WorldWideScience

Sample records for active fault diagnosis

  1. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...

  2. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems...

  3. Active Fault Diagnosis in Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampleddata systems. Applying the same AFD architecture as for continuous-time systems does not directly result in the same set of closed-loop matrix transfer functions. For continuous-time systems, the LFT (linear fractional...... transformation) structure in the connection between the parametric faults and the matrix transfer function (also known as the fault signature matrix) applied for AFD is not directly preserved for sampled-data system. As a consequence of this, the AFD methods cannot directly be applied for sampled-data systems....... Two methods are considered in this paper to handle the fault signature matrix for sampled-data systems such that standard AFD methods can be applied. The first method is based on a discretization of the system such that the LFT structure is preserved resulting in the same LFT structure in the fault...

  4. Active Fault Diagnosis in Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampleddata systems. Applying the same AFD architecture as for continuous-time systems does not directly result in the same set of closed-loop matrix transfer functions. For continuous-time systems, the LFT (linear fractional...

  5. Fault Diagnosis in a Centrifugal Pump Using Active Magnetic Bearings

    OpenAIRE

    Nordmann Rainer; Aenis Martin

    2004-01-01

    The number of rotors running in active magnetic bearings (AMBs) has increased over the last few years. These systems offer a great variety of advantages compared to conventional systems. The aim of this article is to use the AMBs together with a developed built-in software for identification, fault detection, and diagnosis in a centrifugal pump. A single-stage pump representing the turbomachines is investigated. During full operation of the pump, the AMBs are used as actuators to generate def...

  6. Active Fault Diagnosis and Assessment for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA LaRC need for innovative methods and tools for the diagnosis of aircraft faults and failures, Physical Optics Corporation (POC) proposes to...

  7. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  8. Active Fault Diagnosis for Hybrid Systems Based on Sensitivity Analysis and EKF

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas

    2011-01-01

    An active fault diagnosis approach for different kinds of faults is proposed. The input of the approach is designed off-line based on sensitivity analysis such that the maximum sensitivity for each individual system parameter is obtained. Using maximum sensitivity, results in a better precision...... in the estimation of the corresponding parameter. The fault detection and isolation is done by comparing the nominal parameters with those estimated by Extended Kalman Filter (EKF). In study, Gaussian noise is used as the input disturbance as well as the measurement noise for simulation. The method is implemented...

  9. Fault diagnosis based on controller modification

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2015-01-01

    faults can be detected and isolated using active methods, where an auxiliary input is applied. Using active methods for the diagnosis of parametric faults in closed-loop systems, the amplitude of the applied auxiliary input need to be increased to be able to detect and isolate the faults in a reasonable...... with both fault detection and isolation will be discussed. Also passive fault diagnosis methods based on controller modification will be discussed...

  10. Rapprochement between Active Fault Diagnosis and Change Detection in ARMAX Systems

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2006-01-01

    The connection between AFD (Active Fault Diagnosis), ARMAX systems and RST controllers etc. are considered in this paper. It is shown that the applied setup in modern AFD for closed loop systems can be considered as a generalization of the setup used in connection with traditional methods...... for system identification and controller design in the polynomial setting....

  11. Active Diverse Learning Neural Network Ensemble Approach for Power Transformer Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Yu Xu

    2010-10-01

    Full Text Available An ensemble learning algorithm was proposed in this paper by analyzing the error function of neural network ensembles, by which, individual neural networks were actively guided to learn diversity. By decomposing the ensemble error function, error correlation terms were included in the learning criterion function of individual networks. And all the individual networks in the ensemble were leaded to learn diversity through cooperative training. The method was applied in Dissolved Gas Analysis based fault diagnosis of power transformer. Experiment results show that, the algorithm has higher accuracy than IEC method and BP network. In addition, the performance is more stable than conventional ensemble method, i.e., Bagging and Boosting.

  12. On infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems

    Directory of Open Access Journals (Sweden)

    Punčochár Ivo

    2014-12-01

    Full Text Available The paper considers the problem of active fault diagnosis for discrete-time stochastic systems over an infinite time horizon. It is assumed that the switching between a fault-free and finitely many faulty conditions can be modelled by a finite-state Markov chain and the continuous dynamics of the observed system can be described for the fault-free and each faulty condition by non-linear non-Gaussian models with a fully observed continuous state. The design of an optimal active fault detector that generates decisions and inputs improving the quality of detection is formulated as a dynamic optimization problem. As the optimal solution obtained by dynamic programming requires solving the Bellman functional equation, approximate techniques are employed to obtain a suboptimal active fault detector.

  13. A study on transient enhancement for fault diagnosis based on an active noise control system

    OpenAIRE

    Tian, X.; Gu, Fengshou; Zhen, Dong; Tran, Tung; Ball, Andrew

    2012-01-01

    Active noise control (ANC) is a more effective technique used for acoustic noise cancelation in comparison with passive approaches which are difficult and expensive to implement, especially for cancelling the noise in the low frequency range. In the ANC system, an anti-noise signal is introduced to suppress the primary noise to produce a residual which is used for updating the adaptive filter coefficients. In this paper, a method of transient content enhancement for fault detection and diagno...

  14. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  15. Diagnosis Method for Analog Circuit Hard fault and Soft Fault

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2013-09-01

    Full Text Available Because the traditional BP neural network slow convergence speed, easily falling in local minimum and the learning process will appear oscillation phenomena. This paper introduces a tolerance analog circuit hard fault and soft fault diagnosis method based on adaptive learning rate and the additional momentum algorithm BP neural network. Firstly, tolerance analog circuit is simulated by OrCAD / Pspice circuit simulation software, accurately extracts fault waveform data by matlab program automatically. Secondly, using the adaptive learning rate and momentum BP algorithm to train neural network, and then applies it to analog circuit hard fault and soft fault diagnosis. With shorter training time, high precision and global convergence effectively reduces the misjudgment, missing, it can improve the accuracy of fault diagnosis and fast.  

  16. Quantitative diagnosis of fault severity trend of rolling element bearings

    Science.gov (United States)

    Cui, Lingli; Ma, Chunqing; Zhang, Feibin; Wang, Huaqing

    2015-11-01

    The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.

  17. Quantitative Diagnosis of Fault Severity Trend of Rolling Element Bearings

    Institute of Scientific and Technical Information of China (English)

    CUI Lingli; MA Chunqing; ZHANG Feibin; WANG Huaqing

    2015-01-01

    The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.

  18. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan;

    that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Four case studies on pilot processes show......The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process......-tolerant control....

  19. Aluminium Process Fault Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Nazatul Aini Abd Majid

    2015-01-01

    Full Text Available The challenges in developing a fault detection and diagnosis system for industrial applications are not inconsiderable, particularly complex materials processing operations such as aluminium smelting. However, the organizing into groups of the various fault detection and diagnostic systems of the aluminium smelting process can assist in the identification of the key elements of an effective monitoring system. This paper reviews aluminium process fault detection and diagnosis systems and proposes a taxonomy that includes four key elements: knowledge, techniques, usage frequency, and results presentation. Each element is explained together with examples of existing systems. A fault detection and diagnosis system developed based on the proposed taxonomy is demonstrated using aluminium smelting data. A potential new strategy for improving fault diagnosis is discussed based on the ability of the new technology, augmented reality, to augment operators’ view of an industrial plant, so that it permits a situation-oriented action in real working environments.

  20. Probabilistic Performance Analysis of Fault Diagnosis Schemes

    Science.gov (United States)

    Wheeler, Timothy Josh

    The dissertation explores the problem of rigorously quantifying the performance of a fault diagnosis scheme in terms of probabilistic performance metrics. Typically, when the performance of a fault diagnosis scheme is of utmost importance, physical redundancy is used to create a highly reliable system that is easy to analyze. However, in this dissertation, we provide a general framework that applies to more complex analytically redundant or model-based fault diagnosis schemes. For each fault diagnosis problem in this framework, our performance metrics can be computed accurately in polynomial-time. First, we cast the fault diagnosis problem as a sequence of hypothesis tests. At each time, the performance of a fault diagnosis scheme is quantified by the probability that the scheme has chosen the correct hypothesis. The resulting performance metrics are joint probabilities. Using Bayes rule, we decompose these performance metrics into two parts: marginal probabilities that quantify the reliability of the system and conditional probabilities that quantify the performance of the fault diagnosis scheme. These conditional probabilities are used to draw connections between the fault diagnosis and the fields of medical diagnostic testing, signal detection, and general statistical decision theory. Second, we examine the problem of computing the performance metrics efficiently and accurately. To solve this problem, we examine each portion of the fault diagnosis problem and specify a set of sufficient assumptions that guarantee efficient computation. In particular, we provide a detailed characterization of the class of finite-state Markov chains that lead to tractable fault parameter models. To demonstrate that these assumptions enable efficient computation, we provide pseudocode algorithms and prove that their running time is indeed polynomial. Third, we consider fault diagnosis problems involving uncertain systems. The inclusion of uncertainty enlarges the class of systems

  1. Fault diagnosis of a Wind Turbine Rotor using a Multi-blade Coordinate Framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2012-01-01

    Fault diagnosis of a wind turbine rotor is considered. The faults considered are sensor faults and blades mounted with a pitch offset. A fault at a single blade will result in asymmetries in the rotor, which can be applied for fault diagnosis. The diagnosis is derived by using the multiblade...... coordinate (MBC) transformation also known as the Coleman transformation together with active fault diagnosis (AFD). This transforms the setup from rotating to fixed frame coordinates. The rotor speed acts as the auxiliary input for the active diagnosis. The applied method take the varying rotor speed...

  2. Fault Diagnosis in Deaerator Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    S Srinivasan

    2007-01-01

    Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.

  3. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...

  4. Transformer fault diagnosis using continuous sparse autoencoder.

    Science.gov (United States)

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou

    2016-01-01

    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis. PMID:27119052

  5. Transformer fault diagnosis using continuous sparse autoencoder.

    Science.gov (United States)

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou

    2016-01-01

    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.

  6. Novel Fault Diagnosis Scheme for HVDC System via ESO

    Institute of Scientific and Technical Information of China (English)

    YAN Bing-yong; TIAN Zuo-hua; SHI Song-jiao

    2007-01-01

    A novel fault detection and identification (FDI) scheme for HVDC (High Voltage Direct Current Transmission) system was presented. It was based on the unique active disturbance rejection concept, where the HVDC system faults were estimated using an extended states observer (ESO). Firstly, the mathematical model of HVDC system was constructed, where the system states and disturbance were treated as an extended state. An augment HVDC system was established by using the extended state in rectify side and converter side, respectively. Then, a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory. The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances, which can be used for the fault diagnosis purpose. A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance. Finally, different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach. Compared with the neural network based or support vector machine based FDI approach, the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately. What's more important, it needs not do complex online calculations and the training of neural network so that it can be applied into practice.

  7. Fault Diagnosis and Accommodation of LTI systems by modified Youla parameterization

    Directory of Open Access Journals (Sweden)

    Minupriya A

    2012-06-01

    Full Text Available In this paper an Active Fault Tolerant Control (FTC scheme is proposed for Linear Time Invariant (LTI systems, which achieves fault diagnosis followed by fault accommodation. The fault diagnosis scheme is carried out in two steps; Fault detection followed by Fault isolation. Fault detection filter use the sensor measurements to generate residuals, which have a unique static pattern in response to each fault. Distortion in these static patterns generates the probability of the presence of fault. The fault accommodation scheme is carried out using the Generalized Internal Model Control (GIMC architecture, also known as modified Youla parameterization. In addition, performance indices are also evaluated to indicate that the resulting fault tolerant scheme can detect, identify and accommodate actuator and sensor faults under additive faults. The DC motor example is considered for the demonstration of the proposed scheme.

  8. Fault Diagnosis in HVAC Chillers

    Science.gov (United States)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  9. Fault Diagnosis of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2013-04-01

    Full Text Available In this study, we propose the least disturbance algorithm adding scale factor and shift factor. The dynamic learning ratio can be calculated to minimize the scale factor and shift factor of wavelet function and the variation of net weights and the algorithm improve the stability and the convergence of wavelet neural network. It was applied to build the dynamical model of autonomous underwater vehicles and the residuals are generated by comparing the outputs of the dynamical model with the real state values in the condition of thruster fault. Fault detection rules are distilled by residual analysis to execute thruster fault diagnosis. The results of simulation prove the effectiveness.

  10. Residual Generation Methods for Fault Diagnosis with Automotive Applications

    OpenAIRE

    Svärd, Carl

    2009-01-01

    The problem of fault diagnosis consists of detecting and isolating faults present in a system. As technical systems become more and more complex and the demands for safety, reliability and environmental friendliness are rising, fault diagnosis is becoming increasingly important. One example is automotive systems, where fault diagnosis is a necessity for low emissions, high safety, high vehicle uptime, and efficient repair and maintenance. One approach to fault diagnosis, providing potentially...

  11. Bearing fault diagnosis based on spectrum images of vibration signals

    International Nuclear Information System (INIS)

    Bearing fault diagnosis has been a challenge in the monitoring activities of rotating machinery, and it’s receiving more and more attention. The conventional fault diagnosis methods usually extract features from the waveforms or spectrums of vibration signals in order to correctly classify faults. In this paper, a novel feature in the form of images is presented, namely analysis of the spectrum images of vibration signals. The spectrum images are simply obtained by doing fast Fourier transformation. Such images are processed with two-dimensional principal component analysis (2DPCA) to reduce the dimensions, and then a minimum distance method is applied to classify the faults of bearings. The effectiveness of the proposed method is verified with experimental data. (paper)

  12. Sensor fault diagnosis with a probabilistic decision process

    Science.gov (United States)

    Sharifi, Reza; Langari, Reza

    2013-01-01

    In this paper a probabilistic approach to sensor fault diagnosis is presented. The proposed method is applicable to systems whose dynamic can be approximated with only few active states, especially in process control where we usually have a relatively slow dynamics. Unlike most existing probabilistic approaches to fault diagnosis, which are based on Bayesian Belief Networks, in this approach the probabilistic model is directly extracted from a parity equation. The relevant parity equation can be found using a model of the system or through principal component analysis of data measured from the system. In addition, a sensor detectability index is introduced that specifies the level of detectability of sensor faults in a set of analytically redundant sensors. This index depends only on the internal relationships of the variables of the system and noise level. The method is tested on a model of the Tennessee Eastman process and the result shows a fast and reliable prediction of fault in the detectable sensors.

  13. Mechanical Fault Diagnosis Using Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    LI Ling-jun; ZHANG Zhou-suo; HE Zheng-jia

    2003-01-01

    The Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory ( SLT) , which can get good classification effects even with a few learning samples. SVM represents a new approach to pattern classification and has been shown to be particularly successful in many fields such as image identification and face recognition. It also provides us with a new method to develop intelligent fault diagnosis. This paper presents a SVM-based approach for fault diagnosis of rolling bearings. Experimentation with vibration signals of bearings is conducted. The vibration signals acquired from the bearings are used directly in the calculating without the preprocessing of extracting its features. Compared with the methods based on Artificial Neural Network (ANN), the SVM-based meth-od has desirable advantages. It is applicable for on-line diagnosis of mechanical systems.

  14. Soft Fault Diagnosis for Analog Circuits Based on Slope Fault Feature and BP Neural Networks

    Institute of Scientific and Technical Information of China (English)

    HU Mei; WANG Hong; HU Geng; YANG Shiyuan

    2007-01-01

    Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault feature and back propagation neural networks (BPNN). The reported approach uses the voltage relation function between two nodes as fault features; and for linear analog circuits, the voltage relation function is a linear function, thus the slope is invariant as fault feature. Therefore, a unified fault feature for both hard fault (open or short fault) and soft fault (parametric fault) is extracted. Unlike other NN-based diagnosis methods which utilize node voltages or frequency response as fault features, the reported BPNN is trained by the extracted feature vectors, the slope features are calculated by just simulating once for each component, and the trained BPNN can achieve all the soft faults diagnosis of the component. Experiments show that our approach is promising.

  15. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Xuexia Liu

    2012-12-01

    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  16. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...... unable to solve. The primary cause that UAVs has reached the current level of development is their military potential. Both for surveillance operations and direct strikes, UAVs has many benefits compared to manned aircraft, and the biggest of those are that no pilots are put in direct contact with enemy...... a specific UAV, used by the Danish military, it is investigated how a number of critical faults can be detected and handled. One of the challenges using telemetry data for the fault diagnosis is the limited bandwidth in the radio link between the aircraft and the base-station on ground. This combined...

  17. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hyun; Seong, Poong Hyun (Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering)

    1994-06-01

    In this work, the Fuzzy Signed Digraph (FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators. (Author).

  18. Bispectrum Analysis in Fault Diagnosis of Gears

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The application of bispectrum analysis in fault diagnosis of gears is studied in this paper. Bispectrum analysis is capable of removing Gaussian or symmetric non-Gaussian noise and providing more information than power spectrum analysis. The results of the research show that normal gear signals, cracked gear signals and broken gear signals can be easily distinguished by using bispectrum as the signal features. The bispectrum diagonal slice Bx(ω1,ω2) can be used to identify the gear condition automatically.

  19. Application of the fault diagnosis strategy based on hierarchical information fusion in motors fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper has analyzed merits and demerits of both neural network technique and of the information fusion methods based on the D-S (dempster-shafer evidence) Theory as well as their complementarity, proposed the hierarchical information fusion fault diagnosis strategy by combining the neural network technique and the fused decision diagnosis based on D-S Theory, and established a corresponding functional model. Thus, we can not only solve a series of problems caused by rapid growth in size and complexity of neural network structure with diagnosis parameters increasing, but also can provide effective method for basic probability assignment in D-S Theory. The application of the strategy to diagnosing faults of motor bearings has proved that this method is of fairly high accuracy and reliability in fault diagnosis.

  20. Diagnosis and Fault-tolerant Control, 3rd Edition

    OpenAIRE

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan; Staroswiecki, Marcel

    2015-01-01

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical ...

  1. Fault Diagnosis and Fault-Tolerant Control of Uncertain Robot Manipulators Using High-Order Sliding Mode

    Directory of Open Access Journals (Sweden)

    Mien Van

    2016-01-01

    Full Text Available A robust fault diagnosis and fault-tolerant control (FTC system for uncertain robot manipulators without joint velocity measurement is presented. The actuator faults and robot manipulator component faults are considered. The proposed scheme is designed via an active fault-tolerant control strategy by combining a fault diagnosis scheme based on a super-twisting third-order sliding mode (STW-TOSM observer with a robust super-twisting second-order sliding mode (STW-SOSM controller. Compared to the existing FTC methods, the proposed FTC method can accommodate not only faults but also uncertainties, and it does not require a velocity measurement. In addition, because the proposed scheme is designed based on the high-order sliding mode (HOSM observer/controller strategy, it exhibits fast convergence, high accuracy, and less chattering. Finally, computer simulation results for a PUMA560 robot are obtained to verify the effectiveness of the proposed strategy.

  2. Diagnosis and Fault-tolerant Control, 3rd Edition

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan;

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...

  3. SSME fault monitoring and diagnosis expert system

    Science.gov (United States)

    Ali, Moonis; Norman, Arnold M.; Gupta, U. K.

    1989-01-01

    An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.

  4. Application of ActiveX technology in Remote Fault Diagnosis System based on B/S%ActiveX技术在基于B/S模式的远程故障诊断系统中的应用

    Institute of Scientific and Technical Information of China (English)

    刘平; 魏文军

    2012-01-01

    Firstly the Browser/Server structure and the characteristic of ActiveX technology were introduced. Combined with equipment fault diagnosis, a model of Remote Fault Diagnosis System based on Browser/ Server mode was designed. ActiveX technology was utilized in the System, and Web pages embraced ActiveX controls were downloaded on the client through browser. The function of remote fault diagnosis was achieved through the properties and methods of ActiveX controls, finally the issue of ActiveX controls maintenance and security were illustrated.%介绍了B/S结构和ActiveX技术的特点,结合设备故障诊断设计一种基于B/S模式的远程故障诊断系统的模型.系统中应用ActiveX技术,在客户端通过浏览器下载包含ActiveX控件的Web页面,通过ActiveX控件的属性和方法来帮助实现远程故障诊断的功能,最后对ActiveX控件的升级维护及安全性问题加以说明.

  5. Robust fault diagnosis for a class of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Zhanshan WANG; Huaguang ZHANG

    2006-01-01

    Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The upper bounds of the state estimation error and fault estimation error of the adaptive observer are given respectively and the effects of parameter in the adaptive updating laws on fault estimation accuracy are also discussed. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.

  6. Synthetic Intelligent Fault Diagnosis Technology for Complex Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A fault diagnosis method of knowledge-based fuzzy neural network is proposed for complex process, which is hard to develop practical mathematical model. Fault detection is performed through a knowledge-based system, where fault detection heuristic rules have been generated from deep and shallow knowledge of the process. The fuzzy neural network performs the fault diagnosis task. This method does not need practical mathematical models of objects, so it is a strong implement for complex process.

  7. Structural Analysis Extended with Active Fault Isolation - Methods and Algorithms

    DEFF Research Database (Denmark)

    Gelso, Esteban R.; Blanke, Mogens

    2009-01-01

    Isolability of faults is a key issue in fault diagnosis whether the aim is maintenance or active fault-tolerant control. It is often encountered that while faults are detectable, they are only group-wise isolable from a usual diagnostic point of view. However, active injection of test signals on...... system inputs can considerably enhance fault isolability. This paper investigates this possibility of active fault isolation from a structural point of view. While such extension of the structural analysis approach was suggested earlier, algorithms and case studies were needed to explore this theory. The...

  8. Intelligent Fault Diagnosis in Lead-zinc Smelting Process

    Institute of Scientific and Technical Information of China (English)

    Wei-Hua Gui; Chun-Hua Yang; Jing Teng

    2007-01-01

    According to the fault characteristic of the imperial smelting process (ISP), a novel intelligent integrated fault diagnostic system is developed. In the system fuzzy neural networks are utilized to extract fault symptom and expert system is employed for effective fault diagnosis of the process. Furthermore, fuzzy abductive inference is introduced to diagnose multiple faults. Feasibility of the proposed system is demonstrated through a pilot plant case study.

  9. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  10. Transformer fault diagnosis using continuous sparse autoencoder

    OpenAIRE

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou

    2016-01-01

    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity ...

  11. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  12. Parity space-based fault diagnosis of CCBII braking system

    Institute of Scientific and Technical Information of China (English)

    黄志武; 杨迎泽; 王晶; 李赟

    2013-01-01

    Fault diagnosis is a key issue of the CCBII(computer controlled brake II) braking system, because the CCBII braking system is very complicated and nonlinear, which may exhibit isolated and multi-component coupled faults. A parity space-based method was proposed for fault diagnosis of CCBII braking systems. Firstly, the mathematical models were established according to three function modules of CCBII braking systems where the air fluid theory was utilized. Then, parity vector and threshold function were designed for each output of the system so as to identify more system faults. Fault character matrix was built based on the causal relationship between the output and the fault according to the system function and internal structure. Finally, fault detection and isolation can be realized by the comparison of the observed system output and the fault character matrix. Simulation results show that the proposed method is entirely feasible and effective.

  13. Application of Ferrography to Fault Diagnosis of Hydraulic Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper deals with research on the successful use of ferrography as a wear measurement method for condition monitoring and fault diagnosis of hydraulic systems.The analysis program and progression is discussed, and a case study for condition monitoring and fault diagnosis of hydraulic systems by means of ferrography is also reviewed.

  14. Mine-Hoist Active Fault Tolerant Control System and Strategy

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-jie; WANG Yao-cai; MENG Jiang; ZHAO Peng-cheng; CHANG Yan-wei

    2005-01-01

    Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control module (FCM). When a fault is judged from some sensor by FDM, FCM reconfigure the state of MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliability and safety of mine hoist. The simulating result shows that, MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there are quite difference between the real data and the prior fault modes.

  15. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  16. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  17. Fault diagnosis algorithm based on switching function for boost converters

    Science.gov (United States)

    Cho, H.-K.; Kwak, S.-S.; Lee, S.-H.

    2015-07-01

    A fault diagnosis algorithm, which is necessary for constructing a reliable power conversion system, should detect fault occurrences as soon as possible to protect the entire system from fatal damages resulting from system malfunction. In this paper, a fault diagnosis algorithm is proposed to detect open- and short-circuit faults that occur in a boost converter switch. The inductor voltage is abnormally kept at a positive DC value during a short-circuit fault in the switch or at a negative DC value during an open-circuit fault condition until the inductor current becomes zero. By employing these abnormal properties during faulty conditions, the inductor voltage is compared with the switching function to detect each fault type by generating fault alarms when a fault occurs. As a result, from the fault alarm, a decision is made in response to the fault occurrence and the fault type in less than two switching time periods using the proposed algorithm constructed in analogue circuits. In addition, the proposed algorithm has good resistivity to discontinuous current-mode operation. As a result, this algorithm features the advantages of low cost and simplicity because of its simple analogue circuit configuration.

  18. Intelligent System for Fault Diagnosis in Automotive Applications

    OpenAIRE

    Kabir, Mashud

    2008-01-01

    This work presents an intelligent system for fault diagnosis in automotive applications. The system is proposed to handle faults in a running car as well as in a car which is in the process of being developed. The main goal of this work is to use the vast knowledge previously acquired by system experts, to visualize, localize and fix a fault in any of the life phases of a car. The existing techniques and systems which are in use for fault diagnosis are investigated. There is no system which c...

  19. Similarity Matching Techniques For Fault Diagnosis In Automotive Infotainment Electronics

    Directory of Open Access Journals (Sweden)

    Mashud Kabir

    2009-08-01

    Full Text Available Fault diagnosis has become a very important area of research during the last decade due to the advancement of mechanical and electrical systems in industries. The automobile is a crucial field where fault diagnosis is given a special attention. Due to the increasing complexity and newly added features in vehicles, a comprehensive study has to be performed in order to achieve an appropriate diagnosis model. A diagnosis system is capable of identifying the faults of a system by investigating the observable effects (or symptoms. The system categorizes the fault into a diagnosis class and identifies a probable cause based on the supplied fault symptoms. Fault categorization and identification are done using similarity matching techniques. The development of diagnosis classes is done by making use of previous experience, knowledge or information within an application area. The necessary information used may come from several sources of knowledge, such as from system analysis. In this paper similarity matching techniques for fault diagnosis in automotive infotainment applications are discussed.

  20. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  1. Application of General fractal Dimension to Coupling Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents the coucept of general and sensitive dimension, and also proposes the calculation formula of the general dimension least squares method. By calculating and analyzing the power spectrum and general dimension from the fault sample, the relationship is achieved between sample status and the general dimension from vibration signals function of general dimension is proposed, and calculations are carried out for a monitor signal and samples signal. The diagnosis method based on fractal theory is effective through the concrete examples of the steam-electric generating set fault diagnosis, and the correlation coefficient of general dimension between a monitor signal and samples signal can improve the accuracy for fault diagnosis.

  2. Fault Diagnosis and Reliability Analysis Using Fuzzy Logic Method

    Institute of Scientific and Technical Information of China (English)

    Miao Zhinong; Xu Yang; Zhao Xiangyu

    2006-01-01

    A new fuzzy logic fault diagnosis method is proposed. In this method, fuzzy equations are employed to estimate the component state of a system based on the measured system performance and the relationship between component state and system performance which is called as "performance-parameter" knowledge base and constructed by expert. Compared with the traditional fault diagnosis method, this fuzzy logic method can use humans intuitive knowledge and dose not need a precise mapping between system performance and component state. Simulation proves its effectiveness in fault diagnosis. Then, the reliability analysis is performed based on the fuzzy logic method.

  3. Application of MBAM Neural Network in CNC Machine Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    宋刚; 胡德金

    2004-01-01

    In order to improve the bidirectional associative memory (BAM) performance, a modified BAM model (MBAM) is used to enhance neural network(NN)'s memory capacity and error correction capability, theoretical analysis and experiment results illuminate that MBAM performs much better than the original BAM. The MBAM is used in computer numeric control(CNC) machine fault diagnosis, it not only can complete fault diagnosis correctly but also have fairly high error correction capability for disturbed Input Information sequence. Moreover MBAM model is a more convenient and effective method of solving the problem of CNC electric system fault diagnosis.

  4. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  5. Failure characteristics analysis and fault diagnosis for liquid rocket engines

    CERN Document Server

    Zhang, Wei

    2016-01-01

    This book concentrates on the subject of health monitoring technology of Liquid Rocket Engine (LRE), including its failure analysis, fault diagnosis and fault prediction. Since no similar issue has been published, the failure pattern and mechanism analysis of the LRE from the system stage are of particular interest to the readers. Furthermore, application cases used to validate the efficacy of the fault diagnosis and prediction methods of the LRE are different from the others. The readers can learn the system stage modeling, analyzing and testing methods of the LRE system as well as corresponding fault diagnosis and prediction methods. This book will benefit researchers and students who are pursuing aerospace technology, fault detection, diagnostics and corresponding applications.

  6. Wind Turbine Gearbox Fault Diagnosis Method Based on Riemannian Manifold

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2014-01-01

    Full Text Available As multivariate time series problems widely exist in social production and life, fault diagnosis method has provided people with a lot of valuable information in the finance, hydrology, meteorology, earthquake, video surveillance, medical science, and other fields. In order to find faults in time sequence quickly and efficiently, this paper presents a multivariate time series processing method based on Riemannian manifold. This method is based on the sliding window and uses the covariance matrix as a descriptor of the time sequence. Riemannian distance is used as the similarity measure and the statistical process control diagram is applied to detect the abnormity of multivariate time series. And the visualization of the covariance matrix distribution is used to detect the abnormity of mechanical equipment, leading to realize the fault diagnosis. With wind turbine gearbox faults as the experiment object, the fault diagnosis method is verified and the results show that the method is reasonable and effective.

  7. Diagnosis of airspeed measurement faults for unmanned aerial vehicles

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2014-01-01

    Airspeed sensor faults are common causes for incidents with unmanned aerial vehicles with pitot tube clogging or icing being the most common causes. Timely diagnosis of such faults or other artifacts in signals from airspeed sensing systems could potentially prevent crashes. This paper employs...

  8. Fault diagnosis system for the Outokumpu flash smelting process

    International Nuclear Information System (INIS)

    Fault diagnosis systems have attracted the growing interest of researchers in a number of engineering areas. The number of applications has increased and successful results are reported widely. This paper presents the results of principal component analysis carried out on the Outokumpu flash smelting process the waste heat boiler being analysed in more detail. The PCA results are evaluated and the configuration of a fault diagnosis system is proposed. (author)

  9. Intelligent fault isolation and diagnosis for communication satellite systems

    Science.gov (United States)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  10. A Neural Network Appraoch to Fault Diagnosis in Analog Circuits

    Institute of Scientific and Technical Information of China (English)

    尉乃红; 杨士元; 等

    1996-01-01

    Thia paper presents a neural network based fault diagnosis approach for analog circuits,taking the tolerances of circuit elements into account.Specifically,a normalization rule of input information,a pseudo-fault domain border(PFDB)pattern selection method and a new output error function are proposed for training the backpropagation(BP) network to be a fault diagnoser.Experimental results demonstrate that the diagnoser performs as well as or better than any classical approaches in terms of accuracy,and provides at least an order-of-magnitude improvement in post-fault diagnostic speed.

  11. HIGHER ORDER SPECTRAL ANALYSIS IN FAULT DIAGNOSIS OF ROTORS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is analyzed, and the coupling models are summarized. As a result, higher order spectra analysis is introduced into fault diagnosis of rotors. A brief review of the properties of higher order spectra is presented. Furthermore, the bicoherence spectrum is employed to extract the features that signify the machinery condition. Experiments show that bicoherence spectrum patterns of different faults are quite different, so it is proposed to identify the faults in rotors.

  12. Fault Diagnosis of an Intelligent Building Facility Using Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-ding; XU Jin-yu; BAI Er-lei

    2008-01-01

    There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model for fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.

  13. Fault diagnosis with neural networks. Part 1: Trajectory recognition

    Directory of Open Access Journals (Sweden)

    Enrique Eduardo Tarifa

    2010-04-01

    Full Text Available The present investigation was focused on formulating a method for designing a fault diagnosis system for chemical plants by using artificial neural networks. Fault diagnosis is aimed at identifying a fault which affects a given process by analysing the signs supplied by process sensors. Neuronal networks are mathematical models which try to imitate the functioning of the human brain. A neural network is defined by its structure and the learning method used. The difficulty with diagnosing faults lies in recognising the tralectories (temporal series of data followed by process variables when a fault affects the process; when tralectories are recognised, the associated fault is also identified. The theory so developed recommended an optimised structure and training method for the neural networks to use. Both the proposed structure and the training method were tested by carrying out comparative studies between traditional structures and a training method. The results showed the superiority of the neural networks designed and trained with the method proposed in this work. Except for simple processes, fault diagnosis is a more complex problem than simply identifying tralectories, because a fault may cause an infinite set of tralectories (i.e. flow. The fundaments established in this work are thus used in Part II, where the analysis is extended to recognise flows.

  14. Improved Ensemble Empirical Mode Decomposition for Rolling Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Hongsheng Su

    2013-07-01

    Full Text Available Rolling bearing is an important part in mechanical system and faults occur frequently with vibration noise. Empirical mode decomposition (EMD is a tool for nonlinear and non-stationary signals analysis. However, the major drawbacks of EMD is mode mixing problem, ensemble empirical mode decomposition (EEMD provides a new tool for signal analysis, and it is an improved technique of EMD. In order to alleviate the mode mixing problem and choose useful IMFs, a method called EEMD and distributing fitting testing is proposed in this paper, and it is used in rolling bearing fault diagnosis. Firstly, using it for rolling bearing fault diagnosis, the fault signal is decomposed by EEMD. Then applying distributing fitting testing to choose components with truly physical meaning and the de-noised signal can be obtained. Finally, utilizing envelope spectrum to distinguish different faults. The results demonstrate the proposed method can sift useful IMFs and diagnose faults effectively, such as inner race fault, outer race fault. The advantage of the proposed method is suitable for rolling bearing diagnosis.

  15. Diagnosis and Fault-tolerant Control, 2nd edition

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan;

    to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Five case studies on pilot processes show the applicability......Fault-tolerant control aims at a graceful degradation of the behaviour of automated systems in case of faults. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults that bring about sudden shutdowns and loss of availability. The book...... of the presented methods. The theoretical results are illustrated by two running examples used throughout the book. The second edition includes new material about reconfigurable control, diagnosis of nonlinear systems, and remote diagnosis. The application examples are extended by a steering-by-wire system...

  16. Node Grouping in System-Level Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dafang; XIE Gaogang; MIN Yinghua

    2001-01-01

    With the popularization of network applications and multiprocessor systems,dependability of systems has drawn considerable attention. This paper presents a new technique of node grouping for system-level fault diagnosis to simplify the complexity of large system diagnosis. The technique transforms a complicated system to a group network, where each group may consist of many nodes that are either fault-free or faulty. It is proven that the transformation leads to a unique group network to ease system diagnosis. Then it studies systematically one-step t-faults diagnosis problem based on node grouping by means of the concept of independent point sets and gives a simple sufficient and necessary condition. The paper presents a diagnosis procedure for t-diagnosable systems. Furthermore, an efficient probabilistic diagnosis algorithm for practical applications is proposed based on the belief that most of the nodes in a system are fault-free. The result of software simulation shows that the probabilistic diagnosis provides high probability of correct diagnosis and low diagnosis cost, and is suitable for systems of any kind of topology.

  17. Nonlinear fault diagnosis method based on kernel principal component analysis

    Institute of Scientific and Technical Information of China (English)

    Yan Weiwu; Zhang Chunkai; Shao Huihe

    2005-01-01

    To ensure the system run under working order, detection and diagnosis of faults play an important role in industrial process. This paper proposed a nonlinear fault diagnosis method based on kernel principal component analysis (KPCA). In proposed method, using essential information of nonlinear system extracted by KPCA, we constructed KPCA model of nonlinear system under normal working condition. Then new data were projected onto the KPCA model. When new data are incompatible with the KPCA model, it can be concluded that the nonlinear system isout of normal working condition. Proposed method was applied to fault diagnosison rolling bearings. Simulation results show proposed method provides an effective method for fault detection and diagnosis of nonlinear system.

  18. Fault detection and diagnosis of diesel engine valve trains

    Science.gov (United States)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  19. Planetary Gearbox Fault Diagnosis Using Envelope Manifold Demodulation

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2016-01-01

    Full Text Available The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by wavelet enveloping. The envelope energy is adopted as an indicator to select meshing frequency band. Manifold learning is utilized to reduce the effect of noise within meshing frequency band. The fault characteristic frequency of the planetary gear is shown by spectrogram. The planetary gearbox model and test rig are established and experiments with planet gear faults are conducted for verification. All results of experiment analysis demonstrate its effectiveness and reliability.

  20. Electric machines modeling, condition monitoring, and fault diagnosis

    CERN Document Server

    Toliyat, Hamid A; Choi, Seungdeog; Meshgin-Kelk, Homayoun

    2012-01-01

    With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condi

  1. Fault diagnosis and prognostic of solid oxide fuel cells

    Science.gov (United States)

    Wu, XiaoJuan; Ye, Qianwen

    2016-07-01

    One of the major hurdles for solid oxide fuel cell (SOFC) commercialization is poor long-term performance and durability. Accurate fault diagnostic and prognostic technologies are two important tools to improve SOFC durability. In literature, plenty of diagnosis techniques for SOFC systems have been successfully designed. However, no literature studies SOFC fault prognosis approaches. In this paper a unified fault diagnosis and prognosis strategy is presented to identify faults (anode poisoning, cathode humidification or normal) and predict the remaining useful life for SOFC systems. Using a squares support vector machine (LS-SVM) classifier, a diagnosis model is built to identify SOFC different types of faults. After fault detection, two hidden semi-Mark models (HSMMs) are respectively employed to estimate SOFC remaining useful life in the case of anode poisoning and cathode humidification. The simulation results show that the fault recognition rates with the LS-SVM model are at best 97%, and the predicted error of the remaining useful life is within ±20%.

  2. MODIFIED LAPLACIAN EIGENMAP METHOD FOR FAULT DIAGNOSIS

    Institute of Scientific and Technical Information of China (English)

    JIANG Quansheng; JIA Minping; HU Jianzhong; XU Feiyun

    2008-01-01

    A novel method based on the improved Laplacian eigenmap algorithm for fault pattern classification is proposed. Via modifying the Laplacian eigenmap algorithm to replace Euclidean distance with kernel-based geometric distance in the neighbor graph construction, the method can preserve the consistency of local neighbor information and effectively extract the low-dimensional manifold features embedded in the high-dimensional nonlinear data sets. A nonlinear dimensionality reduction algorithm based on the improved Laplacian eigenmap is to directly learn high-dimensional fault signals and extract the intrinsic manifold features from them. The method greatly preserves the global geometry structure information embedded in the signals, and obviously improves the classification performance of fault pattern recognition. The experimental results on both simulation and engineering indicate the feasibility and effectiveness of the new method.

  3. Distributed adaptive diagnosis of sensor faults using structural response data

    Science.gov (United States)

    Dragos, Kosmas; Smarsly, Kay

    2016-10-01

    The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.

  4. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory.

    Science.gov (United States)

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-18

    Sensor data fusion plays an important role in fault diagnosis. Dempster-Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  5. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory.

    Science.gov (United States)

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-01

    Sensor data fusion plays an important role in fault diagnosis. Dempster-Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods. PMID:26797611

  6. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    Science.gov (United States)

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-01

    Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods. PMID:26797611

  7. Fault diagnosis of monoblock centrifugal pump using SVM

    Directory of Open Access Journals (Sweden)

    V. Muralidharan

    2014-09-01

    Full Text Available Monoblock centrifugal pumps are employed in variety of critical engineering applications. Continuous monitoring of such machine component becomes essential in order to reduce the unnecessary break downs. At the outset, vibration based approaches are widely used to carry out the condition monitoring tasks. Particularly fuzzy logic, support vector machine (SVM and artificial neural networks were employed for continuous monitoring and fault diagnosis. In the present study, the application of SVM algorithm in the field of fault diagnosis and condition monitoring is discussed. The continuous wavelet transforms were calculated for different families and at different levels. The computed transformation coefficients form the feature set for the classification of good and faulty conditions of the components of centrifugal pump. The classification accuracies of different continuous wavelet families at different levels were calculated and compared to find the best wavelet for the fault diagnosis of the monoblock centrifugal pump.

  8. Development of CIMS and FMS in Faults Diagnosis System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The research and practice of CIMS and FMS has brought about a great development to advanced manufacturing systems for decades. The experience of failure and success during the process of development is a revelation and reference for the design of a fault diagnosis system. This paper focuses on its function of directing to the design of a fault diagnosis system in terms of the flexibility of the system, the human's importance in the system, and the design of a distributed system. In view of the tendency of CIMS and FMS, the article also states the principle that the new fault diagnosis system should be improved by enhancing hardware in software, remote Internet service, and sustainable development.

  9. Robust fault diagnosis for a class of nonlinear systems with time delay

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Robust fault diagnosis problems based on adaptive observer technique are studied for a class of time delayed nonlinear system with external disturbance. Adaptive fault updating laws were designed to estimate the fault and to guarantee the stability of the diagnosis system. The effects of adjusting parameters in adaptive fault updating laws on the fault estimation accuracy were analyzed. For a designed fault diagnosis system, the super bounds of the state estimation error and fault estimation error of the adaptive observer were discussed, which further showed how the parameters in the adaptive fault updating laws influenced the fault estimation accuracy.Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.

  10. Analog fault diagnosis by inverse problem technique

    KAUST Repository

    Ahmed, Rania F.

    2011-12-01

    A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.

  11. Research into a distributed fault diagnosis system and its application

    Science.gov (United States)

    Qian, Suxiang; Jiao, Weidong; Lou, Yongjian; Shen, Xiaomei

    2005-12-01

    CORBA (Common Object Request Broker Architecture) is a solution to distributed computing methods over heterogeneity systems, which establishes a communication protocol between distributed objects. It takes great emphasis on realizing the interoperation between distributed objects. However, only after developing some application approaches and some practical technology in monitoring and diagnosis, can the customers share the monitoring and diagnosis information, so that the purpose of realizing remote multi-expert cooperation diagnosis online can be achieved. This paper aims at building an open fault monitoring and diagnosis platform combining CORBA, Web and agent. Heterogeneity diagnosis object interoperate in independent thread through the CORBA (soft-bus), realizing sharing resource and multi-expert cooperation diagnosis online, solving the disadvantage such as lack of diagnosis knowledge, oneness of diagnosis technique and imperfectness of analysis function, so that more complicated and further diagnosis can be carried on. Take high-speed centrifugal air compressor set for example, we demonstrate a distributed diagnosis based on CORBA. It proves that we can find out more efficient approaches to settle the problems such as real-time monitoring and diagnosis on the net and the break-up of complicated tasks, inosculating CORBA, Web technique and agent frame model to carry on complemental research. In this system, Multi-diagnosis Intelligent Agent helps improve diagnosis efficiency. Besides, this system offers an open circumstances, which is easy for the diagnosis objects to upgrade and for new diagnosis server objects to join in.

  12. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  13. Inter Processor Communication for Fault Diagnosis in Multiprocessor Systems

    Directory of Open Access Journals (Sweden)

    C. D. Malleswar

    1994-04-01

    Full Text Available In the preseJlt paper a simple technique is proposed for fault diagnosis for multiprocessor and multiple system environments, wherein all microprocessors in the system are used in part to check the health of their neighbouring processors. It involves building simple fail-safe serial communication links between processors. Processors communicate with each other over these links and each processor is made to go through certain sequences of actions intended for diagnosis, under the observation of another processor .With limited overheads, fault detection can be done by this method. Also outlined are some of the popular techniques used for health check of processor-based systems.

  14. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    A power converter is needed in almost all kinds of renewable energy systems and drive systems. It is used both for controlling the renewable source and for interfacing with the load, which can be grid-connected or working in standalone mode. Further, it drives the motors efficiently. Increasing...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...

  15. Multiscale Permutation Entropy Based Rolling Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Jinde Zheng

    2014-01-01

    Full Text Available A new rolling bearing fault diagnosis approach based on multiscale permutation entropy (MPE, Laplacian score (LS, and support vector machines (SVMs is proposed in this paper. Permutation entropy (PE was recently proposed and defined to measure the randomicity and detect dynamical changes of time series. However, for the complexity of mechanical systems, the randomicity and dynamic changes of the vibration signal will exist in different scales. Thus, the definition of MPE is introduced and employed to extract the nonlinear fault characteristics from the bearing vibration signal in different scales. Besides, the SVM is utilized to accomplish the fault feature classification to fulfill diagnostic procedure automatically. Meanwhile, in order to avoid a high dimension of features, the Laplacian score (LS is used to refine the feature vector by ranking the features according to their importance and correlations with the main fault information. Finally, the rolling bearing fault diagnosis method based on MPE, LS, and SVM is proposed and applied to the experimental data. The experimental data analysis results indicate that the proposed method could identify the fault categories effectively.

  16. Fault Diagnosis of Batch Reactor Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Sujatha Subramanian

    2014-01-01

    Full Text Available Fault diagnosis of a batch reactor gives the early detection of fault and minimizes the risk of thermal runaway. It provides superior performance and helps to improve safety and consistency. It has become more vital in this technical era. In this paper, support vector machine (SVM is used to estimate the heat release (Qr of the batch reactor both normal and faulty conditions. The signature of the residual, which is obtained from the difference between nominal and estimated faulty Qr values, characterizes the different natures of faults occurring in the batch reactor. Appropriate statistical and geometric features are extracted from the residual signature and the total numbers of features are reduced using SVM attribute selection filter and principle component analysis (PCA techniques. artificial neural network (ANN classifiers like multilayer perceptron (MLP, radial basis function (RBF, and Bayes net are used to classify the different types of faults from the reduced features. It is observed from the result of the comparative study that the proposed method for fault diagnosis with limited number of features extracted from only one estimated parameter (Qr shows that it is more efficient and fast for diagnosing the typical faults.

  17. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    Science.gov (United States)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  18. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    Science.gov (United States)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  19. Autoregressive modelling for rolling element bearing fault diagnosis

    Science.gov (United States)

    Al-Bugharbee, H.; Trendafilova, I.

    2015-07-01

    In this study, time series analysis and pattern recognition analysis are used effectively for the purposes of rolling bearing fault diagnosis. The main part of the suggested methodology is the autoregressive (AR) modelling of the measured vibration signals. This study suggests the use of a linear AR model applied to the signals after they are stationarized. The obtained coefficients of the AR model are further used to form pattern vectors which are in turn subjected to pattern recognition for differentiating among different faults and different fault sizes. This study explores the behavior of the AR coefficients and their changes with the introduction and the growth of different faults. The idea is to gain more understanding about the process of AR modelling for roller element bearing signatures and the relation of the coefficients to the vibratory behavior of the bearings and their condition.

  20. Integrating Control and Fault Diagnosis: A Separation Result

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Grimble, M.J

    1996-01-01

    in actuators and sensors is discussed.This unit is able to: (1) follow references and reject disturbancesrobustly, (2) control the system such that undetected failures do nothave disastrous effects, (3) reduce the number of false alarms, and (4)identify which faults have occured. The method uses a type...... the diagnosis capabilities, in contrast to common beliefs....

  1. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...

  2. Fault Diagnosis Of A Water For Injection System Using Enhanced Structural Isolation

    DEFF Research Database (Denmark)

    Laursen, Morten; Blanke, Mogens; Düstegör, Dilek

    2008-01-01

    A water for injection system supplies chilled sterile water as solvent to pharmaceutical products. There are ultimate requirements to the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process may cause loss of one or more batches...... of the production. Early diagnosis of faults is hence of considerable interest for this process. This study investigates the properties of multiple matchings with respect to isolability and it suggests to explore the topologies of multiple use-modes for the process and to employ active techniques for fault...

  3. Open-Switch Fault Diagnosis and Fault Tolerant for Matrix Converter with Finite Control Set-Model Predictive Control

    DEFF Research Database (Denmark)

    Peng, Tao; Dan, Hanbing; Yang, Jian;

    2016-01-01

    topology and a cost function to select the best switching state for the next sampling period. The proposed fault diagnosis method is realized by monitoring the load currents and judging the switching state to locate the faulty switch. Compared to the conventional modulation strategies such as carrier......-switch fault conditions without any redundant hardware, a fault tolerant strategy based on predictive control is also studied. The fault tolerant strategy is to select the most appropriate switching state, associated with the remaining normal switches of the MC. Experiment results are presented to show...... the feasibility and effectiveness of the proposed fault diagnosis method and fault tolerant strategy....

  4. Study on Missile Intelligent Fault Diagnosis System Based on Fuzzy NN Expert System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert systemand build up intelligent fault diagnosis for a type of mis-sile weapon system, the concrete implementation of a fuzzyNN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, theintelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment.The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosisfor large-scale missile weapon equipment.

  5. Fault diagnosis and isolation of the componentand sensor for aircraft engine

    Institute of Scientific and Technical Information of China (English)

    QIU Xiao-jie; HUANG Jin-quan; LU Feng; LIU Nan

    2012-01-01

    Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only distinguish among sensor fault,component fault and component-sensor simultaneous fault,but also isolate and locate sensor fault and the type of engine component fault when the engine component fault and the sensor faults occur simultaneously.The double-threshold mechanism has been proposed,in which the fault diagnostic threshold changed with the sensor type and the engine condition,and it greatly improved the accuracy and robustness of sensor fault diagnosis system.Simulation results show that the approach proposed can diagnose and isolate the sensor and engine component fault with improved accuracy.It effectively improves the fault diagnosis ability of aircraft engine.

  6. A Novel Framework for Real-Time Fault Diagnosis Based on Dynamic Fault Tree Analysis

    Directory of Open Access Journals (Sweden)

    Rongxing Duan

    2013-02-01

    Full Text Available To meet the real-time diagnosis requirements of the complex system, this study proposes a novel framework for real-time fault diagnosis using dynamic fault tree analysis. It pays special attention to meeting two challenges: model development and real-time reasoning. In terms of the challenge of model development, we use a dynamic fault tree model to capture the dynamic behavior of system failure mechanisms and calculate some reliability results by mapping a dynamic fault tree into an equivalent Bayesian Network (BN in order to avoid the infamous state space explosion problem. In terms of the real-time reasoning challenge, we adopt a logic compilation based inference algorithm, which compiles the BN into an arithmetic circuit and retrieves answers to probabilistic queries by evaluating and differentiating the arithmetic circuit. Furthermore, we incorporate sensors data into fault diagnosis, cope with the sensors reliability and propose the schemes on how to update the Diagnostic Importance Factor (DIF and the minimal cut sets. Finally, a case study is given to validate the efficiency of this method.

  7. Digraph and fault-tree technique for online process diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ulerich, N.H.

    1989-01-01

    Available diagnostic systems and existing diagnostic techniques illustrate the need for a comprehensive, model-based theory for on-line process diagnosis. This thesis classifies the diagnostic task into two functions, problem recognition and fault detection. The thesis hypothesizes the need for goal-directed, causal models to perform these functions in chemical process systems. A diagnostic theory is developed comprising goal-directed, causal models and a method to use these models to perform the diagnostic functions. Digraph and fault trees form the causal model base. The fault tree's primal events are verified with available on-line indications using probabilistic theory and the digraph's causal structure. Problem recognition is disclosed through monitoring the on-line unreliability of the process goal. Fault detection is accomplished through ranking the failure rates of potential process failures using on-line indications and design data. The theory provides a basis for performing comprehensive, robust system diagnosis. Examples illustrate the technique's ability to diagnose single and multiple system faults including equipment failures, disturbances, and indicator failures in linear and control loop systems. Limitations to application of the theory are discussed.

  8. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    Science.gov (United States)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  9. Fault diagnosis and fault-tolerant control and guidance for aerospace vehicles from theory to application

    CERN Document Server

    Zolghadri, Ali; Cieslak, Jerome; Efimov, Denis; Goupil, Philippe

    2014-01-01

    Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as improved flight performance, self-protection and extended life of structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of important electrical flight control system failures: the oscillatory failure case, runaway, and jamming. Advanced fault detection and diagnosis for linear and nonlinear systems are described. Lastly recovery strategies appropriate to remaining acuator/sensor/c...

  10. A Comparative Study of Genetic Algorithm Parameters for the Inverse Problem-based Fault Diagnosis of Liquid Rocket Propulsion Systems

    Institute of Scientific and Technical Information of China (English)

    Erfu Yang; Hongjun Xiang; Dongbing Gu; Zhenpeng Zhang

    2007-01-01

    Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future.

  11. A Fault Dictionary-Based Fault Diagnosis Approach for CMOS Analog Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Mouna Karmani

    2011-10-01

    Full Text Available In this paper, we propose a simulation-before-test (SBT fault diagnosis methodology based on the use of afault dictionary approach. This technique allows the detection and localization of the most likely defects ofopen-circuit type occurring in Complementary Metal–Oxide–Semiconductor (CMOS analog integratedcircuits (ICs interconnects. The fault dictionary is built by simulating the most likely defects causing thefaults to be detected at the layout level. Then, for each injected fault, the spectre’s frequency responses andthe power consumption obtained by simulation are stored in a table which constitutes the fault dictionary.In fact, each line in the fault dictionary constitutes a fault signature used to identify and locate aconsidered defect. When testing, the circuit under test is excited with the same stimulus, and the responsesobtained are compared to the stored ones. To prove the efficiency of the proposed technique, a full customCMOS operational amplifier is implemented in 0.25 μm technology and the most likely faults of opencircuittype are deliberately injected and simulated at the layout level.

  12. Graphical User Interface Aided Online Fault Diagnosis of Electric Motor - DC motor case study

    Directory of Open Access Journals (Sweden)

    POSTALCIOGLU OZGEN, S.

    2009-10-01

    Full Text Available This paper contains graphical user interface (GUI aided online fault diagnosis for DC motor. The aim of the research is to prevent system faults. Online fault diagnosis has been studied. Design of fault diagnosis has two main levels: Level 1 comprises a traditional control loop; Level 2 contains knowledge based fault diagnosis. Fault diagnosis technique contains feature extraction module, feature cluster module and fault decision module. Wavelet analysis has been used for the feature extraction module. For the feature cluster module, fuzzy cluster has been applied. Faults effects are examined on the system using statistical analysis. In this study Fault Diagnosis technique obtains fault detection, identification and halting the system. In the meantime graphical user interface (GUI is opened when fault is detected. GUI shows the measurement value, fault time and fault type. This property gives some information about the system to the personnel. As seen from the simulation results, faults can be detected and identified as soon as fault appears. In summary, if the system has a fault diagnosis structure, system dangerous situations can be avoided.

  13. Improving Robustness of Network Fault Diagnosis to Uncertainty in Observations

    DEFF Research Database (Denmark)

    Grønbæk, Lars Jesper; Schwefel, Hans-Peter; Ceccarelli, Andrea;

    2010-01-01

    issues of measurement errors by quantifying uncertainty. The uncertainty information is applied in the diagnostic component to improve its robustness. Three diagnosis components have been proposed based on the Hidden Markov Model formalism: (H0) representing a classical approach, (H1) a static...... compensation of (H0) to uncertainties and (H2) dynamically adapting diagnosis to uncertainty information. From uncertainty injection scenarios of added measurement noise we demonstrate how using uncertainty information can provide a structured approach of improving diagnosis.......Performing decentralized network fault diagnosis based on network traffic is challenging. Besides inherent stochastic behaviour of observations, measurements may be subject to errors degrading diagnosis timeliness and accuracy. In this paper we present a novel approach in which we aim to mitigate...

  14. Monitoring and diagnosis for sensor fault detection using GMDH methodology

    International Nuclear Information System (INIS)

    The fault detection and diagnosis system is an Operator Support System dedicated to specific functions that alerts operators to sensors and actuators fault problems, and guide them in the diagnosis before the normal alarm limits are reached. Operator Support Systems appears to reduce panels complexity caused by the increase of the available information in nuclear power plants control room. In this work a Monitoring and Diagnosis System was developed based on the GMDH (Group Method of Data Handling) methodology. The methodology was applied to the IPEN research reactor IEA-R1. The system performs the monitoring, comparing GMDH model calculated values with measured values. The methodology developed was firstly applied in theoretical models: a heat exchanger model and an IPEN reactor theoretical model. The results obtained with theoretical models gave a base to methodology application to the actual reactor operation data. Three GMDH models were developed for actual operation data monitoring: the first one using just the thermal process variables, the second one was developed considering also some nuclear variables, and the third GMDH model considered all the reactor variables. The three models presented excellent results, showing the methodology utilization viability in monitoring the operation data. The comparison between the three developed models results also shows the methodology capacity to choose by itself the best set of input variables for the model optimization. For the system diagnosis implementation, faults were simulated in the actual temperature variable values by adding a step change. The fault values correspond to a typical temperature descalibration and the result of monitoring faulty data was then used to build a simple diagnosis system based on fuzzy logic. (author)

  15. Research on the Algorithm of Avionic Device Fault Diagnosis Based on Fuzzy Expert System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic element is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples,the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle.

  16. Design and implementation of an expert system for remote fault diagnosis in ship lift

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper an expert system for remote fault diagnosis in the ship lift was developed by analysis of the fault tree and combination with VPN. The fault tree was constructed based on the operation condition of the ship lift. The diagnosis model was constructed by hierarchical classification of the fault tree structure, and the inference mechanism was given. Logical structure of the fault diagnosis in the ship lift was proposed. The implementation of the expert system for remote fault diagnosis in the ship...

  17. Design and implementation of an expert system for remote fault diagnosis in ship lift

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper an expert system for remote fault diagnosis in the ship lift was developed by analysis of the fault tree and combination with VPN. The fault tree was constructed based on the operation condition of the ship lift. The diagnosis model was constructed by hierarchical classification of the fault tree structure, and the inference mechanism was given. Logical structure of the fault diagnosis in the ship lift was proposed. The implementation of the expert system for remote fault diagnosis in the ship lift was discussed, and the expert system developed was realized on the VPN virtual network. The system was applied to the Gaobaozhou ship lift project, and it ran successfully.

  18. Fault Diagnosis for Electrical Distribution Systems using Structural Analysis

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Blanke, Mogens; Østergaard, Jacob

    2014-01-01

    relations (ARR) are likely to change. The algorithms used for diagnosis may need to change accordingly, and finding efficient methods to ARR generation is essential to employ fault-tolerant methods in the grid. Structural analysis (SA) is based on graph-theoretical results, that offer to find analytic...... redundancies in large sets of equations only from the structure (topology) of the equations. A salient feature is automated generation of redundancy relations. The method is indeed feasible in electrical networks where circuit theory and network topology together formulate the constraints that define...... analysis of power systems, it demonstrates detection and isolation of failures in a network, and shows how typical faults are diagnosed. Nonlinear fault simulations illustrate the results....

  19. Sensor Fault Detection and Diagnosis for autonomous vehicles

    Directory of Open Access Journals (Sweden)

    Realpe Miguel

    2015-01-01

    Full Text Available In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.

  20. Rolling bearing fault diagnosis using an optimization deep belief network

    International Nuclear Information System (INIS)

    The vibration signals measured from a rolling bearing are usually affected by the variable operating conditions and background noise which lead to the diversity and complexity of the vibration signal characteristics, and it is a challenge to effectively identify the rolling bearing faults from such vibration signals with no further fault information. In this paper, a novel optimization deep belief network (DBN) is proposed for rolling bearing fault diagnosis. Stochastic gradient descent is used to efficiently fine-tune all the connection weights after the pre-training of restricted Boltzmann machines (RBMs) based on the energy functions, and the classification accuracy of the DBN is improved. Particle swarm is further used to decide the optimal structure of the trained DBN, and the optimization DBN is designed. The proposed method is applied to analyze the simulation signal and experimental signal of a rolling bearing. The results confirm that the proposed method is more accurate and robust than other intelligent methods. (paper)

  1. Rolling bearing fault diagnosis using an optimization deep belief network

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Zhang, Xun; Niu, Maogui

    2015-11-01

    The vibration signals measured from a rolling bearing are usually affected by the variable operating conditions and background noise which lead to the diversity and complexity of the vibration signal characteristics, and it is a challenge to effectively identify the rolling bearing faults from such vibration signals with no further fault information. In this paper, a novel optimization deep belief network (DBN) is proposed for rolling bearing fault diagnosis. Stochastic gradient descent is used to efficiently fine-tune all the connection weights after the pre-training of restricted Boltzmann machines (RBMs) based on the energy functions, and the classification accuracy of the DBN is improved. Particle swarm is further used to decide the optimal structure of the trained DBN, and the optimization DBN is designed. The proposed method is applied to analyze the simulation signal and experimental signal of a rolling bearing. The results confirm that the proposed method is more accurate and robust than other intelligent methods.

  2. Vehicle gearbox fault diagnosis using noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Metwalley, Sameh M.; Hammad, Nabil; Abouel-Seoud, Shawki A. [Engineering, Helwan University, Cairo (Egypt)

    2011-07-01

    Noise measurement is one of many technologies for health monitoring and diagnosis of rotating machines such as gearboxes. Although significant research has been undertaken in understanding the potential of noise measurement in monitoring gearboxes this has been solely applied on any types of gears (spur, helical, ..etc.). The condition monitoring of a lab-scale, single stage, gearbox, represents the vehicle real gearbox, using non-destructive inspection methodology and the processing of the acquired waveform with advanced signal processing techniques is the aim of the present work. Acoustic emission was utilized for this purpose. The experimental setup and the instrumentation are present in detail. Emphasis is given on the signal processing of the acquired noise measurement signal in order to extract conventional as well as novel parameters potential diagnostic value from the monitoring waveform. The evolution of selected parameters/features versus test time is provided, evaluated and the parameters with most interesting diagnostic behavior are highlighted. The present work also reports the results concluded by long term ({approx} 6.0 h) experiments to a defected gear system, with a transverse cuts ranged from 0.75 mm to 3.0 mm to simulate the tooth crack. Different parameters, related by the analysis of the recording signals coming from acoustic emission are presented and their diagnostic value is discussed for the development of a condition monitoring system.

  3. Vehicle gearbox fault diagnosis using noise measurements

    Directory of Open Access Journals (Sweden)

    Sameh M. Metwalley, Nabil Hammad, Shawki A. Abouel-Seoud

    2011-03-01

    Full Text Available Noise measurement is one of many technologies for health monitoring and diagnosis of rotating machines such as gearboxes. Although significant research has been undertaken in understanding the potential of noise measurement in monitoring gearboxes this has been solely applied on any types of gears (spur, helical, ..etc.. The condition monitoring of a lab-scale, single stage, gearbox, represents the vehicle real gearbox, using non-destructive inspection methodology and the processing of the acquired waveform with advanced signal processing techniques is the aim of the present work. Acoustic emission was utilized for this purpose. The experimental setup and the instrumentation are present in detail. Emphasis is given on the signal processing of the acquired noise measurement signal in order to extract conventional as well as novel parameters potential diagnostic value from the monitoring waveform. The evolution of selected parameters/features versus test time is provided, evaluated and the parameters with most interesting diagnostic behavior are highlighted. The present work also reports the results concluded by long term (~ 6.0 h experiments to a defected gear system, with a transverse cuts ranged from 0.75 mm to 3.0 mm to simulate the tooth crack. Different parameters, related by the analysis of the recording signals coming from acoustic emission are presented and their diagnostic value is discussed for the development of a condition monitoring system.

  4. FDSAC-SPICE: fault diagnosis software for analog circuit based on SPICE simulation

    Science.gov (United States)

    Cao, Yiqin; Cen, Zhao-Hui; Wei, Jiao-Long

    2009-12-01

    This paper presents a novel fault diagnosis software (called FDSAC-SPICE) based on SPICE simulator for analog circuits. Four important techniques in AFDS-SPICE, including visual user-interface(VUI), component modeling and fault modeling (CMFM), fault injection and fault simulation (FIFS), fault dictionary and fault diagnosis (FDFD), greatly increase design-for-test and diagnosis efficiency of analog circuit by building a fault modeling-injection-simulationdiagnosis environment to get prior fault knowledge of target circuit. AFDS-SPICE also generates accurate fault coverage statistics that are tied to the circuit specifications. With employing a dictionary diagnosis method based on node-signalcharacters and regular BPNN algorithm, more accurate and effective diagnosis results are available for analog circuit with tolerance.

  5. Segmented infrared image analysis for rotating machinery fault diagnosis

    Science.gov (United States)

    Duan, Lixiang; Yao, Mingchao; Wang, Jinjiang; Bai, Tangbo; Zhang, Laibin

    2016-07-01

    As a noncontact and non-intrusive technique, infrared image analysis becomes promising for machinery defect diagnosis. However, the insignificant information and strong noise in infrared image limit its performance. To address this issue, this paper presents an image segmentation approach to enhance the feature extraction in infrared image analysis. A region selection criterion named dispersion degree is also formulated to discriminate fault representative regions from unrelated background information. Feature extraction and fusion methods are then applied to obtain features from selected regions for further diagnosis. Experimental studies on a rotor fault simulator demonstrate that the presented segmented feature enhancement approach outperforms the one from the original image using both Naïve Bayes classifier and support vector machine.

  6. Multisensor Data Fusion for Automotive Engine Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    王赟松; 褚福磊; 何永勇; 郭丹

    2004-01-01

    This paper describes mainly a decision-level data fusion technique for fault diagnosis for electronically controlled engines.Experiments on a SANTANA AJR engine show that the data fusion method provides good engine fault diagnosis.In data fusion methods, the data level fusion has small data preprocessing loads and high accuracy, but requires commensurate sensor data and has poor operational performance.The decision-level fusion based on Dempster-Shafer evidence theory can process noncommensurate data and has robust operational performance, reduces ambiguity, increases confidence, and improves system reliability, but has low fusion accuracy and high data preprocessing cost.The feature-level fusion provides good compromise between the above two methods, which becomes gradually mature.In addition, acquiring raw data is a precondition to perform data fusion, so the system for signal acquisition and processing for an automotive engine test is also designed by the virtual instrument technology.

  7. A Fuzzy Mathematics Based Fault Auto-diagnosis System for Vacuum Resin Shot Dosing Equipment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of the analysis of faults and their causes of vacuum resin shot dosing equipment, the fuzzy model of fault diagnosis for the equipment is constructed, and the fuzzy relationship matrix, the symptom fuzzy vector, the fuzzy compound arithmetic operator, and the diagnosis principle of the model are determined. Then the fault auto-diagnosis system for the equipment is designed, and the functions for real-time monitoring its operation condition and for fault auto-diagnosis are realized. Finally, the experiments of fault auto-diagnosis are conducted in practical production and the veracity of the system is verified.

  8. Multiscale Permutation Entropy Based Rolling Bearing Fault Diagnosis

    OpenAIRE

    Jinde Zheng; Junsheng Cheng; Yu Yang

    2014-01-01

    A new rolling bearing fault diagnosis approach based on multiscale permutation entropy (MPE), Laplacian score (LS), and support vector machines (SVMs) is proposed in this paper. Permutation entropy (PE) was recently proposed and defined to measure the randomicity and detect dynamical changes of time series. However, for the complexity of mechanical systems, the randomicity and dynamic changes of the vibration signal will exist in different scales. Thus, the definition of MPE is introduced and...

  9. Chaos Synchronization Based Novel Real-Time Intelligent Fault Diagnosis for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2014-01-01

    Full Text Available The traditional solar photovoltaic fault diagnosis system needs two to three sets of sensing elements to capture fault signals as fault features and many fault diagnosis methods cannot be applied with real time. The fault diagnosis method proposed in this study needs only one set of sensing elements to intercept the fault features of the system, which can be real-time-diagnosed by creating the fault data of only one set of sensors. The aforesaid two points reduce the cost and fault diagnosis time. It can improve the construction of the huge database. This study used Matlab to simulate the faults in the solar photovoltaic system. The maximum power point tracker (MPPT is used to keep a stable power supply to the system when the system has faults. The characteristic signal of system fault voltage is captured and recorded, and the dynamic error of the fault voltage signal is extracted by chaos synchronization. Then, the extension engineering is used to implement the fault diagnosis. Finally, the overall fault diagnosis system only needs to capture the voltage signal of the solar photovoltaic system, and the fault type can be diagnosed instantly.

  10. Modeling, estimation, fault detection and fault diagnosis of spacecraft air contaminants

    Science.gov (United States)

    Narayan, Anand P.

    1998-07-01

    The objective of this dissertation is to develop a framework for the modeling, estimation, fault detection and diagnosis of air contaminants aboard spacecraft. Safe air is a vital resource aboard spacecraft for crewed missions, and especially so in long range missions, where the luxury of returning to earth for a clean-up does not exist. This research uses modern control theory in conjunction with advanced fluid mechanics to achieve the objective of developing an implementable comprehensive monitoring systems, suitable for use on space missions. First, a three-dimensional transport model is developed in order to model the dispersion of air contaminants. The flow field, which is an important input to the transport model, is obtained by solving the Navier Stokes equations for the cabin geometry and the appropriate boundary conditions, using a finite element method. Steady flow fields are computed for various conditions for both laminar and turbulent cases. Contamination dispersion studies are undertaken both for routine substances introduced through the inlet ducts and for emissions of toxics inside the cabin volume. The dispersion studies indicate that lumped models and even a two-dimensional model are sometimes inadequate to assure that the Spacecraft Maximum Allowable Concentrations (SMACs) are not exceeded locally. Since the research was targeted at real-time application aboard Spacecraft, a state estimation routine is implemented using Implicit Kalman Filtering. The routine makes use of the model predictions and measurements from the sensor system in order to arrive at an optimal estimate of the state of the system for each time step. Fault detection is accomplished through the use of analytical redundancy, where error residuals from the Kalman filter are monitored in order to detect any faults in the system, and to distinguish between sensor and process faults. Finally, a fault diagnosis system is developed, which is a combination of sensitivity analysis and an

  11. Study on the Consultation Mechanism of an Internet-Based Remote Fault Diagnosis System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Aimed at the deficiency of the mechanism of management and consultation, an idea of an internet-based Virtual Diagnosis Center (VDC) for machine fault is proposed, and the key elements of remote consultation are abstracted. Around the key elements, the construct scheme and cooperative mechanism among experts of VDC are designed. According to the diagnosed object, the context knowledge of a fault machine, fault cases and ActiveX-based analysis tools are integrated into a multimedia consultation environment in VDC to enhance the efficiency of expert consultation. Simultaneously, the technique of push subscription in a SQL Server is utilized to collect machine condition data in an enterprise machine condition database, which ensures the security of the database. The VDC system in Xi'an Jiaotong University has been applied to remote diagnosis of a blower in Wuhan Iron and Steel Corporation and the system construction reasonableness and the running stability are verified.

  12. Research of Multi-Agent System based satellite fault diagnosis technology

    Institute of Scientific and Technical Information of China (English)

    范显峰; 姜兴渭; 黄文虎; 谷吉海

    2002-01-01

    Following the theory of Multi-Agent System (MAS) and using series-wound structure and shunt-wound structure of Agents, the performance of Agent was improved to satisfy the need of satellite fault diagno-sis, and a tridimensional MAS model of satellite fault diagnosis was thus established for the MAS based planardiagnosis system, which decentralizes the whole diagnosing task into subtasks to be performed by different func-tional Agents to make the complicated fault diagnosis very simple and the diagnosis system more intelligent.This method improved the reliability and accuracy of diagnosis and made the maintenance and upgrading of thesatellite fault diagnosis system very easy as well.

  13. Design of Fault Diagnosis Observer for HAGC System on Strip Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    DONG Min; LIU Cai

    2006-01-01

    By building mathematical model for HAGC (hydraulic automation gauge control) system of strip rolling mill, treating faults as unknown inputs induced by model uncertainty, and analyzing fault direction, an unknown input fault diagnosis observer group was designed. Fault detection and isolation were realized through making observer residuals robust to specific faults but sensitive to other faults. Sufficient existence conditions and design of the observers were given in detail. Diagnosis observer parameters for servo valve, cylinder, roller and body rolling mill were obtained respectively. The effectiveness of this diagnosis method was proved by actual data simulations.

  14. Fault diagnosis model based on multi-manifold learning and PSO-SVM for machinery

    Institute of Scientific and Technical Information of China (English)

    Wang Hongjun; Xu Xiaoli; Rosen B G

    2014-01-01

    Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine (PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy.

  15. Application of particle swarm optimization blind source separation technology in fault diagnosis of gearbox

    Institute of Scientific and Technical Information of China (English)

    黄晋英; 潘宏侠; 毕世华; 杨喜旺

    2008-01-01

    Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault.

  16. Fault diagnosis and fault-tolerant control strategies for non-linear systems analytical and soft computing approaches

    CERN Document Server

    Witczak, Marcin

    2014-01-01

      This book presents selected fault diagnosis and fault-tolerant control strategies for non-linear systems in a unified framework. In particular, starting from advanced state estimation strategies up to modern soft computing, the discrete-time description of the system is employed Part I of the book presents original research results regarding state estimation and neural networks for robust fault diagnosis. Part II is devoted to the presentation of integrated fault diagnosis and fault-tolerant systems. It starts with a general fault-tolerant control framework, which is then extended by introducing robustness with respect to various uncertainties. Finally, it is shown how to implement the proposed framework for fuzzy systems described by the well-known Takagi–Sugeno models. This research monograph is intended for researchers, engineers, and advanced postgraduate students in control and electrical engineering, computer science,as well as mechanical and chemical engineering.

  17. Knowledge Processing Method of Fault Diagnosis Expert Systems for Letter Sorting Equipment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analysis of fault diagnosis knowledge of lettersorting machine, this paper proposes a processing method by which the fault diagnosis knowledge is divided into exact knowledge, inadequate knowledge and fuzzy knowledge. Then their presenting and implementing form in fault diagnosis expert system is discussed and studied. It is proved that the expert system has good feasibility in the field of the diagnosis of letter sorting machine.

  18. Study on intelligent fault diagnosis system of nuclear power plants based on information fusion technique

    International Nuclear Information System (INIS)

    The technology of information fusion is used in the fault diagnosis for ship nuclear power plants in this paper. The space fusion structure is built based on fault tree expert system, NN diagnosis system, and mechanism model validation system. Not only the system deep-level knowledge, but also the shallow knowledge and the mechanism model knowledge are fully used. The simulation validation and verification showed that the information fusion diagnosis system could improve the fault diagnosis reliability effectively. (authors)

  19. Fuzzy Timing Petri Net for Fault Diagnosis in Power System

    Directory of Open Access Journals (Sweden)

    Alireza Tavakholi Ghainani

    2012-01-01

    Full Text Available A model-based system for fault diagnosis in power system is presented in this paper. It is based on fuzzy timing Petri net (FTPN. The ordinary Petri net (PN tool is used to model the protective components, relays, and circuit breakers. In addition, fuzzy timing is associated with places (token/transition to handle the uncertain information of relays and circuits breakers. The received delay time information of relays and breakers is mapped to fuzzy timestamps, π(τ, as initial marking of the backward FTPN. The diagnosis process starts by marking the backward sub-FTPNs. The final marking is found by going through the firing sequence, σ, of each sub-FTPN and updating fuzzy timestamp in each state of σ. The final marking indicates the estimated fault section. This information is then in turn used in forward FTPN to evaluate the fault hypothesis. The FTPN will increase the speed of the inference engine because of the ability of Petri net to describe parallel processing, and the use of time-tag data will cause the inference procedure to be more accurate.

  20. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...

  1. Soft computing for fault diagnosis in power plants

    International Nuclear Information System (INIS)

    Considering the advancements in the AI technology, there arises a new concept known as soft computing. It can be defined as the processing of uncertain information with the AI methods, that refers to explicitly the methods using neural networks, fuzzy logic and evolutionary algorithms. In this respect, soft computing is a new dimension in information processing technology where linguistic information can also be processed in contrast with the classical stochastic and deterministic treatments of data. On one hand it can process uncertain/incomplete information and on the other hand it can deal with non-linearity of large-scale systems where uncertainty is particularly relevant with respect to linguistic information and incompleteness is related to fault tolerance in fault diagnosis. In this perspective, the potential role of soft computing in power plant operation is presented. (author)

  2. Diagnosis of Constant Faults in Read-Once Contact Networks over Finite Bases using Decision Trees

    KAUST Repository

    Busbait, Monther I.

    2014-05-01

    We study the depth of decision trees for diagnosis of constant faults in read-once contact networks over finite bases. This includes diagnosis of 0-1 faults, 0 faults and 1 faults. For any finite basis, we prove a linear upper bound on the minimum depth of decision tree for diagnosis of constant faults depending on the number of edges in a contact network over that basis. Also, we obtain asymptotic bounds on the depth of decision trees for diagnosis of each type of constant faults depending on the number of edges in contact networks in the worst case per basis. We study the set of indecomposable contact networks with up to 10 edges and obtain sharp coefficients for the linear upper bound for diagnosis of constant faults in contact networks over bases of these indecomposable contact networks. We use a set of algorithms, including one that we create, to obtain the sharp coefficients.

  3. Study and Application of Case-based Extension Fault Diagnosis for Chemical Process

    Institute of Scientific and Technical Information of China (English)

    PENG Di; XU Yuan; ZHU Qunxiong

    2013-01-01

    In chemical processes,fault diagnosis is relatively difficult due to the incomplete prior-knowledge and unpredictable production changes.To solve the problem,a case-based extension fault diagnosis (CEFD) method is proposed combining with extension theory,in which the basic-element model is used for the unified and deep fault description,the distance concept is applied to quantify the correlation degree between the new fault and the original fault cases,and the extension transformation is used to expand and obtain the solution of unknown faults.With the application in Tennessee Eastman process,the result indicates that CEFD method has a flexible fault representation,objective fault retrieve performance and good ability for fault study,providing a new way for diagnosing production faults accurately.

  4. Logic-dynamic approach to fault diagnosis in mechatronic systems

    Directory of Open Access Journals (Sweden)

    A. N. Zhirabok

    2008-11-01

    Full Text Available This paper presents a problem of fault detection and isolation (FDI in mechatronic systems described by nonlinear dynamic models with such types of no differentiable nonlinearities as saturation, Coulomb friction, backlash, and hysteresis. To solve this problem, so-called logic-dynamic approach is suggested. This approach consists of three main steps: replacing the initial nonlinear system by certain linear logic-dynamic system, obtaining the bank of linear logic-dynamic observers, and transforming these observes into the nonlinear ones. Logic-dynamic approach allows one to use the linear FDI methods for diagnosis in nonlinear mechatronic systems.

  5. Application of Petri Net to Fault Diagnosis in Satellite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A prototype of fault diagnosis based on Petri net, which is developed for a satellite tele-control subsystem, is introduced in this paper. Its structure is first given with the emphasis on a Petri net modeling tool which is designed using the object oriented method. The prototype is connected to the database with DAO (Date Access Object) technique, and makes the Petri net's firing mechanism and its analyzing methods to be packed up as DLL (Dynamic Link Library) documents. Compared with the rule-based expert system method, the Petri net-based one can store the knowledge in mathematical matrix and make inference more quickly and effectively.

  6. Unsupervised process monitoring and fault diagnosis with machine learning methods

    CERN Document Server

    Aldrich, Chris

    2013-01-01

    This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data

  7. MULTIPLE FAULT DIAGNOSIS FOR HIGH SPEED HYBRID MEMORY ARCHITECTURE

    OpenAIRE

    B. Kamala Soundari; M. Praveena

    2013-01-01

    This paper presents a built-in self-test (BIST)-based scheme for fault diagnosis that can be used toidentify permanent failures and automatic correction in all memories & circuits. The proposed approachoffers a simple test flow and does not require intensive interactions between a BIST controller and a tester.The scheme rests on partitioning of rows and columns of the memory array by employing low cost test logic.It is designed to meet requirements of at-speed test thus enabling detection of ...

  8. Application of ENN-1 for Fault Diagnosis of Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Meng-Hui Wang

    2012-01-01

    Full Text Available Maintaining a wind turbine and ensuring secure is not easy because of long-term exposure to the environment and high installation locations. Wind turbines need fully functional condition-monitoring and fault diagnosis systems that prevent accidents and reduce maintenance costs. This paper presents a simulator design for fault diagnosis of wind power systems and further proposes some fault diagnosis technologies such as signal analysis, feature selecting, and diagnosis methods. First, this paper uses a wind power simulator to produce fault conditions and features from the monitoring sensors. Then an extension neural network type-1- (ENN-1- based method is proposed to develop the core of the fault diagnosis system. The proposed system will benefit the development of real fault diagnosis systems with testing models that demonstrate satisfactory results.

  9. Energy operator demodulating of optimal resonance components for the compound faults diagnosis of gearboxes

    International Nuclear Information System (INIS)

    Compound faults diagnosis is a challenge for rotating machinery fault diagnosis. The vibration signals measured from gearboxes are usually complex, non-stationary, and nonlinear. When compound faults occur in a gearbox, weak fault characteristic signals are always submerged by the strong ones. Therefore, it is difficult to detect a weak fault by using the demodulating analysis of vibration signals of gearboxes directly. The key to compound faults diagnosis of gearboxes is to separate different fault characteristic signals from the collected vibration signals. Aiming at that problem, a new method for the compound faults diagnosis of gearboxes is proposed based on the energy operator demodulating of optimal resonance components. In this method, the genetic algorithm is first used to obtain the optimal decomposition parameters. Then the compound faults vibration signals of a gearbox are subject to resonance-based signal sparse decomposition (RSSD) to separate the fault characteristic signals of the gear and the bearing by using the optimal decomposition parameters. Finally, the separated fault characteristic signals are analyzed by energy operator demodulating, and each one’s instantaneous amplitude can be calculated. According to the spectra of instantaneous amplitudes of fault characteristic signals, the faults of the gear and the bearing can be diagnosed, respectively. The performance of the proposed method is validated by using the simulation data and the experiment vibration signals from a gearbox with compound faults. (paper)

  10. GEARBOX FAULT DIAGNOSIS BASED ON EMPIRICAL MODE DECOMPOSITION

    Institute of Scientific and Technical Information of China (English)

    Shen Guoji; Tao Limin; Chen Zhongsheng

    2004-01-01

    Time synchronous averaging of vibration data is a fundament technique for gearbox diagnosis. Currently, this technique relies on hardware tachometer to give phase synchronous information. Empirical mode decomposition (EMD) is introduced to replace time synchronous averaging of gearbox vibration signal. With it, any complicated dataset can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The key problem is how to assure that vibration signals deduced by gear defects could be sifted out by EMD. The characteristic vibration signals of gear defects are proved IMFs, which makes it possible to utilize EMD for the diagnosis of gearbox faults. The method is validated by data from recordings of the vibration of a single-stage spiral bevel gearbox with fatigue pitting. The results show EMD is powerful to extract characteristic information from noisy vibration signals.

  11. Induction motor rotor fault diagnosis method based on double PQ transformation

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin; NIU Faliang; YANG Jiaqiang

    2007-01-01

    This Paper presents a new rotor fault diagnosis method for induction motors which is based on the double PQ transformation.We construct the PQ transformation matrix with the positive sequence fundamental voltage components and their Hilbert transformation as elements.The active power P and the reactive power Q are obtained through the PO transformation of the stator currents.As both P and Q are constant for a healthy motor,they are represented by a dot on the PQ plane.Whereas the P and Q for a rotor broken bar motor are represented by an ellipse because they comprise an additional frequency component 2sfs (s is the slip and js is the supply frequency).Thus,by distinguishing these two different patterns.the rotor broken bar fault is detected.We use the major radius of the ellipse as the fault indicator and the distance between the point of no-load condition and the center of the ellipse on the PQ plane as its normalization value.We thus arrive at the fault severity factor which is fairly independent of the load level and the inertia value of the induction motors.Experimental results have demonstrated that the proposed method is effective in identifying the rotor-broken-bars fault and at determining the severity of the fault.

  12. Use of autocorrelation of wavelet coefficients for fault diagnosis

    Science.gov (United States)

    Rafiee, J.; Tse, P. W.

    2009-07-01

    This paper presents a novel time-frequency-based feature recognition system for gear fault diagnosis using autocorrelation of continuous wavelet coefficients (CWC). Furthermore, it introduces an original mathematical approximation of gearbox vibration signals which approximates sinusoidal components of noisy vibration signals generated from gearboxes, including incipient and serious gear failures using autocorrelation of CWC. First, the drawbacks of the continuous wavelet transform (CWT) have been eliminated using autocorrelation function. Secondly, the autocorrelation of CWC is introduced as an original pattern for fault identification in machine condition monitoring. Thirdly, a sinusoidal summation function consisting of eight terms was used to approximate the periodic waveforms generated by autocorrelation of CWC for normal gearboxes (NGs) as well as occurrences of incipient and severe gear fault (e.g. slight-worn, medium-worn, and broken-tooth gears). In other words, the size of vibration signals can be reduced with minimal loss of significant frequency content by means of the sinusoidal approximation of generated autocorrelation waveforms of CWC as reported in this paper.

  13. Dynamic eccentricity fault diagnosis in round rotor synchronous motors

    International Nuclear Information System (INIS)

    Research highlights: → We have presented a novel approach to detect dynamic eccentricity in round rotor synchronous motors. → We have introduced an efficient index based on processing torque using time series data mining method. → The stator current spectrum of the motor under different levels of fault and load are computed. → Winding function method has been employed to model healthy and faulty synchronous motors. -- Abstract: In this paper, a novel approach is presented to detect dynamic eccentricity in round rotor synchronous motors. For this, an efficient index is introduced based on processing developed torque using time series data mining (TSDM) method. This index can be utilized to diagnose eccentricity fault and its degree. The capability of this index to predict dynamic eccentricity is illustrated by investigation of load variation impacts on the nominated index. Stator current spectrum of the faulty synchronous motor under different loads and dynamic eccentricity degrees are computed. Effects of the dynamic eccentricity and load variation simultaneously are scrutinized on the magnitude of 17th and 19th harmonic components as traditional indices for eccentricity fault diagnosis in synchronous motors. Necessity signals and parameters for processing and feature extraction are evaluated by winding function method which is employed to model healthy and faulty synchronous motors.

  14. Bearing Fault Diagnosis Based on Laplace Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Yingjie Yin

    2012-12-01

    Full Text Available The roller bearing characteristic frequencies contain very little energy, and are usually overwhelmed by noise and higher levels of structural vibrations. Therefore, envelope spectrum analysis is widely used to detection bearing localized fault. In order to overcome the shortcomings in the traditional envelope analysis in which manually specifying a resonant frequency band is required, a new approach based on the fusion of the Laplace wavelet transform and envelope spectrum is proposed for detection and diagnosis defects in roller element bearings. The basic principle is introduced in detail. Laplace wavelet transform is self-adaptive to non-stationary and non-linear signal. The methodology developed in this paper decomposes the original times series data in intrinsic oscillation modes, using the Laplace wavelet transform. Then the envelope spectrum is applied to the selected daughter wavelet that stands for the bearing faults. The experimental results show that Laplace wavelet can extract the impulse response from strong noise signals and can effectively diagnose the faults of bearing.

  15. Multiple Local Reconstruction Model-based Fault Diagnosis for Continuous Processes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chun-Hui; LI Wen-Qing; SUN You-Xian; GAO Fu-Rong

    2013-01-01

    In the present work,the multiplicity of fault characteristics is proposed and analyzed to improve the fault diagnosis performance.It is based on the following recognition that the underlying fault characteristics in general do not stay constant but will present changes along the time direction.That is,the fault process reveals different variable correlations across different time periods.To analyze the multiplicity of fault characteristics,a fault division algorithm is developed to divide the fault process into multiple local time periods where the fault characteristics are deemed similar within the same local time period.Then a representative fault decomposition model is built in each local time period to reveal the relationships between the fault and normal operation status.In this way,these different fault characteristics can be modeled respectively.The proposed method gives an interesting insight into the fault evolvement behaviors and a more accurate from-fault-to-normal reconstruction result can be expected for fault diagnosis.The feasibility and performance of the proposed fault diagnosis method are illustrated with the Tennessee Eastman process.

  16. Study and Design of Diaphragm Pump Vibration Detection Fault Diagnosis System Based on FFT

    OpenAIRE

    Jia Yin; Jiande Wu; Xuyi Yuan; Xiaodong Wang; Yugang Fan

    2013-01-01

    This study has proposed a fault diagnosis system based on vibration detection. The system mainly includes four modules: signal acquisition module, signal processing module, state identification module, fault diagnosis and alarm module. The system uses CMSS 2200 acceleration sensor to collect vibration signals, processing spectrum with FFT (Fast Fourier Transform) which is used effectively in current industry and finally achieve fault diagnosis and prediction for diaphragm pump. Through collec...

  17. STUDY OF A FAULT DIAGNOSIS EXPERT SYSTEM FOR SYNTHETIC MINING SYSTEM HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    Han Yilun

    2000-01-01

    Fault diagnosis expert system for hydraulic support is studied.The system is achieved by Turbo-prolong Language, it summaries the experience of the domain expert and sets up a fault tree, knowledge base is developed by a productive rule.According to the feature of diagnosis, the system selects forward non-determination inferring and limited depth-first search strategy.It can accomplish expert diagnosis of more than 50 kinds faults in hydraulic support.

  18. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art

    International Nuclear Information System (INIS)

    There are a lot of research activities on developing techniques to detect permanent magnet (PM) demagnetization faults (DF). These faults decrease the performance, the reliability and the efficiency of permanent magnet synchronous motor (PMSM) drive systems. In this work, we draw a broad perspective on the status of these studies. The advantages, disadvantages of each method, a deeper view investigated and a comprehensive list of references are reported. - Highlights: • A review of state of the art on demagnetization fault diagnosis was studied deeply. • Critical points in fault diagnosis are discussed aiming to safety and cost management. • Critical comparison on all existent demagnetization diagnosis methods was done. • It is proved that DE and UL have the same signature frequencies as partial demagnetization. • MCSA have some limitations in frequency component under uniform demagnetization

  19. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi, S.S., E-mail: anchepoli@gmail.com [University of Technology Belfort Montbeliard (UTBM), Laboratory of IRTES-SET, Belfort (France); Engineering Department, Amol University of Special Modern Technology, Amol (Iran, Islamic Republic of); Djerdir, A. [University of Technology Belfort Montbeliard (UTBM), Laboratory of IRTES-SET, Belfort (France); Amirat, Y.Ait. [Laboratory of Femto-ST, University of Franche-Comte (France); Khaburi, D.A. [Center of Excellence for Power System Automation and Operation, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)

    2015-10-01

    There are a lot of research activities on developing techniques to detect permanent magnet (PM) demagnetization faults (DF). These faults decrease the performance, the reliability and the efficiency of permanent magnet synchronous motor (PMSM) drive systems. In this work, we draw a broad perspective on the status of these studies. The advantages, disadvantages of each method, a deeper view investigated and a comprehensive list of references are reported. - Highlights: • A review of state of the art on demagnetization fault diagnosis was studied deeply. • Critical points in fault diagnosis are discussed aiming to safety and cost management. • Critical comparison on all existent demagnetization diagnosis methods was done. • It is proved that DE and UL have the same signature frequencies as partial demagnetization. • MCSA have some limitations in frequency component under uniform demagnetization.

  20. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo

    2016-01-01

    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

  1. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    DEFF Research Database (Denmark)

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir

    2007-01-01

    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line's pretens......Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line......'s pretension or line breaks will degrade the performance of the positioning of the vessel. Faults will be detected and isolated through a fault diagnosis procedure. When faults are detected, they can be accommodated through the control action in which only parameter of the controlled plant has to be updated to...

  2. Health and Maintenance Status Determination and Predictive Fault Diagnosis System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to demonstrate intelligent health and maintenance status determination and predictive fault diagnosis techniques for NASA rocket...

  3. On-Line Broken-Bar Fault Diagnosis System of Induction Motor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong; WANG Xiuhe

    2008-01-01

    Induction motor faults including mechanical and electrical faults are reviewed. The fault diagnosis methods are summarized. To analyze the influence of stator current, torque, speed and rotor current on faulted bars, a time-stepping transient finite element (FE) model of induction motor with bars faulted is created in this paper. With wavelet package analysis method and FFT method, the simulation result of finite element is analyzed. Based on the simulation analysis, the on-line fault diagnosis system of induction motor with bars faulted is developed. With the speed of broken bars motor changed from 1 478 r/min to 1 445 r/min, the FFT power spectra and the wavelet package decoupling factors are given. The comparison result shows that the on-line diagnosis system can detect broken-bar fault efficiently.

  4. A Study on Turbo-rotor Multi-fault Diagnosis Based on a Neural Network

    Institute of Scientific and Technical Information of China (English)

    SUN Shou-qun; ZHAO San-xing; ZHANG Wei; CHANG Xin-long

    2003-01-01

    The multi-fault phenomena are common in the turbo-rotor system of a liquid rocket engine. As it has many excellent qualities, the neural network might be used to solve the problems of multi-fault diagnosis of a turbo-rotor system. First, the feature expression of a common turbo-rotor fault was studied in order to build up the standard fault pattern and satisfy the need of neural network studying and diagnosing. Then, the turbo-rotor fault identification and diagnosis problems were investigated by using a BP(back-propagation) neural network. According to the BP neural network problems, the parallel BP neural network method of multi-fault diagnosis and classification was presented and investigated. The results indicated that the parallel BP neural network method could solve the turbo-rotor multi-fault diagnosis problems.

  5. Data-driven design of fault diagnosis systems nonlinear multimode processes

    CERN Document Server

    Haghani Abandan Sari, Adel

    2014-01-01

    In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study efficient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, different methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target...

  6. A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine

    Science.gov (United States)

    Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong

    2015-08-01

    Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.

  7. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    Science.gov (United States)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a

  8. Fault Diagnosis and Fault Tolerant Control with Application on a Wind Turbine Low Speed Shaft Encoder

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Sardi, Hector Eloy Sanchez; Escobet, Teressa;

    2015-01-01

    In recent years, individual pitch control has been developed for wind turbines, with the purpose of reducing blade and tower loads. Such algorithms depend on reliable sensor information. The azimuth angle sensor, which positions the wind turbine rotor in its rotation, is quite important. This sen...... due to individual pitch control algorithm operating with faulty azimuth angle inputs. The proposed approach is evaluated on a wind turbine benchmark model, which is based on the FAST aero-elastic code provided by NREL.......In recent years, individual pitch control has been developed for wind turbines, with the purpose of reducing blade and tower loads. Such algorithms depend on reliable sensor information. The azimuth angle sensor, which positions the wind turbine rotor in its rotation, is quite important. This...... sensor has to be correct as blade pitch actions should be different at different azimuth angle as the wind speed varies within the rotor field due to different phenomena. A scheme detecting faults in this sensor has previously been designed for the application of a high end fault diagnosis and fault...

  9. Study on Fault Diagnosis of Rolling Bearing Based on Time-Frequency Generalized Dimension

    Directory of Open Access Journals (Sweden)

    Yu Yuan

    2015-01-01

    Full Text Available The condition monitoring technology and fault diagnosis technology of mechanical equipment played an important role in the modern engineering. Rolling bearing is the most common component of mechanical equipment which sustains and transfers the load. Therefore, fault diagnosis of rolling bearings has great significance. Fractal theory provides an effective method to describe the complexity and irregularity of the vibration signals of rolling bearings. In this paper a novel multifractal fault diagnosis approach based on time-frequency domain signals was proposed. The method and numerical algorithm of Multi-fractal analysis in time-frequency domain were provided. According to grid type J and order parameter q in algorithm, the value range of J and the cut-off condition of q were optimized based on the effect on the dimension calculation. Simulation experiments demonstrated that the effective signal identification could be complete by multifractal method in time-frequency domain, which is related to the factors such as signal energy and distribution. And the further fault diagnosis experiments of bearings showed that the multifractal method in time-frequency domain can complete the fault diagnosis, such as the fault judgment and fault types. And the fault detection can be done in the early stage of fault. Therefore, the multifractal method in time-frequency domain used in fault diagnosis of bearing is a practicable method.

  10. Research on Satellite Fault Diagnosis and Prediction Using Multi-modal Reasoning

    Institute of Scientific and Technical Information of China (English)

    YangTianshe; SunYanhong; CaoYuping

    2004-01-01

    Diagnosis and prediction of satellite fault are more difficult than that of other equipment due to the complex structure of satellites and the presence of muhi-excite sources of satellite faults. Generally, one kind of reasoning model can only diagnose and predict one kind of satellite faults. In this paper the author introduces an application of a new method using multi-modal reasoning to diagnose and predict satellite faults. The method has been used in the development of knowledge-based satellite fault diagnosis and recovery system (KSFDRS) successfully. It is shown that the method is effective.

  11. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Reaction Wheels

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.;

    2015-01-01

    to allow design of generalized fault estimation filters, which do not need a priori information about the faults internal model. Simulation results with a detailed nonlinear spacecraft model, which includes disturbances, show that the proposed diagnosis scheme can deal with faults affecting both reaction......This paper suggests a novel diagnosis scheme for detection, isolation and estimation of faults affecting satellite reaction wheels. Both spin rate measurements and actuation torque defects are dealt with. The proposed system consists of a fault detection and isolation module composed by a bank...

  12. Knowledge-based fault diagnosis system for refuse collection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y. [Centre of Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  13. Knowledge-based fault diagnosis system for refuse collection vehicle

    International Nuclear Information System (INIS)

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle

  14. Condition Monitoring and Fault Diagnosis for an Antifalling Safety Device

    Directory of Open Access Journals (Sweden)

    Guangxiang Yang

    2015-01-01

    Full Text Available There is a constant need for the safe operation and reliability of antifalling safety device (AFSD of an elevator. This paper reports an experimental study on rotation speed and catching torque monitoring and fault diagnosis of an antifalling safety device in a construction elevator. Denoising the signal using wavelet transform is presented in this paper. Based on the denoising effects for several types of wavelets, the sym8 wavelet basis, which introduces the high order approximation and an adaptive threshold, is employed for denoising the signal. The experimental result shows a maximum data error reduction of 7.5% is obtained and SNRs (signal-to-noise ratio of rotation speed and catching torque are improved for 3.9% and 6.4%, respectively.

  15. Knowledge-based fault diagnosis system for refuse collection vehicle

    Science.gov (United States)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-05-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  16. Feature evaluation and extraction based on neural network in analog circuit fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    Yuan Haiying; Chen Guangju; Xie Yongle

    2007-01-01

    Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit.The feature evaluation and extraction methods based on neural network are presented.Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently.The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency.A fault diagnosis illustration validated this method.

  17. A NEW APPROACH OF SIMULTANEOUS FAULTS DIAGNOSIS BASED ON RANDOM SETS AND DSMT

    Institute of Scientific and Technical Information of China (English)

    Li Zhiliang; Xu Xiaobin; Wen Chenglin

    2009-01-01

    Simultaneous faults often occur in running equipments, in order to solve the problems of the simultaneous faults, a new approach based on random sets and Dezert-Smarandache Theory (DSmT) is proposed in this paper. Firstly, the simultaneous faults' model is built based on the generalized frame of discernment in DSmT. Secondly, according to the unified description of combination rules in evidence reasoning based on random sets, a new combination rule for simultaneous faults diagnosis is proposed. Thirdly, according to the working characteristics and environment of the sensors used to acquire fault characteristic information, a new method to construct basic probability assignment function is proposed based on membership. Finally, diagnosis result is obtained by use of the new combination rule combined with decision rules. A case pertaining to the fault diagnosis for a multi-function rotor test-bed is given, and the result shows that the proposed diagnosis approach is feasible and efficient.

  18. In-Flight Fault Diagnosis for Autonomous Aircraft Via Low-Rate Telemetry Channel

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren

    2012-01-01

    An in-flight diagnosis system that is able to detect faults on an unmanned aircraft using real-time telemetry data could provide operator assistance to warn about imminent risks due to faults. However, limited bandwidth of the air-ground radio-link makes diagnosis difficult. Loss of information...

  19. Controller modification applied for active fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... the feedback controller with a minor effect on the external output in the fault free case. Further, in the faulty case, the signature of the auxiliary input can be optimized. This is obtained by using a band-pass filter for the YJBK parameter that is only effective in a small frequency range where...... the frequency for the auxiliary input is selected. This gives that it is possible to apply an auxiliary input with a reduced amplitude. An example is included to show the results....

  20. Fault Diagnosis of Nonlinear Systems Based on Hybrid PSOSA Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    Ling-Lai Li; Dong-Hua Zhou; Ling Wang

    2007-01-01

    Fault diagnosis of nonlinear systems is of great importance in theory and practice, and the parameter estimation method is an effective strategy. Based on the framework of moving horizon estimation, fault parameters are identified by a proposed intelligent optimization algorithm called PSOSA, which could avoid premature convergence of standard particle swarm optimization (PSO) by introducing the probabilistic jumping property of simulated annealing (SA). Simulations on a three-tank system show the effectiveness of this optimization based fault diagnosis strategy.

  1. Towards self-tuning residual generators for UAV control surface fault diagnosis

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren

    2013-01-01

    Control surface fault diagnosis is essential for timely detection of manoeuvring and stability risks for an unmanned aircraft. Timely detection is crucial since control surface related faults impact stability of flight and safety. Reliable diagnosis require well fitting dynamical models but with ...... flights with different members of a population of UAVs that have inherent model uncertainty from one member to another and from one flight to another. Events with actual faults on control surfaces demonstrates the efficacy of the approach....

  2. Lossy Electric Transmission Line Soft Fault Diagnosis: an Inverse Scattering Approach

    OpenAIRE

    Tang, Huaibin; Zhang, Qinghua

    2010-01-01

    In this paper, the diagnosis of soft faults in lossy electric transmission lines is studied through the inverse scattering approach. The considered soft faults are modeled as continuous spatial variations of distributed characteristic parameters of transmission lines. The diagnosis of such faults from reflection and transmission coefficients measured at the ends of a line can be formulated as an inverse problem. The relationship between this inverse problem and the inverse scattering theory h...

  3. Study of Fault Diagnosis Method for Wind Turbine with Decision Classification Algorithms and Expert System

    Directory of Open Access Journals (Sweden)

    Feng Yongxin

    2012-09-01

    Full Text Available Study on the fault diagnosis method through the combination of decision classification algorithms and expert system. The method of extracting diagnosis rules with the CTree software was given, and a fault diagnosis system based on CLIPS was developed. In order to verify the feasibility of the method, at first the sample data was got through the simulations under fault of direct-drive wind turbine and gearbox, then the diagnosis rules was extracted with the CTree software, at last the fault diagnosis system proposed and the rules was used to extracted to diagnose the fault simulated. Test results showed that the misdiagnosis rate both within 5%, thus the feasibility of the method was verified.

  4. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    Science.gov (United States)

    Fukushima, Y.

    2013-12-01

    Recently, interferometric synthetic aperture radar (InSAR) time-series analyses have been frequently applied to measure the time-series of small and quasi-steady displacements in wide areas. Large efforts in the methodological developments have been made to pursue higher temporal and spatial resolutions by using frequently acquired SAR images and detecting more pixels that exhibit phase stability. While such a high resolution is indispensable for tracking displacements of man-made and other small-scale structures, it is not necessarily needed and can be unnecessarily computer-intensive for measuring the crustal deformation associated with active faults and volcanic activities. I apply a simple and efficient method to measure the deformation around the Alpine Fault in the South Island of New Zealand, and the Philippine Fault in the Leyte Island. I use a small-baseline subset (SBAS) analysis approach (Berardino, et al., 2002). Generally, the more we average the pixel values, the more coherent the signals are. Considering that, for the deformation around active faults, the spatial resolution can be as coarse as a few hundred meters, we can severely 'multi-look' the interferograms. The two applied cases in this study benefited from this approach; I could obtain the mean velocity maps on practically the entire area without discarding decorrelated areas. The signals could have been only partially obtained by standard persistent scatterer or single-look small-baseline approaches that are much more computer-intensive. In order to further increase the signal detection capability, it is sometimes effective to introduce a processing algorithm adapted to the signal of interest. In an InSAR time-series processing, one usually needs to set the reference point because interferograms are all relative measurements. It is difficult, however, to fix the reference point when one aims to measure long-wavelength deformation signals that span the whole analysis area. This problem can be

  5. Application of data fusion method to fault diagnosis of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    XIE Chun-li; XIA Hong; LIU Yong-kuo

    2005-01-01

    The work condition of nuclear power plant (NPP) is very bad, which makes it has faults easily. In order to diagnose the faults real time, the fusion diagnosis system is built. The data fusion fault diagnosis system adopts data fusion method and divides the fault diagnosis into three levels, which are data fusion level, feature level and decision level. The feature level uses three parallel neural networks whose structures are the same. The purpose of using neural networks is mainly to get basic probability assignment (BPA) of D-S evidence theory, and the neural networks in feature level are used for local diagnosis. D-S evidence theory is adopted to integrate the local diagnosis results in decision level. The reactor coolant system is the study object and we choose 2# steam generator U-tubes break of the reactor coolant system as a diagnostic example. The experiments prove that the fusion diagnosis system can satisfy the fault diagnosis requirement of complicated system, and verify that the fusion fault diagnosis system can realize the fault diagnosis of NPP on line timely.

  6. Fault Diagnosis for Rolling Bearing under Variable Conditions Based on Image Recognition

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2016-01-01

    Full Text Available Rolling bearing faults often lead to electromechanical system failure due to its high speed and complex working conditions. Recently, a large amount of fault diagnosis studies for rolling bearing based on vibration data has been reported. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper proposes a fault diagnosis method based on image recognition for rolling bearings to realize fault classification under variable working conditions. The proposed method includes the following steps. First, the vibration signal data are transformed into a two-dimensional image based on recurrence plot (RP technique. Next, a popular feature extraction method which has been widely used in the image field, scale invariant feature transform (SIFT, is employed to extract fault features from the two-dimensional RP and subsequently generate a 128-dimensional feature vector. Third, due to the redundancy of the high-dimensional feature, kernel principal component analysis is utilized to reduce the feature dimensionality. Finally, a neural network classifier trained by probabilistic neural network is used to perform fault diagnosis. Verification experiment results demonstrate the effectiveness of the proposed fault diagnosis method for rolling bearings under variable conditions, thereby providing a promising approach to fault diagnosis for rolling bearings.

  7. A Fault Diagnosis Expert System for a Heavy Motor Used in a Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge base includes daily inspection system, brief diagnosis system and precise diagnosis system. A pull-down menu was adopted for the management of the knowledge base. The system can run under the help of expert system development tools. Practical examples show that the expert system can diagnose faults rapidly and precisely.

  8. Remarks on Urban Active Fault Exploration and Assessment of Fault Activity

    Institute of Scientific and Technical Information of China (English)

    Deng Qidong; Lu Zaoxun; Yang Zhu'en

    2008-01-01

    According to the practice of urban active fault exploration and associated fault activity assessment conducted in recent years, this paper summarizes the problems encountered in geological, geomorphological, geochemical and geophysical surveys, and proposes the following means and suggestions to solve these problems. To determine the most recent faults or fault zones, emphasis should be placed on identifying the youngest active faults and offset geomorphology. To understand the history of faulting and to discover the latest offset event, it is suggested that geophysical prospecting, drilling and trenching be conducted on one profile.Because of significant uncertainties in late Quaternary dating, we advise systematic sampling and the use of multiple dating methods. Shallow seismic reflection has been proven to be the most useful method in urban active fault exploration. However, there is a pressing need to increase the quality of data acquisition and processing to obtain high resolution images so as to enhance our ability to identify active faults. The combination of seismic P-wave reflection and S-wave reflection methods is proved to be a powerful means to investigate the tectonic environments of the deep crust.

  9. Fault diagnosis of rocket engine ground testing bed with self-organizing maps (SOMs)

    Institute of Scientific and Technical Information of China (English)

    ZHU Ning; FENG Zhi-gang; WANG Qi

    2009-01-01

    To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed, a fault diagnosis approach based on self-organizing map (SOM) is proposed. The SOM projects the multidimensional ground testing bed data into a two-dimensional map. Visualization of the SOM is used to cluster the ground testing bed data. The out map of the SOM is divided to several regions. Each region is represented for one fault mode. The fault mode of testing data is determined according to the region of their labels belonged to. The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states. The results show that it is a reliable and effective method for fault diagnosis with good visualization property.

  10. Fault Self-Diagnosis for Modular Robotic Systems Using M-Lattice Modules

    Directory of Open Access Journals (Sweden)

    Enguang Guan

    2015-04-01

    Full Text Available In the domain of modular robotic systems, self-configuration, self-diagnosis and self-repair are known to be highly challenging tasks. This paper presents a novel fault self-diagnosis strategy which consists of two parts: fault detection and fault message transmission. In fault detection, a bionic synchronization ‘healthy heartbeat’ method is used to guarantee the high efficiency of the exogenous detection strategy. For fault message transmission, the Dijkstra method is modified to be capable of guiding the passage of fault messages along the optimal path. In a modular robotic system, fault message transmission depends mainly on local communications between adjacent modules, so there is no need for global broadcast information. Computational simulations of one system form, M-Lattice, have demonstrated the practical effectiveness of the proposed strategy. The strategy should be applicable in modular robotic systems in general.

  11. Active fault traces along Bhuj Fault and Katrol Hill Fault, and trenching survey at Wandhay, Kachchh, Gujarat, India

    Indian Academy of Sciences (India)

    Michio Morino; Javed N Malik; Prashant Mishra; Chandrashekhar Bhuiyan; Fumio Kaneko

    2008-06-01

    Several new active fault traces were identified along Katrol Hill Fault (KHF).A new fault (named as Bhuj Fault,BF)that extends into the Bhuj Plain was also identified.These fault traces were identified based on satellite photo interpretation and field survey.Trenches were excavated to identify the paleoseismic events,pattern of faulting and the nature of deformation.New active fault traces were recognized about 1 km north of the topographic boundary between the Katrol Hill and the plain area.The fault exposure along the left bank of Khari River with 10 m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault.The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village. Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2,and F3.These fault strands displaced the older terrace deposits comprising Sand,Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel,sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.

  12. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    Science.gov (United States)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  13. Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator

    Directory of Open Access Journals (Sweden)

    Yolanda Vidal

    2015-05-01

    Full Text Available This paper develops a fault diagnosis (FD and fault-tolerant control (FTC of pitch actuators in wind turbines. This is accomplished by combining a disturbance compensator with a controller, both of which are formulated in the discrete time domain. The disturbance compensator has a dual purpose: to estimate the actuator fault (which is used by the FD algorithm and to design the discrete time controller to obtain an FTC. That is, the pitch actuator faults are estimated, and then, the pitch control laws are appropriately modified to achieve an FTC with a comparable behavior to the fault-free case. The performance of the FD and FTC schemes is tested in simulations with the aero-elastic code FAST.

  14. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  15. Fault detection and diagnosis for complex multivariable processes using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Weerasinghe, M

    1998-06-01

    Development of a reliable fault diagnosis method for large-scale industrial plants is laborious and often difficult to achieve due to the complexity of the targeted systems. The main objective of this thesis is to investigate the application of neural networks to the diagnosis of non-catastrophic faults in an industrial nuclear fuel processing plant. The proposed methods were initially developed by application to a simulated chemical process prior to further validation on real industrial data. The diagnosis of faults at a single operating point is first investigated. Statistical data conditioning methods of data scaling and principal component analysis are investigated to facilitate fault classification and reduce the complexity of neural networks. Successful fault diagnosis was achieved with significantly smaller networks than using all process variables as network inputs. Industrial processes often manufacture at various operating points, but demonstrated applications of neural networks for fault diagnosis usually only consider a single (primary) operating point. Developing a standard neural network scheme for fault diagnosis at all operating points would be usually impractical due to the unavailability of suitable training data for less frequently used (secondary) operating points. To overcome this problem, the application of a single neural network for the diagnosis of faults operating at different points is investigated. The data conditioning followed the same techniques as used for the fault diagnosis of a single operating point. The results showed that a single neural network could be successfully used to diagnose faults at operating points other than that it is trained for, and the data conditioning significantly improved the classification. Artificial neural networks have been shown to be an effective tool for process fault diagnosis. However, a main criticism is that details of the procedures taken to reach the fault diagnosis decisions are embedded in

  16. Multiple simultaneous fault diagnosis via hierarchical and single artificial neural networks

    International Nuclear Information System (INIS)

    Process fault diagnosis involves interpreting the current status of the plant given sensor reading and process knowledge. There has been considerable work done in this area with a variety of approaches being proposed for process fault diagnosis. Neural networks have been used to solve process fault diagnosis problems in chemical process, as they are well suited for recognizing multi-dimensional nonlinear patterns. In this work, the use of Hierarchical Artificial Neural Networks in diagnosing the multi-faults of a chemical process are discussed and compared with that of Single Artificial Neural Networks. The lower efficiency of Hierarchical Artificial Neural Networks , in comparison to Single Artificial Neural Networks, in process fault diagnosis is elaborated and analyzed. Also, the concept of a multi-level selection switch is presented and developed to improve the performance of hierarchical artificial neural networks. Simulation results indicate that application of multi-level selection switch increase the performance of the hierarchical artificial neural networks considerably

  17. Control Surface Fault Diagnosis with Specified Detection Probability - Real Event Experiences

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2013-01-01

    Diagnosis of actuator faults is crucial for aircraft since loss of actuation can have catastrophic consequences. For autonomous aircraft the steps necessary to achieve fault tolerance is limited when only basic and non-redundant sensor and actuators suites are present. Through diagnosis...... that exploits analytical redundancies it is, nevertheless, possible to cheaply enhance the level of safety. This paper presents a method for diagnosing control surface faults by using basic sensors and hardware available on an autonomous aircraft. The capability of fault diagnosis is demonstrated obtaining...... false alarm probability. A data based method is used to determine the validity of the methods proposed. Verification is achieved using real data and shows that the presented diagnosis method is efficient and could have avoided incidents where faults led to loss of aircraft....

  18. Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuo-Nan Yu

    2014-01-01

    Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

  19. Fault self-diagnosis designing method of the automotive electronic control system

    Science.gov (United States)

    Ding, Yangyan; Yang, Zhigang; Fu, Xiaolin

    2005-12-01

    The fault self-diagnosis system is an important component of an the automotive electronic control system. Designers of automotive electronic control systems urgently require or need a complete understanding of the self-diagnosis designing method of the control system in order to apply it in practice. Aiming at this exigent need, self-diagnosis methods of designing sensors, electronic control unit (ECU), and actuators, which are the three main parts of automotive electronic control systems, are discussed in this paper. According to the fault types and characteristics of commonly used sensors, self-diagnosis designing methods of the sensors are discussed. Then fault diagnosis techniques of sensors utilizing signal detection and analytical redundancy are analysed and summarized respectively, from the viewpoint of the self-diagnosis designing method. Also, problems about failure self-diagnosis of ECU are analyzed here. For different fault types of an ECU, setting up a circuit monitoring method and a self-detection method of the hardware circuit are adopted respectively. Using these two methods mentioned above, a real-time and on-line technique of failure self-diagnosis is presented. Furthermore, the failure self-diagnosis design method of ECU are summarized. Finally, common faults of actuators are analyzed and the general design method of the failure self-diagnosis system is presented. It is suggested that self-diagnosis design methods relative to the failure of automotive electronic control systems can offer a useful approach to designers of control systems.

  20. Sensor fault diagnosis of time-delay systems based on adaptive observer

    Institute of Scientific and Technical Information of China (English)

    YOU Fu-qiang; TIAN Zuo-hua; SHI Song-jiao

    2006-01-01

    Presents a novel approach for the sensor fault diagnosis of time-delay systems by using an adaptive observer technique. The sensor fault is modeled as an additive perturbation described by a time varying function. Systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system is subjected to either model uncertainty or external disturbance. An adaptive diagnostic algorithm is developed to diagnose the fault, and a modified version is proposed for general system to improve robustness. The stability of fault diagnosis system is proved. Finally, a numerical example is given to illustrate the efficiency of the proposed method.

  1. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Actuators and Sensors

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.;

    2016-01-01

    This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid...... that aerodynamic disturbance torques have unwanted influence on the residuals exploited for fault detection and isolation. Radial basis function neural networks are used to obtain fault estimation filters that do not need a priori information about the fault internal models. Simulation results are based...... on a detailed nonlinear satellite model with embedded disturbance description. The results document the efficacy of the proposed diagnosis scheme....

  2. Modeling and Fault Diagnosis of Interturn Short Circuit for Five-Phase Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jian-wei Yang

    2015-01-01

    Full Text Available Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs, such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1 Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2 Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.

  3. Active Faulting and Quaternary Landforms Deformation Related to the Nain Fault

    Directory of Open Access Journals (Sweden)

    Abolghasem Gourabi

    2011-01-01

    Full Text Available Problem statement: Landforms developed across terrain defining boundary the Nain fault have imprints of recent tectonic activity in the west region of Central Iran. Depositional landforms such as alluvial fans bear signatures of later phases of tectonic activity in the form of faulting of alluvial fan deposits and development of fault traces and scarps within 100 km long and a NW-SE-trending zone, 1000-2000 m wide. Approach: We are addressing the neotectonic landforms based on detailed field work carried out in the Nain exposed active fault segments which brought forward some outstanding morphtectonic evidence of quaternary tectonically activities. Tectonic geomorphology applied to the Nain fault suggests recent subsurface activity along the Nain fault and an interconnecting faulting network of roughly NW-SE-trending, right-lateral, strike-slip segments and mostly NW-SE-oriented, transtensional to normal faults. Results: Evidence for recent activity is provided by faulted Pleistocene-Holocene deposits, fresh scarps in Late Quaternary deposits, 8-15 m lateral offsets locally affecting the drainage pattern of the area, ground creeping, aligning of series of spring faults, deflected streams and fault trace over recent alluvial fans. The existences of strike-slip faults system in the Nain area can be implications for seismic hazard. Conclusion: Motion along these structures suggests, in fact, that cumulative displacements include normal, transtensional and strike-slip components. Based on all evidence of active tectonics, earthquake risk and occurrence area is significant.

  4. Method of fault diagnosis in nuclear power plant base on genetic algorithm and knowledge base

    International Nuclear Information System (INIS)

    Via using the knowledge base, combining Genetic Algorithm and classical probability and contraposing the characteristic of the fault diagnosis of NPP. The authors put forward a method of fault diagnosis. In the process of fault diagnosis, this method contact the state of NPP with the colony in GA and transform the colony to get the individual that adapts to the condition. On the 950MW full size simulator in Beijing NPP simulation training center, experimentation shows it has comparative adaptability to the imperfection of expert knowledge, illusive signal and other instance

  5. Gear Fault Diagnosis Based on Rough Set and Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    TIAN Huifang; SUN Shanxia

    2006-01-01

    By introducing Rough Set Theory and the principle of Support vector machine, a gear fault diagnosis method based on them is proposed. Firstly, diagnostic decision-making is reduced based on rough set theory, and the noise and redundancy in the sample are removed, then, according to the chosen reduction, a support vector machine multi-classifier is designed for gear fault diagnosis. Therefore, SVM' training data can be reduced and running speed can quicken. Test shows its accuracy and efficiency of gear fault diagnosis.

  6. Neural network fault diagnosis method optimization with rough set and genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-yan; XIE Zhi-jiang; OUYANG Qi

    2006-01-01

    Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.

  7. An Embedded Condition Monitoring and Fault Diagnosis System for Rotary Machines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet oriented embedded intelligent condition monitoring and fault diagnosis system for the rotating machine with remote monitoring, diagnosis, maintenance and upgrading functions is introduced systematically. Based on the DSP ( Digital Signal Processor) and embedded microcomputer, the system can measure and store the machine work status in real time, such as the rotating speed and vibration,etc. In the system, the DSP chip is used to do the fault signal processing and feature extraction, and the embedded microcomputer with a customized Linux operation system is used to realize the internet oriented remote software upgrading and system maintenance. Embedded fault diagnosis software based on mobile agent technology is also designed in the system, which can interconnect with the remote fault diagnosis center to realize the collaborative diagnosis. The embedded condition monitoring and fault diagnosis technology proposed in this paper will effectively improve the intelligence degree of the fault diagnosis system.

  8. Active fault survey on the Tanlu fault zone in Laizhou Bay

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-cai; YANG Xi-ha; LI Chang-chuan; DENG Qi-dong; DU Xian-song; CHAO Hong-tai; WU Zi-quan; XIAO Lan-xi; SUN Zhao-ming; MIN Wei; LING Hong

    2006-01-01

    Shallow-depth acoustic reflection profiling survey has been conducted on the Tanlu fault zone in Laizhou Bay. It is found that the Tanlu fault zone is obviously active during the late Quaternary and it is still the dominating structure in this region. The Tanlu fault zone consists of two branches. The KL3 fault of the western branch is composed of several high angle normal faults which had been active during the period from the latest Pleistocene to early Holocene, dissected by a series of northeast or approximate east-west trending fault which leaped sediment of the late Pleistocene. The Longkou fault of the eastern branch consists of two right-laterally stepped segments. Late Quaternary offsets and growth strata developed along the Tanlu fault zone verify that the fault zone retained active in the latest Pleistocene to the early Holocene. The Anqiu-Juxian fault that passes through the middle of Shandong and corresponds to the Longkou fault is composed of a series of right-laterally stepped segments. The active faults along the eastern branch of the Tanlu fault zone from the Laizhou bay to the north of Anqiu make up a dextral simple shear deformation zone which is characterized by right-lateral strike-slip movement with dip-slip component during the late Quaternary.

  9. Fast EEMD Based AM-Correntropy Matrix and Its Application on Roller Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Yunxiao Fu

    2016-06-01

    Full Text Available Roller bearing plays a significant role in industrial sectors. To improve the ability of roller bearing fault diagnosis under multi-rotating situation, this paper proposes a novel roller bearing fault characteristic: the Amplitude Modulation (AM based correntropy extracted from the Intrinsic Mode Functions (IMFs, which are decomposed by Fast Ensemble Empirical mode decomposition (FEEMD and employ Least Square Support Vector Machine (LSSVM to implement intelligent fault identification. Firstly, the roller bearing vibration acceleration signal is decomposed by FEEMD to extract IMFs. Secondly, IMF correntropy matrix (IMFCM as the fault feature matrix is calculated from the AM-correntropy model of the primary vibration signal and IMFs. Furthermore, depending on LSSVM, the fault identification results of the roller bearing are obtained. Through the bearing identification experiments in stationary rotating conditions, it was verified that IMFCM generates more stable and higher diagnosis accuracy than conventional fault features such as energy moment, fuzzy entropy, and spectral kurtosis. Additionally, it proves that IMFCM has more diagnosis robustness than conventional fault features under cross-mixed roller bearing operating conditions. The diagnosis accuracy was more than 84% for the cross-mixed operating condition, which is much higher than the traditional features. In conclusion, it was proven that FEEMD-IMFCM-LSSVM is a reliable technology for roller bearing fault diagnosis under the constant or multi-positioned operating conditions, and as such, it possesses potential prospects for a broad application of uses.

  10. Expert system application to fault diagnosis and procedure synthesis

    International Nuclear Information System (INIS)

    Two knowledge based systems have been developed to detect plant faults, to validate sensor data in a nuclear power plant, and to synthesize procedures to assure safety goals are met when a transient occurs. These two systems are being combined into a single system through a Plant Status Monitoring System (PSMS) and a common database accessed by all the components of the integrated system. The system is designed to sit on top of an existing Safety Parameter Display System (SPDS), and to use the existing data acquisition and data control software of the SPDS. The integrated system will communicate with the SPDS software through a single database. This database will receive sensor values and equipment status indications in a form acceptable to the knowledge based system and according to an update plan designed specifically for the system. PSMS will monitor the plant status by scanning the system database continuously, and will respond to the changes in the plant data according to three priorities: direct indications of plant changes that can be resolved by simple actions such as assuring that a back up pump has been started; more complex indications that lead to entry conditions for predefined event procedures or other individual system recovery procedures; and plant conditions that are defined as the entry points to the symptomatic emergency procedure guidelines (EPGs). At present, the knowledge base is being built using scenarios run on a BWR-6 plant referenced simulator. Concurrently, software is being developed for performing diagnosis and procedure synthesis

  11. Lateral migration of fault activity in Weihe basin

    Institute of Scientific and Technical Information of China (English)

    冯希杰; 戴王强

    2004-01-01

    Lateral migration of fault activity in Weihe basin is a popular phenomenon and its characteristics are also typical.Taking the activity migrations of Wangshun Mountain piedmont fault toward Lishan piedmont fault and Weinan platform front fault, Dabaopi-Niujiaojian fault toward Shenyusi-Xiaojiazhai fault, among a serial of NE-trending faults from Baoji city to Jingyang County as examples, their migration time and process are analyzed and discussed in the present paper. It is useful for further understanding the structure development and physiognomy evolution history of Weihe basin.

  12. Condition Monitoring and Fault Diagnosis of Wet-Shift Clutch Transmission Based on Multi-technology

    Science.gov (United States)

    Chen, Man; Wang, Liyong; Ma, Biao

    Based on the construction feature and operating principle of the wet-shift clutch transmission, the condition monitoring and fault diagnosis for the transmission of the tracklayer with wet-shift clutch were implemented with using the oil analysis technology, function parameter test method and vibration analysis technology. The new fault diagnosis methods were proposed, which are to build the gray modeling with the oil analysis data, and to test the function parameter of the clutch press, the rotate speed of each gear, the oil press of the steer system and lubrication system and the hydraulic torque converter. It's validated that the representative function signals were chosen to execute the condition monitoring analysis, when the fault symptoms were found, and the oil analysis data were used to apply the gray modeling to forecast the fault occurs time can satisfy the demand of the condition monitoring and fault diagnosis for the transmission regular work.

  13. Fault diagnosis in neutral point indirectly grounded system based on information fusion

    Institute of Scientific and Technical Information of China (English)

    于飞; 鞠丽叶; 刘喜梅; 崔平远; 钟秋海

    2003-01-01

    In neutral point indirectly grounded systems, phase-to-ground fault is putting new demands on fault diagnosis technology. Information fusion is applied to detect the phase-to-ground fault, which integrates several sources of information, including line current, line voltage, zero sequence current and voltage, and quintic harmonic wave component. This method is testified through the simulation of Matlab. Simulation results show that the precision and reliability of the detection has been greatly increased.

  14. Handling Fault Diagnosis Problem of Linear-Analogue Circuits with Voltage Phasor Measurement

    OpenAIRE

    2014-01-01

    This paper proposes a novel method to estimate the influence of hard-fault in linear-analogue circuit system based on the measurement of voltage phasor with assistant branch introduced. Furthermore, a new fault diagnosis strategy based on the voltage phasor modeling is established, and the tolerance influence on the corresponding voltage measurement is also discussed. The actual analogue circuit test shows us that the proposed method is effective and reliable to locate the accurate fault sign...

  15. Joint Parametric Fault Diagnosis and State Estimation Using KF-ML Method

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2014-01-01

    The paper proposes a new method for a kind of parametric fault online diagnosis with state estimation jointly. The considered fault affects not only the deterministic part of the system but also the random circumstance. The proposed method first applies Kalman Filter (KF) and Maximum Likelihood (ML...

  16. Application of local wave time-frequency method in reciprocating mechanical fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Wang Fengtao; Ma Xiaojiang

    2006-01-01

    To diagnose the reciprocating mechanical fault. We utilized local wave time-frequency approach. Firstly,we gave the principle. Secondly, the application of local wave time-frequency was given. Finally, we discussed its virtue in reciprocating mechanical fault diagnosis.

  17. Research on Gear-broken Fault Diagnosis in a Tank Gearbox

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A fault diagnosis method of working position gear in a tank gearbox is put forward based on simulating the fault of working position gear in an actual tank, extracting the envelope of vibration signal by Hilbert transformation amplitude demodulation method, and zooming the low-frequency band to envelope signal.

  18. A Framework for Diagnosis of Critical Faults in Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens; Adrian, Jens

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) need a large degree of tolerance towards faults. If not diagnosed and handled in time, many types of faults can have catastrophic consequences if they occur during flight. Prognosis of faults is also valuable and so is the ability to distinguish the severity...... of the different faults in terms of both consequences and the frequency with which they appear. In this paper flight data from a fleet of UAVs is analysed with respect to certain faults and their frequency of appearance. Data is taken from a group of UAV's of the same type but with small differences in weight...... and handling due to different types of payloads and engines used. Categories of critical faults, that could and have caused UAV crashes are analysed and requirements to diagnosis are formulated. Faults in air system sensors and in control surfaces are given special attention. In a stochastic framework...

  19. Wavelet Transform and Neural Networks in Fault Diagnosis of a Motor Rotor

    Institute of Scientific and Technical Information of China (English)

    RONG Ming-xing

    2012-01-01

    In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the motor vibration signal is a non-stationary random signal, fault signals often contain a lot of time-varying, burst proper- ties of ingredients. The traditional Fourier signal analysis can not effectively extract the motor fault characteristics, but are also likely to be rich in failure information but a weak signal as noise. Therefore, we introduce wavelet packet transforms to extract the fault characteristics of the signal information. Obtained was the result as the neural network input signal, using the L-M neural network optimization method for training, and then used the BP net- work for fault recognition. This paper uses Matlab software to simulate and confirmed the method of motor fault di- agnosis validity and accuracy

  20. Study and Design of Diaphragm Pump Vibration Detection Fault Diagnosis System Based on FFT

    Directory of Open Access Journals (Sweden)

    Jia Yin

    2013-02-01

    Full Text Available This study has proposed a fault diagnosis system based on vibration detection. The system mainly includes four modules: signal acquisition module, signal processing module, state identification module, fault diagnosis and alarm module. The system uses CMSS 2200 acceleration sensor to collect vibration signals, processing spectrum with FFT (Fast Fourier Transform which is used effectively in current industry and finally achieve fault diagnosis and prediction for diaphragm pump. Through collection and analysis of the history signal data, set threshold value in the fault diagnosis system. According to the characteristics of different types, set the corresponding effective threshold value. The simulation results show that, the spectrum after FFT transformation processing, can really and effectively reflect equipment operating condition of the diaphragm. This system is not only simple and stable, but also can predict pump failure effectively, so that it reduces equipment downtime, plan maintenance time and unplanned maintenance time.

  1. On-line early fault detection and diagnosis of municipal solid waste incinerators.

    Science.gov (United States)

    Zhao, Jinsong; Huang, Jianchao; Sun, Wei

    2008-11-01

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI. PMID:18255276

  2. Nuclear power plant fault diagnosis based on genetic-RBF neural network

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-cheng; XIE Chun-ling; WANG Yuan-hui

    2006-01-01

    It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved.

  3. Fault Diagnosis in Chemical Process Based on Self-organizing Map Integrated with Fisher Discriminant Analysis

    Institute of Scientific and Technical Information of China (English)

    CHEN Xinyi; YAN Xuefeng

    2013-01-01

    Fault diagnosis and monitoring are very important for complex chemical process.There are numerous methods that have been studied in this field,in which the effective visualization method is still challenging.In order to get a better visualization effect,a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed.FDA can reduce the dimension of the data in terms of maximizing the separability of the classes.After feature extraction by FDA,SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states.Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method.The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.

  4. A Fault Diagnosis Mechanism for a Proactive Maintenance Scheme for Wireless Systems

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2008-01-01

    This paper presents the fault diagnosis mechanism for a proactive maintenance scheme for wireless systems which is aimed at reducing the high operational costs encountered in the wireless industry by decreasing maintenance costs and system downtime. An on-line monitoring system, based on the aforementioned fault diagnosis mechanism, is used to identify performance degradation, as well as its possible sources, so as to ensure that maintenance occurs only when necessary.

  5. Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine

    OpenAIRE

    Jian-Jiun Ding; Chun-Chieh Wang; Chiu-Wen Wu; Po-Hung Wu; Shuen-De Wu

    2012-01-01

    Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE) was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. Simulation results demonstr...

  6. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.

    Directory of Open Access Journals (Sweden)

    Zengkai Liu

    Full Text Available This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.

  7. Machinery fault diagnosis using joint global and local/nonlocal discriminant analysis with selective ensemble learning

    Science.gov (United States)

    Yu, Jianbo

    2016-11-01

    The vibration signals of faulty machine are generally non-stationary and nonlinear under those complicated working conditions. Thus, it is a big challenge to extract and select the effective features from vibration signals for machinery fault diagnosis. This paper proposes a new manifold learning algorithm, joint global and local/nonlocal discriminant analysis (GLNDA), which aims to extract effective intrinsic geometrical information from the given vibration data. Comparisons with other regular methods, principal component analysis (PCA), local preserving projection (LPP), linear discriminant analysis (LDA) and local LDA (LLDA), illustrate the superiority of GLNDA in machinery fault diagnosis. Based on the extracted information by GLNDA, a GLNDA-based Fisher discriminant rule (FDR) is put forward and applied to machinery fault diagnosis without additional recognizer construction procedure. By importing Bagging into GLNDA score-based feature selection and FDR, a novel manifold ensemble method (selective GLNDA ensemble, SE-GLNDA) is investigated for machinery fault diagnosis. The motivation for developing ensemble of manifold learning components is that it can achieve higher accuracy and applicability than single component in machinery fault diagnosis. The effectiveness of the SE-GLNDA-based fault diagnosis method has been verified by experimental results from bearing full life testers.

  8. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

    Science.gov (United States)

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID

  9. Improved methods for incipient multiple fault diagnosis with application to nuclear power plant

    International Nuclear Information System (INIS)

    This paper proposes an improved method based on Chung's approach for multiple fault diagnosis in large-scale nuclear power plant. In this method, an improved approach is presented for selecting a most suspected faulty node among several candidates by using the characteristic of each fault propagation time from each suspected faulty node (device) to a sensor representing the clearest symptom. A way is shown for getting the dominant feed forward control loop which has multi-path. The corresponding fault diagnosis procedure is also given. As an illustrative example, the primary system in the Kori nuclear power plant unit has been taken up to show the usefulness of the proposed method

  10. Mutual Information-Assisted Wavelet Function Selection for Enhanced Rolling Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Ruqiang Yan

    2015-01-01

    Full Text Available This paper presents an enhanced rolling bearing fault diagnosis approach, based on optimized wavelet packet transform (WPT assisted with quantitative wavelet function selection. Mutual information is utilized as a quantitative measure to select the most suitable wavelet function for the WPT-based vibration analysis. Energy features from coefficients of an optimal set of orthogonal wavelet subspaces which resulted from the WPT-based vibration analysis are input to different classifiers. The fault states of the rolling bearings can then be identified. Experiment studies conducted on a rolling bearing test system have verified the effectiveness of the proposed approach for rolling bearing fault diagnosis.

  11. Fault Diagnosis of a Turbo-unit Based on Wavelet Packet Theory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper we studied the fault feature of the generator set and the characteristics of wavelet packet theory for signal de-noising. The vibration signal of the generator set in diffrent states is analyzed by using the signal re-construction technique of the wavelet packet theory. The time domain method is given for the generator set fault diagnosis. The experiment results show that the wavelet packet theory can be used to directly identify the state of the generator set and provide a credible new idea for complex machinery fault diagnosis.

  12. Research on fault mode and diagnosis of methane sensor

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-jun; CHENG Jiu-long

    2008-01-01

    To improve the reliability of coal mine safety monitoring systems we have analyzed the characteristics of a methane sensor, an important component of the monitoring system of production safety in a coal mine and studied the main type and mode of faults when the sensor was used on-line. We introduced a new method based on artificial neural network to detect faults of me-thane sensors. In addition, using the output information of a single methane sensor, we established a sensor output model of a dy-namic non-linear neural network for on-line fault detection. Finally, the fault of the heating wire of the sensor was simulated, indi-cating that, when the methane sensor had a fault, the predicted output of the neural network clearly deviated from the actual output,exceeding the pre-set threshold and showing that a fault had occurred in the methane sensor. The result shows that the model has good convergence and stability, and is quite capable of meeting the requirements for on-line fault detection of methane sensors.

  13. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Zhao, Fagang

    2013-01-01

    Rolling element bearing faults are among the main causes of rotating machines breakdown. It is important to distinguish the incipient fault before the bearings step into serious failure. Based on the traditional singular value decomposition (SVD) theory, short-time matrix series (STMS) and singular value ratio (SVR) are introduced to the vibration signal processing. The proposed signal processing method is called S-SVDR (STMS based SVD method using SVR) and it has been proved to have a good local identification capability in the rolling bearing fault diagnosis. The detailed description of applying S-SVDR methods to rolling bearing fault diagnosis is given through the artificial fault signal processing in experiment 1. In experiment 2, rolling element bearing accelerated life test is performed in Hangzhou Bearing Test & Research Center (HBRC). The experimental result shows that the incipient fault can be well detected through S-SVDR processing method. However, the envelope analysis of original signal cannot detect the fault due to the existence of signal interference. A conclusion can be made that the proposed S-SVDR method has a good effect on de-noising and eliminating the signal interference of rolling bearing for the fault diagnosis.

  14. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis

    Science.gov (United States)

    Liu, Ruonan; Yang, Boyuan; Zhang, Xiaoli; Wang, Shibin; Chen, Xuefeng

    2016-06-01

    Bearing plays an essential role in the performance of mechanical system and fault diagnosis of mechanical system is inseparably related to the diagnosis of the bearings. However, it is a challenge to detect weak fault from the complex and non-stationary vibration signals with a large amount of noise, especially at the early stage. To improve the anti-noise ability and detect incipient fault, a novel fault detection method based on a short-time matching method and Support Vector Machine (SVM) is proposed. In this paper, the mechanism of roller bearing is discussed and the impact time frequency dictionary is constructed targeting the multi-component characteristics and fault feature of roller bearing fault vibration signals. Then, a short-time matching method is described and the simulation results show the excellent feature extraction effects in extremely low signal-to-noise ratio (SNR). After extracting the most relevance atoms as features, SVM was trained for fault recognition. Finally, the practical bearing experiments indicate that the proposed method is more effective and efficient than the traditional methods in weak impact signal oscillatory characters extraction and incipient fault diagnosis.

  15. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2016-07-01

    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  16. Time-varying singular value decomposition for periodic transient identification in bearing fault diagnosis

    Science.gov (United States)

    Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-09-01

    For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.

  17. A Method of Rotating Machinery Fault Diagnosis Based on the Close Degree of Information Entropy

    Institute of Scientific and Technical Information of China (English)

    GENG Jun-bao; HUANG Shu-hong; JIN Jia-shan; CHEN Fei; LIU Wei

    2006-01-01

    This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.

  18. Remote Fault Information Acquisition and Diagnosis System of the Combine Harvester Based on LabVIEW

    Science.gov (United States)

    Chen, Jin; Wu, Pei; Xu, Kai

    Most combine harvesters have not be equipped with online fault diagnosis system. A fault information acquisition and diagnosis system of the Combine Harvester based on LabVIEW is designed, researched and developed. Using ARM development board, by collecting many sensors' signals, this system can achieve real-time measurement, collection, displaying and analysis of different parts of combine harvesters. It can also realize detection online of forward velocity, roller speed, engine temperature, etc. Meanwhile the system can judge the fault location. A new database function is added so that we can search the remedial measures to solve the faults and also we can add new faults to the database. So it is easy to take precautions against before the combine harvester breaking down then take measures to service the harvester.

  19. Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Ran; Zhang, You Yun; Zhu, Yong Sheng [Xi' an Jiaotong Univ., Xi' an (China)

    2012-09-15

    Intelligent fault diagnosis benefits from efficient feature selection. Neighborhood rough sets are effective in feature selection. However, determining the neighborhood value accurately remains a challenge. The wrapper feature selection algorithm is designed by combining the kernel method and neighborhood rough sets to self-adaptively select sensitive features. The combination effectively solves the shortcomings in selecting the neighborhood value in the previous application process. The statistical features of time and frequency domains are used to describe the characteristic of the rolling bearing to make the intelligent fault diagnosis approach work. Three classification algorithms, namely, classification and regression tree (CART), commercial version 4.5 (C4.5), and radial basis function support vector machines (RBFSVM), are used to test UCI datasets and 10 fault datasets of rolling bearing. The results indicate that the diagnostic approach presented could effectively select the sensitive fault features and simultaneously identify the type and degree of the fault.

  20. Degradation Assessment and Fault Diagnosis for Roller Bearing Based on AR Model and Fuzzy Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Lingli Jiang

    2011-01-01

    Full Text Available This paper proposes a new approach combining autoregressive (AR model and fuzzy cluster analysis for bearing fault diagnosis and degradation assessment. AR model is an effective approach to extract the fault feature, and is generally applied to stationary signals. However, the fault vibration signals of a roller bearing are non-stationary and non-Gaussian. Aiming at this problem, the set of parameters of the AR model is estimated based on higher-order cumulants. Consequently, the AR parameters are taken as the feature vectors, and fuzzy cluster analysis is applied to perform classification and pattern recognition. Experiments analysis results show that the proposed method can be used to identify various types and severities of fault bearings. This study is significant for non-stationary and non-Gaussian signal analysis, fault diagnosis and degradation assessment.

  1. Teager Energy Spectrum for Fault Diagnosis of Rolling Element Bearings

    Science.gov (United States)

    Feng, Zhipeng; Wang, Tianjin; Zuo, Ming J.; Chu, Fulei; Yan, Shaoze

    2011-07-01

    Localized damage of rolling element bearings generates periodic impulses during running. The repeating frequency of impulses is a key indicator for diagnosing the localized damage of bearings. A new method, called Teager energy spectrum, is proposed to diagnose the faults of rolling element bearings. It exploits the unique advantages of Teager energy operator in detecting transient components in signals to extract periodic impulses of bearing faults, and uses the Fourier spectrum of Teager energy to identify the characteristic frequency of bearing faults. The effectiveness of the proposed method is validated by analyzing the experimental bearing vibration signals.

  2. Takagi Sugeno fuzzy expert model based soft fault diagnosis for two tank interacting system

    Directory of Open Access Journals (Sweden)

    Manikandan Pandiyan

    2014-09-01

    Full Text Available The inherent characteristics of fuzzy logic theory make it suitable for fault detection and diagnosis (FDI. Fault detection can benefit from nonlinear fuzzy modeling and fault diagnosis can profit from a transparent reasoning system, which can embed operator experience, but also learn from experimental and/or simulation data. Thus, fuzzy logic-based diagnostic is advantageous since it allows the incorporation of a-priori knowledge and lets the user understand the inference of the system. In this paper, the successful use of a fuzzy FDI based system, based on dynamic fuzzy models for fault detection and diagnosis of an industrial two tank system is presented. The plant data is used for the design and validation of the fuzzy FDI system. The validation results show the effectiveness of this approach.

  3. Power transformer fault diagnosis model based on rough set theory with fuzzy representation

    Institute of Scientific and Technical Information of China (English)

    Li Minghua; Dong Ming; Yan Zhang

    2007-01-01

    Objective Due to the incompleteness and complexity of fault diagnosis for power transformers, a comprehensive rough-fuzzy scheme for solving fault diagnosis problems is presented. Fuzzy set theory is used both for representation of incipient faults' indications and producing a fuzzy granulation of the feature space. Rough set theory is used to obtain dependency rules that model indicative regions in the granulated feature space. The fuzzy membership functions corresponding to the indicative regions, modelled by rules, are stored as cases. Results Diagnostic conclusions are made using a similarity measure based on these membership functions. Each case involves only a reduced number of relevant features making this scheme suitable for fault diagnosis. Conclusion Superiority of this method in terms of classification accuracy and case generation is demonstrated.

  4. Undecimated Lifting Wavelet Packet Transform with Boundary Treatment for Machinery Incipient Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Lixiang Duan

    2016-01-01

    Full Text Available Effective signal processing in fault detection and diagnosis (FDD is an important measure to prevent failure and accidents of machinery. To address the end distortion and frequency aliasing issues in conventional lifting wavelet transform, a Volterra series assisted undecimated lifting wavelet packet transform (ULWPT is investigated for machinery incipient fault diagnosis. Undecimated lifting wavelet packet transform is firstly formulated to eliminate the frequency aliasing issue in traditional lifting wavelet packet transform. Next, Volterra series, as a boundary treatment method, is used to preprocess the signal to suppress the end distortion in undecimated lifting wavelet packet transform. Finally, the decomposed wavelet coefficients are trimmed to the original length as the signal of interest for machinery incipient fault detection. Experimental study on a reciprocating compressor is performed to demonstrate the effectiveness of the presented method. The results show that the presented method outperforms the conventional approach by dramatically enhancing the weak defect feature extraction for reciprocating compressor valve fault diagnosis.

  5. Design of a real-time fault diagnosis expert system for the EAST cryoplant

    International Nuclear Information System (INIS)

    Highlights: ► An expert system of real-time fault diagnosis for EAST cryoplant is designed. ► Knowledge base is built via fault tree analysis based on our fault experience. ► It can make up the deficiency of safety monitoring in cryogenic DCS. ► It can help operators to find the fault causes and give operation suggestion. ► It plays a role of operators training in certain degree. - Abstract: The EAST cryoplant consists of a 2 kW/4 K helium refrigerator and a helium distribution system. It is a complex process system which involves many process variables and cryogenic equipments. Each potential fault or abnormal event may influence stability and safety of the cryogenic system, thereby disturbing the fusion experiment. The cryogenic control system can monitor the process data and detect process alarms, but it is difficult to effectively diagnose the fault causes and provide operation suggestions to operators when anomalies occur. Therefore, a real-time fault diagnosis expert system is essential for a safe and steady operation of EAST cryogenic system. After a brief description of the EAST cryoplant and its control system, the structure design of the cryogenic fault diagnosis expert system is proposed. Based on the empirical knowledge, the fault diagnosis model is built adopting fault tree analysis method which considers the uncertainty. The knowledge base and the inference machine are presented in detail. A cross-platform integrated development environment Qt Creator and MySQL database have been used to develop the system. The proposed expert system has a fine graphic user interface for monitoring and operation. Preliminary test was conducted and the results found to be satisfactory.

  6. Design of fault diagnosis system for inertial navigation system based on virtual technology

    Science.gov (United States)

    Hu, Baiqing; Wang, Boxiong; Li, An; Zhang, Mingzhao; Qin, Fangjun; Pan, Hua

    2006-11-01

    With regard to the complex structure of the inertial navigation system and the low rate of fault detection with BITE (built-in test equipment), a fault diagnosis system for INS based on virtual technologies (virtual instrument and virtual equipment) is proposed in this paper. The hardware of the system is a PXI computer with highly stable performance and strong extensibility. In addition to the basic functions of digital multimeter, oscilloscope and cymometer, it can also measure the attitude of the ship in real-time, connect and control the measurement instruments with digital interface. The software is designed with the languages of Measurement Studio for VB, JAVA, and CULT3D. Using the extensively applied fault-tree reasoning and fault cases makes fault diagnosis. To suit the system to the diagnosis for various navigation electronic equipments, the modular design concept is adopted for the software programming. Knowledge of the expert system is digitally processed and the parameters of the system's interface and the expert diagnosis knowledge are stored in the database. The application shows that system is stable in operation, easy to use, quick and accurate in fault diagnosis.

  7. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    Science.gov (United States)

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  8. Methods for Probabilistic Fault Diagnosis: An EPS Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in...

  9. FAULT DIAGNOSIS APPROACH FOR ROLLER BEARINGS BASED ON EMPIRICAL MODE DECOMPOSITION METHOD AND HILBERT TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    Yu Dejie; Cheng Junsheng; Yang Yu

    2005-01-01

    Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings.

  10. Rotor broken bar fault diagnosis for induction motors based on double PQ transformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is presented. By distinguishing the different patterns of the PQ components in the PQ plane, the rotor broken bar fault can be detected.The magnitude of power component directly resulted from rotor fault is used as the fault indicator and the distance between the point of no-load condition and the center of the ellipse as its normalization value. Based on these, the fault severity factor which is completely independent of the inertia and load level is defined. Moreover, a method to reliably discriminate between rotor faults and periodic load fluctuation is presented. Experimental results from a 4 kW induction motor demonstrated the validity of the proposed method.

  11. Research on intelligent fault diagnosis based on time series analysis algorithm

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; LIU Yang; ZHOU Wen-an; SONG Jun-de

    2008-01-01

    Aiming to realize fast and accurate fault diagnosisin complex network environment, this article proposes a set ofanomaly detection algorithm and intelligent fault diagnosismodel. Firstly, a novel anomaly detection algorithm based ontime series analysis is put forward to improve the generalizedlikelihood ratio (GLR) test, and thus, detection accuracy isenhanced and the algorithm complexity is reduced. Secondly,the intelligent fault diagnosis model is established byintroducing neural network technology, and thereby, theanomaly information of each node in end-to-end network isintegrated and processed in parallel to intelligently diagnosethe fault cause. Finally, server backup solution in enterpriseinformation network is taken as the simulation scenario. Theresults demonstrate that the proposed method can not onlydetect fault occurrence in time, but can also implement onlinediagnosis for fault cause, and thus, real-time and intelligent faultmanagement process is achieved.

  12. Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine.

    Science.gov (United States)

    Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin

    2016-01-01

    This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox. PMID:26848665

  13. Intelligent Mechanical Fault Diagnosis Based on Multiwavelet Adaptive Threshold Denoising and MPSO

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2014-01-01

    Full Text Available The condition diagnosis of rotating machinery depends largely on the feature analysis of vibration signals measured for the condition diagnosis. However, the signals measured from rotating machinery usually are nonstationary and nonlinear and contain noise. The useful fault features are hidden in the heavy background noise. In this paper, a novel fault diagnosis method for rotating machinery based on multiwavelet adaptive threshold denoising and mutation particle swarm optimization (MPSO is proposed. Geronimo, Hardin, and Massopust (GHM multiwavelet is employed for extracting weak fault features under background noise, and the method of adaptively selecting appropriate threshold for multiwavelet with energy ratio of multiwavelet coefficient is presented. The six nondimensional symptom parameters (SPs in the frequency domain are defined to reflect the features of the vibration signals measured in each state. Detection index (DI using statistical theory has been also defined to evaluate the sensitiveness of SP for condition diagnosis. MPSO algorithm with adaptive inertia weight adjustment and particle mutation is proposed for condition identification. MPSO algorithm effectively solves local optimum and premature convergence problems of conventional particle swarm optimization (PSO algorithm. It can provide a more accurate estimate on fault diagnosis. Practical examples of fault diagnosis for rolling element bearings are given to verify the effectiveness of the proposed method.

  14. APPROACH TO FAULT ON-LINE DETECTION AND DIAGNOSIS BASED ON NEURAL NETWORKS FOR ROBOT IN FMS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based on radial basis function (RBF) neural networks, the healthy working model of each sub-system of robot in FMS is established. A new approach to fault on-line detection and diagnosis according to neural networks model is presented. Fault double detection based on neural network model and threshold judgement and quick fault identification based on multi-layer feedforward neural networks are applied, which can meet quickness and reliability of fault detection and diagnosis for robot in FMS.

  15. STUDY OF REAL-TIME EXPERT SYSTEM TOOL FOR INDUSTRIAL FAULT MONITORING AND DIAGNOSIS

    Institute of Scientific and Technical Information of China (English)

    谢桂林; 周建荣

    1992-01-01

    From the requirements ot industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master-slave real-time expert system,and a real-time expert system tool for this system is also developed accordingly. As an example of application of this tool,a realtime expert system for fault monitoring and diagnosis on DC mine hoist is developed. Experiments show that this tool possesses better supporting environment,strong knowledge acquisition ability, and convenience for use. The system developed by this tool not only meets the realtime requirement of DC hoist,but also can give correct diagnosis results.

  16. Fault Diagnosis of Mixed-Signal Analog Circuit using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Narula

    2015-06-01

    Full Text Available This paper presents parametric fault diagnosis in mixed-signal analog circuit using artificial neural networks. Single parametric faults are considered in this study. A benchmark R2R digital to analog converter circuit has been used as an example circuit for experimental validations. The input test pattern required for testing are reduced to optimum value using sensitivity analysis of the circuit under test. The effect of component tolerances has also been taken care of by performing the Monte-Carlo analysis. In this study parametric fault models are defined for the R2R network of the digital to analog converter. The input test patterns are applied to the circuit under test and the output responses are measured for each fault model covering all the Monte-Carlo runs. The classification of the parametric faults is done using artificial neural networks. The fault diagnosis system is developed in LabVIEW environment in the form of a virtual instrument. The artificial neural network is designed using MATLAB and finally embedded in the virtual instrument. The fault diagnosis is validated with simulated data and with the actual data acquired from the circuit hardware.

  17. Fault detection and diagnosis using statistical control charts and artificial neural networks

    International Nuclear Information System (INIS)

    In order to operate a successful plant or process, continuous improvement must be made in the areas of safety, quality and reliability. Central to this continuous improvement is the early or proactive detection and correct diagnosis of process faults. This research examines the feasibility of using Cumulative Summation (CUSUM) Control Charts and artificial neural networks together for fault detection and diagnosis (FDD). The proposed FDD strategy was tested on a model of the heat transport system of a CANDU nuclear reactor. The results of the investigation indicate that a FDD system using CUSUM Control Charts and a Radial Basis Function (RBF) neural network is not only feasible but also of promising potential. The control charts and neural network are linked together by using a characteristic fault signature pattern for each fault which is to be detected and diagnosed. When tested, the system was able to eliminate all false alarms at steady state, promptly detect 6 fault conditions and correctly diagnose 5 out of the 6 faults. The diagnosis for the sixth fault was inconclusive. (author). 9 refs., 6 tabs., 7 figs

  18. Robust condition monitoring and fault diagnosis of rolling element bearings using improved EEMD and statistical features

    Science.gov (United States)

    Jiang, Fan; Zhu, Zhencai; Li, Wei; Chen, Guoan; Zhou, Gongbo

    2014-02-01

    Condition monitoring and fault diagnosis play an important role in the health management of mechanical equipment. However, the robust performance of data-driven-based methods with unknown fault inputs remains to be further improved. In this paper, a novel approach of condition monitoring and fault diagnosis is proposed for rolling element bearings based on an improved ensemble empirical mode decomposition (IEEMD), which is able to solve the non-intrinsic mode function problem of EEMD. In this method, IEEMD is applied to process the primordial vibration signals collected from rolling element bearings at first. Then the correlation analysis and data fusion technology are introduced to extract statistical features from these decomposition results of IEEMD. Finally, a complete self-zero space model is constructed for the condition monitoring and fault diagnosis of rolling element bearings. Experiments are implemented on a mechanical fault simulator to demonstrate the reliability and effectiveness of the proposed method. The experimental results show that the proposed method can not only diagnose known faults but also monitor unknown faults with strong robust performance.

  19. Blade Fault Diagnosis in Small Wind Power Systems Using MPPT with Optimized Control Parameters

    Directory of Open Access Journals (Sweden)

    Jui-Ho Chen

    2015-08-01

    Full Text Available A systematic experiment verification of Chaos Embedded Sliding Mode Extremum Seeking Control for maximum power point tracking and a method for detecting possible faults in small wind turbine systems in advance are proposed in this paper. The chaotic logistic map is used to replace the random function in the particle swarm optimization algorithm for faster searching the optimal control parameter . From the experimental results, it is verified that the Chaos Embedded Sliding Mode Extremum Seeking Control scheme has a better dynamic response than traditional Extremum Seeking Control scheme and Hill-Climbing Search scheme for maximum power point tracking. In the proposed scheme for fault detection, a chaotic synchronization method is used to transform the maximum power point tracking signal into a chaos synchronization error distribution diagram. It is then taken as the characteristic for fault diagnosis purposes. Finally, an extension theory pattern recognition technique is applied to diagnose the fault. Notably, the use of the chaotic dynamic errors as the fault diagnosis characteristic reduces the number of extracted features required, and therefore greatly reduces both the computation time and the hardware implementation cost. From the experimental results, it is shown that the fault diagnosis rate of the proposed method exceeds 98% not only in non-real-time but also in real-time of faults detection of the blades.

  20. Simplified Interval Observer Scheme: A New Approach for Fault Diagnosis in Instruments

    Science.gov (United States)

    Martínez-Sibaja, Albino; Astorga-Zaragoza, Carlos M.; Alvarado-Lassman, Alejandro; Posada-Gómez, Rubén; Aguila-Rodríguez, Gerardo; Rodríguez-Jarquin, José P.; Adam-Medina, Manuel

    2011-01-01

    There are different schemes based on observers to detect and isolate faults in dynamic processes. In the case of fault diagnosis in instruments (FDI) there are different diagnosis schemes based on the number of observers: the Simplified Observer Scheme (SOS) only requires one observer, uses all the inputs and only one output, detecting faults in one detector; the Dedicated Observer Scheme (DOS), which again uses all the inputs and just one output, but this time there is a bank of observers capable of locating multiple faults in sensors, and the Generalized Observer Scheme (GOS) which involves a reduced bank of observers, where each observer uses all the inputs and m-1 outputs, and allows the localization of unique faults. This work proposes a new scheme named Simplified Interval Observer SIOS-FDI, which does not requires the measurement of any input and just with just one output allows the detection of unique faults in sensors and because it does not require any input, it simplifies in an important way the diagnosis of faults in processes in which it is difficult to measure all the inputs, as in the case of biologic reactors. PMID:22346593

  1. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Feng Lu

    2016-10-01

    Full Text Available Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

  2. Fault diagnosis of rolling bearings based on multifractal detrended fluctuation analysis and Mahalanobis distance criterion

    Science.gov (United States)

    Lin, Jinshan; Chen, Qian

    2013-07-01

    Vibration data of faulty rolling bearings are usually nonstationary and nonlinear, and contain fairly weak fault features. As a result, feature extraction of rolling bearing fault data is always an intractable problem and has attracted considerable attention for a long time. This paper introduces multifractal detrended fluctuation analysis (MF-DFA) to analyze bearing vibration data and proposes a novel method for fault diagnosis of rolling bearings based on MF-DFA and Mahalanobis distance criterion (MDC). MF-DFA, an extension of monofractal DFA, is a powerful tool for uncovering the nonlinear dynamical characteristics buried in nonstationary time series and can capture minor changes of complex system conditions. To begin with, by MF-DFA, multifractality of bearing fault data was quantified with the generalized Hurst exponent, the scaling exponent and the multifractal spectrum. Consequently, controlled by essentially different dynamical mechanisms, the multifractality of four heterogeneous bearing fault data is significantly different; by contrast, controlled by slightly different dynamical mechanisms, the multifractality of homogeneous bearing fault data with different fault diameters is significantly or slightly different depending on different types of bearing faults. Therefore, the multifractal spectrum, as a set of parameters describing multifractality of time series, can be employed to characterize different types and severity of bearing faults. Subsequently, five characteristic parameters sensitive to changes of bearing fault conditions were extracted from the multifractal spectrum and utilized to construct fault features of bearing fault data. Moreover, Hilbert transform based envelope analysis, empirical mode decomposition (EMD) and wavelet transform (WT) were utilized to study the same bearing fault data. Also, the kurtosis and the peak levels of the EMD or the WT component corresponding to the bearing tones in the frequency domain were carefully checked

  3. Noise resistant time frequency analysis and application in fault diagnosis of rolling element bearings

    Science.gov (United States)

    Dong, Guangming; Chen, Jin

    2012-11-01

    Rolling element bearings are frequently used in rotary machinery, but they are also fragile mechanical parts. Hence, exact condition monitoring and fault diagnosis for them plays an important role in ensuring machinery's reliable running. Timely diagnosis of early bearing faults is desirable, but the early fault signatures are easily submerged in noise. In this paper, Wigner-Ville spectrum based on cyclic spectral density (CSWVS for a brief notation) is studied, which is able to represent the cyclostationary signals while reducing the masking effect of additive stationary noise. Both simulations and experiments show that CSWVS is a noise resistant time frequency analysis technique for extracting bearing fault patterns, when bearing signals are under influences of random noise and gear vibrations. The 3-D feature of the CSWVS is proved useful in extracting bearing fault pattern from gearbox vibration signals, where bearing signals are affected by gear meshing vibration and noise. Besides, CSWVS utilizes the second order cyclostationary property of the vibration signals produced by bearing distributed fault, and clearly extracts its fault features, which cannot be extracted by envelope analysis. To quantitatively describe the extent of bearing fault, Renyi information encoded in the time frequency diagram of CSWVS is studied. It is shown to be a more sensitive index to reflect bearing performance degradation, compared with the spectral entropy (SE), squared envelope spectrum entropy (SESE) and Renyi informations for WVD, PWVD, especially when SNR is low.

  4. Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter.

    Science.gov (United States)

    Wang, Tianzhen; Qi, Jie; Xu, Hao; Wang, Yide; Liu, Lei; Gao, Diju

    2016-01-01

    Thanks to reduced switch stress, high quality of load wave, easy packaging and good extensibility, the cascaded H-bridge multilevel inverter is widely used in wind power system. To guarantee stable operation of system, a new fault diagnosis method, based on Fast Fourier Transform (FFT), Relative Principle Component Analysis (RPCA) and Support Vector Machine (SVM), is proposed for H-bridge multilevel inverter. To avoid the influence of load variation on fault diagnosis, the output voltages of the inverter is chosen as the fault characteristic signals. To shorten the time of diagnosis and improve the diagnostic accuracy, the main features of the fault characteristic signals are extracted by FFT. To further reduce the training time of SVM, the feature vector is reduced based on RPCA that can get a lower dimensional feature space. The fault classifier is constructed via SVM. An experimental prototype of the inverter is built to test the proposed method. Compared to other fault diagnosis methods, the experimental results demonstrate the high accuracy and efficiency of the proposed method. PMID:26626623

  5. Fault detection and diagnosis using neural network approaches

    Science.gov (United States)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  6. Cyclostationary Analysis for Gearbox and Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhipeng Feng

    2015-01-01

    Full Text Available Gearbox and rolling element bearing vibration signals feature modulation, thus being cyclostationary. Therefore, the cyclic correlation and cyclic spectrum are suited to analyze their modulation characteristics and thereby extract gearbox and bearing fault symptoms. In order to thoroughly understand the cyclostationarity of gearbox and bearing vibrations, the explicit expressions of cyclic correlation and cyclic spectrum for amplitude modulation and frequency modulation (AM-FM signals are derived, and their properties are summarized. The theoretical derivations are illustrated and validated by gearbox and bearing experimental signal analyses. The modulation characteristics caused by gearbox and bearing faults are extracted. In faulty gearbox and bearing cases, more peaks appear in cyclic correlation slice of 0 lag and cyclic spectrum, than in healthy cases. The gear and bearing faults are detected by checking the presence or monitoring the magnitude change of peaks in cyclic correlation and cyclic spectrum and are located according to the peak cyclic frequency locations or sideband frequency spacing.

  7. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  8. Wavelet neural network based fault diagnosis in nonlinear analog circuits

    Institute of Scientific and Technical Information of China (English)

    Yin Shirong; Chen Guangju; Xie Yongle

    2006-01-01

    The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studied. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.

  9. Elementwise Business Diagnosis of Enterprise Activity

    Directory of Open Access Journals (Sweden)

    Skrynkovskyy Ruslan M.

    2016-02-01

    Full Text Available The article presents methodological and indicator apparatus for elementwise business diagnosis of enterprise activity directed at achieving such elementwise diagnostic objectives: diagnosis of return on assets; diagnosis of return on equity capital; diagnosis of production profitability; diagnosis of gross profit margin of product sales; diagnosis of operating margin of product sales; diagnosis of net margin of product sales; diagnosis of absolute liquidity; diagnosis of instant liquidity; diagnosis of overall liquidity; diagnosis of coverage; diagnosis of financial independence; diagnosis of equity capital maneuverability; diagnosis of financial leverage; diagnosis of the long-term investment structure; diagnosis of accounts payable turnover; diagnosis of the accounts payable repayment period, diagnosis of receivables turnover; diagnosis of receivables repayment period; diagnosis of assets turnover; diagnosis of inventories turnover; diagnosis of the inventories turnover period; diagnosis of equity capital turnover; diagnosis of fixed assets turnover (return on assets; diagnosis of capital coefficient; diagnosis of the ratio of output value to the materials cost; diagnosis of material consumption; diagnosis of the total production cost; diagnosis of enterprise market share; diagnosis of fixed assets wear; diagnosis of fixed assets renewal; diagnosis of fixed assets retirement; performance diagnosis; diagnosis of labor intensity, diagnosis of the capital-labour ratio; diagnosis of efficiency; diagnosis of conducting the business; diagnosis of business relations; diagnosis of administrative-legal relations; diagnosis of knowledge management. The elementwise diagnostic objectives of the enterprise system of diagnostic objectives are aimed at a narrow highly detailed diagnostics of individual indicators of the enterprise activity, i.e. the evaluation of specific analytical indicators,monitoring (research of their dynamics, comparison of the planned

  10. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis

    Science.gov (United States)

    Wang, Tianyang; Liang, Ming; Li, Jianyong; Cheng, Weidong

    2014-03-01

    Order tracking based on time-frequency representation (TFR) is one of the most effective methods for gear fault detection under time-varying rotational speed without using a tachometer. However, for a rolling element bearing, the signal components related to rotational speed usually cannot be directly extracted from the TFR. As such, we propose a new method to solve this problem. This method consists of four main steps: (a) signal filtering via fast spectral kurtosis (SK) analysis - this together with the short time Fourier transform (STFT) leads to a TFR of the filtered signal with clear fault-revealing trend lines, (b) extraction of instantaneous fault characteristic frequency (IFCF) from the TFR using an amplitude-sum based spectral peak search algorithm, (c) signal resampling based on the extracted IFCF to convert the non-stationary time-domain signal into the stationary fault phase angle (FPA) domain signal, and (d) transform of the FPA domain signal into the domain of the fault characteristic order (FCO) and identification of fault type from the FCO spectrum. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals.

  11. Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Zhong, Wei; Tong, Shuiguang; Tang, Ning; Chen, Jin

    2015-05-01

    Rolling element bearings are at the heart of most rotating machines and they bear the function of connectivity between the rotor and stator. It is important to distinguish the incipient fault before the bearing step into serious failure. The Slip Matrix (SM) construction method based on Singular Value Decomposition (SVD) is proposed in this paper. The SM based fault feature extraction and impulses intelligent detection methods are introduced as the key steps for rolling bearing fault diagnosis. The numerical simulation of rolling bearing fault signal is adopted which shows that the proposed method is good at fault impulses detection in strong background noise environment. The rolling element bearing accelerated life test is performed for the acquisition of experimental data of rolling bearing fault. With the rolling bearing running from normal state to failure, the initial fault signal part can be picked out from the whole life vibration data of the rolling bearing. The vibration signal is close to the nature fault signal which is acquired from a rolling bearing applied in industrial field. The analysis result shows that the proposed method has an excellent performance in rolling bearing fault detection.

  12. Application of CMAC Neural Network to Solar Energy Heliostat Field Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Neng-Sheng Pai

    2013-01-01

    Full Text Available Solar energy heliostat fields comprise numerous sun tracking platforms. As a result, fault detection is a highly challenging problem. Accordingly, the present study proposes a cerebellar model arithmetic computer (CMAC neutral network for automatically diagnosing faults within the heliostat field in accordance with the rotational speed, vibration, and temperature characteristics of the individual heliostat transmission systems. As compared with radial basis function (RBF neural network and back propagation (BP neural network in the heliostat field fault diagnosis, the experimental results show that the proposed neural network has a low training time, good robustness, and a reliable diagnostic performance. As a result, it provides an ideal solution for fault diagnosis in modern, large-scale heliostat fields.

  13. Rolling Element Bearing Fault Diagnosis Based on Multiscale General Fractal Features

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2015-01-01

    Full Text Available Nonlinear characteristics are ubiquitous in the vibration signals produced by rolling element bearings. Fractal dimensions are effective tools to illustrate nonlinearity. This paper proposes a new approach based on Multiscale General Fractal Dimensions (MGFDs to realize fault diagnosis of rolling element bearings, which are robust to the effects of variation in operating conditions. The vibration signals of bearing are analyzed to extract the general fractal dimensions in multiscales, which are in turn utilized to construct a feature space to identify fault pattern. Finally, bearing faults are revealed by pattern recognition. Case studies are carried out to evaluate the validity and accuracy of the approach. It is verified that this approach is effective for fault diagnosis of rolling element bearings under various operating conditions via experiment and data analysis.

  14. Independent component analysis approach for fault diagnosis of condenser system in thermal power plant

    Institute of Scientific and Technical Information of China (English)

    Ajami Ali; Daneshvar Mahdi

    2014-01-01

    A statistical signal processing technique was proposed and verified as independent component analysis (ICA) for fault detection and diagnosis of industrial systems without exact and detailed model. Actually, the aim is to utilize system as a black box. The system studied is condenser system of one of MAPNA’s power plants. At first, principal component analysis (PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones. Then, the fault sources were diagnosed by ICA technique. The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states, and it can distinguish main factors of abnormality among many diverse parts of a power plant’s condenser system. This selectivity problem is left unsolved in many plants, because the main factors often become unnoticed by fault expansion through other parts of the plants.

  15. A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Li-ion battery has attracted more and more attention as it is a promising storage device which has long service life, higher energy, and power density. However, battery ageing always occurs during operation and leads to performance degradation and system fault which not only causes inconvenience, but also risks serious consequences such as thermal runaway or even explosion. This paper reviews recent research and development of ageing mechanisms of Li-ion batteries to understand the origins and symptoms of Li-ion battery faults. Common ageing factors are covered with their effects and consequences. Through ageing tests, relationship between performance and ageing factors, as well as cross-dependence among factors can be quantified. Summary of recent research about fault diagnosis technology for Li-ion batteries is concluded with their cons and pros. The suggestions on novel fault diagnosis approach and remaining challenges are provided at the end of this paper.

  16. Fault Diagnosis of Power System Based on Improved Genetic Optimized BP-NN

    Directory of Open Access Journals (Sweden)

    Yuan Pu

    2015-01-01

    Full Text Available BP neural network (Back-Propagation Neural Network, BP-NN is one of the most widely neural network models and is applied to fault diagnosis of power system currently. BP neural network has good self-learning and adaptive ability and generalization ability, but the operation process is easy to fall into local minima. Genetic algorithm has global optimization features, and crossover is the most important operation of the Genetic Algorithm. In this paper, we can modify the crossover of traditional Genetic Algorithm, using improved genetic algorithm optimized BP neural network training initial weights and thresholds, to avoid the problem of BP neural network fall into local minima. The results of analysis by an example, the method can efficiently diagnose network fault location, and improve fault-tolerance and grid fault diagnosis effect.

  17. Diagnosis and Fault-tolerant Control for Ship Station Keeping

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2005-01-01

    design for systems of high complexity, and also analyse the cases of cascaded or multiple faults. The paper takes as example a ship with two CP propellers, rudders and a bow thruster as actuators, and instrumentation with a suite of global position sensors, inertial navigation units and conventional gyro...

  18. Active Fault Detection and Isolation for Hybrid Systems

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas;

    2009-01-01

    An algorithm for active fault detection and isolation is proposed. In order to observe the failure hidden due to the normal operation of the controllers or the systems, an optimization problem based on minimization of test signal is used. The optimization based method imposes the normal and faulty...... models predicted outputs such that their discrepancies are observable by passive fault diagnosis technique. Isolation of different faults is done by implementation a bank of Extended Kalman Filter (EKF) where the convergence criterion for EKF is confirmed by Genetic Algorithm (GA). The method is applied...

  19. Rolling Bearing Fault Diagnosis Based on Wavelet Packet Decomposition and Multi-Scale Permutation Entropy

    OpenAIRE

    Li-Ye Zhao; Lei Wang; Ru-Qiang Yan

    2015-01-01

    This paper presents a rolling bearing fault diagnosis approach by integrating wavelet packet decomposition (WPD) with multi-scale permutation entropy (MPE). The approach uses MPE values of the sub-frequency band signals to identify faults appearing in rolling bearings. Specifically, vibration signals measured from a rolling bearing test system with different defect conditions are decomposed into a set of sub-frequency band signals by means of the WPD method. Then, each sub-frequency band sign...

  20. High-Speed Spindle Fault Diagnosis with the Empirical Mode Decomposition and Multiscale Entropy Method

    OpenAIRE

    Nan-Kai Hsieh; Wei-Yen Lin; Hong-Tsu Young

    2015-01-01

    The root mean square (RMS) value of a vibration signal is an important indicator used to represent the amplitude of vibrations in evaluating the quality of high-speed spindles. However, RMS is unable to detect a number of common fault characteristics that occur prior to bearing failure. Extending the operational life and quality of spindles requires reliable fault diagnosis techniques for the analysis of vibration signals from three axes. This study used empirical mode decomposition to decomp...

  1. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    OpenAIRE

    Jinglong Chen; Yu Wang; Zhengjia He; Xiaodong Wang

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. Fir...

  2. Diagnosis of three types of constant faults in read-once contact networks over finite bases

    KAUST Repository

    Busbait, Monther

    2016-03-24

    We study the depth of decision trees for diagnosis of three types of constant faults in read-once contact networks over finite bases containing only indecomposable networks. For each basis and each type of faults, we obtain a linear upper bound on the minimum depth of decision trees depending on the number of edges in networks. For bases containing networks with at most 10 edges, we find sharp coefficients for linear bounds.

  3. Active Fault Characterization in the Urban Area of Vienna

    Science.gov (United States)

    Decker, Kurt; Grupe, Sabine; Hintersberger, Esther

    2016-04-01

    The identification of active faults that lie beneath a city is of key importance for seismic hazard assessment. Fault mapping and characterization in built-up areas with strong anthropogenic overprint is, however, a challenging task. Our study of Quaternary faults in the city of Vienna starts from the re-assessment of a borehole database of the municipality containing several tens of thousands of shallow boreholes. Data provide tight constraints on the geometry of Quaternary deposits and highlight several locations with fault-delimited Middle to Late Pleistocene terrace sediments of the Danube River. Additional information is obtained from geological descriptions of historical outcrops which partly date back to about 1900. The latter were found to be particularly valuable by providing unprejudiced descriptions of Quaternary faults, sometimes with stunning detail. The along-strike continuations of some of the identified faults are further imaged by industrial 2D/3D seismic acquired outside the city limits. The interpretation and the assessment of faults identified within the city benefit from a very well constrained tectonic model of the active Vienna Basin fault system which derived from data obtained outside the city limits. This data suggests that the urban faults are part of a system of normal faults compensating fault-normal extension at a releasing bend of the sinistral Vienna Basin Transfer Fault. Slip rates estimated for the faults in the city are in the range of several hundredths of millimetres per year and match the slip rates of normal faults that were trenched outside the city. The lengths/areas of individual faults estimated from maps and seismic reach up to almost 700 km² suggesting that all of the identified faults are capable of producing earthquakes with magnitudes M>6, some with magnitudes up to M~6.7.

  4. A Study on Integrated Wavelet Neural Networks in Fault Diagnosis Based on Information Fusion

    Institute of Scientific and Technical Information of China (English)

    ANG Xue-ye

    2007-01-01

    The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given . It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.

  5. Phase-compensation-based dynamic time warping for fault diagnosis using the motor current signal

    Science.gov (United States)

    Zhen, D.; Zhao, H. L.; Gu, F.; Ball, A. D.

    2012-05-01

    Dynamic time warping (DTW) is a time-domain-based method and widely used in various similar recognition and data mining applications. This paper presents a phase-compensation-based DTW to process the motor current signals for detecting and quantifying various faults in a two-stage reciprocating compressor under different operating conditions. DTW is an effective method to align two signals for dissimilarity analysis. However, it has drawbacks such as singularities and high computational demands that limit its application in processing motor current signals for obtaining modulation characteristics accurately in diagnosing compressor faults. Therefore, a phase compensation approach is developed to reduce the singularity effect and a sliding window is designed to improve computing efficiency. Based on the proposed method, the motor current signals measured from the compressor induced with different common faults are analysed for fault diagnosis. Results show that residual signal analysis using the phase-compensation-based DTW allows the fault-related sideband features to be resolved more accurately for obtaining reliable fault detection and diagnosis. It provides an effective and easy approach to the analysis of motor current signals for better diagnosis in the time domain in comparison with conventional Fourier-transform-based methods.

  6. Fault diagnosis of bearings based on a sensitive feature decoupling technique

    International Nuclear Information System (INIS)

    Bearings are commonly used in machine industry, and their faults may result in unexpected vibration and even cause breakdown of a whole rotating machine. This paper proposes a novel fault diagnosis approach for bearings by using a sensitive feature decoupling technique. This approach does not require a training procedure as in machine learning methods and can classify the occurred faults by a simple algebraic computation. Firstly, the features of vibration signals which show the most significant difference under different bearing health conditions are selected and defined as sensitive features. Then those sensitive features under different health conditions are used to construct a feature matrix, and its left null space is computed to obtain the so-called feature decoupling vectors. The bearing faults are finally classified with the help of the decoupling vectors according to a simple decision logic. Since the obtained decoupling vectors may not be unique, we also propose an algorithm to select the optimal ones in order to improve the performance of fault diagnosis. Experiments are carried out to test the proposed approach and the results show that the approach is feasible and effective for the fault diagnosis of bearings. (paper)

  7. Rolling Bearing Fault Diagnosis Based on STFT-Deep Learning and Sound Signals

    Directory of Open Access Journals (Sweden)

    Hongmei Liu

    2016-01-01

    Full Text Available The main challenge of fault diagnosis lies in finding good fault features. A deep learning network has the ability to automatically learn good characteristics from input data in an unsupervised fashion, and its unique layer-wise pretraining and fine-tuning using the backpropagation strategy can solve the difficulties of training deep multilayer networks. Stacked sparse autoencoders or other deep architectures have shown excellent performance in speech recognition, face recognition, text classification, image recognition, and other application domains. Thus far, however, there have been very few research studies on deep learning in fault diagnosis. In this paper, a new rolling bearing fault diagnosis method that is based on short-time Fourier transform and stacked sparse autoencoder is first proposed; this method analyzes sound signals. After spectrograms are obtained by short-time Fourier transform, stacked sparse autoencoder is employed to automatically extract the fault features, and softmax regression is adopted as the method for classifying the fault modes. The proposed method, when applied to sound signals that are obtained from a rolling bearing test rig, is compared with empirical mode decomposition, Teager energy operator, and stacked sparse autoencoder when using vibration signals to verify the performance and effectiveness of the proposed method.

  8. Phase-compensation-based dynamic time warping for fault diagnosis using the motor current signal

    International Nuclear Information System (INIS)

    Dynamic time warping (DTW) is a time-domain-based method and widely used in various similar recognition and data mining applications. This paper presents a phase-compensation-based DTW to process the motor current signals for detecting and quantifying various faults in a two-stage reciprocating compressor under different operating conditions. DTW is an effective method to align two signals for dissimilarity analysis. However, it has drawbacks such as singularities and high computational demands that limit its application in processing motor current signals for obtaining modulation characteristics accurately in diagnosing compressor faults. Therefore, a phase compensation approach is developed to reduce the singularity effect and a sliding window is designed to improve computing efficiency. Based on the proposed method, the motor current signals measured from the compressor induced with different common faults are analysed for fault diagnosis. Results show that residual signal analysis using the phase-compensation-based DTW allows the fault-related sideband features to be resolved more accurately for obtaining reliable fault detection and diagnosis. It provides an effective and easy approach to the analysis of motor current signals for better diagnosis in the time domain in comparison with conventional Fourier-transform-based methods. (paper)

  9. Actuator fault diagnosis of time-delay systems based on adaptive observer

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A novel approach for the actuator fault diagnosis of time-delay systems is presented by using an adaptive observer technique. Systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system is subjected to either model uncertainty or external disturbance. An adaptive diagnostic algorithm is developed to diagnose the fault, and a modified version is proposed for general system to improve robustness. The selection of the threshold for fault detection is also discussed. Finally, a numerical example is given to illustrate the efficiency of the proposed method.

  10. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  11. SDG-Based HAZOP and Fault Diagnosis Analysis to the Inversion of Synthetic Ammonia

    Institute of Scientific and Technical Information of China (English)

    L(U) Ning; WANG Xiong

    2007-01-01

    This paper presents some practical applications of signed directed graphs(SDGs)to computeraided hazard and operability study (HAZOP) and fault diagnosis, based on an analysis of the SDG theory.The SDG is modeled for the inversion of synthetic ammonia, which is highly dangerous in process industry,and HAZOP and fault diagnosis based on the SDG model are presented.A new reasoning method,whereby inverse inference is combined with forward inference,is presented to implement SDG fault diagnosis based on a breadth-first algorithm with consistency rules. Compared with conventional inference engines, this new method can better avoid qualitative spuriousness and combination explosion, and can deal with unobservable nodes in SDGs more effectively. Experimental results show the validity and advantages of the new SDG method.

  12. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors

    Science.gov (United States)

    Yang, Jing-li; Chen, Yin-sheng; Zhang, Li-li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  13. A Unified Framework for Fault Detection and Diagnosis Using Particle Filter

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    2014-10-01

    Full Text Available In this paper, a particle filter (PF based fault detection and diagnosis framework is proposed. A system with possible faults is modeled as a group of hidden Markov models representing the system in fault-free mode and different failure modes, and a first order Markov chain is modeling the system mode transitions. A modified particle filter algorithm is developed to estimate the system states and mode. By doing this, system faults are detected when estimating the system mode, and the size of the fault is diagnosed by estimating the system state. A new resampling method is also developed for running the modified PF efficiently. Two introductory examples and a case study are given in detail. The introduction examples demonstrate the manner to model a system with possible faults into hidden Markov model and Markov chain. The case study considers a numerical model with common measurement failure modes. It focuses on the verification of the proposed fault diagnosis and detection algorithm and shows the behavior of the particle filter.

  14. Reconfigurable Test Architecture for Online Concurrent Fault Detection, Diagnosis and Repair

    Directory of Open Access Journals (Sweden)

    Rajeevan Chandel

    2012-03-01

    Full Text Available A complete and versatile online test solution based on reconfigurable test architecture is presented in the present paper. Reconfigurable test architecture works alongside the controllers for online concurrent fault detection. The output vectors of the controllers are concurrently monitored and any fault present is detected in a few cycles from the sensitization of the fault. The architecture is then reprogrammed to a similar set of diagnostic hardware to locate a sub block which is the cause for the fault. The same architecture is then reprogrammed to replace the faulty block thereby completing repair. The test architecture is designed based on configurable logic blocks. The design has several advantages viz. (i it works well for critical VLSI controllers where shutting down or suspending the operation of a controller for testing is not possible and where the fault needs to be detected at the earliest, during the run time of the system, (ii after a fault is detected, diagnosis can be performed online, (iii once a faulty block is located, repair is also done online. Since fault detection, diagnosis and repair are completed online with one test hardware, the effective hardware overhead is negligible and the system can resume its function within a brief period. The applicability of the architecture is demonstrated for the control blocks in OC8051.

  15. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    Directory of Open Access Journals (Sweden)

    Chuan Li

    2016-06-01

    Full Text Available Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM. The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  16. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    Science.gov (United States)

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-01-01

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273

  17. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    Science.gov (United States)

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  18. Distributed model-based nonlinear sensor fault diagnosis in wireless sensor networks

    Science.gov (United States)

    Lo, Chun; Lynch, Jerome P.; Liu, Mingyan

    2016-01-01

    Wireless sensors operating in harsh environments have the potential to be error-prone. This paper presents a distributive model-based diagnosis algorithm that identifies nonlinear sensor faults. The diagnosis algorithm has advantages over existing fault diagnosis methods such as centralized model-based and distributive model-free methods. An algorithm is presented for detecting common non-linearity faults without using reference sensors. The study introduces a model-based fault diagnosis framework that is implemented within a pair of wireless sensors. The detection of sensor nonlinearities is shown to be equivalent to solving the largest empty rectangle (LER) problem, given a set of features extracted from an analysis of sensor outputs. A low-complexity algorithm that gives an approximate solution to the LER problem is proposed for embedment in resource constrained wireless sensors. By solving the LER problem, sensors corrupted by non-linearity faults can be isolated and identified. Extensive analysis evaluates the performance of the proposed algorithm through simulation.

  19. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

    Science.gov (United States)

    Li, Chuan; Sanchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego; Vásquez, Rafael E.

    2016-08-01

    Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratory measurements in such mechanical devices are all sensitive to the existence of faults. This work addresses the use of a deep random forest fusion (DRFF) technique to improve fault diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an accelerometer that are used for monitoring the gearbox condition simultaneously. The statistical parameters of the wavelet packet transform (WPT) are first produced from the AE signal and the vibratory signal, respectively. Two deep Boltzmann machines (DBMs) are then developed for deep representations of the WPT statistical parameters. A random forest is finally suggested to fuse the outputs of the two DBMs as the integrated DRFF model. The proposed DRFF technique is evaluated using gearbox fault diagnosis experiments under different operational conditions, and achieves 97.68% of the classification rate for 11 different condition patterns. Compared to other peer algorithms, the addressed method exhibits the best performance. The results indicate that the deep learning fusion of acoustic and vibratory signals may improve fault diagnosis capabilities for gearboxes.

  20. Investigation of the synthetic experiment system of machine equipment fault diagnosis

    Science.gov (United States)

    Liu, Hongyu; Xu, Zening; Yu, Xiaoguang

    2008-12-01

    The invention and manufacturing of the synthetic experiment system of machine equipment fault diagnosis filled in the blank of this kind of experiment equipment in China and obtained national practical new type patent. By the motor speed regulation system, machine equipment fault imitation system, measuring and monitoring system and analysis and diagnosis system of the synthetic experiment system, students can regulate motor speed arbitrarily, imitate multi-kinds of machine equipment parts fault, collect the signals of acceleration, speed, displacement, force and temperature and make multi-kinds of time field, frequency field and figure analysis. The application of the synthetic experiment system in our university's teaching practice has obtained good effect on fostering professional eligibility in measuring, monitoring and fault diagnosis of machine equipment. The synthetic experiment system has the advantages of short training time, quick desirable result and low test cost etc. It suits for spreading in university extraordinarily. If the systematic software was installed in portable computer, user can fulfill measuring, monitoring, signal processing and fault diagnosis on multi-kinds of field machine equipment conveniently. Its market foreground is very good.

  1. Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis.

    Science.gov (United States)

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2013-12-27

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods.

  2. Control Surface Fault Diagnosis for Small Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2011-01-01

    Small unmanned aerial vehicles require a large degree of fault-tolerance in order to fulfil their duties in an satisfactory way, both with respect to economy and safety in operation. Small aerial vehicles are commonly constructed without much redundancy in hardware, primarily for reasons of cost...... of distributions and change detection methods are employed to reach decisions about not-normal behaviour and it is shown how control surface faults can be diagnosed for a specific UAV without adding additional hardware to the platform. Only telemetry data from the aircraft is used together with a basic model...... of relations between signals within the aircraft. Frequency domain methods are shown to be robust in exploring relevant properties of the signals. The detection is shown to work on data from a real incident where an aileron gets stuck during launch of a UAV....

  3. Illuminating Northern California’s Active Faults

    Science.gov (United States)

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramon; Furlong, Kevin P.; Philips, David A.

    2009-01-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google EarthTM and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2)

  4. Sensor Fault Detection and Diagnosis for autonomous vehicles

    OpenAIRE

    Realpe Miguel; Vintimilla Boris; Vlacic Ljubo

    2015-01-01

    In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed ar...

  5. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    Science.gov (United States)

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-08-22

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  6. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    Directory of Open Access Journals (Sweden)

    Paola Costamagna

    2016-08-01

    Full Text Available The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  7. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    Science.gov (United States)

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  8. Process Monitoring and Fault Diagnosis for Shell Rolling Production of Seamless Tube

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2015-01-01

    Full Text Available Continuous rolling production process of seamless tube has many characteristics, including multiperiod and strong nonlinearity, and quickly changing dynamic characteristics. It is difficult to build its mechanism model. In this paper we divide production data into several subperiods by K-means clustering algorithm combined with production process; then we establish a continuous rolling production monitoring and fault diagnosis model based on multistage MPCA method. Simulation experiments show that the rolling production process monitoring and fault diagnosis model based on multistage MPCA method is effective, and it has a good real-time performance, high reliability, and precision.

  9. Combination of Multi-class Probability Support Vector Machines for Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To deal with multi-source multi-class classification problems, the method of combining multiple multi-class probability support vector machines (MPSVMs) using Bayesian theory is proposed in this paper. The MPSVMs are designed by mapping the output of standard support vector machines into a calibrated posterior probability by using a learned sigmoid function and then combining these learned binary-class probability SVMs. Two Bayes based methods for combining multiple MPSVMs are applied to improve the performance of classification. Our proposed methods are applied to fault diagnosis of a diesel engine. The experimental results show that the new methods can improve the accuracy and robustness of fault diagnosis.

  10. Machinery fault diagnosis expert system based on case-based reasoning

    Institute of Scientific and Technical Information of China (English)

    LI Wen-hong; SUN Shao-wen; ZHANG Qi

    2007-01-01

    A mechinery fault diagnosis expert system based on case-based reasoning (CBR) technology was established. The process of the CBR fault diagnosis is analyzed from three main aspects: expression and memory, retrieving and matching, and modification and maintenance of a case. The results indicate that the CBR method is flexible and simple to implement, and it has strong self-studying ability. Using a large enough number of case reasoning sets, it can accumulate the experience of problem solving, avoid the difficulty of knowledge acquisition, shorten the course of solving problems, improve efficiency of reasoning, and save the time of developing.

  11. Functional Modelling for Fault Diagnosis and its application for NPP

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper presents functional modelling and its application for diagnosis in nuclear power plants.Functional modelling is defined and it is relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed....... The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool the MFM Suite. MFM applications in nuclear power systems are described by two examples a PWR and a FBRreactor. The PWR example show how MFM can be used to model and reason about...

  12. FaultBuster: data driven fault detection and diagnosis for industrial systems

    DEFF Research Database (Denmark)

    Bergantino, Nicola; Caponetti, Fabio; Longhi, Sauro

    2009-01-01

    Efficient and reliable monitoring systems are mandatory to assure the required security standards in industrial complexes. This paper describes the recent developments of FaultBuster, a purely data-driven diagnostic system. It is designed so to be easily scalable to different monitor tasks...

  13. Review of fault diagnosis and fault-tolerant control for modular multilevel converter of HVDC

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2013-01-01

    This review focuses on faults in Modular Multilevel Converter (MMC) for use in high voltage direct current (HVDC) systems by analyzing the vulnerable spots and failure mechanism from device to system and illustrating the control & protection methods under failure condition. At the beginning, seve...

  14. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings

    Science.gov (United States)

    Chen, Guohua; Qie, Longfei; Zhang, Aijun; Han, Jin

    2016-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.

  15. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping

    Science.gov (United States)

    Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.

    2013-01-01

    Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time

  16. Functional Modelling for Fault Diagnosis and its application for NPP

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper presents functional modelling and its application for diagnosis in nuclear power plants.Functional modelling is defined and it is relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed....... The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool the MFM Suite. MFM applications in nuclear power systems are described by two examples a PWR and a FBRreactor. The PWR example show how MFM can be used to model and reason about...... and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling.Multi level flow modeling (MFM), which is a method for functional modeling,is introduced briefly and illustrated with a cooling system example...

  17. Physically-based modeling of speed sensors for fault diagnosis and fault tolerant control in wind turbines

    Science.gov (United States)

    Weber, Wolfgang; Jungjohann, Jonas; Schulte, Horst

    2014-12-01

    In this paper, a generic physically-based modeling framework for encoder type speed sensors is derived. The consideration takes into account the nominal fault-free and two most relevant fault cases. The advantage of this approach is a reconstruction of the output waveforms in dependence of the internal physical parameter changes which enables a more accurate diagnosis and identification of faulty incremental encoders i.a. in wind turbines. The objectives are to describe the effect of the tilt and eccentric of the encoder disk on the digital output signals and the influence of the accuracy of the speed measurement in wind turbines. Simulation results show the applicability and effectiveness of the proposed approach.

  18. Active faults of the Baikal depression

    Science.gov (United States)

    Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.

    1997-01-01

    The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.

  19. PWM VLSI Neural Network for Fault Diagnosis%PWM型VLSI神经网络在故障诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    吕琛; 王桂增; 张泽宇

    2005-01-01

    An improved pulse width modulation (PWM) neural network VLSI circuit for fault diagnosis is presented, which differs from the software-based fault diagnosis approach and exploits the merits of neural network VLSI circuit. A simple synapse multiplier is introduced, which has high precision, large linear range and less switching noise effects. A voltage-mode sigmoid circuit with adjustable gain is introduced for realization of different neuron activation functions. A voltage-pulse conversion circuit required for PWM is also introduced, which has high conversion precision and linearity. These 3 circuits are used to design a PWM VLSI neural network circuit to solve noise fault diagnosis for a main bearing. It can classify the fault samples directly. After signal processing, feature extraction and neural network computation for the analog noise signals including fault information,each output capacitor voltage value of VLSI circuit can be obtained, which represents Euclid distance between the corresponding fault signal template and the diagnosing signal, The real-time online recognition of noise fault signal can also be realized.

  20. Investigations on Incipient Fault Diagnosis of Power Transformer Using Neural Networks and Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Nandkumar Wagh

    2014-01-01

    Full Text Available Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the proposed work, a comparison of the diagnosis ability of backpropagation (BP, radial basis function (RBF neural network, and adaptive neurofuzzy inference system (ANFIS has been investigated and the diagnosis results in terms of error measure, accuracy, network training time, and number of iterations are presented.

  1. FUZZY LOGIC APPLICATION IN POWER SYSTEM FAULT DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    KRISNA KANT GAUTAM

    2011-09-01

    Full Text Available Fuzzy logic allows a convenient way to incorporate the knowledge of human experts into the expert systems using qualitative and natural language-like expressions. Recent advances in the field of fuzzy systems and a number of successful real-world applications in power systems show that logic can be efficiently applied to dealwith imprecision, ambiguity and probabilistic information in input data. Fuzzy logic based systems with their capability to deal with incomplete information, imprecision, and incorporation of qualitative knowledge have shown great potential for application in electric system fault detection.

  2. Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis

    Science.gov (United States)

    He, Shuilong; Chen, Jinglong; Zhou, Zitong; Zi, Yanyang; Wang, Yanxue; Wang, Xiaodong

    2016-08-01

    Compound-fault diagnosis of mechanical equipment is still challenging at present because of its complexity, multiplicity and non-stationarity. In this work, an adaptive redundant multiwavelet packet (ARMP) method is proposed for the compound-fault diagnosis. Multiwavelet transform has two or more base functions and many excellent properties, making it suitable for detecting all the features of compound-fault simultaneously. However, on the other hand, the fixed basis function used in multiwavelet transform may decrease the accuracy of fault extraction; what's more, the multi-resolution analysis of multiwavelet transform in low frequency band may also leave out the useful features. Thus, the minimum sum of normalized multifractal entropy is adopted as the optimization criteria for the proposed ARMP method, while the relative energy ratio of the characteristic frequency is utilized as an effective way in automatically selecting the sensitive frequency bands. Then, The ARMP technique combined with Hilbert transform demodulation analysis is then applied to detect the compound-fault of bevel gearbox and planetary gearbox. The results verify that the proposed method can effectively identify and detect the compound-fault of mechanical equipment.

  3. Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings

    Science.gov (United States)

    Ming, A. B.; Qin, Z. Y.; Zhang, W.; Chu, F. L.

    2013-12-01

    Bearing failure is one of the most common reasons of machine breakdowns and accidents. Therefore, the fault diagnosis of rolling element bearings is of great significance to the safe and efficient operation of machines owing to its fault indication and accident prevention capability in engineering applications. Based on the orthogonal projection theory, a novel method is proposed to extract the fault characteristic frequency for the incipient fault diagnosis of rolling element bearings in this paper. With the capability of exposing the oscillation frequency of the signal energy, the proposed method is a generalized form of the squared envelope analysis and named as spectral auto-correlation analysis (SACA). Meanwhile, the SACA is a simplified form of the cyclostationary analysis as well and can be iteratively carried out in applications. Simulations and experiments are used to evaluate the efficiency of the proposed method. Comparing the results of SACA, the traditional envelope analysis and the squared envelope analysis, it is found that the result of SACA is more legible due to the more prominent harmonic amplitudes of the fault characteristic frequency and that the SACA with the proper iteration will further enhance the fault features.

  4. Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model

    Science.gov (United States)

    Zhou, Haitao; Chen, Jin; Dong, Guangming; Wang, Ran

    2016-05-01

    Many existing signal processing methods usually select a predefined basis function in advance. This basis functions selection relies on a priori knowledge about the target signal, which is always infeasible in engineering applications. Dictionary learning method provides an ambitious direction to learn basis atoms from data itself with the objective of finding the underlying structure embedded in signal. As a special case of dictionary learning methods, shift-invariant dictionary learning (SIDL) reconstructs an input signal using basis atoms in all possible time shifts. The property of shift-invariance is very suitable to extract periodic impulses, which are typical symptom of mechanical fault signal. After learning basis atoms, a signal can be decomposed into a collection of latent components, each is reconstructed by one basis atom and its corresponding time-shifts. In this paper, SIDL method is introduced as an adaptive feature extraction technique. Then an effective approach based on SIDL and hidden Markov model (HMM) is addressed for machinery fault diagnosis. The SIDL-based feature extraction is applied to analyze both simulated and experiment signal with specific notch size. This experiment shows that SIDL can successfully extract double impulses in bearing signal. The second experiment presents an artificial fault experiment with different bearing fault type. Feature extraction based on SIDL method is performed on each signal, and then HMM is used to identify its fault type. This experiment results show that the proposed SIDL-HMM has a good performance in bearing fault diagnosis.

  5. A Game-Theoretic approach to Fault Diagnosis of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2011-06-01

    Full Text Available Physical systems can fail. For this reason the problem of identifying and reacting to faults has received a large attention in the control and computer science communities. In this paper we study the fault diagnosis problem for hybrid systems from a game-theoretical point of view. A hybrid system is a system mixing continuous and discrete behaviours that cannot be faithfully modeled neither by using a formalism with continuous dynamics only nor by a formalism including only discrete dynamics. We use the well known framework of hybrid automata for modeling hybrid systems, and we define a Fault Diagnosis Game on them, using two players: the environment and the diagnoser. The environment controls the evolution of the system and chooses whether and when a fault occurs. The diagnoser observes the external behaviour of the system and announces whether a fault has occurred or not. Existence of a winning strategy for the diagnoser implies that faults can be detected correctly, while computing such a winning strategy corresponds to implement a diagnoser for the system. We will show how to determine the existence of a winning strategy, and how to compute it, for some decidable classes of hybrid automata like o-minimal hybrid automata.

  6. A Model of Intelligent Fault Diagnosis of Power Equipment Based on CBR

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2015-01-01

    Full Text Available Nowadays the demand of power supply reliability has been strongly increased as the development within power industry grows rapidly. Nevertheless such large demand requires substantial power grid to sustain. Therefore power equipment’s running and testing data which contains vast information underpins online monitoring and fault diagnosis to finally achieve state maintenance. In this paper, an intelligent fault diagnosis model for power equipment based on case-based reasoning (IFDCBR will be proposed. The model intends to discover the potential rules of equipment fault by data mining. The intelligent model constructs a condition case base of equipment by analyzing the following four categories of data: online recording data, history data, basic test data, and environmental data. SVM regression analysis was also applied in mining the case base so as to further establish the equipment condition fingerprint. The running data of equipment can be diagnosed by such condition fingerprint to detect whether there is a fault or not. Finally, this paper verifies the intelligent model and three-ratio method based on a set of practical data. The resulting research demonstrates that this intelligent model is more effective and accurate in fault diagnosis.

  7. Rolling Bearing Fault Diagnosis under Variable Conditions Using Hilbert-Huang Transform and Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    Hongmei Liu

    2014-01-01

    Full Text Available Fault diagnosis precision for rolling bearings under variable conditions has always been unsatisfactory. To solve this problem, a fault diagnosis method combining Hilbert-Huang transform (HHT, singular value decomposition (SVD, and Elman neural network is proposed in this paper. The method includes three steps. First, instantaneous amplitude matrices were obtained by using HHT from rolling bearing signals. Second, the singular value vector was acquired by applying SVD to the instantaneous amplitude matrices, thus reducing the dimension of the instantaneous amplitude matrix and obtaining the fault feature insensitive to working condition variation. Finally, an Elman neural network was applied to the rolling bearing fault diagnosis under variable working conditions according to the extracted feature vector. The experimental results show that the proposed method can effectively classify rolling bearing fault modes with high precision under different operating conditions. Moreover, the performance of the proposed HHT-SVD-Elman method has an advantage over that of EMD-SVD or WPT-PCA for feature extraction and Support Vector Machine (SVM or Extreme Learning Machine (ELM for classification.

  8. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    Science.gov (United States)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  9. Acoustic diagnosis of mechanical fault feature based on reference signal frequency domain semi-blind extraction

    OpenAIRE

    Zeguang YI; Pan, Nan; Liu, Feng

    2015-01-01

    Aiming at fault diagnosis problems caused by complex machinery parts, serious background noises and the application limitations of traditional blind signal processing algorithm to the mechanical acoustic signal processing, a failure acoustic diagnosis based on reference signal frequency domain semi-blind extraction is proposed. Key technologies are introduced: Based on frequency-domain blind deconvolution algorithm, the artificial fish swarm algorithm which is good for global optimization is ...

  10. Support vector machine based on chaos particle swarm optimization for fault diagnosis of rotating machine

    Institute of Scientific and Technical Information of China (English)

    TANG Xian-lun; ZHUANG Ling; QIU Guo-qing; CAI Jun

    2009-01-01

    The performance of the support vector machine models depends on a proper setting of its parameters to a great extent. A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed. A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines. The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine, and the precision and reliability of the fault classification results can meet the requirement of practical application. It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.

  11. A Fault Diagnosis Method for Rotating Machinery Based on PCA and Morlet Kernel SVM

    Directory of Open Access Journals (Sweden)

    Shaojiang Dong

    2014-01-01

    Full Text Available A novel method to solve the rotating machinery fault diagnosis problem is proposed, which is based on principal components analysis (PCA to extract the characteristic features and the Morlet kernel support vector machine (MSVM to achieve the fault classification. Firstly, the gathered vibration signals were decomposed by the empirical mode decomposition (EMD to obtain the corresponding intrinsic mode function (IMF. The EMD energy entropy that includes dominant fault information is defined as the characteristic features. However, the extracted features remained high-dimensional, and excessive redundant information still existed. So, the PCA is introduced to extract the characteristic features and reduce the dimension. The characteristic features are input into the MSVM to train and construct the running state identification model; the rotating machinery running state identification is realized. The running states of a bearing normal inner race and several inner races with different degree of fault were recognized; the results validate the effectiveness of the proposed algorithm.

  12. Fault detection and diagnosis in nonlinear systems a differential and algebraic viewpoint

    CERN Document Server

    Martinez-Guerra, Rafael

    2014-01-01

    The high reliability required in industrial processes has created the necessity of detecting abnormal conditions, called faults, while processes are operating. The term fault generically refers to any type of process degradation, or degradation in equipment performance because of changes in the process's physical characteristics, process inputs or environmental conditions. This book is about the fundamentals of fault detection and diagnosis in a variety of nonlinear systems which are represented by ordinary differential equations. The fault detection problem is approached from a differential algebraic viewpoint, using residual generators based upon high-gain nonlinear auxiliary systems (‘observers’). A prominent role is played by the type of mathematical tools that will be used, requiring knowledge of differential algebra and differential equations. Specific theorems tailored to the needs of the problem-solving procedures are developed and proved. Applications to real-world problems, both with constant an...

  13. Detection and Diagnosis of Gear Fault By the Single Gear Tooth Analysis Technique

    Institute of Scientific and Technical Information of China (English)

    MENG Tao; LIAO Ming-fu

    2003-01-01

    This paper presents a procedure of single gear tooth analysis for early detection and diagnosis of gear faults. The objective of this procedure is to develop a method for more sensitive detection of the incipient faults and locating the faults in the gear. The main idea of the single gear tooth analysis is that the vibration signals collected with a high sampling rate are divided into a number of segments with the same time interval. The number of signal segments is equal to that of the gear teeth. The analysis of individual segments reveals more sensitively the changes of the vibration signals in both time and frequency domain caused by gear faults. In addition, the location of a failed tooth can be indicated in terms of the position of the segment that deviates from the normal segments. An experimental investigation verified the advantages of the single gear tooth analysis.

  14. Fault Diagnosis of Complex Industrial Process Using KICA and Sparse SVM

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2013-01-01

    Full Text Available New approaches are proposed for complex industrial process monitoring and fault diagnosis based on kernel independent component analysis (KICA and sparse support vector machine (SVM. The KICA method is a two-phase algorithm: whitened kernel principal component analysis (KPCA. The data are firstly mapped into high-dimensional feature subspace. Then, the ICA algorithm seeks the projection directions in the KPCA whitened space. Performance monitoring is implemented through constructing the statistical index and control limit in the feature space. If the statistical indexes exceed the predefined control limit, a fault may have occurred. Then, the nonlinear score vectors are calculated and fed into the sparse SVM to identify the faults. The proposed method is applied to the simulation of Tennessee Eastman (TE chemical process. The simulation results show that the proposed method can identify various types of faults accurately and rapidly.

  15. Sensor fault diagnosis of nonlinear processes based on structured kernel principal component analysis

    Institute of Scientific and Technical Information of China (English)

    Kechang FU; Liankui DAI; Tiejun WU; Ming ZHU

    2009-01-01

    A new sensor fault diagnosis method based on structured kernel principal component analysis (KPCA) is proposed for nonlinear processes.By performing KPCA on subsets of variables,a set of structured residuals,i.e.,scaled powers of KPCA,can be obtained in the same way as partial PCA.The structured residuals are utilized in composing an isolation scheme for sensor fault diagnosis,according to a properly designed incidence matrix.Sensor fault sensitivity and critical sensitivity are defined,based on which an incidence matrix optimization algorithm is proposed to improve the performance of the structured KPCA.The effectiveness of the proposed method is demonstrated on the simulated continuous stirred tank reactor (CSTR) process.

  16. STUDY ON NATURAL LANGUAGE INTERFACE OF NETWORK FAULT DIAGNOSIS EXPERT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liu Peiqi; Li Zengzhi; Zhao Yinliang

    2006-01-01

    The expert system is an important field of the artificial intelligence. The traditional interface of the expert system is the command, menu and window at present. It limits the application of the expert system and embarrasses the enthusiasm of using expert system. Combining with the study on the expert system of network fault diagnosis, the natural language interface of the expert system has been discussed in this article. This interface can understand and generate Chinese sentences. Using this interface, the user and field experts can use the expert system to diagnose the fault of network conveniently. In the article, first, the extended production rule has been proposed. Then the methods of Chinese sentence generation from conceptual graphs and the model of expert system are introduced in detail. Using this model, the network fault diagnosis expert system and its natural language interface have been developed with Prolog.

  17. Online Diagnosis for the Capacity Fade Fault of a Parallel-Connected Lithium Ion Battery Group

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2016-05-01

    Full Text Available In a parallel-connected battery group (PCBG, capacity degradation is usually caused by the inconsistency between a faulty cell and other normal cells, and the inconsistency occurs due to two potential causes: an aging inconsistency fault or a loose contacting fault. In this paper, a novel method is proposed to perform online and real-time capacity fault diagnosis for PCBGs. Firstly, based on the analysis of parameter variation characteristics of a PCBG with different fault causes, it is found that PCBG resistance can be taken as an indicator for both seeking the faulty PCBG and distinguishing the fault causes. On one hand, the faulty PCBG can be identified by comparing the PCBG resistance among PCBGs; on the other hand, two fault causes can be distinguished by comparing the variance of the PCBG resistances. Furthermore, for online applications, a novel recursive-least-squares algorithm with restricted memory and constraint (RLSRMC, in which the constraint is added to eliminate the “imaginary number” phenomena of parameters, is developed and used in PCBG resistance identification. Lastly, fault simulation and validation results demonstrate that the proposed methods have good accuracy and reliability.

  18. Wavelet Entropy-Based Traction Inverter Open Switch Fault Diagnosis in High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Keting Hu

    2016-03-01

    Full Text Available In this paper, a diagnosis plan is proposed to settle the detection and isolation problem of open switch faults in high-speed railway traction system traction inverters. Five entropy forms are discussed and compared with the traditional fault detection methods, namely, discrete wavelet transform and discrete wavelet packet transform. The traditional fault detection methods cannot efficiently detect the open switch faults in traction inverters because of the low resolution or the sudden change of the current. The performances of Wavelet Packet Energy Shannon Entropy (WPESE, Wavelet Packet Energy Tsallis Entropy (WPETE with different non-extensive parameters, Wavelet Packet Energy Shannon Entropy with a specific sub-band (WPESE3,6, Empirical Mode Decomposition Shannon Entropy (EMDESE, and Empirical Mode Decomposition Tsallis Entropy (EMDETE with non-extensive parameters in detecting the open switch fault are evaluated by the evaluation parameter. Comparison experiments are carried out to select the best entropy form for the traction inverter open switch fault detection. In addition, the DC component is adopted to isolate the failure Isolated Gate Bipolar Transistor (IGBT. The simulation experiments show that the proposed plan can diagnose single and simultaneous open switch faults correctly and timely.

  19. Real-time diagnosis of incipient multiple faults with application for nuclear power plants

    International Nuclear Information System (INIS)

    This paper presents a method which can diagnose the incipient multiple faults in real time in large-scale systems such as nuclear power plants. To verify the performance of the proposed method, it is applied to the diagnosis of a pressurizer and its related subsystems in the Kori Nuclear Power Plant unit 2 in Korea under a transient condition

  20. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Actuators and Sensors

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.;

    2016-01-01

    This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid...

  1. Particle Filter for Fault Diagnosis and Robust Navigation of Underwater Robot

    DEFF Research Database (Denmark)

    Zhao, Bo; Skjetne, Roger; Blanke, Mogens;

    2014-01-01

    A particle filter based robust navigation with fault diagnosis is designed for an underwater robot, where 10 failure modes of sensors and thrusters are considered. The nominal underwater robot and its anomaly are described by a switchingmode hidden Markov model. By extensively running a particle...

  2. Feature Extraction Using Discrete Wavelet Transform for Gear Fault Diagnosis of Wind Turbine Gearbox

    Directory of Open Access Journals (Sweden)

    Rusmir Bajric

    2016-01-01

    Full Text Available Vibration diagnosis is one of the most common techniques in condition evaluation of wind turbine equipped with gearbox. On the other side, gearbox is one of the key components of wind turbine drivetrain. Due to the stochastic operation of wind turbines, the gearbox shaft rotating speed changes with high percentage, which limits the application of traditional vibration signal processing techniques, such as fast Fourier transform. This paper investigates a new approach for wind turbine high speed shaft gear fault diagnosis using discrete wavelet transform and time synchronous averaging. First, the vibration signals are decomposed into a series of subbands signals with the use of a multiresolution analytical property of the discrete wavelet transform. Then, 22 condition indicators are extracted from the TSA signal, residual signal, and difference signal. Through the case study analysis, a new approach reveals the most relevant condition indicators based on vibrations that can be used for high speed shaft gear spalling fault diagnosis and their tracking abilities for fault degradation progression. It is also shown that the proposed approach enhances the gearbox fault diagnosis ability in wind turbines. The approach presented in this paper was programmed in Matlab environment using data acquired on a 2 MW wind turbine.

  3. Active Fault Exploration and Seismic Hazard Assessment in Fuzhou City

    Institute of Scientific and Technical Information of China (English)

    Zhu Jinfang; Han Zhujun; Huang Zonglin; Xu Xiwei; Zheng Rongzhang; Fang Shengmin; Bai Denghai; Wang Guangcai; Min Wei; Wen Xueze

    2005-01-01

    It has been proven by a number of earthquake case studies that an active fault-induced earthquake beneath a city can be devastating. It is an urgent issue for seismic hazard reduction to explore the distribution of active faults beneath the urban area and identify the seismic source and the risks underneath. As a pilot project of active fault exploration in China, the project, entitled "Active fault exploration and seismic hazard assessment in Fuzhou City",started in early 2001 and passed the check before acceptance of China Earthquake Administration in August 2004. The project was aimed to solve a series of scientific issues such as fault location, dating, movement nature, deep settings, seismic risk and hazard,preparedness of earthquake prevention and disaster reduction, and etc. by means of exploration and assessment of active faults by stages, i.e., the preliminary survey and identification of active faults in target area, the exploration of deep seismotectonic settings, the risk evaluation of active seismogenic faults, the construction of geographic information system of active faults, and so on. A lot of exploration methods were employed in the project such as the detection of absorbed mercury, free mercury and radon in soil, the geological radar,multi-channel DC electrical method, tsansient electromagnetic method, shallow seismic refraction and reflection, effect contrast of explored sources, and various sounding experiments, to establish the buried Quaternary standard section of the Fuzhou basin. By summing up, the above explorations and experiments have achieved the following results and conclusions:(1) The results of the synthetic pilot project of active fault exploration in Fuzhou City demonstrate that, on the basis of sufficient collection, sorting out and analysis of geological,geophysical and borehole data, the best method for active fault exploration (location) and seismic risk assessnent (dating and characterizing) in urban area is the combination

  4. NEW FEATURE SELECTION METHOD IN MACHINE FAULT DIAGNOSIS

    Institute of Scientific and Technical Information of China (English)

    Wang Xinfeng; Qiu Jing; Liu Guanjun

    2005-01-01

    Aiming to deficiency of the filter and wrapper feature selection methods, a new method based on composite method of filter and wrapper method is proposed. First the method filters original features to form a feature subset which can meet classification correctness rate, then applies wrapper feature selection method select optimal feature subset. A successful technique for solving optimization problems is given by genetic algorithm (GA). GA is applied to the problem of optimal feature selection. The composite method saves computing time several times of the wrapper method with holding the classification accuracy in data simulation and experiment on bearing fault feature selection. So this method possesses excellent optimization property, can save more selection time, and has the characteristics of high accuracy and high efficiency.

  5. Improving Diagnosability of Hybrid Systems through Active Diagnosis

    Data.gov (United States)

    National Aeronautics and Space Administration — Fault diagnosis is key to ensuring system safety through fault-adaptive control. This task is diffcult in hybrid systems with combined continuous and discrete...

  6. A New Method of PV Array Faults Diagnosis in Smart Grid

    Directory of Open Access Journals (Sweden)

    Ze Cheng

    2014-01-01

    Full Text Available A new fault diagnosis method is proposed for PV arrays with SP connection in this study, the advantages of which are that it would minimize the number of sensors needed and that the accuracy and anti-interference ability are improved with the introduction of fuzzy group decision-making theory. We considered five “decision makers” contributing to the diagnosis of PV array faults, including voltage, current, environmental temperature, panel temperature, and solar illumination. The accuracy and reliability of the proposed method were verified experimentally, and the possible factors contributing to diagnosis deviation were analyzed, based on which solutions were suggested to reduce or eliminate errors in aspects of hardware and software.

  7. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G. [UCB; (GFZ); (NTU)

    2014-08-20

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  8. Mechanical Fault Diagnosis Using Color Image Recognition of Vibration Spectrogram Based on Quaternion Invariable Moment

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2015-01-01

    Full Text Available Automatic extraction of time-frequency spectral image of mechanical faults can be achieved and faults can be identified consequently when rotating machinery spectral image processing technology is applied to fault diagnosis, which is an advantage. Acquired mechanical vibration signals can be converted into color time-frequency spectrum images by the processing of pseudo Wigner-Ville distribution. Then a feature extraction method based on quaternion invariant moment was proposed, combining image processing technology and multiweight neural network technology. The paper adopted quaternion invariant moment feature extraction method and gray level-gradient cooccurrence matrix feature extraction method and combined them with geometric learning algorithm and probabilistic neural network algorithm, respectively, and compared the recognition rates of rolling bearing faults. The experimental results show that the recognition rates of quaternion invariant moment are higher than gray level-gradient cooccurrence matrix in the same recognition method. The recognition rates of geometric learning algorithm are higher than probabilistic neural network algorithm in the same feature extraction method. So the method based on quaternion invariant moment geometric learning and multiweight neural network is superior. What is more, this algorithm has preferable generalization performance under the condition of fewer samples, and it has practical value and acceptation on the field of fault diagnosis for rotating machinery as well.

  9. Multi-scale autocorrelation via morphological wavelet slices for rolling element bearing fault diagnosis

    Science.gov (United States)

    Li, Chuan; Liang, Ming; Zhang, Yi; Hou, Shumin

    2012-08-01

    Fault features of rolling element bearings can be reflected by geometrical structures of the bearing vibration signals. These symptoms, however, often spread over various morphological scales without a known pattern. For this reason, we propose a multi-scale autocorrelation via morphological wavelet slices (MAMWS) approach to detect bearing fault signatures. The vibration measurement of a bearing is decomposed using morphological stationary wavelet with different resolutions of structuring elements. The extracted temporal components are then transformed to form a frequency-domain view of morphological slices by the Fourier transform. Although this three-dimensional representation is more intuitive in terms of fault diagnosis, the existence of the noise may reduce its readability. Hence the autocorrelation function is exploited to produce a multi-scale autocorrelation spectrogram from which the maximal autocorrelation values of all frequencies are aggregated into an ichnographical spectral representation. Accordingly the fault signature is highlighted for easy diagnosis of bearing faults. The effectiveness of the proposed approach has been demonstrated by both the simulation and experimental signal analyses.

  10. Alpha Stable Distribution Based Morphological Filter for Bearing and Gear Fault Diagnosis in Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xinghui Zhang

    2015-01-01

    Full Text Available Gear and bearing play an important role as key components of rotating machinery power transmission systems in nuclear power plants. Their state conditions are very important for safety and normal operation of entire nuclear power plant. Vibration based condition monitoring is more complicated for the gear and bearing of planetary gearbox than those of fixed-axis gearbox. Many theoretical and engineering challenges in planetary gearbox fault diagnosis have not yet been resolved which are of great importance for nuclear power plants. A detailed vibration condition monitoring review of planetary gearbox used in nuclear power plants is conducted in this paper. A new fault diagnosis method of planetary gearbox gears is proposed. Bearing fault data, bearing simulation data, and gear fault data are used to test the new method. Signals preprocessed using dilation-erosion gradient filter and fast Fourier transform for fault information extraction. The length of structuring element (SE of dilation-erosion gradient filter is optimized by alpha stable distribution. Method experimental verification confirmed that parameter alpha is superior compared to kurtosis since it can reflect the form of entire signal and it cannot be influenced by noise similar to impulse.

  11. Robust fault diagnosis for non-Gaussian stochastic systems based on the rational square-root approximation model

    Institute of Scientific and Technical Information of China (English)

    YAO LiNa; WANG Hong

    2008-01-01

    The task of robust fault detection and diagnosis of stochastic distribution control (SDC) systems with uncertainties is to use the measured input and the system output PDFs to still obtain possible faults information of the system. Using the ra-tional square-root B-spline model to represent the dynamics between the output PDF and the input, in this paper, a robust nonlinear adaptive observer-based fault diagnosis algorithm is presented to diagnose the fault in the dynamic part of such systems with model uncertainties. When certain conditions are satisfied, the weight vector of the rational square-root B-spline model proves to be bounded. Conver-gency analysis is performed for the error dynamic system raised from robust fault detection and fault diagnosis phase. Computer simulations are given to demon-strate the effectiveness of the proposed algorithm.

  12. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  13. Faults

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  14. Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes.

    Science.gov (United States)

    Liu, Qiang; Chai, Tianyou; Wang, Hong; Qin, Si-Zhao Joe

    2011-12-01

    The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.

  15. A novel identification method of Volterra series in rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Xia, Xin; Zhou, Jianzhong; Xiao, Jian; Xiao, Han

    2016-01-01

    Volterra series is widely employed in the fault diagnosis of rotor-bearing system to prevent dangerous accidents and improve economic efficiency. The identification of the Volterra series involves the infinite-solution problems which is caused by the periodic characteristic of the excitation signal of rotor-bearing system. But this problem has not been considered in the current identification methods of the Volterra series. In this paper, a key kernels-PSO (KK-PSO) method is proposed for Volterra series identification. Instead of identifying the Volterra series directly, the key kernels of Volterra are found out to simply the Volterra model firstly. Then, the Volterra series with the simplest formation is identified by the PSO method. Next, simulation verification is utilized to verify the feasibility and effectiveness of the KK-PSO method by comparison to the least square (LS) method and traditional PSO method. Finally, experimental tests have been done to get the Volterra series of a rotor-bearing test rig in different states, and a fault diagnosis system is built with a neural network to classify different fault conditions by the kernels of the Volterra series. The analysis results indicate that the KK-PSO method performs good capability on the identification of Volterra series of rotor-bearing system, and the proposed method can further improve the accuracy of fault diagnosis.

  16. An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    The commercial viability of PEMFC (proton exchange membrane fuel cell) systems depends on using effective fault diagnosis technologies in PEMFC systems. However, many researchers have experimentally studied PEMFC (proton exchange membrane fuel cell) systems without considering certain fault conditions. In this paper, an ANN (artificial neural network) ensemble method is presented that improves the stability and reliability of the PEMFC systems. In the first part, a transient model giving it flexibility in application to some exceptional conditions is built. The PEMFC dynamic model is built and simulated using MATLAB. In the second, using this model and experiments, the mechanisms of four different faults in PEMFC systems are analyzed in detail. Third, the ANN ensemble for the fault diagnosis is built and modeled. This model is trained and tested by the data. The test result shows that, compared with the previous method for fault diagnosis of PEMFC systems, the proposed fault diagnosis method has higher diagnostic rate and generalization ability. Moreover, the partial structure of this method can be altered easily, along with the change of the PEMFC systems. In general, this method for diagnosis of PEMFC has value for certain applications. - Highlights: • We analyze the principles and mechanisms of the four faults in PEMFC (proton exchange membrane fuel cell) system. • We design and model an ANN (artificial neural network) ensemble method for the fault diagnosis of PEMFC system. • This method has high diagnostic rate and strong generalization ability

  17. Combination Method of Principal Component Analysis and Support Vector Machine for On-line Process Monitoring and Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process.Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study.Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate.

  18. Diagnosis of Multiple Fixture Faults in Multiple-Station Manufacturing Processes Based on State Space Approach

    Institute of Scientific and Technical Information of China (English)

    田兆青; 来新民; 林忠钦

    2004-01-01

    Dimensional quality is one of the most critical challenges in industries, which uses the multistage manufacturing process (MMP) such as assembly and machining for automotive and aerospace industries. According to investigations, fixture faults accounted for 72% of all the dimensional faults. Previous studies focused on only one fault or multiple faults occurred in one station or one fault in multiple stations, but these cases rarely appear in the real manufacturing. This paper presents a method for diagnosis of multiple fixture faults in the multi-station manufacturing process. The proposed method is based on the state space model of the MMP processes, which carries the information of the fixture layout geometry and sensor position. To identify the root cause, three continuous steps were used: a) development of the state space model and the construction of the statistics variables on offline mode, b) measurement of the coordinate measuring machines data on online mode and calculation of the statistics variables, and c) diagnostic algorithm for identifying the root cause. The presented paper integrates the state space model of the manufacturing processes and hypothesis test considering the impact of the measure noises. A case study verifies the proposed method.

  19. Optimum IMFs Selection Based Envelope Analysis of Bearing Fault Diagnosis in Plunger Pump

    Directory of Open Access Journals (Sweden)

    Wenliao Du

    2016-01-01

    Full Text Available As the plunger pump always works in a complicated environment and the hydraulic cycle has an intrinsic fluid-structure interaction character, the fault information is submerged in the noise and the disturbance impact signals. For the fault diagnosis of the bearings in plunger pump, an optimum intrinsic mode functions (IMFs selection based envelope analysis was proposed. Firstly, the Wigner-Ville distribution was calculated for the acquired vibration signals, and the resonance frequency brought on by fault was obtained. Secondly, the empirical mode decomposition (EMD was employed for the vibration signal, and the optimum IMFs and the filter bandwidth were selected according to the Wigner-Ville distribution. Finally, the envelope analysis was utilized for the selected IMFs filtered by the band pass filter, and the fault type was recognized by compared with the bearing character frequencies. For the two modes, inner race fault and compound fault in the inner race and roller of rolling element bearing in plunger pump, the experiments show that a promising result is achieved.

  20. Diagnosis of airgap eccentricity fault in the inverter driven induction motor drives by transformative techniques

    Directory of Open Access Journals (Sweden)

    Khadim Moin Siddiqui

    2016-09-01

    Full Text Available In the present paper, the airgap eccentricity fault of the induction motor has been diagnosed by digital signal processing transformative techniques in the inverter driven induction motor drives. The airgap eccentricity fault has been diagnosed in the transient condition by time domain as well as time-frequency domain techniques with the help of a proposed dynamic simulation model. In the past, many signal processing techniques had been used for various induction motor fault detection purpose such as fast Fourier transform, Hilbert transform, short term Fourier transform, etc. But, all techniques faced some sort of disadvantages. Therefore, in this paper, all shortcomings of the previous used signal processing techniques have been solved by newly wavelet transform's approximation signal. The low frequency approximation signal has been used to diagnose the eccentricity fault in the transient condition. Therefore, early fault diagnosis of the motor is possible and averted the motor before reaching in the ruinous conditions. As a result, the industries may save large revenues and unexpected failure conditions. The obtained results clearly demonstrate that the developed diagnostic technique may reliably separate airgap eccentricity fault in many stages.

  1. Application of an improved kurtogram method for fault diagnosis of rolling element bearings

    Science.gov (United States)

    Lei, Yaguo; Lin, Jing; He, Zhengjia; Zi, Yanyang

    2011-07-01

    Kurtogram, due to the superiority of detecting and characterizing transients in a signal, has been proved to be a very powerful and practical tool in machinery fault diagnosis. Kurtogram, based on the short time Fourier transform (STFT) or FIR filters, however, limits the accuracy improvement of kurtogram in extracting transient characteristics from a noisy signal and identifying machinery fault. Therefore, more precise filters need to be developed and incorporated into the kurtogram method to overcome its shortcomings and to further enhance its accuracy in discovering characteristics and detecting faults. The filter based on wavelet packet transform (WPT) can filter out noise and precisely match the fault characteristics of noisy signals. By introducing WPT into kurtogram, this paper proposes an improved kurtogram method adopting WPT as the filter of kurtogram to overcome the shortcomings of the original kurtogram. The vibration signals collected from rolling element bearings are used to demonstrate the improved performance of the proposed method compared with the original kurtogram. The results verify the effectiveness of the method in extracting fault characteristics and diagnosing faults of rolling element bearings.

  2. ROBUST FAULT DIAGNOSIS AND PROGNOSTICS OF A HOISTING MECHANISM: A SIMULATION STUDY

    Directory of Open Access Journals (Sweden)

    S. SAMANTA

    2011-02-01

    Full Text Available In this article, different methodology in the area of fault isolation, robustness in fault diagnosis, parameter estimation (for root cause analysis and prognostics are surveyed and applied to a model developed for a hoisting mechanism mounted on a vehicle with planer oscillation. The developed model is of multi energy complexity and intended to isolate the components responsible for abnormal behaviour of the system using structural analysis of some constraint relations, called Analytical Redundancy Relations (ARR, the numerical evaluation of which are residuals. Bond graph modelling, which is a unified tool for multi-energy domain system representation, is used to model the system. The fault indicators and fault signatures are derived from the model. The robustness in fault detection is addressed through passive approach to make residuals insensitive to uncertainty of system parameters. Also, multi-tier parallel simulation method is applied to isolate some structurally nonisolable faults. Then, faulty parameters are estimated to predict remaining useful life for prognostics analysis.

  3. Forward and backward models for fault diagnosis based on parallel genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Yi LIU; Ying LI; Yi-jia CAO; Chuang-xin GUO

    2008-01-01

    In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.

  4. Quantitative NDE thermography for fault diagnosis of ball bearings with micro-foreign substances

    International Nuclear Information System (INIS)

    In this study, a non-destructive evaluation (NDE) method is proposed for ball bearings contaminated with micro foreign substances, which were inserted into a ball bearing to create a defective specimen. The non-contact quantitative infrared thermographic technique was applied for NDE condition monitoring. Passive thermographic experiments were conducted to perform early fault diagnosis, for bearings operated at optimized torque status under a dynamic load condition. The temperature profiles for normal and defective specimens were quantitatively compared, and the thermographic data analyzed. Based on the NDE results, the temperature characteristics and abnormal fault detection of the ball bearing were quantitatively analyzed according to the rise in temperature.

  5. Application of ″Black Box″ to fault diagnosis of rotating machine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the successful application of an accident recallingsystem in the Linyuan refine oil works as part of a rotating machine vibration state monitoring and fault diagnosis system which consists of vibration pre-processor,comparator and plus generator, and system gives the CPU of vibration state monitoring and fault diagnose system an interrupt plus when the vibration amplitude exceed a dangerous level to enable it to sample and store the vibration data and gets the accident data timely because the interval between the happening of accident and the beginning of sampling are shorter than 1 ms.

  6. Diagnosis method based on wavelet coefficient scale relativity correlation dimension for fault

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Correlation dimension as a tool to describe machinery condition is introduced.Vibration signals of the fan under different working conditions are analyzed using a threshold filtering algorithm based on the region relativity of the wavelet coefficients for reducing noise.The result shows that the characteristics of the signal could be preserved completely.The correlation dimension is able to identify conditions of the fan with faults compared with the normal condition,thereby providing an effective technology for condition monitoring and fault diagnosis of mechanical equipment.

  7. The Marshall Space Flight Center Fault Detection Diagnosis and Recovery Laboratory

    Science.gov (United States)

    Burchett, Bradley T.; Gamble, Jonathan; Rabban, Michael

    2008-01-01

    The Fault Detection Diagnosis and Recovery Lab (FDDR) has been developed to support development of,fault detection algorithms for the flight computer aboard the Ares I and follow-on vehicles. It consists of several workstations using Ethernet and TCP/IP to simulate communications between vehicle sensors, flight computers, and ground based support computers. Isolation of tasks between workstations was set up intentionally to limit information flow and provide a realistic simulation of communication channels within the vehicle and between the vehicle and ground station.

  8. A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling

    Science.gov (United States)

    Al-Bugharbee, Hussein; Trendafilova, Irina

    2016-05-01

    This study proposes a methodology for rolling element bearings fault diagnosis which gives a complete and highly accurate identification of the faults present. It has two main stages: signals pretreatment, which is based on several signal analysis procedures, and diagnosis, which uses a pattern-recognition process. The first stage is principally based on linear time invariant autoregressive modelling. One of the main contributions of this investigation is the development of a pretreatment signal analysis procedure which subjects the signal to noise cleaning by singular spectrum analysis and then stationarisation by differencing. So the signal is transformed to bring it close to a stationary one, rather than complicating the model to bring it closer to the signal. This type of pretreatment allows the use of a linear time invariant autoregressive model and improves its performance when the original signals are non-stationary. This contribution is at the heart of the proposed method, and the high accuracy of the diagnosis is a result of this procedure. The methodology emphasises the importance of preliminary noise cleaning and stationarisation. And it demonstrates that the information needed for fault identification is contained in the stationary part of the measured signal. The methodology is further validated using three different experimental setups, demonstrating very high accuracy for all of the applications. It is able to correctly classify nearly 100 percent of the faults with regard to their type and size. This high accuracy is the other important contribution of this methodology. Thus, this research suggests a highly accurate methodology for rolling element bearing fault diagnosis which is based on relatively simple procedures. This is also an advantage, as the simplicity of the individual processes ensures easy application and the possibility for automation of the entire process.

  9. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    Science.gov (United States)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  10. Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xinyi Yang

    2016-01-01

    Full Text Available A new extreme learning machine optimized by quantum-behaved particle swarm optimization (QPSO is developed in this paper. It uses QPSO to select optimal network parameters including the number of hidden layer neurons according to both the root mean square error on validation data set and the norm of output weights. The proposed Q-ELM was applied to real-world classification applications and a gas turbine fan engine diagnostic problem and was compared with two other optimized ELM methods and original ELM, SVM, and BP method. Results show that the proposed Q-ELM is a more reliable and suitable method than conventional neural network and other ELM methods for the defect diagnosis of the gas turbine engine.

  11. Robust fault diagnosis of physical systems in operation. Ph.D. Thesis - Rutgers - The State Univ.

    Science.gov (United States)

    Abbott, Kathy Hamilton

    1991-01-01

    Ideas are presented and demonstrated for improved robustness in diagnostic problem solving of complex physical systems in operation, or operative diagnosis. The first idea is that graceful degradation can be viewed as reasoning at higher levels of abstraction whenever the more detailed levels proved to be incomplete or inadequate. A form of abstraction is defined that applies this view to the problem of diagnosis. In this form of abstraction, named status abstraction, two levels are defined. The lower level of abstraction corresponds to the level of detail at which most current knowledge-based diagnosis systems reason. At the higher level, a graph representation is presented that describes the real-world physical system. An incremental, constructive approach to manipulating this graph representation is demonstrated that supports certain characteristics of operative diagnosis. The suitability of this constructive approach is shown for diagnosing fault propagation behavior over time, and for sometimes diagnosing systems with feedback. A way is shown to represent different semantics in the same type of graph representation to characterize different types of fault propagation behavior. An approach is demonstrated that threats these different behaviors as different fault classes, and the approach moves to other classes when previous classes fail to generate suitable hypotheses. These ideas are implemented in a computer program named Draphys (Diagnostic Reasoning About Physical Systems) and demonstrated for the domain of inflight aircraft subsystems, specifically a propulsion system (containing two turbofan systems and a fuel system) and hydraulic subsystem.

  12. Techniques for Surveying Urban Active Faults by Seismic Methods

    Institute of Scientific and Technical Information of China (English)

    Xu Mingcai; Gao Jinghua; Liu Jianxun; Rong Lixin

    2005-01-01

    Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determine the geological age of fault. However, by considering in connection with the borehole data and the standard geological cross-section of the surveyed area, the geological age of reflected wave group can be qualitatively (or semi-quantitatively)determined from the seismic depth profile. To determine the upper terminal point of active faults directly below city, it is necessary to use the high-resolution seismic reflection technique.To effectively determine the geometric feature of deep faults, especially to determine the relation between deep and shallow fracture structures, the seismic reflection method is better than the seismic refraction method.

  13. Fault diagnosis for manifold absolute pressure sensor(MAP) of diesel engine based on Elman neural network observer

    Science.gov (United States)

    Wang, Yingmin; Zhang, Fujun; Cui, Tao; Zhou, Jinlong

    2016-03-01

    Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015-0.017 5 and sample error is controlled within 0-0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis; the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals.

  14. Fault Diagnosis for Manifold Absolute Pressure Sensor(MAP) of Diesel Engine Based on Elman Neural Network Observer

    Institute of Scientific and Technical Information of China (English)

    WANG Yingmin; ZHANG Fujun; CUI Tao; ZHOU Jinlong

    2016-01-01

    Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can’t be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015-0.017 5 and sample error is controlled within 0-0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis;the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals.

  15. Real-Time Diagnosis of Faults Using a Bank of Kalman Filters

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor

  16. Fault Diagnosis Method Based on Fractal Theory and Its Application in Wind Power Systems

    Institute of Scientific and Technical Information of China (English)

    赵玲; 黄大荣; 宋军

    2012-01-01

    The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantitatively. In this paper, a fractal dimension calculation method for discrete signals in the fractal theory was applied to extract the fractal di- mension feature vectors and classified various fault types. Based on the wavelet packet transform, the energy feature vectors were extracted after the vibration signal was decomposed and reconstructed. Then, a wavelet neural network was used to recognize the mechanical faults. Finally, the fault diagnosis for a wind power system was taken as an example to show the method' s feasibility.

  17. Data mining based sensor fault diagnosis and validation for building air conditioning system

    International Nuclear Information System (INIS)

    A strategy based on the data mining (DM) method is developed to detect and diagnose sensor faults based on the past running performance data in heating, ventilating and air conditioning (HVAC) systems, combining a rough set approach and an artificial neural network (ANN). The reduced information is used to develop classification rules and train the neural network to infer appropriate parameters. The differences between measured thermodynamic states and predicted states obtained from models for normal performance (residuals) are used as performance indices for sensor fault detection and diagnosis. Real test results from a real HVAC system show that only the temperature and humidity measurements of many air handling units (AHU) can work very well as the measurements to distinguish simultaneous temperature sensor faults of the supply chilled water (SCW) and return chilled water (RCW)

  18. Phase Space Similarity as a Signature for Rolling Bearing Fault Diagnosis and Remaining Useful Life Estimation

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2016-01-01

    Full Text Available Feature extraction from vibration signal is still a challenge in the area of fault diagnosis and remaining useful life (RUL estimation of rotary machine. In this paper, a novel feature called phase space similarity (PSS is introduced for health condition monitoring of bearings. Firstly, the acquired signal is transformed to the phase space through the phase space reconstruction (PSR. The similar vibration always exists in the phase space due to the comparable evolution of the dynamics that are characteristic of the system state. Secondly, the normalized cross-correlation (NCC is employed to calculate the PSS between bearing data with different states. Based on the PSS, a fault pattern recognition algorithm, a bearing fault size prediction algorithm, and a RUL estimation algorithm are introduced to analyze the experimental signal. Results have shown the effectiveness of the PSS as it can better grasp the nature and regularity of the signals.

  19. Envelope extraction based dimension reduction for independent component analysis in fault diagnosis of rolling element bearing

    Science.gov (United States)

    Guo, Yu; Na, Jing; Li, Bin; Fung, Rong-Fong

    2014-06-01

    A robust feature extraction scheme for the rolling element bearing (REB) fault diagnosis is proposed by combining the envelope extraction and the independent component analysis (ICA). In the present approach, the envelope extraction is not only utilized to obtain the impulsive component corresponding to the faults from the REB, but also to reduce the dimension of vibration sources included in the sensor-picked signals. Consequently, the difficulty for applying the ICA algorithm under the conditions that the sensor number is limited and the source number is unknown can be successfully eliminated. Then, the ICA algorithm is employed to separate the envelopes according to the independence of vibration sources. Finally, the vibration features related to the REB faults can be separated from disturbances and clearly exposed by the envelope spectrum. Simulations and experimental tests are conducted to validate the proposed method.

  20. Application of wavelet analysis to fault diagnosis of angular measuring system

    Institute of Scientific and Technical Information of China (English)

    邓辉宇; 苏宝库; 邹明杰

    2003-01-01

    For fault diagnosis, signal singularity and irregularity discontinuity fraction are very significant characteristics of signal. The discontinuity of output signal represents a system fault . In an angular measuring system, function transformer uses two D/A convertors, output circuit fault of a D/A convertor brings about discontinuity of one phase input voltage amplitude of inductosyn, results in a system error exceeding the allowable error and reduces the system accuracy. This is the reason why discontinuity is detected. Fourier transform has no resolution ability in angular-domain, but wavelet can analyse signal in angular and frequency-domains. So we decompose the error signal of angular measuring system by wavelet, detect the signal singularity at high frequency layer and find out the accurate position of it.

  1. HYBRID WAVELET PACKET-TEAGER ENERGY OPERATOR ANALYSIS AND ITS APPLICATION FOR GEARBOX FAULT DIAGNOSIS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed signal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.

  2. Diagnosis of Intermittent Faults in IGBTs Using the Latent Nestling Method with Hybrid Coloured Petri Nets

    Directory of Open Access Journals (Sweden)

    Leonardo Rodriguez-Urrego

    2015-01-01

    Full Text Available This paper presents a fault diagnosis application of the Latent Nestling Method to IGBTs. The paper extends the Latent Nestling Method based in Coloured Petri Nets (CPNs to hybrid systems in such a manner that IGBTs performance can be modeled. CPNs allow for an enhanced capability for synthesis and modeling in contrast to the classical phenomena of combinational state explosion when Finite State Machine methods are applied. We present an IGBT model with different fault modes including those of intermittent nature that can be used advantageously as predictive symptoms within a predictive maintenance strategy. Ageing stress tests have been experimentally applied to the IGBTs modules and intermittent faults are diagnosed as precursors of permanent failures. In addition, ageing is validated with morphological analysis (Scanning Electron Microscopy and semiqualitative analysis (Energy Dispersive Spectrometry.

  3. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    Science.gov (United States)

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  4. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  5. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  6. Research of Earthquake Potential from Active Fault Observation in Taiwan

    Science.gov (United States)

    Chien-Liang, C.; Hu, J. C.; Liu, C. C.; En, C. K.; Cheng, T. C. T.

    2015-12-01

    We utilize GAMIT/GLOBK software to estimate the precise coordinates for continuous GPS (CGPS) data of Central Geological Survey (CGS, MOEA) in Taiwan. To promote the software estimation efficiency, 250 stations are divided by 8 subnets which have been considered by station numbers, network geometry and fault distributions. Each of subnets include around 50 CGPS and 10 international GNSS service (IGS) stations. After long period of data collection and estimation, a time series variation can be build up to study the effect of earthquakes and estimate the velocity of stations. After comparing the coordinates from campaign-mode GPS sites and precise leveling benchmarks with the time series from continuous GPS stations, the velocity field is consistent with previous measurement which show the reliability of observation. We evaluate the slip rate and slip deficit rate of active faults in Taiwan by 3D block model DEFNODE. First, to get the surface fault traces and the subsurface fault geometry parameters, and then establish the block boundary model of study area. By employing the DEFNODE technique, we invert the GPS velocities for the best-fit block rotate rates, long term slip rates and slip deficit rates. Finally, the probability analysis of active faults is to establish the flow chart of 33 active faults in Taiwan. In the past two years, 16 active faults in central and northern Taiwan have been assessed to get the recurrence interval and the probabilities for the characteristic earthquake occurred in 30, 50 and 100 years.

  7. A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings

    Science.gov (United States)

    Wang, Huaqing; Ke, Yanliang; Song, Liuyang; Tang, Gang; Chen, Peng

    2016-01-01

    The traditional approaches for condition monitoring of roller bearings are almost always achieved under Shannon sampling theorem conditions, leading to a big-data problem. The compressed sensing (CS) theory provides a new solution to the big-data problem. However, the vibration signals are insufficiently sparse and it is difficult to achieve sparsity using the conventional techniques, which impedes the application of CS theory. Therefore, it is of great significance to promote the sparsity when applying the CS theory to fault diagnosis of roller bearings. To increase the sparsity of vibration signals, a sparsity-promoted method called the tunable Q-factor wavelet transform based on decomposing the analyzed signals into transient impact components and high oscillation components is utilized in this work. The former become sparser than the raw signals with noise eliminated, whereas the latter include noise. Thus, the decomposed transient impact components replace the original signals for analysis. The CS theory is applied to extract the fault features without complete reconstruction, which means that the reconstruction can be completed when the components with interested frequencies are detected and the fault diagnosis can be achieved during the reconstruction procedure. The application cases prove that the CS theory assisted by the tunable Q-factor wavelet transform can successfully extract the fault features from the compressed samples. PMID:27657063

  8. Rolling bearing fault diagnosis based on LCD-TEO and multifractal detrended fluctuation analysis

    Science.gov (United States)

    Liu, Hongmei; Wang, Xuan; Lu, Chen

    2015-08-01

    A rolling bearing vibration signal is nonlinear and non-stationary and has multiple components and multifractal properties. A rolling-bearing fault-diagnosis method based on Local Characteristic-scale Decomposition-Teager Energy Operator (LCD-TEO) and multifractal detrended fluctuation analysis (MF-DFA) is first proposed in this paper. First, the vibration signal was decomposed into several intrinsic scale components (ISCs) by using LCD, which is a newly developed signal decomposition method. Second, the instantaneous amplitude was obtained by applying the TEO to each major ISC for demodulation. Third, the intrinsic multifractality features hidden in each major ISC were extracted by using MF-DFA, among which the generalized Hurst exponents are selected as the multifractal feature in this paper. Finally, the feature vectors were obtained by applying principal components analysis (PCA) to the extracted multifractality features, thus reducing the dimension of the multifractal features and obtaining the fault feature insensitive to variation in working conditions, further enhancing the accuracy of diagnosis. According to the extracted feature vector, rolling bearing faults can be diagnosed under variable working conditions. The experimental results demonstrate its desirable diagnostic performance under both different working conditions and different fault severities. Simultaneously, the results of comparison show that the performance of the proposed diagnostic method outperforms that of Hilbert-Huang transform (HHT) combined with MF-DFA or LCD-TEO combined with mono-fractal analysis.

  9. Electrical Motor Current Signal Analysis using a Dynamic Time Warping Method for Fault Diagnosis

    International Nuclear Information System (INIS)

    This paper presents the analysis of phase current signals to identify and quantify common faults from an electrical motor based on dynamic time warping (DTW) algorithm. In condition monitoring, measurements are often taken when the motor undertakes varying loads and speeds. The signals acquired in these conditions show similar profiles but have phase shifts, which do not line up in the time-axis for adequate comparison to discriminate the small changes in machine health conditions. In this study, DTW algorithms are exploited to align the signals to an ideal current signal constructed based on average operating conditions. In this way, comparisons between the signals can be made directly in the time domain to obtain residual signals. These residual signals are then based on to extract features for detecting and diagnosing the faults of the motor and components operating under different loads and speeds. This study provides a novel approach to the analysis of electrical current signal for diagnosis of motor faults. Experimental data sets of electrical motor current signals have been studied using DTW algorithms. Results show that DTW based residual signals highlights more the modulations due to the compressor process. And hence can obtain better fault detection and diagnosis results.

  10. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph

    Directory of Open Access Journals (Sweden)

    Gan Zhou

    2015-11-01

    Full Text Available Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.

  11. A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings

    Directory of Open Access Journals (Sweden)

    Huaqing Wang

    2016-09-01

    Full Text Available The traditional approaches for condition monitoring of roller bearings are almost always achieved under Shannon sampling theorem conditions, leading to a big-data problem. The compressed sensing (CS theory provides a new solution to the big-data problem. However, the vibration signals are insufficiently sparse and it is difficult to achieve sparsity using the conventional techniques, which impedes the application of CS theory. Therefore, it is of great significance to promote the sparsity when applying the CS theory to fault diagnosis of roller bearings. To increase the sparsity of vibration signals, a sparsity-promoted method called the tunable Q-factor wavelet transform based on decomposing the analyzed signals into transient impact components and high oscillation components is utilized in this work. The former become sparser than the raw signals with noise eliminated, whereas the latter include noise. Thus, the decomposed transient impact components replace the original signals for analysis. The CS theory is applied to extract the fault features without complete reconstruction, which means that the reconstruction can be completed when the components with interested frequencies are detected and the fault diagnosis can be achieved during the reconstruction procedure. The application cases prove that the CS theory assisted by the tunable Q-factor wavelet transform can successfully extract the fault features from the compressed samples.

  12. Simultaneous State and Parameter Estimation Based Actuator Fault Detection and Diagnosis for an Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Wu Chong

    2015-03-01

    Full Text Available Simultaneous state and parameter estimation based actuator fault detection and diagnosis (FDD for single-rotor unmanned helicopters (UHs is investigated in this paper. A literature review of actuator FDD for UHs is given firstly. Based on actuator healthy coefficients (AHCs, which are introduced to represent actuator faults, a combined dynamic model is established with the augmented state containing both the flight state and AHCs. Then the actuator fault detection and diagnosis problem is transformed into a general nonlinear estimation one: given control inputs and the measured flight state contaminated by measurement noises, estimate both the flight state and AHCs recursively in each time-step, which is also known as the simultaneous state and parameter estimation problem. The estimated AHCs can further be used for fault tolerant control (FTC. Based on the existing widely used nonlinear estimation methods such as the unscented Kalman filter (UKF and the extended set-membership filter (ESMF, three kinds of adaptive schemes (KF-UKF, MIT-UKF and MIT-ESMF are proposed by our team to improve the actuator FDD performance. A comprehensive comparative study on these different estimation methods is given in detail to illustrate their advantages and disadvantages when applied to unmanned helicopter actuator FDD.

  13. A Parallel Decision Model Based on Support Vector Machines and Its Application to Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    Yan Weiwu(阎威武); Shao Huihe

    2004-01-01

    Many industrial process systems are becoming more and more complex and are characterized by distributed features. To ensure such a system to operate under working order, distributed parameter values are often inspected from subsystems or different points in order to judge working conditions of the system and make global decisions. In this paper, a parallel decision model based on Support Vector Machine (PDMSVM) is introduced and applied to the distributed fault diagnosis in industrial process. PDMSVM is convenient for information fusion of distributed system and it performs well in fault diagnosis with distributed features. PDMSVM makes decision based on synthetic information of subsystems and takes the advantage of Support Vector Machine. Therefore decisions made by PDMSVM are highly reliable and accurate.

  14. Fault detection and diagnosis of the deaerator level control system in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Youn; Lee, Yoon Joon [Cheju National Univ., Cheju (Korea, Republic of)

    2004-02-01

    The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the Net Positive Suction Head(NPSH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based Fault Detection and Diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 and 4.

  15. Fault diagnosis in nuclear power plants using an artificial neural network technique

    International Nuclear Information System (INIS)

    Application of artificial intelligence (AI) computational techniques, such as expert systems, fuzzy logic, and neural networks in diverse areas has taken place extensively. In the nuclear industry, the intended goal for these AI techniques is to improve power plant operational safety and reliability. As a computerized operator support tool, the artificial neural network (ANN) approach is an emerging technology that currently attracts a large amount of interest. The ability of ANNs to extract the input/output relation of a complicated process and the superior execution speed of a trained ANN motivated this study. The goal was to develop neural networks for sensor and process faults diagnosis with the potential of implementing as a component of a real-time operator support system LYDIA, early sensor and process fault detection and diagnosis

  16. Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis

    Science.gov (United States)

    Jiang, Huiming; Chen, Jin; Dong, Guangming; Liu, Tao; Chen, Gang

    2015-02-01

    Based on the traditional theory of singular value decomposition (SVD), singular values (SVs) and ratios of neighboring singular values (NSVRs) are introduced to the feature extraction of vibration signals. The proposed feature extraction method is called SV-NSVR. Combined with selected SV-NSVR features, continuous hidden Markov model (CHMM) is used to realize the automatic classification. Then the SV-NSVR and CHMM based method is applied in fault diagnosis and performance assessment of rolling element bearings. The simulation and experimental results show that this method has a higher accuracy for the bearing fault diagnosis compared with those using other SVD features, and it is effective for the performance assessment of rolling element bearings.

  17. A Statistical Parameter Analysis and SVM Based Fault Diagnosis Strategy for Dynamically Tuned Gyroscopes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine(SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, with which the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG.

  18. Hierarchical Neural Networks Method for Fault Diagnosis of Large-Scale Analog Circuits

    Institute of Scientific and Technical Information of China (English)

    TAN Yanghong; HE Yigang; FANG Gefeng

    2007-01-01

    A novel hierarchical neural networks (HNNs) method for fault diagnosis of large-scale circuits is proposed. The presented techniques using neural networks(NNs) approaches require a large amount of computation for simulating various faulty component possibilities. For large scale circuits, the number of possible faults, and hence the simulations, grow rapidly and become tedious and sometimes even impractical. Some NNs are distributed to the torn sub-blocks according to the proposed torn principles of large scale circuits. And the NNs are trained in batches by different patterns in the light of the presented rules of various patterns when the DC, AC and transient responses of the circuit are available. The method is characterized by decreasing the over-lapped feasible domains of responses of circuits with tolerance and leads to better performance and higher correct classification. The methodology is illustrated by means of diagnosis examples.

  19. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    Science.gov (United States)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  20. FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    LIU Guanjun; LIU Xinmin; QIU Jing; HU Niaoqing

    2007-01-01

    Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.

  1. NEW TECHNOLOGY FOR FAULT DIAGNOSIS BASED ON WAVELET DENOISING AND MODIFIED EXPONENTIAL TIME-FREQUENCY DISTRIBUTION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fast wavelet multi-resolution analysis (wavelet MRk)provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't suitable for extracting harmonic components. The modified exponential time-frequency distribution(MED)overcomes the problems of Wigner distribution(WD), can suppress cross-terms and cancel noise further more. MED provides high resolution in both time and frequency domains, so it can make out weak period impulse components from signal with mighty harmonic components. According to the "time" behavior, together with "frequency" behavior in one figure, the essential structure of a signal is revealed clearly. According to the analysis of algorithm and fault diagnosis example, the joint of wavelet MRA and MED is a powerful tool for fault diagnosis.

  2. Evidence against Late Quaternary activity along the Northern Karakoram Fault

    Science.gov (United States)

    Robinson, A. C.; Owen, L. A.; Hedrick, K.; Blisniuk, K.; Sharp, W. D.; Chen, J.; Schoenbohm, L. M.; Imrecke, D. B.; Yuan, Z.; Li, W.

    2012-12-01

    Although the entire 1000 km long Karakoram fault has long been interpreted to be active, recent work based primarily on interpretation of satellite imagery suggests that the northern end of the fault, where it enters the Pamir mountains, is inactive. We present field observations and geochronologic data from the southern end of the Tashkurgan valley, in the Pamir, on the Karakoram fault where it splits into two identifiable strands; an eastern strand which is the main trace of the Karakoram fault, and a western strand called the Achiehkopai fault. These results support the interpretation that the northern Karakoram fault is currently inactive, and has been for at least 200 ka: 1) Near the village of Dabudaer in the southern Tashkurgan valley the main trace of the Karakoram fault is orthogonally cut by a narrow incised valley with no observed lateral offset across the fault. Within this valley, a strath terrace ~50 m above the active drainage which overlies the main trace of the Karakoram fault which is capped by a carbonate cemented conglomerate. U-series analyses of carbonate cement from a correlative deposit located several km away yields a minimum depositional age of 76±12 ka. This age is coeval with the local Tashkurgan glacial stage we dated using Be-10 surface exposure dating (66±10 ka; Owen et al., 2012, Quaternary Science Reviews) suggesting both the conglomerate and strath terrace formed during this glacial stage. 2) ~25 km south of Dabudar, the main trace of the Karakoram projects beneath Tashkurgan glacial stage moraine and fluvial-glacial deposits which similarly show no evidence of disturbance by strike-slip deformation. Both of the above results demonstrate the main trace of the Karakoram fault has been inactive since at least ~70 ka. 3) Both the Karakoram and Achiehkopai faults are overlain by older Dabudaer glacial stage moraine deposits which are interpreted to be at least as old as the penultimate glacial, but may be >200 ka based on our Be-10

  3. Rotor broken-bar fault diagnosis of induction motor based on HHT of the startup electromagnetic torque

    Institute of Scientific and Technical Information of China (English)

    NIU Fa-liang; HUANG Jin; YANG Jia-qiang; CHEN Li-yuan; JIN Hai

    2006-01-01

    This paper presents a new method for rotor broken-bar fault diagnosis of induction motors.The asymmetry of the rotor caused by broken-bar fault will give rise to the appearance of additional frequency component of 2sfs (s is slip and fs is supply frequency) in the electromagnetic torque spectrum.The startup electromagnetic torque signal is decomposed into several intrinsic mode function (IMF) with empirical mode decomposition (EMD)based on the Hilbert-Huang Transform.Then,using the instantaneous frequency extraction principle of the Hilbert Transform, the rotor broken-bar fault characteristic frequency of 2sfs can be exactly extracted from the IMF component,which includes the rotor fault information.Moreover,the magnitude of the IMF which includes the rotor fault information can also give the number of rotor broken bars.Experimental results demonstrate that the proposed electromagnetic torque-based fault diagnosis method is feasible.

  4. EXPERIMENT BASED FAULT DIAGNOSIS ON BOTTLE FILLING PLANT WITH LVQ ARTIFICIAL NEURAL NETWORK ALGORITHM

    Directory of Open Access Journals (Sweden)

    Mustafa DEMETGÜL

    2008-01-01

    Full Text Available In this study, an artificial neural network is developed to find an error rapidly on pneumatic system. Also the ANN prevents the system versus the failure. The error on the experimental bottle filling plant can be defined without any interference using analog values taken from pressure sensors and linear potentiometers. The sensors and potentiometers are placed on different places of the plant. Neural network diagnosis faults on plant, where no bottle, cap closing cylinder B is not working, bottle cap closing cylinder C is not working, air pressure is not sufficient, water is not filling and low air pressure faults. The fault is diagnosed by artificial neural network with LVQ. It is possible to find an failure by using normal programming or PLC. The reason offing Artificial Neural Network is to give a information where the fault is. However, ANN can be used for different systems. The aim is to find the fault by using ANN simultaneously. In this situation, the error taken place on the pneumatic system is collected by a data acquisition card. It is observed that the algorithm is very capable program for many industrial plants which have mechatronic systems.

  5. Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment

    Science.gov (United States)

    Gu, F.; Shao, Y.; Hu, N.; Naid, A.; Ball, A. D.

    2011-01-01

    This paper presents the use of the induction motor current to identify and quantify common faults within a two-stage reciprocating compressor based on bispectrum analysis. The theoretical basis is developed to understand the nonlinear characteristics of current signals when the motor undertakes a varying load under different faulty conditions. Although conventional bispectrum representation of current signal allows the inclusion of phase information and the elimination of Gaussian noise, it produces unstable results due to random phase variation of the sideband components in the current signal. A modified bispectrum based on the amplitude modulation feature of the current signal is then adopted to combine both lower sidebands and higher sidebands simultaneously and hence characterise the current signal more accurately. Based on this new bispectrum analysis a more effective diagnostic feature, namely normalised bispectral peak, is developed for fault classification. In association with the kurtosis value of the raw current signal, the bispectrum feature gives rise to reliable fault classification results. In particular, the low feature values can differentiate the belt looseness from the other fault cases and different degrees of discharge valve leakage and inter-cooler leakage can be separated easily using two linear classifiers. This work provides a novel approach to the analysis of stator current for the diagnosis of motor drive faults from downstream driving equipment.

  6. Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis

    Science.gov (United States)

    Wang, Dong; Tsui, Kwok-Leung; Zhou, Qiang

    2016-05-01

    Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last, an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.

  7. An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis

    Science.gov (United States)

    Jiang, Li; Shi, Tielin; Xuan, Jianping

    2012-05-01

    Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.

  8. Rolling Bearing Fault Diagnosis Based on Wavelet Packet Decomposition and Multi-Scale Permutation Entropy

    Directory of Open Access Journals (Sweden)

    Li-Ye Zhao

    2015-09-01

    Full Text Available This paper presents a rolling bearing fault diagnosis approach by integrating wavelet packet decomposition (WPD with multi-scale permutation entropy (MPE. The approach uses MPE values of the sub-frequency band signals to identify faults appearing in rolling bearings. Specifically, vibration signals measured from a rolling bearing test system with different defect conditions are decomposed into a set of sub-frequency band signals by means of the WPD method. Then, each sub-frequency band signal is divided into a series of subsequences, and MPEs of all subsequences in corresponding sub-frequency band signal are calculated. After that, the average MPE value of all subsequences about each sub-frequency band is calculated, and is considered as the fault feature of the corresponding sub-frequency band. Subsequently, MPE values of all sub-frequency bands are considered as input feature vectors, and the hidden Markov model (HMM is used to identify the fault pattern of the rolling bearing. Experimental study on a data set from the Case Western Reserve University bearing data center has shown that the presented approach can accurately identify faults in rolling bearings.

  9. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    Science.gov (United States)

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668

  10. Study on fault source diagnosis technology and air velocity transducers placement for underground

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Jian; PAN Jing-tao

    2012-01-01

    The current mine safety monitoring system used can only get the air volume change of roadway placed air velocity transducers,as this change is caused by this roadway,or for other roadway,and fault source has one point or more,which belongs to the problem of fault source diagnosis for ventilation system.Ventilation system fault can be attributed to the variation of air resistance of branch in the entire network.If the changes of air resistance for each branch in ventilation system are analyzed,then it is impossible to place air velocity transducers in every branch.Therefore,the problem of the minimum quantifies and location for placing air velocity transducers should be mainly studied.The relationship of air resistance and air volume variation of matrix method has been proposed,which can reflect the variation relationship between the air volume of the branch and air resistance of the relevant branches.Fault roadway range library of ventilation network built to determine fault roadway range will cause air velocity to exceed the limit.Minimum and full coverage of distribution method has been proposed,and the concept of branch coverage degree and impact roadway range library has also been brought forword to get the macro-distribution of air velocity transducers.

  11. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    Directory of Open Access Journals (Sweden)

    Jinglong Chen

    2015-10-01

    Full Text Available The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  12. Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools

    CERN Document Server

    Ding, Steven X

    2013-01-01

    Guaranteeing a high system performance over a wide operating range is an important issue surrounding the design of automatic control systems with successively increasing complexity. As a key technology in the search for a solution, advanced fault detection and identification (FDI) is receiving considerable attention. This book introduces basic model-based FDI schemes, advanced analysis and design algorithms, and mathematical and control-theoretic tools. This second edition of Model-Based Fault Diagnosis Techniques contains: ·         new material on fault isolation and identification, and fault detection in feedback control loops; ·         extended and revised treatment of systematic threshold determination for systems with both deterministic unknown inputs and stochastic noises; addition of the continuously-stirred tank heater as a representative process-industrial benchmark; and ·         enhanced discussion of residual evaluation in stochastic processes. Model-based Fault Diagno...

  13. Residual Generator Fuzzy Identification for Wind TurbineBenchmark Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Silvio Simani

    2014-11-01

    Full Text Available In order to improve the availability of wind turbines, thus improving theirefficiency, it is important to detect and isolate faults in their earlier occurrence. The mainproblem of model-based fault diagnosis applied to wind turbines is represented by thesystem complexity, as well as the reliability of the available measurements. In this work, adata-driven strategy relying on fuzzy models is presented, in order to build a fault diagnosissystem. Fuzzy theory jointly with the Frisch identification scheme for errors-in-variablemodels is exploited here, since it allows one to approximate unknown models and manageuncertain data. Moreover, the use of fuzzy models, which are directly identified from thewind turbine measurements, allows the design of the fault detection and isolation module.It is worth noting that, sometimes, the nonlinearity of a wind turbine system could lead toquite complex analytic solutions. However, IF-THEN fuzzy rules provide a simpler solution,important when on-line implementations have to be considered. The wind turbine benchmarkis used to validate the achieved performances of the suggested fault detection and isolationscheme. Finally, comparisons of the proposed methodology with respect to different faultdiagnosis methods serve to highlight the features of the suggested solution.

  14. Auditory-model-based Feature Extraction Method for Mechanical Faults Diagnosis

    Institute of Scientific and Technical Information of China (English)

    LI Yungong; ZHANG Jinping; DAI Li; ZHANG Zhanyi; LIU Jie

    2010-01-01

    It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect.

  15. Equipment fault diagnosis system of sequencing batch reactors using rule-based fuzzy inference and on-line sensing data.

    Science.gov (United States)

    Kim, Y J; Bae, H; Poo, K M; Ko, J H; Kim, B G; Park, T J; Kim, C W

    2006-01-01

    The importance of a detection technique to prevent process deterioration is increasing. For the fast detection of this disturbance, a diagnostic algorithm was developed to determine types of equipment faults by using on-line ORP and DO profile in sequencing batch reactors (SBRs). To develop the rule base for fault diagnosis, the sensor profiles were obtained from a pilot-scale SBR when blower, influent pump and mixer were broken. The rules were generated based on the calculated error between an abnormal profile and a normal profile, e(ORP)(t) and e(DO)(t). To provide intermediate diagnostic results between "normal" and "fault", a fuzzy inference algorithm was incorporated to the rules. Fuzzified rules could present the diagnosis result "need to be checked". The diagnosis showed good performance in detecting and diagnosing various faults. The developed algorithm showed its applicability to detect faults and make possible fast action to correct them. PMID:16722090

  16. Semiadaptive Fault Diagnosis via Variational Bayesian Mixture Factor Analysis with Application to Wastewater Treatment

    OpenAIRE

    Hongjun Xiao; Yiqi Liu; Daoping Huang

    2016-01-01

    Mainly due to the hostile environment in wastewater plants (WWTPs), the reliability of sensors with respect to important qualities is often poor. In this work, we present the design of a semiadaptive fault diagnosis method based on the variational Bayesian mixture factor analysis (VBMFA) to support process monitoring. The proposed method is capable of capturing strong nonlinearity and the significant dynamic feature of WWTPs that seriously limit the application of conventional multivariate st...

  17. CONDITION MONITORING AND FAULT DIAGNOSIS FOR TENSION UNBALANCE OF ROPES IN MULTI-ROPE FRICTION WINDER

    Institute of Scientific and Technical Information of China (English)

    杨兆建; 王勤贤; 任芳

    1997-01-01

    This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope friction winder, introduces the method of an on-line monitoring rope tensions with a testing device developed by authors, and proposes the criteria of the fault diagnosis and the method of adjustment for the tension unbalance of the ropes, which is important to the theoretical study on the tension unbalance of the ropes and the maintenance of multi-rope winder.

  18. Diagnosis of constant faults in read-once contact networks over finite bases

    KAUST Repository

    Busbait, Monther I.

    2015-03-01

    We study the depth of decision trees for diagnosis of constant 0 and 1 faults in read-once contact networks over finite bases containing only indecomposable networks. For each basis, we obtain a linear upper bound on the minimum depth of decision trees depending on the number of edges in the networks. For bases containing networks with at most 10 edges we find coefficients for linear bounds which are close to sharp. © 2014 Elsevier B.V. All rights reserved.

  19. Experimental Analysis of the Performance of the Fault Diagnosis System Based on the Signed Directed Graph

    OpenAIRE

    Tsuge, Yoshifumi; Miura, Takamasa; TAKEDA, Kazuhiro

    2004-01-01

    Performance of fault diagnosis system based on signed directed graph (SDG) is experimentally analyzed. The performance of the system can be evaluated in terms of reliability, accuracy and speed, which are greatly influenced by the thresholds to be used for distinguishing abnormal from normal measurements. To search an optimal adjustment of thresholds is formulated as the maximization of a performance index which is the similarity to the ideal diagnostic result. Finally, we present a guideline...

  20. Diagnosis of constant faults in iteration-free circuits over monotone basis

    KAUST Repository

    Alrawaf, Saad Abdullah

    2014-03-01

    We show that for each iteration-free combinatorial circuit S over a basis B containing only monotone Boolean functions with at most five variables, there exists a decision tree for diagnosis of constant faults on inputs of gates with depth at most 7L(S) where L(S) is the number of gates in S. © 2013 Elsevier B.V. All rights reserved.

  1. Structural Analysis Approach to Fault Diagnosis with Application to Fixed-wing Aircraft Motion

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    2001-01-01

    The paper presents a structural analysis based method for fault diagnosis purposes. The method uses the structural model of the system and utilizes the matching idea to extract system's inherent redundant information. The structural model is represented by a bipartite directed graph. FDI Possibil...... Possibilities are examined by further analysis of the obtained information. The method is illustrated by applying on the LTI model of motion of a fixed-wing aircraft....

  2. Structural Analysis Approach to Fault Diagnosis with Application to Fixed-wing Aircraft Motion

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    2002-01-01

    The paper presents a structural analysis based method for fault diagnosis purposes. The method uses the structural model of the system and utilizes the matching idea to extract system's inherent redundant information. The structural model is represented by a bipartite directed graph. FDI Possibil...... Possibilities are examined by further analysis of the obtained information. The method is illustrated by applying on the LTI model of motion of a fixed-wing aircraft....

  3. Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference

    OpenAIRE

    Tran, Tung; Yang, Bo-Suk; Oh, Myung-Suck; Tan, Andy Chit Chiow

    2009-01-01

    This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and le...

  4. AN ALGORITHM FOR FAULT DIAGNOSIS BASED ON COMBINATORIAL DESIGN APPROACH FOR TESTING

    Institute of Scientific and Technical Information of China (English)

    Nie Changhai; Xu Baowen; Shi Liang

    2003-01-01

    Much research has been done mainly in testcase generation and its effect for com-binatorial design approach for testing. This letter presents an algorithm for fault diagnosis basedon the approach. It can conclude that the factors, which cause errors, must be in a very smallrange through analyzing the test cases after testing, and retesting with some complementary testcases. The algorithm can provide a very efficient and valuable guidance for the debugging andtesting of software.

  5. Development of a Simulation Model for Fault Diagnosis of a Diesel Fuelled Engine

    OpenAIRE

    Jamiu Muhammed Ambali; B. O. Shittu; F. A. Taofeek-Ibrahim; O. N. Saliu

    2014-01-01

    Several researchers including Antonic, [1,2,3] have worked on diesel engine in the area of fault diagnosis using various base data (vibration, voltage, temperature, and so on) measured from the diesel engine. However, little attention has been paid to data obtained from diesel engine exhaust gases. Diesel engine exhaust contains carbon-based particles and other gaseous components in different proportion according to the working condition of the engine with particular reference to the diesel ...

  6. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    Science.gov (United States)

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.

  7. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    Science.gov (United States)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  8. Can cosmic ray exposure dating reveal the normal faulting activity of the Cordillera Blanca Fault, Peru?

    Directory of Open Access Journals (Sweden)

    L.L. Siame

    2006-12-01

    Full Text Available The build-up of in situ-produced cosmogenic 10Be within bedrock scarps and escarpments associated to the Cordillera Blanca Normal Fault, Peru, was measured to evaluate, through Cosmic Ray Exposure dating, its normal faulting activity. The highest mountain peaks in Peru belong to the 210 km-long, NW- striking, Cordillera Blanca. Along its western border, the Cordillera Blanca Normal Fault is responsible for a vertical relief over 4.4 km, whose prominent 2 km high escarpment is characterized by ~1 km-high triangular facets corresponding to vertical displacements cumulated during the last 1-2 million years. At a more detailed scale, this fault system exhibits continuous geomorphic evidence of repeated displacements, underlined by 2 to 70 m-high scarps, corresponding to vertical displacements cumulated since Late Pleistocene and Holocene periods. Although microseismicity occurs along the Cordillera Blanca Normal Fault, no major historical or instrumental earthquake has been recorded since the beginning of the Spanish settlement in the 16th century. To evaluate the vertical slip rate along the major 90 km-long central segment of the Cordillera Blanca Normal Fault, the Quaternary fault escarpment (i.e., triangular facet, as well as the bedrock fault scarp, have been sampled for 10Be Cosmic Ray Exposure dating. Even if the uppermost part of the triangular facets have been resurfaced by the Last Glacial Maximum glaciers, our results allow to estimate a vertical slip-rate of 3±1 mm/yr, and suggest at least 2 seismic events during the last 3000 years.

  9. Comprehensive Multi-Level Exploration of Buried Active Faults: an Example of the Yinchuan Buried Active Fault

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper introduces the steps and methods of multi-approach, multi-level exploration of buried faults in thick Quaternary sediment regions by taking the test exploration of the Yinchuan active fault as example. Based on the comprehensive analyses of previous data, we choose the Xinqushao Village of Xingqing District of Yinchuan City as the test site for the comprehensive exploration. Firstly, we adopted shallow seismic investigation with group intervals of 10m, 5m and 1m to gradually trace layer by layer the master fault of the Yinchuan buried fault from a deep depth to a shallow depth where drilling could be used. Then, with composite geological profile drilling, we determined the precise location and dip angle of the fault. The drilling show the buried depth of the upper offset point is 8.3m. Finally, large-scale trenching revealed that the actual buried depth of the upper offset point of the fault is 1.5m from the ground surface and there are paleoearthquake events of 5 stages. Combined with the prellmiuary result of corresponding sample age, we conclude the Yinchuan buried fault is a mid to late Holocene active fault.

  10. An enhanced Kurtogram method for fault diagnosis of rolling element bearings

    Science.gov (United States)

    Wang, Dong; Tse, Peter W.; Tsui, Kwok Leung

    2013-02-01

    The Kurtogram is based on the kurtosis of temporal signals that are filtered by the short-time Fourier transform (STFT), and has proved useful in the diagnosis of bearing faults. To extract transient impulsive signals more effectively, wavelet packet transform is regarded as an alternative method to STFT for signal decomposition. Although kurtosis based on temporal signals is effective under some conditions, its performance is low in the presence of a low signal-to-noise ratio and non-Gaussian noise. This paper proposes an enhanced Kurtogram, the major innovation of which is kurtosis values calculated based on the power spectrum of the envelope of the signals extracted from wavelet packet nodes at different depths. The power spectrum of the envelope of the signals defines the sparse representation of the signals and kurtosis measures the protrusion of the sparse representation. This enhanced Kurtogram helps to determine the location of resonant frequency bands for further demodulation with envelope analysis. The frequency signatures of the envelope signal can then be used to determine the type of fault that has affected a bearing by identifying its characteristic frequency. In many cases, discrete frequency noise always exists and may mask the weak bearing faults. It is usually preferable to remove such discrete frequency noise by using autoregressive filtering before the enhanced Kurtogram is performed. At last, we used a number of simulated bearing fault signals and three real bearing fault signals obtained from an experimental motor to validate the efficiency of these proposed modifications. The results show that both the proposed method and the enhanced Kurtogram are effective in the detection of various bearing faults.

  11. Application of Analytic Redundancy-based Fault Diagnosis of Sensors to Onboard Maintenance System

    Institute of Scientific and Technical Information of China (English)

    CHI Chengzhi; ZHANG Weiguo; LIU Xiaoxiong

    2012-01-01

    Analytic redundancy-based fault diagnosis technique (ARFDT) is applied to onboard maintenance system (OMS).The principle of the proposed ARFDT scheme is to design a redundancy configuration using ARFDT to enhance the functions of redundancy management and built in test equipment (BITE) monitor.Redundancy configuration for dual-redundancy and analytic redundancy is proposed,in which,the fault diagnosis includes detection and isolation.In order to keep the balance between rapid diagnosis and binary hypothesis,a filter together with an elapsed time limit is designed for sequential probability ratio test (SPRT) in the process of isolation.Diagnosis results would be submitted to central maintenance computer (CMC) together with BITE information.Moreover,by adopting reconstruction,the designed method not only provides analytic redundancy to help redundancy management,but also compensates the output when both of the sensors of the same type are faulty.Our scheme is applied to an aircraft's sensors in a simulation experiment,and the results show that the proposed filter SPRT (FSPRT) saves at least 50% of isolation time than Wald SPRT (WSPRT).Also,effectiveness,practicability and rapidity of the proposed scheme can be successfully achieved in OMS.

  12. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao

    2016-10-01

    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  13. Diagnosis and Tolerant Strategy of an Open-Switch Fault for T-type Three-Level Inverter Systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Lee, Kyo Beum; Blaabjerg, Frede

    2014-01-01

    -tolerant strategy is explained by dividing into two cases: the faulty condition of half-bridge switches and the neutral-point switches. The performance of the T-type inverter system improves considerably by the proposed fault tolerant algorithm when a switch fails. The roposed method does not require additional......This paper proposes a new diagnosis method of an open-switch fault and fault-tolerant control strategy for T-type three-level inverter systems. The location of faulty switch can be identified by the average of normalized phase current and the change of the neutral-point voltage. The proposed fault...

  14. Online Contribution Rate Based Fault Diagnosis for Nonlinear Industrial Pro cesses

    Institute of Scientific and Technical Information of China (English)

    PENG Kai-Xiang; ZHANG Kai; LI Gang

    2014-01-01

    Over past decades, kernel principal component analysis (KPCA) appeared quite popularly in data-driven process moni-toring area. Enormous work has been done to show its simplicity, feasibility, and effectiveness. However, the introduction of kernel trick makes it impossible to directly employ traditional contribution plots for fault diagnosis. In this paper, on the basis of revisiting and analyzing the existing KPCA-relevant diagnosis approaches, a new contribution rate based method is proposed which can explain the faulty variables clearly. Furthermore, a scheme for online nonlinear diagnosis is established. In the end, a case study on contin-uous stirred tank reactor (CSTR) benchmark is applied to access the effectiveness of the new methodology, where the comparisons with the traditional linear method are involved as well.

  15. A Roller Bearing Fault Diagnosis Method Based on LCD Energy Entropy and ACROA-SVM

    Directory of Open Access Journals (Sweden)

    HungLinh Ao

    2014-01-01

    Full Text Available This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs. Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.

  16. A new multiscale noise tuning stochastic resonance for enhanced fault diagnosis in wind turbine drivetrains

    International Nuclear Information System (INIS)

    It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods. (paper)

  17. ANN BASED FAULT DIAGNOSIS OF ROLLING ELEMENT BEARING USING TIME-FREQUENCY DOMAIN FEATURE

    Directory of Open Access Journals (Sweden)

    D.H. PANDYA

    2012-06-01

    Full Text Available This paper presents a methodology for an automation of fault diagnosis of ball bearings having localized defects (spalls on the various bearing components. The system uses the wavelet packet decomposition using ‘rbio5.5’ real mother wavelet function for feature extraction from the vibration signal, recorded for various bearing fault conditions. The decomposition level is determined by the sampling frequency and characteristic defect frequency. Maximum energy to minimum Shannon entropy ratio criteria is used for selection of best node of wavelet packet tree. The two features kurtosis and energy are extracted from the wavelet packet coefficient for selected node of WPT. The total 10 data sets at five different speeds corresponding to each bearing condition are recorded for fault classification. Thus, extracted features are used to train and test neural network with multi layer perceptron to classify the rolling element bearing condition as HB, ORD, IRD, BD and CD. The proposedartificial neural network with multi layer perceptron classifier has overall fault classification rate of 97 %.

  18. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

  19. Stochastic resonance with Woods-Saxon potential for rolling element bearing fault diagnosis

    Science.gov (United States)

    Lu, Siliang; He, Qingbo; Kong, Fanrang

    2014-04-01

    This paper proposes a weak signal detection strategy for rolling element bearing fault diagnosis by investigating a new mechanism to realize stochastic resonance (SR) based on the Woods-Saxon (WS) potential. The WS potential has the distinct structure with smooth potential bottom and steep potential wall, which guarantees a stable particle motion within the potential and avoids the unexpected noises for the SR system. In the Woods-Saxon SR (WSSR) model, the output signal-to-noise ratio (SNR) can be optimized just by tuning the WS potential's parameters, which delivers the most significant merit that the limitation of small parameter requirement of the classical bistable SR can be overcome, and thus a wide range of driving frequencies can be detected via the SR model. Furthermore, the proposed WSSR model is also insensitive to the noise, and can detect the weak signals with different noise levels. Additionally, the WS potential can be designed accurately due to its parameter independence, which implies that the proposed method can be matched to different input signals adaptively. With these properties, the proposed weak signal detection strategy is indicated to be beneficial to rolling element bearing fault diagnosis. Both the simulated and the practical bearing fault signals verify the effectiveness and efficiency of the proposed WSSR method in comparison with the traditional bistable SR method.

  20. Color Segmentation Approach of Infrared Thermography Camera Image for Automatic Fault Diagnosis

    International Nuclear Information System (INIS)

    Predictive maintenance based on fault diagnosis becomes very important in current days to assure the availability and reliability of a system. The main purpose of this research is to configure a computer software for automatic fault diagnosis based on image model acquired from infrared thermography camera using color segmentation approach. This technique detects hot spots in equipment of the plants. Image acquired from camera is first converted to RGB (Red, Green, Blue) image model and then converted to CMYK (Cyan, Magenta, Yellow, Key for Black) image model. Assume that the yellow color in the image represented the hot spot in the equipment, the CMYK image model is then diagnosed using color segmentation model to estimate the fault. The software is configured utilizing Borland Delphi 7.0 computer programming language. The performance is then tested for 10 input infrared thermography images. The experimental result shows that the software capable to detect the faulty automatically with performance value of 80 % from 10 sheets of image input. (author)

  1. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis

    Directory of Open Access Journals (Sweden)

    Qihang Wang

    2016-07-01

    Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.

  2. Fault Diagnosis of Automobile Crane Power Steering System Aided by ICP-AES

    Directory of Open Access Journals (Sweden)

    Lidan Chen

    2013-01-01

    Full Text Available The objective of this paper is to evaluate an innovative application of inductively coupled plasma atomic emission spectroscopy (ICP-AES on the fault diagnosis of automobile crane hydraulic power steering (HPS system. Contents of Fe, Cu and Al were examined by ICP-AES in the oil samples of HPS system for four different mileages of Puyuan QY50H. The mileages were 2000-9000 km, 11000-19000 km, 21000-28000 km and 32000-40000 km separately. Database of major mental contents in automobile crane HPS system of Puyuan QY50H with different mileage were calibrated. Results showed that, major mental contents were increased with the increasing of driving mileage and the normal contents laid between two trend lines. Through the determination of mental contents in HPS oil sample and further compared them with the values in their database, we could not only evaluate the wear condition of automobile crane HPS system, but also helped to diagnose the faults without dissembled the problematic vehicle. The results further indicated that, in time maintenance, high quality and low cost reparation could be realized by the application of ICP-AES technology on fault diagnosis of automobile crane power steering system.

  3. A modular neural network scheme applied to fault diagnosis in electric power systems.

    Science.gov (United States)

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  4. Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network

    Institute of Scientific and Technical Information of China (English)

    孙玉山; 李岳明; 张国成; 张英浩; 吴海波

    2016-01-01

    Autonomous underwater vehicles (AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model (estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.

  5. Gearbox Fault Diagnosis in a Wind Turbine Using Single Sensor Based Blind Source Separation

    Directory of Open Access Journals (Sweden)

    Yuning Qian

    2016-01-01

    Full Text Available This paper presents a single sensor based blind source separation approach, namely, the wavelet-assisted stationary subspace analysis (WSSA, for gearbox fault diagnosis in a wind turbine. Continuous wavelet transform (CWT is used as a preprocessing tool to decompose a single sensor measurement data into a set of wavelet coefficients to meet the multidimensional requirement of the stationary subspace analysis (SSA. The SSA is a blind source separation technique that can separate the multidimensional signals into stationary and nonstationary source components without the need for independency and prior information of the source signals. After that, the separated nonstationary source component with the maximum kurtosis value is analyzed by the enveloping spectral analysis to identify potential fault-related characteristic frequencies. Case studies performed on a wind turbine gearbox test system verify the effectiveness of the WSSA approach and indicate that it outperforms independent component analysis (ICA and empirical mode decomposition (EMD, as well as the spectral-kurtosis-based enveloping, for wind turbine gearbox fault diagnosis.

  6. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Agustín Flores

    2014-01-01

    Full Text Available This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  7. Compound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrum

    Science.gov (United States)

    Yan, Xiaoan; Jia, Minping; Xiang, Ling

    2016-07-01

    Owing to the character of diversity and complexity, the compound fault diagnosis of rotating machinery under non-stationary operation has turned into a challenging task. In this paper, a novel method based on the optimal variational mode decomposition (OVMD) and 1.5-dimension envelope spectrum is proposed for detecting the compound faults of rotating machinery. In this method, compound fault signals are first decomposed by using OVMD containing optimal decomposition parameters, and several intrinsic mode components are obtained. Then, an adaptive selection method based on the weight factor (WF) is presented to choose two intrinsic mode components that contain the principal fault characteristic information. Finally, the 1.5-dimension envelope spectrum of the selected intrinsic mode components is utilized to extract the compound fault characteristic information of vibration signals. The performance of the proposed method is demonstrated by using the simulation signal and the experimental vibration signals collected from a rolling bearing and a gearbox with compound faults. The analysis results suggest that the proposed method is not only capable of detecting compound faults of a bearing and a gearbox, but can separate the characteristic signatures of compound faults. The research offers a new means for the compound fault diagnosis of rotating machinery.

  8. Diagnosis of Short-Circuit Fault in Large-Scale Permanent-Magnet Wind Power Generator Based on CMAC

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2013-01-01

    Full Text Available This study proposes a method based on the cerebellar model arithmetic controller (CMAC for fault diagnosis of large-scale permanent-magnet wind power generators and compares the results with Error Back Propagation (EBP. The diagnosis is based on the short-circuit faults in permanent-magnet wind power generators, magnetic field change, and temperature change. Since CMAC is characterized by inductive ability, associative ability, quick response, and similar input signals exciting similar memories, it has an excellent effect as an intelligent fault diagnosis implement. The experimental results suggest that faults can be diagnosed effectively after only training CMAC 10 times. In comparison to training 151 times for EBP, CMAC is better than EBP in terms of training speed.

  9. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications

    Science.gov (United States)

    Wang, Yanxue; Xiang, Jiawei; Markert, Richard; Liang, Ming

    2016-01-01

    Condition-based maintenance via vibration signal processing plays an important role to reduce unscheduled machine downtime and avoid catastrophic accidents in industrial enterprises. Many machine faults, such as local defects in rotating machines, manifest themselves in the acquired vibration signals as a series of impulsive events. The spectral kurtosis (SK) technique extends the concept of kurtosis to that of a function of frequency that indicates how the impulsiveness of a signal. This work intends to review and summarize the recent research developments on the SK theories, for instance, short-time Fourier transform-based SK, kurtogram, adaptive SK and protrugram, as well as the corresponding applications in fault detection and diagnosis of the rotating machines. The potential prospects of prognostics using SK technique are also designated. Some examples have been presented to illustrate their performances. The expectation is that further research and applications of the SK technique will flourish in the future, especially in the fields of the prognostics.

  10. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis

    Directory of Open Access Journals (Sweden)

    Jonguk Lee

    2016-04-01

    Full Text Available Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods.

  11. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis.

    Science.gov (United States)

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-01-01

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509

  12. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis.

    Science.gov (United States)

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-04-16

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods.

  13. FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR

    Energy Technology Data Exchange (ETDEWEB)

    Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

    2012-10-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  14. Kernel Function and Parameters Optimization in KICA for Rolling Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Lingli Jiang

    2013-08-01

    Full Text Available Kernel independent component analysis (KICA is a blind signal separation method which has a good effect for the treatment of non-linear signal. For introducing kernel techniques, the choices of kernel function and its kernel parameter have a great influence on the analytic results. A kernel function and its parameters optimization method is proposed on the basis of the similarity of source fault signals and kernel independent component. The similarity parameter is proposed to verify the merits or defects of KICA by using different kernel function and parameters. The simulation studies are processed, and the simulation conclusion is verified by the actual diagnostic case. These provide guidance for the application of the KICA method in the mechanical fault diagnosis.

  15. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum

    Science.gov (United States)

    Lv, Yong; Zhu, Qinglin; Yuan, Rui

    2015-01-01

    The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105

  16. Application of Higher-Order Cumulant in Fault Diagnosis of Rolling Bearing

    Science.gov (United States)

    Shen, Yongjun; Yang, Shaopu; Wang, Junfeng

    2013-07-01

    In this paper a new method of pattern recognition based on higher-order cumulant and envelope analysis is presented. The core of this new method is to construct analytical signals from the given signals and obtain the envelope signals firstly, then compute and compare the higher-order cumulants of the envelope signals. The higher-order cumulants could be used as a characteristic quantity to distinguish these given signals. As an example, this method is applied in fault diagnosis for 197726 rolling bearing of freight locomotive. The comparisons of the second-order, third-order and fourth-order cumulants of the envelope signals from different vibration signals of rolling bearing show this new method could discriminate the normal and two fault signals distinctly.

  17. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum

    Directory of Open Access Journals (Sweden)

    Yong Lv

    2015-01-01

    Full Text Available The nonlocal means (NL-Means method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures.

  18. High-Speed Spindle Fault Diagnosis with the Empirical Mode Decomposition and Multiscale Entropy Method

    Directory of Open Access Journals (Sweden)

    Nan-Kai Hsieh

    2015-04-01

    Full Text Available The root mean square (RMS value of a vibration signal is an important indicator used to represent the amplitude of vibrations in evaluating the quality of high-speed spindles. However, RMS is unable to detect a number of common fault characteristics that occur prior to bearing failure. Extending the operational life and quality of spindles requires reliable fault diagnosis techniques for the analysis of vibration signals from three axes. This study used empirical mode decomposition to decompose signals into intrinsic mode functions containing a zero-crossing rate and energy to represent the characteristics of rotating elements. The MSE curve was then used to identify a number of characteristic defects. The purpose of this research was to obtain vibration signals along three axes with the aim of extending the operational life of devices included in the product line of an actual spindle manufacturing company.

  19. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    Science.gov (United States)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  20. Aero-Engine Fault Diagnosis Using Improved Local Discriminant Bases and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jianwei Cui

    2014-01-01

    Full Text Available This paper presents an effective approach for aero-engine fault diagnosis with focus on rub-impact, through combination of improved local discriminant bases (LDB with support vector machine (SVM. The improved LDB algorithm, using both the normalized energy difference and the relative entropy as quantification measures, is applied to choose the optimal set of orthogonal subspaces for wavelet packet transform- (WPT- based signal decomposition. Then two optimal sets of orthogonal subspaces have been obtained and the energy features extracted from those subspaces appearing in both sets will be selected as input to a SVM classifier to diagnose aero-engine faults. Experiment studies conducted on an aero-engine rub-impact test system have verified the effectiveness of the proposed approach for classifying working conditions of aero-engines.

  1. Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Li Sun

    2014-01-01

    Full Text Available Fluidized bed combustion (FBC boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient dually from the noisy measurable outputs. The estimated parameter is compared with the normal value. Then the modified Bayesian algorithm is adopted for fault detection and diagnosis (FDD. The simulation results demonstrate that the approach is feasible and effective.

  2. Fault diagnosis of a mine hoist using PCA and SVM techniques

    Institute of Scientific and Technical Information of China (English)

    CHANG Yan-wei; WANG Yao-cai; LIU Tao; WANG Zhi-jie

    2008-01-01

    A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Then, with the irrelevant gearbox variables removed, the remaining gearbox, the hydraulic system and the wire rope parameters were used as input to a multi-class SVM. The SVM is first trained by using the one class-based multi-class optimization algorithm and it is then applied to fault identification. Comparison of various methods showed the PCA-SVM method successfully removed redundancy to solve the dimensionality curse. These results show that the algorithm using the RBF kernel function for the SVM had the best classification properties.

  3. Application of LCD-SVD Technique and CRO-SVM Method to Fault Diagnosis for Roller Bearing

    Directory of Open Access Journals (Sweden)

    Songrong Luo

    2015-01-01

    Full Text Available Targeting the nonlinear and nonstationary characteristics of vibration signal from fault roller bearing and scarcity of fault samples, a novel method is presented and applied to roller bearing fault diagnosis in this paper. Firstly, the nonlinear and nonstationary vibration signal produced by local faults of roller bearing is decomposed into intrinsic scale components (ISCs by using local characteristic-scale decomposition (LCD method and initial feature vector matrices are obtained. Secondly, fault feature values are extracted by singular value decomposition (SVD techniques to obtain singular values, while avoiding the selection of reconstruction parameters. Thirdly, a support vector machine (SVM classifier based on Chemical Reaction Optimization (CRO algorithm, called CRO-SVM method, is designed for classification of fault location. Lastly, the proposed method is validated by two experimental datasets. Experimental results show that the proposed method based LCD-SVD technique and CRO-SVM method have higher classification accuracy and shorter cost time than the comparative methods.

  4. Vibration Sensor-Based Bearing Fault Diagnosis Using Ellipsoid-ARTMAP and Differential Evolution Algorithms

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2014-06-01

    Full Text Available Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM and a differential evolution (DE algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately.

  5. Research on Remote Monitoring and Fault Diagnosis Technology of Numerical Control Machine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianyu; GAO Lixin; CUI Lingli; LI Xianghui; WANG Yingwang

    2006-01-01

    Based on the internet technology, it has become possible to complete remote monitoring and fault diagnosis for the numerical control machine. In order to capture the micro-shock signal induced by the incipient fault on the rotating parts, the resonance demodulation technology is utilized in the system. As a subsystem of the remote monitoring system, the embedded data acquisition instrument not only integrates the demodulation board but also complete the collection and preprocess of monitoring data from different machines. Furthermore, through connecting to the internet, the data can be transferred to the remote diagnosis center and data reading and writing function can be finished in the database. At the same time, the problem of the IP address floating in the dial-up of web server is solved by the dynamic DNS technology. Finally, the remote diagnosis software developed on the LabVIEW platform can analyze the monitoring data from manufacturing field. The research results have indicated that the equipment status can be monitored by the system effectively.

  6. Hierarchical Fault Diagnosis for a Hybrid System Based on a Multidomain Model

    Directory of Open Access Journals (Sweden)

    Jiming Ma

    2015-01-01

    Full Text Available The diagnosis procedure is performed by integrating three steps: multidomain modeling, event identification, and failure event classification. Multidomain model can describe the normal and fault behaviors of hybrid systems efficiently and can meet the diagnosis requirements of hybrid systems. Then the multidomain model is used to simulate and obtain responses under different failure events; the responses are further utilized as a priori information when training the event identification library. Finally, a brushless DC motor is selected as the study case. The experimental result indicates that the proposed method could identify the known and unknown failure events of the studied system. In particular, for a system with less response information under a failure event, the accuracy of diagnosis seems to be higher. The presented method integrates the advantages of current quantitative and qualitative diagnostic procedures and can distinguish between failures caused by parametric and abrupt structure faults. Another advantage of our method is that it can remember unknown failure types and automatically extend the adaptive resonance theory neural network library, which is extremely useful for complex hybrid systems.

  7. Stochastic Resonance with a Joint Woods-Saxon and Gaussian Potential for Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Haibin Zhang

    2014-01-01

    Full Text Available This work aims for a new stochastic resonance (SR model which performs well in bearing fault diagnosis. Different from the traditional bistable SR system, we realize the SR based on the joint of Woods-Saxon potential (WSP and Gaussian potential (GP instead of a reflection-symmetric quartic potential. With this potential model, all the parameters in the Woods-Saxon and Gaussian SR (WSGSR system are not coupled when compared to the traditional one, so the output signal-to-noise ratio (SNR can be optimized much more easily by tuning the system parameters. Besides, a smoother potential bottom and steeper potential wall lead to a stable particle motion within each potential well and avoid the unexpected noise. Different from the SR with only WSP which is a monostable system, we improve it into a bistable one as a general form offering a higher SNR and a wider bandwidth. Finally, the proposed model is verified to be outstanding in weak signal detection for bearing fault diagnosis and the strategy offers us a more effective and feasible diagnosis conclusion.

  8. Fault Estimation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...... problems can be solved by standard optimization tech-niques. The proposed methods include: (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; (2) FE for systems with parametric faults, and (3) FE for a class of nonlinear systems....

  9. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    Science.gov (United States)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  10. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    Science.gov (United States)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  11. The Parameters Selection of PSO Algorithm influencing On performance of Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    He Yan

    2016-01-01

    Full Text Available The particle swarm optimization (PSO is an optimization algorithm based on intelligent optimization. Parameters selection of PSO will play an important role in performance and efficiency of the algorithm. In this paper, the performance of PSO is analyzed when the control parameters vary, including particle number, accelerate constant, inertia weight and maximum limited velocity. And then PSO with dynamic parameters has been applied on the neural network training for gearbox fault diagnosis, the results with different parameters of PSO are compared and analyzed. At last some suggestions for parameters selection are proposed to improve the performance of PSO.

  12. Study on unknown input reduced-order observer for fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel unknown input reduced-order observer (UIRO) design scheme is presented. It is proved that unknown input appearing in measurement can be eliminated by a simple algebraic transformation. Then, a new UIRO design scheme is proposed via a transformation under no unknown input existing in measurement.Compared with other known results, the condition is weaker than others. So it was further reasonable. The design procedure proposed is simple and straightforward enough to be applied. An example is given to show its efficiency in fault diagnosis.

  13. Study on fault diagnosis technology for nuclear power plants based on time series data mining

    International Nuclear Information System (INIS)

    Time series data mining is applied to the fault diagnosis for nuclear power plants. dow method is used to convert the problem to a standard supervised learning problem. Simulation experiment is carried out by LOCA. The simulation results show that the diagnostic accuracy has certain improvement when the sliding-window method is applied. Furthermore, extracting the feature of the time series data in the sliding-window, the diagnostic accuracy is improved greatly. Some problems which can not be solved by classical algorithm can be diagnosed by time series data mining method. (authors)

  14. STUDY ON NATURAL LANGUAGE INTERFACE OF NETWORK FAULT DIAGNOSIS EXPERT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Since Internet was born,the computer net workhas developed at a highspeedinits structure and ap-plication.Facing the huge and complex computernet work,we think it hard to deal with the variousfaults of the net work with manual method.Alongwiththe development of AI,the latest achievementof expert system(ES)has provided a new way forthe fault diagnosis and analysis of net work.Butthese ES don't provide a good interface for user.The interface of ES al ways uses command,menuand windows at present.It li mits the...

  15. Feature Extraction Using Discrete Wavelet Transform for Gear Fault Diagnosis of Wind Turbine Gearbox

    DEFF Research Database (Denmark)

    Bajric, Rusmir; Zuber, Ninoslav; Skrimpas, Georgios Alexandros;

    2016-01-01

    with high percentage, which limits the application of traditional vibration signal processing techniques, such as fast Fourier transform. This paper investigates a new approach for wind turbine high speed shaft gear fault diagnosis using discrete wavelet transform and time synchronous averaging. First......, the vibration signals are decomposed into a series of subbands signals with the use of amultiresolution analytical property of the discrete wavelet transform.Then, 22 condition indicators are extracted fromthe TSA signal, residual signal, and difference signal.Through the case study analysis, a new approach...

  16. Analysis and Study of Modern Fault Diagnosis Methods of Mechanical Equipments

    Institute of Scientific and Technical Information of China (English)

    HOU Rong-tao

    2008-01-01

    Fast Fourier Transform(FFT)fiequeney spectrum analysis,signal decomposing and reconstruction by wavelet analysis,fractal theory and chaos theory are hot research topics for fault diagnosis and prediction of complex machinery so far.In this paper,the characteristics of the FFT method.wavelet method,fractal method,and largest Lyapunov exponent method are studied and analyzed in detail.The advantages and shortcomings of these methods are pointed out respectively.Some unsolved problems are presented here.

  17. Power transformer fault diagnosis model based on rough set theory with fuzzy representation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Inthis paper,rough-fuzzy hybridizationis usedfor synthetic fault diagnosis of power transfor mers.Each diagnostic method s result is represented by itsfuzzy membership with respect to three credible de-gree sets as:Low,Middle,orHigh,thereby gen-erating a fuzzy granulation of the feature space thatcontains granules with otherwiseill-defined bounda-ries.Discernibility of the granulated objects inter ms of attributes is thencomputedinthe for mof adiscernibility matrix.Using rough set theory,anumber of decision...

  18. Wear Fault Diagnosis of Machinery Based on Neural Networks and Gray Relationships

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the regular characteristic of wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typi-cal wear particles spectrum is established according to the equipment structure, friction and wear rule and the characteristic of wear particles; The identification technology of wear particles is proposed based on neural networks and a gray relationship; an intelligent wear particles identification system is designed. The diagnosis example shows that this system can promote the accuracy and the speed of wear particles identification.

  19. Development of Fault Detection and Diagnosis Schemes for Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh

    2004-01-01

    The success of a fault detection and diagnosis (FDD) scheme depends not alone on developing an advanced detection scheme. To enable successful deployment in industrial applications, an economically optimal development of FDD schemes are required. This paper reviews and discusses the gained...... experiences achieved by employing a combination of various techniques, methods, and algorithms, which are proposed by academia, on an industrial application. The main focus is on sharing the "lessons learned" from developing and employing Faulttolerant functionalities to a controlled process in order to meet...... the industrial needs while satisfying economically motivated constraints....

  20. Multi-Class Classification Methods of Cost-Conscious LS-SVM for Fault Diagnosis of Blast Furnace%Multi-Class Classification Methods of Cost-Conscious LS-SVM for Fault Diagnosis of Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    LIU Li-mei; WANG An-na; SHA Mo; ZHAO Feng-yun

    2011-01-01

    Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace.

  1. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data

    Science.gov (United States)

    Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na

    2016-05-01

    Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.

  2. Active diagnosis of hybrid systems - A model predictive approach

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Ravn, Anders P.; Izadi-Zamanabadi, Roozbeh;

    2009-01-01

    A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty...... outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeated until the fault is detected by a passive diagnoser. It is demonstrated how the generated excitation signal...... can be used as a test signal for sanity check at the commissioning or for detection of faults hidden by regulatory actions of the controller. The method is tested on the two tank benchmark example. ©2009 IEEE....

  3. Active faulting on the Wallula fault within the Olympic-Wallowa Lineament (OWL), eastern Washington State

    Science.gov (United States)

    Sherrod, B. L.; Lasher, J. P.; Barnett, E. A.

    2013-12-01

    Several studies over the last 40 years focused on a segment of the Wallula fault exposed in a quarry at Finley, Washington. The Wallula fault is important because it is part of the Olympic-Wallowa lineament (OWL), a ~500-km-long topographic and structural lineament extending from Vancouver Island, British Columbia to Walla Walla, Washington that accommodates Basin and Range extension. The origin and nature of the OWL is of interest because it contains potentially active faults that are within 50 km of high-level nuclear waste facilities at the Hanford Site. Mapping in the 1970's and 1980's suggested the Wallula fault did not offset Holocene and late Pleistocene deposits and is therefore inactive. New exposures of the Finley quarry wall studied here suggest otherwise. We map three main packages of rocks and sediments in a ~10 m high quarry exposure. The oldest rocks are very fine grained basalts of the Columbia River Basalt Group (~13.5 Ma). The next youngest deposits include a thin layer of vesicular basalt, white volcaniclastic deposits, colluvium containing clasts of vesicular basalt, and indurated paleosols. A distinct angular unconformity separates these vesicular basalt-bearing units from overlying late Pleistocene flood deposits, two colluvium layers containing angular clasts of basalt, and Holocene tephra-bearing loess. A tephra within the loess likely correlates to nearby outcrops of Mazama ash. We recognize three styles of faults: 1) a near vertical master reverse or oblique fault juxtaposing very fine grained basalt against late Tertiary-Holocene deposits, and marked by a thick (~40 cm) vertical seam of carbonate cemented breccia; 2) subvertical faults that flatten upwards and displace late Tertiary(?) to Quaternary(?) soils, colluvium, and volcaniclastic deposits; and 3) flexural slip faults along bedding planes in folded deposits in the footwall. We infer at least two Holocene earthquakes from the quarry exposure. The first Holocene earthquake deformed

  4. Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    2016-09-01

    Full Text Available Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B, can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster–Shafer (D-S evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection.

  5. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    Directory of Open Access Journals (Sweden)

    Weiying Wang

    2014-01-01

    Full Text Available Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  6. Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis

    Science.gov (United States)

    Jiang, Wen; Xie, Chunhe; Zhuang, Miaoyan; Shou, Yehang; Tang, Yongchuan

    2016-01-01

    Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B), can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster–Shafer (D-S) evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection. PMID:27649193

  7. Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis.

    Science.gov (United States)

    Jiang, Wen; Xie, Chunhe; Zhuang, Miaoyan; Shou, Yehang; Tang, Yongchuan

    2016-09-15

    Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B), can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster-Shafer (D-S) evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection.

  8. Hard competitive growing neural network for the diagnosis of small bearing faults

    Science.gov (United States)

    Barakat, M.; El Badaoui, M.; Guillet, F.

    2013-05-01

    A hard competitive growing neural network (HC-GNN) with shrinkage learning is put forward to detect and diagnose small bearing faults. Structure determination based on supervised learning is an important issue in pattern classification. For that reason, the proposed approach introduces new hidden units whenever necessary and adjusts their shapes to minimize the risk of misclassification. This leads to smaller networks compared to classical radial basis functions or probabilistic neural networks and therefore enables the use of large data sets with satisfactory classification accuracy. This technique is based on the following concepts: (1) growing architecture, (2) dynamic adaptive learning, (3), convergence by means of several criteria, (4) embedded weighted feature selection, and (5) optimized network structure. HC-GNN consists of two main stages and runs in an iterative way. The first stage learns weighted selected parameters to well-known classes while the second stage associates the testing parameters of unknown samples to the learned classes. This approach is applied on a machinery system with different small bearing faults at various speeds and loads. The challenge is to detect and diagnose these faults regardless of the motor's shaft speed. Obtained results are analyzed, explained and compared with various techniques that have been widely investigated in diagnosis area.

  9. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    Science.gov (United States)

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  10. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review

    Science.gov (United States)

    Chen, Jinglong; Li, Zipeng; Pan, Jun; Chen, Gaige; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia

    2016-03-01

    As a significant role in industrial equipment, rotating machinery fault diagnosis (RMFD) always draws lots of attention for guaranteeing product quality and improving economic benefit. But non-stationary vibration signal with a large amount of noise on abnormal condition of weak fault or compound fault in many cases would lead to this task challenging. As one of the most powerful non-stationary signal processing techniques, wavelet transform (WT) has been extensively studied and widely applied in RMFD. Numerous publications about the study and applications of WT for RMFD have been presented to academic journals, technical reports and conference proceedings. Many previous publications admit that WT can be realized by means of inner product principle of signal and wavelet base. This paper verifies the essence on inner product operation of WT by simulation and field experiments. Then the development process of WT based on inner product is concluded and the applications of major developments in RMFD are also summarized. Finally, super wavelet transform as an important prospect of WT based on inner product are presented and discussed. It is expected that this paper can offer an in-depth and comprehensive references for researchers and help them with finding out further research topics.

  11. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    Science.gov (United States)

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  12. Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis.

    Science.gov (United States)

    Jiang, Wen; Xie, Chunhe; Zhuang, Miaoyan; Shou, Yehang; Tang, Yongchuan

    2016-01-01

    Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B), can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster-Shafer (D-S) evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection. PMID:27649193

  13. Activity Tendency and Dynamic Characteristics of Shanxi Fault Zone

    Institute of Scientific and Technical Information of China (English)

    Yang Guohua; Wang Min; Han Yueping; Zhou Xiaoyan; Zhang Zhongfu; Wang Xiuwen; Guo Yuehong

    2003-01-01

    The tendency and dynamic characteristics of horizontal movement along the Shanxi fault zone have been analyzed using the data obtained from 6 repeated measurements (1996~2001) in the GPS monitoring network arranged along the Shanxi fault zone. The results indicate: (1) the tendentious activity of the present stage is characterized by a W-trending movement along the northern segment of the zone, an E-trending movement along the southern segment and counter clockwise differential activity on the whole, but the intensity of the tendentious activity is not high. The tendentious differential movement is only about 3 mm/a in the direction perpendicular to the fault zone from the south to the north, and its stretch in the SN direction is only 1 mm/a and mainly occurs along the north segment of the fault; (2) The azimuth of the principal compressive stress field reflected by the tendentious movement is 72°; (3) The property of annual activity is not the same, even contrary to one another or deviates from the tendentious activity. Therefore, the parameters of the strain field derived from them don't reflect the physical characteristics of the basic stress field. (4) The high-frequency movement (yearly) does not only exist but is also complicated by an intensity several times higher than that of the tendentious movement; (5) Obvious differential movements, including strike slip, can not be seen in either in secular activity or annual activity on both sides of any fault. The tendentious movement not only verifies the conjecture of "strong in the south and weak in north", which is the basic feature forcing the western boundary of the North China area, but it also extends to the hinterland of North China. The fact that there is no obvious differential activity on both sides of the fault might indicate that the differential activity among the intraplate blocks is completed by gradual variation in a certain space, rather than the abrupt change bordered by a fault or narrow

  14. Robust and Active Fault-tolerant Control for a Class of Nonlinear Uncertain Systems

    Institute of Scientific and Technical Information of China (English)

    You-Qing Wang; Dong-Hua Zhou; Li-Heng Liu

    2006-01-01

    A novel integrated design strategy for robust fault diagnosis and fault-tolerant control (FTC) of a class of nonlinear uncertain systems is proposed. The uncertainties considered in this paper are more general than those in other existing works, and faults are described in a new formulation. It is proven that the states of a closed-loop system converge asymptotically to zero even if there are uncertainties and faults in a system. Simulation results on a simple pendulum are presented for illustration.

  15. DEVELOPMENT AND TESTING OF FAULT-DIAGNOSIS ALGORITHMS FOR REACTOR PLANT SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Grelle, Austin L.; Park, Young S.; Vilim, Richard B.

    2016-06-26

    Argonne National Laboratory is further developing fault diagnosis algorithms for use by the operator of a nuclear plant to aid in improved monitoring of overall plant condition and performance. The objective is better management of plant upsets through more timely, informed decisions on control actions with the ultimate goal of improved plant safety, production, and cost management. Integration of these algorithms with visual aids for operators is taking place through a collaboration under the concept of an operator advisory system. This is a software entity whose purpose is to manage and distill the enormous amount of information an operator must process to understand the plant state, particularly in off-normal situations, and how the state trajectory will unfold in time. The fault diagnosis algorithms were exhaustively tested using computer simulations of twenty different faults introduced into the chemical and volume control system (CVCS) of a pressurized water reactor (PWR). The algorithms are unique in that each new application to a facility requires providing only the piping and instrumentation diagram (PID) and no other plant-specific information; a subject-matter expert is not needed to install and maintain each instance of an application. The testing approach followed accepted procedures for verifying and validating software. It was shown that the code satisfies its functional requirement which is to accept sensor information, identify process variable trends based on this sensor information, and then to return an accurate diagnosis based on chains of rules related to these trends. The validation and verification exercise made use of GPASS, a one-dimensional systems code, for simulating CVCS operation. Plant components were failed and the code generated the resulting plant response. Parametric studies with respect to the severity of the fault, the richness of the plant sensor set, and the accuracy of sensors were performed as part of the validation

  16. GENERATOR VIBRATION FAULT DIAGNOSIS METHOD BASED ON ROTOR VIBRATION AND STATOR WINDING PARALLEL BRANCHES CIRCULATING CURRENT CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    Wan Shuting; Li Heming; Li Yonggang; Tang Guiji

    2005-01-01

    Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.

  17. Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis

    Science.gov (United States)

    He, Qingbo

    2013-02-01

    Time-frequency feature is beneficial to representation of non-stationary signals for effective machinery fault diagnosis. The time-frequency distribution (TFD) is a major tool to reveal the synthetic time-frequency pattern. However, the TFD will also face noise corruption and dimensionality reduction issues in engineering applications. This paper proposes a novel nonlinear time-frequency feature based on a time-frequency manifold (TFM) technique. The new TFM feature is generated by mainly addressing manifold learning on the TFDs in a reconstructed phase space. It combines the non-stationary information and the nonlinear information of analyzed signals, and hence exhibits valuable properties. Specifically, the new feature is a quantitative low-dimensional representation, and reveals the intrinsic time-frequency pattern related to machinery health, which can effectively overcome the effects of noise and condition variance issues in sampling signals. The effectiveness and the merits of the proposed TFM feature are confirmed by case study on gear wear diagnosis, bearing defect identification and defect severity evaluation. Results show the value and potential of the new feature in machinery fault pattern representation and classification.

  18. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  19. Fault diagnosis of nonlinear and large-scale processes using novel modified kernel Fisher discriminant analysis approach

    Science.gov (United States)

    Shi, Huaitao; Liu, Jianchang; Wu, Yuhou; Zhang, Ke; Zhang, Lixiu; Xue, Peng

    2016-04-01

    It is pretty significant for fault diagnosis timely and accurately to improve the dependability of industrial processes. In this study, fault diagnosis of nonlinear and large-scale processes by variable-weighted kernel Fisher discriminant analysis (KFDA) based on improved biogeography-based optimisation (IBBO) is proposed, referred to as IBBO-KFDA, where IBBO is used to determine the parameters of variable-weighted KFDA, and variable-weighted KFDA is used to solve the multi-classification overlapping problem. The main contributions of this work are four-fold to further improve the performance of KFDA for fault diagnosis. First, a nonlinear fault diagnosis approach with variable-weighted KFDA is developed for maximising separation between the overlapping fault samples. Second, kernel parameters and features selection of variable-weighted KFDA are simultaneously optimised using IBBO. Finally, a single fitness function that combines erroneous diagnosis rate with feature cost is created, a novel mixed kernel function is introduced to improve the classification capability in the feature space and diagnosis accuracy of the IBBO-KFDA, and serves as the target function in the optimisation problem. Moreover, an IBBO approach is developed to obtain the better quality of solution and faster convergence speed. On the one hand, the proposed IBBO-KFDA method is first used on Tennessee Eastman process benchmark data sets to validate the feasibility and efficiency. On the other hand, IBBO-KFDA is applied to diagnose faults of automation gauge control system. Simulation results demonstrate that IBBO-KFDA can obtain better kernel parameters and feature vectors with a lower computing cost, higher diagnosis accuracy and a better real-time capacity.

  20. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    Science.gov (United States)

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.