for fault detection and isolation of stator short circuit failure in a single asynchronous machine

    KAUST Repository

    Khelouat, Samir

    2012-06-01

    This paper deals with the problem of detection and isolation of stator short-circuit failure in a single asynchronous machine using a geometric approach. After recalling the basis of the geometric approach for fault detection and isolation in nonlinear systems, we will study some structural properties which are fault detectability and isolation fault filter existence. We will then design filters for residual generation. We will consider two approaches: a two-filters structure and a single filter structure, both aiming at generating residuals which are sensitive to one fault and insensitive to the other faults. Some numerical tests will be presented to illustrate the efficiency of the method.

  6. Optimal threshold functions for fault detection and isolation

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik; Cour-Harbo, A. la

    2003-01-01

    Fault diagnosis systems usually comprises two parts: a filtering part and a decision part, the latter typically based on threshold functions. In this paper, systematic ways to choose the threshold values are proposed. Two different test functions for the filtered signals are discussed and a method...

  7. Hysteresis behavior of seismic isolators in earthquakes near a fault ...

    African Journals Online (AJOL)

    Seismic performance and appropriate design of structures located near the faults has always been a major concern of design engineers. Because during an earthquake; the effects of plasticity will make differences in characteristics of near field records. These pulsed movements at the beginning of records will increase the ...

  8. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    Science.gov (United States)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  9. Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation

    DEFF Research Database (Denmark)

    Katebi, S.D.; Blanke, M.; Katebi, M.R.

    This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...

  10. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    Science.gov (United States)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  11. Fault healing and earthquake spectra from stick slip sequences in the laboratory and on active faults

    Science.gov (United States)

    McLaskey, G. C.; Glaser, S. D.; Thomas, A.; Burgmann, R.

    2011-12-01

    Repeating earthquake sequences (RES) are thought to occur on isolated patches of a fault that fail in repeated stick-slip fashion. RES enable researchers to study the effect of variations in earthquake recurrence time and the relationship between fault healing and earthquake generation. Fault healing is thought to be the physical process responsible for the 'state' variable in widely used rate- and state-dependent friction equations. We analyze RES created in laboratory stick slip experiments on a direct shear apparatus instrumented with an array of very high frequency (1KHz - 1MHz) displacement sensors. Tests are conducted on the model material polymethylmethacrylate (PMMA). While frictional properties of this glassy polymer can be characterized with the rate- and state- dependent friction laws, the rate of healing in PMMA is higher than room temperature rock. Our experiments show that in addition to a modest increase in fault strength and stress drop with increasing healing time, there are distinct spectral changes in the recorded laboratory earthquakes. Using the impact of a tiny sphere on the surface of the test specimen as a known source calibration function, we are able to remove the instrument and apparatus response from recorded signals so that the source spectrum of the laboratory earthquakes can be accurately estimated. The rupture of a fault that was allowed to heal produces a laboratory earthquake with increased high frequency content compared to one produced by a fault which has had less time to heal. These laboratory results are supported by observations of RES on the Calaveras and San Andreas faults, which show similar spectral changes when recurrence time is perturbed by a nearby large earthquake. Healing is typically attributed to a creep-like relaxation of the material which causes the true area of contact of interacting asperity populations to increase with time in a quasi-logarithmic way. The increase in high frequency seismicity shown here

  12. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    Science.gov (United States)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying

  13. Distributed Fault Detection and Isolation for Flocking in a Multi-robot System with Imperfect Communication

    Directory of Open Access Journals (Sweden)

    Shao Shiliang

    2014-06-01

    Full Text Available In this paper, we focus on distributed fault detection and isolation (FDI for a multi-robot system where multiple robots execute a flocking task. Firstly, we propose a fault detection method based on the local-information-exchange and sensor-measurement technologies to cover cases of both perfect communication and imperfect communication. The two detection technologies can be adaptively selected according to the packet loss rate (PLR. Secondly, we design a fault isolation method, considering a situation in which faulty robots still influence the behaviours of other robots. Finally, a complete FDI scheme, based on the proposed detection and isolation methods, is simulated in various scenarios. The results demonstrate that our FDI scheme is effective.

  14. Active Fault Diagnosis in Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampleddata systems. Applying the same AFD architecture as for continuous-time systems does not directly result in the same set of closed-loop matrix transfer functions. For continuous-time systems, the LFT (linear fractional...... transformation) structure in the connection between the parametric faults and the matrix transfer function (also known as the fault signature matrix) applied for AFD is not directly preserved for sampled-data system. As a consequence of this, the AFD methods cannot directly be applied for sampled-data systems....... Two methods are considered in this paper to handle the fault signature matrix for sampled-data systems such that standard AFD methods can be applied. The first method is based on a discretization of the system such that the LFT structure is preserved resulting in the same LFT structure in the fault...

  15. Identification of Active Faults by Aerial Photograph Interpretation and Case

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Chang, C.J.; Choi, W.H.; Yun, K.H.; Park, D.H.; Shin, S.H. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This report is the technical memo of the research project entitled ''Development of Technology of Advanced Seismic Safety Assessment for NPP sites''. The purposes of this report are to describe analysis methods of photographic characteristics related with active faults, to identify active faults by aerial photograph interpretation and to review case studies. (author). 27 refs., 165 figs., 8 tabs.

  16. An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO

    Directory of Open Access Journals (Sweden)

    Xiaofeng Lv

    2018-01-01

    Full Text Available Sensor data-based test selection optimization is the basis for designing a test work, which ensures that the system is tested under the constraint of the conventional indexes such as fault detection rate (FDR and fault isolation rate (FIR. From the perspective of equipment maintenance support, the ambiguity isolation has a significant effect on the result of test selection. In this paper, an improved test selection optimization model is proposed by considering the ambiguity degree of fault isolation. In the new model, the fault test dependency matrix is adopted to model the correlation between the system fault and the test group. The objective function of the proposed model is minimizing the test cost with the constraint of FDR and FIR. The improved chaotic discrete particle swarm optimization (PSO algorithm is adopted to solve the improved test selection optimization model. The new test selection optimization model is more consistent with real complicated engineering systems. The experimental result verifies the effectiveness of the proposed method.

  17. Constraining slip rates and spacings for active normal faults

    Science.gov (United States)

    Cowie, Patience A.; Roberts, Gerald P.

    2001-12-01

    Numerous observations of extensional provinces indicate that neighbouring faults commonly slip at different rates and, moreover, may be active over different time intervals. These published observations include variations in slip rate measured along-strike of a fault array or fault zone, as well as significant across-strike differences in the timing and rates of movement on faults that have a similar orientation with respect to the regional stress field. Here we review published examples from the western USA, the North Sea, and central Greece, and present new data from the Italian Apennines that support the idea that such variations are systematic and thus to some extent predictable. The basis for the prediction is that: (1) the way in which a fault grows is fundamentally controlled by the ratio of maximum displacement to length, and (2) the regional strain rate must remain approximately constant through time. We show how data on fault lengths and displacements can be used to model the observed patterns of long-term slip rate where measured values are sparse. Specifically, we estimate the magnitude of spatial variation in slip rate along-strike and relate it to the across-strike spacing between active faults.

  18. Spatial radon anomalies on active faults in California

    International Nuclear Information System (INIS)

    King, C.-Y.; King, B.-S.; Evans, W.C.; Wei Zhang

    1996-01-01

    Radon emanation has been observed to be anomalously high along active faults in many parts of the world. We tested this relationship by conducting and repeating soil-air radon surveys with a portable radon meter across several faults in California. The results confirm the existence of fault-associated radon anomalies, which show characteristic features that may be related to fault structures but vary in time due to other environmental changes, such as rainfall. Across two creeping faults in San Juan Bautista and Hollister, the radon anomalies showed prominent double peaks straddling the fault-gouge zone during dry summers, but the peak-to-background ratios diminished after significant rain fall during winter. Across a locked segment of the San Andreas fault near Olema, the anomaly has a single peak located several meters southwest of the slip zone associated with the 1906 San Francisco earthquake. Across two fault segments that ruptured during the magnitude 7.5 Landers earthquake in 1992, anomalously high radon concentration was found in the fractures three weeks after the earthquake. We attribute the fault-related anomalies to a slow vertical gas flow in or near the fault zones. Radon generated locally in subsurface soil has a concentration profile that increases three orders of magnitude from the surface to a depth of several meters; thus an upward flow that brings up deeper and radon-richer soil air to the detection level can cause a significantly higher concentration reading. This explanation is consistent with concentrations of carbon dioxide and oxygen, measured in soil-air samples collected during one of the surveys. (Author)

  19. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao

    2016-10-01

    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  20. Active fault research in India: achievements and future perspective

    Directory of Open Access Journals (Sweden)

    Mithila Verma

    2016-01-01

    Full Text Available This paper provides a brief overview of the progress made towards active fault research in India. An 8 m high scarp running for more than 80 km in the Rann of Kachchh is the classical example of the surface deformation caused by the great earthquake (1819 Kachchh earthquake. Integration of geological/geomorphic and seismological data has led to the identification of 67 active faults of regional scale, 15 in the Himalaya, 17 in the adjoining foredeep with as many as 30 neotectonic faults in the stable Peninsular India. Large-scale trenching programmes coupled with radiometric dates have begun to constraint the recurrence period of earthquakes; of the order of 500–1000 years for great earthquakes in the Himalaya and 10,000 years for earthquakes of >M6 in the Peninsular India. The global positioning system (GPS data in the stand alone manner have provided the fault parameters and length of rupture for the 2004 Andaman Sumatra earthquakes. Ground penetration radar (GPR and interferometric synthetic aperture radar (InSAR techniques have enabled detection of large numbers of new active faults and their geometries. Utilization of modern technologies form the central feature of the major programme launched by the Ministry of Earth Sciences, Government of India to prepare geographic information system (GIS based active fault maps for the country.

  1. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    Science.gov (United States)

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Erosion influences the seismicity of active thrust faults.

    Science.gov (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-11-21

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  3. Automatic fault tracing of active faults in the Sutlej valley (NW-Himalayas, India)

    Science.gov (United States)

    Janda, C.; Faber, R.; Hager, C.; Grasemann, B.

    2003-04-01

    In the Sutlej Valley the Lesser Himalayan Crystalline Sequence (LHCS) is actively extruding between the Munsiari Thrust (MT) at the base, and the Karcham Normal Fault (KNF) at the top. The clear evidences for ongoing deformation are brittle faults in Holocene lake deposits, hot springs activity near the faults and dramatically younger cooling ages within the LHCS (Vannay and Grasemann, 2001). Because these brittle fault zones obviously influence the morphology in the field we developed a new method for automatically tracing the intersections of planar fault geometries with digital elevation models (Faber, 2002). Traditional mapping techniques use structure contours (i.e. lines or curves connecting points of equal elevation on a geological structure) in order to construct intersections of geological structures with topographic maps. However, even if the geological structure is approximated by a plane and therefore structure contours are equally spaced lines, this technique is rather time consuming and inaccurate, because errors are cumulative. Drawing structure contours by hand makes it also impossible to slightly change the azimuth and dip direction of the favoured plane without redrawing everything from the beginning on. However, small variations of the fault position which are easily possible by either inaccuracies of measurement in the field or small local variations in the trend and/or dip of the fault planes can have big effects on the intersection with topography. The developed method allows to interactively view intersections in a 2D and 3D mode. Unlimited numbers of planes can be moved separately in 3 dimensions (translation and rotation) and intersections with the topography probably following morphological features can be mapped. Besides the increase of efficiency this method underlines the shortcoming of classical lineament extraction ignoring the dip of planar structures. Using this method, areas of active faulting influencing the morphology, can be

  4. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    Science.gov (United States)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  5. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    Science.gov (United States)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  6. Extreme hydrothermal conditions at an active plate-bounding fault

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  7. Extreme hydrothermal conditions at an active plate-bounding fault.

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  8. Transposing an active fault database into a seismic hazard fault model for nuclear facilities. Pt. 1. Building a database of potentially active faults (BDFA) for metropolitan France

    Energy Technology Data Exchange (ETDEWEB)

    Jomard, Herve; Cushing, Edward Marc; Baize, Stephane; Chartier, Thomas [IRSN - Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Palumbo, Luigi; David, Claire [Neodyme, Joue les Tours (France)

    2017-07-01

    The French Institute for Radiation Protection and Nuclear Safety (IRSN), with the support of the Ministry of Environment, compiled a database (BDFA) to define and characterize known potentially active faults of metropolitan France. The general structure of BDFA is presented in this paper. BDFA reports to date 136 faults and represents a first step toward the implementation of seismic source models that would be used for both deterministic and probabilistic seismic hazard calculations. A robustness index was introduced, highlighting that less than 15% of the database is controlled by reasonably complete data sets. An example of transposing BDFA into a fault source model for PSHA (probabilistic seismic hazard analysis) calculation is presented for the Upper Rhine Graben (eastern France) and exploited in the companion paper (Chartier et al., 2017, hereafter Part 2) in order to illustrate ongoing challenges for probabilistic fault-based seismic hazard calculations.

  9. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Dicle, S.; Üner, S.

    2017-11-01

    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  10. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    International Nuclear Information System (INIS)

    Dicle, S.; Üner, S.

    2017-01-01

    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  11. Computation of a Reference Model for Robust Fault Detection and Isolation Residual Generation

    Directory of Open Access Journals (Sweden)

    Emmanuel Mazars

    2008-01-01

    Full Text Available This paper considers matrix inequality procedures to address the robust fault detection and isolation (FDI problem for linear time-invariant systems subject to disturbances, faults, and polytopic or norm-bounded uncertainties. We propose a design procedure for an FDI filter that aims to minimize a weighted combination of the sensitivity of the residual signal to disturbances and modeling errors, and the deviation of the faults to residual dynamics from a fault to residual reference model, using the ℋ∞-norm as a measure. A key step in our procedure is the design of an optimal fault reference model. We show that the optimal design requires the solution of a quadratic matrix inequality (QMI optimization problem. Since the solution of the optimal problem is intractable, we propose a linearization technique to derive a numerically tractable suboptimal design procedure that requires the solution of a linear matrix inequality (LMI optimization. A jet engine example is employed to demonstrate the effectiveness of the proposed approach.

  12. Analysis on fault current limiting and recovery characteristics of a flux-lock type SFCL with an isolated transformer

    International Nuclear Information System (INIS)

    Ko, Seckcheol; Lim, Sung-Hun; Han, Tae-Hee

    2013-01-01

    Highlights: ► Countermeasure to reduce the power burden of HTSC element consisting of the flux-lock type SFCL was studied. ► The power burden of HTSC element could be decreased by using the isolated transformer. ► The SFCL designed with the additive polarity winding could be confirmed to cause less power burden of the HTSC element. -- Abstract: The flux-lock type superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes. However, the superconducting element comprising the flux-lock type SFCL can be destructed when the high fault current passes through the SFCL. Therefore, the countermeasure to control the fault current and protect the superconducting element is required. In this paper, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, was proposed and the short-circuit experimental device to analyze the fault current limiting and the recovery characteristics of the flux-lock type SFCL with the isolated transformer were constructed. Through the short-circuit tests, the flux-lock type SFCL with the isolated transformer was confirmed to perform more effective fault current limiting and recovery operation compared to the flux-lock type SFCL without the isolated transformer from the viewpoint of the quench occurrence and the recovery time of the SFCL

  13. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    Science.gov (United States)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  14. Active strike-slip faulting in El Salvador, Central America

    Science.gov (United States)

    Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn

    2005-12-01

    Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.

  15. Modeling and Performance Considerations for Automated Fault Isolation in Complex Systems

    Science.gov (United States)

    Ferrell, Bob; Oostdyk, Rebecca

    2010-01-01

    The purpose of this paper is to document the modeling considerations and performance metrics that were examined in the development of a large-scale Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FDIR team members developed a set of operational requirements for the models that would be used for fault isolation and worked closely with the vendor of the software tools selected for fault isolation to ensure that the software was able to meet the requirements. Once the requirements were established, example models of sufficient complexity were used to test the performance of the software. The results of the performance testing demonstrated the need for enhancements to the software in order to meet the demands of the full-scale ground and vehicle FDIR system. The paper highlights the importance of the development of operational requirements and preliminary performance testing as a strategy for identifying deficiencies in highly scalable systems and rectifying those deficiencies before they imperil the success of the project

  16. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    Science.gov (United States)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  17. Seismo-active faults in the Banat region, Romania

    International Nuclear Information System (INIS)

    Oros, E.

    2002-01-01

    The knowledge of the seismo-active faults represents a very important element in every seismic hazard analysis. The main purpose of our paper is to best define the seismo-active faults of the Banat Region. The region is characterized by high seismicity, with important focus of strong earthquakes (I>VII MSK degrees). The quality of the historical data is many times too weak for being used in seismotectonic studies. Thus a correlation between historical and recent seismicity must be done. In our study, several seismic sequences that occurred in the Banat Region, are analysed in detail. The distribution of the epicenters and the correlation tectonics-fault plane solutions reveal important seismotectonic features. The obtained results complete the image of the historical seismicity and offer important information for the future studies of seismic hazard. These results are also very important for the development and configuration of the Banat Seismic Network. The recent seismic activity was analysed for 1995-2002 period, when over 2500 local earthquakes were recorded (M min = 0.5 and M max = 4.8). 26 fault plane solutions were determined (first wave polarities method with additional amplitude constraints). For the earthquakes that occurred at the national border with Yugoslavia and Hungary we used the data from international bulletins. The main seismic sequences were concentrated in seven important zones: Moldova Noua, Herculane Spa - Orsova, Petrosani - Western Jiu Valey, Banloc, Voiteg, Timisoara East and Timisoara North. We also located a small seismic sequence in the Baia de Arama - Tirgu Jiu area. The results were correlated with the faults and major structures, with macroseismic field of the strongest local earthquakes, too. The seismic hazard sources and faults from outside the country (Hungary an Yugoslavia) are pointed out. (authors)

  18. Fault Detection and Isolation for a Supermarket Refrigeration System - Part Two

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Rasmussen, Karsten B.; Kieu, Anh T.

    2011-01-01

    be isolated by using a bank of UIOs. Thereby, a complete FDI approach is proposed by combining the Extended-Kalman-Filter (EKF) and UIO methods, after an extensive comparison of KF-, EKF- and UIO-based FDI methods is carried out. The simulation tests show that the complete FDI approach has a good......The Fault Detection and Isolation (FDI) using the Unknown Input Observer (UIO) for a supermarket refrigeration system is investigated. The original system's state $T_{goods}$ (temp. of the goods) is regarded as a system unknown input in this study, so that the FDI decision is not disturbed...

  19. Active Tectonics Revealed by River Profiles along the Puqu Fault

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2015-04-01

    Full Text Available The Puqu Fault is situated in Southern Tibet. It is influenced by the eastward extrusion of Northern Tibet and carries the clockwise rotation followed by the southward extrusion. Thus, the Puqu Fault is bounded by the principal dynamic zones and the tectonic evolution remains active alongside. This study intends to understand the tectonic activity in the Puqu Fault Region from the river profiles obtained from the remotely sensed satellite imagery. A medium resolution Digital Elevation Model (DEM, 20 m was generated from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo pair of images and the stream network in this region was extracted from this DEM. The indices of slope and drainage area were subsequently calculated from this ASTER DEM. Based on the stream power law, the area-slope plots of the streams were delineated to derive the indices of channel concavity and steepness, which are closely related to tectonic activity. The results show the active tectonics varying significantly along the Puqu Fault, although the potential influence of glaciations may exist. These results are expected to be useful for a better understanding of tectonic evolution in Southeastern Tibet.

  20. Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault

    Directory of Open Access Journals (Sweden)

    Li Shanzhi

    2018-03-01

    Full Text Available This paper proposes a fault tolerant control scheme based on an unknown input observer for a wind turbine system subject to an actuator fault and disturbance. Firstly, an unknown input observer for state estimation and fault detection using a linear parameter varying model is developed. By solving linear matrix inequalities (LMIs and linear matrix equalities (LMEs, the gains of the unknown input observer are obtained. The convergence of the unknown input observer is also analysed with Lyapunov theory. Secondly, using fault estimation, an active fault tolerant controller is applied to a wind turbine system. Finally, a simulation of a wind turbine benchmark with an actuator fault is tested for the proposed method. The simulation results indicate that the proposed FTC scheme is efficient.

  1. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  2. Geomorphological and geological property of short active fault in fore-arc region of Japan

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Inoue, Daiei; Ueta, Keiichi; Miyakoshi, Katsuyoshi

    2009-01-01

    The important issue in the earthquake magnitude evaluation method is the classification of short active faults or lineaments. It is necessary to determine the type of active fault to be included in the earthquake magnitude evaluation. The particular group of fault is the surface earthquake faults that are presumed to be branched faults of large interplate earthquakes in subduction zones. We have classified short lineaments in two fore-arc regions of Japan through geological and geomorphological methods based on field survey and aerial photograph interpretation. The first survey is conducted at Enmeiji Fault in Boso Peninsula. The fault is known to have been displaced by 1923 Taisho Kanto earthquake. The altitude distributions of marine terrace surfaces are different on both sides of the fault. In other words, this fault has been displaced repeatedly by the large interplate earthquakes in the past. However, the recurrent interval of this fault is far longer than the large interplate earthquake calculated by the slip rate and the displacement per event. The second survey is conducted in the western side of Muroto Peninsula, where several short lineaments are distributed. We have found several fault outcrops along the few, particular lineaments. The faults in the region have similar properties to Enmeiji Fault. On the other hand, short lineaments are found to be structural landforms. The comparison of the two groups enables us to classify the short lineaments based on the geomorphological property and geological cause of these faults. Displacement per event is far larger than displacement deduced from length of the active fault. Recurrence interval of the short active fault is far longer than that of large interplate earthquake. Displacement of the short active fault has cumulative. The earthquake magnitude of the faults have these characters need to be evaluated by the plate boundary fault or the long branched seismogenic fault. (author)

  3. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters

    Science.gov (United States)

    Jesussek, Mathias; Ellermann, Katrin

    2014-12-01

    Reliability and dependability in complex mechanical systems can be improved by fault detection and isolation (FDI) methods. These techniques are key elements for maintenance on demand, which could decrease service cost and time significantly. This paper addresses FDI for a railway vehicle: the mechanical model is described as a multibody system, which is excited randomly due to track irregularities. Various parameters, like masses, spring- and damper-characteristics, influence the dynamics of the vehicle. Often, the exact values of the parameters are unknown and might even change over time. Some of these changes are considered critical with respect to the operation of the system and they require immediate maintenance. The aim of this work is to detect faults in the suspension system of the vehicle. A Kalman filter is used in order to estimate the states. To detect and isolate faults the detection error is minimised with multiple Kalman filters. A full-scale train model with nonlinear wheel/rail contact serves as an example for the described techniques. Numerical results for different test cases are presented. The analysis shows that for the given system it is possible not only to detect a failure of the suspension system from the system's dynamic response, but also to distinguish clearly between different possible causes for the changes in the dynamical behaviour.

  4. Structural analysis of cataclastic rock of active fault damage zones: An example from Nojima and Arima-Takatsuki fault zones (SW Japan)

    Science.gov (United States)

    Satsukawa, T.; Lin, A.

    2016-12-01

    Most of the large intraplate earthquakes which occur as slip on mature active faults induce serious damages, in spite of their relatively small magnitudes comparing to subduction-zone earthquakes. After 1995 Kobe Mw7.2 earthquake, a number of studies have been done to understand the structure, physical properties and dynamic phenomenon of active faults. However, the deformation mechanics and related earthquake generating mechanism in the intraplate active fault zone are still poorly understood. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for reconstructing the complex framework of brittle deformation. Here, we present two examples of active fault damage zones: Nojima fault and Arima-Takatsuki active fault zone in the southwest Japan. We perform field investigations, combined with meso-and micro-structural analyses of fault-related rocks, which provide the important information in reconstructing the long-term seismic faulting behavior and tectonic environment. Our study shows that in both sites, damage zone is observed in over 10m, which is composed by the host rocks, foliated and non-foliated cataclasites, fault gouge and fault breccia. The slickenside striations in Asano fault, the splay fault of Nojima fault, indicate a dextral movement sense with some normal components. Whereas, those of Arima-Takatsuki active fault shows a dextral strike-slip fault with minor vertical component. Fault gouges consist of brown-gray matrix of fine grains and composed by several layers from few millimeters to a few decimeters. It implies that slip is repeated during millions of years, as the high concentration and physical interconnectivity of fine-grained minerals in brittle fault rocks produce the fault's intrinsic weakness in the crust. Therefore, faults rarely express only on single, discrete deformation episode, but are the cumulative result of several superimposed slip events.

  5. Consideration of Gyroscopic Effect in Fault Detection and Isolation for Unbalance Excited Rotor Systems

    Directory of Open Access Journals (Sweden)

    Zhentao Wang

    2012-01-01

    Full Text Available Fault detection and isolation (FDI in rotor systems often faces the problem that the system dynamics is dependent on the rotor rotary frequency because of the gyroscopic effect. In unbalance excited rotor systems, the continuously distributed unbalances are hard to be determined or estimated accurately. The unbalance forces as disturbances make fault detection more complicated. The aim of this paper is to develop linear time invariant (LTI FDI methods (i.e., with constant parameters for rotor systems under consideration of gyroscopic effect and disturbances. Two approaches to describe the gyroscopic effect, that is, as unknown inputs and as model uncertainties, are investigated. Based on these two approaches, FDI methods are developed and the results are compared regarding the resulting FDI performances. Results are obtained by the application in a rotor test rig. Restrictions for the application of these methods are discussed.

  6. Robust fault detection and isolation technique for single-input/single-output closed-loop control systems that exhibit actuator and sensor faults

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Alavi, S. M. Mahdi; Hayes, M. J.

    2008-01-01

    An integrated quantitative feedback design and frequency-based fault detection and isolation (FDI) approach is presented for single-input/single-output systems. A novel design methodology, based on shaping the system frequency response, is proposed to generate an appropriate residual signal...

  7. Earthquake Probability Assessment for the Active Faults in Central Taiwan: A Case Study

    Directory of Open Access Journals (Sweden)

    Yi-Rui Lee

    2016-06-01

    Full Text Available Frequent high seismic activities occur in Taiwan due to fast plate motions. According to the historical records the most destructive earthquakes in Taiwan were caused mainly by inland active faults. The Central Geological Survey (CGS of Taiwan has published active fault maps in Taiwan since 1998. There are 33 active faults noted in the 2012 active fault map. After the Chi-Chi earthquake, CGS launched a series of projects to investigate the details to better understand each active fault in Taiwan. This article collected this data to develop active fault parameters and referred to certain experiences from Japan and the United States to establish a methodology for earthquake probability assessment via active faults. We consider the active faults in Central Taiwan as a good example to present the earthquake probability assessment process and results. The appropriate “probability model” was used to estimate the conditional probability where M ≥ 6.5 and M ≥ 7.0 earthquakes. Our result shows that the highest earthquake probability for M ≥ 6.5 earthquake occurring in 30, 50, and 100 years in Central Taiwan is the Tachia-Changhua fault system. Conversely, the lowest earthquake probability is the Chelungpu fault. The goal of our research is to calculate the earthquake probability of the 33 active faults in Taiwan. The active fault parameters are important information that can be applied in the following seismic hazard analysis and seismic simulation.

  8. An Active Fault-Tolerant Control Method Ofunmanned Underwater Vehicles with Continuous and Uncertain Faults

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2008-11-01

    Full Text Available This paper introduces a novel thruster fault diagnosis and accommodation system for open-frame underwater vehicles with abrupt faults. The proposed system consists of two subsystems: a fault diagnosis subsystem and a fault accommodation sub-system. In the fault diagnosis subsystem a ICMAC(Improved Credit Assignment Cerebellar Model Articulation Controllers neural network is used to realize the on-line fault identification and the weighting matrix computation. The fault accommodation subsystem uses a control algorithm based on weighted pseudo-inverse to find the solution of the control allocation problem. To illustrate the proposed method effective, simulation example, under multi-uncertain abrupt faults, is given in the paper.

  9. Fault-tolerant reference generation for model predictive control with active diagnosis of elevator jamming faults

    NARCIS (Netherlands)

    Ferranti, L.; Wan, Y.; Keviczky, T.

    2018-01-01

    This paper focuses on the longitudinal control of an Airbus passenger aircraft in the presence of elevator jamming faults. In particular, in this paper, we address permanent and temporary actuator jamming faults using a novel reconfigurable fault-tolerant predictive control design. Due to their

  10. A first approach on fault detection and isolation for cardiovascular anomalies detection

    KAUST Repository

    Ledezma, Fernando

    2015-07-01

    In this paper, we use an extended version of the cardiovascular system\\'s state space model presented by [1] and propose a fault detection and isolation methodology to study the problem of detecting cardiovascular anomalies that can originate from variations in physiological parameters and deviations in the performance of the heart\\'s mitral and aortic valves. An observer-based approach is discussed as the basis of the method. The approach contemplates a bank of Extended Kalman Filters to achieve joint estimation of the model\\'s states and parameters and to detect malfunctions in the valves\\' performance. © 2015 American Automatic Control Council.

  11. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  12. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    Science.gov (United States)

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  13. A Hamiltonian Approach to Fault Isolation in a Planar Vertical Take–Off and Landing Aircraft Model

    Directory of Open Access Journals (Sweden)

    Rodriguez-Alfaro Luis H.

    2015-03-01

    Full Text Available The problem of fault detection and isolation in a class of nonlinear systems having a Hamiltonian representation is considered. In particular, a model of a planar vertical take-off and landing aircraft with sensor and actuator faults is studied. A Hamiltonian representation is derived from an Euler-Lagrange representation of the system model considered. In this form, nonlinear decoupling is applied in order to obtain subsystems with (as much as possible specific fault sensitivity properties. The resulting decoupled subsystem is represented as a Hamiltonian system and observer-based residual generators are designed. The results are presented through simulations to show the effectiveness of the proposed approach.

  14. Searching for Seismically Active Faults in the Gulf of Cadiz

    Science.gov (United States)

    Custodio, S.; Antunes, V.; Arroucau, P.

    2015-12-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active fault segments in the region. However, due to an apparently diffuse seismicity pattern defining a broad region of distributed deformation west of Gibraltar Strait, the question of the location, dimension and geometry of such structures is still open to debate. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events having occurred from 2007 to 2013, using P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area lying between 8.5˚W and 5˚W in longitude and 36˚ and 37.5˚ in latitude. The most remarkable change in the seismicity pattern after relocation is an apparent concentration of events, in the North of the Gulf of Cadiz, along a low angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. If confirmed, this would be the first structure clearly illuminated by seismicity in a region that has unleashed large magnitude earthquakes. Here, we present results from the joint analysis of focal mechanism solutions and waveform similarity between neighboring events from waveform cross-correlation in order to assess whether those earthquakes occur on the same fault plane.

  15. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    Science.gov (United States)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  16. Active Fault-Tolerant Control for Wind Turbine with Simultaneous Actuator and Sensor Faults

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The purpose of this paper is to show a novel fault-tolerant tracking control (FTC strategy with robust fault estimation and compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having bounded first time derivatives. The paper’s key contribution is proposing a descriptor sliding mode method, in which for establishing a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the system’s stability can be maintained. The effectiveness of the design strategy is verified by implementing the controller in the National Renewable Energy Laboratory’s 5-MW nonlinear, high-fidelity wind turbine model (FAST and simulating it in MATLAB/Simulink.

  17. Detector design for active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2018-01-01

    Fault diagnosis of closed-loop systems is extremely relevant for high-precision equipment and safety critical systems. Fault diagnosis is usually divided into 2 schemes: active and passive fault diagnosis. Recent studies have highlighted some advantages of active fault diagnosis based on dual Youla......-Jabr-Bongiorno-Kucera parameters. In this paper, a method for closed-loop active fault diagnosis based on statistical detectors is given using dual Youla-Jabr-Bongiorno-Kucera parameters. The goal of this paper is 2-fold. First, the authors introduce a method for measuring a residual signal subject to white noise. Second...

  18. Active fault and other geological studies for seismic assessment: present state and problems

    International Nuclear Information System (INIS)

    Kakimi, Toshihiro

    1997-01-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the 'cautiousness' of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the 'precaution faults' having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a 'precaution fault'. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  19. Active fault and other geological studies for seismic assessment: present state and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  20. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults.

    Science.gov (United States)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-09

    The criteria for designating an "Active Fault" not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault's latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  1. Fault diagnosis of active magnetic bearings based on Gaussian GLRT detector

    DEFF Research Database (Denmark)

    Nagel, Leon; Galeazzi, Roberto; Voigt, Andreas Jauernik

    2016-01-01

    generalized likelihood ratio test is proposed for detecting faults striking the electromagnet. The detector is capable of detecting and isolating the occurrence of faults in e.g. the windings of bearing by tracking changes in the mean value of a Gaussian distribution. The statistical distribution...

  2. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    Science.gov (United States)

    Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  3. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    Science.gov (United States)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  4. Modeling, control and fault diagnosis of an isolated wind energy conversion system with a self-excited induction generator subject to electrical faults

    International Nuclear Information System (INIS)

    Attoui, Issam; Omeiri, Amar

    2014-01-01

    Highlights: • A new model of the SEIG is developed to simulate both the rotor and stator faults. • This model takes iron loss, main flux and cross flux saturation into account. • A new control strategy based on Fractional-Order Controller (FOC) is proposed. • The control strategy is developed for the control of the wind turbine speed. • An on-line diagnostic procedure based on the stator currents analysis is presented. - Abstract: In this paper, a contribution to modeling and fault diagnosis of rotor and stator faults of a Self-Excited Induction Generator (SEIG) in an Isolated Wind Energy Conversion System (IWECS) is proposed. In order to control the speed of the wind turbine, while basing on the linear model of wind turbine system about a specified operating point, a new Fractional-Order Controller (FOC) with a simple and practical design method is proposed. The FOC ensures the stability of the nonlinear system in both healthy and faulty conditions. Furthermore, in order to detect the stator and rotor faults in the squirrel-cage self-excited induction generator, an on-line fault diagnostic technique based on the spectral analysis of stator currents of the squirrel-cage SEIG by a Fast Fourier Transform (FFT) algorithm is used. Additionally, a generalized model of the squirrel-cage SEIG is developed to simulate both the rotor and stator faults taking iron loss, main flux and cross flux saturation into account. The efficiencies of generalized model, control strategy and diagnostic procedure are illustrated with simulation results

  5. Active superconducting DC fault current limiter based on flux compensation

    International Nuclear Information System (INIS)

    Shi Jing; Tang Yuejin; Wang, Chen; Zhou Yusheng; Li Jingdong; Ren Li; Chen Shijie

    2006-01-01

    With the extensive application of DC power systems, suppression of DC fault current is an important subject that guarantees system security. This paper presents an active superconducting DC fault current limiter (DC-SFCL) based on flux compensation. The DC-SFCL is composed of two superconducting windings wound on a single iron core, the primary winding is in series with DC power system, and the second winding is connected with AC power system through a PWM converter. In normal operating state, the flux in the iron core is compensated to zero, and the SFCL has no influence on DC power system. In the case of DC system accident, through regulating the active power exchange between the SFCL's second winding and the AC power system, the current on the DC side can be limited to different level complying with the system demand. Moreover, the PWM converter that interface the DC system and AC system can be controlled as a reactive power source to supply voltage support for the AC side, which has little influence on the performance of SFCL. Using MATLAB SIMULINK, the mathematic model of the DC-SFCL is created, simulation results validate the dynamics of system, and the performance of DC-SFCL is confirmed

  6. DIAGNOSTICS OF META-INSTABLE STATE OF SEISMICALLY ACTIVE FAULT

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2017-01-01

    Full Text Available Based on the results of a laboratory simulation of the seismic fault reactivation by “stick-slip” process, it was shown that the system of two blocks just before an impulse offset goes through the meta-instable dynamic state, with early and late stages of meta-instability [Ma et al., 2012]. In the first stage the offset begins in slow stationary mode with slow stresses relaxation on contact between blocks. In the second stage of the “accelerated synergies” strain rate increases and, subsequently, the deformation process through a process of self-organization came to dynamic impulse offset. The experimental results were used for interpretation of the results of spectral analysis of the deformation monitoring data. The data were held within the southern part ofLakeBaikal, where Kultuk earthquake (27.08.2008, Ms=6.1. took place. Its epicenter was located in the South end zone of the main Sayan fault. Monitoring of deformations of rocks was carried out from April to November2008 in tunnel, located at30 km from the epicenter of the earthquake. The time series data was divided into month periods and then the periods were processed by the method of spectral analysis. The results showed that before the earthquake has ordered view spectrogram, whereas in other time intervals, both before and after the earthquake such orderliness in spectrograms is missing. An ordered view spectrograms for deformation monitoring data can be interpreted as a consequence of the self-organiza­tion of deformation process in the transition of seismically active fault into meta-unstable before the Kultuk earthquake.

  7. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells....... The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation......, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high...

  8. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    Science.gov (United States)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2017-08-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  9. Delineation of Urban Active Faults Using Multi-scale Gravity Analysis in Shenzhen, South China

    Science.gov (United States)

    Xu, C.; Liu, X.

    2015-12-01

    In fact, many cities in the world are established on the active faults. As the rapid urban development, thousands of large facilities, such as ultrahigh buildings, supersized bridges, railway, and so on, are built near or on the faults, which may change the balance of faults and induce urban earthquake. Therefore, it is significant to delineate effectively the faults for urban planning construction and social sustainable development. Due to dense buildings in urban area, the ordinary approaches to identify active faults, like geological survey, artificial seismic exploration and electromagnetic exploration, are not convenient to be carried out. Gravity, reflecting the mass distribution of the Earth's interior, provides a more efficient and convenient method to delineate urban faults. The present study is an attempt to propose a novel gravity method, multi-scale gravity analysis, for identifying urban active faults and determining their stability. Firstly, the gravity anomalies are decomposed by wavelet multi-scale analysis. Secondly, based on the decomposed gravity anomalies, the crust is layered and the multilayer horizontal tectonic stress is inverted. Lastly, the decomposed anomalies and the inverted horizontal tectonic stress are used to infer the distribution and stability of main active faults. For validating our method, a case study on active faults in Shenzhen City is processed. The results show that the distribution of decomposed gravity anomalies and multilayer horizontal tectonic stress are controlled significantly by the strike of the main faults and can be used to infer depths of the faults. The main faults in Shenzhen may range from 4km to 20km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  10. Fault diagnosis based on controller modification

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2015-01-01

    Detection and isolation of parametric faults in closed-loop systems will be considered in this paper. A major problem is that a feedback controller will in general reduce the effects from variations in the systems including parametric faults on the controlled output from the system. Parametric...... faults can be detected and isolated using active methods, where an auxiliary input is applied. Using active methods for the diagnosis of parametric faults in closed-loop systems, the amplitude of the applied auxiliary input need to be increased to be able to detect and isolate the faults in a reasonable......-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify the feedback controller with a minor effect on the closed-loop performance in the fault-free case and at the same time optimize the detection and isolation in a faulty case. Controller modification in connection...

  11. Early (pre–8 Ma) fault activity and temporal strain accumulation in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    -reflection profiles within the central Indian Ocean demonstrate that compressional activity started much earlier than previously thought, at around 15.4-13.9 Ma. From reconstructions of fault activity histories, it is shown that 12% of the total reverse fault...

  12. Detection of active faults using data fusion techniques : case study, Psachna Island of Evoia, Greece

    NARCIS (Netherlands)

    Gountromichou, Chrysa; Pohl, Christine; Ehlers, Manfred

    2002-01-01

    The identification of active faults (faults potentially capable to trigger an earthquake) is important for a seismically active country like Greece. Remote sensing techniques and GIS analysis were used in order to detect, map and characterize the tectonic structures of Psachna town and the

  13. Three dimensional investigation on the oceanic active fault. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Okamoto, Yukinobu; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio; Arai, Kosaku [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    2000-02-01

    In order to upgrade activity and likelihood ratio on active potential evaluation of the water active fault with possibility of severe effect on nuclear facilities, by generally applying the conventional procedures to some areas and carrying out a demonstration survey, a qualitative upgrading on survey to be conducted by the executives was planned. In 1998 fiscal year, among the water active faults classified to the trench and the inland types, three dimensional survey on the inland type water active fault. The survey was carried out at the most southern part of aftershock area in the 1983 Nihonkai-Chubu earthquake, which is understood to be a place changing shallow geological structure (propagation of fault) from an old report using the sonic survey. As a result, a geological structure thought to be an active fault at a foot of two ridge topographies was found. Each fault was thought to be a reverse fault tilt to its opposite direction and an active fault cutting to its sea bottom. (G.K.)

  14. Three dimensional investigation on the oceanic active fault. A demonstration survey

    International Nuclear Information System (INIS)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Okamoto, Yukinobu; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio; Arai, Kosaku

    2000-01-01

    In order to upgrade activity and likelihood ratio on active potential evaluation of the water active fault with possibility of severe effect on nuclear facilities, by generally applying the conventional procedures to some areas and carrying out a demonstration survey, a qualitative upgrading on survey to be conducted by the executives was planned. In 1998 fiscal year, among the water active faults classified to the trench and the inland types, three dimensional survey on the inland type water active fault. The survey was carried out at the most southern part of aftershock area in the 1983 Nihonkai-Chubu earthquake, which is understood to be a place changing shallow geological structure (propagation of fault) from an old report using the sonic survey. As a result, a geological structure thought to be an active fault at a foot of two ridge topographies was found. Each fault was thought to be a reverse fault tilt to its opposite direction and an active fault cutting to its sea bottom. (G.K.)

  15. Simulation model of a transient fault controller for an active-stall wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Soerensen, P.; Bak Jensen, B.

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed. (author)

  16. Geological conditions for lateral sealing of active faults and relevant research methods

    Directory of Open Access Journals (Sweden)

    Guang Fu

    2017-01-01

    Full Text Available Many researchers worked a lot on geologic conditions for lateral sealing of faults, but none of their studies took the effect of internal structures of fault zones on the lateral sealing capacity of faults. Therefore, the lateral sealing of active faults has rarely been discussed. In this paper, based on the analysis of the composition and structure characteristics of fault fillings, the geological conditions for lateral sealing of active faults and relevant research method were discussed in reference to the lateral sealing mechanisms of inactive fault rocks. It is shown that, in order to satisfy geologically the lateral sealing of active faults, the faults should be antithetic and the faulted strata should be mainly composed of mudstone, so that the displacement pressure of fault fillings is higher than or equal to that of reservoir rocks in oil and gas migration block. Then, a research method for the lateral sealing of active faults was established by comparing the displacement pressure of fillings in the fault with that of reservoir rocks in oil and gas migration block. This method was applied to three antithetic faults (F1, F2 and F3 in No. 1 structure of the Nanpu Sag, Bohai Bay Basin. As revealed, the fillings of these three active faults were mostly argillaceous at the stage of natural gas accumulation (the late stage of Neogene Minghuazhen Fm sedimentation, and their displacement pressures were higher than that of reservoir rocks in the first member of Paleogene Dongying Fm (F1 and F3 and the Neogene Guantao Fm (F2. Accordingly, they are laterally sealed for natural gas, which is conducive to the accumulation and preservation of natural gas. Industrial gas flow has been produced from the first member of Paleogene Dongying Fm in Well Np101, the Guantao Fm in Well Np1-2 and the first member of Paleogene Dongying Fm in Well Np1, which is in agreement with the analysis result. It is verified that this method is feasible for investigating the

  17. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  18. Factors for simultaneous rupture assessment of active fault. Part 1. Fault geometry and slip-distribution based on tectonic geomorphological and paleoseismological investigations

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Ueta, Keiichi

    2012-01-01

    It is important to evaluate the magnitude of an earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults is often decided on the basis of geometric distances except for the cases in which paleoseismic records of these faults are well known. We have been studying the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the techniques based on the paleoseismic record and the geometric distance. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along these faults in dense vegetation area. We have found several new outcrops in this area where the surface ruptures of the 1891 Nobi earthquake have not been known. At the several outcrops, humic layer whose age is from 14th century to 19th century by 14C age dating was deformed by the active fault. We conclude that the surface rupture of Nukumi fault in the 1891 Nobi earthquake is continuous to 12km southeast of Nukumi village. In other words, these findings indicate that there is 10-12km parallel overlap zone between the surface rupture of the southeastern end of Nukumi fault and the northwestern end of Neodani fault. (author)

  19. Variation in radon exhalation from the ground on the active fault in Kobe

    Energy Technology Data Exchange (ETDEWEB)

    Yasuoka, Y.; Shinogi, M. [Kobe Pharmaceutical Univ., Kobe, Hyogo (Japan)

    1998-12-31

    Since 27 January 1997, the measurements of radon (Rn-222) exhaled from the ground have been made continuously by the use of PICO-RAD detector (Packard instrument Co.) at monitoring stations on Ashiya active fault. The fault may have been slipped by the Kobe earthquake (magnitude 7.2, 17 January 1995). The variation of relative radon exhalation on the fault was large. We guessed the large variation of relative radon exhalation on the fault was caused by not only the influence of meteorology but also the influence of other factors. (author)

  20. A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamidreza Mousavi

    2017-01-01

    Full Text Available Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN. In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple fault conditions. The algorithm uses a calibration model based on AANN. AANN can reconstruct the faulty sensor using non-faulty sensors due to correlation between the process variables, and mean of the difference between reconstructed and original data determines which sensors are faulty. The algorithms are tested on a Dimerization process. The simulation results show that the S-AANN can isolate multiple faulty sensors with low computational time that make the algorithm appropriate candidate for online applications.

  1. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    Science.gov (United States)

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  2. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Seyed Moosavi

    2018-02-01

    Full Text Available The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  3. Study on active faults in the Izu Peninsula using α track etch method

    International Nuclear Information System (INIS)

    Katoh, K.; Ikeda, K.; Takahashi, M.; Nagata, S.; Yanagihara, C.

    1981-01-01

    The α track etch method, which is one of the geochemical survey methods for the mapping and detection of active faults and the evaluation of their activities, has been applied to ten sites for the purpose of the earthquake prediction research program. The method conventionally measures relative radon concentration in the soil gas by counting the number of tracks per cm 2 .day on a small piece of plastic film (cellulose nitrate) which is sensitive to α-ray radiation. As the result of the track measurement on many survey lines crossing ten active faults including earthquake faults in the Izu Peninsula, the following was clarified: 1. The peak of track number appears mostly on fault lines but sometimes shifts from it. The line connecting peaks on the several survey lines corresponds to the strike of fault. 2. Relative position between the peak and the fault line on the surface suggests the type of fault, normal or reverse. 3. The track number observed on thin Quaternary strata is generally larger than that on thick Quaternary strata at an active fault concerned. This fact shows that the rising time of radon gas is controlled by the thickness of covering strata. (author)

  4. Neotectonic activity of the Bomdila Fault in Northeastern India from ...

    Indian Academy of Sciences (India)

    69

    from geomorphological evidences using remote sensing and GIS. 2. 3. Jogendra Nath .... block lying in between the Kopili and the Bomdila Faults. .... in the area. Geomorphological studies are carried out to identify the drainage patterns,. 109.

  5. Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies

    Science.gov (United States)

    Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.

    2014-01-01

    In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the field activity will be provided separately; this paper discusses the complications presented by such offset measurements using two channels from the San Andreas fault as illustrative cases. We conclude with best approaches for future data collection efforts based on input from the Fieldshop.

  6. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    Science.gov (United States)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  7. Fault and graben growth along active magmatic divergent plate boundaries in Iceland and Ethiopia

    KAUST Repository

    Trippanera, D.; Acocella, V.; Ruch, Joel; Abebe, B.

    2015-01-01

    Recent studies highlight the importance of annual-scale dike-induced rifting episodes in developing normal faults and graben along the active axis of magmatic divergent plate boundaries (MDPB). However, the longer-term (102-105 years) role of diking on the cumulative surface deformation and evolution of MDPB is not yet well understood. To better understand the longer-term normal faults and graben along the axis of MDPB, we analyze fissure swarms in Iceland and Ethiopia. We first focus on the simplest case of immature fissure swarms, with single dike-fed eruptive fissures; these consist of a <1 km wide graben bordered by normal faults with displacement up to a few meters, consistent with theoretical models and geodetic data. A similar structural pattern is found, with asymmetric and multiple graben, within wider mature fissure swarms, formed by several dike-fed eruptive fissures. We then consider the lateral termination of normal faults along these graben, to detect their upward or downward propagation. Most faults terminate as open fractures on flat surface, suggesting downward fault propagation; this is consistent with recent experiments showing dike-induced normal faults propagating downward from the surface. However, some normal faults also terminate as open fractures on monoclines, which resemble fault propagation folds; this suggests upward propagation of reactivated buried faults, promoted by diking. These results suggest that fault growth and graben development, as well as the longer-term evolution of the axis of MDPB, may be explained only through dike emplacement and that any amagmatic faulting is not necessary.

  8. Fault and graben growth along active magmatic divergent plate boundaries in Iceland and Ethiopia

    KAUST Repository

    Trippanera, D.

    2015-10-08

    Recent studies highlight the importance of annual-scale dike-induced rifting episodes in developing normal faults and graben along the active axis of magmatic divergent plate boundaries (MDPB). However, the longer-term (102-105 years) role of diking on the cumulative surface deformation and evolution of MDPB is not yet well understood. To better understand the longer-term normal faults and graben along the axis of MDPB, we analyze fissure swarms in Iceland and Ethiopia. We first focus on the simplest case of immature fissure swarms, with single dike-fed eruptive fissures; these consist of a <1 km wide graben bordered by normal faults with displacement up to a few meters, consistent with theoretical models and geodetic data. A similar structural pattern is found, with asymmetric and multiple graben, within wider mature fissure swarms, formed by several dike-fed eruptive fissures. We then consider the lateral termination of normal faults along these graben, to detect their upward or downward propagation. Most faults terminate as open fractures on flat surface, suggesting downward fault propagation; this is consistent with recent experiments showing dike-induced normal faults propagating downward from the surface. However, some normal faults also terminate as open fractures on monoclines, which resemble fault propagation folds; this suggests upward propagation of reactivated buried faults, promoted by diking. These results suggest that fault growth and graben development, as well as the longer-term evolution of the axis of MDPB, may be explained only through dike emplacement and that any amagmatic faulting is not necessary.

  9. Spatial and temporal patterns of fault creep across an active salt system, Canyonlands National Park, Utah

    Science.gov (United States)

    Kravitz, K.; Mueller, K. J.; Furuya, M.; Tiampo, K. F.

    2017-12-01

    First order conditions that control creeping behavior on faults include the strength of faulted materials, fault maturity and stress changes associated with seismic cycles. We present mapping of surface strain from differential interferometric synthetic aperture radar (DInSAR) of actively creeping faults in Eastern Utah that form by reactivation of older joints and faults. A nine-year record of displacement across the region using descending ERS scenes from 1992-2001 suggests maximum slip rates of 1 mm/yr. Time series analysis shows near steady rates across the region consistent with the proposed ultra-weak nature of these faults as suggested by their dilating nature, based on observations of sinkholes, pit chains and recently opened fissures along their lengths. Slip rates along the faults in the main part of the array are systematically faster with closer proximity to the Colorado River Canyon, consistent with mechanical modeling of the boundary conditions that control the overall salt system. Deeply incised side tributaries coincide with and control the edges of the region with higher strain rates. Comparison of D:L scaling at decadal scales in fault bounded grabens (as defined by InSAR) with previous measurements of total slip (D) to length (L) is interpreted to suggest that faults reached nearly their current lengths relatively quickly (i.e. displaying low displacement to length scaling). We argue this may then have been followed by along strike slip distributions where the centers of the grabens slip more rapidly than their endpoints, resulting in a higher D:L ratio over time. InSAR mapping also points to an increase in creep rates in overlap zones where two faults became hard-linked at breached relay ramps. Additionally, we see evidence for soft-linkage, where displacement profiles along a graben coincide with obvious fault segments. While an endmember case (ultra-weak faults sliding above a plastic substrate), structures in this region highlight mechanical

  10. Multi-scale investigation into the mechanisms of fault mirror formation in seismically active carbonate rocks

    Science.gov (United States)

    Ohl, Markus; Chatzaras, Vasileios; Niemeijer, Andre; King, Helen; Drury, Martyn; Plümper, Oliver

    2017-04-01

    Mirror surfaces along principal slip zones in carbonate rocks have recently received considerable attention as they are thought to form during fault slip at seismic velocities and thus may be a marker for paleo-seismicity (Siman-Tov et al., 2013). Therefore, these structures represent an opportunity to improve our understanding of earthquake mechanics in carbonate faults. Recent investigations reported the formation of fault mirrors in natural rocks as well as in laboratory experiments and connected their occurrence to the development of nano-sized granular material (Spagnuolo et al., 2015). However, the underlying formation and deformation mechanisms of these fault mirrors are still poorly constrained and warrant further research. In order to understand the influence and significance of these fault products on the overall fault behavior, we analysed the micro-, and nanostructural inventory of natural fault samples containing mirror slip surfaces. Here we present first results on the possible formation mechanisms of fault mirrors and associated deformation mechanisms operating in the carbonate fault gouge from two seismically active fault zones in central Greece. Our study specifically focuses on mirror slip surfaces obtained from the Arkitsa fault in the Gulf of Evia and the Schinos fault in the Gulf of Corinth. The Schinos fault was reactivated by a magnitude 6.7 earthquake in 1981 while the Arkitsa fault is thought to have been reactivated by a magnitude 6.9 earthquake in 1894. Our investigations encompass a combination of state-of-the-art analytical techniques including X-ray computed tomography, focused ion beam scanning electron microscopy (FIB-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Using this multiscale analytical approach, we report decarbonation-reaction structures, considerable calcite twinning and grain welding immediately below the mirror slip surface. Grains or areas indicating decarbonation reactions show a foam

  11. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    Science.gov (United States)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di

  12. Fault Detection and Isolation Using Analytical Redundancy Relations for the Ship Propulsion Benchmark

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    The prime objective of Fault-tolerant Control (FTC) systems is to handle faults and discrepancies using appropriate accommodation policies. The issue of obtaining information about various parameters and signals, which have to be monitored for fault detection purposes, becomes a rigorous task...... with the growing number of subsystems. The structural approach, presented in this report, constitutes a general framework for providing information when the system becomes complex. Furthermore, by using this approach, one can determine the calculation sequences of the residuals. The methodology of this approach...

  13. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    Modern stables and greenhouses are equipped with different components for providing a comfortable climate for animals and plant. A component malfunction may result in loss of production. Therefore, it is desirable to design a control system, which is stable, and is able to provide an acceptable d...... are not included, while due to the physical limitation, the input signal can not have any value. In continuing, a passive fault tolerant controller (PFTC) based on state feedback is proposed to track a reference signal while the control inputs are bounded....... of fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters...... affine (PWA) components such as dead-zones, saturation, etc or contain piecewise nonlinear models which is the case for the climate control systems of the stables. Fault tolerant controller (FTC) is based on a switching scheme between a set of predefined passive fault tolerant controller (PFTC...

  14. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    Science.gov (United States)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  15. An HVAC [heating, ventilation, and air-conditioning] fault-tree analysis for WIPP [Waste Isolation Pilot Plant] integrated risk assessment

    International Nuclear Information System (INIS)

    Kirby, P.N.; Iacovino, J.M.

    1990-01-01

    In order to evaluate the public health risk of potential radioactive releases from operation of the Waste Isolation Pilot Plant (WIPP), a probabilistic risk assessment of waste-handling operations was conducted. One major aspect of this risk assessment involved fault-tree analysis of the plant heating, ventilation, and air-conditioning (HVAC) systems, which constitute the final barrier between waste-handling operations and the environment. The WIPP site is designed to receive and store two types of waste: contact-handled transuranic (CH TRU) wastes to be shipped in 208-ell drums and remote-handled (RH) TRU wastes to be shipped in shielded casks. The identification of accident sequences for CH waste operations revealed no identified accidents that could release significant radioactive particulates to the environment without a failure in the HVAC systems. When the HVAC fault-tree results were combined with other critical system fault trees and the analysis of waste-handling accident sequences, the approximation of the overall WIPP plant risk due to airborne releases was determined to be 2.6 x 10 -7 fatalities per year for the population within a 50-mile radius of the WIPP site. This risk was demonstrated to be well below the risk of fatality from other voluntary and involuntary activities for the population within the vicinity of the WIPP

  16. Index for simultaneous rupture assessment of active faults. Part 3. Subsurface structure deduced from geophysical research

    International Nuclear Information System (INIS)

    Aoyagi, Yasuhira

    2012-01-01

    Tomographic inversion was carried out in the northern source region of the 1891 Nobi earthquake, the largest inland earthquake (M8.0) in Japan to detect subsurface structure to control simultaneous rupture of active fault system. In the step-over between the two ruptured fault segments in 1891, a remarkable low velocity zone is found between the Nukumi and Ibigawa faults at the depth shallower than 3-5 km. The low velocity zone forms a prism-like body narrowing down in the deeper. Hypocenters below the low velocity zone connecting the two ruptured segments indicate the possibility of their convergence in the seismogenic zone. Northern tip of the Neodani fault locates in the low velocity zone. The results show that fault rupture is easy to propagate in the low velocity zone between two parallel faults. In contrast an E-W cross-structure is found in the seismogenic depth between the Nobi earthquake and the 1948 Fukui earthquake (M7.1) source regions. It runs parallel to the Hida gaien belt, a major geologic structure in the district. P-wave velocity is lower and the hypocenter depths are obviously shallower in north of the cross-structure. Since a few faults lie in E-W direction just above it, a cross-structure zone including the Hida gaien belt might terminate the fault rupture. The results indicate fault rupture is difficult to propagate beyond major cross-structure. The length ratio of cross-structure to fault segment (PL/FL) is proposed to use for simultaneous rupture assessment. Some examples show that fault ruptures perhaps (PL/FL>3-4), maybe (∼1), and probably (<1) cut through such cross-structures. (author)

  17. Isolated polypeptide having arabinofuranosidase activity

    Science.gov (United States)

    Foreman, Pamela; Van Solingen, Pieter; Goedegebuur, Frits; Ward, Michael

    2010-02-23

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry. TABLE-US-00001 cip1 cDNA sequence (SEQ ID NO: 1) GACTAGTTCA TAATACAGTA GTTGAGTTCA TAGCAACTTC 50 ACTCTCTAGC TGAACAAATT ATCTGCGCAA ACATGGTTCG CCGGACTGCT 100 CTGCTGGCCC TTGGGGCTCT CTCAACGCTC TCTATGGCCC AAATCTCAGA 150 CGACTTCGAG TCGGGCTGGG ATCAGACTAA ATGGCCCATT TCGGCACCAG 200 ACTGTAACCA GGGCGGCACC GTCAGCCTCG ACACCACAGT AGCCCACAGC 250 GGCAGCAACT CCATGAAGGT CGTTGGTGGC CCCAATGGCT ACTGTGGACA 300 CATCTTCTTC GGCACTACCC AGGTGCCAAC TGGGGATGTA TATGTCAGAG 350 CTTGGATTCG GCTTCAGACT GCTCTCGGCA GCAACCACGT CACATTCATC 400 ATCATGCCAG ACACCGCTCA GGGAGGGAAG CACCTCCGAA TTGGTGGCCA 450 AAGCCAAGTT CTCGACTACA ACCGCGAGTC CGACGATGCC ACTCTTCCGG 500 ACCTGTCTCC CAACGGCATT GCCTCCACCG TCACTCTGCC TACCGGCGCG 550 TTCCAGTGCT TCGAGTACCA CCTGGGCACT GACGGAACCA TCGAGACGTG 600 GCTCAACGGC AGCCTCATCC CGGGCATGAC CGTGGGCCCT GGCGTCGACA 650 ATCCAAACGA CGCTGGCTGG ACGAGGGCCA GCTATATTCC GGAGATCACC 700 GGTGTCAACT TTGGCTGGGA GGCCTACAGC GGAGACGTCA ACACCGTCTG 750 GTTCGACGAC ATCTCGATTG CGTCGACCCG CGTGGGATGC GGCCCCGGCA 800 GCCCCGGCGG TCCTGGAAGC TCGACGACTG GGCGTAGCAG CACCTCGGGC 850 CCGACGAGCA CTTCGAGGCC AAGCACCACC ATTCCGCCAC CGACTTCCAG 900 GACAACGACC GCCACGGGTC CGACTCAGAC ACACTATGGC CAGTGCGGAG 1000 GGATTGGTTA CAGCGGGCCT ACGGTCTGCG CGAGCGGCAC GACCTGCCAG 1050 GTCCTGAACC CATACTACTC CCAGTGCTTA TAAGGGGATG AGCATGGAGT 1100 GAAGTGAAGT GAAGTGGAGA GAGTTGAAGT GGCATTGCGC TCGGCTGGGT 1150 AGATAAAAGT CAGCAGCTAT GAATACTCTA TGTGATGCTC ATTGGCGTGT 1200 ACGTTTTAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 1250 AAAAAAAAAA AAAAAAAAAG GGGGCGGCCG C 1271

  18. Postglacial seismic activity along the Isovaara-Riikonkumpu fault complex

    Science.gov (United States)

    Ojala, Antti E. K.; Mattila, Jussi; Ruskeeniemi, Timo; Palmu, Jukka-Pekka; Lindberg, Antero; Hänninen, Pekka; Sutinen, Raimo

    2017-10-01

    Analysis of airborne LiDAR-based digital elevation models (DEMs), trenching of Quaternary deposits, and diamond drilling through faulted bedrock was conducted to characterize the geological structure and full slip profiles of the Isovaara-Riikonkumpu postglacial fault (PGF) complex in northern Finland. The PGF systems are recognized from LiDAR DEMs as a complex of surface ruptures striking SW-NE, cutting through late-Weichselian till, and associated with several postglacial landslides within 10 km. Evidence from the terrain rupture characteristics, the deformed and folded structure of late-Weichselian till, and the 14C age of 11,300 cal BP from buried organic matter underneath the Sotka landslide indicates a postglacial origin of the Riikonkumpu fault (PGF). The fracture frequency and lithology of drill cores and fault geometry in the trench log indicate that the Riikonkumpu PGF dips to WNW with a dip angle of 40-45° at the Riikonkumpu site and close to 60° at the Riikonvaara site. A fault length of 19 km and the mean and maximum cumulative vertical displacement of 1.3 m and 4.1 m, respectively, of the Riikonkumpu PGF system indicate that the fault potentially hosted an earthquake with a moment magnitude MW ≈ 6.7-7.3 assuming that slip was accumulated in one seismic event. Our interpretation further suggests that the Riikonkumpu PGF system is linked to the Isovaara PGF system and that, together, they form a larger Isovaara-Riikonkumpu fault complex. Relationships between the 38-km-long rupture of the Isovaara-Riikonkumpu complex and the fault offset parameters, with cumulative displacement of 1.5 and 8.3 m, respectively, indicate that the earthquake(s) contributing to the PGF complex potentially had a moment magnitude of MW ≈ 6.9-7.5. In order to adequately sample the uncertainty space, the moment magnitude was also estimated for each major segment within the Isovaara-Riikonkumpu PGF complex. These estimates vary roughly between MW ≈ 5-8 for the individual

  19. Active Fault Diagnosis for Hybrid Systems Based on Sensitivity Analysis and EKF

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas

    2011-01-01

    in the estimation of the corresponding parameter. The fault detection and isolation is done by comparing the nominal parameters with those estimated by Extended Kalman Filter (EKF). In study, Gaussian noise is used as the input disturbance as well as the measurement noise for simulation. The method is implemented...

  20. Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB Isolator Devices Subjected to Near-Fault (NF Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2014-12-01

    Full Text Available Base isolation has been used as one of the most wildly accepted seismic protection systems that should substantially dissociate a superstructure from its substructure resting on a shaking ground, thereby sustainably preserving entire structures against earthquake forces as well as inside non-structural integrities. Base isolation devices can operate very effectively against near-fault (NF ground motions with large velocity pulses and permanent ground displacements. In this study, comparative advantages for using lead-rubber bearing (LRB isolation systems are mainly investigated by performing nonlinear dynamic time-history analyses with NF ground motions. The seismic responses with respects to base shears and inter-story drifts are compared according to the installation of LRB isolation systems in the frame building. The main function of the base LRB isolator is to extend the period of structural vibration by increasing lateral flexibility in the frame structure, and thus ground accelerations transferred into the superstructure can dramatically decrease. Therefore, these base isolation systems are able to achieve notable mitigation in the base shear. In addition, they make a significant contribution to reducing inter-story drifts distributed over the upper floors. Finally, the fact that seismic performance can be improved by installing isolation devices in the frame structure is emphasized herein through the results of nonlinear dynamic analyses.

  1. Transformation of graphite by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand

    Science.gov (United States)

    Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina

    2017-04-01

    Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite

  2. Extreme hydrothermal conditions at an active plate-bounding fault

    NARCIS (Netherlands)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G.R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre|info:eu-repo/dai/nl/370832132; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-01-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At

  3. Evaluating the movement of active faults on buried pipelines | Parish ...

    African Journals Online (AJOL)

    During the earthquake, a buried pipeline may be experienced extreme loading that is the result of the relatively large displacement of the Earth along the pipe. Large movements of ground could occur by faulting, liquefaction, lateral spreading, landslides, and slope failures. Since the pipelines are widely spread, and in ...

  4. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke

    2003-01-01

    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  5. Earthquake precursory events around epicenters and local active faults

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S. B.; Haydari Azad, F.

    2013-05-01

    shakes, mapping foreshocks and aftershocks, and following changes in the above-mentioned precursors prior to past earthquake instances all over the globe. Our analyses also encompass the geographical location and extents of local and regional faults which are considered as important factors during earthquakes. The co-analysis of direct and indirect observation for precursory events is considered as a promising method for possible future successful earthquake predictions. With proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will be able to identify anomalies due to seismic activity in the earth's crust.

  6. Implications of Seismically Active Fault Structures in Ankay and Alaotra Regions of Northern and Central Madagascar

    Science.gov (United States)

    Malloy, S.; Stamps, D. S.

    2017-12-01

    The purpose of the study is to gain a better understanding of the seismically active fault structures in central and northern Madagascar. We study the Ankay and Lake Alaotra regions of Madagascar, which are segmented by multiple faults that strike N-S. In general, normal seismic events occur on faults bounding the Alaotra-Ankay rift basin where Quaternary alluvium is present. Due to this pattern and moderate amounts of low magnitude seismic activity along these faults, it is hypothesized the region currently undergoes E-W extension. In this work we test how variations in fault strength and net slip changes influence expected crustal movement in the region. Using the Coulomb stress failure point as a test of strength we are able to model the Alaotra-Ankay region using MATLAB Coulomb 3.3.01. This program allows us to define realistic Poisson's ratio and Young's modulus of mapped rock compositions in the region, i.e. paragneiss and orthogneiss, create 3D fault geometries, and calculate static stress changes with coinciding surface displacements. We impose slip along multiple faults and calculate seismic moment that we balance by the 3 observed earthquake magnitudes available in the USGS CMT database. Our calculations of surface displacements indicate 1-3 millimeters could be observed across the Alaotra-Ankay rift. These values are within the observable range of precision GNSS observations, therefore our results will guide future research into the area and direct potential GNSS station installation.

  7. Active Fault Near-Source Zones Within and Bordering the State of California for the 1997 Uniform Building Code

    Science.gov (United States)

    Petersen, M.D.; Toppozada, Tousson R.; Cao, T.; Cramer, C.H.; Reichle, M.S.; Bryant, W.A.

    2000-01-01

    The fault sources in the Project 97 probabilistic seismic hazard maps for the state of California were used to construct maps for defining near-source seismic coefficients, Na and Nv, incorporated in the 1997 Uniform Building Code (ICBO 1997). The near-source factors are based on the distance from a known active fault that is classified as either Type A or Type B. To determine the near-source factor, four pieces of geologic information are required: (1) recognizing a fault and determining whether or not the fault has been active during the Holocene, (2) identifying the location of the fault at or beneath the ground surface, (3) estimating the slip rate of the fault, and (4) estimating the maximum earthquake magnitude for each fault segment. This paper describes the information used to produce the fault classifications and distances.

  8. Structural Analysis of a Vehicle Dynamics Model for Fault Detection and Isolation on the ROboMObil

    OpenAIRE

    Ho, Lok Man

    2013-01-01

    The ROboMObil, a mobility prototype under development at the DLR, differs from most current road vehicles with its high degree of overactuation with regards to the vehicle dynamics. This is due to the independent traction motor drives and steering actuators in each wheel, as well as one brake-by-wire actuator for each axle. Together with the large number of sensors, these provide opportunities for control and also lead to challenges for fault detection and isolation. In this study, the ROboMO...

  9. Fault activity characteristics in the northern margin of the Tibetan Plateau before the Menyuan Ms6.4 earthquake

    Directory of Open Access Journals (Sweden)

    Dongzhuo Xu

    2016-07-01

    Full Text Available Fault deformation characteristics in the northern margin of the Tibetan Plateau before the Menyuan Ms6.4 earthquake are investigated through time-series and structural geological analysis based on cross-fault observation data from the Qilian Mountain–Haiyuan Fault belt and the West Qinling Fault belt. The results indicate: 1 Group short-term abnormal variations appeared in the Qilian Mountain–Haiyuan Fault belt and the West Qinling Fault belt before the Menyuan Ms6.4 earthquake. 2 More medium and short-term anomalies appear in the middle-eastern segment of the Qilian Mountain Fault belt and the West Qinling Fault belt, suggesting that the faults' activities are strong in these areas. The faults' activities in the middle-eastern segment of the Qilian Fault belt result from extensional stress, as before the earthquake, whereas those in the West Qinling Fault belt are mainly compressional. 3 In recent years, moderate-strong earthquakes occurred in both the Kunlun Mountain and the Qilian Mountain Fault belts, and some energy was released. It is possible that the seismicity moved eastward under this regime. Therefore, we should pay attention to the West Qinling Mountain area where an Ms6–7 earthquake could occur in future.

  10. Investigation and evaluation of some prospected fault activities in Western Damascus

    International Nuclear Information System (INIS)

    Abdul-Wahed, M. Kh.; Al-Hilal, M.; Al-Ali, A.; Al-Najjar, H.

    2010-08-01

    The Atomic Energy Commission of Syria is interested in conducting researches about the possibility of mitigating seismic hazards especially in certain areas close to the Dead Sea Fault System (DSFS) in western Damascus. Recent data obtained from drilled wells in Dobaya and Sojja sites have shown preliminary indications of existing probable subsurface faults in the concerned area. Radon measurements in soil gas and water accompanied with seismic data are recognized as effective methods for providing valuable information about determining the locations of some seismogenic faults and evaluating their activities. This research aims at the mitigation of natural hazards such as earthquakes which may occur along some active branches of the Dead Sea Fault System in the area, by using radon monitoring technique and seismic data, in order to face such disasters which affect not only humans but also national economies (Author)

  11. Fault Diagnosis Of A Water For Injection System Using Enhanced Structural Isolation

    DEFF Research Database (Denmark)

    Laursen, Morten; Blanke, Mogens; Düstegör, Dilek

    2008-01-01

    A water for injection system supplies chilled sterile water as solvent to pharmaceutical products. There are ultimate requirements to the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process may cause loss of one or more batches...

  12. Paper 58714 - Exploring activated faults hydromechanical processes from semi-controled field injection experiments

    Science.gov (United States)

    Guglielmi, Y.; Cappa, F.; Nussbaum, C.

    2015-12-01

    The appreciation of the sensitivity of fractures and fault zones to fluid-induced-deformations in the subsurface is a key question in predicting the reservoir/caprock system integrity around fluid manipulations with applications to reservoir leakage and induced seismicity. It is also a question of interest in understanding earthquakes source, and recently the hydraulic behavior of clay faults under a potential reactivation around nuclear underground depository sites. Fault and fractures dynamics studies face two key problems (1) the up-scaling of laboratory determined properties and constitutive laws to the reservoir scale which is not straightforward when considering faults and fractures heterogeneities, (2) the difficulties to control both the induced seismicity and the stimulated zone geometry when a fault is reactivated. Using instruments dedicated to measuring coupled pore pressures and deformations downhole, we conducted field academic experiments to characterize fractures and fault zones hydromechanical properties as a function of their multi-scale architecture, and to monitor their dynamic behavior during the earthquake nucleation process. We show experiments on reservoir or cover rocks analogues in underground research laboratories where experimental conditions can be optimized. Key result of these experiments is to highlight how important the aseismic fault activation is compared to the induced seismicity. We show that about 80% of the fault kinematic moment is aseismic and discuss the complex associated fault friction coefficient variations. We identify that the slip stability and the slip velocity are mainly controlled by the rate of the permeability/porosity increase, and discuss the conditions for slip nucleation leading to seismic instability.

  13. Thermal activation of OSL as a geothermometer for quartz grain heating during fault movements

    International Nuclear Information System (INIS)

    Rink, W.J.; Toyoda, S.; Rees-Jones, J.; Schwarcz, H.P.

    1999-01-01

    In discussions of ESR dating of fault movements, there has been much debate whether zeroing of ESR signals is a mechanical shearing effect or caused by frictional heating. The OSL (optically stimulated luminescence) sensitivity of quartz is known to increase after heating. This thermal activation of dose response of the OSL in quartz should be useful as a geothermometer to test whether quartz particles in fault gouge had been heated. We tested the OSL sensitivities of quartz from fault gouge, and from a control (quartz grains from sandstone) and were able to show heat-induced enhancement of OSL sensitivity to a test dose. We observed that relative enhancement of OSL dose response (ratio of heated to unheated single aliquots) is significantly less for the finest grains (45-75 and 100-150 μm) compared with coarser grains (150-250 μm). These data are consistent with a model of zeroing of the quartz grains during faulting, by frictional heating localized to the grain boundaries, which would be expected to affect smaller grains more than large ones. This argues against a zeroing model in which the entire fault gouge is heated by friction. Higher laboratory preheating of sandstone quartz reduces between-aliquot variability of OSL dose response in the unheated grains to nearly zero. Unheated coarsest fault gouge grains displayed virtually no among-aliquot variability, whereas fine grains showed much larger between-aliquot variability; as with the quartz sand, variability dropped to near zero after laboratory heating, suggesting that fine grains in fault gouge have experienced a wide range of natural thermal histories during faulting. This may present a problem for ESR dating of fault gouge using the plateau method

  14. A Survey on Proactive, Active and Passive Fault Diagnosis Protocols for WSNs: Network Operation Perspective

    Directory of Open Access Journals (Sweden)

    Amjad Mehmood

    2018-06-01

    Full Text Available Although wireless sensor networks (WSNs have been the object of research focus for the past two decades, fault diagnosis in these networks has received little attention. This is an essential requirement for wireless networks, especially in WSNs, because of their ad-hoc nature, deployment requirements and resource limitations. Therefore, in this paper we survey fault diagnosis from the perspective of network operations. To the best of our knowledge, this is the first survey from such a perspective. We survey the proactive, active and passive fault diagnosis schemes that have appeared in the literature to date, accenting their advantages and limitations of each scheme. In addition to illuminating the details of past efforts, this survey also reveals new research challenges and strengthens our understanding of the field of fault diagnosis.

  15. Active Complementary Control for Affine Nonlinear Control Systems With Actuator Faults.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-11-01

    This paper is concerned with the problem of active complementary control design for affine nonlinear control systems with actuator faults. The outage and loss of effectiveness fault cases are considered. In order to achieve the performance enhancement of the faulty control system, the complementary control scheme is designed in two steps. Firstly, a novel fault estimation scheme is developed. Then, by using the fault estimations to reconstruct the faulty system dynamics and introducing a cost function as the optimization objective, a nearly optimal complementary control is obtained online based on the adaptive dynamic programming (ADP) method. Unlike most of the previous ADP methods with the addition of a probing signal, new adaptive weight update laws are derived to guarantee the convergence of neural network weights and the stability of the closed-loop system, which strongly supports the online implementation of the ADP method. Finally, two simulation examples are given to illustrate the performance and effectiveness of the proposed method.

  16. Active faults and historical earthquakes in the Messina Straits area (Ionian Sea

    Directory of Open Access Journals (Sweden)

    A. Polonia

    2012-07-01

    Full Text Available The Calabrian Arc (CA subduction complex is located at the toe of the Eurasian Plate in the Ionian Sea, where sediments resting on the lower plate have been scraped off and piled up in the accretionary wedge due to the African/Eurasian plate convergence and back arc extension. The CA has been struck repeatedly by destructive historical earthquakes, but knowledge of active faults and source parameters is relatively poor, particularly for seismogenic structures extending offshore. We analysed the fine structure of major tectonic features likely to have been sources of past earthquakes: (i the NNW–SSE trending Malta STEP (Slab Transfer Edge Propagator fault system, representing a lateral tear of the subduction system; (ii the out-of-sequence thrusts (splay faults at the rear of the salt-bearing Messinian accretionary wedge; and (iii the Messina Straits fault system, part of the wide deformation zone separating the western and eastern lobes of the accretionary wedge.

    Our findings have implications for seismic hazard in southern Italy, as we compile an inventory of first order active faults that may have produced past seismic events such as the 1908, 1693 and 1169 earthquakes. These faults are likely to be source regions for future large magnitude events as they are long, deep and bound sectors of the margin characterized by different deformation and coupling rates on the plate interface.

  17. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2015-01-01

    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  18. One of the proposals to estimation of the active fault with the flexure structure

    Science.gov (United States)

    Kitada, N.; Takemura, K.

    2010-12-01

    In general, the recurrent interval investigation that uses the trench excavation survey etc. is done to the active fault survey. However, even if form of the search procedure of the active fault where the surface part is flexure structure is understood, it is difficult to understand the detailed activity situation. The active fault survey is done by the sedimentary environment of the investigation site, and an efficient search procedure is different. However, the recurrent interval of the fault with the flexure structure should devise it more. In the present study, two illustrations of the examination case with the active fault with the flexure structure. Osaka bay fault has the flexure structure, and the latest activity is not understood well though many reflection surveys have done. Then, flexure was stepped over and the drilling survey was carried out. It consists of the alluvium marine clay in the surface part compared the change in the amount of piling up by measuring at magnetostratigraphical measurement and a radio carbon age etc., and correlates between up side and down side homogeneous clay layer. As a result, the appearance with a greatly different inclination was confirmed between the boring of both who seemed that the same environments it though the correlation line was basically compared by the same inclination. When the alluvium piles up, such a change point is three times. The change was seen at the rate once every about 2000-3000 years and about 0.58m/ka when putting it together on the result of the age determination. The Uemachi fault is a fault in the south north that passes as for the central area of Osaka. The up side on the fault is modified by erosion and urban development, and one of the faults that a recurrent interval is cramped. Moreover, the surface part is flexure structure in this fault according to the reflection survey. To forecast a long term for the seismic design when the subway in this part was constructed, the drilling survey of

  19. Fault Tolerant Position-mooring Control for Offshore Vessels

    DEFF Research Database (Denmark)

    Blanke, Mogens; Nguyen, Trong Dong

    2018-01-01

    Fault-tolerance is crucial to maintain safety in offshore operations. The objective of this paper is to show how systematic analysis and design of fault-tolerance is conducted for a complex automation system, exemplified by thruster assisted Position-mooring. Using redundancy as required....... Functional faults that are only detectable, are rendered isolable through an active isolation approach. Once functional faults are isolated, they are handled by fault accommodation techniques to meet overall control objectives specified by class requirements. The paper illustrates the generic methodology...... by a system to handle faults in mooring lines, sensors or thrusters. Simulations and model basin experiments are carried out to validate the concept for scenarios with single or multiple faults. The results demonstrate that enhanced availability and safety are obtainable with this design approach. While...

  20. Bond Graph Modelling for Fault Detection and Isolation of an Ultrasonic Linear Motor

    Directory of Open Access Journals (Sweden)

    Mabrouk KHEMLICHE

    2010-12-01

    Full Text Available In this paper Bond Graph modeling, simulation and monitoring of ultrasonic linear motors are presented. Only the vibration of piezoelectric ceramics and stator will be taken into account. Contact problems between stator and rotor are not treated here. So, standing and travelling waves will be briefly presented since the majority of the motors use another wave type to generate the stator vibration and thus obtain the elliptic trajectory of the points on the surface of the stator in the first time. Then, electric equivalent circuit will be presented with the aim for giving a general idea of another way of graphical modelling of the vibrator introduced and developed. The simulations of an ultrasonic linear motor are then performed and experimental results on a prototype built at the laboratory are presented. Finally, validation of the Bond Graph method for modelling is carried out, comparing both simulation and experiment results. This paper describes the application of the FDI approach to an electrical system. We demonstrate the FDI effectiveness with real data collected from our automotive test. We introduce the analysis of the problem involved in the faults localization in this process. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new approaches to the complex system control.

  1. Antioxidant activity directed isolations form punica granatum

    International Nuclear Information System (INIS)

    Siddiqi, R.; Saeed, M.G.; Sayeed, S.A.

    2012-01-01

    The extracts derived from pomegranate juice following antioxidant activity directed isolation were screened for their antioxidant activity through their ability to scavenge 2,2- diphenyl-l-picrylhydrazyl (DPPH) radicals. Only fractions which exhibited >50 / 0 DPPH scavenging effect at each step of isolation were selected for further purification and their ability to reduce peroxide formation (peroxide value) in heated com oil. Phytochemical analysis of the pure compounds finally obtained, revealed the presence of pelargonidin-3- galactose (Pg-3-galactose), cyanidin-3-glucose (Cy-3-Glucose), gallic acid, quercetin and myricetin in the fractions exhibiting >50% DPPH scavenging potential. The order of antioxidant activity of these pure compounds by DPPH method was found to be gallic acid> quercetin> myricetin> Cy-3-galactose> Pg-3-Glucose while order with respect to reduction in peroxide value (PV) was the reverse of DPPH. (author)

  2. Surface rupturing earthquakes repeated in the 300 years along the ISTL active fault system, central Japan

    Science.gov (United States)

    Katsube, Aya; Kondo, Hisao; Kurosawa, Hideki

    2017-06-01

    Surface rupturing earthquakes produced by intraplate active faults generally have long recurrence intervals of a few thousands to tens of thousands of years. We here report the first evidence for an extremely short recurrence interval of 300 years for surface rupturing earthquakes on an intraplate system in Japan. The Kamishiro fault of the Itoigawa-Shizuoka Tectonic Line (ISTL) active fault system generated a Mw 6.2 earthquake in 2014. A paleoseismic trench excavation across the 2014 surface rupture showed the evidence for the 2014 event and two prior paleoearthquakes. The slip of the penultimate earthquake was similar to that of 2014 earthquake, and its timing was constrained to be after A.D. 1645. Judging from the timing, the damaged area, and the amount of slip, the penultimate earthquake most probably corresponds to a historical earthquake in A.D. 1714. The recurrence interval of the two most recent earthquakes is thus extremely short compared with intervals on other active faults known globally. Furthermore, the slip repetition during the last three earthquakes is in accordance with the time-predictable recurrence model rather than the characteristic earthquake model. In addition, the spatial extent of the 2014 surface rupture accords with the distribution of a serpentinite block, suggesting that the relatively low coefficient of friction may account for the unusually frequent earthquakes. These findings would affect long-term forecast of earthquake probability and seismic hazard assessment on active faults.

  3. Fault Activity Aware Service Delivery in Wireless Sensor Networks for Smart Cities

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2017-01-01

    Full Text Available Wireless sensor networks (WSNs are increasingly used in smart cities which involve multiple city services having quality of service (QoS requirements. When misbehaving devices exist, the performance of current delivery protocols degrades significantly. Nonetheless, the majority of existing schemes either ignore the faulty behaviors’ variability and time-variance in city environments or focus on homogeneous traffic for traditional data services (simple text messages rather than city services (health care units, traffic monitors, and video surveillance. We consider the problem of fault-aware multiservice delivery, in which the network performs secure routing and rate control in terms of fault activity dynamic metric. To this end, we first design a distributed framework to estimate the fault activity information based on the effects of nondeterministic faulty behaviors and to incorporate these estimates into the service delivery. Then we present a fault activity geographic opportunistic routing (FAGOR algorithm addressing a wide range of misbehaviors. We develop a leaky-hop model and design a fault activity rate-control algorithm for heterogeneous traffic to allocate resources, while guaranteeing utility fairness among multiple city services. Finally, we demonstrate the significant performance of our scheme in routing performance, effective utility, and utility fairness in the presence of misbehaving sensors through extensive simulations.

  4. How do normal faults grow?

    OpenAIRE

    Blækkan, Ingvild; Bell, Rebecca; Rotevatn, Atle; Jackson, Christopher; Tvedt, Anette

    2018-01-01

    Faults grow via a sympathetic increase in their displacement and length (isolated fault model), or by rapid length establishment and subsequent displacement accrual (constant-length fault model). To test the significance and applicability of these two models, we use time-series displacement (D) and length (L) data extracted for faults from nature and experiments. We document a range of fault behaviours, from sympathetic D-L fault growth (isolated growth) to sub-vertical D-L growth trajectorie...

  5. Assessment of the geodynamical setting around the main active faults at Aswan area, Egypt

    Science.gov (United States)

    Ali, Radwan; Hosny, Ahmed; Kotb, Ahmed; Khalil, Ahmed; Azza, Abed; Rayan, Ali

    2013-04-01

    The proper evaluation of crustal deformations in the Aswan region especially around the main active faults is crucial due to the existence of one major artificial structure: the Aswan High Dam. This construction created one of the major artificial lakes: Lake Nasser. The Aswan area is considered as an active seismic area in Egypt since many recent and historical felted earthquakes occurred such as the impressive earthquake occurred on November 14, 1981 at Kalabsha fault with a local magnitude ML=5.7. Lately, on 26 December 2011, a moderate earthquake with a local magnitude Ml=4.1 occurred at Kalabsha area too. The main target of this study is to evaluate the active geological structures that can potentially affect the Aswan High Dam and that are being monitored in detail. For implementing this objective, two different geophysical tools (magnetic, seismic) in addition to the Global Positioning System (GPS) have been utilized. Detailed land magnetic survey was carried out for the total component of geomagnetic field using two proton magnetometers. The obtained magnetic results reveal that there are three major faults parallel {F1 (Kalabsha), F2 (Seiyal) and F3} affecting the area. The most dominant magnetic trend strikes those faults in the WNW-ESE direction. The seismicity and fault plain solutions of the 26 December 2011 earthquake and its two aftershocks have been investigated. The source mechanisms of those events delineate two nodal plains. The trending ENE-WSW to E-W is consistent with the direction of Kalabsha fault and its extension towards east for the events located over it. The trending NNW-SSE to N-S is consistent with the N-S fault trending. The movement along the ENE-WSW plain is right lateral, but it is left lateral along the NNW-SSE plain. Based on the estimated relative motions using GPS, dextral strike-slip motion at the Kalabsha and Seiyal fault systems is clearly identified by changing in the velocity gradient between south and north stations

  6. Lateral-torsional response of base-isolated buildings with curved surface sliding system subjected to near-fault earthquakes

    Science.gov (United States)

    Mazza, Fabio

    2017-08-01

    The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.

  7. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    Science.gov (United States)

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  8. Structural Design of Systems with Safe Behavior under Single and Multiple Faults

    DEFF Research Database (Denmark)

    Blanke, Mogens; Staroswiecki, Marcel

    2006-01-01

    Handling of multiple simultaneous faults is a complex issue in fault-tolerant control. The design task is particularly made difficult by to the numerous different cases that need be analyzed. Aiming at safe fault-handling, this paper shows how structural analysis can be applied to find...... to structural analysis to disclose which faults could be isolated from a structural point of view using active fault isolation. Results from application on a marine control system illustrate the concepts....... the analytical redundancy relations for all relevant combinations of faults, and can cope with the complexity and size of a real system. Being essential for fault-tolerant control schemes that shall handle particular cases of faults/failures, fault isolation is addressed. The paper introduces an extension...

  9. Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    John Cortés-Romero

    2013-01-01

    Full Text Available This work proposes an active disturbance rejection approach for the establishment of a sliding mode control strategy in fault-tolerant operations. The core of the proposed active disturbance rejection assistance is a Generalized Proportional Integral (GPI observer which is in charge of the active estimation of lumped nonlinear endogenous and exogenous disturbance inputs related to the creation of local sliding regimes with limited control authority. Possibilities are explored for the GPI observer assisted sliding mode control in fault-tolerant schemes. Convincing improvements are presented with respect to classical sliding mode control strategies. As a collateral advantage, the observer-based control architecture offers the possibility of chattering reduction given that a significant part of the control signal is of the continuous type. The case study considers a classical DC motor control affected by actuator faults, parametric failures, and perturbations. Experimental results and comparisons with other established sliding mode controller design methodologies, which validate the proposed approach, are provided.

  10. High resolution t-LiDAR scanning of an active bedrock fault scarp for palaeostress analysis

    Science.gov (United States)

    Reicherter, Klaus; Wiatr, Thomas; Papanikolaou, Ioannis; Fernández-Steeger, Tomas

    2013-04-01

    Palaeostress analysis of an active bedrock normal fault scarp based on kinematic indicators is carried applying terrestrial laser scanning (t-LiDAR or TLS). For this purpose three key elements are necessary for a defined region on the fault plane: (i) the orientation of the fault plane, (ii) the orientation of the slickenside lineation or other kinematic indicators and (iii) the sense of motion of the hanging wall. We present a workflow to obtain palaeostress data from point cloud data using terrestrial laser scanning. The entire case-study was performed on a continuous limestone bedrock normal fault scarp on the island of Crete, Greece, at four different locations along the WNW-ESE striking Spili fault. At each location we collected data with a mobile terrestrial light detection and ranging system and validated the calculated three-dimensional palaeostress results by comparison with the conventional palaeostress method with compass at three of the locations. Numerous kinematics indicators for normal faulting were discovered on the fault plane surface using t-LiDAR data and traditional methods, like Riedel shears, extensional break-outs, polished corrugations and many more. However, the kinematic indicators are more or less unidirectional and almost pure dip-slip. No oblique reactivations have been observed. But, towards the tips of the fault, inclination of the striation tends to point towards the centre of the fault. When comparing all reconstructed palaeostress data obtained from t-LiDAR to that obtained through manual compass measurements, the degree of fault plane orientation divergence is around ±005/03 for dip direction and dip. The degree of slickenside lineation variation is around ±003/03 for dip direction and dip. Therefore, the percentage threshold error of the individual vector angle at the different investigation site is lower than 3 % for the dip direction and dip for planes, and lower than 6 % for strike. The maximum mean variation of the complete

  11. Enzymatic activity of fungi isolated from crops

    Directory of Open Access Journals (Sweden)

    Wioletta A. Żukiewicz-Sobczak

    2016-12-01

    Full Text Available Aim: To detect and assess the activity of extracellular hydrolytic enzymes and to find differences in enzymograms between fungi isolated from wheat and rye samples and grown on Czapek-Dox Broth and Sabouraud Dextrose Broth enriched with cereal (wheat or rye. Isolated strains were also classified in the scale of biosafety levels (BSL. Material and methods: The study used 23 strains of fungi cultured from samples of wheat and rye (grain, grain dust obtained during threshing and soil collected in the Lublin region (eastern Poland. API ZYM test (bioMérieux was carried out according to the manufacturer’s instructions. Classification of BSL (Biosafety levels was based on the current literature. Results : High enzymatic activity was found in strains cultured in media containing 1% of wheat grain ( Bipolaris holmi, Penicillium decumbens and with an addition of 1% of rye grain ( Cladosporium herbarum, Aspergillus versicolor, Alternaria alternata . The total number of enzymes varied depending on the type of media, and in most cases it was higher in the culture where an addition of cereal grains was used. Conclusions : Isolated strains of fungi reveal differences in the profiles of the enzyme assay. It can be assumed that the substrate enriched in grains stimulate the higher activity of mold enzymes. Key words: enzymatic activity, mold fungi, zymogram, biohazards.

  12. Design and analysis of active power control strategies for distributed generation inverters under unbalanced grid faults

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2010-01-01

    Distributed power generation systems are expected to deliver active power into the grid and support it without interruption during unbalanced grid faults. Aiming to provide grid-interfacing inverters the flexibility to adapt to the coming change of grid requirements, an optimised active power

  13. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    Science.gov (United States)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.

  14. Isolation and biological activity of frankiamide.

    Science.gov (United States)

    Haansuu, J P; Klika, K D; Söderholm, P P; Ovcharenko, V V; Pihlaja, K; Haahtela, K K; Vuorela, P M

    2001-07-01

    An antibiotic produced by the symbiotic actinomycete Frankia strain AiPs1 was isolated from culture broth using optimized thin-layer chromatography and high-performance liquid chromatography (HPLC) methods. The novel compound that was isolated, dubbed frankiamide, displayed antimicrobial activity against all 14 Gram-positive bacterial strains and six pathogenic fungal strains tested. The pathogenic actinomycete Clavibacter michiganensis and the oomycete Phytophthora were especially susceptible. In addition to displaying antimicrobial activity, frankiamide also strongly inhibited 45Ca(2+) fluxes in clonal rat pituitary GH4C1 tumor cells and was comparable to a frequently used calcium antagonist, verapamil hydrochloride. The results of HPLC analysis, supported by both nuclear magnetic resonance and mass spectroscopy studies, showed that frankiamide has a high affinity for Na(+) ions.

  15. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  16. VARIATIONS IN ELECTROPHYSICAL PARAMETERS ESTIMATED FROM ELECTROMAGNETIC MONITORING DATA AS AN INDICATOR OF FAULT ACTIVITY

    Directory of Open Access Journals (Sweden)

    A. E. Shalaginov

    2018-01-01

    Full Text Available In the regions of high seismic activity, investigations of fault zones are of paramount importance as such zones can generate seismicity. A top task in the regional studies is determining the rates of activity from the data obtained by geoelectrical methods, especially considering the data on the faults covered by sediments. From a practical standpoint, the results of these studies are important for seismic zoning and forecasting of natural and anthropogenic geodynamic phenomena that may potentially occur in the populated areas and zones allocated for construction of industrial and civil objects, pipelines, roads, bridges, etc. Seismic activity in Gorny Altai is regularly monitored after the destructive 2003 Chuya earthquake (M=7.3 by the non-stationary electromagnetic sounding with galvanic and inductive sources of three modifications. From the long-term measurements that started in 2007 and continue in the present, electrical resistivity and electrical anisotropy are determined. Our study aimed to estimate the variations of these electrophysical parameters in the zone influenced by the fault, consider the intensity of the variations in comparison with seismicity indicators, and attempt at determining the degree of activity of the faults. Based on the results of our research, we propose a technique for measuring and interpreting the data sets obtained by a complex of non-stationary sounding modifications. The technique ensures a more precise evaluation of the electrophysical parameters. It is concluded that the electric anisotropy coefficient can be effectively used to characterize the current seismicity, and its maximum variations, being observed in the zone influenced by the fault, are characteristic of the fault activity. The use of two electrophysical parameters enhances the informativeness of the study.

  17. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm

    Science.gov (United States)

    Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao

    2018-03-01

    The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.

  18. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design

    International Nuclear Information System (INIS)

    Vitali, Luigino; Mattiozzi, Pierpaolo

    2008-01-01

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model

  19. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    International Nuclear Information System (INIS)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-01-01

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures

  20. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    Science.gov (United States)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  1. Characterization of active faulting beneath the Strait of Georgia, British Columbia

    Science.gov (United States)

    Cassidy, J.F.; Rogers, Gary C.; Waldhauser, F.

    2000-01-01

    Southwestern British Columbia and northwestern Washington State are subject to megathrust earthquakes, deep intraslab events, and earthquakes in the continental crust. Of the three types of earthquakes, the most poorly understood are the crustal events. Despite a high level of seismicity, there is no obvious correlation between the historical crustal earthquakes and the mapped surface faults of the region. On 24 June 1997, a ML = 4.6 earthquake occurred 3-4 km beneath the Strait of Georgia, 30 km to the west of Vancouver, British Columbia. This well-recorded earthquake was preceded by 11 days by a felt foreshock (ML = 3.4) and was followed by numerous small aftershocks. This earthquake sequence occurred in one of the few regions of persistent shallow seismic activity in southwestern British Columbia, thus providing an ideal opportunity to attempt to characterize an active near-surface fault. We have computed focal mechanisms and utilized a waveform cross-correlation and joint hypocentral determination routine to obtain accurate relative hypocenters of the mainshock, foreshock, and 53 small aftershocks in an attempt to image the active fault and the extent of rupture associated with this earthquake sequence. Both P-nodal and CMT focal mechanisms show thrust faulting for the mainshock and the foreshock. The relocated hypocenters delineate a north-dipping plane at 2-4 km depth, dipping at 53??, in good agreement with the focal mechanism nodal plane dipping to the north at 47??. The rupture area is estimated to be a 1.3-km-diameter circular area, comparable to that estimated using a Brune rupture model with the estimated seismic moment of 3.17 ?? 1015 N m and the stress drop of 45 bars. The temporal sequence indicates a downdip migration of the seismicity along the fault plane. The results of this study provide the first unambiguous evidence for the orientation and sense of motion for active faulting in the Georgia Strait area of British Columbia.

  2. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness.

    Science.gov (United States)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10 13 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus-Tidal deformation-Faults-Variable ice shell thickness-Tidal heating-Plume activity and timing. Astrobiology 17, 941-954.

  3. Fault Activity in the Terrebonne Trough, Southeastern Louisiana: A Continuation of Salt-Withdrawal Fault Activity from the Miocene into the late Quaternary and Implication for Subsidence Hot-Spots

    Science.gov (United States)

    Akintomide, A. O.; Dawers, N. H.

    2017-12-01

    The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date

  4. Vertical slip rates of active faults of southern Albania inferred from river terraces

    Directory of Open Access Journals (Sweden)

    Oswaldo Guzmán

    2014-02-01

    Full Text Available Fluvial terraces of Shkumbin, Devoll, Osum and Vjosa rivers (southern Albania and northwestern Greece are studied in order to quantify the vertical slip rates of the large active faults of the Dinaric-Albanic-Hellenic Alpine fold belt. The spatial and temporal variations of the incision rates along these rivers were estimated from the geomorphological mapping of the Quaternary sediments, the geometry and the dating of the terraces. Eleven terraces levels were identified in Albania from 68 geochronological ages already published or acquired for this work. The five lower terraces of the four studied rivers are well dated (10 new and 23 already published ages. These terraces are younger than 30 ka and their remnants are numerous. Their restoration allows estimating the regional trend of incision rate and the identification of local shifts. We argue that these shifts are linked to the active tectonics when they coincide with the faults already mapped by previous authors. Vertical slip rates for eight active faults in southern Albania are thus estimated for the last 19 ka and vary from ~0.1 to ~2 mm/a. The Lushnje Tepelene Thrust, that extends more than 120 kilometers, has a throw rate that varies from 0.2 to 0.8 mm/a, whereas the active faults of the extensional domain are segmented but are very active, with throw rates reaching locally 2 mm/a.

  5. Numerical activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Bettinali, F.; Martelli, A.; Bonacina, G.; Olivieri, M.

    1992-01-01

    The numerical activities which are in progress in Italy in the framework of the seismic isolation studies mainly concern the definition of models for bearings and isolated structures, and their use for test design and the analysis of experimental results. Simple bearing models have been set up, and the development of finite-element (f.e.) three-dimensional (3D) and 2D axisymmetric models is in progress. simple models have been based on the results of single bearing tests: models formed by a spring in parallel to a viscous damper, where both horizontal stiffness and viscous damping vary with displacements, have been developed by ENEA. Models based on hysteretic damping have also been developed by DISP and ISMES. Detailed bearing models include separate elements for the rubber and steel plates. A 3D model has been implemented by ENEA in the ABAQUS code. Linear elastic calculations have been performed with this model. The implementation of an elastic-plastic model for steel is also being completed, together with that of a hyper elastic model of the rubber, based on tests on specimens. Detailed models will be validated based on measured data. They will be used for bearing design and analysis of the effects of defects: some bearings with artificial defects have been fabricated to this purpose. As to the isolated structures, finite-difference programs were set up for the analysis of such structures in the case that they can be represented by sets of one-degree-of-freedom oscillators. The program ISOLA includes the aforementioned simple bearing model of ENEA, where both stiffness and damping depend on displacement and the effects of viscous creep are accounted for. A similar program has been based on the bearing model developed at ISMES. These models have been successfully used to analyse the experimental results concerning both isolated structure mock-ups and actual isolated buildings, based on the single bearing test data for both horizontal stiffness and damping (see a

  6. Active and passive fault-tolerant LPV control of wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2010-01-01

    This paper addresses the design and comparison of active and passive fault-tolerant linear parameter-varying (LPV) controllers for wind turbines. The considered wind turbine plant model is characterized by parameter variations along the nominal operating trajectory and includes a model of an inci...

  7. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Directory of Open Access Journals (Sweden)

    Wang Xingjian

    2015-12-01

    Full Text Available Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trimmable horizontal stabilizer (THS is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  8. Distribution of Subsurface Flexure zone caused by Uemachi Fault, Japan and its activity

    Science.gov (United States)

    Kitada, N.; Inoue, N.; Takemura, K.; Ito, H.; Mitamura, M.

    2012-12-01

    In Osaka, Uemachi Fault is one of the famous active faults. It across the center of Osaka and lies in N-S direction mainly and is more than 40 km in length. The faults bound sedimentary basins, where thick sedimentary deposits of the Pliocene-Quaternary Osaka Group have accumulated. The deposits consist primarily of sand and marine and non-marine clay, and the clay layers are key markers for the interpretation of glacial and interglacial cycles. In this study, we estimate the width of the flexure zone using a geotechnical borehole database. GI database collects more than 40,000 boreholes and includes both geological information and soil properties around Osaka by the Geo-database Information Committee of Kansai Area. Our results indicate that the deformation associated with the flexure zone is distributed primarily along the splay fault (NE-SW) and not along the main fault, suggesting that the splay fault might be the primary fault at present. We first examined the borehole data along the seismic reflection line and then considered the surrounding area. An Upper Pleistocene marine clay (Ma12) is a good indicator of the flexure zone. We constructed many cross sections in and around the fault zone and classified the deformation form into three categories around the flexure zone. The results of this study allowed us to map the distribution of folding in a zone in the west of the Osaka area. Folding can be classified into three types: (1) Ma12 folding, (2) Ma12 folding that does not continue toward the hanging wall, and (3) folding or displacement of old marine clay. These folding zone trends are N-W strike however these trace are serpentine. These folding zone information are not in worth to estimate the source fault, however these zone will be more serious damaged when the earthquake occurred. Our result agrees well with the average displacement speed of about 0.4 m/ka that was derived by the Headquarters for Earthquake Research Promotion of the Ministry of Education

  9. New Geologic Data on the Seismic Risks of the Most Dangerous Fault on Shore in Central Japan, the Itoigawa-Shizuoka Tectonic Line Active Fault System

    Science.gov (United States)

    Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.

    2006-12-01

    Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (lack of reliable time constraints on past earthquakes. In order to solve this problem, we have carried out intensive

  10. Adaptive FTC based on Control Allocation and Fault Accommodation for Satellite Reaction Wheels

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2016-01-01

    and fault accommodation module directly exploiting the on-line fault estimates. The use of the nonlinear geometric approach and radial basis function neural networks allows to obtain a precise fault isolation, independently from the knowledge of aerodynamic disturbance parameters, and to design generalised......This paper proposes an active fault tolerant control scheme to cope with faults or failures affecting the flywheel spin rate sensors or satellite reaction wheel motors. The active fault tolerant control system consists of a fault detection and diagnosis module along with a control allocation...... estimation filters, which do not need a priori information about the internal model of the signal to be estimated. The adaptive control allocation and sensor fault accommodation can handle both temporal faults and failures. Simulation results illustrate the convincing fault correction and attitude control...

  11. Formation of Two-Dimensional Homologous Faults and Oxygen Electrocatalytic Activities in a Perovskite Nickelate.

    Science.gov (United States)

    Bak, Jumi; Bae, Hyung Bin; Kim, Jaehoon; Oh, Jihun; Chung, Sung-Yoon

    2017-05-10

    Atomic-scale direct probing of active sites and subsequent elucidation of the structure-activity relationship are important issues involving oxide-based electrocatalysts to achieve better electrochemical conversion efficiency. By generating Ruddlesden-Popper (RP) two-dimensional homologous faults via simple control of the cation nonstoichiometry in LaNiO 3 thin films, we demonstrate that strong tetragonal distortion of [NiO 6 ] octahedra is induced by more than 20% elongation of Ni-O bonds in the faults. In addition to direct visualization of the elongation by scanning transmission electron microscopy, we identify that the distorted [NiO 6 ] octahedra in the faults show considerably higher electrocatalytic activities than other surface sites during the electrochemical oxygen evolution reaction. This unequivocal evidence of the octahedral distortion and its impact on electrocatalysis in LaNiO 3 suggests that the formation of RP-type faults can provide an efficient way to control the octahedral geometry and thereby remarkably enhance the oxygen catalytic performance of perovskite oxides.

  12. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    Science.gov (United States)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  13. Active faulting in the central Betic Cordillera (Spain): Palaeoseismological constraint of the surface-rupturing history of the Baza Fault (Central Betic Cordillera, Iberian Peninsula)

    Science.gov (United States)

    Castro, J.; Martin-Rojas, I.; Medina-Cascales, I.; García-Tortosa, F. J.; Alfaro, P.; Insua-Arévalo, J. M.

    2018-06-01

    This paper on the Baza Fault provides the first palaeoseismic data from trenches in the central sector of the Betic Cordillera (S Spain), one of the most tectonically active areas of the Iberian Peninsula. With the palaeoseismological data we constructed time-stratigraphic OxCal models that yield probability density functions (PDFs) of individual palaeoseismic event timing. We analysed PDF overlap to quantitatively correlate the walls and site events into a single earthquake chronology. We assembled a surface-rupturing history of the Baza Fault for the last ca. 45,000 years. We postulated six alternative surface rupturing histories including 8-9 fault-wide earthquakes. We calculated fault-wide earthquake recurrence intervals using Monte Carlo. This analysis yielded a 4750-5150 yr recurrence interval. Finally, compared our results with the results from empirical relationships. Our results will provide a basis for future analyses of more of other active normal faults in this region. Moreover, our results will be essential for improving earthquake-probability assessments in Spain, where palaeoseismic data are scarce.

  14. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  15. Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada

    Science.gov (United States)

    Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.

    2006-12-01

    During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line

  16. Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)

    Science.gov (United States)

    Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network

  17. The Padul normal fault activity constrained by GPS data: Brittle extension orthogonal to folding in the central Betic Cordillera

    Science.gov (United States)

    Gil, Antonio J.; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos; Borque, Maria Jesús; Sánchez-Alzola, Alberto; Martinez-Martos, Manuel; Alfaro, Pedro

    2017-08-01

    The Padul Fault is located in the Central Betic Cordillera, formed in the framework of the NW-SE Eurasian-African plate convergence. In the Internal Zone, large E-W to NE-SW folds of western Sierra Nevada accommodated the greatest NW-SE shortening and uplift of the cordillera. However, GPS networks reveal a present-day dominant E-W to NE-SW extensional setting at surface. The Padul Fault is the most relevant and best exposed active normal fault that accommodates most of the NE-SW extension of the Central Betics. This WSW-wards dipping fault, formed by several segments of up to 7 km maximum length, favored the uplift of the Sierra Nevada footwall away from the Padul graben hanging wall. A non-permanent GPS network installed in 1999 constrains an average horizontal extensional rate of 0.5 mm/yr in N66°E direction. The fault length suggests that a (maximum) 6 magnitude earthquake may be expected, but the absence of instrumental or historical seismic events would indicate that fault activity occurs at least partially by creep. Striae on fault surfaces evidence normal-sinistral kinematics, suggesting that the Padul Fault may have been a main transfer fault of the westernmost end of the Sierra Nevada antiform. Nevertheless, GPS results evidence: (1) shortening in the Sierra Nevada antiform is in its latest stages, and (2) the present-day fault shows normal with minor oblique dextral displacements. The recent change in Padul fault kinematics will be related to the present-day dominance of the ENE-WSW regional extension versus NNW-SSE shortening that produced the uplift and northwestwards displacement of Sierra Nevada antiform. This region illustrates the importance of heterogeneous brittle extensional tectonics in the latest uplift stages of compressional orogens, as well as the interaction of folding during the development of faults at shallow crustal levels.

  18. Strain partitioning in southeastern Alaska: Is the Chatham Strait Fault active?

    Science.gov (United States)

    Brothers, Daniel; Elliott, Julie L.; Conrad, James E.; Haeussler, Peter J.; Kluesner, Jared

    2018-01-01

    A 1200 km-long transform plate boundary passes through southeastern Alaska and northwestern British Columbia and represents one of the most seismically active, but poorly understood continental margins of North America. Although most of the plate motion is accommodated by the right-lateral Queen Charlotte–Fairweather Fault (QCFF) System, which has produced at least six M > 7 earthquakes since 1920, seismic hazard assessments also include the Chatham Strait Fault (CSF) as a potentially active, 400 km-long strike slip fault that cuts northward through southeastern Alaska, connecting with the Eastern Denali Fault. Nearly the entire length of the CSF is submerged beneath Chatham Strait and Lynn Canal and has never been systematically imaged using high-resolution marine geophysical approaches. In this study we present an integrated analysis of new marine seismic reflectiondata acquired across Lynn Canal and tectonic block modeling constrained by data from continuous and campaign GPS sites. Seismic profiles cross the CSF at twelve locations spanning ∼50 km of fault length; they reveal thick (up to 300 m) packages of glaciomarine sedimentary facies emplaced on an unconformity surface that formed during the Last Glacial Maximum (LGM). Localized warping of post-LGM stratigraphy (∼13.9 kyr B.P. to present) appears to correlate with sediment drape on basement topography and current-controlled deposition. There is no evidence for an active fault along the axis of Lynn Canal in the seismic reflection data. Crustal block models constrained by GPS data allow, but do not require, a maximum slip rate of 2–3 mm/yr along the CSF; higher slip rates on the CSF result in significant misfit to GPS data in the surrounding region. Based on the combined marine geophysical and GPS observations, it is plausible that the CSF has not generated resolvable coseismic deformation in the last ∼13 ka and that the modern slip-rate is <1 mm/yr. We propose that models for strain

  19. Microseismic data records fault activation before and after a Mw 4.1 induced earthquake

    Science.gov (United States)

    Eyre, T.; Eaton, D. W. S.

    2017-12-01

    Several large earthquakes (Mw 4) have been observed in the vicinity of the town of Fox Creek, Alberta. These events have been determined to be induced earthquakes related to hydraulic fracturing in the region. The largest of these has a magnitude Mw = 4.1, and is associated with a hydraulic-fracturing treatment close to Crooked Lake, about 30 km west of Fox Creek. The underlying factors that lead to localization of the high numbers of hydraulic fracturing induced events in this area remain poorly understood. The treatment that is associated with the Mw 4.1 event was monitored by 93 shallow three-level borehole arrays of sensors. Here we analyze the temporal and spatial evolution of the microseismic and seismic data recorded during the treatment. Contrary to expected microseismic event clustering parallel to the principal horizontal stress (NE - SW), the events cluster along obvious fault planes that align both NNE - SSW and N - S. As the treatment well is oriented N - S, it appears that each stage of the treatment intersects a new portion of the fracture network, causing seismicity to occur. Focal-plane solutions support a strike-slip failure along these faults, with nodal planes aligning with the microseismic cluster orientations. Each fault segment is activated with a cluster of microseismicity in the centre, gradually extending along the fault as time progresses. Once a portion of a fault is active, further seismicity can be induced, regardless if the present stage is distant from the fault. However, the large events seem to occur in regions with a gap in the microseismicity. Interestingly, most of the seismicity is located above the reservoir, including the larger events. Although a shallow-well array is used, these results are believed to have relatively high depth resolution, as the perforation shots are correctly located with an average error of 26 m in depth. This information contradicts previously held views that large induced earthquakes occur primarily

  20. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  1. Nitrogen as the carrier gas for helium emission along an active fault in NW Taiwan

    International Nuclear Information System (INIS)

    Hong, Wei-Li; Yang, Tsanyao Frank; Walia, Vivek; Lin, Shih-Jung; Fu, Ching-Chou; Chen, Yue-Gau; Sano, Yuji; Chen, Cheng-Hong; Wen, Kuo-Liang

    2010-01-01

    Variations of He gas concentration are widely applied in studies devoted to the location of faults and to monitor seismic activities. Up to now, its migration mechanism in soil is not fully understood. A systematic soil gas survey across an active fault in NW Taiwan provides the opportunity to closely examine the mechanism of He migration in the fault zone. Significant spatial and temporal correlations observed between soil N 2 and He gas support the hypothesis that N 2 is the probable carrier gas for He emission in the studied area. Based on N 2 /Ar ratios and N 2 isotopic results, the excess soil N 2 in this study is considered to be largely derived from ancient atmospheric air which was dissolved in groundwater. Furthermore, observations rule out the possibility of CO 2 being the dominant carrier gas for He in the studied area based on the C and He isotopic compositions and the relationship between concentrations of these gases. At least two soil gas sources, A and B, can be identified in the studied area. Source A is an abiogenic gas source characterized by excess N 2 and He, and very low O 2 and CO 2 content. Source B, on the other hand, is a mixture of biogenic gas and atmospheric air. The development of the fault system is an important factor affecting the degree of mixture between sources A and B. Therefore, variations of soil gas composition, in particular those derived from source A, could be a useful proxy for tracing faults in the area.

  2. Thermal activation of OSL as a geothermometer for quartz grain heating during fault movements

    CERN Document Server

    Rink, W J; Rees-Jones, J; Schwarcz, H P

    1999-01-01

    In discussions of ESR dating of fault movements, there has been much debate whether zeroing of ESR signals is a mechanical shearing effect or caused by frictional heating. The OSL (optically stimulated luminescence) sensitivity of quartz is known to increase after heating. This thermal activation of dose response of the OSL in quartz should be useful as a geothermometer to test whether quartz particles in fault gouge had been heated. We tested the OSL sensitivities of quartz from fault gouge, and from a control (quartz grains from sandstone) and were able to show heat-induced enhancement of OSL sensitivity to a test dose. We observed that relative enhancement of OSL dose response (ratio of heated to unheated single aliquots) is significantly less for the finest grains (45-75 and 100-150 mu m) compared with coarser grains (150-250 mu m). These data are consistent with a model of zeroing of the quartz grains during faulting, by frictional heating localized to the grain boundaries, which would be expected to aff...

  3. Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes

    International Nuclear Information System (INIS)

    King, C.

    1980-01-01

    Subsurface soil gas along active faults in central California has been continuously monitored by the Track Etch method to test whether its radon-isotope content may show any premonitory changes useful for earthquake prediction. The monitoring network was installed in May 1975 and has since been gradually expanded to consist of more than 60 stations along a 380-km section of the San Andreas fault system between Santa Rosa and Cholame. This network has recorded several episodes, each lasting several weeks to several months, during which the radon concentration increased by a factor of approximately 2 above average along some long, but limited, fault segments (approx.100 km). These episodes occurred in different seasons and do not appear to be systematically related to changes in meteorological conditions. However, they coincided reasonably well in time and space with larger local earthquakes above a threshold magnitude of about 4.0. These episodic radon changes may be caused by a changing outgassing rate in the fault zones in response to some episodic strain changes, which incidentally caused the earthquakes

  4. Late Quaternary activity along the Scorciabuoi Fault (Southern Italy as inferred from electrical resistivity tomographies

    Directory of Open Access Journals (Sweden)

    A. Loperte

    2007-06-01

    Full Text Available The Scorciabuoi Fault is one of the major tectonic structures affecting the Southern Apennines, Italy. Across its central sector, we performed several electrical resistivity tomographies with different electrode spacing (5 and 10 m and using a multielectrode system with 32 electrodes. All tomographies were acquired with two different arrays, the dipole-dipole and the Wenner-Schlumberger. We also tested the different sensitivity of the two arrays with respect to the specific geological conditions and research goals. Detailed geological mapping and two boreholes were used to calibrate the electrical stratigraphy. In all but one tomography (purposely performed off the fault trace, we could recognise an abrupt subvertical lateral variation of the main sedimentary bodies showing the displacement and sharp thickening of the two youngest alluvial bodies in the hanging-wall block. These features are interpreted as evidence of synsedimentary activity of the Scorciabuoi Fault during Late Pleistocene and possibly as recently as Holocene and allow accurate location of the fault trace within the Sauro alluvial plain.

  5. Active Features of Guguan-Guizhen Fault at the Northeast Margin of Qinghai-Tibet Block since Late Quaternary

    Science.gov (United States)

    Shi, Yaqin; Feng, Xijie; Li, Gaoyang; Ma, Ji; Li, Miao; Zhang, Yi

    2015-04-01

    Guguan-Guizhen fault is located at the northeast margin of Qinghai-Tibet Block and northwest margin of Ordos Block; it is the boundary of the two blocks, and one of the multiple faults of northwest Haiyuan-Liupanshan-Baoji fault zone. Guguan-Guizhen fault starts from Putuo Village, Huating County, Gansu Province, and goes through Badu Town, Long County in Shaanxi Province ends in Guozhen Town in Baoji City, Shaanxi Province. The fault has a full length of about 130km with the strike of 310-330°, the dip of SW and the rake of 50-60°, which is a sinistral slip reverse fault in the north part, and a sinistral slip normal fault in the southeast part. Guguan-Guizhen fault has a clear liner structure in satellite images and significant landform elevation difference with a maximum difference of 80m, and is higher in the east lower in the west. The northwest side of Guguan-Guizhen fault is composed of purplish-red Lower Cretaceous sandstones and river terrace; the northeast side is composed of Ordovician Limestone. Shigou, Piliang, Songjiashan, Tianjiagou and Chenjiagou fault profiles are found to the south of Badu Village. After 14C and optically stimulated luminescence dating, the fault does not dislocate the stratum since late Pleistocene (90.5±4.4ka) in Shigou, Piliang and Songjiashan fault profiles, and does not dislocate the cobble layer of Holocene first terrace and recent sliderock (3180±30 BP). But the fault dislocated the stratum of middle Pleistocene in some of the fault profiles. All the evidences above indicate that the fault is active in middle Pleistocene, and being silence since late Pleistocene. It might be active in Holocene to the north of Badu Village due to collapses are found in a certain area. The cause of these collapses is Qinlong M6-7 earthquake in 600 A.D., and might be relevant with Guguan-Guizhen fault after analysis of the scale, feature and age determination of the collapse. If any seismic surface rupture and ancient earthquake traces

  6. Central Japan's Atera Active Fault's Wide-Fractured Zone: An Examination of the Structure and In-situ Crustal Stress

    Science.gov (United States)

    Ikeda, R.; Omura, K.; Matsuda, T.; Mizuochi, Y.; Uehara, D.; Chiba, A.; Kikuchi, A.; Yamamoto, T.

    2001-12-01

    In-situ downhole measurements and coring within and around an active fault zone are needed to better understand the structure and material properties of fault rocks as well as the physical state of active faults and intra-plate crust. Particularly, the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone is important to estimate earthquake occurrence mechanisms which correspond to the prediction of an earthquake. It is necessary to compare some active faults in different conditions of the chrysalis stage and their relation to subsequent earthquake occurrence. To better understand such conditions, "Active Fault Zone Drilling Project" has been conducted in the central part of Japan by the National Research Institute for Earth Science and Disaster Prevention. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault created by the 1981 Nobi earthquake, the greatest inland earthquake M=8.0 in Japan, have been drilled through the fault fracture zones. During these past four years, a similar experiment and research at the Atera fault, of which some parts seem to have been dislocated by the 1586 Tensyo earthquake, has been undertaken. The features of the Atera fault are as follows: (1) total length is about 70 km, (2) general trend is NW45_Kwith a left-lateral strike slip, (3) slip rate is estimated as 3-5 m/1000 yrs. and the average recurrence time as 1700 yrs., (4) seismicity is very low at present, and (5) lithologies around the fault are basically granitic rocks and rhyolite. We have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes are located on a line crossing the fracture zone of the Atera fault. Resistivity and gravity structures inferred from surface geophysical surveys were compared with the physical properties

  7. Antifungal activity of streptomycetes isolated bentonite clay

    Directory of Open Access Journals (Sweden)

    V. P. Shirobokov

    2016-12-01

    Full Text Available Aim. To investigate the biological activity of streptomycetes, isolated from Ukrainian bentonite clay. Methods. For identification of the investigated microorganisms there were used generally accepted methods for study of morpho-cultural and biochemical properties and sequencing of 16Ѕ rRNA producer. Antagonistic activity of the strain was determined by agar diffusion and agar block method using gram-positive, gram-negative microorganisms and fungi. Results. Research of autochthonous flora from bentonite clay of Ukrainian various deposits proved the existence of stable politaxonomic prokaryotic-eukaryotic consortia there. It was particularly interesting that the isolated microorganisms had demonstrated clearly expressed antagonistic properties against fungi. During bacteriological investigation this bacterial culture was identified like representative of the genus Streptomyces. Bentonite streptomycetes, named as Streptomyces SVP-71, inagar mediums (agar block method inhibited the growth of fungi (yeast and mold; zones of growth retardation constituted of 11-36 mm, and did not affect the growth of bacteria. There were investigated the inhibitory effects of supernatant culture fluid, ethanol and butanol extracts of biomass streptomycetes on museum and clinical strains of fungi that are pathogenic for humans (Candida albicans, C. krusei, C. utilis, C. parapsilosis, C. tropicalis, C. kefir, S. glabrata, C. lusitaniae, Aspergillus niger, Mucor pusillus, Fusarium sporotrichioides. It has been shown that research antifungal factor had 100% of inhibitory effect against all fungi used in experiments in vitro. In parallel, it was found that alcohol extracts hadn’t influence to the growth of gram-positive and gram-negative bacteria absolutely. It was shown that the cultural fluid supernatant and alcoholic extracts of biomass had the same antagonistic effect, but with different manifestation. This evidenced about identity of antifungal substances

  8. Discovery of source fault in the region without obvious active fault. Geophysical survey in the source area of the 1984 western Nagano prefecture earthquake

    International Nuclear Information System (INIS)

    Aoyagi, Yasuhira; Abe, Shintaro

    2009-01-01

    The 1984 Western Nagano Prefecture Earthquake (MJ6.8) occurred at shallow part of the southern foot of Mt. Ontake volcano, central Japan. Despite the large magnitude neither clear surface rupture nor active fault has been found around the source area. Therefore the earthquake is an issue for seismic assessment based on active fault survey. The purpose of this study is to find any tectonic geomorphologic features in the source area and to elucidate its relation to the source fault. In order to achieve it, an integrated survey with (1) micro earthquake observation, (2) airborne LIDAR, and (3) seismic reflection survey was demonstrated in the source area from 2006 to 2008. The survey area of airborne LIDAR (18 km x 4 km) covers main part of the aftershock distribution just after the mainshock. A linear zone with abrupt change of topographic roughness was found in ENE-WSW direction at the center of the LIDAR target area. River valleys flowing down to SSE direction change their directions and widths abruptly across the linear zone. Seismic reflection survey across the source region detect deformation zone just beneath the linear zone. These features of topographic and crustal deformation coincide well with the aftershock distribution. Therefore they indicate an active structure formed by the cumulative displacement of the source fault. (author)

  9. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network.

    Science.gov (United States)

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-10-13

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  10. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    Science.gov (United States)

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-01-01

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. PMID:27754386

  11. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-10-01

    Full Text Available Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB and a Lowest False Positive criterion (LFP, for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  12. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    Science.gov (United States)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    series of transpressional faults that splay northwards across the Snares Fault, and terminate at the top of the Puysegur trench slope. Between ca. 48°S and 46°30'S, the relative plate motion appears to be distributed over the Puysegur subduction zone and the strike-slip faults located on the edge of the upper plate. Conversely, north of ca. 46°S, a lack of active strike-slip faulting along the MFS and across most of Puysegur Bank indicates that the subduction in the northern part of Puysegur Trench accounts for most of the oblique convergence. Hence, active transpression in the Snares fault zone indicates that the relative PAC-AUS plate motion is transferred from strike-slip faulting along the Puysegur Fault to subduction at Puysegur Trench. The progressive transition from thrusts at Puysegur Trench and strike-slip faulting at the Puysegur Fault to oblique subduction at Puysegur Trench suggests that the subduction interface progressively developed from a western shallow splay of the Puysegur Fault. It implies that the transfer fault links the subduction interface at depth. A tectonic sliver is identified between Puysegur Trench and the Puysegur Fault. Its northwards motion relative to the Pacific Plate implies that is might collide with Puysegur Bank.

  13. Age of the Karakoram fault activation: 40Ar-39Ar geochronological study of Shyok suture zone in northern Ladakh, India

    International Nuclear Information System (INIS)

    Bhutani, Rajneesh; Pande, Kanchan; Desai, Nikhil

    2003-01-01

    Shyok volcanics, from the Shyok suture zone in northern Ladakh, ranging from basalts to andesites are analysed for 40 Ar- 30 Ar isotopic systematics by step heating experiment. All samples, collected along the Nubra river, in the vicinity of Karakoram fault zone, yielded disturbed age spectra, reflecting subsequent tectono-thermal events. However, consistency in the pattern of the age spectra, particularly at the low temperature steps, indicate a strong tectono-thermal event between ∼ 10 to ∼ 20 Ma ago. Mica-segregate from segregate from a sheared granite of Karakoram fault zone near village Murgi has yielded an excellent plateau age of 13.9 ± 0.1 Ma. This age of Karakoram fault activation explains the consistent but disturbed age spectra of Shyok volcanics within the vicinity of the fault zone. The Karakoram fault activation in Shyok suture zone is therefore synchronous with the extensional tectonic regime within the Tibetan plateau. (author)

  14. Fault tolerant control of a three-phase three-wire shunt active filter system based on reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy LIEN, EA 3440, Nancy-Universite, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France); Weber, P.; Theilliol, D. [Centre de Recherche en Automatique de Nancy UMR 7039, Nancy-Universite, CNRS, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France); Saadate, S. [Groupe de Recherches en Electrotechnique et Electronique de Nancy UMR 7037, Nancy-Universite, CNRS, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France)

    2009-02-15

    This paper deals with fault tolerant shunt three-phase three-wire active filter topologies for which reliability is very important in industry applications. The determination of the optimal reconfiguration structure among various ones with or without redundant components is discussed based on reliability criteria. First, the reconfiguration of the inverter is detailed and a fast fault diagnosis method for power semi-conductor or driver fault detection and compensation is presented. This method avoids false fault detection due to power semi-conductors switching. The control architecture and algorithm are studied and a fault tolerant control strategy is considered. Simulation results in open and short circuit cases validate the theoretical study. Finally, the reliability of the studied three-phase three-wire filter shunt active topologies is analyzed to determine the optimal one. (author)

  15. Scheme of fault tectonic and tectonic activity manifestation in the region of the Crimea nuclear power plant construction

    International Nuclear Information System (INIS)

    Pasynkov, A.L.

    1989-01-01

    Characteristic of fault tectonics and tectonic activity manifestation in the region of the Crimea nuclear power plant construction is presented. Mosaic-block structure of the area, predetermined by the development of diagonal systems of activated tectonic dislocations with different displacement amplitudes and different stratigraphic ranges of manifestation, was established. Strained-stressed state of the region is determined by the presence of the South-Azov zone of deep fault and Krasnogorsk-Samarlinks fault system. The presented scheme can be used as tectonic basis of seismogenic activity of the region

  16. Fault detection and isolation of the attitude control subsystem of spacecraft formation flying using extended Kalman filters

    Science.gov (United States)

    Ghasemi, S.; Khorasani, K.

    2015-10-01

    In this paper, the problem of fault detection and isolation (FDI) of the attitude control subsystem (ACS) of spacecraft formation flying systems is considered. For developing the FDI schemes, an extended Kalman filter (EKF) is utilised which belongs to a class of nonlinear state estimation methods. Three architectures, namely centralised, decentralised, and semi-decentralised, are considered and the corresponding FDI strategies are designed and constructed. Appropriate residual generation techniques and threshold selection criteria are proposed for these architectures. The capabilities of the proposed architectures for accomplishing the FDI tasks are studied through extensive numerical simulations for a team of four satellites in formation flight. Using a confusion matrix evaluation criterion, it is shown that the centralised architecture can achieve the most reliable results relative to the semi-decentralised and decentralised architectures at the expense of availability of a centralised processing module that requires the entire team information set. On the other hand, the semi-decentralised performance is close to the centralised scheme without relying on the availability of the entire team information set. Furthermore, the results confirm that the FDI results in formations with angular velocity measurement sensors achieve higher level of accuracy, true faulty, and precision, along with lower level of false healthy misclassification as compared to the formations that utilise attitude measurement sensors.

  17. The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America

    Science.gov (United States)

    Barrie, J. Vaughn; Greene, H. Gary

    2018-02-01

    The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.

  18. Delineating active faults by using integrated geophysical data at northeastern part of Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Sultan Awad Sultan Araffa

    2012-06-01

    Full Text Available Geophysical techniques such as gravity, magnetic and seismology are perfect tools for detecting subsurface structures of local, regional as well as of global scales. The study of the earthquake records can be used for differentiating the active and non active fault elements. In the current study more than 2200 land magnetic stations have been measured by using two proton magnetometers. The data is corrected for diurnal variations and then reduced by IGRF. The corrected data have been interpreted by different techniques after filtering the data to separate shallow sources (basaltic sheet from the deep sources (basement complex. Both Euler deconvolution and 3-D magnetic modeling have been carried out. The results of our interpretation have indicated that the depth to the upper surface of basaltic sheet ranges from less than 10–600 m, depth to the lower surface ranges from 60 to 750 m while the thickness of the basaltic sheet varies from less than 10–450 m. Moreover, gravity measurements have been conducted at the 2200 stations using a CG-3 gravimeter. The measured values are corrected to construct a Bouguer anomaly map. The least squares technique is then applied for regional residual separation. The third order of least squares is found to be the most suitable to separate the residual anomalies from the regional one. The resultant third order residual gravity map is used to delineate the structural fault systems of different characteristic trends. The trends are a NW–SE trend parallel to that of Gulf of Suez, a NE–SW trend parallel to the Gulf of Aqaba and an E–W trend parallel to the trend of Mediterranean Sea. Taking seismological records into consideration, it is found that most of 24 earthquake events recorded in the study area are located on fault elements. This gives an indication that the delineated fault elements are active.

  19. Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities - Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France

    Science.gov (United States)

    Chartier, Thomas; Scotti, Oona; Clément, Christophe; Jomard, Hervé; Baize, Stéphane

    2017-09-01

    We perform a fault-based probabilistic seismic hazard assessment (PSHA) exercise in the Upper Rhine Graben to quantify the relative influence of fault parameters on the hazard at the Fessenheim nuclear power plant site. Specifically, we show that the potentially active faults described in the companion paper (Jomard et al., 2017, hereafter Part 1) are the dominant factor in hazard estimates at the low annual probability of exceedance relevant for the safety assessment of nuclear installations. Geological information documenting the activity of the faults in this region, however, remains sparse, controversial and affected by a high degree of uncertainty. A logic tree approach is thus implemented to explore the epistemic uncertainty and quantify its impact on the seismic hazard estimates. Disaggregation of the peak ground acceleration (PGA) hazard at a 10 000-year return period shows that the Rhine River fault is the main seismic source controlling the hazard level at the site. Sensitivity tests show that the uncertainty on the slip rate of the Rhine River fault is the dominant factor controlling the variability of the seismic hazard level, greater than the epistemic uncertainty due to ground motion prediction equations (GMPEs). Uncertainty on slip rate estimates from 0.04 to 0.1 mm yr-1 results in a 40 to 50 % increase in hazard levels at the 10 000-year target return period. Reducing epistemic uncertainty in future fault-based PSHA studies at this site will thus require (1) performing in-depth field studies to better characterize the seismic potential of the Rhine River fault; (2) complementing GMPEs with more physics-based modelling approaches to better account for the near-field effects of ground motion and (3) improving the modelling of the background seismicity. Indeed, in this exercise, we assume that background earthquakes can only host M 6. 0 earthquakes have been recently identified at depth within the Upper Rhine Graben (see Part 1) but are not accounted

  20. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-05-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring-fault

  1. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-01-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring-fault

  2. Measurement Testing of Radon Gas for Fault Activity Detection in Rahtawu Muria, Pati

    International Nuclear Information System (INIS)

    Suntoko, Hadi; Hamzah, Imam

    2004-01-01

    The radon surface can be used to investigates not only for environment but also to be develop in an earth application. The investigation is carried out at the Rahtawu fault, that includes, to the Pati regency which is located 40 km South of ULA. The objective of study to measure the radon released from the fracture zone activities. RDA equipment is being used to measure the radon gas released. The result shown that the high value of radon is 311 cpm with the background of 18 cpm, whereas the low value falls at 0 cpm. The tattoo value are influenced by the soil condition, tattoo time, hardness, weather, soil/stone porosity and fault possession. (author)

  3. Comparison of {gamma}-ray profile across active normal and reverse faults; Seidansogata to gyakudansogata katsudanso ni okeru hoshano tansa kekka no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, A; Wada, N; Sumi, H [Shimada Technical Consultants, Ltd., Shimane (Japan); Yamauchi, S; Iga, T [Shimane Univ., Shimane (Japan)

    1996-10-01

    Active faults confirmed at trench and outcrop were surveyed by the {gamma}-ray spectrometry. The active fault found at trench is a normal fault, and that found at outcrop is a reverse fault. The {gamma}-ray spectral characteristics of these two types of faults were compared to each other. The normal fault is named as Asagane fault located in Aimi-machi, Saihaku-gun, Tottori prefecture. The reverse fault is named as Yokota reverse fault located in Yokota-cho, Nita-gun, Shimane prefecture. Rises of radon gas indicating the existence of opening cracks were confirmed above the fault for the normal fault, and at the side of thrust block for the reverse fault. It was considered that such characteristics were caused by the difference of fault formation in the tensile stress field and in the compressive stress field. It was also reconfirmed that much more information as to faults can be obtained by the combined exploration method using the total counting method and the spectral method. 14 refs., 7 figs.

  4. Sealing process with calcite in the Nojima active fault zone revealed from isotope analysis of calcite

    International Nuclear Information System (INIS)

    Arai, Takashi; Tsukahara, Hiroaki; Morikiyo, Toshiro

    2003-01-01

    The Nojima fault appeared on the surface in the northern part of Awaji Island, central Japan as a result of the Hyogo-ken Nanbu earthquake (1995, M=7.2). Active fault drilling was performed by the Disaster Prevention Research Institute (DPRI), Kyoto University, and core samples were retrieved from 1410 to 1710 m, which were composed of intact and fractured granodiorites. We obtained calcite samples and gas samples from the vein in marginal fracture and non-fracture zones. We analyzed the carbon and oxygen isotope ratios of calcite and carbon dioxide to investigate the characteristic isotope ratios of fluids in the active fault zone, to estimate the origins of fluids, and to determine the sealing process of fractures. The analyzed values of carbon and oxygen isotope ratios of calcite were -10.3 to -7.2 per mille, 18 to 23 per mille, respectively, and carbon isotope ratios of CO 2 were -21 to -17 per mille. If carbon isotope ratios of calcite were at equilibrium with those of CO 2 , the precipitation temperature of calcite is calculated to be 30 to 50 deg C. This temperature is consistent with the present temperature of the depth where drilling cores were retrieved. Oxygen isotope ratios of H 2 O that, precipitated calcite were calculated to be -1.8 to -5.5 per mille. These values indicate calcite were precipitated from mixed fluids of sea water and meteoric water. Therefore, the marginal fracture zone of the Nojima fault was sealed with calcite, which was generated from mixing of sea water and meteoric water in situ. (author)

  5. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    Science.gov (United States)

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  6. The activity of the Ulsan fault system based on marine terrace age study at the southeastern part of Korean peninsula

    International Nuclear Information System (INIS)

    Inoue, Daiei; Weon-Hack, Choi

    2006-01-01

    The activity evaluation of the Ulsan fault system (UFS) based on marine terrace age study in the southeastern part of Korean peninsula has been carried out. (1) The marine terrace distribution map along the southeastern coast of Korean peninsula has been distributed three wide terraces and several sub-terraces. The age of the above three terraces was determined by the discovery of wide tephras to be MIS5e, 7 and 9 from the lowest, respectively. (2) The active fault map along UFS was constructed. There will be the possibility that the UFS will be divided into three segments by the feature of lineaments. (3) The fault bounds between mountain at the eastern side, and plain at the western side in the most part of fault. It is interpreted that the UFS builds up the eastern mountain as a reverse movement fault. The latest activity of this fault system was clarified at the two localities by outcrop and trench investigation. The latest activity at Galgok-ri located in the northern part of the fault was occurred between 2,840 and 1,440 yBP. It was found to be between 7,470 and 2,990 yBP at Gaegok-ri, located in the central part of the fault. The latest activity at the Wangsan, which is between Galgok-ri and Gaegok-ri, was older than 7,000 yBP. The latest activity of the UFS differs between studied points. (4) The vertical slip rate of the UFS was calculated from the amount of vertical deformation and the age of terraces. Its range was between several cm to 20 cm in the 1000 years. This value corresponds to lower B and C class activity defined in Japan. (author)

  7. The relevance of the dynamic stall effect for transient fault operations of active-stall wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak

    2005-06-15

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)

  8. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  9. Fault structure, properties and activity of the Makran Accretionary Prism and implications for seismogenic potential

    Science.gov (United States)

    Smith, G. L.; McNeill, L. C.; Henstock, T.; Bull, J. M.

    2011-12-01

    The Makran subduction zone is the widest accretionary prism in the world (~400km), generated by convergence between the Arabian and Eurasian tectonic plates. It represents a global end-member, with a 7km thick incoming sediment section. Accretionary prisms have traditionally been thought to be aseismic due to the presence of unconsolidated sediment and elevated basal pore pressures. The seismogenic potential of the Makran subduction zone is unclear, despite a Mw 8.1 earthquake in 1945 that may have been located on the plate boundary beneath the prism. In this study, a series of imbricate landward dipping (seaward verging) thrust faults have been interpreted across the submarine prism (outer 70 km) using over 6000km of industry multichannel seismic data and bathymetric data. A strong BSR (bottom simulating reflector) is present throughout the prism (excluding the far east). An unreflective décollement is interpreted from the geometry of the prism thrusts. Two major sedimentary units are identified in the input section, the lower of which contains the extension of the unreflective décollement surface. Between 60%-100% of the input section is currently being accreted. The geometry of piggy-back basin stratigraphy shows that the majority of thrusts, including those over 50km from the trench, are recently active. Landward thrusts show evidence for reactivation after periods of quiescence. Negative polarity fault plane reflectors are common in the frontal thrusts and in the eastern prism, where they may be related to increased fault activity and fluid expulsion, and are rarer in older landward thrusts. Significant NE-SW trending basement structures (The Murray Ridge and Little Murray Ridge) on the Arabian plate intersect the deformation front and affect sediment input to the subduction zone. Prism taper and structure are apparently primarily controlled by sediment supply and the secondary influence of subducting basement ridges. The thick, likely distal, sediment

  10. Late Quaternary paleoseismology of the Milin fault: Implications for active tectonics along the Yarlung Zangbo Suture, Southeastern Tibet Plateau

    Science.gov (United States)

    Li, Kang; Xu, Xiwei; Kirby, Eric; Tang, Fangtou; Kang, Wenjun

    2018-04-01

    How the eastward motion of crust in the central Tibetan Plateau is accommodated in the remote regions of the eastern Himalayan syntaxis remains uncertain. Although the Yarlung Zangbo suture (YZS) forms a striking lineament in the topography of the region, evidence for recent faulting along this zone has been equivocal. To understand whether faults along the YZS are active, we performed a geological investigation along the eastern segments of the YZS. Geomorphic observations suggest the presence of active faulting along several segments of the YZS, which we collectively refer to as the "Milin fault". Paleoseismologic data from trenches reveal evidence for one faulting event, which is constrained to occur between 5620 and 1945 a BP. The latest faulting event displaced alluvial surface T2 by 7 m. The offset on this earthquake place the minimum value on the vertical slip rate of 0.3 mm/yr. Empirical relationships between surface rupture length, displacement and magnitude, suggest that magnitude of the latest event could have been Mw 7.3-7.7. On the basis of this slip rate and the elapsed time since the last event, it is estimated that a seismic moment equivalent to Mw 7.0 has been accumulated on the Milin fault. It is pose a threat to the surrounding region. Our results suggest that shortening occurs in the vicinity of the eastern Himalayan syntaxis, and part of eastward motion of crust from the central Tibetan Plateau is absorbed by uplift of the eastern Himalayan syntaxis.

  11. Non-tectonic exposure Rates along Bedrock Fault Scarps in an active Mountain Belt of the central Apennines

    Science.gov (United States)

    Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto

    2017-04-01

    The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface

  12. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are deal...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  13. Strong ground motion prediction applying dynamic rupture simulations for Beppu-Haneyama Active Fault Zone, southwestern Japan

    Science.gov (United States)

    Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.

    2017-12-01

    We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  14. Antimicrobial activity of Streptomyces spp. Isolates from vegetable plantation soil

    Directory of Open Access Journals (Sweden)

    Isnaeni

    2016-05-01

    Full Text Available Fifteen Streptomyces isolates were isolated from soil in some different location on vegetable plantation at agriculture standard condition. The isolates were assessed for their antibacterial activity against Mycobacterium tuberculosis (MTB ATCC H37RV and mycobacterial which isolated from Dr. Soetomo Hospital patients in Surabaya. The International Streptomyces Project 4 (ISP4 and Middlebrook 7H9 (MB7H9 wwere used as growth or fermentation medium. The screening of inhibition activity was performed using turbidimetry and spot-test on agar medium. Results shown that 33.3% of the isolates (5 isolates have anti-mycobacterial activities. The first line anti tuberculosis drug rifampicin, (RIF, ethambutol (EMB, isoniazid (INH, and pyrazinamide (PZA were used as standards or positive controls with concentration 20 ppm. Optical density of crude fermentation broth concentrated from five isolates relatively lower than five anti-tuberculosis drug activity standard, although their activities against some microbial were similar to the standard at spot-test. The most efficient isolate shown anti-mycobacterial activity was Streptomyces B10 which identified as Streptomyces violaceousniger. In addition, fatty acid methyl ester (FAME profile of gas chromatography-mass spectrometry chromatogram of each isolates were studied and compared to Streptomyces spp. Keywords: Anti-mycobacterial, Mycobacterium tuberculosis, Streptomyces spp.

  15. Intra-caldera active fault: An example from the Mw 7.0 2016 Kumamoto, Japan, earthquake

    Science.gov (United States)

    Toda, S.; Murakami, T.; Takahashi, N.

    2017-12-01

    A NE-trending 30-km-long surface rupture with up to 2.4 m dextral slip emerged during the Mw=7.0 16 April 2016 Kumamoto earthquake along the previously mapped Futagawa and northern Hinagu fault systems. The 5-km-long portion of the northeast rupture end, which was previously unidentified, crossed somma and extended to the 20-km-diameter Aso Caldera, one of the major active volcanoes, central Kyushu. We here explore geologic exposures of interplays of active faulting and active volcanism, and then argue the Futagawa fault system has been influenced by the ring fault system associated with the caldera forming gigantic eruptions since 270 ka, last of which occurred 90 ka ejecting a huge amount of ignimbrite. To understand the interplays, together with the mapping of the 2016 rupture, we employed an UAV to capture numerous photos of the exposures along the canyon and developed 3D orthochromatic topographic model using PhotoScan. One-hundred-meter-deep Kurokawa River canyon by the Aso Caldera rim exposes two lava flow units of 50 ka vertically offset by 10 m by the Futatawa fault system. Reconstructions of the collapsed bridges across the Kurokawa River also reveal cross sections of a 30-meter-high tectonic bulge and 10-m-scale negative flower structure deformed by the frequent fault movements. We speculate two fault developing models across the Aso Caldera. One is that the NE edge of the Futagawa fault system was cut and reset by the caldera forming ring fault, which indicates the 3-km-long rupture extent within the Aso Caldera would be a product of the fault growth since the last Aso-4 eruption of 90 ka. It enables us to estimate the 33 mm/yr of the fault propagation speed. An alternative model is that subsurface rupture of the Kumamoto earthquake extended further to the NE rim, the other side of the caldera edge, which is partially supported by the geodetic and seismic inversions. With respect to the model, the clear surface rupture of the 2016 Kumamoto earthquake

  16. Searching for Active Faults in the Western Eurasia-Nubia plate boundary

    Science.gov (United States)

    Antunes, Veronica; Custodio, Susana; Arroucau, Pierre; Carrilho, Fernando

    2016-04-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active faults in the region. However, the region undergoes slow deformation, which results in low rates of seismic activity, and the location, dimension and geometry of active structures remains unsettled. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events that occurred from 2007 to 2013. The method takes as inputs P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area defined by 8.5°W < lon < 5°W and 36° < lat < 37.5°. After relocation, we obtain a lineation of events in the Guadalquivir bank region, in the northern Gulf of Cadiz. The lineation defines a low-angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. We provide seismological evidence for the existence of this seemingly active structure based on earthquake relocations, focal mechanisms and waveform similarity between neighboring events.

  17. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

    Science.gov (United States)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

    2018-02-01

    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  18. Model-Based Off-Nominal State Isolation and Detection System for Autonomous Fault Management, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed model-based Fault Management system addresses the need for cost-effective solutions that enable higher levels of onboard spacecraft autonomy to reliably...

  19. Model-Based Off-Nominal State Isolation and Detection System for Autonomous Fault Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed model-based Fault Management system addresses the need for cost-effective solutions that enable higher levels of onboard spacecraft autonomy to reliably...

  20. Geosphere Stability for long-term isolation of radioactive waste. Case study for hydrological change with earthquakes and faulting

    International Nuclear Information System (INIS)

    Niwa, Masakazu

    2016-01-01

    Appropriate estimation and safety assessment for long-term changes in geological environment are essential to an improvement of reliability for geological disposal. Specifically, study on faults is important for understanding regional groundwater flow as well as an assessment as a trigger of future earthquakes. Here, possibility of changes in permeability of faulted materials induced by earthquakes was examined based on monitoring data of groundwater pressure before and after the 2011 off the Pacific coast of Tohoku Earthquake. (author)

  1. Evidence of Quaternary and recent activity along the Kyaukkyan Fault, Myanmar

    Science.gov (United States)

    Crosetto, Silvia; Watkinson, Ian M.; Soe Min; Gori, Stefano; Falcucci, Emanuela; Nwai Le Ngal

    2018-05-01

    Cenozoic right-lateral shear between the eastern Indian margin and Eurasia is expressed by numerous N-S trending fault systems inboard of the Sunda trench, including the Sagaing Fault. The most easterly of these fault systems is the prominent ∼500 km long Kyaukkyan Fault, on the Shan Plateau. Myanmar's largest recorded earthquake, Mw 7.7 on 23rd May 1912, focused near Maymyo, has been attributed to the Kyaukkyan Fault, but the area has experienced little significant seismicity since then. Despite its demonstrated seismic potential and remarkable topographic expression, questions remain about the Kyaukkyan Fault's neotectonic history.

  2. Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China

    International Nuclear Information System (INIS)

    Wang, Xin; Li, Ying; Du, Jianguo; Zhou, Xiaocheng

    2014-01-01

    The spatial variation of soil gas radon values were correlated with the seismogenic faults and earthquakes in the Tangshan area (north China). Radon concentrations were measured at 756 sites in an area about 2500 km 2 from April to May 2010. The background and anomaly threshold values calculated were 4730.4 Bq/m 3 and 8294.1 Bq/m 3 , respectively. Radon concentrations highlight a decreasing gradient from NE to SW in the area. Higher values mostly distributed in the NE sector of the Tangshan fault and the Luanxian fault where the Tangshan (Ms 7.8), and Luanxian (MS 7.1) earthquakes occurred in 1976 and 17 earthquakes with MS = 3.0 occurred in this area since 2005. Radon values illustrated a close relation with the shallow fault trace and earthquake activity in the area. The active fault zones and the associated fractures formed by the larger earthquakes, act as paths for radon migration. - Highlights: • Radon concentrations at 756 sites were attained in the Tangshan area. • The background value and anomaly threshold of Rn were calculated out. • Radon concentration decreasing from NE to SW in the study area. • Rn value has a close relation with the fault and earthquake activity

  3. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    Science.gov (United States)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which

  4. Design of a multi-model observer-based estimator for Fault Detection and Isolation (FDI strategy: application to a chemical reactor

    Directory of Open Access Journals (Sweden)

    Y. Chetouani

    2008-12-01

    Full Text Available This study presents a FDI strategy for nonlinear dynamic systems. It shows a methodology of tackling the fault detection and isolation issue by combining a technique based on the residuals signal and a technique using the multiple Kalman filters. The usefulness of this combination is the on-line implementation of the set of models, which represents the normal mode and all dynamics of faults, if the statistical decision threshold on the residuals exceeds a fixed value. In other cases, one Extended Kalman Filter (EKF is enough to estimate the process state. After describing the system architecture and the proposed FDI methodology, we present a realistic application in order to show the technique's potential. An algorithm is described and applied to a chemical process like a perfectly stirred chemical reactor functioning in a semi-batch mode. The chemical reaction used is an oxido reduction one, the oxidation of sodium thiosulfate by hydrogen peroxide.

  5. Bacterial isolates from the bryozoan Membranipora membranacea: influence of culture media on isolation and antimicrobial activity.

    Science.gov (United States)

    Heindl, Herwig; Thiel, Vera; Wiese, Jutta; Imhoff, Johannes F

    2012-03-01

    From specimens of the bryozoan Membranipora membranacea collected in the Baltic Sea, bacteria were isolated on four different media, which significantly increased the diversity of the isolated groups. All isolates were classified according to 16S rRNA gene sequence analysis and tested for antimicrobial properties using a panel of five indicator strains and six different media. Each medium featured a unique set of isolated phylotypes, and a phylogenetically diverse collection of isolates was obtained. A total of 96 isolates were assigned to 49 phylotypes and 29 genera. Only one-third of the members of these genera had been isolated previously from comparable sources. The isolates were affiliated with Alpha- and Gammaproteobacteria, Bacilli, and Actinobacteria. A comparable large portion of up to 22 isolates, i.e., 15 phylotypes, probably represent new species. Likewise, 47 isolates (approximately 50%) displayed antibiotic activities, mostly against grampositive indicator strains. Of the active strains, 63.8 % had antibiotic traits only on one or two of the growth media, whereas only 12.7 % inhibited growth on five or all six media. The application of six different media for antimicrobial testing resulted in twice the number of positive hits as obtained with only a single medium. The use of different media for the isolation of bacteria as well as the variation of media considered suitable for the production of antibiotic substances significantly enhanced both the number of isolates obtained and the proportion of antibiotic active cultures. Thus the approach described herein offers an improved strategy in the search for new antibiotic compounds.

  6. THE FIRST RESULTS OF STUDIES OF TEMPORARY VARIATIONS IN SOILRADON ACTIVITY OF FAULTS IN WESTERN PRIBAIKALIE

    Directory of Open Access Journals (Sweden)

    К. Zh. Seminsky

    2013-01-01

    Full Text Available Radon concentrations in soil air are variable depending on factors that are considered external (planetary and internal (geodynamic relative to the Earth. In active fault zones, variations of gas emanations are most intense. A permanent monitoring station was established near Tyrgan settlement in Western Pribaikalie to study temporal variations of soil radon concentration, Q, in the faults of the Baikal rift, East Siberia. This station is located in the zone of the Primorsky normal fault that is the largest in the region. The station is equipped with radon radiometer PPA01M03 that records Q values every 85 minutes and also monitors a number of meteorological parameters, including atmospheric pressure, humidity, and air temperature.We analysed records of two measurement sessions (148 and 66 days covering a part of the year during which field measurement of Q are possible in the cold climate conditions of the area under study. According to the available monitoring data, variations of radon concentrations in the Primorsky fault zone may vary by more than one order of magnitude through a springsummerautumn period, and such variations are oscillatory. Significant changes of permeability in time occur due to intensive changes in the state of stresses of the rock massives under the impacts of the planetary and geodynamic factors. The influence of the first group of factors, i.e. planetary ones, is manifested by synchronous oscillations of radon concentrations and atmospheric pressure, which phases of occurrence are opposed. Domination of daily and fourday periods gives evidence that the state of stresses of the rock massives is impacted by the lunar tides and cyclonic phenomena associated with the interaction between the Earth and the Sun. The influence of the second group of factors, i.e. geodynamic ones, is suggested by an evident relation between radon emanations and seismic events, including the catastrophic earthquake in Japan (March 11, 2011, M=9

  7. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany

    Directory of Open Access Journals (Sweden)

    Ulrich Schreiber

    2013-05-01

    Full Text Available In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  8. Preliminary Monitoring of Soil gas Radon in Potentially Active Faults, San Sai District, Chiang Mai Province, Thailand

    Science.gov (United States)

    Pondthai, P.; Udphuay, S.

    2013-05-01

    The magnitude of 5.1 Mw earthquake occurred in San Sai District, Chiang Mai Province, Thailand in December 2006 was considered an uncommon event due to the fact that there was no statistical record of such significant earthquake in the area. Therefore the earthquake might have been associated with a potentially active fault zone within the area. The objective of this study is to measure soil gas radon across this unknown fault zone within the Chiang Mai Basin, northern Thailand. Two profiles traversing the expected fault zone of soil gas radon measurements have been monitored, using TASTRAK solid state track nuclear detectors (SSNTDs). Radon signals from three periods of measurement show a distinctive consistent spatial distribution pattern. Anomalous radon areas along the profiles are connected to fault locations previously interpreted from other geophysical survey results. The increased radon signal changes from the radon background level with the signal-to-background ratio above 3 are considered anomalous. Such pattern of radon anomaly supports the existence of the faults. The radon measurement, therefore is a powerful technique in mapping active fault zone.

  9. Validity of active fault identification through magnetic anomalous using earthquake mechanism, microgravity and topography structure analysis in Cisolok area

    Science.gov (United States)

    Setyonegoro, Wiko; Kurniawan, Telly; Ahadi, Suaidi; Rohadi, Supriyanto; Hardy, Thomas; Prayogo, Angga S.

    2017-07-01

    Research was conducted to determine the value of the magnetic anomalies to identify anomalous value standard fault, down or up with the type of Meratus trending northeast-southwest Cisolok, Sukabumi. Data collection was performed by setting the measurement grid at intervals of 5 meters distance measurement using a Precision Proton Magnetometer (PPM) -GSM-19T. To identification the active fault using magnetic is needed another parameter. The purpose of this study is to identification active fault using magnetic Anomaly in related with subsurface structure through the validation analysis of earthquake mechanism, microgravity and with Topography Structure in Java Island. Qualitative interpretation is done by analyzing the residual anomaly that has been reduced to the pole while the quantitative interpretation is done by analyzing the pattern of residual anomalies through computation. The results of quantitative interpretation, an anomalous value reduction to the pole magnetic field is at -700 nT to 700 nT while the results of the qualitative interpretation of the modeling of the path AA', BB' and CC' shows the magnetic anomaly at coordinates liquefaction resources with a value of 1028.04, 1416.21, - 1565, -1686.91. The measurement results obtained in Cisolok magnetic anomalies that indicate a high content of alumina (Al) and iron (Fe) which be identified appears through the fault gap towards the northeast through Rajamandala Lembang Fault related to the mechanism in the form of a normal fault with slip rate of 2 mm / year.

  10. Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Marco, E-mail: marco.neri@ct.ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma, 2 - 95123 Catania (Italy); Giammanco, Salvatore [Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma, 2 - 95123 Catania (Italy); Ferrera, Elisabetta; Patane, Giuseppe [Universita degli Studi di Catania, Dip. Scienze della Terra, Corso Italia, 52 - 95129 Catania (Italy); Zanon, Vittorio [Centro de Vulcanologia e Avaliacao de Riscos Geologicos - Universidade dos Acores, Rua Mae de Deus, 9501-801 Ponta Delgada (Portugal)

    2011-09-15

    This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. Both radon and thoron anomalies were located in areas affected by relatively deep (5-10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquakes depth and intensity can give some hints on the source of gas and/or on fault dynamics. - Highlights: > We performed measurements of radon from soil carried out on Mt. Etna. > The sampled zone is characterized by the presence of numerous active faults. > Radon mapping reveal dangerous hidden faults buried by recent soil cover. > Our study gives some hints on the source of gas and on fault dynamics. > We recognized areas where radon activity represents a hazard to the population.

  11. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  12. Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy)

    International Nuclear Information System (INIS)

    Giammanco, S.; Imme, G.; Mangano, G.; Morelli, D.; Neri, M.

    2009-01-01

    Three different methodologies were used to measure Radon ( 222 Rn) in soil, based on both passive and active detection system. The first technique consisted of solid-state nuclear track detectors (SSNTD), CR-39 type, and allowed integrated measurements. The second one consisted of a portable device for short time measurements. The last consisted of a continuous measurement device for extended monitoring, placed in selected sites. Soil 222 Rn activity was measured together with soil Thoron ( 220 Rn) and soil carbon dioxide (CO 2 ) efflux, and it was compared with the content of radionuclides in the rocks. Two different soil-gas horizontal transects were investigated across the Pernicana fault system (NE flank of Mount Etna), from November 2006 to April 2007. The results obtained with the three methodologies are in a general agreement with each other and reflect the tectonic settings of the investigated study area. The lowest 222 Rn values were recorded just on the fault plane, and relatively higher values were recorded a few tens of meters from the fault axis on both of its sides. This pattern could be explained as a dilution effect resulting from high rates of soil CO 2 efflux. Time variations of 222 Rn activity were mostly linked to atmospheric influences, whereas no significant correlation with the volcanic activity was observed. In order to further investigate regional radon distributions, spot measurements were made to identify sites having high Rn emissions that could subsequently be monitored for temporal radon variations. SSNTD measurements allow for extended-duration monitoring of a relatively large number of sites, although with some loss of temporal resolution due to their long integration time. Continuous monitoring probes are optimal for detailed time monitoring, but because of their expense, they can best be used to complement the information acquired with SSNTD in a network of monitored sites

  13. Sensor fusion for active vibration isolation in precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.; van Dijk, Johannes; Soemers, Herman

    2012-01-01

    Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping

  14. Activity of daptomycin against Listeria monocytogenes isolates from cerebrospinal fluid

    NARCIS (Netherlands)

    Spanjaard, Lodewijk; Vandenbroucke-Grauls, Christina M. J. E.

    2008-01-01

    We tested the activity of daptomycin against 76 Listeria monocytogenes isolates from cerebrospinal fluid by broth dilution and Etest methods. For the broth dilution method, the MIC range was 1.0 to 8.0 and the MIC at which 90% of the isolates tested were inhibited (MIC(90)) was 4.0 mg/liter. For the

  15. Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors

    International Nuclear Information System (INIS)

    Finkel, R.C.

    1981-01-01

    In order to assess the utility of uranium isotopes as fluid phase earthquake precursors, uranium concentrations and 234 U/ 238 U activity ratios have been monitored on a monthly or bimonthly basis in water from 24 wells and springs associated with Southern California fault zones. Uranium concentrations vary from 0.002 ppb at Indian Canyon Springs on the San Jacinto fault to 8.3 ppb at Lake Hughes well on the San Andreas fault in the Palmdale area. 234 U/ 238 U activity ratios vary from 0.88 at Agua Caliente Springs on the Elsinore fault to 5.4 at Niland Slab well on the San Andreas fault in the Imperial Valley. There was one large earthquake in the study area during 1979, the 15 October 1979 M = 6.6 Imperial Valley earthquake. Correlated with this event, uranium concentrations varied by a factor of more than 60 and activity ratios by a factor of 3 at the Niland Slab site, about 70 km from the epicenter. At the other sites monitored, uranium concentrations varied in time, but with no apparent pattern, while uranium activity ratios remained essentially constant throughout the monitoring period

  16. Late Pleistocene Activity and deformation features of the North Margin Fault of West Qinling Mountains, northeastern Tibet

    Science.gov (United States)

    Chen, P.; Lin, A.; Yan, B.

    2017-12-01

    Abstract: A precise constraints of slip rates of active faults within and around Tibetan Plateau will provide us a definite and explicit knowledge of continental dynamics and present-day tectonic evolution. The major strike-slip faults in the northern and northeastern Tibetan Plateau, including the Altyn Tagh fault and Kunlun fault play a vital role in dissipating and transferring the strain energy. The WNW-trending North Margin Fault of West Qinling Mountains (hereafter name NMFWQM, the target of this study) developed along the topographic boundary between Longzhong basin and the Qinling mountains. Intensive Historic records show that large earthquakes repeatedly in the area around the NMFWQM, including the AD 143 M 7.0 Gangu West earthquake; AD 734 M≥7.0 Tianshui earthquake; AD 1654 M 8.0 Tianshui South earthquake and the most recent 2013 Mw6.0 Zhangxian earthquake. In this study, we investigated the structural features and activity of the NMFWQM including the nature of the fault, slip rate, and paleoseismicity by interpretation of high-resolution remote sensing images and field investigation. Based on the interpretations of high resolution satellite images, field investigations and 14C dating ages, we conclude the following conclusions: 1) The drainage systems have been systematical deflected or offset sinistrally along the fault trace; 2) The amounts of displacement (D) show a positive linear correlation with the upstream length (L) from the deflected point of offset river channels as DaL (a: a certain coefficient); 3) The alluvial fans and terrace risers formed in the last interglacial period are systematically offset by 16.4m to 93.9 m, indicating an accumulation of horizontal displacements as that observed in the offset drainages; 4) A horizontal slip rate is estimated to be 2.5-3.1 mm/yr with an average of 2.8 mm/yr. Comparing with the well-know strike-slip active faults developed in the northern Tibetan Plateau, such as the Altyn Tagh fault and Kunlun

  17. The 2016-2017 central Italy coseismic surface ruptures and their meaning with respect to foreseen active fault systems segmentation

    Science.gov (United States)

    De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.

    2017-12-01

    In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as

  18. Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial

    Science.gov (United States)

    Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.

    2018-04-01

    Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.

  19. Screening of Azotobacter isolates for PGP properties and antifungal activity

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2015-01-01

    Full Text Available Аmong 50 bacterial isolates obtained from maize rhizospherе, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA, siderophores, hydrogen cyanide (HCN, exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.. Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 μg ml-1 and Azt5 (29.44 and 50.38 μg ml-1 in the medium with addition of L-tryptophan (2.5 and 5 mM. The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%. [Projekat Ministarstva nauke Republike Srbije, br. TR 31073

  20. Fault kinematics and active tectonics of the Sabah margin: Insights from the 2015, Mw 6.0, Mt. Kinabalu earthquake

    Science.gov (United States)

    Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.

    2016-12-01

    A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.

  1. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Science.gov (United States)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  2. Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and southern Colombia

    Science.gov (United States)

    Suarez, G.; Molnar, P.; Burchfiel, B. C.

    1983-01-01

    The long-period P waveforms observed for 17 earthquakes in the Peruvian Andes during 1963-1976 are compared with synthetic waveforms to obtain fault-plane solutions and focal depths. The morphological units of the Peruvian Andes are characterized: coastal plains, Cordillera Occidental, altiplano and central high plateau, Cordillera Oriental, and sub-Andes. The data base and analysis methodology are discussed, and the results are presented in tables, diagrams, graphs, maps, and photographs illustrating typical formations. Most of the earthquakes are shown to occur in the transition zone from the sub-Andes to the Cordillera Oriental under formations of about 1 km elevation at focal depths of 10-38 km. It is suggested that the sub-Andean earthquakes reflect hinterland deformation of a detached fold and thrust belt, perhaps like that which occurred in parts of the Canadian Rockies. From the total crustal shortening evident in Andean morphology and the shortening rate of the recent earthquakes it is estimated that the topography and crustal root of the Andes have been formed during the last 90-135 Myr.

  3. Active vibration isolation of a rigidly mounted turbo pump

    NARCIS (Netherlands)

    Basten, T.G.H.; Doppenberg, E.J.J.

    2006-01-01

    Manufacturers of precision equipment are constantly aiming at increased accuracy. Elimination of disturbing vibrations is therefore getting more and more important. The technical limitations of passive isolation methods require alternative strategies for vibration reduction, such as active

  4. 15 years of zooming in and zooming out: Developing a new single scale national active fault database of New Zealand

    Science.gov (United States)

    Ries, William; Langridge, Robert; Villamor, Pilar; Litchfield, Nicola; Van Dissen, Russ; Townsend, Dougal; Lee, Julie; Heron, David; Lukovic, Biljana

    2014-05-01

    In New Zealand, we are currently reconciling multiple digital coverages of mapped active faults into a national coverage at a single scale (1:250,000). This seems at first glance to be a relatively simple task. However, methods used to capture data, the scale of capture, and the initial purpose of the fault mapping, has produced datasets that have very different characteristics. The New Zealand digital active fault database (AFDB) was initially developed as a way of managing active fault locations and fault-related features within a computer-based spatial framework. The data contained within the AFDB comes from a wide range of studies, from plate tectonic (1:500,000) to cadastral (1:2,000) scale. The database was designed to allow capture of field observations and remotely sourced data without a loss in data resolution. This approach has worked well as a method for compiling a centralised database for fault information but not for providing a complete national coverage at a single scale. During the last 15 years other complementary projects have used and also contributed data to the AFDB, most notably the QMAP project (a national series of geological maps completed over 19 years that include coverage of active and inactive faults at 1:250,000). AFDB linework and attributes was incorporated into this series but simplification of linework and attributes has occurred to maintain map clarity at 1:250,000 scale. Also, during this period on-going mapping of active faults has improved upon these data. Other projects of note that have used data from the AFDB include the National Seismic Hazard Model of New Zealand and the Global Earthquake Model (GEM). The main goal of the current project has been to provide the best digital spatial representation of a fault trace at 1:250,000 scale and combine this with the most up to date attributes. In some areas this has required a simplification of very fine detailed data and in some cases new mapping to provide a complete coverage

  5. Isolation of antifungally active lactobacilli from edam cheese

    DEFF Research Database (Denmark)

    Tuma, S.; Vogensen, Finn Kvist; Plocková, M.

    2007-01-01

    The antifungal activity of 322 lactobacilli strains isolated from Edam cheese at different stages of the ripening process was tested against Fusarium proliferatum M 5689 using a dual overlay spot assay. Approximately 21% of the isolates showed a certain level of inhibitory activity. Seven strains...... as Lb. paracasei and three as Lb. fermentum. Lb. paracasei ST 68 was chosen for further testing as antifungal protective adjunct for Edam cheese production.  ...

  6. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    Science.gov (United States)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  7. Birth and demise of a Middle Jurassic isolated shallow-marine carbonate platform on a tilted fault block: Example from the Southern Iberian continental palaeomargin

    Science.gov (United States)

    Navarro, V.; Ruiz-Ortiz, P. A.; Molina, J. M.

    2012-08-01

    Subbetic Middle Jurassic oolitic limestones of the Jabalcuz Formation crop out in San Cristóbal hill, near Jaén city (Andalucía, Spain), between hemipelagic limestone and marl successions. The Jabalcuz limestones range in facies from calcareous breccias and micritic limestones to white cross-bedded oolitic limestones. Recent erosion has exhumed a Jurassic isolated shallow-water carbonate platform on the San Cristóbal hill. This shallow platform developed on a tilted fault block. An almost continuous, laterally extensive outcrop reveals tectono-sedimentary features distinctive of block-tilting in the different margins of the fault block. The studied sections represent various palaeogeographic positions in the ancient shallow-water carbonate platform and basin transition. This exceptional outcrop allows to decipher the triggering mechanisms of the birth, evolution, and drowning of this Jurassic isolated shallow-water carbonate platform. Two shallowing-upward depositional sequences separated by flooding surfaces can be distinguished on two different sides of the fault block. In the southeastern part of the outcrop, proximal sections grade vertically from distal talus fault breccias, with bivalve and serpulid buildup intercalations, to white cross-bedded oolitic limestones defining the lowermost depositional sequence. Upwards, overlying a flooding surface, the second sequence with oolitic limestones prograding over micritic deposits is recorded. In the southwest, oolitic, peloidal, and more distal micritic facies alternate, with notable southeastern progradation of oolitic facies in the upper part of the section, which represents the upper depositional sequence. The top of this second depositional sequence is another flooding surface recorded by the sedimentation of marls with radiolarians from the overlying formation. In the northwestern outcrops, the two depositional sequences are also almost completely preserved and can be differentiated. A 100 m

  8. Parameter design and performance simulation of a 10 kV voltage compensation type active superconducting fault current limiter

    International Nuclear Information System (INIS)

    Chen, L.; Tang, Y.J.; Song, M.; Shi, J.; Ren, L.

    2013-01-01

    Highlights: •For a practical 10 kV system, the 10 kV active SFCL’s basic parameters are designed. •Under different fault conditions, the 10 kV active SFCL’s performances are simulated. •The designed 10 kV active SFCL’s engineering feasibility is discussed preliminarily. -- Abstract: Since the introduction of superconducting fault current limiter (SFCL) into electrical distribution system may be a good choice with economy and practicability, the parameter design and current-limiting characteristics of a 10 kV voltage compensation type active SFCL are studied in this paper. Firstly, the SFCL’s circuit structure and operation principle are presented. Then, taking a practical 10 kV distribution system as its application object, the SFCL’s basic parameters are designed to meet the system requirements. Further, using MATLAB, the detailed current-limiting performances of the 10 kV active SFCL are simulated under different fault conditions. The simulation results show that the active SFCL can deal well with the faults, and the parameter design’s suitability can be testified. At the end, in view of the engineering feasibility of the 10 kV active SFCL, some preliminary discussions are carried out

  9. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    Science.gov (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  10. Geomicrobiology of Archaeal Communities Isolated from an Off-axis Abyssal Hill Fault Scarp on the East Pacific Rise Flank at 9° 27'N

    Science.gov (United States)

    Ehrhardt, C. J.; Haymon, R.; Holden, P.; Lamontagne, M.

    2003-12-01

    Although heat flow studies suggest that ~70% of the hydrothermal heat loss in the oceans occurs in the abyssal hill terrain on the flanks of mid-ocean ridges, very few off-axis hydrothermal sites have been discovered. In May 2002, sedimentary blowout structures of probable hydrothermal origin were discovered along East Pacific Rise at 9° 27'N on an off-axis abyssal hill bounded by a fault scarp covered with orange-brown microbial flocculations. Recovered samples of these flocculations have presented an opportunity to study the unknown nature and role of thermophilic and hyperthermophilic microbial communities on the ridge flanks. Furthermore, the archaeal communities that we have identified in the samples are useful "microbial tracers" which can be used to locate off-axis areas of moderate-to-high temperature fluid flow (>50° C). In this study, we used molecular techniques to isolate, amplify, and sequence community archaeal RNA sequences from fault scarp flocculations collected with a slurp pump system mounted in the Alvin basket. Molecular phylogenies based on 16S rRNA were constructed. Phylogenetic relationships of isolated clones were used to infer temperature preferences of archaeal communities. We identified 12 clones that clustered within thermophilic or hyperthermophilic clades within Archaea suggesting that moderately high temperature fluid (>50° C) exited the seafloor along this abyssal hill fault scarp. Our studies also suggest that these communities mediate the formation of Fe-sulfide mineral phases. Analysis of the samples with an Environmental Scanning Electron Microscope (ESEM) and X-ray energy dispersive analysis (EDS) revealed unique iron sulfide mineral phases with anomalously low Fe/S ratios in direct association with microbial communities.

  11. Isolation, characterization and antimicrobial activity of Streptomyces ...

    African Journals Online (AJOL)

    DR TONUKARI

    2013-12-18

    Dec 18, 2013 ... Available online at http://www.academicjournals.org/AJB ... Key words: Characterization, streptomyces, antimicrobial activity, hot ... MATERIALS AND METHODS ..... chain reaction (PCR) which is currently used as a sen-.

  12. Seismic investigation of the Kunlun Fault: Analysis of the INDEPTH IV 2-D active-source seismic dataset

    Science.gov (United States)

    Seelig, William George

    The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source, 2-D seismic reflection/refraction data, collected as part of project INDEPTH IV (International Deep Profiling of Tibet and the Himalaya, phase IV) in 2007, was used to examine the structure and the dip of the Kunlun fault. The INDEPTH IV data was acquired to better understand the tectonic evolution of the northeastern Tibetan Plateau, such as the far-field deformation associated with the continent-continent collision and the potential subduction of the Asian continent beneath northern Tibet. Seismic reflection common depth point (CDP) stacks were examined to look for reflectivity patterns that may be associated with faulting. A possible reflection from the buried North Kunlun Thrust (NKT) is identified at 18-21 km underneath the East Kunlun Mountains, with an estimated apparent dip of 15°S and thrusting to the north. Minimally-processed shot gathers were also inspected for reflections off near-vertical structures such as faults and information on first-order velocity structure. Shot offset and nearest receiver number to reflection was catalogued to increase confidence of picks. Reflections off the North Kunlun (NKF) and South Kunlun Faults (SKF) were identified and analyzed for apparent dip and subsurface geometry. Fault reflection analysis found that the North Kunlun Fault had an apparent dip of approximately 68ºS to an estimated depth of 5 km, while the South Kunlun Fault dipped at approximately 78ºN to an estimated 3.5 km depth. Constraints on apparent dip and

  13. Geophysical methods for identification of active faults between the Sannio-Matese and Irpinia areas of the Southern Apennines.

    Science.gov (United States)

    Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Cella, Federico; Fedi, Maurizio; Florio, Giovanni

    2014-05-01

    The Southern Apennines is one of the Italian most active areas from a geodynamic point of view since it is characterized by occurrence of intense and widely spread seismic activity. Most seismicity of the area is concentrated along the chain, affecting mainly the Irpinia and Sannio-Matese areas. The seismogenetic sources responsible for the destructive events of 1456, 1688, 1694, 1702, 1732, 1805, 1930, 1962 and 1980 (Io = X-XI MCS) occurred mostly on NW-SE faults, and the relative hypocenters are concentrated within the upper 20 km of the crust. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW-SE trending faults and normal to dextral for the NE-SW trending structures. The available focal mechanisms of the largest events show normal solutions consistent with NE-SW extension of the chain. After the 1980 Irpinia large earthquake, the release of seismic energy in the Southern Apennines has been characterized by occurrence of moderate energy sequences of main shock-aftershocks type and swarm-type activity with low magnitude sequences. Low-magnitude (Md<5) historical and recent earthquakes, generally clustered in swarms, have commonly occurred along the NE-SW faults. This paper deals with integrated analysis of geological and geophysical data in GIS environment to identify surface, buried and hidden active faults and to characterize their geometry. In particular we have analyzed structural data, earthquake space distribution and gravimetric data. The main results of the combined analysis indicate good correlation between seismicity and Multiscale Derivative Analysis (MDA) lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) through the application of the DEXP method (Depth from Extreme Points).

  14. Grid Faults Impact on the Mechanical Loads of Active Stall Wind Turbine

    DEFF Research Database (Denmark)

    Iov, Florin; Cutululis, Nicolaos A.; Hansen, Anca D.

    2008-01-01

    Emphasis in this paper is on the fault ride-through operation impact on the wind turbines structural loads. Grid faults are typically simulated in power system simulation tools using simplified drive train mechanical model, approach which doesn't allow a thorough investigation of structural loads...... as the electrical design of the wind turbine response during grid faults. The two-step simulation procedure is assessed by means of a simulation example. The effect of a grid fault on the structural part of a typical fixed speed wind turbine, equipped with an induction generator, is assessed....

  15. Antifungal activity of indigenous Bacillus spp. isolated from soil

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2017-01-01

    Full Text Available Biocontrol using plant growth-promoting rhizobacteria (PGPR represents an alternative approach to disease management, since PGPR are known to promote growth and reduce diseases in various crops. Among the different PGPR, members of the genus Bacillus are prefered for most biotechnological uses due to their capability to form extremely resistant spores and produce a wide variety of metabolites with antimicrobial activity. The objective of this research was to identify antagonistic bacteria for management of the plant diseases. Eleven isolates of Bacillus spp. were obtained from the soil samples collected from different localities in the Province of Vojvodina. The antifungal activity of bacterial isolates against five fungal species was examined using a dual plate assay. Bacillus isolates exhibited the highest antifungal activity against Fusarium proliferatum, Fusarium oxysporum f. sp. cepae and Alternaria padwickii, while they had the least antagonistic effect on Fusarium verticillioides and Fusarium graminearum. Molecular identification showed that effective bacterial isolates were identified as Bacillus safensis (B2, Bacillus pumilus (B3, B11, Bacillus subtilis (B5, B7 and Bacillus megaterium (B8, B9. The highest antagonistic activity was exhibited by isolates B5 (from 39% to 62% reduction in fungal growth and B7 (from 40% to 71% reduction in fungal growth. These isolates of B. subtilis could be used as potential biocontrol agents of plant diseases. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31073

  16. Geomorphic and Structural Evidence for Rolling Hinge Style Deformation in the Footwall of an Active Low Angle Normal Fault, Mai'iu Fault, Woodlark Rift, SE Papua New Guinea

    Science.gov (United States)

    Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.

    2016-12-01

    While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge

  17. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    Science.gov (United States)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  18. Principle and Control Design of Active Ground-Fault Arc Suppression Device for Full Compensation of Ground Current

    DEFF Research Database (Denmark)

    Wang, Wen; Zeng, Xiangjun; Yan, Lingjie

    2017-01-01

    current into the neutral without any large-capacity reactors, and thus avoids the aforementioned overvoltage. It compensates all the active, reactive and harmonic components of the ground current to reliably extinguish the ground-fault arcs. A dual-loop voltage control method is proposed to realize arc...... suppression without capacitive current detection. Its time-based feature also brings the benefit of fast response on ground-fault arc suppression. The principle of full current compensation is analyzed, together with the controller design method of the proposed device. Experiment on a prototype was carried...

  19. Passive and active vibration isolation systems using inerter

    Science.gov (United States)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  20. Variation of radon flux along active fault zones in association with earthquake occurrence

    International Nuclear Information System (INIS)

    Papastefanou, C.

    2010-01-01

    Radon flux measurements were carried out at three radon stations along an active fault zone in the Langadas basin, Northern Greece by various techniques for earthquake prediction studies. Specially made devices with alpha track-etch detectors (ATDs) were installed by using LR-115, type II, non-strippable cellulose nitrate films (integrating method of measurements). Continuous monitoring of radon gas exhaling from the ground was also performed by using silicon diode detectors, Barasol and Clipperton type, in association with various probes and sensors including simultaneously registration of the meteorological parameters, such as precipitation height (rainfall events), temperature and barometric pressure. The obtained radon data were studied in parallel with the data of seismic events, such as the magnitude, M L of earthquakes, the epicentral distance, the hypocentral distance and the energy released during the earthquake event occurred at the fault zone during the period of measurements to find out any association between the rad on flux and the meteorological and seismological parameters. Seismic events with magnitude M L ≥ 4.0 appeared to be preceded by large precursory signals produced a well-defined 'anomaly' (peak) of radon flux prior to the event. In the results, the radon peaks in the obtained spectra appeared to be sharp and narrow. The rise time of a radon peak, that is the time period from the onset of a radon peak until the time of radon flux maximum is about a week, while the after time, that is the time interval between the time of radon flux maximum and the time of a seismic event ranges from about 3 weeks or more.

  1. Earthquake Activities Along the Strike-Slip Fault System on the Thailand-Myanmar Border

    Directory of Open Access Journals (Sweden)

    Santi Pailoplee

    2014-01-01

    Full Text Available This study investigates the present-day seismicity along the strike-slip fault system on the Thailand-Myanmar border. Using the earthquake catalogue the earthquake parameters representing seismic activities were evaluated in terms of the possible maximum magnitude, return period and earthquake occurrence probabilities. Three different hazardous areas could be distinguished from the obtained results. The most seismic-prone area was located along the northern segment of the fault system and can generate earthquakes of magnitude 5.0, 5.8, and 6.8 mb in the next 5, 10, and 50 years, respectively. The second most-prone area was the southern segment where earthquakes of magnitude 5.0, 6.0, and 7.0 mb might be generated every 18, 60, and 300 years, respectively. For the central segment, there was less than 30 and 10% probability that 6.0- and 7.0-mb earthquakes will be generated in the next 50 years. With regards to the significant infrastructures (dams in the vicinity, the operational Wachiralongkorn dam is situated in a low seismic hazard area with a return period of around 30 - 3000 years for a 5.0 - 7.0 mb earthquake. In contrast, the Hut Gyi, Srinakarin and Tha Thung Na dams are seismically at risk for earthquakes of mb 6.4 - 6.5 being generated in the next 50 years. Plans for a seismic-retrofit should therefore be completed and implemented while seismic monitoring in this region is indispensable.

  2. In vitro activity of difloxacin against canine bacterial isolates

    NARCIS (Netherlands)

    Hoven, van den J.R.; Wagenaar, J.A.; Walker, R.D.

    2000-01-01

    The in vitro activity of difloxacin against canine bacterial isolates from clinical cases was studied in the United States and The Netherlands. Minimal inhibitory concentrations (MIC), the postantibiotic effect, the effect of pH on antimicrobial activity, and the bacterial killing rate tests were

  3. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  4. Acute effects of active isolated stretching on vertical jump ...

    African Journals Online (AJOL)

    The purpose of the study was to determine the acute effects of active isolated stretching on muscular peak power production. Sixty healthy, physically active volunteers (aged 18-28) participated as subjects in this study. Subjects were randomly assigned to two groups; the control group and the experimental group. Subjects ...

  5. Arginase activity of Leishmania isolated from patients with cutaneous leishmaniasis.

    Science.gov (United States)

    Badirzadeh, A; Taheri, T; Abedi-Astaneh, F; Taslimi, Y; Abdossamadi, Z; Montakhab-Yeganeh, H; Aghashahi, M; Niyyati, M; Rafati, S

    2017-09-01

    Cutaneous leishmaniasis (CL) is one of the most important vector-borne parasitic diseases, highly endemic in Iran, and its prevalence is increasing all over the country. Arginase (ARG) activity in isolated Leishmania parasites from CL patients is yet to be explored. This study aimed to compare the ARG activity of isolated Leishmania promastigotes from CL patients with a standard strain of Leishmania major and its influences on the disease pathogenesis. We recruited 16 confirmed CL patients from Qom Province, in central Iran; after detection of Leishmania species using PCR-RFLP, we assessed the levels of ARG in the isolated promastigotes and determined the parasites' growth rate. Only L. major was identified from CL patients. The level of ARG activity in the isolated Leishmania promastigotes from CL patients was significantly higher than that obtained from the standard strain of L. major. No significant correlations between ARG activity and lesion size, number or duration were observed; in contrast, a significant negative correlation was seen between ARG level and Leishmania' growth rate. The obtained results suggest that increased ARG expression and activity in the isolated Leishmania promastigotes might contribute to the higher parasite infectivity and play a major role in the pathogenicity of the CL. © 2017 John Wiley & Sons Ltd.

  6. The M6 1799 Vendée intraplate earthquake (France) : characterizing the active fault with a multidisciplinary approach.

    Science.gov (United States)

    Kaub, C.; Perrot, J.; Le Roy, P., Sr.; Authemayou, C.; Bollinger, L.; Hebert, H.; Geoffroy, L.

    2017-12-01

    The coastal Vendee (France) is located to the south of the intraplate Armorican area. This region is affected by a system of dominantly NW-SE trending shear zones and faults inherited from a long and poly-phased tectonic history since Variscan times. This area currently presents a moderate background seismic activity, but was affected by a significant historical earthquake (magnitude M 6) on the 1799 January 25th. This event generated particularly strong site effects in a Neogene basin located along a major onshore/offshore discontinuity bounding the basin, the Machecoul fault. The objective of this study is to identify and qualify active faults potentially responsible for such major seismic event in order to better constrain the seismic hazard of this area. We adopt for this purpose a multidisciplinary approach including an onshore seismological survey, high-resolution low-penetration offshore seismic data (CHIRP echo sounder, Sparker source and single channel streamer), high-resolution interferometric sonar bathymetry (GeoSwath), compilation of onshore drilling database (BSS, BRGM), and quantitative geomorphology In the meantime, the seismicity of the area was characterized by a network of 10 REFTEK stations, deployed since January 2016 around the Bay of Bourgneuf (MACHE network). About 50 local earthquakes, with coda magnitudes ranging from 0.5 to 3.1 and local magnitude ranging from 0.2 to 2.9 were identified so far. This new database complement a local earthquake catalog acquired since 2011 from previous regional networks. We surveyed the fault segments offshore, in the Bay of Bourgneuf, analyzing 700 km of high-resolution seismic profiles and 40 km² of high-resolution bathymetry acquired during the RETZ1 (2016) and RETZ2 (2017) campaigns, in addition to HR-bathymetry along the fault scarp. Those data are interpreted in conjunction with onshore wells to determine if (and since when) the Machecoul fault controlled tectonically the Neogene sedimentation.

  7. Time-lapse imaging of fault properties at seismogenic depth using repeating earthquakes, active sources and seismic ambient noise

    Science.gov (United States)

    Cheng, Xin

    2009-12-01

    The time-varying stress field of fault systems at seismogenic depths plays the mort important role in controlling the sequencing and nucleation of seismic events. Using seismic observations from repeating earthquakes, controlled active sources and seismic ambient noise, five studies at four different fault systems across North America, Central Japan, North and mid-West China are presented to describe our efforts to measure such time dependent structural properties. Repeating and similar earthquakes are hunted and analyzed to study the post-seismic fault relaxation at the aftershock zone of the 1984 M 6.8 western Nagano and the 1976 M 7.8 Tangshan earthquakes. The lack of observed repeating earthquakes at western Nagano is attributed to the absence of a well developed weak fault zone, suggesting that the fault damage zone has been almost completely healed. In contrast, the high percentage of similar and repeating events found at Tangshan suggest the existence of mature fault zones characterized by stable creep under steady tectonic loading. At the Parkfield region of the San Andreas Fault, repeating earthquake clusters and chemical explosions are used to construct a scatterer migration image based on the observation of systematic temporal variations in the seismic waveforms across the occurrence time of the 2004 M 6 Parkfield earthquake. Coseismic fluid charge or discharge in fractures caused by the Parkfield earthquake is used to explain the observed seismic scattering properties change at depth. In the same region, a controlled source cross-well experiment conducted at SAFOD pilot and main holes documents two large excursions in the travel time required for a shear wave to travel through the rock along a fixed pathway shortly before two rupture events, suggesting that they may be related to pre-rupture stress induced changes in crack properties. At central China, a tomographic inversion based on the theory of seismic ambient noise and coda wave interferometry

  8. A high-fidelity airbus benchmark for system fault detection and isolation and flight control law clearance

    Science.gov (United States)

    Goupil, Ph.; Puyou, G.

    2013-12-01

    This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).

  9. Status report on activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Martelli, A.; Bettinali, F.

    1992-01-01

    The development of seismic isolation and its application to structures other than bridges were started in Italy in 1988. Considerable efforts are being devoted to this technique, both because it can already be widely used in civil buildings (where it is particularly attractive for constructions that are critical for emergency and disaster planning), and due to the very promising perspectives for application to the industrial plants. In particular, ENEA is also quite interested in verifying the applicability of seismic isolation to the high risk plants, including the innovative nuclear reactors. The correct development of seismic isolation, for a future wide use in all the domains of interest - including high risk and other industrial plants - requires that a sufficient number of applications to civil buildings is -undertaken, so as to improve the knowledge on the design and behaviour of isolated structures. It also requires seismic monitoring of isolated constructions. This is the reason why all the ongoing studies in Italy - including those of ENEA and ENEL - are based at present on applications to civil buildings. To the aforesaid aims, R and D work is also needed: such a work, together with the experience acquired on actual isolated buildings, is essential to set up adequate design rules. On the other hand, development of design rules must be carried out in parallel, in order to determine the features of the necessary research activities. Until now, our development work has been focussed on the high damping steel-laminated rubber bearings, which have been adopted for most isolated buildings in Italy. It consists of: [a] the set-up of proposals for design rules and guidelines; [b] experiments on bearing materials, individual bearings, isolated structure mock-ups, and actual isolated buildings; [c] development and validation of simplified and detailed numerical models of bearings and structures. Furthermore, support is being provided to the designers of isolated

  10. Antiproliferative Activity of Hamigerone and Radicinol Isolated from Bipolaris papendorfii

    Directory of Open Access Journals (Sweden)

    Periyasamy Giridharan

    2014-01-01

    Full Text Available Secondary metabolites from fungi organisms have extensive past and present use in the treatment of many diseases and serve as compounds of interest both in their natural form and as templates for synthetic modification. Through high throughput screening (HTS and bioassay-guided isolation, we isolated two bioactive compounds hamigerone (1 and radicinol (2. These compounds were isolated from fungus Bipolaris papendorfii, isolated from the rice fields of Dera, Himachal Pradesh, India. The structures of the compounds were established on the basis of spectroscopic data, namely, NMR (1H, 13C, mass, and UV. Both compounds were found to be antiproliferative against different cancer cells. Furthermore we have also noted that both compounds showed increase in apoptosis by favorably modulating both tumor suppressor protein (p53 and antiapoptic protein (BCL-2, and in turn increase caspase-3 expression in cancer cells. This is the first report of these compounds from fungus Bipolaris papendorfii and their anticancer activity.

  11. Progress in Analysis to Remote Sensed Thermal Abnormity with Fault Activity and Seismogenic Process

    Directory of Open Access Journals (Sweden)

    WU Lixin

    2017-10-01

    Full Text Available Research to the remote sensed thermal abnormity with fault activity and seismogenic process is a vital topic of the Earth observation and remote sensing application. It is presented that a systematic review on the international researches on the topic during the past 30 years, in the respects of remote sensing data applications, anomaly analysis methods, and mechanism understanding. Firstly, the outlines of remote sensing data applications are given including infrared brightness temperature, microwave brightness temperature, outgoing longwave radiation, and assimilated data from multiple earth observations. Secondly, three development phases are summarized as qualitative analysis based on visual interpretation, quantitative analysis based on image processing, and multi-parameter spatio-temporal correlation analysis. Thirdly, the theoretical hypotheses presented for the mechanism understanding are introduced including earth degassing, stress-induced heat, crustal rock battery conversion, latent heat release due to radon decay as well as multi-spheres coupling effect. Finally, three key directions of future research on this topic are proposed:anomaly recognizing by remote sensing monitoring and data analysis for typical tectonic activity areas; anomaly mechanism understanding based on earthquake-related earth system responses; spatio-temporal correlation analysis of air-based, space-based and ground-based stereoscopic observations.

  12. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  13. Experiment of exploration using the active-faults exploration system; Katsudanso tansa system wo mochiita chika tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Mikada, H; Sato, H; Iwasaki, T; Hirata, N [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute; Ikeda, Y [The University of Tokyo, Tokyo (Japan). Faculty of Science; Ikawa, T; Kawabe, Y; Aoki, Y [JAPEX Geoscience Institute, Tokyo (Japan)

    1996-10-01

    A system for exploration of active-faults by seismic reflection profiling method was introduced at Earthquake Research Institute, University of Tokyo. A test-run was conducted to check the performance of this system at Ranzan, Saitama Prefecture. This paper describes the confirmed performance of mini-VIB as a wide band frequency seismic source, the quality of data obtained using a digital data acquisition system, and problems for data processing of fault exploration in the future. For the test-run at Ranzan, two-dimensional exploration was conducted by the quasi-three-dimensional data acquisition method using three geophones of 8 Hz, 28 Hz, and 40 Hz, simply arranged in parallel on the measurement line. Using an active seismic vibrator, mini-VIB, data acquisition of faults in the wide band frequency was achieved, which would result in the highly accurate imaging. Operation of data acquisition and processing systems is easy, and the system can be also used as a kind of black box. The existing methods are to be used sufficiently as a tool for imaging of faults. Further research for accumulating experience may become necessary toward the extension of the system expected in the future. 5 refs., 6 figs.

  14. Along strike variation of active fault arrays and their effect on landscape morphology of the northwestern Himalaya

    Science.gov (United States)

    Nennewitz, Markus; Thiede, Rasmus; Bookhagen, Bodo

    2017-04-01

    The location and magnitude of the active deformation of the Himalaya has been debated for decades, but several aspects remain unknown. For instance, the spatial distribution of the deformation and the shortening that ultimately sustains Himalayan topography and the activity of major fault zones are not well constrained neither for the present day and nor for Holocene and Quarternary timescales. Because of these weakly constrained factors, many previous studies have assumed that the structural setting and the fault geometry of the Himalaya is continuous along strike and similar to fault geometries of central Nepal. Thus, the sub-surface structural information from central Nepal have been projected along strike, but have not been verified at other locations. In this study we use digital topographic analysis of the NW Himalaya. We obtained catchment-averaged, normalized steepness indexes of longitudinal river profiles with drainage basins ranging between 5 and 250km2 and analyzed the relative change in their spatial distribution both along and across strike. More specific, we analyzed the relative changes of basins located in the footwall and in the hanging wall of major fault zones. Under the assumption that along strike changes in the normalized steepness index are primarily controlled by the activity of thrust segments, we revealed new insights in the tectonic deformation and uplift pattern. Our results show three different segments along the northwest Himalaya, which are located, from east to west, in Garwhal, Chamba and Kashmir Himalaya. These have formed independent orogenic segments characterized by significant changes in their structural architecture and fault geometry. Moreover, their topographic changes indicate strong variations on fault displacement rates across first-order fault zones. With the help of along- and across-strike profiles, we were able to identify fault segments of pronounced fault activity across MFT, MBT, and the PT2 and identify the

  15. Overview of the Mechanics of the Active Mai'iu Low Angle Normal Fault (Dayman Dome), Southeastern Papua New Guinea

    Science.gov (United States)

    Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.

    2016-12-01

    The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at

  16. Active vibration isolation platform on base of magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  17. Increased dopaminergic activity in socially isolated rats: an electrophysiological study

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Fink-Jensen, Anders

    2010-01-01

    The development of animal models mimicking symptoms associated with schizophrenia has been a critical step in understanding the neurobiological mechanisms underlying the disease. Long-term social isolation from weaning in rodents, a model based on the neurodevelopmental hypothesis of schizophrenia......, has been suggested to mimic some of the deficits seen in schizophrenic patients. We confirm in the present study that socially isolated rats display an increase in both spontaneous and d-amphetamine-induced locomotor activity, as well as deficits in sensorimotor gating as assessed in a pre......, and a change of firing activity towards a more irregular and bursting firing pattern. Taken together, our findings suggest that the behavioral phenotype induced by social isolation may be driven by an overactive dopamine system....

  18. Active Fault Diagnosis and Assessment for Aircraft Health Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA LaRC need for innovative methods and tools for the diagnosis of aircraft faults and failures, Physical Optics Corporation (POC) proposes to...

  19. Assessment of larvicidal activities of bacillus species isolated from ...

    African Journals Online (AJOL)

    Assessment of larvicidal activities of bacillus species isolated from soil against the mosquito aedes aegyptia (diptera: culicidae) in Sokoto, northwestern Nigeria. S.B. Manga, A.H. Kawo, A.B. Rabah, A.A. Usman, A.I. Dabai, J.A. Bala ...

  20. Antibacterial activity of chrysophanol isolated from Aloe excelsa ...

    African Journals Online (AJOL)

    Extraction of the yellow colour compounds of leaves of Aloe excelsa were performed and 1,8-dihydroxy-3-methylanthracenedione (chrysophanol) was isolated and tested for antibacterial activities against four gram negative and five gram positive bacterial strains. The structures of chrysophanol was determined by chemical ...

  1. Detection of efflux pump activity among clinical isolates of ...

    African Journals Online (AJOL)

    Purpose: To detect efflux pump activity (EPA) and screening a suspected efflux pump inhibitor (EPI) [1- (3-(trifluoromethyl)benzyl]-piperazine (TFMBP)], which could help in reducing multi-drug resistance (MDR). Methods: Eighteen isolates, viz, 14 S. aureus, 2 S. lentus, 1 S. xylosus and 1 Micrococcus species from various ...

  2. Antileishmanial activity of piceatannol isolated from Euphorbia lagascae seeds

    NARCIS (Netherlands)

    Duarte, Noelia; Kayser, Oliver; Abreu, Pedro; Ferreira, Maria-Jose U.

    In the search for biologically active compounds from Euphorbia lagascae Spreng, an herbaceous plant native to southeast of Iberic Peninsula, a stilbene, two coumarins and two 1-2-deoxyphorbol diterpene esters were isolated by chromatographic methods, from the methanol extracts of its defatted seeds.

  3. A novel acyclic diterpenic alcohol isolated from antioxidant active ...

    African Journals Online (AJOL)

    Background: Isolation and characterization of a new compound from the antioxidant active ethanol extract of leaves of an endemic plant Centaurothamnus maximus. Methods: The air dried powdered leaves of the plant was extracted successively with n-hexane, dichloromethane, ethyl acetate and ethanol. The obtained ...

  4. Experiments on active precision isolation with a smart conical adapter

    Science.gov (United States)

    Li, H.; Li, H. Y.; Chen, Z. B.; Tzou, H. S.

    2016-07-01

    Based on a conical shell adaptor, an active vibration isolator for vibration control of precision payload is designed and tested in this study. Flexible piezoelectric sensors and actuators are bonded on the adaptor surface for active vibration monitoring and control. The mathematical model of a piezoelectric laminated conical shell is derived and then optimal design of the actuators is performed for the first axial vibration mode of the isolation system. A scaled conical adaptor is manufactured with four MFC actuators laminating on its outer surface. Active vibration isolation efficiency is then evaluated on a vibration shaker. The control model is built in Matlab/Simulink and programmed into the dSPACE control board. Experimental results show that, the proposed active isolator is effective in vibration suppression of payloads with the negative velocity feedback control. In contrast, the amplitude responses increase with positive feedback control. Furthermore, the amplitude responses increases when time delay is added into the control signals, and gets the maximum when the delay is close to one quarter of one cycle time.

  5. antibacterial activity of endophytic fungi isolated from conifers needles

    African Journals Online (AJOL)

    Ravnikar, Matjaž

    2015-03-11

    Mar 11, 2015 ... taxonomically place fungi producing ones to determined active metabolites. Seventy three strains of endophytic fungi were isolated ... great number of diverse bioactive compounds (Devaraju and Satish, 2010), which have been ... closed with a glass stopper. The extraction solvents utilized were methanol ...

  6. Anti-Inflammatory Activity of Compounds Isolated from Plants

    Directory of Open Access Journals (Sweden)

    R.M. Perez G.

    2001-01-01

    Full Text Available This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity. They have been classified in appropriate chemical groups and data are reported on their pharmacological effects, mechanisms of action, and other properties.

  7. Active normal faults and submarine landslides in the Keelung Shelf off NE Taiwan

    Directory of Open Access Journals (Sweden)

    Ching-Hui Tsai

    2018-01-01

    Full Text Available The westernmost Okinawa Trough back-arc basin is located to the north of the Ryukyu islands and is situated above the northward dipping Ryukyu subducted slab. In the northern continental margin of the Okinawa Trough, the continental slope between the Keelung Valley and the Mein-Hua Submarine Canyon shows a steep angle and future slope failures are expected. The question is how slope failures will proceed? A sudden deep-seated slump or landslide would probably cause local tsunami and hit northern coast of Taiwan. To understand the probable submarine landslides, we conducted multi-channel seismic reflection, sub-bottom profilers, and multi-beam bathymetry surveys off NE Taiwan. Two general trends of shallow crustal faults are observed. The NE-SW trending faults generally follow the main structural trend of the Taiwan mountain belt. These faults are products of inversion tectonics of reverse faults from the former collisional thrust faults to post-collisional normal faults. Another trend of roughly E-W faults is consistent with the current N-S extension of the southern Okinawa Trough. The fault offsets in the eastern portion of the study area are more pronounced. No obvious basal surface of sliding is found beneath the continental margin. We conclude that the movement of the submarine landslides in the Keelung Shelf off northeastern Taiwan could be in a spread type. The submarine landslides mainly occur in the continental slope area and it is more obvious in the east than in the west of the Keelung Shelf.

  8. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges

    Energy Technology Data Exchange (ETDEWEB)

    Richon, Patrick, E-mail: patrick.richon@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France); Institut de Physique du Globe de Paris, Equipe Geologie des Systemes Volcaniques, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Klinger, Yann; Tapponnier, Paul [Institut de Physique du Globe de Paris, Equipe de Seismotectonique, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Li Chenxia [Institute of Geology, Chinese Earthquake Administration, P.O. Box 9803, 100029 Beijing (China); Van Der Woerd, Jerome [Institut de Physique du Globe de Strasbourg, CNRS, UMR-7516, INSU, Universite Louis Pasteur, Strasbourg I, 5 Rue Rene Descartes, F-67084 Strasbourg Cedex (France); Perrier, Frederic [Institut de Physique du Globe de Paris, Equipe de Geomagnetisme, 4 place Jussieu, UMR-7154 CNRS et Universite Paris 7 Denis-Diderot, F-75005 Paris (France)

    2010-02-15

    Searching for gas exhalation around major tectonic contacts raises important methodological issues such as the role of the superficial soil and the possible long distance transport. These effects have been studied on the Xidatan segment of the Kunlun Fault, Qinghai Province, China, using measurement of the radon-222 and carbon dioxide exhalation flux. A significant radon flux, reaching up to 538 +- 33 mBq m{sup -2} s{sup -1} was observed in a 2-3 m deep trench excavated across the fault. On the soil surface, the radon flux varied from 7 to 38 mBq m{sup -2} s{sup -1}, including on the fault trace, with an average value of 14.1 +- 1.0 mBq m{sup -2} s{sup -1}, similar to the world average. The carbon dioxide flux on the soil surface, with an average value of 12.9 +- 3.3 g m{sup -2} day{sup -1}, also remained similar to regular background values. It showed no systematic spatial variation up to a distance of 1 km from the fault, and no clear enhancement in the trench. However, a high carbon dioxide flux of 421 +- 130 g m{sup -2} day{sup -1} was observed near subvertical fractured phyllite outcrops on a hill located about 3 km north of the fault, at the boundary of the large-scale pull-apart basin associated with the fault. This high carbon dioxide flux was associated with a high radon flux of 607 +- 35 mBq m{sup -2} s{sup -1}. These preliminary results indicate that, at the fault trace, it can be important to measure gas flux at the bottom of a trench to remove superficial soil layers. In addition, gas discharges need to be investigated also at some distance from the main fault, in zones where morphotectonics features support associated secondary fractures.

  9. Development of a geo-information system for the evaluation of active faults

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sang Gi; Lee, G. B.; Kim, H. J. [Paichai Univ., Taejon (Korea, Republic of)] (and others)

    2002-03-15

    This project aims to assist the participants of the active fault project by computerizing the field and laboratory data of the study area. The geo-information system, therefore, not only contributes to the participants while they are organizing and analyzing their data but also gathers detailed information in digital form. A geological database can be established by organizing the gathered digital information from the participants, and the database can easily be sheared among specialists. In such purpose, a field system, which can be used by the project participants, has been attempting to be developed during the first project year. The field system contains not only a software but also available topographic and geological maps of the study area. The field system is coded by visual basic, and the mapobject component of ESRI and the TrueDBGrid OCX are also utilized. Major functions of the system are tools for vector and raster form topographic maps, database design and application, geological symbol plot, and the database search for the plotted geological symbol.

  10. Screening on Gibberellic Acid Producing Activity of Azospirillum Isolates

    International Nuclear Information System (INIS)

    Shun Lai Ei; Khin Mya Lwin; Myo Myint

    2010-12-01

    Six strains of Azopirillum spp were isolated from rice, sugarcane, corn, maize, sunflower and pepper roots and screened the gibberellic acid productivity. Only three strains of Azospirillum species showed the activity and were indentified by cultural, biochemical and drug sensitivity patterns. Among them,one strain isolated from rice root can produce microbial gibberellic acid. It showed greenish yellow colour in chromatogram under UV absorption. This screening method was studied from 1 to 14 days incubation. Qualitative measurement of GA productivity was determined by thin layer chromatography.

  11. Antibacterial activity of chemical constituents isolated from Asparagus racemosus

    Directory of Open Access Journals (Sweden)

    Muhammad Abdullah Shah

    2014-03-01

    Full Text Available Asparagus racemosus is a medical extensively used in traditional medicine for various disorders including its use in infectious. So far work has been done to identify its active constituents responsible for antiseptic folk use of this plant. In the current investigation, we have made an effort to identify its chemical constituents that might be partly responsible for antimicrobial properties. Extraction and isolation of plant extract lead to isolation of two nor-lignans and two steroidal triterpenes (compound 1 to 4. All compound showed considerable antibacterial activities against E. coli and S. aureus while no significant activity was observed against S. typhi. This study highlighted the potential of A. racemosus to be further explored as a source of bioactive natural products.

  12. The Control of Transmitted Power in an Active Isolation System

    DEFF Research Database (Denmark)

    Elliott, S.J.; Gardonio, P.; Pinnington, R.J.

    1997-01-01

    The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure and distr......The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure...... and distributed active mounts, and these models can be connected together to produce an overall theoretical description of a realistic active isolation system. Total transmitted power has been found to be an excellent criterion to quantify the effect of various control strategies in this model in which...... the contributions to the transmitted power in the various degrees of freedom can be clearly understood. It has also been found, however, that an active control system which minimises a practical estimate of transmitted power, calculated from the product of the axial forces and velocities under the mounts, can give...

  13. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  14. FPGA-based fully digital fast power switch fault detection and compensation for three-phase shunt active filters

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, S.; Saadate, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN-UHP, CNRS UMR 7037 (France); Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy, LIEN, EA 3440, France Nancy Universite - Universite Henri Poincare de Nancy I, BP 239, 54506 Vandoeuvre les Nancy cedex (France)

    2008-11-15

    This paper discusses the design, implementation, experimental validation and performances of a fully digital fast power switch fault detection and compensation for three-phase shunt active power filters. The approach introduced in this paper minimizes the time interval between the fault occurrence and its diagnosis. This paper demonstrates the possibility to detect a faulty switch of the active filter in less than 10 {mu}s by using simultaneously a ''time criterion'' and a ''voltage criterion''. In order to attain this fast detection time a FPGA (Field Programmable Gate Array) is used. The other feature introduced in this approach is that the control scheme used to compensate the current load harmonics and fault tolerant scheme are both programmed in only one FPGA. ''FPGA in the loop'' prototyping results and fully experimental results based on a real active power filter verify satisfactory performances of the proposed method. (author)

  15. Multiresistant Bacteria Isolated from Activated Sludge in Austria

    Directory of Open Access Journals (Sweden)

    Herbert Galler

    2018-03-01

    Full Text Available Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL-harbouring Enterobacteriaceae (Gram negative bacilli, methicillin resistant Staphylococcus aureus (MRSA and vancomycin resistant Enterococci (VRE—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common.

  16. Multiresistant Bacteria Isolated from Activated Sludge in Austria

    Science.gov (United States)

    Feierl, Gebhard; Petternel, Christian; Reinthaler, Franz F.; Haas, Doris; Habib, Juliana; Kittinger, Clemens; Luxner, Josefa

    2018-01-01

    Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL)-harbouring Enterobacteriaceae (Gram negative bacilli), methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococci (VRE)—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common. PMID:29522474

  17. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    Science.gov (United States)

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-01-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly. Images PMID:2202258

  18. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    Science.gov (United States)

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-07-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.

  19. Antituberculotic activity of actinobacteria isolated from the rare habitats.

    Science.gov (United States)

    Hussain, A; Rather, M A; Shah, A M; Bhat, Z S; Shah, A; Ahmad, Z; Parvaiz Hassan, Q

    2017-09-01

    A distinctive screening procedure resulted in the isolation and identification of antituberculotic actinobacteria. In this course, a total of 125 actinobacteria were isolated from various soil samples from untapped areas in Northwestern Himalayas, India. The antibacterial screening showed that 26 isolates inhibited the growth of at least one of the tested bacterial pathogens including Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228), Bacillus subtilis (ATCC 11774), Micrococcus luteus (ATCC 10240), Escherichia coli (10536), Pseudomonas aeruginosa (ATCC 10145) and Klebsiella pneumonia (ATCC BAA-2146). The production media was optimized for the active strains by estimation of their extract value by the quantification of the ethyl acetate extract. The screening of fermentation products from the selected 26 bioactive isolates revealed that 10 strains have metabolites antagonistic against the standard H37Rv strain of Mycobacterium tuberculosis. The characterization by 16S rRNA gene sequencing and phylogenetic analysis demonstrated the diverse nature of these antituberculosis strains. The secondary metabolites of potent, rare strain, Lentzea violacea AS08 exhibited promising antituberculosis activity with minimal inhibitory concentration (MIC) of 3·9 μg ml -1 . The metabolites identified by gas chromatography-mass spectrometry (GC-MS) included, Phenol, 2,5-bis (1, 1-dimethylethyl), n-Hexadecanoic acid, Hexadecanoic acid methyl-ester, Hexadecanoic acid ethyl-ester and, 9,12-Octadecadienoyl chloride(Z,Z) are biologically significant molecules. The study presents the isolation of rare actinobacteria from untapped sites in the Northwestern Himalayas and their in vitro potential against Mycobacterium tuberculosis for their metabolites. The study revealed that exploring the untapped natural sources as one of the resourceful approaches for the discovery of new natural products. This study also provided strong evidence for the ability of rare and

  20. LAMPF first-fault identifier for fast transient faults

    International Nuclear Information System (INIS)

    Swanson, A.R.; Hill, R.E.

    1979-01-01

    The LAMPF accelerator is presently producing 800-MeV proton beams at 0.5 mA average current. Machine protection for such a high-intensity accelerator requires a fast shutdown mechanism, which can turn off the beam within a few microseconds of the occurrence of a machine fault. The resulting beam unloading transients cause the rf systems to exceed control loop tolerances and consequently generate multiple fault indications for identification by the control computer. The problem is to isolate the primary fault or cause of beam shutdown while disregarding as many as 50 secondary fault indications that occur as a result of beam shutdown. The LAMPF First-Fault Identifier (FFI) for fast transient faults is operational and has proven capable of first-fault identification. The FFI design utilized features of the Fast Protection System that were previously implemented for beam chopping and rf power conservation. No software changes were required

  1. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae).

    Science.gov (United States)

    Liang, Hanqiao; Xing, Yongmei; Chen, Juan; Zhang, Dawei; Guo, Shunxing; Wang, Chunlan

    2012-11-28

    Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  2. Bioassay Guided Isolation of Active Compounds from Alchemilla barbatiflora Juz.

    Directory of Open Access Journals (Sweden)

    Gülin Renda

    2018-01-01

    Full Text Available The aerial parts of Alchemilla L. species (Rosaceae are used internally as diuretic, laxative, tonic and externally for wound healing in Turkish folk medicine. Antioxidant effects of the extracts, fractions and isolated compounds from the aerial parts of A. barbatiflora Juz. were investigated with following methods: 1,1-diphenyl-2-picryl-hydrazyl (DPPH, and superoxide radical scavenging (SOD, phosphomolibdenum-reducing antioxidant power (PRAP, ferric-reducing antioxidant power (FRAP assays. In addition, tyrosinase, α-glucosidase and acetylcholinesterase inhibition activities of samples were analyzed. The methanol extract from the aerial parts of plant was consecutively fractionated into four subextracts; n-hexane, chloroform, and remaining water extracts. Further studies were carried out on the most active water subextract and the fractions obtained from water subextract with column chromatography. Phytochemical studies on active fractions of the water subextract led to the isolation of seven metabolites including catechin (1 and a catechin dimer; procyanidin B3 (2, a flavonol glucuronide; quercetin-3-O- β-D-glucuronic acid (miquelianin (3 with flavonoid glycosides; quercetin-3-O- β-D-galactoside (hyperoside (4, quercetin-3-O- β-D-arabinoside (guaiaverin (5, kaempferol-3-O-β-D-xylopyranoside (6 and kaempferol-3-O -(6″-coumaroyl-β-D-glycoside (tiliroside (7. Their structures were elucidated by spectral techniques (1D and 2D NMR. The experimental data verified that procyanidin B3 displayed remarkable enzyme inhibitory activity among the whole isolated compounds.

  3. Hydraulic Fracture Induced Seismicity During A Multi-Stage Pad Completion in Western Canada: Evidence of Activation of Multiple, Parallel Faults

    Science.gov (United States)

    Maxwell, S.; Garrett, D.; Huang, J.; Usher, P.; Mamer, P.

    2017-12-01

    Following reports of injection induced seismicity in the Western Canadian Sedimentary Basin, regulators have imposed seismic monitoring and traffic light protocols for fracturing operations in specific areas. Here we describe a case study in one of these reservoirs, the Montney Shale in NE British Columbia, where induced seismicity was monitored with a local array during multi-stage hydraulic fracture stimulations on several wells from a single drilling pad. Seismicity primarily occurred during the injection time periods, and correlated with periods of high injection rates and wellhead pressures above fracturing pressures. Sequential hydraulic fracture stages were found to progressively activate several parallel, critically-stressed faults, as illuminated by multiple linear hypocenter patterns in the range between Mw 1 and 3. Moment tensor inversion of larger events indicated a double-couple mechanism consistent with the regional strike-slip stress state and the hypocenter lineations. The critically-stressed faults obliquely cross the well paths which were purposely drilled parallel to the minimum principal stress direction. Seismicity on specific faults started and stopped when fracture initiation points of individual injection stages were proximal to the intersection of the fault and well. The distance ranges when the seismicity occurs is consistent with expected hydraulic fracture dimensions, suggesting that the induced fault slip only occurs when a hydraulic fracture grows directly into the fault and the faults are temporarily exposed to significantly elevated fracture pressures during the injection. Some faults crossed multiple wells and the seismicity was found to restart during injection of proximal stages on adjacent wells, progressively expanding the seismogenic zone of the fault. Progressive fault slip is therefore inferred from the seismicity migrating further along the faults during successive injection stages. An accelerometer was also deployed close

  4. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Maia Merabishvili

    Full Text Available Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively, high burst size (125 and 145, respectively, stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  5. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.

  6. Isolation of allergenically active glycoprotein from Prosopis juliflora pollen.

    Science.gov (United States)

    Thakur, I S

    1989-03-01

    An allergenically active glycoprotein was homogeneously isolated from the aqueous extract of Prosopis juliflora pollen by ConA-Sepharose affinity chromatography. The molecular weight of this glycoprotein was 20,000 dalton, determined by gel filtration and SDS-PAGE. This fraction showed a total carbohydrate concentration of 25%. The purified glycoprotein revealed immunochemically most antigenic or allergenic and demonstrated homogeneous after reaction with P. juliflora pollen antiserum, characterized by gel diffusion, Immunoelectrophoresis and Radioallergosorbent test.

  7. Faults Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  8. Fault Tolerant Control for Civil Structures Based on LMI Approach

    Directory of Open Access Journals (Sweden)

    Chunxu Qu

    2013-01-01

    Full Text Available The control system may lose the performance to suppress the structural vibration due to the faults in sensors or actuators. This paper designs the filter to perform the fault detection and isolation (FDI and then reforms the control strategy to achieve the fault tolerant control (FTC. The dynamic equation of the structure with active mass damper (AMD is first formulated. Then, an estimated system is built to transform the FDI filter design problem to the static gain optimization problem. The gain is designed to minimize the gap between the estimated system and the practical system, which can be calculated by linear matrix inequality (LMI approach. The FDI filter is finally used to isolate the sensor faults and reform the FTC strategy. The efficiency of FDI and FTC is validated by the numerical simulation of a three-story structure with AMD system with the consideration of sensor faults. The results show that the proposed FDI filter can detect the sensor faults and FTC controller can effectively tolerate the faults and suppress the structural vibration.

  9. In vitro activity of ivermectin against Staphylococcus aureus clinical isolates

    Directory of Open Access Journals (Sweden)

    Shoaib Ashraf

    2018-02-01

    Full Text Available Abstract Background Ivermectin is an endectocide against many parasites. Though being a macrocyclic lactone, its activity against bacteria has been less known, possibly due to the fact that micromolar concentrations at tissue levels are required to achieve a therapeutic effect. Among pathogenic bacteria of major medical significance, Staphylococcus aureus cause a number of diseases in a wide variety of hosts including humans and animals. It has been attributed as one of the most pathogenic organisms. The emergence of methicillin resistance has made the treatment of S. aureus even more difficult as it is now resistant to most of the available antibiotics. Thus, search for alternate anti-staphylococcal agents requires immediate attention. Methods Twenty-one clinical isolates of S. aureus were isolated from bovine milk collected from Lahore and Faisalabad Pakistan. Different anthelmintics including levamisole, albendazole and ivermectin were tested against S. aureus to determine their minimum inhibitory concentrations. This was followed-up by growth curve analysis, spot assay and time-kill kinetics. Results The results showed that ivermectin but not levamisole or albendazole exhibited a potent anti-staphylococcal activity at the concentrations of 6.25 and 12.5 μg/ml against two isolates. Interestingly, one of the isolate was sensitive while the other was resistant to methicillin/cefoxitin. Conclusions Our novel findings indicate that ivermectin has an anti-bacterial effect against certain S. aureus isolates. However, to comprehend why ivermectin did not inhibit the growth of all Staphylococci needs further investigation. Nevertheless, we have extended the broad range of known pharmacological effects of ivermectin. As pharmacology and toxicology of ivermectin are well known, its further development as an anti-staphylococcal agent is potentially appealing.

  10. Nonlinear damping based semi-active building isolation system

    Science.gov (United States)

    Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka

    2018-06-01

    Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.

  11. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  12. Application of GPR for delineating the neotectonic setting and shallow subsurface nature of the seismically active Gedi fault, Kachchh, western India

    International Nuclear Information System (INIS)

    Maurya, D M; Chouksey, V; Joshi, Parul N; Chamyal, L S

    2013-01-01

    The present field and GPR based investigations were carried out along the E–W trending Gedi Fault to precisely constrain the field location and shallow subsurface nature of the fault. The field investigations revealed the presence of thin Quaternary sedimentary cover, especially in the central and western part. Field examination of the scanty exposures showed that the fault trace marks the lithotectonic contact between Mesozoic rocks in the north and the Tertiary (Miocene) sediments to the south. Five sites were selected after field studies for GPR investigations of the Gedi Fault. The well-compacted Mesozoic rocks showed high amplitude returns while the softer and finer grained Tertiary sediments yielded low amplitude returns. The Quaternary sediments are reflected as consistent with wavy reflections in the upper parts of the profiles. The GPR data indicate that the Gedi Fault is a steep north dipping reverse fault which becomes vertical at depth. Since the fault does not displace the Quaternary deposits, we infer that the Gedi Fault has been characterized by low to moderate seismic activity under a compressive stress regime during the late Quaternary period. (paper)

  13. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration

    Science.gov (United States)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu

    2017-10-01

    A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.

  14. Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)

    Science.gov (United States)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Lin, Kuan-Chuan; Lee, Chyi-Tyi; Chen, Rou-Fei; Hu, Jyr-Ching; Magalhaes, Samuel

    2018-03-01

    Characterizing active faults and quantifying their activity are major concerns in Taiwan, especially following the major Chichi earthquake on 21 September 1999. Among the targets that still remain poorly understood in terms of active tectonics are the Hengchun and Kenting faults (Southern Taiwan). From a geodynamic point of view, the faults affect the outcropping top of the Manila accretionary prism of the Manila subduction zone that runs from Luzon (northern Philippines) to Taiwan. In order to better locate and quantify the location and quantify the activity of the Hengchun Fault, we start from existing geological maps, which we update thanks to the use of two products derived from unmanned aircraft system acquisitions: (1) a very high precision (the studied area. Moreover, the superimposition of the resulting structural sketch map with new Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) results obtained from PALSAR ALOS images, validated by Global Positioning System (GPS) and leveling data, allows the characterization and quantification of the surface displacements during the monitoring period (2007-2011). We confirm herein the geometry, characterization and quantification of the active Hengchun Fault deformation, which acts as an active left-lateral transpressive fault. As the Hengchun ridge was the location of one of the last major earthquakes in Taiwan (26 December 2006, depth: 44 km, ML = 7.0), Hengchun Peninsula active tectonics must be better constrained in order if possible to prevent major destructions in the near future.

  15. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    Science.gov (United States)

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  16. ESR dating of the fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2005-01-01

    We carried out ESR dating of fault rocks collected near the nuclear reactor. The Upcheon fault zone is exposed close to the Ulzin nuclear reactor. The space-time pattern of fault activity on the Upcheon fault deduced from ESR dating of fault gouge can be summarised as follows : this fault zone was reactivated between fault breccia derived from Cretaceous sandstone and tertiary volcanic sedimentary rocks about 2 Ma, 1.5 Ma and 1 Ma ago. After those movements, the Upcheon fault was reactivated between Cretaceous sandstone and fault breccia zone about 800 ka ago. This fault zone was reactivated again between fault breccia derived form Cretaceous sandstone and Tertiary volcanic sedimentary rocks about 650 ka and after 125 ka ago. These data suggest that the long-term(200-500 k.y.) cyclic fault activity of the Upcheon fault zone continued into the Pleistocene. In the Ulzin area, ESR dates from the NW and EW trend faults range from 800 ka to 600 ka NE and EW trend faults were reactivated about between 200 ka and 300 ka ago. On the other hand, ESR date of the NS trend fault is about 400 ka and 50 ka. Results of this research suggest the fault activity near the Ulzin nuclear reactor fault activity continued into the Pleistocene. One ESR date near the Youngkwang nuclear reactor is 200 ka

  17. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2002-03-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene

  18. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  19. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  20. Biological Activity of Curcuminoids Isolated from Curcuma longa

    Directory of Open Access Journals (Sweden)

    Simay Çıkrıkçı

    2008-04-01

    Full Text Available Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  1. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  2. San Andreas tremor cascades define deep fault zone complexity

    Science.gov (United States)

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  3. Attenuated enzootic (pestoides) isolates of Yersinia pestis express active aspartase.

    Science.gov (United States)

    Bearden, Scott W; Sexton, Christopher; Pare, Joshua; Fowler, Janet M; Arvidson, Cindy G; Yerman, Lyudmyla; Viola, Ronald E; Brubaker, Robert R

    2009-01-01

    It is established that Yersinia pestis, the causative agent of bubonic plague, recently evolved from enteropathogenic Yersinia pseudotuberculosis by undergoing chromosomal degeneration while acquiring two unique plasmids that facilitate tissue invasion (pPCP) and dissemination by fleabite (pMT). Thereafter, plague bacilli spread from central Asia to sylvatic foci throughout the world. These epidemic isolates exhibit a broad host range including man as opposed to enzootic (pestoides) variants that remain in ancient reservoirs where infection is limited to muroid rodents. Cells of Y. pseudotuberculosis are known to express glucose-6-phosphate dehydrogenase (Zwf) and aspartase (AspA); these activities are not detectable in epidemic Y. pestis due to missense mutations (substitution of proline for serine at amino position 155 of Zwf and leucine for valine at position 363 of AspA). In this study, functional Zwf was found in pestoides strains E, F and G but not seven other enzootic isolates; enzymic activity was associated with retention of serine at amino acid position 155. Essentially, full AspA activity occurred in pestoides isolates where valine (pestoides A, B, C and D) or serine (pestoides E, F, G and I) occupied position 363. Reduced activity occurred in strains Angola and A16, which contained phenylalanine at this position. The kcat but not Km of purified AspA from strain Angola was significantly reduced. In this context, aspA of the recently described attenuated enzootic microtus biovar encodes active valine at position 363, further indicating that functional AspA is a biomarker for avirulence of Y. pestis in man.

  4. Fault finder

    Science.gov (United States)

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  5. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  6. Hydraulic and acoustic properties of the active Alpine Fault, New Zealand: Laboratory measurements on DFDP-1 drill core

    Science.gov (United States)

    Carpenter, B. M.; Kitajima, H.; Sutherland, R.; Townend, J.; Toy, V. G.; Saffer, D. M.

    2014-03-01

    We report on laboratory measurements of permeability and elastic wavespeed for a suite of samples obtained by drilling across the active Alpine Fault on the South Island of New Zealand, as part of the first phase of the Deep Fault Drilling Project (DFDP-1). We find that clay-rich cataclasite and principal slip zone (PSZ) samples exhibit low permeabilities (⩽10-18 m), and that the permeability of hanging-wall cataclasites increases (from c. 10-18 m to 10-15 m) with distance from the fault. Additionally, the PSZ exhibits a markedly lower P-wave velocity and Young's modulus relative to the wall rocks. Our laboratory data are in good agreement with in situ wireline logging measurements and are consistent with the identification of an alteration zone surrounding the PSZ defined by observations of core samples. The properties of this zone and the low permeability of the PSZ likely govern transient hydrologic processes during earthquake slip, including thermal pressurization and dilatancy strengthening.

  7. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    Science.gov (United States)

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  8. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  9. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    Science.gov (United States)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of

  10. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  11. Ring-fault activity at subsiding calderas studied from analogue experiments and numerical modeling

    Science.gov (United States)

    Liu, Y. K.; Ruch, J.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Several subsiding calderas, such as the ones in the Galápagos archipelago and the Axial seamount in the Pacific Ocean have shown a complex but similar ground deformation pattern, composed of a broad deflation signal affecting the entire volcanic edifice and of a localized subsidence signal focused within the caldera. However, it is still debated how deep processes at subsiding calderas, including magmatic pressure changes, source locations and ring-faulting, relate to this observed surface deformation pattern. We combine analogue sandbox experiments with numerical modeling to study processes involved from initial subsidence to later collapse of calderas. The sandbox apparatus is composed of a motor driven subsiding half-piston connected to the bottom of a glass box. During the experiments the observation is done by five digital cameras photographing from various perspectives. We use Photoscan, a photogrammetry software and PIVLab, a time-resolved digital image correlation tool, to retrieve time-series of digital elevation models and velocity fields from acquired photographs. This setup allows tracking the processes acting both at depth and at the surface, and to assess their relative importance as the subsidence evolves to a collapse. We also use the Boundary Element Method to build a numerical model of the experiment setup, which comprises contracting sill-like source in interaction with a ring-fault in elastic half-space. We then compare our results from these two approaches with the examples observed in nature. Our preliminary experimental and numerical results show that at the initial stage of magmatic withdrawal, when the ring-fault is not yet well formed, broad and smooth deflation dominates at the surface. As the withdrawal increases, narrower subsidence bowl develops accompanied by the upward propagation of the ring-faulting. This indicates that the broad deflation, affecting the entire volcano edifice, is primarily driven by the contraction of the

  12. Antagonistic Activity of Trichoderma ISolates against Sclerotium rolfsii : Screening of Efficient Isolates from Morocco Soils for Biological Control

    Directory of Open Access Journals (Sweden)

    N. Khattabi

    2004-12-01

    Full Text Available Seventy Trichoderma spp. isolates collected from different regions of Morocco were tested for their capacity to inhibit in vitro mycelial growth of Sclerotium rolfsii, and for their effect on the viability of S. rolfsii sclerotia in the soil. The Trichoderma spp. isolates inhibited mycelial growth of S. rolfsii to various degrees, with 52% of isolates expressing an average inhibition, varying between 45 and 55%. The effect on the viability of sclerotia in the soil also varied between isolates of Trichoderma, with the majority (84% having a slight effect. A group of twenty isolates identified as Trichoderma harzianum when tested in sterilized soil, significantly reduced sclerotial viability though not in natural soil. Four of these isolates (Nz, Kb2, Kb3 and Kf1 showed good antagonistic activity against S. rolfsii and were also highly competitive in natural soil. These isolates would therefore be candidates for development in biological control program.

  13. Imaging Stress Transients and Fault Zone Processes with Crosswell Continuous Active-Source Seismic Monitoring at the San Andreas Fault Observatory at Depth

    Science.gov (United States)

    Niu, F.; Taira, T.; Daley, T. M.; Marchesini, P.; Robertson, M.; Wood, T.

    2017-12-01

    Recent field and laboratory experiments identify seismic velocity changes preceding microearthquakes and rock failure (Niu et al., 2008, Nature; Scuderi et al., 2016, NatureGeo), which indicates that a continuous monitoring of seismic velocity might provide a mean of understanding of the earthquake nucleation process. Crosswell Continuous Active-Source Seismic Monitoring (CASSM) using borehole sources and sensors has proven to be an effective tool for measurements of seismic velocity and its temporal variation at seismogenic depth (Silver, et al, 2007, BSSA; Daley, et al, 2007, Geophysics). To expand current efforts on the CASSM development, in June 2017 we have begun to conduct a year-long CASSM field experiment at the San Andreas Fault Observatory at Depth (SAFOD) in which the preceding field experiment detected the two sudden velocity reductions approximately 10 and 2 hours before microearthquakes (Niu et al., 2008, Nature). We installed a piezoelectric source and a three-component accelerometer at the SAFOD pilot and main holes ( 1 km depth) respectively. A seismic pulse was fired from the piezoelectric source four times per second. Each waveform was recorded 150-ms-long data with a sampling rate of 48 kHz. During this one-year experiment, we expect to have 10-15 microearthquakes (magnitude 1-3) occurring near the SAFOD site, and the data collected from the new experiment would allow us to further explore a relation between velocity changes and the Parkfield seismicity. Additionally, the year-long data provide a unique opportunity to study long-term velocity changes that might be related to seasonal stress variations at Parkfield (Johnson et al., 2017, Science). We will report on initial results of the SAFOD CASSM experiment and operational experiences of the CASSM development.

  14. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates

    Directory of Open Access Journals (Sweden)

    Virginie eDufour

    2012-04-01

    Full Text Available Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes.We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC and benzyl-isothiocyanate (BITC, against 24 C. jejuni isolates from chicken feces, human infections and contaminated foods, as well as two reference strains NCTC11168 and 81-176.Both AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 2.5 to 5 g mL-1 compared to AITC (MIC of 50 to 200 g mL-1. Interestingly, the 24 C. jejuni isolates could be classified in 3 groups according to their sensitivity levels to both compounds, suggesting that AITC and BITC shared identical activity mechanisms and consequently faced similar resistance processes in bacterial cells.The sensitivity levels of C. jejuni strains against isothiocyanates were neither correlated with the presence of a GGT (-Glutamyl Transpeptidase encoding gene in the genome nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to WT when exposed to ITC.

  15. Microgravity Active Vibration Isolation System on Parabolic Flights

    Science.gov (United States)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  16. Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe-Mn-based austenitic steels?

    International Nuclear Information System (INIS)

    Idrissi, H.; Ryelandt, L.; Veron, M.; Schryvers, D.; Jacques, P.J.

    2009-01-01

    By changing the testing temperature, an austenitic Fe-Mn-Al-Si alloy presents either ε-martensite transformation or mechanical twinning during straining. In order to understand the nucleation and growth mechanisms involved in both phenomena, defects and particularly stacking faults, were characterized by transmission electron microscopy. It is observed that the character of the stacking faults also changes (from extrinsic to intrinsic) together with the temperature and the activated mode of plasticity.

  17. Seismic cycle and seismic risk of an active faults network: the Corinth rift case (Greece)

    International Nuclear Information System (INIS)

    Boiselet, Aurelien

    2014-01-01

    The Corinth rift (Greece) is one of the regions with the highest strain rates (16 mm/y extension rate) in the Euro-Mediterranean area and as such it has long been identified as a site of major importance for earthquake studies in Europe (20 years of research by the Corinth Rift Laboratory and 4 years of in-depth studies by the ANR-SISCOR project). This enhanced knowledge, acquired in particular, in the western part of the Gulf of Corinth (CRL region), an area about 50 by 40 km 2 , between the city of Patras to the west and the city of Aigion to the east, provides an excellent opportunity to compare fault-based (FB) and classical seismo-tectonic (ST) approaches currently used in seismic hazard assessment studies. An homogeneous earthquake catalogue was thus constructed for the purpose of this study along with a comprehensive database of all relevant geological, geodetic and geophysical information available in the literature and recently collected within the ANR-SISCOR project. The homogenized Mw earthquake catalogue is composed of data from the National Observatory of Athens and from the university of Thessaloniki as well as data acquired through historical and instrumental work performed within the ANR-SISCOR group for the CRL region. A frequency magnitude analysis confirms that seismicity rates are governed by Gutenberg-Richter (GR) statistic for 1.2 =6 earthquakes were computed for the region of study. Time dependent models (Brownian Passage time and Weibull probability distributions) were also explored. The probability (normalized by area) of a M≥6.0 earthquake is found to be greater in the CRL region compared to the eastern part of the Corinth rift. Probability estimates corresponding to the 16. and 84. percentile are also provided, as a means of representing the range of uncertainties in the results. Probability estimates based on the ST-approach are then compared to those based on the FB approach approach. In general ST tends to overestimate probabilities

  18. Holocene Activity of the Enriquillo-Plantain Garden Fault in Lake Enriquillo Derived from Seismic Stratigraphy

    Science.gov (United States)

    Rios, J. K.; McHugh, C. M.; Hornbach, M. J.; Mann, P.; Wright, V. D.; Gurung, D.

    2013-12-01

    The Enriquillo-Plantain-Garden fault zone (EPGF) crosses Lake Enriquillo (LE) in the Dominican Republic and extends E-W across the southern peninsula of Haiti, south of the Baie de Port au Prince (BPP). Seismic stratigraphic studies of CHIRP high-resolution subbottom profiles calibrated to ages obtained from sediment cores and previous coral reef studies provide a Holocene record of relative sea level rise into the BPB and LE and a time frame for understanding tectonics of the EPGF. The BPP is 20 km wide, 20 km long, 150 m deep, and surrounded by coral reefs at water depths of 30 m. Three seismic units were identified: Unit 1: stepped terraces 5-10 m high. Laminated strata onlaps the terraces. This unit possibly represents Marine Isotope Stages 6 and 5, but has not been dated. Unit 2: laminated strata, thicker than 10 m and dated near its top at 22 ka BP. The microfossil assemblages reveal that during the latest Pleistocene sea level lowstand the BPP had a restricted connection with the global ocean. Few well-preserved marine microfossils are present and mostly are reworked. Geochemical analyses reveal that the laminated sediments were deposited during wet periods (>Si, Al wt %, Cu ppm) and dry periods (>Ca wt %). Unit 3: acoustically transparent, ~10 m thick, dated near its base and top at 14 ka BP and 2 ka BP, respectively. This unit represents the Holocene initiation of sea level rise and high stand containing well-preserved marine fossils. At ~9.5 ka BP planktonic foraminifers become abundant implying deepening of marine waters. Lake Enriquillo is 127 km east of the BPP. It is 15 km wide, 40 km long and 45 m deep. CHIRP subbottom profiles penetrated ~30 m below the lake floor. Four main acoustic units were identified: Unit 1: deformed basement with steeply dipping and folded beds. Based on land studies this unit is likely Plio-Pleistocene in age. Unit 2: laminated strata. Ages from coral reefs and deformed strata on land indicate this unit is likely pre-20 ka

  19. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Science.gov (United States)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  20. Two-sensor control in active vibration isolation using hard mounts

    NARCIS (Netherlands)

    Beijen, M.A.; Tjepkema, D.; van Dijk, J.

    To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for an active vibration isolator using a single-axis active hard mount. The hard mount

  1. Two-sensor control in active vibration isolation using hard mounts

    NARCIS (Netherlands)

    Beijen, M.A.; Tjepkema, D.; van Dijk, Johannes

    2014-01-01

    To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for an active vibration isolator using a single-axis active hard mount. The hard mount

  2. Antiproliferative Activity of Phenylpropanoids Isolated from Lagotis brevituba Maxim.

    Science.gov (United States)

    Xiang, Yuan; Jing, Zhao; Haixia, Wang; Ruitao, Yu; Huaixiu, Wen; Zenggen, Liu; Lijuan, Mei; Yiping, Wang; Yanduo, Tao

    2017-10-01

    The aim of the present study was to evaluate the antiproliferative effect of phenylpropanoids isolated from the n-BuOH-soluble fraction of an ethanolic extract of Lagotis brevituba Maxim. The phenylpropanoids were identified as echinacoside, lagotioside, glucopyranosyl(1-6)martynoside, plantamoside, and verbascoside. Three of the compounds, lagotioside, glucopyranosyl(1-6)martynoside, and plantamoside, were isolated from L. brevituba for the first time. The antiproliferative activity of the isolates was evaluated in human gastric carcinoma (MGC-803), human colorectal carcinoma (HCT116), human hepatocellar carcinoma (HepG2), and human lung cancer (HCT116) cells using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Plantamoside showed promising activity against MGC-803 cells, with a half maximal inhibitory concentration value of 37.09 μM. The mechanism of the pro-apoptosis effect of plantamoside was then evaluated in MGC-803 cells. Changes in cell morphology, including disorganization of the architecture of actin microfilaments and formation of apoptotic bodies, together with cell cycle arrest in G2/M phases, were observed after treatment of plantamoside. The antiproliferative and pro-apoptotic effects were associated with a decrease in the ratio of Bcl-2/Bax and reduced mitochondrial membrane potential, which was accompanied by the release of reactive oxygen species and Ca 2+ into the cytoplasm. Taken together, the results indicated that plantamoside promotes apoptosis via a mitochondria-dependent mechanism. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    KAUST Repository

    Vasyura-Bathke, Hannes

    2015-04-28

    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a ‘sliding-trapdoor’ ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano\\'s western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that ‘sliding-trapdoor’ ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  4. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    Science.gov (United States)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances

  5. Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons

    Science.gov (United States)

    Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.

    2017-11-01

    The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.

  6. Antagonistic Activity Of Endophytic Bacteria Isolated From Mentha Rotundifolia L.

    Directory of Open Access Journals (Sweden)

    Elhartiti Abla

    2015-08-01

    Full Text Available Abstract This study is implemented for the isolation purification and identification of endophytic bacteria which produces antifungal substances from the roots of Mentha rotundifolia L. The 59 obtained bacterial isolates were tested for their antagonistic activity by the dual confrontation against the phytopathogenic fungi Fusarium oxysporum Aspergillus Niger and Botrytis cinerea. Eight bacterial strains were selected for their strong antifungal activity. These are strains M21 M23 M3a M4 M14d and M3c which belong to the family Bacillaceae M12 and M3b which belongs to the family of Pseudomonadaceae. Among these three bacterial strains namely M21 M23 and M12 induce 70 of inhibition of mycelial growth of phytopathogenic fungi Fusarium oxysporum and Aspergillus Niger while the five bacterial strains M3a M3c M3b M4 and M14d have proved to be effective in inhibiting more than 60 of mycelial growth of Botrytis cinerea.

  7. GCM2-Activating Mutations in Familial Isolated Hyperparathyroidism.

    Science.gov (United States)

    Guan, Bin; Welch, James M; Sapp, Julie C; Ling, Hua; Li, Yulong; Johnston, Jennifer J; Kebebew, Electron; Biesecker, Leslie G; Simonds, William F; Marx, Stephen J; Agarwal, Sunita K

    2016-11-03

    Primary hyperparathyroidism (PHPT) is a common endocrine disease characterized by parathyroid hormone excess and hypercalcemia and caused by hypersecreting parathyroid glands. Familial PHPT occurs in an isolated nonsyndromal form, termed familial isolated hyperparathyroidism (FIHP), or as part of a syndrome, such as multiple endocrine neoplasia type 1 or hyperparathyroidism-jaw tumor syndrome. The specific genetic or other cause(s) of FIHP are unknown. We performed exome sequencing on germline DNA of eight index-case individuals from eight unrelated kindreds with FIHP. Selected rare variants were assessed for co-segregation in affected family members and screened for in an additional 32 kindreds with FIHP. In eight kindreds with FIHP, we identified three rare missense variants in GCM2, a gene encoding a transcription factor required for parathyroid development. Functional characterization of the GCM2 variants and deletion analyses revealed a small C-terminal conserved inhibitory domain (CCID) in GCM2. Two of the three rare variants were recurrent, located in the GCM2 CCID, and found in seven of the 40 (18%) kindreds with FIHP. These two rare variants acted as gain-of-function mutations that increased the transcriptional activity of GCM2, suggesting that GCM2 is a parathyroid proto-oncogene. Our results demonstrate that germline-activating mutations affecting the CCID of GCM2 can cause FIHP. Published by Elsevier Inc.

  8. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    Science.gov (United States)

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  9. Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc

    Science.gov (United States)

    Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2018-04-01

    Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.

  10. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies.

    Science.gov (United States)

    Ashok, Penta; Ganguly, Swastika; Murugesan, Sankaranarayanan

    2014-11-01

    The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Intra-arc Seismicity: Geometry and Kinematic Constraints of Active Faulting along Northern Liquiñe-Ofqui and Andean Transverse Fault Systems [38º and 40ºS, Southern Andes

    Science.gov (United States)

    Sielfeld, G.; Lange, D.; Cembrano, J. M.

    2017-12-01

    Intra-arc crustal seismicity documents the schizosphere tectonic state along active magmatic arcs. At oblique-convergent margins, a significant portion of bulk transpressional deformation is accommodated in intra-arc regions, as a consequence of stress and strain partitioning. Simultaneously, crustal fluid migration mechanisms may be controlled by the geometry and kinematics of crustal high strain domains. In such domains shallow earthquakes have been associated with either margin-parallel strike-slip faults or to volcano-tectonic activity. However, very little is known on the nature and kinematics of Southern Andes intra-arc crustal seismicity and its relation with crustal faults. Here we present results of a passive seismicity study based on 16 months of data collected from 33 seismometers deployed along the intra-arc region of Southern Andes between 38˚S and 40˚S. This region is characterized by a long-lived interplay among margin-parallel strike-slip faults (Liquiñe-Ofqui Fault System, LOFS), second order Andean-transverse-faults (ATF), volcanism and hydrothermal activity. Seismic signals recorded by our network document small magnitude (0.2P and 2,796 S phase arrival times have been located with NonLinLoc. First arrival polarities and amplitude ratios of well-constrained events, were used for focal mechanism inversion. Local seismicity occurs at shallow levels down to depth of ca. 16 km, associated either with stratovolcanoes or to master, N10˚E, and subsidiary, NE to ENE, striking branches of the LOFS. Strike-slip focal mechanisms are consistent with the long-term kinematics documented by field structural-geology studies. Unexpected, well-defined NW-SE elongated clusters are also reported. In particular, a 72-hour-long, N60˚W-oriented seismicity swarm took place at Caburgua Lake area, describing a ca. 36x12x1km3 faulting crustal volume. Results imply a unique snapshot on shallow crustal tectonics, contributing to the understanding of faulting processes

  12. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-12-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  13. Were Holocene large slumps in Lake Geneva off the city of Lausanne caused by fault activity?

    Science.gov (United States)

    Correia Demand, Jehanne; Marillier, François; Kremer, Katrina; Girardclos, Stéphanie

    2014-05-01

    Lake Geneva is set in an area where glacier advances and retreats have carved Tertiary Molasse rocks in front of the Alpine units. Glacial and lacustrine sediments have accumulated in the lake on top of the Molasse. Within Holocene sedimentary layers, seismic studies in the central part of Lake Geneva ("Grand-Lac") have shown the presence of several mass transport deposits (MTD). A large one, MTD A, is observed off the city of Lausanne. The depth of the associated failure scars (100 m water depth), its volume (~ 0.13 km3), and the occurrence of other smaller MTDs that were possibly co-deposited with MTD A point to the occurrence of a major slide event in the lake, most likely associated with an earthquake. Based on 14C dating, the sediment age model for MTD A gives an age interval of 1865-1608 BC (Kremer et al. 2014). To resolve the details of the MTDs off Lausanne, and to better understand its geological context different seismic systems were used. These were a 3.5 KHz pinger with a theoretical vertical resolution of 0.15 m and a multichannel system with water-gun or air-gun seismic sources with vertical resolution of 0.6 m and 1.1 m, respectively. After a first pass processing, the multi-channel data were reprocessed in order to take into account the shape of the streamer in the water and to enhance the results of migration. In addition to typical seismic images of MTDs observed in other alpine lakes such as chaotic or transparent seismic character between well-organized reflections, two intriguing positive water-bottom topographic features associated with apparent sub-vertical offsets are revealed by the seismic data. They are located in the near vicinity of the depot centers of the MTDs and conspicuously located near faults in the Tertiary Molasse. These are thrust faults that are offset by small strike-slip faults, and we suggest that the positive topographic features are linked to a compressive component within the sediments due to displacements along these

  14. Fault Tolerant Operation of ISOP Multicell Dc-Dc Converter Using Active Gate Controlled SiC Protection Switch

    Directory of Open Access Journals (Sweden)

    Yusuke Hayashi

    2016-01-01

    Full Text Available An active gate controlled semiconductor protection switch using SiC-MOSFET is proposed to achieve the fault tolerant operation of ISOP (Input Series and Output Parallel connected multicell dc-dc converter. The SiC-MOSFET with high temperature capability simplifies the configuration of the protection circuit, and its on-resistance control by the active gate controller realizes the smooth protection without the voltage and the current surges. The first laboratory prototype of the protection switch is fabricated by using a SiC-MOSFET with a high frequency buck chopper for the active gate controller. The effectiveness of the proposed protection switch is verified, taking the impact of the volume reduction into account.

  15. Solar and interplanetary activities of isolated and non-isolated coronal mass ejections

    Science.gov (United States)

    Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.

    2017-07-01

    We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of

  16. Evaluating Antimutagenic Activity of Probiotic Bacteria Isolated from Probiotic Products

    Directory of Open Access Journals (Sweden)

    R Kazemi Darsanki

    2012-07-01

    Full Text Available

    Background and Objectives: Probiotic bacteria are microbial nutrition supplements which have useful effects on human health by maintaining of bowel microbial balance. There are many studies that have been suggested the use of probiotic products as cancer risk reducer. The aim of this study, is isolation and detection of probiotic agents from yoghurt and probiotical tablet and evaluation of their abilities to decrease some effects of mutagenic and carcinogenic agents.

     

    Methods: In this study, probiotic bacteria were isolated from yogurt and probiotic tablet by using MRS in anaerobic condition (5% Co2 and gas peck and temperature of 37°c. Then, they were detected by using biochemical tests. Their anti mutagenic effects of supernatant culture were evaluated against mutagenic agents of azid Sodium and Potassium Permanganate by ames test (Salmonella typhimurium TA100 in presence and absence of S9.

     

    Results: Six probiotic bacteria were isolated from yogurt and probiotic tablet. Their anti mutagenic activity results based on ames test showed they can inhibit mutagenic agents more than 40% in some species, which is considered as a good result.

     

    Conclusion: The results of this study show that the use of probiotic bacteria found in different products such as yogurt and probiotic tablets, have proper anti mutagenic and anti carcinogenic effects. They change the micro flora of bowel and, as a result, reduce absorption of mutagenic and carcinogenic agents and help to maintain human health.

     

  17. Numerical modeling of tectonic stress field and fault activity in North China

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-02-01

    Full Text Available On the basis of a 3-dimension visco-elastic finite element model of lithosphere in North China, we numerically simulate the recent mutative figures of tectonic stress field. Annual change characteristics of stress field are; 1 Maximum principal tensile stress is about 3–9 kPaa−1 and its azimuth lie in NNW-SSE. 2 Maximum principal compressive stress is about 1–6 kPaa−1 and its azimuth lie in NEE-SWW. 3 Maximum principal tensile stress is higher both in the west region and Liaoning Province. 4 Variation of tectonic stress field benefits fault movement in the west part and northeast part of North China. 5 Annual accumulative rates of Coulomb fracture stress in Tanlu fault belt have segmentation patterns: Jiashan-Guangji segment is the highest (6 kPaa−1, Anshan-Liaodongwan segment is the second (5 kPaa−1, and others are relatively lower (3–4 kPaa−1.

  18. Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms

    KAUST Repository

    Li, Yong Xin

    2013-04-25

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity. © 2013 Springer Science+Business Media New York.

  19. Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms

    KAUST Repository

    Li, Yong Xin; Wu, Hui Xian; Xu, Ying; Shao, Chang Lun; Wang, Chang Yun; Qian, Pei Yuan

    2013-01-01

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity. © 2013 Springer Science+Business Media New York.

  20. Active Vibration Isolation Devices with Inertial Servo Actuators

    Science.gov (United States)

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  1. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    Science.gov (United States)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2017-03-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  2. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    Science.gov (United States)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    change during the 1899-1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to ˜2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.

  3. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin

    2015-02-03

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  4. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin; Dutta, Rishabh; Jonsson, Sigurjon

    2015-01-01

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  5. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  6. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag

    OpenAIRE

    E Uugantsetseg; B Batjargal

    2014-01-01

    This research aimed to determine the antioxidant activity of probiotic lactic acid bacteria isolated from airag. In this study, 42 lactic acid bacteria were isolated from Mongolian airag. All isolates were identified by using morphological, biochemical and physiological methods. The isolated bacteria were studied for antagonistic effects on Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, 22 strains showed antibacterial activity. When we examined thei...

  7. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  8. Vipava fault (Slovenia

    Directory of Open Access Journals (Sweden)

    Ladislav Placer

    2008-06-01

    Full Text Available During mapping of the already accomplished Razdrto – Senožeče section of motorway and geologic surveying of construction operations of the trunk road between Razdrto and Vipava in northwestern part of External Dinarides on the southwestern slope of Mt. Nanos, called Rebrnice, a steep NW-SE striking fault was recognized, situated between the Predjama and the Ra{a faults. The fault was named Vipava fault after the Vipava town. An analysis of subrecent gravitational slips at Rebrnice indicates that they were probably associated with the activity of this fault. Unpublished results of a repeated levelling line along the regional road passing across the Vipava fault zone suggest its possible present activity. It would be meaningful to verify this by appropriate geodetic measurements, and to study the actual gravitational slips at Rebrnice. The association between tectonics and gravitational slips in this and in similar extreme cases in the areas of Alps and Dinarides points at the need of complex studying of geologic proceses.

  9. Relationship of the 2004 Mid-Niigata prefecture earthquake with geological structure. Evaluation of earthquake source fault in active folding zone

    International Nuclear Information System (INIS)

    Aoyagi, Yasuhira; Abe, Shintaro

    2007-01-01

    We compile the important points to evaluate earthquake source fault in active folding zone through a temporary aftershock observation of the 2004 Mid-Niigata Prefecture earthquake. The aftershock distribution shows spindle shape whose middle part is wide and both ends are narrow in NNE-SSW trending. The range of seismic activity corresponds well to the distribution of fold axes in this area, whose middle part is anticlinorium (some anticlines) and both ends are single anticline. In the middle part, the west dipping aftershock plane including the mainshock (M6.8) is located under the Higashiyama anticline. Another west dipping aftershock plane including the largest aftershock (M6.5) is located under the Tamugiyama and Komatsugura anticlines, and the east margin of the aftershock distribution corresponds well with Suwa-toge flexure. Therefore the present fold structure should have been formed by an accumulation of the same faults movement. In other words, it is important to refer the fold axes distribution pattern, especially with flexure, for the evaluation of earthquake source fault. In addition, we performed FEM analyses to investigate the relation of fold structure to the thickness of the sedimentary layer and the dip angle of the fault. Reverse fault movement forms asymmetric fold above the fault, which steeper slope is formed just above the upper end of the fault. As the sedimentary layer became thicker, anticline axis moved to hanging wall side in the fold structure. As the dip angle became smaller, the wavelength of the fold became longer and the fold structure grew highly asymmetric. Thus the shape of the fold structure is useful as an index to estimate the blind thrust below it. (author)

  10. Rn, He and CO{sub 2} soil gas geochemistry for the study of active and inactive faults

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, S. [Earth Science Department - University ' La Sapienza' , Piazzale A. Moro 5, 00185 Rome (Italy); Voltattorni, N., E-mail: nunzia.voltattorni@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome (Italy)

    2010-08-15

    Two Italian areas, characterized by different seismological histories, were investigated to enhance the basic knowledge of gas migration mechanisms during earthquakes. Sharp variations occur in the movement and concentration of some gaseous species due to the evolution of the local stress regime. The first area (Colpasquale) is located in the central Italian region of Marche and provided a good location to study gas migration in a seismically active region. The area was devastated by a sequence of shallow earthquakes over a 3 month-long period (September-December, 1997). The occurrence of this catastrophic event, as well as the long duration of the 'seismic sequence', presented a unique opportunity to study gas migration in a zone undergoing active displacement. Soil gas surveys were performed 1 day, 1 week, 1 year and 2 years after the main shock (Ms 5.6) in the Colpasquale area. In particular, results highlight a change in the Rn distribution during the three monitoring years indicating a variation of gas migration that may be linked to the evolution of the stress regime. The second study area is located in the Campidano Graben (southern part of Sardinia Island). This area is characterized by seismic quiescence, displaying an almost complete lack of historical earthquakes and instrumentally recorded seismicity. The consistently low values observed for all analyzed gases suggest that the studied area is likely characterized by sealed, non-active faults that prevent significant gas migration. The comparison of data from both studied areas indicate that soil gas geochemistry is useful to locate tectonic discontinuities even when they intersect non-cohesive clastic rocks near the surface and thus are not visible (i.e., 'blind faults').

  11. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    Science.gov (United States)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  12. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2003-02-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene

  13. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  14. Antibacterial activity of garlic and lime on isolates of extracted ...

    African Journals Online (AJOL)

    ) on seven bacterial species (Streptococcus mutans, Lactobacillus acidophilus, Norcadia asteroides, Pseudomonas aeruginosa, Actinomyces viscosus, Staphylococcus aureus and Veillonella alcaligens) isolated from 240 extracted, carious ...

  15. First indications of high slip rates on active reverse faults NW of Damascus, Syria, from observations of deformed Quaternary sediments: Implications for the partitioning of crustal deformation in the Middle Eastern region

    Science.gov (United States)

    Abou Romieh, Mohammad; Westaway, Rob; Daoud, Mohamad; Bridgland, David R.

    2012-05-01

    Recent research on rates of crustal shortening within the Palmyra Fold Belt (PFB) in Syria has drawn attention to the possibility that reverse faults near the city of Damascus, which adjoins the SW PFB, have significant slip rates. We infer that the Damascus Fault, directly adjacent to the city, has developed a throw of ~ 2500 m and report the discovery of the en echelon Bassimeh Fault, with a throw of ~ 1000 m, this fault being revealed by warping of the local bedrock and of a terrace, of inferred Late Pleistocene age, of the River Barada. We estimate that this set of faults became active circa 0.9 Ma, synchronous with changes to the pattern of faulting previously reported farther southwest in the northern Jordan Valley. Vertical slip rates on the Bassimeh and Damascus faults of ~ 1.1 and ~ 2.8 mm a- 1, respectively, are thus estimated. We also infer that large historical earthquakes, previously attributed to left-lateral faulting farther west on the Dead Sea Fault Zone (DSFZ), probably occurred on this set of reverse faults; these faults thus represent a significant hazard to the city of Damascus. Our observations indicate that as much as half of the northward motion of the Arabian plate, relative to the African plate, may be 'absorbed' by crustal shortening within the PFB, potentially explaining the low slip rate recently measured geodetically on the northern DSFZ in western Syria.

  16. Antischistosomal Activity of Two Active Constituents Isolated from the Leaves of Egyptian Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Sanaa A. Ali

    2015-01-01

    Full Text Available Highlights D -mannitol, a naturally occurring sugar isolated from the leaves Ixora undulata Roxb., and a linear chain pectin homogalacturonan (HG polysaccharide isolated from the leaves of Linum grandiflorum Desf. (scarlet flax were evaluated for their therapeutic effect against schistosomiasis with biochemical and histochemical evaluations, and compared with the reference drug praziquantel, to assess the antioxidant and antischistosomal effects of D -mannitol and pectin. Abstract In this paper, we investigate the role of two active constituents isolated from the leaves of Egyptian medicinal plants. D -mannitol a naturally occurring sugar isolated from the leaves Ixora undulata Roxb., and the pectin a linear chain homogalacturonan (HG polysaccharide isolated from the leaves of Linum grandiflorum Desf. (scarlet flax. Both are evaluated for their therapeutic effect against schistosomiasis with biochemical and histochemical evaluations and compared with praziquantel, a reference drug. Biochemical studies of hepatic glucose, the glycogen content, and total serum protein were carried out, and histochemical evaluations through serum protein fractions separated by polyacrylamide gel electrophoresis with different molecular weights (260–10 kDa were made in all groups, in addition to liver and body weight. D -mannitol and pectin show a remarkable effect in enhancing liver and kidney functions through enhancing most protein fractions in the serum of mice infected with Schistosoma mansoni. Also, the glucose and glycogen content in injured liver tissues improved, in addition liver and body weight in the infected groups. Thus they may be of therapeutic potential in the treatment hepatoxicity and nephrotoxicity.

  17. In vitro anticancer activity of microbial isolates from diverse habitats

    Directory of Open Access Journals (Sweden)

    Angel Treasa Thomas

    2011-06-01

    Full Text Available Extracts from natural products, especially microorganisms, have served as a valuable source of diverse molecules in many drug discovery efforts and led to the discovery of several important drugs. Identification of microbial strains having promising biological activities and purifying the bio-molecules responsible for the activities, have led to the discovery of many bioactive molecules. Extracellular, as well as intracellular, extracts of the metabolites of thirty-six bacterial and twenty-four fungal isolates, grown under unusual conditions such as high temperature, high salt and low sugar concentrations, were in vitro tested for their cytotoxic potential on various cancer cell lines. The extracts were screened on HeLa and MCF-7 cell lines to study the cytotoxic potential. Nuclear staining and flow cytometric studies were carried out to assess the potential of the extracts in arresting the cell cycle. The crude ethylacetate extract of isolate F-21 showed promising results by MTT assay with IC50 as low as 20.37±0.36 µg/mL on HeLa, and 44.75±0.81 µg/mL on MCF-7 cells, comparable with Cisplatin. The isolate F-21 was identified as Aspergillus sp. Promising results were also obtained with B-2C and B-4E strains. Morphological studies, biochemical tests and preliminary chemical investigation of the extracts were also carried out.Extratos de produtos naturais, especialmente de microrganismos, constituíram-se em fonte valiosa de diversas moléculas em muitas descobertas de fármacos e levaram à descoberta de fármacos importantes. A identificação de espécies microbianas que apresentam atividade biológica e a purificação de biomoléculas responsáveis pelas atividades levou à descoberta de muitas moléculas bioativas. Extratos extracelulares tanto quanto intracelulares de metabólitos de 36 isolados de bactérias e 24 isolados de fungos, que cresceram sob condições não usuais, como alta temperatura, alta concentração de sal e baixa

  18. Antioxidant and Antiplasmodial Activities of Bergenin and 11-O-Galloylbergenin Isolated from Mallotus philippensis

    OpenAIRE

    Khan, Hamayun; Amin, Hazrat; Ullah, Asad; Saba, Sumbal; Rafique, Jamal; Khan, Khalid; Ahmad, Nasir; Badshah, Syed Lal

    2016-01-01

    Two important biologically active compounds were isolated from Mallotus philippensis. The isolated compounds were characterized using spectroanalytical techniques and found to be bergenin (1) and 11-O-galloylbergenin (2). The in vitro antioxidant and antiplasmodial activities of the isolated compounds were determined. For the antioxidant potential, three standard analytical protocols, namely, DPPH radical scavenging activity (RSA), reducing power assay (RPA), and total antioxidant capacity (T...

  19. Near-Source Error Sensor Strategies for Active Vibration Isolation of Machines

    NARCIS (Netherlands)

    Beijers, C.A.J.; Basten, T.G.H.; de Boer, Andries; van den Brink, D.R.; Verheij, J.W.; Sas, P; de Munck, M.

    2004-01-01

    Due to lightweight construction of vehicles and ships, the reduction of structure borne interior noise problems with passive isolation of engine vibrations might be not sufficient. To improve the isolation, a combination of passive and active isolation techniques can be used (so-called hybrid

  20. Antimicrobial activity screening of isolated flavonoids from Azadirachta indica leaves

    Directory of Open Access Journals (Sweden)

    QUDSIA KANWAL

    2011-03-01

    Full Text Available The antimicrobial activities of two flavonoids, namely genistein 7-O-glucoside (1 and (–-epi-catechin (2, isolated from Azadirachta indica A. Juss (neem leaves, were evaluated against five fungal species, viz: Alternaria alternata (Fr. Keissler, Aspergillus fumigatus Fresenius, Aspergillus niger van Tieghem, Macrophomina phaseolina (Tassi Goid. and Penicillium citrii, and four bacterial species, viz. Lactobacillus sp., Escherichia coli, Azospirillium lipoferum and Bacillus sp. Six concentrations, viz. 100, 300, 500, 700, 900 and 1000 ppm of each of the two flavonoids were employed using malt extract agar medium. All the concentrations of both the test compounds significantly suppressed fungal as well as bacterial growth. The highest concentration (1000 ppm of both fractions 1 and 2 reduced the growth of the different test fungal species by 83–99 % and 82–95 %, respectively. Compound 1 was highly effective against Lactobacillus sp., against which its various concentrations reduced the bacterial growth by 52–99.8 %. Compound 2 was highly effective against A. lipoferum and Bacillus sp., resulting in 94–100 % and 73–99% reduction in bacterial growth, respectively.

  1. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  2. Antimicrobial activity of julifloricine isolated from Prosopis juliflora.

    Science.gov (United States)

    Aqeel, A; Khursheed, A K; Viqaruddin, A; Sabiha, Q

    1989-06-01

    Antimicrobial activity of julifloricine, an alkaloid isolated from Prosopis juliflora, was studied in vitro against 40 microorganisms which included 31 bacteria, two Candida species, five dermatophytic fungi and two viruses. Significant inhibitory effect was noted against Gram positive bacteria. The minimal inhibitory concentration (MIC) for Staphylococcus aureus, S. epidermidis, S. citreus, Streptococcus pyogenes and Sarcina lutea was 1 microgram/ml and against S. faecalis, S. pneumoniae, S. lactis, Corynebacterium diphtheriae, C. hofmannii and Bacillus subtilis, 5 micrograms/ml. Its effect was compared with those of identical concentrations of benzyl penicillin, gentamicin and trimethoprim. The inhibitory effect of julifloricine on Gram negative bacteria such as the species of Salmonella, Shigella, Klebsiella, Proteus, Pseudomonas, Enterobacter, Aeromonas and Vibrio was almost insignificant. Julifloricine as compared to micoanzole was found superior against C. tropicalis and responded equally to C. albicans. As compared to econazole, it was found less effective against both C. albicans and C. tropicalis. This alkaloid was found inactive against dermatophytic fungi (up to a dose of 10 micrograms/ml) and viruses which included Herpes simplex 1 and Newcastle disease virus. Julifloricine up to a doses of 1000 micrograms/25 g of mice was found nonlethal.

  3. Amylase activity of a starch degrading bacteria isolated from soil ...

    African Journals Online (AJOL)

    Starch degrading bacteria are most important for industries such as food, fermentation, textile and paper. Thus isolating and manipulating pure culture from various waste materials has manifold importance for various biotechnology industries. In the present investigation a bacterial strain was isolated from soil sample ...

  4. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  5. activity guided isolation of chemical constituents from the ...

    African Journals Online (AJOL)

    MeOH fraction was subjected to various chromatographic techniques led to the isolation of miquelianin (1), kaempferol 3-O-glucuronide (2) and quercitrin (3). Compounds (1-3) were isolated from this plant for the first time. KEY WORDS: Euphorpia schimperi C. Presl, Wound healing, Chromatographic techniques, Chemical.

  6. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  7. Macroseismological And Paleoseismological Studies In The Active Segments Of The Morelia Acambay Fault System, Mexico

    Science.gov (United States)

    Garduño-Monroy, V. H.; Rodriguez-Pascua, M. A.; Israde-Alcantara, I.; Hernandez-Madrigal, V. M.

    2007-05-01

    Paleoseismological studies along several faults of the Morelia-Acambay system show clear evidence of its seismicity. In the Acambay region, four seismic events were identified during the Pliocene Pleistocene; two linked to large sub aquatic landslides, and two to liquefaction processes. The two seismic events associated to slumps were also recognized in the Ixtlahuaca, Mexico, region; meaning these were relevant seismic events at a regional level. Their magnitudes were above 5 degrees. Because these latter events are located in the same column, they could be of aid in knowing recurrence periods. In the southern portion of the Lake of Patzcuaro region a collapse was identified generating a rock avalanche nearly 29,000 years ago. This collapse is associated to an earthquake of magnitude above 7 degrees, which decreased the lake's extension and resulted in morphology of small hummocks. The Purhepecha term Jaracuaro means "place that emerges" and is the name of a former island where Pre Hispanic settlements occurred. The island is exclusively made up of lacustrine sequences that rose above 50m in height, georadar and vertical electrical signal (VES) studies do not reveal intrusive bodies associated to this deformation. Isosists of the 1845 and 1858 seismic events were reconstructed in the modified Mercalli scale through several historical studies in a number of municipalities in the State of Michoacan. The results indicate isosistes of IX degrees in Patzcuaro, where the earthquake caused the collapse of the basilica. During the 1858 earthquake the water level in the southern portion of the Lake of Patzcuaro raised over 2m and the destruction of 120 adobe houses is related to the generation of a tsunami. This seismic event is being characterized in wells and ditches dugs around Patzcuaro Lake. The region of Patzcuaro has experienced a number of magmatic and tectonic events that undoubtedly modified the conditions of the lake regarding its sedimentology and anthropogenic

  8. Quaternary Activity of the Monastir and Grombalia Fault Systems in the North‒Eastern Tunisia (Seismotectonic Implication)

    Science.gov (United States)

    Ghribi, R.; Zaatra, D.; Bouaziz, S.

    2018-01-01

    The Monastir and Grombalia fault systems consist of three strands that the northern segment corresponds to Hammamet and Grombalia faults. The southern strand represents Monastir Fault also referred to as the Skanes-Khnis Fault. These NW-trends are observed continuously in the major outcropping features of north-eastern Tunisia including both the Cap Bon peninsula and the Sahel domain. Along the Hammamet Fault, the north-eastern strand of Grombalia fault system, left lateral drainage offset of amount 220 m is found in Fawara valley. To the South, the left lateral movement is occurred along the Monastir Fault based on 180 m of Tyrrhenian terrace displacement. Field observations supported by satellite images suggest that the Monastir and Grombalia fault systems appear to slip mostly laterally with components of normal dip slip. Assuming the development of the stream networks during the Riss-Würm interglacial (115000-125000 years) and the age of the Tyrrhenian terrace (121 ± 10 ka), the strike slip rates of the Hammamet and Monastir faults are calculated in the range of 1.5-1.8 mm/yr. There vertical slip rates are estimated to be 0.06 and 0.26 mm/yr, respectively. These data are consistent with the displacement rate in the Pelagian shelf (1-2 mm/yr) but they are below the convergence rate of African-Eurasian plates (8 mm/yr). Our seismotectonics study reveals that a maximum earthquake of Mw = 6.5 could occur every 470 years in the Hammamet fault zone and Mw = 6-every 263 years in the Monastir fault zone.

  9. A recent Mw 4.3 earthquake proving activity of a shallow strike-slip fault in the northern part of the Western Desert, Egypt

    Science.gov (United States)

    Ezzelarab, Mohamed; Ebraheem, Mohamed O.; Zahradník, Jiří

    2018-03-01

    The Mw 4.3 earthquake of September 2015 is the first felt earthquake since 1900 A.D in the northern part of the Western Desert, Egypt, south of the El-Alamein City. The available waveform data observed at epicentral distances 52-391 km was collected and carefully evaluated. Nine broad-band stations were selected to invert full waveforms for the centroid position (horizontal and vertical) and for the focal mechanism solution. The first-arrival travel times, polarities and low-frequency full waveforms (0.03-0.08 Hz) are consistently explained in this paper as caused by a shallow source of the strike-slip mechanism. This finding indicates causal relation of this earthquake to the W-E trending South El-Alamein fault, which developed in Late Cretaceous as dextral strike slip fault. Recent activity of this fault, proven by the studied rare earthquake, is of fundamental importance for future seismic hazard evaluations, underlined by proximity (∼65 km) of the source zone to the first nuclear power plant planned site in Egypt. Safe exploration and possible future exploitation of hydrocarbon reserves, reported around El-Alamein fault in the last decade, cannot be made without considering the seismic potential of this fault.

  10. Active tectonics within the NW and SE extensions of the Pambak-Sevan-Syunik fault: Implications for the present geodynamics of Armenia

    Science.gov (United States)

    Ritz, Jeff; Avagyan, A.; Mkrtchyan, M.; Nazari, H.; Blard, P. H.; Karakhanian, A.; Philip, H.; Balescu, Sanda; Mahan, Shannon; Huot, Sebastien; Münch, P.; Lamothe, M.

    2016-01-01

    This study analyzes the active tectonics within the northwestern and southeastern extensions of the Pambak-Sevan-Syunik fault (PSSF), a major right-lateral strike-slip fault cutting through Armenia. Quantifying the deformations in terms of geometry, kinematics, slip rates and earthquake activity, using cosmogenic 3He, OSL/IRSL and radiocarbon dating techniques, reveal different behaviors between the two regions. Within the northwestern extension, in the region of Amasia, the PSSF bends to the west and splits into two main WNW–ESE trending reverse faults defining a compressional pop-up structure. We estimate an uplift rate and a shortening rate of 0.5 ± 0.1 mm/y and 1.4 ± 0.6 mm/y, respectively. This suggests that most of the ∼2 mm/y right lateral movement of the PSSF seems to be absorbed within the Amasia pop-structure. Within the southeastern extension, the PSSF shows signs of dying out within the Tsghuk Volcano region at the southernmost tip of the Syunik graben. There, the tectonic activity is characterized by a very slow NS trending normal faulting associated with a slight right-lateral movement. Slip rates analyses (i.e. vertical slip rate, EW stretching rate at 90° to the fault, and right-lateral slip rate of ∼0.2 mm/y, ∼0.1 mm/y and ∼0.05 mm/y, respectively) lead to the conclusion that the right lateral movement observed further north along the PSSF is mainly transferred within other active faults further west within the Karabagh (Hagari fault or other structures further northwestwards). Comparing our slip rates with those estimated from GPS data suggests that most of the deformation is localized and seismic, at least within the Tsghuk region. The geometrical and kinematic pattern observed within the two terminations of the PSSF suggests that the fault and its surrounding crustal blocks are presently rotating anticlockwise, as also observed within the GPS velocity field. This is consistent with the recent kinematic models proposed for the

  11. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  12. Geological Mapping and Identification of Active Fault in Site Candidate of Nuclear Power Plant Installation at Ketapang Area and Its Surroundings, Madura

    International Nuclear Information System (INIS)

    Ngadenin; Lilik-Subiantoro; Kurnia-Setiawan-W; Agus-Sutriyono; P Widito

    2004-01-01

    The result of economical study about demand of electric and water supply in Madura Island in 2015 will increase double for domestic or support industry in Madura Island which have to be solved sooner. One way which is considered to solve the problem is Desalination with nuclear electrical plant. In order to support the installation of nuclear Desalination plant, it is needed site free or far from active fault. Active fault is mainly factor to reject the area on site selection process. Aim of the research is to get geological information and identify of active fault in the site candidate of nuclear Desalination plant at Ketapang area and its surrounding by interpretation of air photos and Landsat imagery, geological and structure geological mapping as well as trenching. The lithology of Ketapang and Sokobana site candidate consists of reef and chalky limestone with form of morphology is undulating hills. Structurally, research areas forms a mono cline with east-westerly trending axis, plunging 10 o to E, the direction of strike is W-E, dip 10 o -30 o to the north. This research concludes that an active fault was not found in the area. (author)

  13. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure

    International Nuclear Information System (INIS)

    Le, Thanh Danh; Ahn, Kyoung Kwan

    2012-01-01

    A novel active vibration isolation system using negative stiffness structure (active system with NSS) for low excitation frequency ranges (< 5 Hz) is developed successfully. Here, the negative stiffness structure (NSS) is used to minimize the attraction of vibration. Then, the fuzzy sliding mode controller (FSMC) is designed to improve the vibration isolation performance of the active system with NSS. Based on Lyapunov stability theorem, the fuzzy control rules are constructed. Next, the experimental apparatus is built for evaluating the isolation efficiency of the proposed system controlled by the FSMC corresponding to various excitation conditions. In addition, the isolation performance of the active system with NSS, the active system without NSS and the passive the system with NSS is compared. The experimental results confirmed that the active system with NSS gives better isolation efficiency than the active system without NSS and the passive system with NSS in low excitation frequency areas

  14. Active and passive faults detection by using the PageRank algorithm

    Science.gov (United States)

    Darooneh, Amir H.; Lotfi, Nastaran

    2014-08-01

    Here we try to find active and passive places for earthquakes in the geographical region of Iran. The approach of Abe and Suzuki is adopted for modeling the seismic history of Iran by a complex directed network. By using the PageRank algorithm, we assign to any places in the region an activity index. Then, we determine the most active and passive places.

  15. High tsunami risk at northern tip of Sumatra as a result of the activity of the Sumatra Fault Zone (SFZ) combined with coastal landslides

    Science.gov (United States)

    Haridhi, H. A.; Huang, B. S.; Wen, K. L.; Mirza, A.; Rizal, S.; Purnawan, S.; Fajri, I.; Klingelhoefer, F.; Liu, C. S.; Lee, C. S.; Wilson, C. R.

    2017-12-01

    The lesson learned from the 12 January 2010, Mw 7.0 Haiti earthquake has shown that an earthquake with strike-slip faulting can produce a significant tsunami. This occasion is rare since in the fact of the fault consist predominantly of lateral motion, which is rarely associated with significant uplift or tsunami generation. Yet, another hint from this event, that this earthquake was accompanied by a coastal landslide. Again, there were only few records of a submarine slides as a primary source that generate a tsunami. Hence, the Haiti Mw 7.0 earthquake was generated by these combined mechanisms, i.e. strike-slip faulting earthquake and coastal landslide. In reflecting this event, the Sumatra region exhibit almost identical situation, where the right lateral strike-slip faulting of Sumatra Fault Zone (SFZ) is located. In this study, we are focusing at the northern tip of SFZ at Aceh Province. The reason we focused our study at its northern tip is that, since the Sumatra-Andaman mega earthquake and tsunami on 26 December 2004, which occurred at the subduction zone, there were no records of significant earthquake along the SFZ, where at this location the SFZ is divided into two faults, i.e. Aceh and Seulimeum faults. This study aimed as a mitigation effort, if an earthquake happened at these faults, do we observe a similar result as that happened at Haiti or not. To do so, we access the high-resolution shallow bathymetry data that acquired through a Community-Based Bathymetric Survey (CBBS), examines five scanned Single Channel Seismic (SCS) reflections data, perform the slope stability analysis and that simulate the tsunami using Cornell Multi-grid Coupled Tsunami Model (COMCOT) model with a combined source of fault activity and submarine landslide. The result shows that, by these combined mechanisms, if the earthquake as large as 7 Mw or larger, it could produce a tsunami as high as 6 meters along the coast. The detailed shallow bathymetric and the slope stability

  16. Amylase activity of a starch degrading bacteria isolated from soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... was maximum in the temperature range of 50 - 70oC, whereas this temperature range was deleterious for this ... The starch nutrient medium was inoculated with a single isolated .... (1983) high temperature may inactivate the.

  17. Antibacterial activities of lactic acid bacteria isolated from cow ...

    African Journals Online (AJOL)

    Method: Escherichia coli, Klebsiella species (spp) and LAB were isolated from thirty different cow faecal samples and the .... The PCR products were purified and sequenced for the ... their ability to produce bacteriocin-like inhibitory sub-.

  18. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    Science.gov (United States)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  19. Biological activity of some bacterial isolates against soil borne pathogenic fungi

    International Nuclear Information System (INIS)

    Makbol, H.; Refae, R.I.; Eid, H.A.; Mohamed, O.M.

    2011-01-01

    The antagonistic activity of three bacterial isolates namely Micro bacterium terregens, Cellulosimicrobium cellulans and Bacillus amyloliquefaciens was evaluated through direct confrontation method and filtrates culture against the growth of Fusarium solani, Fusarium oxysporum, Rhizoctonia solani and Phytophthra cactorum. All bacterial isolates showed the inhibition of the mycelia growth of the isolated fungi as resulting to confrontation methods except R. solani with C. cellulans that showed no inhibitory effect and energized the low activity with B. amyloliquefaciens. Culture filtrate of different bacterial isolates after different incubation periods revealed that the highest antifungal activity between 3-10 days

  20. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    Science.gov (United States)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  1. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    Science.gov (United States)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  2. Passive and partially active fault tolerance for massively parallel stream processing engines

    DEFF Research Database (Denmark)

    Su, Li; Zhou, Yongluan

    2018-01-01

    . On the other hand, an active approach usually employs backup nodes to run replicated tasks. Upon failure, the active replica can take over the processing of the failed task with minimal latency. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE...... also propose effective and efficient algorithms to optimize a partially active replication plan to maximize the quality of tentative outputs. We implemented PPA on top of Storm, an open-source MPSPE and conducted extensive experiments using both real and synthetic datasets to verify the effectiveness...

  3. Adaptive PCA based fault diagnosis scheme in imperial smelting process.

    Science.gov (United States)

    Hu, Zhikun; Chen, Zhiwen; Gui, Weihua; Jiang, Bin

    2014-09-01

    In this paper, an adaptive fault detection scheme based on a recursive principal component analysis (PCA) is proposed to deal with the problem of false alarm due to normal process changes in real process. Our further study is also dedicated to develop a fault isolation approach based on Generalized Likelihood Ratio (GLR) test and Singular Value Decomposition (SVD) which is one of general techniques of PCA, on which the off-set and scaling fault can be easily isolated with explicit off-set fault direction and scaling fault classification. The identification of off-set and scaling fault is also applied. The complete scheme of PCA-based fault diagnosis procedure is proposed. The proposed scheme is first applied to Imperial Smelting Process, and the results show that the proposed strategies can be able to mitigate false alarms and isolate faults efficiently. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    Directory of Open Access Journals (Sweden)

    B. Munkhtsetseg

    2009-12-01

    Full Text Available The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacteriocins as their antibacterial activities were eliminated completely after treatment with protease. Identi fi cation of bacteria is being carried out. Among the isolates 22 strains show protease enzyme producing activity. The selected strains isolated from mare’s fermented milk (airag or kumis and yoghurt (tarag show the speci fi c protease activity from 7.9 μ g/ml to 11.9 μ g/ml. The strain T2, isolated from yoghurt exhibited the highest proteolytic activity.

  5. The association between physical activity and social isolation in community-dwelling older adults.

    Science.gov (United States)

    Robins, Lauren M; Hill, Keith D; Finch, Caroline F; Clemson, Lindy; Haines, Terry

    2018-02-01

    Social isolation is an increasing concern in older community-dwelling adults. There is growing need to determine effective interventions addressing social isolation. This study aimed to determine whether a relationship exists between physical activity (recreational and/or household-based) and social isolation. An examination was conducted for whether group- or home-based falls prevention exercise was associated with social isolation. Cross-sectional analysis of telephone survey data was used to investigate relationships between physical activity, health, age, gender, living arrangements, ethnicity and participation in group- or home-based falls prevention exercise on social isolation. Univariable and multivariable ordered logistic regression analyses were conducted. Factors found to be significantly associated with reduced social isolation in multivariable analysis included living with a partner/spouse, reporting better general health, higher levels of household-based physical activity (OR = 1.03, CI = 1.01-1.05) and feeling less downhearted/depressed. Being more socially isolated was associated with symptoms of depression and a diagnosis of congestive heart failure (pseudo R 2 = 0.104). Findings suggest that household-based physical activity is related to social isolation in community-dwelling older adults. Further research is required to determine the nature of this relationship and to investigate the impact of group physical activity interventions on social isolation.

  6. Fault Diagnosis of Power Systems Using Intelligent Systems

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated

  7. Cross-validation of independent ultra-low-frequency magnetic recording systems for active fault studies

    Science.gov (United States)

    Wang, Can; Bin, Chen; Christman, Lilianna E.; Glen, Jonathan M. G.; Klemperer, Simon L.; McPhee, Darcy K.; Kappler, Karl N.; Bleier, Tom E.; Dunson, J. Clark

    2018-04-01

    When working with ultra-low-frequency (ULF) magnetic datasets, as with most geophysical time-series data, it is important to be able to distinguish between cultural signals, internal instrument noise, and natural external signals with their induced telluric fields. This distinction is commonly attempted using simultaneously recorded data from a spatially remote reference site. Here, instead, we compared data recorded by two systems with different instrumental characteristics at the same location over the same time period. We collocated two independent ULF magnetic systems, one from the QuakeFinder network and the other from the United States Geological Survey (USGS)-Stanford network, in order to cross-compare their data, characterize data reproducibility, and characterize signal origin. In addition, we used simultaneous measurements at a remote geomagnetic observatory to distinguish global atmospheric signals from local cultural signals. We demonstrated that the QuakeFinder and USGS-Stanford systems have excellent coherence, despite their different sensors and digitizers. Rare instances of isolated signals recorded by only one system or only one sensor indicate that caution is needed when attributing specific recorded signal features to specific origins.[Figure not available: see fulltext.

  8. Studies on amylase activity of an amylolytic bacterium isolated from ...

    African Journals Online (AJOL)

    Diverse microscopic, macroscopic and biochemical analysis of a starch degrading amylolytic bacterial strain isolated from the soil sample of Rajakkamangalam estuary, Kanyakumari district, Tamil Nadu, India, revealed its identity to the genus Bacillus. Maximum growth was observed at 12 h when the bacteria was cultured ...

  9. Terpenylated coumarins as SIRT1 activators isolated from Ailanthus altissima

    DEFF Research Database (Denmark)

    Dao, Trong-Tuan; Tran, Tien-Lam; Kim, Jayeon

    2012-01-01

    Four new terpenylated coumarins (1-4) were isolated from the stem bark of Ailanthus altissima by bioactivity-guided fractionation using an in vitro SIRT1 deacetylation assay. Their structures were identified as (2'R,3'R)-7-(2',3'-dihydroxy-3',7'-dimethylocta-6'-enyloxy)-6,8-dimethoxycoumarin (1),...

  10. Antimicrobial activities of lactic acid bacteria isolated from akamu ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... culturing on slants of appropriate media and stored at 4°C. Before each experiment ... as frozen culture in MRS broth supplemented with 25% sterile glycerol .... isolates was heated at different temperatures ranging from 40 to. 80°C for .... following treatment at pH 4.0, while complete inactivation occurred at ...

  11. Antifungal activity of plant growth-promoting rhizobacteria isolates ...

    African Journals Online (AJOL)

    Seven plant growth-promoting rhizobacterial (PGPR) strains were isolated from the rhizoplane and rhizosphere of wheat from four different sites of Pakistan. These strains were analyzed for production of indole acetic acid (IAA), phosphorous solublization capability and inhibition of Rhizoctonia solani on rye agar medium.

  12. Cellulolytic activities of wild type fungi isolated from decayed wood ...

    African Journals Online (AJOL)

    Prof. Ogunji

    amongst the fungal isolates while M. mucedo had the least cellulolytic ... across plant taxa, high cellulose content; typically in the range of ... antibiotic mixture made up of distilled water, 50 ml and Erythromycin: 500mg was .... cellulases including β-glucosidase were produced from Penicillium, Aspergillus and Trichoderma ...

  13. Antibacterial activity of chrysophanol isolated from Aloe excelsa ...

    African Journals Online (AJOL)

    AJB SERVER

    identification of Aloin A and Aloe emodium has already been achieved in A. excelsa (Coopoosamy and Magwa,. 2006) Chrysophanol is known to occur in both commercial viable species of aloes (Aloe vera and A. ferox), but has not previously been isolated from A. excelsa. MATERIALS AND METHODS. Measurements.

  14. Antibacterial Activities of Lactic Acid Bacteria Isolated from Selected ...

    African Journals Online (AJOL)

    Members of lactic acid bacteria (LAB) are known probiotics and have been reported to have antimicrobial properties. Although various researchers have documented the isolation of these bacteria from fruits and vegetables, studies on LAB associated with lettuce, cucumber and cabbage are limited and non-existing in ...

  15. Simple and efficient methods for isolation and activity measurement ...

    African Journals Online (AJOL)

    Jane

    2011-06-29

    Jun 29, 2011 ... Key words: Hirudin, thrombin titration method, chromatography, purification. INTRODUCTION. Since recombinant ... Escherichia coli in 1986, intensive research had been .... mixed with 50 µl sample was incubated in 37°C water for 5 min, then 5 µl .... conclusion, the concise and efficient isolation line of the.

  16. Norm based design of fault detectors

    DEFF Research Database (Denmark)

    Rank, Mike Lind; Niemann, Hans Henrik

    1999-01-01

    The design of fault detectors for fault detection and isolation (FDI) in dynamic systems is considered in this paper from a norm based point of view. An analysis of norm based threshold selection is given based on different formulations of FDI problems. Both the nominal FDI problem as well...

  17. Differentiation of enzymatic activity of yeasts and yeast-like microorganisms isolated from various environments

    Directory of Open Access Journals (Sweden)

    Elżbieta Bogusławska-Wąs

    2014-08-01

    Full Text Available The aim of study was to determinate enzymatic activity of yeast-like organisms - Candida lipolytica, Rhodotorula rubra, Trichosporon beigelii, Zygosaccharomyces sp. - isolated from the Szczecin Lagoon and herring salads. We have shown that lipolytic activity was higher than protcolytic for every strain tested. The lowest activity level was found out for amylolytic hydrolases. The results also demonstrated that yeast-like organisms isolated from the Szczecin Lagoon revealed much higher average enzymatic activity compared to tbe same species isolated from herring salads, excepting C. lipolytica.

  18. Safe-Taipei a Program Project for Strong Motions, Active Faults, and Earthquakes in the Taipei Metropolitan Area

    Science.gov (United States)

    Wang, Jeen-Hwa

    Strong collision between the Eurasian and Philippine Sea Plates causes high seismicity in the Taiwan region, which is often attacked by large earthquakes. Several cities, including three mega-cities, i.e., Taipei, Taichung, and Kaoshung, have been constructed on western Taiwan, where is lying on thick sediments. These cities, with a high-population density, are usually a regional center of culture, economics, and politics. Historically, larger-sized earthquakes, e.g. the 1935 Hsingchu—Taichung earthquake and the 1999 Chi—Chi earthquake, often caused serious damage on the cities. Hence, urban seismology must be one of the main subjects of Taiwan's seismological community. Since 2005, a program project, sponsored by Academia Sinica, has been launched to investigate seismological problems in the Taipei Metropolitan Area. This program project is performed during the 2005—2007 period. The core research subjects are: (1) the deployment of the Taipei Down-hole Seismic Array; (2) the properties of earthquakes and active faults in the area; (3) the seismogenic-zone structures, including the 3-D velocity and Q structures, of the area; (4) the characteristics of strong-motions and sites affects; and (5) strong-motion prediction. In addition to academic goals, the results obtained from the program project will be useful for seismic hazard mitigation not only for the area but also for others.

  19. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator

    International Nuclear Information System (INIS)

    Du, Haiping; Li, Weihua; Zhang, Nong

    2011-01-01

    This paper presents a study on continuously variable stiffness control of vehicle seat suspension using a magnetorheological elastomer (MRE) isolator. A concept design for an MRE isolator is proposed in the paper and its behavior is experimentally evaluated. An integrated seat suspension model, which includes a quarter-car suspension and a seat suspension with a driver body model, is used to design a sub-optimal H ∞ controller for an active isolator. The desired control force generated by this active isolator is then emulated by the MRE isolator through its continuously variable stiffness property when the actuating condition is met. The vibration control effect of the MRE isolator is evaluated in terms of driver body acceleration responses under both bump and random road conditions. The results show that the proposed control strategy achieves better vibration reduction performance than conventional on–off control

  20. THE ILICA BRANCH OF THE SOUTHEASTERN ESKIŞEHIR FAULT ZONE: AN ACTIVE RIGHT LATERAL STRIKE-SLIP STRUCTURE IN CENTRAL ANATOLIA, TURKEY

    Directory of Open Access Journals (Sweden)

    Korhan ESAT

    2016-12-01

    Full Text Available The Eskişehir Fault Zone is one of the prominent neotectonic structures of Turkey. It separates the west  Anatolian extensional province and the strike-slip induced northwest central Anatolian contractional area in the Anatolian Block. Its southeastern part is generally divided into three branches, namely the Ilıca, Yeniceoba, and Cihanbeyli from north to south, respectively. The right lateral strike-slip Ilıca branch (IB is an approximately 100-km-long fault and it is composed of several segments in a northwest-southeast direction. The slickensides, subsidiary fractures, cataclastic zone, fracture-controlled drainage pattern, right lateral stream deflections, deformation in the Quaternary unit observing in the seismic reflection sections, and seismicity of the region all indicate that the IB is an active right lateral strike-slip fault. The IB has also a regional tectonic importance as a boundary fault between the contractional and the extensional regions in central Anatolia considering that it is the southern limit of the contraction-related structures in the west-southwest of Ankara.

  1. Recent results of seismic isolation study in CRIEPI: Numerical activities

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo; Ishida, Katsuhiko; Yabana, Shurichi; Hirata, Kazuta

    1992-01-01

    Development of detailed numerical models of a bearing and the related isolation system Is necessary for establishing the rational design of the bearing and the system. The developed numerical models should be validated regarding the physical parameters and the basic assumption by comparing the experimental results with the numerical ones. The numerical work being conducted in CRIEPI consists of the following items: (1) Simple modeling of the behavior of the bearings capable of approximating the tests on bearings, and the validation of the model for the bearing by comparing the numerical results adopting the models with the shaking table tests results; (2) Detailed three-dimensional modeling of single bearings with finite-element codes, and the experimental validation of the model; (3)Simple and detailed three-dimensional modeling of isolation buildings and experimental validation

  2. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    Science.gov (United States)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-